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Abstract

Accurate measurements of the molecular composition of single cells will be key to elucidating the relationship
between gene expression and function in diverse cell types. One of the most important phenotypes that differs
between cells is their size, which was recently shown to be an important determinant of proteome composition
in populations of similarly sized cells. We therefore sought to test if the effects of cell size on protein
concentrations were also evident in single cell proteomics data. Using the relative concentrations of histone
proteins to estimate a cell’'s DNA-to-cell volume ratio, we found that cell size correlated with the cell-to-cell
variance in two single cell proteome datasets, each acquired using different preparation and measurement
platforms. Moreover, the proteome differences between small and large single cells significantly correlated with
how cell size affects the proteomes of cultured cells measured in bulk. We therefore conclude that cell size
accounts for a substantial amount of proteome heterogeneity in single cells and should be considered particularly
when comparing cells of a similar type.

Main Text

Individual cells are the basis of life. It is therefore important to develop techniques that accurately quantify the
molecular composition of single cells. Extensive progress examining mRNA composition has been achieved at
single cell resolution, helping to catalog diverse cell types and build increasingly complete cell atlases of
multicellular organisms (Regev et al, 2017; Tabula Sapiens et al, 2022; Wu et al, 2014). Yet, mRNA sequencing
gives an incomplete measurement of the state of the cell because diverse post-transcriptional mechanisms also
impact the proteome. For example, the correlation between mRNA and protein amounts is blurred by differing
translation and degradation rates (Liu et al, 2016). Moreover, transcriptomic methods are blind to the diverse set
of protein modifications that are often key to activity and function. To address this gap and more precisely
distinguish discrete cell states, single cell proteomic methods have emerged.

Advances in single cell proteomics are driven by increases in measurement sensitivity in the new generation of
mass spectrometers (Brunner et al, 2022). In addition to this increased sensitivity, multiplexed peptide labeling
approaches enable the measurement of hundreds and sometimes thousands of proteins from single mammalian
cells (Budnik et al, 2018; Derks et al, 2022; Petelski et al, 2021; Specht et al, 2021). Initial experiments have
revealed that the proteomes of single cells (of a singular cell type) are influenced by cell cycle phase (Brunner
et al., 2022; Leduc et al, 2022), though it is unclear which other features underlie cell-to-cell proteome
heterogeneity. It is important to measure these and other quantifiable sources of proteome variation in order to
better characterize features specific to cell types and states.

In addition to cell cycle phase, recent work demonstrated that cell size (i.e., the DNA-to-cell volume ratio) is an
important determinant of proteome content (Lanz et al, 2022). Lanz et al. used various methods to isolate
different populations of cultured mammalian G1 cells by size and measure differences in proteome content with
high accuracy. Contrary to the assumption that most cellular components would remain at constant concentration
in cells of different sizes, the authors reported widespread size-dependent changes in the concentrations of
individual proteins (Figure 1A). These changes in protein concentration likely reflect, to a large extent, the size-
dependent changes in the cellular growth rate (Cadart et al, 2018; Liu et al, 2022; Zatulovskiy et al, 2022).
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Importantly, a recent proteome analysis of the NCI60 cancer lines revealed a similar pattern of size-dependent
changes to the proteome (Cheng et al, 2021). Thus, regardless of cell type, cell size has an important influence
on proteome composition and therefore should contribute to the cell-to-cell heterogeneity in the proteomes of
single cells.

To investigate whether cell size can explain cell-to-cell variations in proteome content, we reanalyzed data from
two recently published single-cell proteome datasets (Brunner et al., 2022; Specht et al., 2021) (Table S1 and
S$2). One of these utilized Bruker’s ultra-high-sensitivity timsTOF SCP to measure (label-free DIA) single HelLa
cells that were proceeding through the cell cycle after being synchronized (Brunner et al., 2022). The authors
were able to distinguish the cell cycle phase of single cells based on their measurements. To disentangle these
cell cycle-related effects, we only considered the proteomes of G1-enriched single cells for our analysis. To
approximate the relative size of each cell, we used the histone proteins because their amount is proportional to
the amount of DNA (Claude et al, 2021; Lanz et al., 2022; Swaffer et al, 2021; Wisniewski et al, 2014). Smaller
cells therefore possess proportionally higher concentrations of histone proteins than larger cells (Figure 1B), so
we used the fraction of total ion intensity represented by Histone H4 as representative of the inverse of the cell
volume (a proxy for cell size). We performed principal component analysis (PCA) on 70 G1-enriched single-cell
proteomes from Brunner et al., reasoning that proteins with cell size-dependent abundances could help explain
the variance in these cells. As expected, the fraction of total ion signal attributable to histone H4 significantly
correlated with both principal components one and two (Figure 1C and 1D). Other core histone proteins
produced similar results (Figure S1). In contrast, substituting a histone protein for a common housekeeping
enzyme, PGK1, whose concentration is expected to be independent of cell size (Lanz et al., 2022), did not
produce a significant correlation (Figure S2).

To further explore the relationship between single cell proteome variation and cell size, we plotted the weight
coefficients for the individual proteins in the PCA analysis against their corresponding Protein Slope values.
Protein Slopes values reflect how a given protein’s concentration changes with cell size (Lanz et al., 2022). In
brief, the Protein Slope is calculated from a linear regression between the log> of an individual protein’s
concentration and the log> of the cell volume. A Protein Slope value of 0 describes proteins for which
concentration does not change with cell volume (scaling), a Protein Slope value of 1 describes proteins for which
concentrations increase proportionally to cell volume (super-scaling), and Protein Slope of -1 describes proteins
that are perfectly diluted by cell growth such that their concentration is inversely proportional to cell volume (sub-
scaling). The weight coefficients for the individual proteins in the principal components PC1 and PC2 both
significantly correlated with their Protein Slope values (Figure 1E), and the directionality of each correlation
agreed with the expected proteome differences between large and small cells. We also calculated Pearson
coefficients (r) for each protein from the correlation between its relative protein concentration and a proxy for
each cell’'s size (as exemplified in Figure 1F and 1G). These r values also correlated with the Protein Slope
values (Figure 1H). These complementary analyses are consistent with the hypothesis that variations in cell size
measurably contribute to proteome variation in single cells.

To further test our hypothesis that cell size contributes to proteome variation in single cells, we examined a
second dataset generated using a different single-cell proteomic approach. Rather than measure one cell at a
time, as in Brunner et al., Specht et al. used isobaric mass tags and multiplexed labeling of single cells to boost
the MS1-level peptide intensity. They also included a “carrier” channel consisting of ~100 cells to further increase
the MS1 peptide signal. Relative changes in peptide concentrations between individual cells were then quantified
by comparing the intensities of MS2-level reporter ion fragments. Using this method (referred to as SCoPE2),
individual monocytes that were or were not differentiated into macrophages could be distinguished (Specht et
al., 2021). We analyzed the mock-treated monocytes from that study to better focus on the influence cell size
has on proteome variation. PCA analysis produced a pattern similar to the data from Brunner et al., though
histone concentration primarily correlated with PC1 (Figure S3A and S3B). Strikingly, the PCA and Pearson r
analysis of single monocyte proteomes produced coefficients that significantly correlated with the Protein Slope
value (Figure 11 and S3E), which was derived from the measurement of primary fibroblast cells (Lanz et al.,
2022). This further supports the notion that cell size effects are reflected in single cell proteomic datasets.
However, the relationship between cell size and proteome content is likely most evident between cells of a similar
type and could be complicated by large deviations in cell identity, as was recently demonstrated in a melanoma
cell line (Leduc et al., 2022).
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In summary, we re-analyzed the proteome heterogeneity in single cell datasets reported by two independent
groups using different single-cell preparation and measurement platforms. In both cases, we found that the
concentration of histone proteins, a proxy for cell size, correlated with the primary axes of variance in the cells
we considered for our analysis. Remarkably, the effects of cell size trended in agreement with a recent report of
cell size-dependent changes to the proteome that were measured in bulk (Lanz et al., 2022). Taken together,
these analyses support the conclusion that differences in cell size (i.e., the DNA-to-cell-volume ratio) will account
for a significant amount of proteome heterogeneity in single cells. We recommend accounting for differences in
cell size particularly when comparing cells of a similar type. Our analyses also further validate the feasibility of
measuring meaningful biological signal using single-cell proteomics and supports the pioneering work of both
Brunner et al. and Specht et al.

Methods

Data curation

For Brunner et al., protein intensities for the individual G1 cells were obtained from PRIDE (ID: PXD024043).
G1-labeled columns were extracted from the file named: “20210919_DIANN_SingleCellOutput.pg_matrix.tsv”
(DIANN1.8 cell cycle folder). G1 cells without Histone H4 intensity were excluded from the analysis. Also, G1
cells with the fewest number of protein identifications were excluded until a shared set of ~300 proteins were
detected in each single cell. This resulted in the reanalysis of 70 of the 93 G1 cell proteomes reported by Brunner
et al. (Table S1). For Specht et al., a dataframe containing relative protein concentrations for each single cell
was downloaded from https://slavovlab.net (“Proteins-processed.csv”). Mock-treated monocytes were extracted
from the “Proteins-processed.csv”’ dataframe using the “sdrf_scope2.tsv” table (Table S2).

Estimation of cell size

For Brunner et al., we estimated the relative cell size for each of the single G1 cells using the “Histone H4
fraction”. To calculate the Histone H4 fraction, we divided the intensity value for Histone H4 (H4 HUMAN) by
the summed intensity for all other proteins. To calculate this summed value, we only considered the ion intensity
from proteins that were identified in all cells considered for our analysis. We chose a single histone protein, rather
than the average of all histone protein, to minimize missing values and therefor maximize the number of cells
considered for our analysis. Histone H4 was chosen because a single H4 variant was detected in most cells.
The use of other core histone proteins or an averaged value produced similar results. For Specht et al., relative
cell size was estimated using the relative concentration of Histone H4 (logz). The same method was used to
generate the plots in Figure S1 and S3 that show the other core histones.

Principal component analysis

A dataframe was created that contained individual proteins as rows with columns corresponding to single G1
cell proteomes. PCA analysis was performed in Python using the sklearn package. Results of the PCA analysis
were visualized with Seaborn’s scatterplot.

Pearson r correlation analysis

For Brunner et al., a dataframe containing intensity values of 295 proteins (row) for 70 single cells (column) was
converted to intensity fractions. For each cell, the intensity of each protein was divided by the summed intensity
of all proteins to calculate each protein’s proteome fraction. Proteome fraction is a crude estimation of a protein’s
relative concentration. A Pearson r correlation (python’s scipy package) was calculated by regressing the relative
concentration of each individual protein VS a proxy for each cell’s size (exemplified in Figure 1F and 1G). For
Specht et al., we used the logz ratio values published by the authors, so the r value was derived from a regression
between the relative protein concentration (logz) vs the relative Histone H4 concentration (logz). Only the most
abundant ~350 proteins were considered for Figure 11 (filtered by peptide detections in our own dataset). Our
analysis of the entire Specht et al. dataset can be found in Figure S3 and Table S2.
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Figure 1 - Cell size contributes to variation in the proteomes of single cells.

A) Proteomes vary with cell size. For example, the amount of histone proteins is maintained in proportion to the
genome and thus histone concentrations have a negative slope (“sub-scale”) with respect to increasing cell size.
The relative histone concentration is therefore inversely proportional to cell size. The Protein Slope describes
how the concentration of an individual protein scales with cell size (Lanz et al., 2022). Proteins with a slope of 0
maintain a constant cellular concentration regardless of cell volume (“scaling”). A slope value of 1 corresponds
to an increase in concentration that is proportional to the increase in volume (“super-scaling”), and a slope of —1
corresponds to dilution (concentration ~ 1/volume; “sub-scaling”).

B) Our strategy uses relative histone protein concentrations as a proxy for cell size in single cell proteomics
datasets.

C) PCA analysis of 70 single cell proteomes. Each dot represents the proteome of a G1 cell from Brunner et al.
and its color indicates either (left) the summed ion intensity of all proteins or (right) the fraction of the proteome
represented by histone H4 (i.e., H4 intensity / summed intensity of all other proteins).

D) Correlation between the fraction of histone H4 intensity (a proxy for cell size) and PC1 and PC2. A regression
line is plotted in dark blue with 95% confidence intervals. Peason r value and its associated p-value are shown.
E) Correlation between the weight coefficients for the individual proteins in PC1 and PC2 with the Protein Slope
value as defined in (A). A regression line is plotted in dark blue with 95% confidence intervals. Peason r value
and associated p-value are depicted.

F) and G) correlation between increasing G1 cell size (1/H4 Fraction) and the relative concentration (i.e., protein
intensity / summed intensity of all other proteins) of protein previously found to (F) sub- and (G) super-scale with
cell size (Lanz et al., 2022).
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H) and I) A Pearson correlation coefficient was calculated by regressing the relative concentration of each
individual protein against a proxy for each cell’s size (1 / H4 concentration), as exemplified in (F) and (G). The r
value for each protein from the (H) Brunner et al. and (l) Specht et al. datasets are plotted against the Protein
Slope value. Histone H4 was excluded from the plot. Error bars represent the 99% confidence interval. The plot
in (1) was filtered to display the most abundant proteins. Figure S3F depicts an unfiltered version of this analysis.
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Figure S1: Using other histone proteins as proxies for cell size yields similar results.

In addition to Histone H4, the measurement of other core histone proteins correlates with the variance. A
regression line is plotted in dark blue with 95% confidence intervals. Peason r value and its associated p-value
are shown.
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Figure S2: Correlation of principal components with the relative concentration of PGK1, a protein whose
concentration is not expected to change with cell size.

A) PCA analysis of 70 single cell proteomes. Each dot represents the proteome of a G1 cell from Brunner et al.
and its color indicates the fraction of the proteome represented by PGK1 (PGK1 intensity / summed intensity of
all other proteins). B) Correlation between the fraction of PGK1 intensity and PC1 and PC2. A regression line is
plotted in dark blue with 95% confidence intervals. Peason r value and its associated p-value are shown.
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Figure S3: Reanalysis of single cell proteomics data from Specht et al.
A) PCA analysis of 394 single cell proteomes. Only the uninduced monocytes from Specht et al. are depicted.
Proteins were quantified using tandem mass tags, so cell size was estimated using the relative concentration of
MS2-level reporter ions for Histone H4. Each dot represents the proteome of a G1 cell from Brunner et al. and
its color indicates the relative H4 concentration.
B) Correlation between the relative histone concentrations and PC1 and PC2. A regression line is plotted in dark
blue with 95% confidence intervals. Peason r value and its associated p-value are shown.

C) PCA analysis of 394 single cell proteomes.
D) Correlation between the fraction of PGK1 intensity and PC1.
E) Correlation between the weight coefficients for the individual proteins in PC1 and PC2 with the Protein Slope

value

(Lanz et al., 2022).

(Protein vs 1/H4)

F) A Pearson correlation coefficient was calculated by regressing the relative concentration of each individual
protein against a proxy for each cell’s size (histone H4 concentration). The r value for each protein in Spect et
al. datasets are plotted against the Protein Slope value (Lanz et al., 2022). Histone H4 was excluded from the
plot. Error bars represent the 99% confidence interval.
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