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Abstract

Phycocyanin is a blue pigment produced by cyanobacteria and is a valuable compound for food and
cosmetic industries. At present, phycocyanin is manufactured with expensive and resource-heavy
biotechnology, impeding its widespread use as a blue dye substitute. Here we show that cells of an
alkaliphilic cyanobacterium lyse spontaneously in dark incubations mimicking natural soda lake
environments, releasing concentrated phycocyanin. Proteogenomics showed that lysis likely resulted from
a programmed response triggered by a failure to maintain osmotic pressure in the wake of severe energy
limitation. Protein expression data suggested that CRISPR-Cas and toxin antitoxin systems were
potentially involved in cell death. Cells of Arthrospira platensis (Spirulina), currently used for
phycocyanin production, lyse and release their pigments in the same manner. We propose this natural
form of programmed cell death could reduce the costs and resources needed to produce phycocyanin, and

eventually provide a new pathway for controlling harmful algal blooms.

One-Sentence Summary:
Failure to maintain osmotic balance in the dark forces blue-green algae to share their bounty with

the world.
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Introduction

Phycocyanin is a valuable, naturally produced blue dye substitute for cosmetic and food industries (1),
found within light-harvesting phycobiliproteins of cyanobacteria. It is currently commercially produced
from the cyanobacterial genus Arthrospira (Spirulina) in an energetically and resource intensive process
due to the need to supplement growth with concentrated carbon dioxide, and frequent population crashes.
To improve sustainability and cost-effectiveness of phycocyanin production, growing cyanobacteria at
much higher pH and alkalinity enabling direct capture of CO; from air (3), and using a cyanobacterial
consortium to improve process robustness by avoiding population crashes (4), were previously proposed.
Alkaliphilic cyanobacterial consortia could be sourced from alkaline soda lakes, environments with
naturally high pH (>10) and alkalinity (>0.5 M), that in some cases feature productive and dense
microbial mats dominated by cyanobacteria (5). Interestingly, the prolific growth of cyanobacteria in
these mats does not appear to translate into a buildup of biomass or sediment. Instead, the presence of
steep sulfide gradients might indicate that in these mats cyanobacteria are rapidly turned over (6, 7). The
combination of robust, prolific growth with, potentially, rapid turnover could be the ideal natural starting
point for a sustainable phycocyanin biotechnology.

Recently, we isolated a cyanobacterial consortium from alkaline soda lakes (8, 9), dominated by
“Candidatus Phormidium alkaliphilum” (10). The consortium grows optimally at a pH above 11
permitting direct capture of CO, from air (11) and displayed robust, crash-free growth during a 130-day
outdoor pilot plant trial (12). Here, we first demonstrate the turnover of cyanobacterial biomass in natural
alkaline soda lake microbial mats and sediments using 16S rDNA amplicon sequencing of sliced push-
cores. Next, we show that the rapid lysis of cells of the cyanobacterium Ca. P. alkaliphilum observed in
mat and sediment cores can be replicated in the laboratory, by incubating the cells in the dark. During this
lysis, high quality phycocyanin is released into the medium. Monitoring lysis and release using
metagenomics and metaproteomics yields no evidence for ecological interactions such as predation by
other bacteria or viruses as the cause of cell lysis. Instead, proteogenomic data supports that lysis results
from programmed cell death provoked by energy starvation and potentially involving CRISPR-Cas and
toxin antitoxin systems. Finally, we show that a one-week, static, dark incubation of Spirulina also results
in phycocyanin release without any need for mechanical disruption of cells. We propose that this newly

discovered bioprocess could reduce costs and improve sustainability of phycocyanin production.
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Results

To demonstrate rapid turnover of cyanobacterial biomass, we collected 30 cm cores of the mats and
underlying sediment from the alkaline Lake Goodenough (Canada). 16S rRNA gene amplicon sequencing
of sectioned cores showed high abundance of cyanobacteria at the top of the mat (Fig. 1). The abundance
of cyanobacteria like Phormidium and Nodosilinea decreased rapidly and became essentially negligible
two cm below the sediment surface. Other bacterial taxa, better adapted to dark and anoxic conditions,
became abundant (Fig. 1). Rapid turnover of cyanobacterial biomass explained the previously observed
steep sulfide gradients (7). Sulfide likely builds up below the mats after the depletion of oxygen because
sulfur reducing bacteria oxidize fatty acids, hydrogen, and other cyanobacterial degradation products and
reduce sulfate and other sulfur-compounds to sulfide. Amplicon sequencing showed the ecological
success at depth of thiosulfate and elemental sulfur reducing Dethiobacter (13, 14), and the sulfate,

thiosulfate, and sulfite reducing Desulfonatronovibrio (15) (Fig. 1).
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Fig. 1. Cores obtained from Lake Goodenough sediment show rapid displacement of cyanobacteria
with sulfate and sulfur reducing bacteria. (A) Map of sampling locations within Goodenough Lake,
British Columbia, Canada. (B) Cross section image of a representative core. Distribution of genera from
16S rRNA gene abundance: (C) Cyanobacteria Phormidium (Ca. P. alkaliphilum), (D) Cyanobacteria
Nodosilinea, (E) Sulfidogenic thiosulfate and elemental sulfate reducing bacteria Dethiobacter, (F)
Sulfidogenic, sulfate, sulfite and thiosulfate reducing bacteria Desulfonatronovibrio. Positive depth values

in C-F represent the cyanobacterial mat and negative centimetres represent distance below the sediment

surface.
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86
87 To investigate if the rapid degradation observed in situ could be replicated in the laboratory, we
88  used a cyanobacterial consortium previously isolated from Cariboo Plateau soda lake mats (8, 9). This
89  consortium mainly consisted of Ca. P. alkaliphilum (10), also shown in Fig. 1C. The consortium was
90  subjected to a 12 day dark and anoxic incubation in soda lake media (0.5 M inorganic carbonates, initial
91  pH > 10). Samples were taken every two days and were centrifuged, yielding solid and supernatant
92  fractions. For solid fractions, we determined ash free dry weight and performed microscopy,
93  metagenomics and metaproteomics. For supernatant fractions, we determined the pH and concentrations
94  of organic acids and phycocyanin, and also performed microscopy, metagenomics and metaproteomics.
95 Initially, 72 % of the DNA extracted from the solid fraction originated from Ca. P alkaliphilum,
96  but only 3.6 % of this DNA remained after 6-8 days in the dark. After 12 days, DNA from Ca. P
97  alkaliphilum was barely detectable (0.15%) (Fig. 2B). A similar pattern was observed in the supernatant
98  fraction, as initially 20% of DNA could be attributed to Ca. P. alkaliphilum, which decreased to 1.6% by
99  day 12 (Fig. 2C). In contrast, cyanobacterial proteins persisted, always making up at least 65% of the
100 protein composition in the solids fraction (Fig. 2E) and increasing to >80% of the supernatant fraction
101 (Fig. 2F), suggesting a discrepancy in the way that the two biomolecules were degraded. Coinciding with
102 the decrease of cyanobacterial DNA there was an increase in concentrations of fermentation products
103 such as acetate and propionate (Fig. S1). Because acetate mainly accumulated before cyanobacterial lysis,
104  Ca. P. alkaliphilum itself was likely responsible for its production. Ca. P. alkaliphilum was previously
105  shown to have the genetic capability for dark fermentation to acetate (10). Propionate increased later in
106  the incubation and was likely produced by other bacteria fermenting compounds within the cyanobacterial
107  lysate. By day 6, the supernatant was coloured intensely blue (Fig. 3A) and contained a large amount of
108  phycocyanin based on UV/Vis spectrometry (Fig. S2). Proteomics showed that phycocyanin made up
109 22%-32% of the protein in supernatant samples (Fig. S3). Microscopy showed that the cyanobacterial
110 cells were lysing and breaking apart by the sixth day of incubation, explaining the presence of
111 phycocyanin in the external medium (Fig. 3BC). Cell lysis of densely populated cyanobacterial blooms
112 and the subsequent blue colour change caused by the release of phycocyanin is a phenomenon that has
113 been observed previously in freshwater lakes, but the mechanism of those lysis events remains unknown
114 (16, 17).
115
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Fig. 2. DNA and protein dynamics during the 12-day dark and anoxic incubation. Concentration of
DNA (A) and protein (D) in the solid and supernatant fractions. Microbial composition of consortium
determined from the DNA in the solids (B), and supernatant (C) fractions, and from the protein content in

the solids (E), and supernatant (F) fractions.
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Fig. 3. Release of phycocyanin during a dark and anoxic incubation. Image showing the colour of the
supernatant fraction of each sample taken during the incubation (A). Microscopic images of the

cyanobacterial consortium taken on day 0 (B), and day 6 (C) of the incubation.

Cell lysis could be attributed to a number of causes including predation, viral attack, or
genetically programmed signals (i.e., programmed cell death) (18), and each of these possibilities is
assessed below. The possibility of predation by a larger eukaryotic cell or an antagonistic bacterial species
was evaluated using the metagenomics data. Phagocytosis and grazing are predatory strategies performed
by eukaryotes. Eukaryotic ciliate grazers affiliated with Schmidingerothrix were present in the
consortium, however their abundance, calculated through copies of the rDNA gene in the metagenomes,
was low (<2%) and did not increase over the course of the dark, anoxic incubation (Fig. S4), suggesting
that eukaryotic predation was not directly responsible for the collapse of the cyanobacterial population.

Provisional genomes, or metagenome assembled genomes (MAGs), were acquired for the main
cyanobacterial species, Ca. P. alkaliphilum, in addition to 59 other species from eight bacterial phyla
including Proteobacteria, Bacteroidota, Firmicutes, Planctomycetota and Verrucomicrobiota (Fig. 2,
Table S1). The observed bacterial dynamics, and the diverse and enhanced expression of carbohydrate
active transporters, like the TonB-dependent transporters (expressed by at least 24 different MAGs), are

akin to the succession of bacterial populations after phytoplankton blooms in other aquatic systems (19).
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141  However, although the relative abundance of heterotrophs increased during the incubation, the

142 abundances of heterotrophs relative to each other changed only modestly (Fig. 2) and there was no single
143 species that benefited in proportion to the magnitude of the lysis event. Total DNA concentrations

144  decreased (Fig. 2A), released cyanobacterial proteins persisted and fermentation (producing acetate)

145  declined after the lysis of the cyanobacteria (Fig. S1). This might mean that the mainly aerobic

146  consortium members did not have time to consume the released proteinaceous cyanobacterial lysate

147  anaerobically. Therefore, antagonistic bacteria were likely not the cause of the cell lysis event.

148 Cyanophages, viruses that specifically target cyanobacteria, play an important role in the fate of
149  cyanobacteria in natural environments, and consequently in global carbon and nutrient cycles (20, 21).
150  The cyanobacterial MAG contained seven CRISPR arrays, suggesting previous viral infections. However,
151  no viral proteins were identified in the metaproteome, and no viral contigs matching cyanobacterial

152 contigs were identified in the assembly (Fig. S5). The most abundant contig of viral origin, identified by
153 Virsorter (22), was inferred to be a prophage of a Planctomycetota MAG, and not associated with the

154  cyanobacteria. It also only reached 50% of the average cyanobacterial pre-collapse sequencing depth (Fig.
155  S5). In the event of a viral-mediated lysis, the depth of the associated viral contigs would be expected to
156  increase at least 10-fold (burst size) in comparison to the depth of the cyanobacterial host contigs (23).
157  The comparatively low abundance of viral associated contigs indicated that a mass viral-induced lysis of
158  the cyanobacterial cells did not occur.

159 Finally, we explored if a genetically programmed signal, like programmed cell death, was the
160  most likely cause of the cyanobacterial lysis. Programmed cell death might be initiated in response to

161 external stressors, such as the depletion of an internal storage pool and the consequent failure to maintain
162 osmotic pressure, caused by sustained darkness (24, 25).

163 Total cyanobacterial protein abundance remained relatively unchanged during the 12-day

164  incubation, and included detection of just over 2,000 proteins, accounting for 52% of the predicted

165  proteome of Ca. P. alkaliphilum (Table S2). Of the expressed proteins, 459 increased by at least two-fold
166  between the beginning and the end of the dark incubation, while 1,039 proteins decreased expression over
167  50%. In general, cyanobacteria do not drastically change their proteome composition in response to diel
168  cycling (26, 27). Thus, a greater than twofold change in approximately 75% of the expressed proteins
169  suggests that Ca. P. alkaliphilum had mounted a stress response that was outside the normal range of

170  proteomic circadian cycles.

171 We observed the well-known signs of a shift from linear electron flow to cyclic electron flow in
172 the cyanobacteria’s proteome (28, 29, Table S2). Firstly, the relative expression of photosystem I (PSI)
173 increased nearly four-fold to 12.7% of the metaproteome by day 12, which was three times higher than
174  the expression of photosystem II (PSII), a ratio that began at 1:1 on day 0. In parallel, large increases in

175  other proteins and complexes required for cyclic electron flow including ATP synthase, cytochrome b6f,
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176  and ferredoxin were observed (Fig. 4). Proteins not required for cyclic electron flow, like ferredoxin-

177  NADP+ reductase and the oxygen evolving complex of PSII decreased ten and two-fold, respectively,
178  during the same period (Fig. 4B). Previous studies have identified an increase in cyclic electron flow in
179  response to the stress of dark and anoxic conditions and have hypothesized that it could be used as a

180  defensive strategy protecting PSII in the moments before the CBB cycle is activated (30), or alternatively
181  as a mechanism to jumpstart metabolism through the rapid generation of ATP once light energy returns
182 (3D).

183 There was a rapid disappearance of cyanobacterial DNA observed from day 4 onwards in the

184  metagenomes. Cleavage of DNA to fragments between 150-300 base pairs in length is a common

185  occurrence in programmed cell death in prokaryotes, including cyanobacteria (24, 32). A size selection
186  step in the metagenome library preparation protocol excluded DNA fragments below 300 base pairs, and
187  thus these DNA fragments would not get sequenced in the resulting metagenomes. The potential for

188  programmed cell death was further supported by the presence of multiple (>10) toxin-antitoxin systems in
189  the Ca. P. alkaliphilum whole genome sequence. A toxin-antitoxin system consists of a small stable toxin
190  that is responsible for cell death or growth arrest, and an easily degraded antitoxin which blocks its

191 activity (33-37). Peptides assigned to toxin (HicA) and antitoxin (ParD, AbiEii) proteins were identified
192 in the metaproteome (Fig. 4, Table S2). Antitoxin abundance declined markedly during the first six days
193 of the incubation while a peak in the abundance of toxins accompanied the cell lysis event. There was
194  also a specific decrease (4-45-fold reduction) in proteins related to translation and transcription, like

195  ribosomes, RNA polymerases, elongation factors, and translation initiation factors (Fig. 4).

196  Corresponding with these observations in the proteome, several toxin-antitoxin systems promote cell

197  death through the global reduction of replication, transcription, and translation in cells (33). Also,

198  mechanosensitive channels, known to be upregulated in response to changes in osmotic pressure (38),

199  increased in expression five-fold by day 12

10
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212 Several CRISPR associated (Cas) proteins increased in the supernatant fraction after day 4 of the
213 incubation, which corresponded with the cyanobacterial cellular lysis. An increase in the abundance of
214  proteins specifically in the supernatant fraction, could imply that these proteins are overexpressed in cells
215  that have just undergone lysis, and thus might provide insight into the cellular state in the moments right
216  before death. Various Cas proteins from multiple Type III and one Type ID CRISPR system were

217  upregulated in the supernatant fraction (Fig. 5). Between days 2 and 4, the abundance of Cas proteins in
218  the supernatant fraction increased 4.5x while remaining consistent in the solids fraction (0.96x). By the
219  end of the incubation, the Cas proteins had increased 7.3x in the supernatant fraction, while decreasing in
220  the solids fraction (0.4x). As a comparison, total cyanobacterial proteins in the solids fraction decreased at
221  aratio of 0.84, and total cyanobacterial proteins in the supernatant fraction increased 1.6x over the course
222 of the incubation. Therefore, Cas proteins in the supernatant increased during and after the lysis event at a
223 greater magnitude than the average cyanobacterial protein in the supernatant. Because there was no

224  simultaneous increase in viral contigs over the incubation (Fig. S5), it seems possible this Cas response is
225  independent of viral or immune activity and may instead be associated with the cyanobacterial response
226  to stress. To support this theory, previous research has suggested that the ancestor to CRISPR-Cas

227  effectors was a stress response system that triggered programmed cell death after activation by a

228  signalling molecule (39,40).

229 Proteins from a CRISPR Type IIIA operon had the highest increase in expression in the

230  supernatant fraction of Cas proteins over the incubation (Fig. 5). CRISPR Type IIIA effector complexes
231 consist of a Cas10 protein and other subunit proteins Csm3 (Cas7), and Csx19 (41) acting as a multi-

232 subunit nuclease (42). The Cas10 protein is involved in the production of the signalling secondary

233 metabolite cyclic oligoadenylate from nucleotides (40, 43). The secondary metabolite molecules initiate
234  sequence-non-specific nuclease activity in some Cas proteins promoting cell death and dormancy (44).
235 CRISPR systems have also been shown to both work in association with (40,45,46), and to regulate the
236  expression of toxin antitoxin systems (47,48).

237
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Fig 5. Dynamics of CRISPR associated proteins from the most abundant CRISPR operon in the Ca.
P. alkaliphilum proteome. This operon contains a Type IIIA CRISPR system. Increasing abundances of
these proteins in the supernatant — but not in the solids fraction — during the lysis event indicated
increased expression of these proteins immediately before cell death occurred. The number in the gene

name corresponds to the accession for the gene in the Ca. P. alkaliphilum proteome.

If energy depletion was the root cause of cyanobacterial cell lysis, increasing salinity prior to a
dark and anoxic incubation should result in an earlier lysis event. The cells would need to spend more
maintenance energy to cope with the higher osmotic stress and would consequently deplete their reserves
sooner. This hypothesis was tested by performing separate dark and anoxic incubations of the

cyanobacterial consortium at higher (1M Na*) and lower (0.25M Na®) salinity.
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253 The dark and anoxic incubation at 0.25M Na, resulted in a cyanobacterial lysis event that

254 occurred later and resulted in a much lower concentration of released phycocyanin (1.5 mg/mL)

255 compared to the original incubation at 0.5M Na* (6.6 mg/mL) (Fig. 6). In the incubation with 1M Na*,
256  cell lysis occurred sooner, by day 5 (Fig. 6), and the final concentration of 7.2 mg/mL phycocyanin was
257  higher than the original incubation. These results support the hypothesis that cyanobacterial cell lysis in
258  these dark and anoxic incubations is initiated by the depleted energy reserves used to maintain osmotic
259  equilibrium. Cells in an environment of higher salinity require more energy to maintain osmotic

260  equilibrium, and thus deplete energy reserves faster. These results also supported the earlier conclusion
261 that heterotrophs were slow to consume released cyanobacterial proteins; the faster the lysis, the more
262  phycocyanin remained.

263 Lastly, we demonstrated that phycocyanin extraction by programmed cell death can be directly
264  applied to commercial operations. A culture of Spirulina was incubated in dark and anoxic conditions
265  with 1M Na*. After 10 days of incubation, a similar phycocyanin release was observed (Fig. S6).

266

>

Sodium Concentration (M)
0.25 05 -@ 1

Phycocyanin concentration (mg/mL)

267 Time (days)
268  Fig. 6. Dark and anoxic incubations with varying sodium concentrations. (A) Phycocyanin

269  concentration in the supernatant fraction of dark and anoxic incubations with varying sodium

270  concentrations in the media. Electron micrographs of cyanobacterial cells on day 0 (B), and day 5 of dark
271 and anoxic incubations, with the original 0.5 M Na* media (C), 1 M Na* media (D), and 0.25 M Na*

272  media (E).

273

274

275
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76 DIscussion

277

278  The incubation exposed the cyanobacterial consortium to a myriad of stresses including energy starvation
279  through prolonged darkness and anoxia. Proteogenomics showed that initially the cells altered their

280  proteome to combat these stresses by the rearrangement of protein complexes in the thylakoid membrane
281  to favour cyclic electron flow. Fermentation of available endogenous carbohydrates, like glycogen,

282  cyanophycin, or the osmolytes sucrose, glucosyl glycerol, and trehalose, initially provided energy for

283  sustaining cellular integrity and resulted in the observed increase in acetate (49, 50, Fig. S1). After four
284  days, proteins involved in transcription and translation were severely diminished, a signal of decreased
285  metabolism and arrested growth. After six days without relief from darkness, the supply of endogenous
286  carbohydrates and osmolytes was likely depleted (6), and the ensuing starvation and osmotic stress may
287  have triggered a programmed cell death response, possibly through toxin-antitoxin systems and/or the
288  expression of CRISPR associated proteins, resulting in lysis of the cyanobacterial cells. The anoxic

289  conditions of the incubation stunted the degradation of released phycocyanin pigment proteins by the

290  predominantly aerobic heterotrophs making up the consortium.

291 A similar lysis phenomenon was previously observed in dark and anoxic incubations of a

292 thermophilic cyanobacterium, Oscillatoria terebriformis, isolated from hot spring microbial mats (51). In
293 that experiment, cell survival could be prolonged by the addition of an exogenous carbohydrate source
294  (fructose), and/or a reductant (e.g., sodium thioglycolate). This might be another example where

295  dwindling energy stores cause the lysis of a cyanobacterium under dark and challenging conditions. The
296  addition of fructose sustained cell survival by providing another substrate for cyanobacterial fermentation.
297  Whereas the addition of reducing agents could have quenched reactive oxygen species (ROS) produced
298  under stress. A link between ROS and programmed cell death in both eukaryotic and prokaryotic cells has
299  long been known (52-54), and the production of ROS has previously been associated with the activation
300  of toxin-antitoxin systems upon stress (55, 56).

301 Cyanobacterial cellular lysis due to dark and anoxic incubation provided a way to access the

302  internal pigment phycocyanin without costly and energetically intensive mechanical disruption. Evidence
303  of this lytic bioprocess was found in the industrially cultivated species, Spirulina, as well as in

304  cyanobacterial species from hot spring microbial mats (51), and the sediments of the original haloalkaline
305  environment of Ca. P. alkaliphilum, suggesting that this phenomenon could be widespread among

306 cyanobacteria in both engineered and natural systems. Ultimately, this may even open up new avenues to
307  control harmful algal blooms. Detection of free phycocyanin in lakes after blooms already indicates that

308  the same process could be relevant and, with follow up research, manipulated.
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309 Thus, this intrinsically occurring bioprocess could be harnessed as a novel, more cost-effective
310  and sustainable way to produce the natural blue pigment phycocyanin and other bioproducts, and provides
311  insight into mechanisms of cell death in cyanobacteria.

s: Materials and Methods

314  Sediment sample collection and preparation

315  Duplicate sediment cores were collected in April 2019 from Goodenough Lake (51.330°N, 121.64°W).
316  The sediment cores were taken from 3 different locations within each lake (Fig. 1) using a 1.5-m single-
317  drive Griffith corer from LacCore: National Lacustrine Core Facility (University of Minnesota). The

318  sediment cores ranged in length from 25-50 cm. To reduce the mixing of water and upper sediment layers
319  in the cores, Zorbitrol was used as a gelling agent to stabilize the sediment-water interface during

320  transport. Cores were then stored upright at -20 °C. For the analysis, positive centimetres represent the
321  benthic cyanobacterial mat and negative centimetres represent distance below the sediment surface.

322 Cores were removed from the -20 °C freezer and defrosted at room temperature (22 °C) for 2

323 hours. Cores were then horizontally sliced into 2 cm disks using a Dremel Multi-Max MMS50 oscillating
324  saw (Dremel, USA) at the lowest speed, used to reduce blade contact with the sediment. The blade was
325  sterilized with 70% ethanol before each core section was sampled. To avoid the potential risk of

326  contamination from the core liner or during sectioning, sediment in contact with the core liner was

327 removed and the inner core was transferred to a 50 mL tube, sealed, and stored at -20 °C. The sediment
328  from each disk was subsampled for DNA extraction and stored at -80°C.

329

330  Experimental setup and sampling

331  An alkaliphilic cyanobacterial consortium enrichment culture containing a single, abundant,

332 cyanobacteria species, Candidatus Phormidium alkaliphilum (8-10), was used as inoculum for the dark
333  incubation. This consortium was originally sourced from alkaline soda lakes in the Cariboo Plateau region
334 of Canada (5). The cyanobacterial consortium was grown in continuous light (200 umol photons/(m?s))
335  in 10 L stirred glass vessels. The growth medium was previously described (11) and contained 0.5 M

336 sodium (bi)carbonate alkalinity, at an initial pH of 10.3. After six days of photoautotrophic growth the
337  culture was centrifuged for 30 minutes at 4,500 rpm to concentrate the biomass (Allegra X-22R, Beckman
338 Coulter, USA). The wet biomass was then divided into 20 mL serum bottles sealed with butyl-rubber

339  septa. Two grams of wet biomass were added to each serum bottle. The bottles were purged with N, gas
340 to create an anoxic headspace, and then placed at room temperature (21°C) in the dark. At 0, 2, 4, 6, 8, 10,

341  and 12 days after the start of the incubation, two sacrificial samples were taken. To each sample, 5 mL of
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342  pH 7, phosphate-buffered saline solution was added and then the sample was centrifuged for 10 min at
343 4500 rpm, to separate biomass and supernatant.

344 For biomass pellets, the ash free dry weight of each sample was measured using NREL laboratory
345  analytical procedures protocol (57). For the supernatant, the concentration of the organic acids succinate,
346  formate, propionate, butyrate, and lactate were measured using an UltiMate 3000 HPLC system

347  (ThermoFisher Scientific, USA) equipped with an Aminex HPX-87H column and a UV detector, as

348  previously described (58). The phycocyanin and total protein concentration in the supernatants were

349  measured as absorption at 620 nm and 280 nm respectively (59) using an Evolution 260 Bio UV-Visible
350  Spectrophotometer (ThermoFisher Scientific, USA), with a standard curve prepared from laboratory-

351  grade phycocyanin (Sigma-Aldrich, USA). Bright-field microscope images were taken using a Zeiss Axio
352  Imager A2 Microscope (Carl Zeiss AG, Germany).

353

354  DNA extraction

355  DNA was extracted directly from soda lake sediment and incubation solid samples using the Fast DNA
356  Extraction Kit for Soil (MP Biomedicals, USA). For incubation supernatant samples, 250 pL of sample
357  was used for each extraction. The extraction protocol of the manufacturer was followed, but additional
358  purification steps were performed with 5.5 M guanidine thiocyanate (8). For supernatant samples, the
359  elution buffer was heated to 50°C prior to the elution step to increase yield. Still, supernatant samples

360  from Day 0 and Day 10 did not yield enough DNA for metagenome analysis.

361

362 16S rRNA gene PCR and sequencing

363  Amplicon sequencing and library preparation of the DNA sediment samples was performed as previously
364  described (8) using primer sets 926wF (5'-AAACTYAAAKGAATTGRCGG3') and 1392R (5'-

365 ACGGGCGGTGTGTRC3I') targeting bacteria (60, 61). Prepared libraries were sequenced on the MiSeq
366  Personal Sequencer (Illumina, USA) using the 2 x 300 bp MiSeq Reagent Kit v3. Amplicon sequencing
367  results were processed using MetaAmp Version 3.0 (62), and the Silva database version 132 (63). Paired-
368  end reads were merged if they had less than eight mismatches in the overlap region and an overlap of

369  >100 base pairs (bp) (8, 64). The merged reads were further filtered by removing reads that were missing
370  the forward or reverse primer and had more than one mismatch in the primer region. All reads were

371 trimmed to a final of 350 bp and clustered into operational taxonomic units (OTUs) of >97% sequence
372 identity (8, 64).

373
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Library preparation and metagenome sequencing

All biomass samples, and supernatant samples from days 2, 4, 6, 8 and 12 were prepared for metagenomic
sequencing as previously described (5). Briefly, DNA was sheared to fragments of ~300 bp and libraries
were created using the NEBNext Ultra DNA Library Prep Kit (New England Biolabs, Ipswich, MA). An
Ilumina NextSeq 500 sequencer (Illumina, San Diego, CA) was used for sequencing using a 300 cycle
(2x150bp) high-output sequencing kit at the Center for Health Genomics and Informatics in the Cumming

School of Medicine, University of Calgary, Canada.

Metagenome Assembly and Binning

Raw, paired-end Illumina reads were filtered for quality using BBDuk (https://jgi.doe.gov/data-and-
tools/bbtools/). Quality control consisted of trimming reads to 150 bp, trimming off adapter sequences,
filtering out contaminants, such as the PhiX adapter, and clipping off low quality ends, all as previously
described (5). Paired-end reads from each sample were then merged with BBmerge (65). Separate
assemblies of the reads from each sample were performed using metaSPAdes version 3.12.0 with default
parameters (66). To increase binning success, one large co-assembly using the unmerged reads from all
samples was conducted using MegaHit v1.2.2 (67). Only contigs greater than 500 bp in length were
processed further. The MetaErg pipeline (68) was used for prediction and annotation of genetic elements
on each assembled contig.

Binning of assembled reads into metagenome-assembled-genomes (MAGs) was completed using
MetaBat2 version 2.12.1 (69). The binning step was performed on each sample’s assembly separately as
well as the co-assembly. To generate sequencing depth data for binning, quality-controlled reads of each
sample were mapped to the assembly of each sample using BBMap v38.84
(https://sourceforge.net/projects/bbmap/). Mapping results were summarized using the script,
“jgi_summarize_bam_contig_depths”, part of the MetaBat package (70). After binning, the program dRep
(71) in conjunction with CheckM v1.0.11 (72) was used to determine the best (highest estimated
completeness, and lowest estimated contamination) MAGs associated with each population. In total, 60
MAGs (>80% completeness, and <5% contamination) were identified for further processing and analysis.
The program, gtdbtk v0.3.2 was used for the taxonomic assignment of each MAG (73).

The relative abundance of individual MAGs in each metagenome was calculated by mapping
quality controlled raw reads from each sample onto the contigs of each MAG as well as the dereplicated
contigs that remained unbinned. Again, BBMap (minid = 0.98) was used for this. Unbinned contigs were
dereplicated using cd-hit-2d (74). In this step, all contigs sharing > 90% sequence identity with a binned
contig were eliminated. The number of reads that mapped to each contig was counted, and then the total

counts for each contig of each MAG were summarized. To determine relative abundance, counts were
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408  normalized to MAG genome size and the number of mapped reads per sample. For the unbinned contigs,
409  reads were normalized to the number of base pairs in all dereplicated unbinned contigs.

410 The program phyloFlash v3.3 (Emirge assembly) was used to obtain full length 16S and 18S

411  ribosomal RNA (rRNA) gene sequences and their sequencing depth from the metagenomes (75). The
412 sequencing depths of rRNA sequences were used primarily to determine the population dynamics of

413 species that did not assemble or form MAGs well, mainly eukaryotic protists.

414

415  Analysis of viral contigs

416  Contigs potentially associated with viruses were identified from the metagenome co-assembly using

417 VirSorter v1.0.6 (22). BLASTn was then used to match the DNA sequence of viral contigs to the 60

418  MAGs. CRISPR arrays in the cyanobacterial MAG were identified from the MetaErg output (68), with
419  the program MinCED (github.com/ctSkennerton/minced).

420

421  Protein Extraction and LC-MS/MS mass spectrometry

422 Protein was extracted from biomass and supernatant samples as previously described (76), using the filter
423  aided sample preparation (FASP) protocol (77). To lyse cells, samples were added to lysing matrix E bead
424 tubes (MP Biomedicals, USA) with SDT-lysis buffer (0.1 M DTT) in a 1:10 sample to buffer ratio. The
425  tubes were then subjected to bead-beating in an OMNI Bead Ruptor (Omni International, USA) 24 for
426  45sat 6ms . For supernatant samples, 500 uL of supernatant was used for lysis. Supernatant samples
427  from days 0 and 2 had low yields and so lysate was concentrated prior to protein extraction.

428 Peptides were separated by an UltiMateTM 3000 RSLC nano Liquid Chromatograph (Thermo
429  Fisher Scientific, USA), using a 75cm x 75um analytical column and analyzed in a QExactive Plus hybrid
430  quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientific, USA) as previously described (78). A
431 total of 2,000 ng of peptide was loaded, and each sample was run for 4 hours.

432

433  Metaproteomics data analysis

434  The database used for protein identification was manually created using the predicted and annotated

435  proteins from the binned and unbinned metagenomic sequences. Cd-hit was used to remove redundant
436  sequences from the database using an identity threshold of 95% (74), giving preference to sequences that
437  came from metagenome assembled genomes (MAGs). Sequences of common contaminating proteins
438  were added to the final database (http://www.thegpm.org/crap/). The final database contained 454,164
439  proteins. For protein identification MS/MS spectra were searched against the database using the Sequest

440  HT node in Proteome Discoverer version 2.2.0.388 (Thermo Fisher Scientific, USA) as described
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441  previously (79). Only proteins with one unique peptide, and with a protein false discovery rate (FDR)
442 confidence of at least a level of “medium”, were kept for further analysis.

443 Relative protein abundances were estimated using the normalized spectral abundance factor

444  (NSAF) (80). MAG abundance in the metaproteome was estimated by adding the NSAF abundance of all
445  proteins belonging to that MAG. In total, 3,286,730 MS/MS spectra were obtained, yielding 632,137

446  peptide spectral matches (PSMs), which corresponded to 10,408 expressed proteins after quality control.
447

448  Sodium, biomass concentration, and Spirulina experiments

449  The dark and anoxic incubation of the cyanobacterial consortium was repeated using dewatered biomass
450  with different concentrations of sodium. Initially, biomass obtained after growth was first dewatered and
451  then gently washed with deionized water to remove the salts. This step was repeated five times to ensure
452 that all the salts were removed. The washed biomass was then separated into three aliquots. Each aliquot
453  was washed with sodium carbonate solution with varied concentrations (0.25M, 0.5M and 1M). Then,
454  approximately 2 grams of wet paste from each aliquot was placed in sterile serum bottles. The headspace
455  in the serum bottles was vacuumed and filled with nitrogen gas up to atmospheric pressure to create

456  anoxic conditions. These serum bottles were then incubated in dark at room temperature for 8 days. Every
457  day two bottles were removed from the incubation and analysed for phycocyanin as described above.

458  Electron microscopy was conducted as described previously (81), without performing ethanol washes and
459  without using gold-sputtered filters.

460 The dark and anoxic incubation was repeated using a culture of Spirulina (Arthrospira platensis).
461 A bulk culture containing 250 grams of wet paste (solid concentration 20% w/w) was incubated in dark
462  and anoxic conditions with 1 M sodium carbonate for 12 days. The culture was visually monitored for
463  signs of lysis and phycocyanin release (Fig. S6).

464

465
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