

1 Programmed cell death improves sustainability of phycocyanin production

2 from cyanobacteria

4 Authors:

5 Jackie Zorz^{1*}, Alexandre J. Paquette¹, Timber Gillis¹, Angela Kouris^{1,2}, Varada Khot¹, Cigdem
6 Demirkaya³, Hector De La Hoz Siegler³, Marc Strous¹, Agasteswar Vadlamani^{1,2}

7 Affiliations:

⁸ ¹Department of Geoscience, University of Calgary, Calgary, Canada

9 ²Synergia Biotech Inc., Calgary, Canada

10 ³Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Canada

11 *Corresponding author. Email: jacqueline.zorz@ucalgary.ca

14 Abstract

15
16 Phycocyanin is a blue pigment produced by cyanobacteria and is a valuable compound for food and
17 cosmetic industries. At present, phycocyanin is manufactured with expensive and resource-heavy
18 biotechnology, impeding its widespread use as a blue dye substitute. Here we show that cells of an
19 alkaliphilic cyanobacterium lyse spontaneously in dark incubations mimicking natural soda lake
20 environments, releasing concentrated phycocyanin. Proteogenomics showed that lysis likely resulted from
21 a programmed response triggered by a failure to maintain osmotic pressure in the wake of severe energy
22 limitation. Protein expression data suggested that CRISPR-Cas and toxin antitoxin systems were
23 potentially involved in cell death. Cells of *Arthospira platensis* (Spirulina), currently used for
24 phycocyanin production, lyse and release their pigments in the same manner. We propose this natural
25 form of programmed cell death could reduce the costs and resources needed to produce phycocyanin, and
26 eventually provide a new pathway for controlling harmful algal blooms.

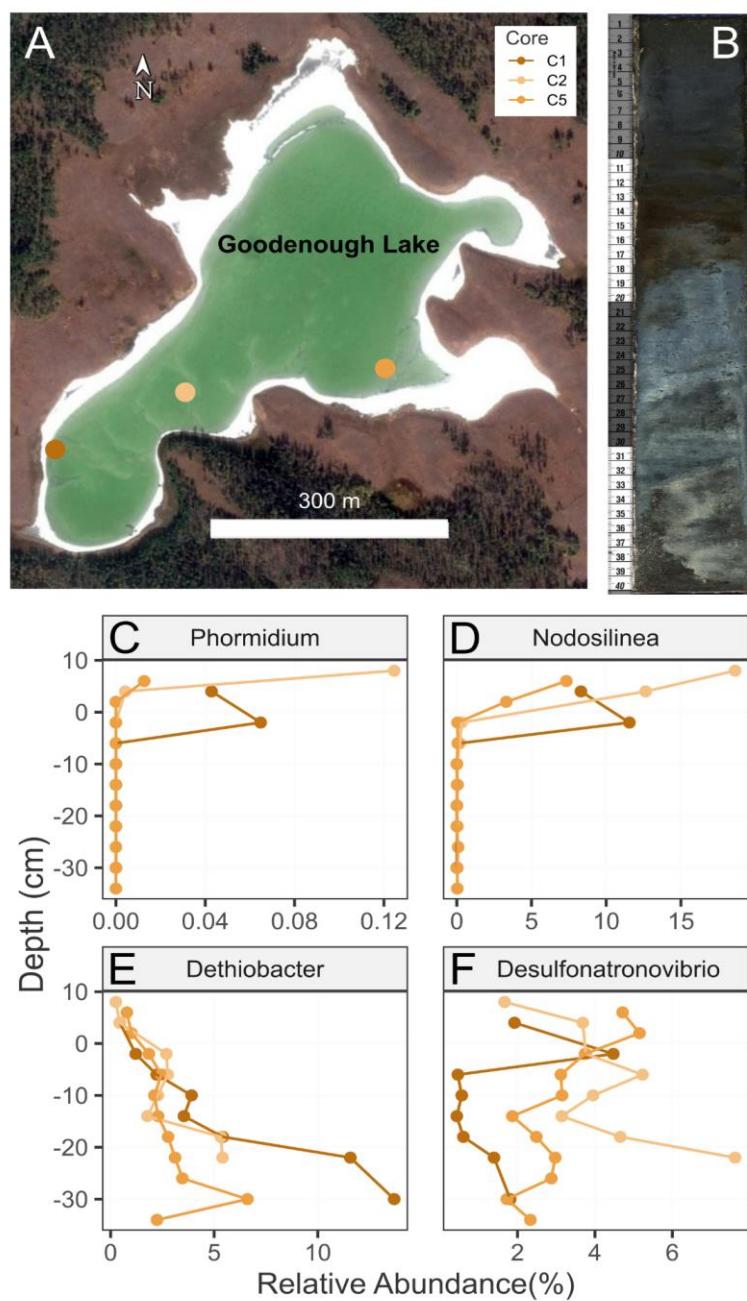
27
28 **One-Sentence Summary:**
29 Failure to maintain osmotic balance in the dark forces blue-green algae to share their bounty with
30 the world.

31

32 Introduction

33

34 Phycocyanin is a valuable, naturally produced blue dye substitute for cosmetic and food industries (1),
35 found within light-harvesting phycobiliproteins of cyanobacteria. It is currently commercially produced
36 from the cyanobacterial genus *Arthospira* (*Spirulina*) in an energetically and resource intensive process
37 due to the need to supplement growth with concentrated carbon dioxide, and frequent population crashes.
38 To improve sustainability and cost-effectiveness of phycocyanin production, growing cyanobacteria at
39 much higher pH and alkalinity enabling direct capture of CO₂ from air (3), and using a cyanobacterial
40 consortium to improve process robustness by avoiding population crashes (4), were previously proposed.
41 Alkaliphilic cyanobacterial consortia could be sourced from alkaline soda lakes, environments with
42 naturally high pH (>10) and alkalinity (>0.5 M), that in some cases feature productive and dense
43 microbial mats dominated by cyanobacteria (5). Interestingly, the prolific growth of cyanobacteria in
44 these mats does not appear to translate into a buildup of biomass or sediment. Instead, the presence of
45 steep sulfide gradients might indicate that in these mats cyanobacteria are rapidly turned over (6, 7). The
46 combination of robust, prolific growth with, potentially, rapid turnover could be the ideal natural starting
47 point for a sustainable phycocyanin biotechnology.


48 Recently, we isolated a cyanobacterial consortium from alkaline soda lakes (8, 9), dominated by
49 “*Candidatus Phormidium alkaliphilum*” (10). The consortium grows optimally at a pH above 11
50 permitting direct capture of CO₂ from air (11) and displayed robust, crash-free growth during a 130-day
51 outdoor pilot plant trial (12). Here, we first demonstrate the turnover of cyanobacterial biomass in natural
52 alkaline soda lake microbial mats and sediments using 16S rDNA amplicon sequencing of sliced push-
53 cores. Next, we show that the rapid lysis of cells of the cyanobacterium *Ca. P. alkaliphilum* observed in
54 mat and sediment cores can be replicated in the laboratory, by incubating the cells in the dark. During this
55 lysis, high quality phycocyanin is released into the medium. Monitoring lysis and release using
56 metagenomics and metaproteomics yields no evidence for ecological interactions such as predation by
57 other bacteria or viruses as the cause of cell lysis. Instead, proteogenomic data supports that lysis results
58 from programmed cell death provoked by energy starvation and potentially involving CRISPR-Cas and
59 toxin antitoxin systems. Finally, we show that a one-week, static, dark incubation of *Spirulina* also results
60 in phycocyanin release without any need for mechanical disruption of cells. We propose that this newly
61 discovered bioprocess could reduce costs and improve sustainability of phycocyanin production.

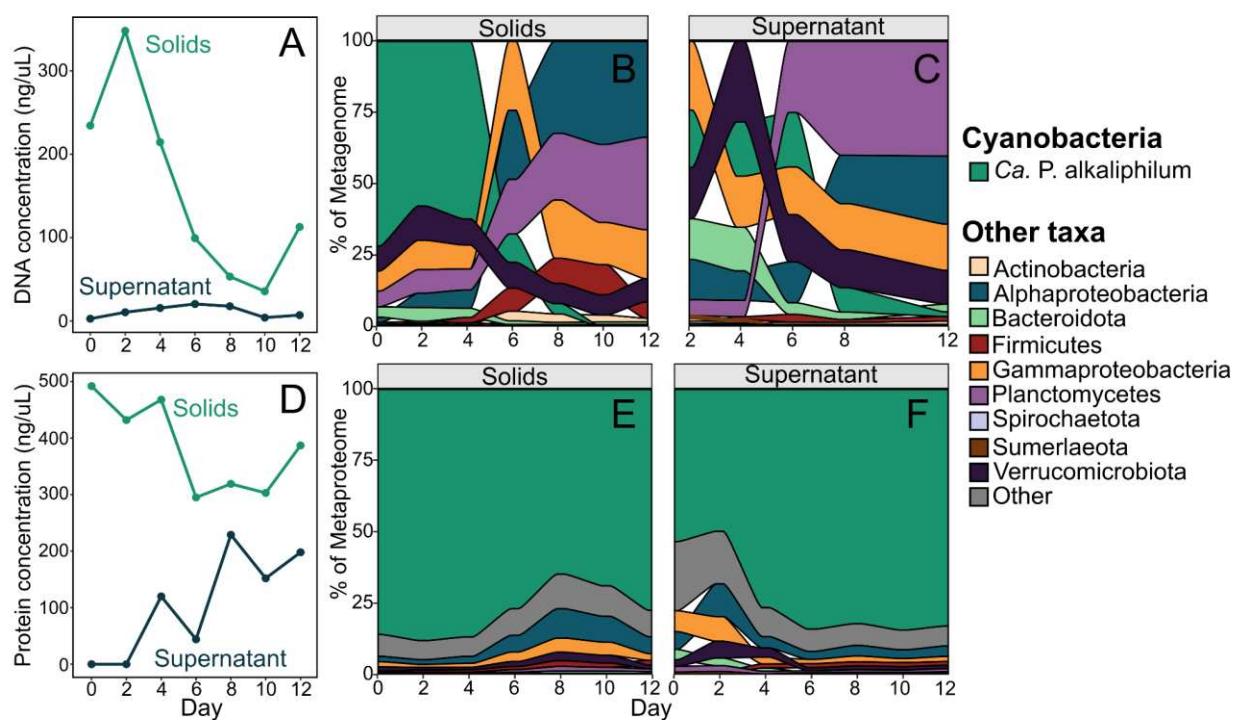
62

63 Results

64
65 To demonstrate rapid turnover of cyanobacterial biomass, we collected 30 cm cores of the mats and
66 underlying sediment from the alkaline Lake Goodenough (Canada). 16S rRNA gene amplicon sequencing
67 of sectioned cores showed high abundance of cyanobacteria at the top of the mat (Fig. 1). The abundance
68 of cyanobacteria like *Phormidium* and *Nodosilinea* decreased rapidly and became essentially negligible
69 two cm below the sediment surface. Other bacterial taxa, better adapted to dark and anoxic conditions,
70 became abundant (Fig. 1). Rapid turnover of cyanobacterial biomass explained the previously observed
71 steep sulfide gradients (7). Sulfide likely builds up below the mats after the depletion of oxygen because
72 sulfur reducing bacteria oxidize fatty acids, hydrogen, and other cyanobacterial degradation products and
73 reduce sulfate and other sulfur-compounds to sulfide. Amplicon sequencing showed the ecological
74 success at depth of thiosulfate and elemental sulfur reducing *Dethiobacter* (13, 14), and the sulfate,
75 thiosulfate, and sulfite reducing *Desulfonatronovibrio* (15) (Fig. 1).

76

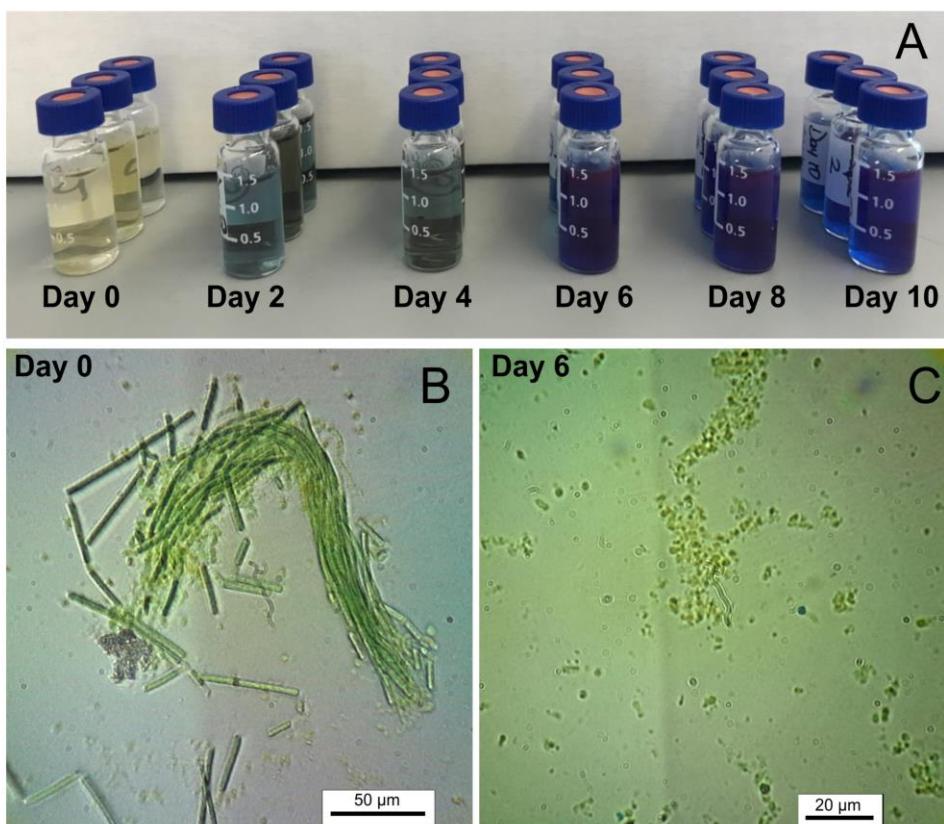
77


78 **Fig. 1. Cores obtained from Lake Goodenough sediment show rapid displacement of cyanobacteria**
79 **with sulfate and sulfur reducing bacteria. (A) Map of sampling locations within Goodenough Lake,**
80 **British Columbia, Canada. (B) Cross section image of a representative core. Distribution of genera from**
81 **16S rRNA gene abundance: (C) Cyanobacteria *Phormidium* (*Ca. P. alkaliphilum*), (D) Cyanobacteria**
82 ***Nodosilinea*, (E) Sulfidogenic thiosulfate and elemental sulfate reducing bacteria *Dethiobacter*, (F)**
83 **Sulfidogenic, sulfate, sulfite and thiosulfate reducing bacteria *Desulfonatronovibrio*. Positive depth values**
84 **in C-F represent the cyanobacterial mat and negative centimetres represent distance below the sediment**
85 **surface.**

86

87 To investigate if the rapid degradation observed *in situ* could be replicated in the laboratory, we
88 used a cyanobacterial consortium previously isolated from Cariboo Plateau soda lake mats (8, 9). This
89 consortium mainly consisted of *Ca. P. alkaliphilum* (10), also shown in Fig. 1C. The consortium was
90 subjected to a 12 day dark and anoxic incubation in soda lake media (0.5 M inorganic carbonates, initial
91 pH > 10). Samples were taken every two days and were centrifuged, yielding solid and supernatant
92 fractions. For solid fractions, we determined ash free dry weight and performed microscopy,
93 metagenomics and metaproteomics. For supernatant fractions, we determined the pH and concentrations
94 of organic acids and phycocyanin, and also performed microscopy, metagenomics and metaproteomics.

95 Initially, 72 % of the DNA extracted from the solid fraction originated from *Ca. P. alkaliphilum*,
96 but only 3.6 % of this DNA remained after 6-8 days in the dark. After 12 days, DNA from *Ca. P.*
97 *alkaliphilum* was barely detectable (0.15%) (Fig. 2B). A similar pattern was observed in the supernatant
98 fraction, as initially 20% of DNA could be attributed to *Ca. P. alkaliphilum*, which decreased to 1.6% by
99 day 12 (Fig. 2C). In contrast, cyanobacterial proteins persisted, always making up at least 65% of the
100 protein composition in the solids fraction (Fig. 2E) and increasing to >80% of the supernatant fraction
101 (Fig. 2F), suggesting a discrepancy in the way that the two biomolecules were degraded. Coinciding with
102 the decrease of cyanobacterial DNA there was an increase in concentrations of fermentation products
103 such as acetate and propionate (Fig. S1). Because acetate mainly accumulated before cyanobacterial lysis,
104 *Ca. P. alkaliphilum* itself was likely responsible for its production. *Ca. P. alkaliphilum* was previously
105 shown to have the genetic capability for dark fermentation to acetate (10). Propionate increased later in
106 the incubation and was likely produced by other bacteria fermenting compounds within the cyanobacterial
107 lysate. By day 6, the supernatant was coloured intensely blue (Fig. 3A) and contained a large amount of
108 phycocyanin based on UV/Vis spectrometry (Fig. S2). Proteomics showed that phycocyanin made up
109 22%-32% of the protein in supernatant samples (Fig. S3). Microscopy showed that the cyanobacterial
110 cells were lysing and breaking apart by the sixth day of incubation, explaining the presence of
111 phycocyanin in the external medium (Fig. 3BC). Cell lysis of densely populated cyanobacterial blooms
112 and the subsequent blue colour change caused by the release of phycocyanin is a phenomenon that has
113 been observed previously in freshwater lakes, but the mechanism of those lysis events remains unknown
114 (16, 17).


115

116

117 **Fig. 2. DNA and protein dynamics during the 12-day dark and anoxic incubation.** Concentration of
118 DNA (A) and protein (D) in the solid and supernatant fractions. Microbial composition of consortium
119 determined from the DNA in the solids (B), and supernatant (C) fractions, and from the protein content in
120 the solids (E), and supernatant (F) fractions.

121

122

123 **Fig. 3. Release of phycocyanin during a dark and anoxic incubation.** Image showing the colour of the
124 supernatant fraction of each sample taken during the incubation (A). Microscopic images of the
125 cyanobacterial consortium taken on day 0 (B), and day 6 (C) of the incubation.

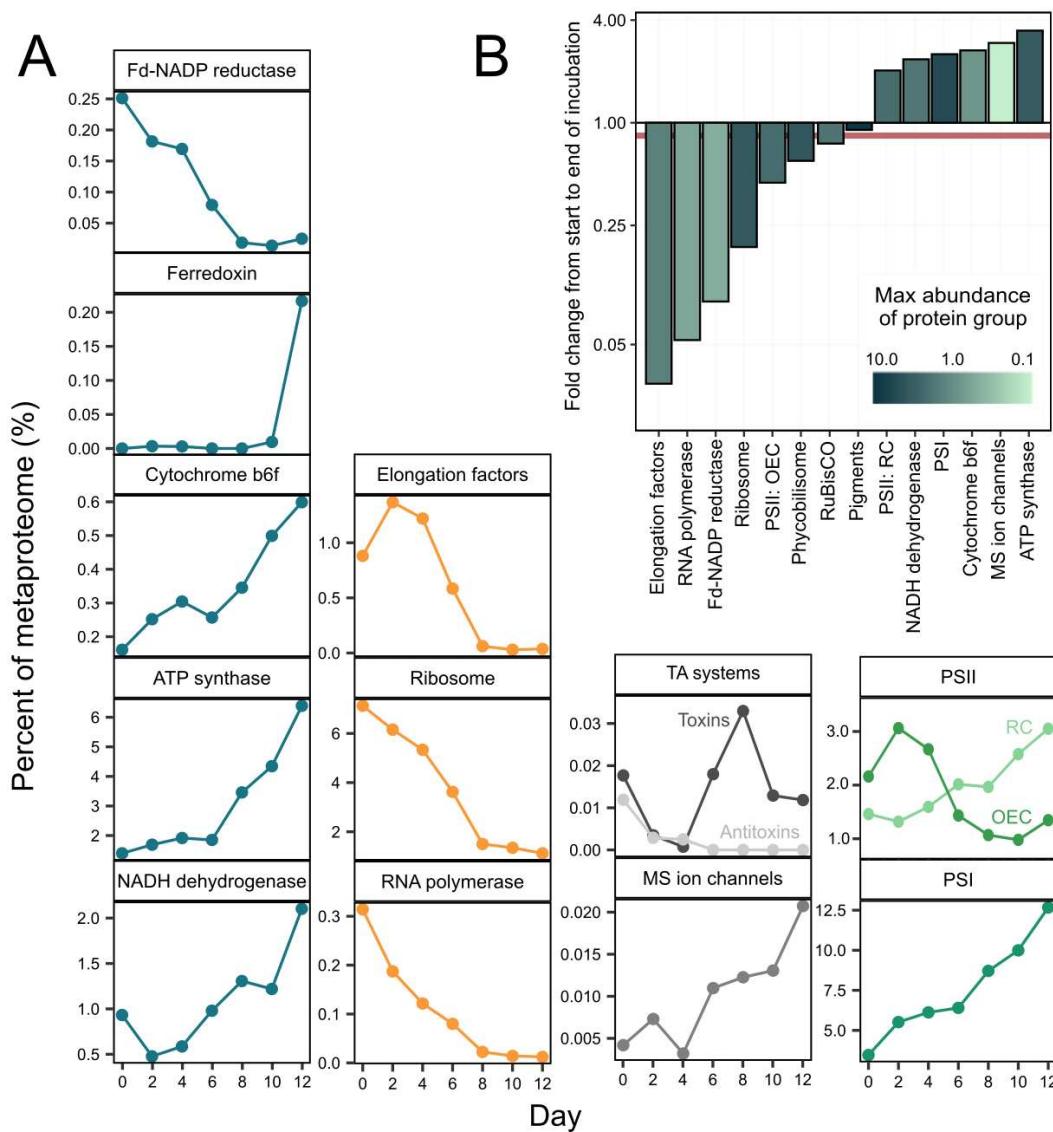
126

127 Cell lysis could be attributed to a number of causes including predation, viral attack, or
128 genetically programmed signals (i.e., programmed cell death) (18), and each of these possibilities is
129 assessed below. The possibility of predation by a larger eukaryotic cell or an antagonistic bacterial species
130 was evaluated using the metagenomics data. Phagocytosis and grazing are predatory strategies performed
131 by eukaryotes. Eukaryotic ciliate grazers affiliated with *Schmidingerothrix* were present in the
132 consortium, however their abundance, calculated through copies of the rDNA gene in the metagenomes,
133 was low (<2%) and did not increase over the course of the dark, anoxic incubation (Fig. S4), suggesting
134 that eukaryotic predation was not directly responsible for the collapse of the cyanobacterial population.

135 Provisional genomes, or metagenome assembled genomes (MAGs), were acquired for the main
136 cyanobacterial species, *Ca. P. alkaliphilum*, in addition to 59 other species from eight bacterial phyla
137 including Proteobacteria, Bacteroidota, Firmicutes, Planctomycetota and Verrucomicrobiota (Fig. 2,
138 Table S1). The observed bacterial dynamics, and the diverse and enhanced expression of carbohydrate
139 active transporters, like the TonB-dependent transporters (expressed by at least 24 different MAGs), are
140 akin to the succession of bacterial populations after phytoplankton blooms in other aquatic systems (19).

141 However, although the relative abundance of heterotrophs increased during the incubation, the
142 abundances of heterotrophs relative to each other changed only modestly (Fig. 2) and there was no single
143 species that benefited in proportion to the magnitude of the lysis event. Total DNA concentrations
144 decreased (Fig. 2A), released cyanobacterial proteins persisted and fermentation (producing acetate)
145 declined after the lysis of the cyanobacteria (Fig. S1). This might mean that the mainly aerobic
146 consortium members did not have time to consume the released proteinaceous cyanobacterial lysate
147 anaerobically. Therefore, antagonistic bacteria were likely not the cause of the cell lysis event.

148 Cyanophages, viruses that specifically target cyanobacteria, play an important role in the fate of
149 cyanobacteria in natural environments, and consequently in global carbon and nutrient cycles (20, 21).
150 The cyanobacterial MAG contained seven CRISPR arrays, suggesting previous viral infections. However,
151 no viral proteins were identified in the metaproteome, and no viral contigs matching cyanobacterial
152 contigs were identified in the assembly (Fig. S5). The most abundant contig of viral origin, identified by
153 *Virsorter* (22), was inferred to be a prophage of a Planctomycetota MAG, and not associated with the
154 cyanobacteria. It also only reached 50% of the average cyanobacterial pre-collapse sequencing depth (Fig.
155 S5). In the event of a viral-mediated lysis, the depth of the associated viral contigs would be expected to
156 increase at least 10-fold (burst size) in comparison to the depth of the cyanobacterial host contigs (23).
157 The comparatively low abundance of viral associated contigs indicated that a mass viral-induced lysis of
158 the cyanobacterial cells did not occur.

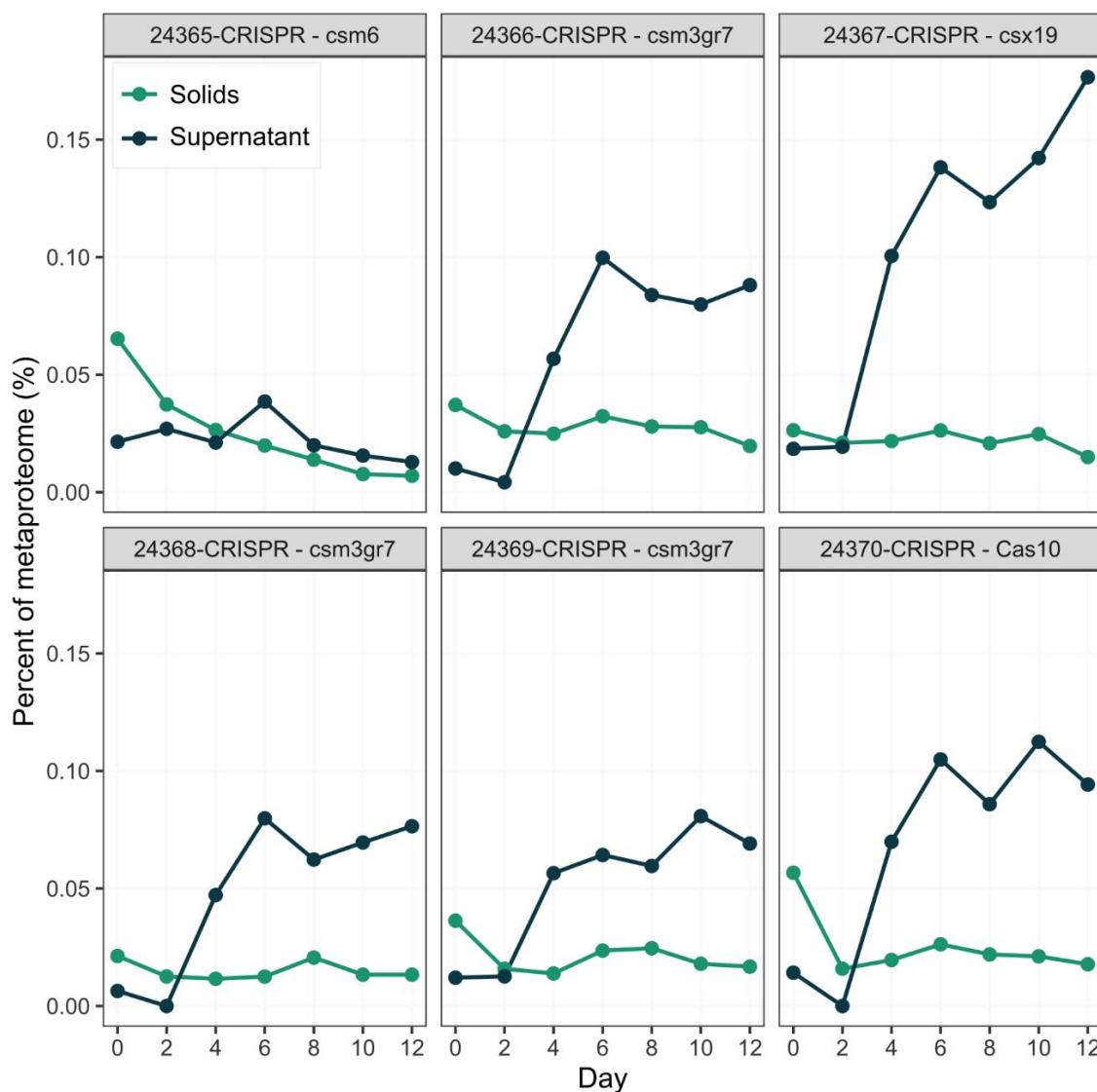

159 Finally, we explored if a genetically programmed signal, like programmed cell death, was the
160 most likely cause of the cyanobacterial lysis. Programmed cell death might be initiated in response to
161 external stressors, such as the depletion of an internal storage pool and the consequent failure to maintain
162 osmotic pressure, caused by sustained darkness (24, 25).

163 Total cyanobacterial protein abundance remained relatively unchanged during the 12-day
164 incubation, and included detection of just over 2,000 proteins, accounting for 52% of the predicted
165 proteome of *Ca. P. alkaliphilum* (Table S2). Of the expressed proteins, 459 increased by at least two-fold
166 between the beginning and the end of the dark incubation, while 1,039 proteins decreased expression over
167 50%. In general, cyanobacteria do not drastically change their proteome composition in response to diel
168 cycling (26, 27). Thus, a greater than twofold change in approximately 75% of the expressed proteins
169 suggests that *Ca. P. alkaliphilum* had mounted a stress response that was outside the normal range of
170 proteomic circadian cycles.

171 We observed the well-known signs of a shift from linear electron flow to cyclic electron flow in
172 the cyanobacteria's proteome (28, 29, Table S2). Firstly, the relative expression of photosystem I (PSI)
173 increased nearly four-fold to 12.7% of the metaproteome by day 12, which was three times higher than
174 the expression of photosystem II (PSII), a ratio that began at 1:1 on day 0. In parallel, large increases in
175 other proteins and complexes required for cyclic electron flow including ATP synthase, cytochrome b6f,

176 and ferredoxin were observed (Fig. 4). Proteins not required for cyclic electron flow, like ferredoxin-
177 NADP+ reductase and the oxygen evolving complex of PSII decreased ten and two-fold, respectively,
178 during the same period (Fig. 4B). Previous studies have identified an increase in cyclic electron flow in
179 response to the stress of dark and anoxic conditions and have hypothesized that it could be used as a
180 defensive strategy protecting PSII in the moments before the CBB cycle is activated (30), or alternatively
181 as a mechanism to jumpstart metabolism through the rapid generation of ATP once light energy returns
182 (31).

183 There was a rapid disappearance of cyanobacterial DNA observed from day 4 onwards in the
184 metagenomes. Cleavage of DNA to fragments between 150-300 base pairs in length is a common
185 occurrence in programmed cell death in prokaryotes, including cyanobacteria (24, 32). A size selection
186 step in the metagenome library preparation protocol excluded DNA fragments below 300 base pairs, and
187 thus these DNA fragments would not get sequenced in the resulting metagenomes. The potential for
188 programmed cell death was further supported by the presence of multiple (>10) toxin-antitoxin systems in
189 the *Ca. P. alkaliphilum* whole genome sequence. A toxin-antitoxin system consists of a small stable toxin
190 that is responsible for cell death or growth arrest, and an easily degraded antitoxin which blocks its
191 activity (33-37). Peptides assigned to toxin (HicA) and antitoxin (ParD, AbiEii) proteins were identified
192 in the metaproteome (Fig. 4, Table S2). Antitoxin abundance declined markedly during the first six days
193 of the incubation while a peak in the abundance of toxins accompanied the cell lysis event. There was
194 also a specific decrease (4-45-fold reduction) in proteins related to translation and transcription, like
195 ribosomes, RNA polymerases, elongation factors, and translation initiation factors (Fig. 4).
196 Corresponding with these observations in the proteome, several toxin-antitoxin systems promote cell
197 death through the global reduction of replication, transcription, and translation in cells (33). Also,
198 mechanosensitive channels, known to be upregulated in response to changes in osmotic pressure (38),
199 increased in expression five-fold by day 12.



200
201 **Fig. 4. Response of the *Ca. P. alkaliphilum* proteome to the dark and anoxic incubation. (A)**
202 Abundance of select functional protein categories in the solids fraction of the *Ca. P. alkaliphilum*
203 proteome. Note the difference in y-axis scales. Colours of points broadly define the protein's functional
204 category. Blue: electron transport chain proteins, orange: translation and transcription proteins, grey:
205 stress proteins, green: photosystem proteins. (B) Fold change of the *Ca. P. alkaliphilum* functional protein
206 groups from the average of days 10 and 12 to the average of days 0 and 2. The red line shows the fold
207 change in all *Ca. P. alkaliphilum* proteins over the same period (0.84). The colour of the bar represents
208 the maximum protein abundance in the incubation for that protein category. PSII: photosystem II, RC:
209 reaction center, OEC: oxygen evolving complex, PSI: photosystem I, TA systems: toxin-antitoxin
210 systems, Fd: ferredoxin, MS ion channels: mechanosensitive ion channels.
211

212 Several CRISPR associated (Cas) proteins increased in the supernatant fraction after day 4 of the
213 incubation, which corresponded with the cyanobacterial cellular lysis. An increase in the abundance of
214 proteins specifically in the supernatant fraction, could imply that these proteins are overexpressed in cells
215 that have just undergone lysis, and thus might provide insight into the cellular state in the moments right
216 before death. Various Cas proteins from multiple Type III and one Type ID CRISPR system were
217 upregulated in the supernatant fraction (Fig. 5). Between days 2 and 4, the abundance of Cas proteins in
218 the supernatant fraction increased 4.5x while remaining consistent in the solids fraction (0.96x). By the
219 end of the incubation, the Cas proteins had increased 7.3x in the supernatant fraction, while decreasing in
220 the solids fraction (0.4x). As a comparison, total cyanobacterial proteins in the solids fraction decreased at
221 a ratio of 0.84, and total cyanobacterial proteins in the supernatant fraction increased 1.6x over the course
222 of the incubation. Therefore, Cas proteins in the supernatant increased during and after the lysis event at a
223 greater magnitude than the average cyanobacterial protein in the supernatant. Because there was no
224 simultaneous increase in viral contigs over the incubation (Fig. S5), it seems possible this Cas response is
225 independent of viral or immune activity and may instead be associated with the cyanobacterial response
226 to stress. To support this theory, previous research has suggested that the ancestor to CRISPR-Cas
227 effectors was a stress response system that triggered programmed cell death after activation by a
228 signalling molecule (39,40).

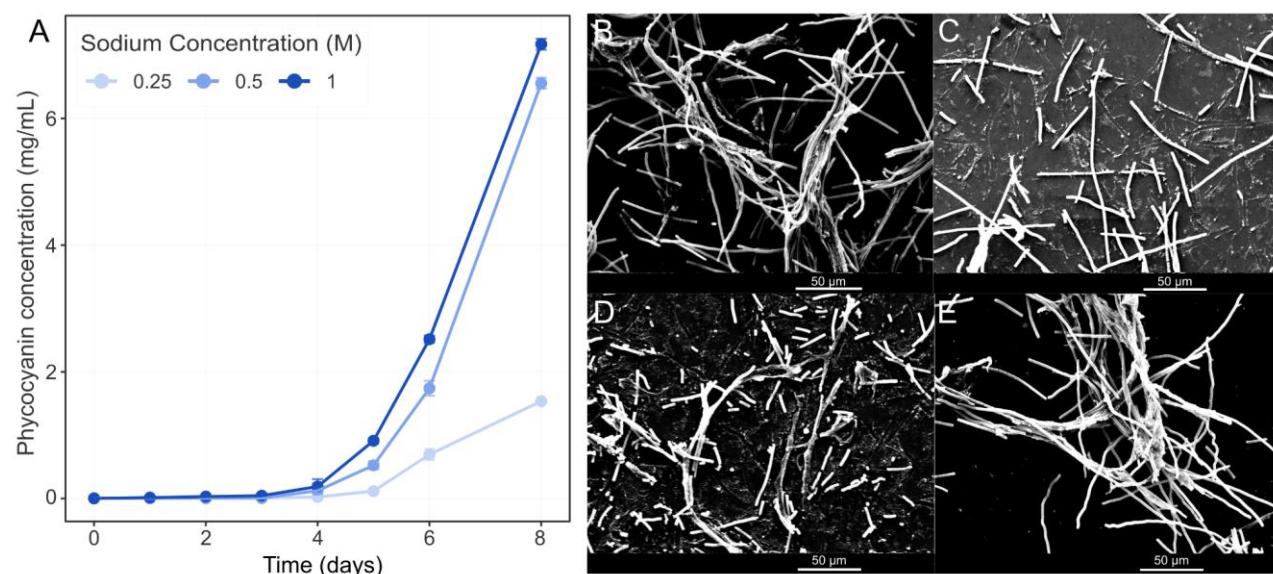
229 Proteins from a CRISPR Type IIIA operon had the highest increase in expression in the
230 supernatant fraction of Cas proteins over the incubation (Fig. 5). CRISPR Type IIIA effector complexes
231 consist of a Cas10 protein and other subunit proteins Csm3 (Cas7), and Csx19 (41) acting as a multi-
232 subunit nuclease (42). The Cas10 protein is involved in the production of the signalling secondary
233 metabolite cyclic oligoadenylate from nucleotides (40, 43). The secondary metabolite molecules initiate
234 sequence-non-specific nuclease activity in some Cas proteins promoting cell death and dormancy (44).
235 CRISPR systems have also been shown to both work in association with (40,45,46), and to regulate the
236 expression of toxin antitoxin systems (47,48).

237
238
239
240

241

242 **Fig 5. Dynamics of CRISPR associated proteins from the most abundant CRISPR operon in the Ca.**

243 **P. alkaliphilum proteome.** This operon contains a Type IIIA CRISPR system. Increasing abundances of
244 these proteins in the supernatant – but not in the solids fraction – during the lysis event indicated
245 increased expression of these proteins immediately before cell death occurred. The number in the gene
246 name corresponds to the accession for the gene in the *Ca. P. alkaliphilum* proteome.


247

248 If energy depletion was the root cause of cyanobacterial cell lysis, increasing salinity prior to a
249 dark and anoxic incubation should result in an earlier lysis event. The cells would need to spend more
250 maintenance energy to cope with the higher osmotic stress and would consequently deplete their reserves
251 sooner. This hypothesis was tested by performing separate dark and anoxic incubations of the
252 cyanobacterial consortium at higher (1M Na^+) and lower (0.25M Na^+) salinity.

253 The dark and anoxic incubation at 0.25M Na^+ , resulted in a cyanobacterial lysis event that
254 occurred later and resulted in a much lower concentration of released phycocyanin (1.5 mg/mL)
255 compared to the original incubation at 0.5M Na^+ (6.6 mg/mL) (Fig. 6). In the incubation with 1M Na^+ ,
256 cell lysis occurred sooner, by day 5 (Fig. 6), and the final concentration of 7.2 mg/mL phycocyanin was
257 higher than the original incubation. These results support the hypothesis that cyanobacterial cell lysis in
258 these dark and anoxic incubations is initiated by the depleted energy reserves used to maintain osmotic
259 equilibrium. Cells in an environment of higher salinity require more energy to maintain osmotic
260 equilibrium, and thus deplete energy reserves faster. These results also supported the earlier conclusion
261 that heterotrophs were slow to consume released cyanobacterial proteins; the faster the lysis, the more
262 phycocyanin remained.

263 Lastly, we demonstrated that phycocyanin extraction by programmed cell death can be directly
264 applied to commercial operations. A culture of Spirulina was incubated in dark and anoxic conditions
265 with 1M Na^+ . After 10 days of incubation, a similar phycocyanin release was observed (Fig. S6).

266

267

268 **Fig. 6. Dark and anoxic incubations with varying sodium concentrations.** (A) Phycocyanin
269 concentration in the supernatant fraction of dark and anoxic incubations with varying sodium
270 concentrations in the media. Electron micrographs of cyanobacterial cells on day 0 (B), and day 5 of dark
271 and anoxic incubations, with the original 0.5 M Na^+ media (C), 1 M Na^+ media (D), and 0.25 M Na^+
272 media (E).

273

274

275

276 Discussion

277
278 The incubation exposed the cyanobacterial consortium to a myriad of stresses including energy starvation
279 through prolonged darkness and anoxia. Proteogenomics showed that initially the cells altered their
280 proteome to combat these stresses by the rearrangement of protein complexes in the thylakoid membrane
281 to favour cyclic electron flow. Fermentation of available endogenous carbohydrates, like glycogen,
282 cyanophycin, or the osmolytes sucrose, glucosyl glycerol, and trehalose, initially provided energy for
283 sustaining cellular integrity and resulted in the observed increase in acetate (49, 50, Fig. S1). After four
284 days, proteins involved in transcription and translation were severely diminished, a signal of decreased
285 metabolism and arrested growth. After six days without relief from darkness, the supply of endogenous
286 carbohydrates and osmolytes was likely depleted (6), and the ensuing starvation and osmotic stress may
287 have triggered a programmed cell death response, possibly through toxin-antitoxin systems and/or the
288 expression of CRISPR associated proteins, resulting in lysis of the cyanobacterial cells. The anoxic
289 conditions of the incubation stunted the degradation of released phycocyanin pigment proteins by the
290 predominantly aerobic heterotrophs making up the consortium.

291 A similar lysis phenomenon was previously observed in dark and anoxic incubations of a
292 thermophilic cyanobacterium, *Oscillatoria terebriformis*, isolated from hot spring microbial mats (51). In
293 that experiment, cell survival could be prolonged by the addition of an exogenous carbohydrate source
294 (fructose), and/or a reductant (e.g., sodium thioglycolate). This might be another example where
295 dwindling energy stores cause the lysis of a cyanobacterium under dark and challenging conditions. The
296 addition of fructose sustained cell survival by providing another substrate for cyanobacterial fermentation.
297 Whereas the addition of reducing agents could have quenched reactive oxygen species (ROS) produced
298 under stress. A link between ROS and programmed cell death in both eukaryotic and prokaryotic cells has
299 long been known (52-54), and the production of ROS has previously been associated with the activation
300 of toxin-antitoxin systems upon stress (55, 56).

301 Cyanobacterial cellular lysis due to dark and anoxic incubation provided a way to access the
302 internal pigment phycocyanin without costly and energetically intensive mechanical disruption. Evidence
303 of this lytic bioprocess was found in the industrially cultivated species, *Spirulina*, as well as in
304 cyanobacterial species from hot spring microbial mats (51), and the sediments of the original haloalkaline
305 environment of *Ca. P. alkaliphilum*, suggesting that this phenomenon could be widespread among
306 cyanobacteria in both engineered and natural systems. Ultimately, this may even open up new avenues to
307 control harmful algal blooms. Detection of free phycocyanin in lakes after blooms already indicates that
308 the same process could be relevant and, with follow up research, manipulated.

309 Thus, this intrinsically occurring bioprocess could be harnessed as a novel, more cost-effective
310 and sustainable way to produce the natural blue pigment phycocyanin and other bioproducts, and provides
311 insight into mechanisms of cell death in cyanobacteria.

312

313 Materials and Methods

314 Sediment sample collection and preparation

315 Duplicate sediment cores were collected in April 2019 from Goodenough Lake (51.330°N, 121.64°W).
316 The sediment cores were taken from 3 different locations within each lake (Fig. 1) using a 1.5-m single-
317 drive Griffith corer from LacCore: National Lacustrine Core Facility (University of Minnesota). The
318 sediment cores ranged in length from 25-50 cm. To reduce the mixing of water and upper sediment layers
319 in the cores, Zorbitrol was used as a gelling agent to stabilize the sediment-water interface during
320 transport. Cores were then stored upright at -20 °C. For the analysis, positive centimetres represent the
321 benthic cyanobacterial mat and negative centimetres represent distance below the sediment surface.

322 Cores were removed from the -20 °C freezer and defrosted at room temperature (22 °C) for 2
323 hours. Cores were then horizontally sliced into 2 cm disks using a Dremel Multi-Max MM50 oscillating
324 saw (Dremel, USA) at the lowest speed, used to reduce blade contact with the sediment. The blade was
325 sterilized with 70% ethanol before each core section was sampled. To avoid the potential risk of
326 contamination from the core liner or during sectioning, sediment in contact with the core liner was
327 removed and the inner core was transferred to a 50 mL tube, sealed, and stored at -20 °C. The sediment
328 from each disk was subsampled for DNA extraction and stored at -80°C.

329

330 Experimental setup and sampling

331 An alkaliphilic cyanobacterial consortium enrichment culture containing a single, abundant,
332 cyanobacteria species, *Candidatus* Phormidium alkaliphilum (8-10), was used as inoculum for the dark
333 incubation. This consortium was originally sourced from alkaline soda lakes in the Cariboo Plateau region
334 of Canada (5). The cyanobacterial consortium was grown in continuous light (200 µmol photons/(m²·s))
335 in 10 L stirred glass vessels. The growth medium was previously described (11) and contained 0.5 M
336 sodium (bi)carbonate alkalinity, at an initial pH of 10.3. After six days of photoautotrophic growth the
337 culture was centrifuged for 30 minutes at 4,500 rpm to concentrate the biomass (Allegra X-22R, Beckman
338 Coulter, USA). The wet biomass was then divided into 20 mL serum bottles sealed with butyl-rubber
339 septa. Two grams of wet biomass were added to each serum bottle. The bottles were purged with N₂ gas
340 to create an anoxic headspace, and then placed at room temperature (21°C) in the dark. At 0, 2, 4, 6, 8, 10,
341 and 12 days after the start of the incubation, two sacrificial samples were taken. To each sample, 5 mL of

342 pH 7, phosphate-buffered saline solution was added and then the sample was centrifuged for 10 min at
343 4500 rpm, to separate biomass and supernatant.

344 For biomass pellets, the ash free dry weight of each sample was measured using NREL laboratory
345 analytical procedures protocol (57). For the supernatant, the concentration of the organic acids succinate,
346 formate, propionate, butyrate, and lactate were measured using an UltiMate 3000 HPLC system
347 (ThermoFisher Scientific, USA) equipped with an Aminex HPX-87H column and a UV detector, as
348 previously described (58). The phycocyanin and total protein concentration in the supernatants were
349 measured as absorption at 620 nm and 280 nm respectively (59) using an Evolution 260 Bio UV-Visible
350 Spectrophotometer (ThermoFisher Scientific, USA), with a standard curve prepared from laboratory-
351 grade phycocyanin (Sigma-Aldrich, USA). Bright-field microscope images were taken using a Zeiss Axio
352 Imager A2 Microscope (Carl Zeiss AG, Germany).

353

354 **DNA extraction**

355 DNA was extracted directly from soda lake sediment and incubation solid samples using the Fast DNA
356 Extraction Kit for Soil (MP Biomedicals, USA). For incubation supernatant samples, 250 µL of sample
357 was used for each extraction. The extraction protocol of the manufacturer was followed, but additional
358 purification steps were performed with 5.5 M guanidine thiocyanate (8). For supernatant samples, the
359 elution buffer was heated to 50°C prior to the elution step to increase yield. Still, supernatant samples
360 from Day 0 and Day 10 did not yield enough DNA for metagenome analysis.

361

362 **16S rRNA gene PCR and sequencing**

363 Amplicon sequencing and library preparation of the DNA sediment samples was performed as previously
364 described (8) using primer sets 926wF (5'-AAACTYAAAKGAATTGRCGG3') and 1392R (5'-
365 ACGGGCGGTGTGTRC3') targeting bacteria (60, 61). Prepared libraries were sequenced on the MiSeq
366 Personal Sequencer (Illumina, USA) using the 2 × 300 bp MiSeq Reagent Kit v3. Amplicon sequencing
367 results were processed using MetaAmp Version 3.0 (62), and the Silva database version 132 (63). Paired-
368 end reads were merged if they had less than eight mismatches in the overlap region and an overlap of
369 >100 base pairs (bp) (8, 64). The merged reads were further filtered by removing reads that were missing
370 the forward or reverse primer and had more than one mismatch in the primer region. All reads were
371 trimmed to a final of 350 bp and clustered into operational taxonomic units (OTUs) of >97% sequence
372 identity (8, 64).

373

374 **Library preparation and metagenome sequencing**

375 All biomass samples, and supernatant samples from days 2, 4, 6, 8 and 12 were prepared for metagenomic
376 sequencing as previously described (5). Briefly, DNA was sheared to fragments of ~300 bp and libraries
377 were created using the NEBNext Ultra DNA Library Prep Kit (New England Biolabs, Ipswich, MA). An
378 Illumina NextSeq 500 sequencer (Illumina, San Diego, CA) was used for sequencing using a 300 cycle
379 (2x150bp) high-output sequencing kit at the Center for Health Genomics and Informatics in the Cumming
380 School of Medicine, University of Calgary, Canada.

381

382 **Metagenome Assembly and Binning**

383 Raw, paired-end Illumina reads were filtered for quality using BBduk (<https://jgi.doe.gov/data-and-tools/bbtools/>). Quality control consisted of trimming reads to 150 bp, trimming off adapter sequences,
384 filtering out contaminants, such as the PhiX adapter, and clipping off low quality ends, all as previously
385 described (5). Paired-end reads from each sample were then merged with BBmerge (65). Separate
386 assemblies of the reads from each sample were performed using metaSPAdes version 3.12.0 with default
387 parameters (66). To increase binning success, one large co-assembly using the unmerged reads from all
388 samples was conducted using MegaHit v1.2.2 (67). Only contigs greater than 500 bp in length were
389 processed further. The MetaErg pipeline (68) was used for prediction and annotation of genetic elements
390 on each assembled contig.

392 Binning of assembled reads into metagenome-assembled-genomes (MAGs) was completed using
393 MetaBat2 version 2.12.1 (69). The binning step was performed on each sample's assembly separately as
394 well as the co-assembly. To generate sequencing depth data for binning, quality-controlled reads of each
395 sample were mapped to the assembly of each sample using BBMap v38.84
396 (<https://sourceforge.net/projects/bbmap/>). Mapping results were summarized using the script,
397 “*jgi_summarize_bam_contig_depths*”, part of the MetaBat package (70). After binning, the program dRep
398 (71) in conjunction with CheckM v1.0.11 (72) was used to determine the best (highest estimated
399 completeness, and lowest estimated contamination) MAGs associated with each population. In total, 60
400 MAGs (>80% completeness, and <5% contamination) were identified for further processing and analysis.
401 The program, gtdbtk v0.3.2 was used for the taxonomic assignment of each MAG (73).

402 The relative abundance of individual MAGs in each metagenome was calculated by mapping
403 quality controlled raw reads from each sample onto the contigs of each MAG as well as the dereplicated
404 contigs that remained unbinned. Again, BBMap (minid = 0.98) was used for this. Unbinned contigs were
405 dereplicated using cd-hit-2d (74). In this step, all contigs sharing > 90% sequence identity with a binned
406 contig were eliminated. The number of reads that mapped to each contig was counted, and then the total
407 counts for each contig of each MAG were summarized. To determine relative abundance, counts were

408 normalized to MAG genome size and the number of mapped reads per sample. For the unbinned contigs,
409 reads were normalized to the number of base pairs in all dereplicated unbinned contigs.

410 The program phyloFlash v3.3 (*Emirge* assembly) was used to obtain full length 16S and 18S
411 ribosomal RNA (rRNA) gene sequences and their sequencing depth from the metagenomes (75). The
412 sequencing depths of rRNA sequences were used primarily to determine the population dynamics of
413 species that did not assemble or form MAGs well, mainly eukaryotic protists.

414

415 **Analysis of viral contigs**

416 Contigs potentially associated with viruses were identified from the metagenome co-assembly using
417 VirSorter v1.0.6 (22). BLASTn was then used to match the DNA sequence of viral contigs to the 60
418 MAGs. CRISPR arrays in the cyanobacterial MAG were identified from the MetaErg output (68), with
419 the program MinCED (github.com/ctSkennerton/minced).

420

421 **Protein Extraction and LC-MS/MS mass spectrometry**

422 Protein was extracted from biomass and supernatant samples as previously described (76), using the filter
423 aided sample preparation (FASP) protocol (77). To lyse cells, samples were added to lysing matrix E bead
424 tubes (MP Biomedicals, USA) with SDT-lysis buffer (0.1 M DTT) in a 1:10 sample to buffer ratio. The
425 tubes were then subjected to bead-beating in an OMNI Bead Ruptor (Omni International, USA) 24 for
426 45 s at 6 m s⁻¹. For supernatant samples, 500 µL of supernatant was used for lysis. Supernatant samples
427 from days 0 and 2 had low yields and so lysate was concentrated prior to protein extraction.

428 Peptides were separated by an UltiMateTM 3000 RSLC nano Liquid Chromatograph (Thermo
429 Fisher Scientific, USA), using a 75cm x 75µm analytical column and analyzed in a QExactive Plus hybrid
430 quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientific, USA) as previously described (78). A
431 total of 2,000 ng of peptide was loaded, and each sample was run for 4 hours.

432

433 **Metaproteomics data analysis**

434 The database used for protein identification was manually created using the predicted and annotated
435 proteins from the binned and unbinned metagenomic sequences. Cd-hit was used to remove redundant
436 sequences from the database using an identity threshold of 95% (74), giving preference to sequences that
437 came from metagenome assembled genomes (MAGs). Sequences of common contaminating proteins
438 were added to the final database (<http://www.thegpm.org/crap/>). The final database contained 454,164
439 proteins. For protein identification MS/MS spectra were searched against the database using the Sequest
440 HT node in Proteome Discoverer version 2.2.0.388 (Thermo Fisher Scientific, USA) as described

441 previously (79). Only proteins with one unique peptide, and with a protein false discovery rate (FDR)
442 confidence of at least a level of “medium”, were kept for further analysis.

443 Relative protein abundances were estimated using the normalized spectral abundance factor
444 (NSAF) (80). MAG abundance in the metaproteome was estimated by adding the NSAF abundance of all
445 proteins belonging to that MAG. In total, 3,286,730 MS/MS spectra were obtained, yielding 632,137
446 peptide spectral matches (PSMs), which corresponded to 10,408 expressed proteins after quality control.
447

448 **Sodium, biomass concentration, and Spirulina experiments**

449 The dark and anoxic incubation of the cyanobacterial consortium was repeated using dewatered biomass
450 with different concentrations of sodium. Initially, biomass obtained after growth was first dewatered and
451 then gently washed with deionized water to remove the salts. This step was repeated five times to ensure
452 that all the salts were removed. The washed biomass was then separated into three aliquots. Each aliquot
453 was washed with sodium carbonate solution with varied concentrations (0.25M, 0.5M and 1M). Then,
454 approximately 2 grams of wet paste from each aliquot was placed in sterile serum bottles. The headspace
455 in the serum bottles was vacuumed and filled with nitrogen gas up to atmospheric pressure to create
456 anoxic conditions. These serum bottles were then incubated in dark at room temperature for 8 days. Every
457 day two bottles were removed from the incubation and analysed for phycocyanin as described above.
458 Electron microscopy was conducted as described previously (81), without performing ethanol washes and
459 without using gold-sputtered filters.

460 The dark and anoxic incubation was repeated using a culture of Spirulina (*Arthrosphaera platensis*).
461 A bulk culture containing 250 grams of wet paste (solid concentration 20% w/w) was incubated in dark
462 and anoxic conditions with 1 M sodium carbonate for 12 days. The culture was visually monitored for
463 signs of lysis and phycocyanin release (Fig. S6).

464

465

466 References

467

468 1. Kupferschmidt, K. In search of blue. *Science* **364**, 424-429 (2019).

469

470 2. Davis, R. & Klein, B. Algal biomass production via open pond algae farm cultivation: 2020 state of
471 technology and future research. Golden, CO: National Renewable Energy Laboratory. NREL/TP-5100-
472 79931 (2021).

473

474 3. Chi, Z., Xie, Y., Elloy, F., Zheng, Y., Hu, Y. & Chen, S. Bicarbonate-based integrated carbon capture and
475 algae production system with alkalihalophilic cyanobacterium. *Bioresour. Technol.* **133**, 513-521 (2013).

476

477 4. Subashchandrabose, S. R., Ramakrishnan, B., Megharaj, M., Venkateswarlu, K. & Naidu, R.
478 Consortia of cyanobacteria/microalgae and bacteria: Biotechnological potential. *Bioresour. Technol.*
479 **29**, 896-907 (2011).

480

481 5. Zorz, J. K. et al. A shared core microbiome in soda lakes separated by large distances. *Nat. Comm.*
482 **10**, 4230 (2019).

483

484 6. Stal, L. J. Physiological ecology of cyanobacteria in microbial mats and other communities. *New
485 Phytol.* **131**, 1-32 (1995).

486

487 7. Brady, A. L., Druschel, G., Leoni, L., Lim, D. S. S. & Slater, G. F. Isotopic biosignatures in
488 carbonate-rich, cyanobacteria-dominated microbial mats of the Cariboo Plateau, B.C. *Geobiology* **11**,
489 437-456 (2013).

490

491 8. Sharp, C. E., Urschel, S., Dong, X., Brady, A. L., Slater, G. F. & Strous, M. Robust, high-
492 productivity phototrophic carbon capture at high pH and alkalinity using natural microbial
493 communities. *Biotechnol. Biofuels.* **10**, 84 (2017).

494

495 9. Ataeian, M., Liu, Y., Kouris, A., Hawley, A. K. & Strous, M. Ecological interactions of cyanobacteria
496 and heterotrophs enhances the robustness of cyanobacterial consortium for carbon sequestration.
497 *Front. Microbiol.* **13**, 780346 (2022).

498

499 10. Ataeian, M. et al. Proteome and strain analysis of cyanobacterium *Candidatus* “Phormidium
500 alkaliphilum” reveals traits for success in biotechnology. *iScience* **24**, 103405 (2021).

501

502 11. Ataeian, M., Liu, Y., Canon-Rubio, K. A., Nightingale, M., Strous, M. & Vadlamani, A. Direct
503 capture and conversion of CO₂ from air by growing a cyanobacterial consortium at pH up to 11.2.
504 *Biotechnol. Bioeng.* **116**, 1604-1611 (2019).

505

506 12. Haines, M., Vadlamani, A., Richardson, W. D. L. & Strous, M. Pilot-scale outdoor trial of a
507 cyanobacterial consortium at pH 11 in a photobioreactor at high latitude. *Bioresour. Technol.* **354**,
508 127173 (2022).

509

510 13. Sorokin, D. Y., Tourova, T. P., Mussman, M. & Muyzer, G. *Dethiobacter alkaliphilus* gen. nov. sp.
511 nov., and *Desulfurivibrio alkaliphilus* gen. nov. sp. nov.: two novel representatives of reductive sulfur
512 cycle from soda lakes. *Extremophiles*. **12**, 431-439 (2008).

513

514 14. Melton, E. D. et al. Draft genome sequence of *Dethiobacter alkaliphilus* strain AHT1^T, a gram-
515 positive sulfidogenic polyextremophile. *Stand. Genomic Sci.* **12**, 57 (2017).

516

517 15. Zhilina, T. N., Zavarzin, G. A., Rainey, F. A., Pikuta, E. N., Osipov, G. A. & Kostrikina, N. A.
518 *Desulfonatronovibrio hydrogenovorans* gen. nov., sp. nov., an alkaliphilic, sulfate-reducing
519 bacterium. *Int. J. Syst. Evol. Microbiol.* **47**, 144-149 (1997).

520

521 16. Fallon, R. D. & Brock, T. D. Lytic organisms and photooxidative effects: influence on blue-green
522 algae (cyanobacteria) in Lake Mendota, Wisconsin. *Appl. Environ. Microbiol.* **38**, 499-505 (1979).

523

524 17. Arii, S., Tsuji, K., Tomita, K., Hasegawa, M., Bober, B. & Harada, K. Cyanobacterial blue color
525 formation during lysis under natural conditions. *Appl. Environ. Microbiol.* **81**, 2667-2675 (2015).

526

527 18. Sige, D. C., Selwyn, A., Gallois, P. & Dean, A. P. Patterns of cell death in freshwater colonial
528 cyanobacteria during the late summer bloom. *Phycologia* **46**, 284-292 (2007).

529

530 19. Teeling, H. et al. Substrate-controlled succession of marine bacterioplankton populations induced by
531 a phytoplankton bloom. *Science* **336**, 608-611 (2012).

532

533 20. Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean
534 viruses. *Nature* **537**, 689-693 (2016).

535

536 21. Puxty, R. J., Evans, D. J., Millard, A. D. & Scanlan, D. J. Energy limitation of cyanophage
537 development: implications for marine carbon cycling. *ISME J.* **12**, 1273-1286 (2018).

538

539 22. Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: mining viral signal from microbial
540 genomic data. *PeerJ* **28**, e985 (2015).

541

542 23. Weinbauer, M. G. & Suttle, C. A. Potential significance of lysogeny to bacteriophage production and
543 bacterial mortality in coastal waters of the gulf of Mexico. *Appl. Environ. Microbiol.* **62**, 4374-4780
544 (1996).

545

546 24. Ning, S.-B., Guo, H.-L., Wang, L. & Song Y.-C. Salt stress induces programmed cell death in
547 prokaryotic organism *Anabaena*. *J. Appl. Microbiol.* **93**, 15-28 (2002).

548

549 25. Bhattacharjee, S. & Mishra, A. K. The tale of caspase homologues and their evolutionary outlook:
550 deciphering programmed cell death in cyanobacteria. *J. Exp. Bot.* **71**, 4639–4657 (2020).

551

552 26. Welkie D. G. et al. Transcriptomic and proteomic dynamics in the metabolism of a diazotrophic
553 cyanobacterium, *Cyanothece* sp. PCC 7822 during a diurnal light-dark cycle. *BMC Genom.* **15**, 1185
554 (2014).

555

556 27. Welkie, D. G., Rubin, B. E., Diamond, S., Hood, R. D., Savage, D. F. & Golden, S. S. A hard day's
557 night: Cyanobacteria in diel cycles. *Trends Microbiol.* **27**, 231-242 (2019).

558

559 28. Hibino, T. et al. Salt enhances photosystem I content and cyclic electron flow via NAD(P)H
560 dehydrogenase in the halotolerant cyanobacterium *Aphanothece halophytica*. *Aust. J. Plant Physiol.*
561 **23**, 321-330 (1996).

562

563 29. Zorz, J., Allanach, J. R., Murphy, C. D., Roodvoets, M. S., Campbell, D. A. & Cockshutt, A. M. The
564 RUBISCO to photosystem II ratio limits the maximum photosynthetic rate in picocyanobacteria. *Life*
565 **5**, 403-417 (2015).

566

567 30. Golding, A. J., Finazzi, G. & Johnson, G. N. Reduction of the thylakoid electron transport chain by
568 stromal reductants - evidence for activation of cyclic electron transport upon dark adaptation or under
569 drought. *Planta* **220**, 356-363 (2004).

570

571 31. Joliot, P. & Joliot, A. Cyclic electron transfer in plant leaf. *PNAS*. **99**, 10209-10214 (2002).

572

573 32. Berman-Frank, I., Bidle, K. D., Haramaty, L. & Falkowski, P. G. The demise of the marine
574 cyanobacterium, *Trichodesmium* spp., via an autocatalyzed cell death pathway. *Limnol. Oceanogr.*
575 **49**, 997-1005 (2004).

576

577 33. Harms, A., Brodersen, D. E., Mitarai, N. & Gerdes, K. Toxins, targets, and triggers: An overview of
578 toxin-antitoxin biology. *Molecular Cell* **70**, 768-784 (2018).

579

580 34. Gelens, L., Hill, L., Vandervelde, A., Danckaert, J. & Loris, R. A general model for toxin-antitoxin
581 module dynamics can explain persister cell formation in *E. coli*. *PLOS Computational Biology*. **9**,
582 e1003190.

583

584 35. Sevin, E. W. & Barloy-Hubler, F. RASTA-Bacteria: a web-based tool for identifying toxin-antitoxin
585 loci in prokaryotes. *Genome Biology*. **8**, R155 (2007).

586

587 36. Wen, Y., Behiels, E. & Devreese, B. Toxin-antitoxin systems: their role in persistence, biofilm
588 formation and pathogenecity. *Pathog. Dis.* **70**, 240-249 (2014).

589

590 37. Peeters, S. H. & de Jonge, M. I. For the greater good: Programmed cell death in bacterial
591 communities. *Microbiol. Res.* **207**, 161-169 (2018).

592

593 38. Schumann, U., Edwards, M. D., Rasmussen, T., Bartlett, W., van West, P. & Booth, I. R. YbdG in
594 *Escherichia coli* is a threshold-setting mechanosensitive channel with MscM activity. *PNAS*. **107**,
595 12664-12669 (2010).

596

597 39. Burroughs, A. M., Zhang, D., Schaffer, D. E., Iyer, L. M., & Aravind, L. Comparative genomic
598 analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts, immunity
599 and signalling. *Nucleic Acids Res.* **43**, 10633-10654 (2015).

600

601 40. Koonin, E. V., & Makarova, K. Origins and evolution of CRISPR-Cas systems. *Philos. Trans. R. Soc.*
602 *B.* **374**, 20180087 (2019).

603 41. Schwartz, E. A. et al. Assembly of multi-subunit fusion proteins into the RNA-targeting type III-D
604 CRISPR-Cas effector complex. *bioRxiv*, <https://doi.org/10.1101/2022.06.13.496011> (2022).

605 42. Makarova, K. et al. An updated evolutionary classification of CRISPR-Cas systems. *Nat. Rev.*
606 *Microbiol.* **13**, 722-736 (2015).

607 43. Faure, G., Makarova, K. S. & Koonin, E. V. CRISPR-Cas: Complex functional networks and
608 multiple roles beyond adaptive immunity. *J. Mol. Biol.* **431**, 3-20 (2019).

609 44. Mohanraju, P., Saha, C., van Baarlen, P., Louwen, R., Staals, R. H. J. & van der Oost, J. Alternative
610 functions of CRISPR-Cas systems in the evolutionary arms race. *Nat. Rev. Microbiol.* **20**, 351-364
611 (2022).

612 45. Koonin, E. V. & Zhang, F. Coupling immunity and programmed cell suicide in prokaryotes: Life-or-
613 death choices. *BioEssays*. **39**, 1-9 (2017).

614 46. Sri Kumar, A. et al. The SsI2245-SII1130 toxin-antitoxin system mediates heat-induced programmed
615 cell death in *Synechocystis* sp. PCC6803. *J. Biol. Chem.* **292**, 4222-4234 (2017).

616 47. Li, M. et al. Toxin-antitoxin RNA pairs safeguard CRISPR-Cas systems. *Science*. **372**, 6541 (2021).

617 48. Jurenas, D., Fraikin, N., Goormaghtigh, F. & Van Melderen, L. Biology and evolution of bacterial
618 toxin-antitoxin systems. *Nat. Rev. Microbiol.* **20**, 335-350 (2022).

619 49. Heyer, H., Stal, L. & Krumbein, W. E. Simultaneous heterolactic and acetate fermentation in the
620 marine cyanobacterium *Oscillatoria limosa* incubated anaerobically in the dark. *Arch. Microbiol.* **151**,
621 558-564 (1989).

622 50. Lee, J. Z. et al. Fermentation couples *Chloroflexi* and sulfate-reducing bacteria to *Cyanobacteria* in
623 hypersaline microbial mats. *Front. Microbiol.* **5**, 61 (2014).

624 51. Richardson, L. L. & Castenholz, R. W. Enhanced survival of the cyanobacterium *Oscillatoria*
625 *terebriformis* in darkness under anaerobic conditions. *Appl. Environ. Microbiol.* **53**, 2151-2158
626 (1987).

627

628

629

630

631

632

633

634

635

636

637

638

639 52. Jacobson, M. D. Reactive oxygen species and programmed cell death. *Trends Biochem. Sci.* **21**, 83-86
640 (1996).

641

642 53. Hochman, A. Programmed cell death in prokaryotes. *Crit. Rev. Microbiol.* **23**, 207-214 (1997).

643

644 54. Hong, Y., Zeng, J., Wang, X. & Zhao, X. Post-stress bacterial cell death mediated by reactive oxygen
645 species. *PNAS.* **116**, 10064-10071 (2019).

646

647 55. Zhao, X. & Drlica, K. Reactive oxygen species and the bacterial response to lethal stress. *Curr Opin
648 Microbiol.* **21**, 1-6 (2014).

649

650 56. Van Acker, H. & Coenye, T. The role of reactive oxygen species in antibiotic-mediated killing of
651 bacteria. *Trends Microbiol.* **25**, 456-466 (2017).

652

653 57. Van Wychen, S. & Laurens, L. M. Determination of total carbohydrates in algal biomass: Laboratory
654 analytical procedure (LAP). *National Renewable Energy Lab.* (2016).

655

656 58. Novotnik, B., Zorz, J., Bryant, S. & Strous, M. The effect of dissimilatory manganese reduction on
657 lactate fermentation and microbial community assembly. *Front. Microbiol.* **10**, 1007 (2019).

658

659 59. Patil, G., Chethana, S., Sridevi, A. S. & Raghavarao, K.S.M.S. Method to obtain C-phycocyanin of
660 high purity. *J. Chromatogr. A.* **1127**, 76-81 (2006).

661

662 60. Rinke, C. et al. Obtaining genomes from uncultivated environmental microorganisms using FACS-
663 based single-cell genomics. *Nat. Protoc.* **9**, 1038-1048 (2014).

664

665 61. Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly
666 complex eukaryotic community in marine anoxic water. *Mol. Ecol.* **19**, 21-31 (2010).

667

668 62. Dong, X. et al. Fast and simple analysis of MiSeq amplicon sequencing data with MetaAmp. *Front.
669 Microbiol.* **8**, 1461 (2017).

670

671 63. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and
672 web-based tools. [Opens external link in new window](#). *Nucl. Acids Res.* **41**, D590-D596 (2013).

673

674 64. Paquette, A. J., Sharp, C. E., Schnurr, J. P., Allen, D. G., Short, S. M. & Espie, G. S. Dynamic
675 changes in community composition of *Scenedesmus*-seeded artificial, engineered microalgal biofilms.
676 *Algal Res.* **46**, 101805 (2020).

677

678 65. Bushnell, B., Rood, J. & Singer, E. BBMerge - Accurate paired shotgun read merging via overlap.
679 *PloS one* **12**, e0185056 (2017).

680

681 66. Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile
682 metagenomic assembler. *Genome Res.* **27**, 824-834 (2017).

683

684 67. Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node
685 solution for large and complex metagenomics assembly via succinct *de Bruijn* graph. *Bioinformatics*
686 **31**, 1674-1676. (2015).

687

688 68. Dong, X. & Strous, M. An integrated pipeline for annotation and visualization of metagenomic
689 contigs. *Front. Genet.* **10**, 999 (2019).

690

691 69. Kang, D. D. et al. MetaBAT2: an adaptive binning algorithm for robust and efficient genome
692 reconstruction from metagenome assemblies. *PeerJ* **7**, e7359 (2019).

693

694 70. Kang, D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing
695 single genomes from complex microbial communities. *PeerJ* **3**, e1165 (2015).

696

697 71. Olm, M. R. Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic
698 comparisons that enables improved genome recovery from metagenomes through de-replication. *The
699 ISME J.* **11**, 2864-2868 (2017).

700

701 72. Parks, D., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the
702 quality of microbial genomes recovered from isolates, single cells, and metagenomes. *Genome Res.*
703 **25**, 1043-1055 (2015).

704

705 73. Chaumeil, P-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify
706 genomes with the Genome Taxonomy Database. *Bioinformatics* **36**, 1925-1927 (2020).

707

708 74. Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or
709 nucleotide sequences. *Bioinformatics* **22**, 1658-1659 (2006).

710

711 75. Gruber-Vodicka, H. R., Seah, B. K. B. & Pruesse, E. phyloFlash: Rapid small-subunit rRNA profiling
712 and targeted assembly from metagenomes. *mSystems* **5**, e00920-20 (2020).

713

714 76. Kleiner, M. et al. Assessing species biomass contributions in microbial communities via
715 metaproteomics. *Nat. Comm.* **8**, 1558 (2017).

716

717 77. Wisniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for
718 proteome analysis. *Nat. Meth.* **6**, 359-362 (2009).

719

720 78. Hinzke, T., Kouris, A., Hughes, R-A., Strous, M. & Kleiner, M. More is not always better: Evaluation
721 of 1D and 2D-LC-MS/MS Methods for metaproteomics. *Front. Microbiol.* **10**, 238 (2019).

722

723 79. Petersen, J. M. et al. Chemosynthetic symbionts of marine invertebrate animals are capable of
724 nitrogen fixation. *Nat. Microbiol.* **2**, 16195 (2016).

725

726 80. Zyballov, B., Mosley, A. L., Sardiu, M. E., Coleman, M. K., Florens, L. & Washburn, M. P.
727 Statistical analysis of membrane proteome expression changes in *Saccharomyces cerevisiae*. *J.*
728 *Proteome Res.* **5**, 2339-47 (2006).

729

730 81. Barnes, R. J., Voegtl, S. P., Hubert, C. R. J., Larter, S. R. & Bryant, S. L. The critical role of
731 environmental synergies in the creation of bionanohybrid microbes. *Appl. Environ. Microbiol.* **88**,
732 e02321-21 (2022).

733

734

735 **Acknowledgments**

736 We thank the University of Calgary's Center for Health Genomics and Informatics for sequencing and
737 informatics services. We thank Carmen Li for help with MiSeq sequencing. We would like to thank Jayne
738 Rattray and Martin Pabst for help with measurements and identification of organic acids.

739

740 **Funding**

741 This study was supported by the Natural Sciences and Engineering Research Council (NSERC), Canada
742 Foundation for Innovation (CFI), Canada First Research Excellence Fund (CFREF), Genome Canada,
743 Western Economic Diversification, the International Microbiome Center (Calgary), Alberta Innovates, the
744 Government of Alberta, and the University of Calgary.

745

746 **Author Contributions**

747 J.Z. extracted DNA and protein and analyzed metagenomics and metaproteomics data. A.J.P. collected
748 soda lake sediment samples, prepared them for 16S rRNA gene amplicon sequencing, and analyzed data.
749 A.V., T.G., C.D., and A.J.P. performed the incubation experiments. A.K. maintained and ran the mass
750 spectrometer required for metaproteomics. V.K. helped to analyze metagenomes. J.Z., A.V., and M.S.
751 drafted the manuscript with input from all authors. M.S. and H.D. secured funding for this research.

752

753 **Data and Materials Availability**

754 All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary
755 Materials. Metaproteomes were deposited to the PRIDE database under accession PXD023504.
756 Metagenomes can be found in BioSamples SAMN17264972-SAMN17264985 (BioProject:
757 PRJNA377096). MAGs from the study were deposited into the NCBI Whole Genome Shotgun
758 submission database under BioSamples SAMN17266165-SAMN17266224.

759

760 **Conflict of interest**

761 JZ, AJP, AK, AV, CD, HD, and MS report a relationship with Synergia Biotech Inc. that includes equity
762 or stocks. AV, JZ, CD, HD, and MS have patent #WO2021102563 - Alkaliphilic consortium shifting for
763 production of phycocyanins and biochemicals pending to Synergia Biotech Inc. AJP, AV, and MS have a
764 provisional patent - Method for cost and energy effective production of cyanobacterial consortium
765 pending to Synergia Biotech Inc

766

767

768