

1 **The Golgi complex is a regulatory hub for homologous recombination-mediated DNA
2 repair.**

3

4 George Galea^{1*}, Karolina Kuodyte^{1,2}, Muzamil M. Khan^{1,3}, Peter Thul⁴, Beate Neumann⁵,
5 Emma Lundberg^{4,6,7}, Rainer Pepperkok^{1,3,5*}

6

7

8 ¹Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117
9 Heidelberg, Germany

10 ²Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of
11 Biosciences

12 ³Translational Lung Research Center Heidelberg, German Center for Lung Research,
13 Heidelberg, Germany

14 ⁴Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and
15 Health, KTH - Royal Institute of Technology, Stockholm, 17121, Sweden.

16 ⁵Advanced Light Microscopy Facility, EMBL, Heidelberg, 69117, Heidelberg, Germany

17 ⁶Department of Bioengineering, Stanford University, Stanford, CA 94305, USA

18 ⁷Department of Pathology, Stanford University, Stanford, CA 94305, USA

19

20

21 *corresponding authors

22 e-mail: george.galea@embl.de; rainer.pepperkok@embl.org

23 **Abstract**

24

25 The Golgi complex has long been recognised as an important homeostasis hub, where a
26 multitude of signalling pathways and essential cellular processes intersect. Yet its
27 communication with the cell nucleus remains largely unexplored. To this end, we have
28 analysed genome-scale localisation data of the Human Protein Atlas which revealed an
29 unexpected high number of Golgi and nuclear dual-localisation proteins and several pathways
30 including surprising DNA repair. Amongst these proteins we found RAD51C, a regulatory
31 Homologous Recombination (HR) repair protein, that localises to the Golgi and in response to
32 double-strand DNA breaks, the Golgi protein population of RAD51C redistributes to form DNA
33 repair foci. Depletion of the Golgin Giantin induces the redistribution of the RAD51C Golgi pool
34 to form nuclear foci, independent of DNA damage induction. Concurrent with a significant
35 increase in genomic instability and inhibition of HR signalling regulators. Altogether, we
36 present evidence for a novel pathway where the Golgi is a central regulatory hub for HR-
37 mediated DNA repair and potentially other repair pathways.

38

39 **Introduction**

40

41 Eukaryotic cells have evolved a highly specialised and coordinated array of membrane-
42 bounded organelles. This compartmentalisation allows the segregation of biochemical
43 reactions, ensuring that they are carried out with the highest specificity and efficiency.
44 However, organelles do not function in isolation but rely on the continual exchange of lipids,
45 proteins and signalling cues to maintain cellular homeostasis. At the centre of this cross-
46 coordination of subcellular transport and signalling pathways lies the Golgi complex. Thus,
47 contributing well beyond its classical roles of membrane trafficking, and post-translational
48 modification but rather acting as a regulatory hub with numerous cellular processes
49 intersecting at this organelle such as autophagy, mitosis, growth signalling, cytoskeletal and
50 energy status regulation^{1,2}. Various perturbations to the Golgi architecture and mutations of its
51 constituents have been associated with a wide array of human diseases such as
52 neurodegenerative diseases, and cancer, amongst many others³⁻⁶. Even though we have a
53 clearer picture of the Golgi's interactions and regulatory functions, its communication with the
54 cell nucleus remains largely unexplored.

55

56 Emerging themes have started to illustrate the relationship between the Golgi and nuclear
57 compartment, with multilocalisation proteins playing a pivotal role. In cholesterol homeostasis
58 and ER stress response, sensing-signalling proteins SREBP and ATF6, respectively, get
59 proteolytic cleaved at the Golgi complex to regulate gene expression through the release of a
60 transcriptionally active amino terminus that makes its way to the nucleus^{7,8}. Regulatory Golgi
61 functions are also present at the onset of mitosis, where the organelle undergoes a multi-step
62 fragmentation process that is required for its correct partition into the dividing cells⁹. Inhibition
63 of this disassembly results in cell-cycle arrest and the block of a set of Golgi-localised proteins
64 that perform specific functions during mitosis, such as mitotic spindle formation and regulation
65 of the spindle checkpoint.

66

67 Few studies have also hinted at a link between cytoplasmic organelles, genomic stability, and,
68 in turn, cancer, with the Golgi complex emerging as a central theme¹⁰⁻¹². At a structural level,
69 the Golgi undergoes dramatic morphological changes after the induction of DNA lesions, from
70 ribbon-like perinuclear stack to dispersed fragments¹³. A response requiring the

71 phosphorylation of the Golgi oncoprotein Golgi phosphoprotein 3 (GOLPH3) by DDR regulator
72 DNA-dependent protein kinase (DNA-PK)¹³. Golgi morphology alterations are also a common
73 feature across a wide variety of cancer types and are often reflected in changes in the
74 distribution of Golgi resident proteins^{11,12}. Rearrangement of Golgi glycosyltransferases
75 distribution is not uncommon in cancer cells, resulting in defective glycosylation, a process
76 thought to promote cancer development^{11,12,14}. It remains to be seen what are the impacts of
77 these Golgi organisational changes and whether they're part of a response to DNA damage
78 or a cause of carcinogenesis.

79

80 Here, we utilise localisation data and antibody resources from the Human Protein Atlas (HPA)
81 project¹⁵ to explore a class of multilocalisation proteins as a systematic strategy to identify key
82 signalling pathways that function between the Golgi and nuclear compartment. In our work,
83 we validate the first example of a network of DNA repair proteins localised to the Golgi complex
84 and furthermore we propose a novel regulatory pathway for DDR control at the Golgi complex,
85 activating Homologous Recombination (HR)-mediated DNA repair through the interaction of
86 RAD51C and Giantin. Our data also suggests that this regulation is not just restricted to HR
87 DNA repair and RAD51C but could extend to other types of DNA repair mechanisms. This
88 work lays the groundwork for opening up an exciting new scientific niche with the potential
89 of identifying novel therapeutic targets.

90

91 **Results**

92

93 **Antibody-based analysis identifies a network of DNA damage response proteins at the 94 Golgi complex.**

95

96 To systematically explore possible candidate that link Golgi to nuclear function or vice versa,
97 we shortlisted 329 proteins identified by the Human Protein Atlas (HPA) project¹⁵ to localise
98 at both Golgi-like membranes and the cell nucleus. siRNA mediated validation experiments¹⁶
99 confirmed the double-localisation of 163 candidates (167 antibodies) (**Supplementary table
100 S1**).

101

102 Bioinformatic analysis of these 163 candidates revealed two major pathways, a membrane
103 trafficking and DNA damage response clusters (**Fig. 1a**). These surprising findings prompted
104 us to explore further whether the double localisation represents moonlighting functions or
105 indeed links between DNA Damage Response (DDR) to Golgi function.

106

107 **RAD51C Golgi population redistributes to the nucleus in response to DNA damage 108 events.**

109

110 To address this question and gain mechanistic insight into the role of these DDR proteins at
111 the Golgi, we characterised the HR repair protein RAD51C, based on its importance for the
112 regulation of HR DNA repair¹⁷. The protein is part of the RAD51 recombinase protein family,
113 which is a key active complex in the recombination-mediated repair of Double-Strand DNA
114 Breaks (DSBs)^{18,19}. Following the RAD51C localisation validation, we further confirmed these
115 results using other available antibodies in a number of different cell lines (**Fig. 1b; Extended
116 Data Fig. 1a**). We observed (**Fig. 1b**) that endogenous RAD51C was present in a juxta-
117 nuclear compact localisation (**yellow arrow**) that colocalized with the Golgi marker, GM130
118 and a diffused nuclear distribution with foci present (**white arrow**). The specificity of the

119 antibody was tested by the depletion of RAD51C (**Extended Data Fig. 1b-d**). To biochemically
120 validate the subcellular localisation of RAD51C, we isolated nuclear, membrane and
121 cytoplasmic fractions from HeLa Kyoto (HK) protein extracts and probed them for RAD51C
122 presence in each compartment (**Fig. 1c**). The protein was found to be present in all fractions,
123 in agreement with our immunofluorescence data.

124
125 Since RAD51C has been reported to be recruited to DNA repair foci upon the introduction of
126 DSBs²⁰, we induced the formation of these DNA lesions by treating cells with doxorubicin
127 (DOX) and monitored for changes in RAD51C localisation. DOX is a widely used therapeutic
128 that interacts with DNA by intercalation leading to DSBs²¹. Upon the addition of the drug (**Fig.**
129 **1d-g**), we observed an overall decrease in RAD51C protein level, with the portion of the
130 RAD51C colocalising with the Golgi marker, GM130 (**yellow arrows**), reducing at a higher
131 rate than in the nuclear compartment. The RAD51C diffused nuclear pattern changed into very
132 distinct nuclear foci (**white arrows**), with this redistribution getting more pronounced with
133 increasing length of DOX treatment (**Fig. 1d**). Analysis of these experiments allowed us to
134 measure the changes in RAD51C levels at both the Golgi (**Fig. 1e**) and the nuclear
135 compartment (**Fig. 1f**), and to calculate a RAD51C Golgi-nuclear distribution ratio (**Fig. 1g**).
136 This ratio provides a robust and quantitatively measure of the RAD51C Golgi-nuclear
137 distribution, despite fluctuations of protein levels. The RAD51C redistribution was further
138 validated by subcellular fractionation (**Extended Data Fig. 1e, f**). Similarly, the total protein
139 level of RAD51C is observed to decrease after 3h treatments, with a much larger reduction in
140 the membrane compartment when compared to the nuclear fraction. In both experiments, the
141 RAD51C distribution ratio is seen to decrease significantly after 3 h DOX treatment in both the
142 immunofluorescence and biochemical assay (**Fig. 1g, Extended Data Fig. 1f**).
143

144 To identify a possible mechanism of this RAD51C redistribution from one compartment to
145 another, we introduced DSBs using DOX, while inhibiting the Importin-β-mediated nuclear
146 import, utilising the small peptide inhibitor Importazole (IPZ)²². Treatment with IPZ (**Fig. 2a-c**,
147 **Golgi fraction marked with yellow arrows; nuclear foci marker with white arrows**)
148 inhibited the DOX induced RAD51C localisation pattern change, instead, the majority of the
149 protein population remained colocalizing with the Golgi marker, GM130, and a significant
150 inhibition of RAD51C nuclear foci formation was observed (**Fig. 2a-c**). A reduction in the
151 overall RAD51C protein level was observed when cells were treated with DOX only, but there
152 was no significant change in the RAD51C distribution pattern when cells were co-treated with
153 IPZ.
154

155 Having established that the RAD51C Golgi population responds to DSB-inducing treatments,
156 we sought to test whether the phosphorylation of DDR kinases mediates this redistribution.
157 The three master kinases that are active in response to DNA damage are ataxia-telangiectasia
158 mutated (ATM), Ataxia telangiectasia and Rad3-related (ATR) and DNA-dependent protein
159 kinase (DNA-PK)²³. We treated cells with phosphorylation inhibitors specific for each kinase
160 and analysed RAD51C redistribution after DOX treatment (**Fig. 2d-f; Golgi fraction marked**
161 **with yellow arrows; nuclear foci marked with white arrows**). The combination treatment
162 of DOX with the ATM phosphorylation inhibitor, KU55933²⁴ significantly inhibited the
163 redistribution of RAD51C, with most of the protein population still colocalising with the Golgi
164 marker, GM130 and an inhibition of nuclear foci formation. Whereas the combined treatment
165 of DOX with ATR and DNA-PK phosphorylation inhibitor, VE-821²⁵ and NU7441²⁶ respectively,
166 had no apparent impact on the redistribution of RAD51C when compared with cells treated

167 with DOX only. No apparent changes in the RAD51C localisation pattern were observed with
168 the treatment of inhibitors only (**Extended Data Fig. 2**).
169

170 To ensure that these observations are a direct result of DSBs and not the drug itself, we next
171 investigated the effects of other DSB-causing drugs²⁷: camptothecin (CPT) (**Extended Data**
172 **Fig. 3a-c**), etoposide (ETO) (**Extended Data Fig. 3d-f**), and mitomycin C (MMC) (**Extended**
173 **Data Fig. 3g-i**). All treatments caused significant RAD51C distribution from the Golgi to the
174 nuclear compartment. Furthermore, treatment with CPT (**Extended Data Fig. 3a**) led to a
175 change in RAD51C distribution in the nuclear compartment, from a diffused distribution to
176 distinct nuclear foci, while the application of ETO and MMC (**Extended Data Fig. 3d, g**)
177 resulted in an increase in RAD51C nuclear population but with no apparent nuclear foci
178 pattern.
179

180 **RAD51C Golgi localisation is dependent on the Golgin Giantin.**

181

182 To identify potential Golgi candidates that could act as membrane anchors for RAD51C, we
183 analysed data from two genome-wide siRNA screens carried out to identify regulators of HR
184 and DDR (**Extended Data Fig. 4a, b**)^{28,29}. Interestingly in these works, the Golgin protein
185 family was highlighted as potential candidate genes, where the knockdown of GMAP210 and
186 Giantin lead to a significant reduction in HR repair rates²⁸ (**Extended Data Fig 4a**), with the
187 depletion of Giantin also leading to a significant inhibition of H2AX phosphorylation, which is
188 important for DDR signalling regulation²⁹ (**Extended Data Fig 4b**). The Golgin family is
189 composed of predominantly coiled-coil proteins that are anchored to the Golgi membrane by
190 their carboxy terminus and are predicted to adopt an extended conformation that projects into
191 the surrounding cytoplasm. This arrangement is ideal for the capture or tethering of nearby
192 membranes³⁰ and also could potentially act as a surface that retains DDR proteins, such as
193 RAD51C. Therefore, we tested whether the localization of RAD51C is dependent on these
194 two Golgins (**Fig. 3a-d**). siRNA mediated depletion of GMAP210 and treatment with a control
195 siRNA had no significant effect on RAD51C distribution, whereas the knock-down of the Golgi
196 matrix protein Giantin led to a significant redistribution of RAD51C (**Fig. 3a**). We observed a
197 significant decrease in the colocalization of RAD51C with the Golgi marker (**yellow arrows**),
198 GM130 and a change in protein localisation in the nucleus from a diffused distribution to
199 distinct bright nuclear foci (**white arrows**) (**Fig. 3a**). Quantifications showed a reduction of the
200 RAD51C Golgi population (**Fig. 3b**) with the distribution ratio (**Fig. 3c**) reduced by more than
201 half and the number of RAD51C foci (**Fig. 3d**) increased by more than two-fold upon depletion
202 of Giantin with either siRNAs. While there was no significant difference in either RAD51C Golgi
203 intensity, distribution ratio or foci number (**Fig. 3b-d**) between the GMAP210-depleted and
204 control cells. In light of these results, we next tested whether RAD51C physically interacts or
205 forms a complex with Giantin by performing an immunoprecipitation (IP) assay (**Fig. 3e**). Here,
206 we immunoprecipitated endogenous Giantin, probed for RAD51C and vice versa (**Fig. 3e**).
207 Endogenous Giantin and RAD51C were found to co-immunoprecipitate from HK protein
208 extracts in both conditions.
209

210 To gain insight into the nature of RAD51C foci induced by Giantin depletion, we carried out
211 colocalization assays to determine whether these structures contain standard HR markers,
212 phosphorylated H2AX (y-H2AX) (**Fig. 4a, b**) and phosphorylated ATM (p-ATM) (**Fig. 4c, d**)
213 under physiological conditions. Both proteins are well established markers for DSB repair sites
214 and are important for the recruitment of the HR repair machinery³¹. In cells treated with a

215 control siRNA, we observed that close to half of the RAD51C nuclear foci were decorated with
216 either γ-H2AX or p-ATM (**Fig. 4a, b; colocalising foci are denoted with an arrow**), as
217 previously described in literature³¹. RAD51C foci induced by the depletion of Giantin however
218 showed significantly lower colocalization with both markers (**Fig. 4b, d**).

219

220 **Depletion of Giantin leads to genomic instability and inhibition of DDR signalling**

221

222 Having tested the requirement of Giantin in the recruitment and localisation of RAD51C, we
223 next assessed whether the redistribution of the HR protein by the depletion of Giantin would
224 have any significant impact on the cells' ability to maintain genomic stability and undergo DNA
225 repair. To gauge the status of the cell genome, we applied the comet assay³² which provides
226 a measure of fragmented genomic DNA, an indicator of genomic stability (**Fig. 5a, b**). Cells
227 treated with DNA damaging agents or having impaired DNA repair pathways would result in
228 distinctive long comet tails, due to significant amounts of fragmented genomic DNA. In
229 contrast, healthy untreated cells would display shorter or no comet tail. In our experiment (**Fig.**
230 **5a, b**), we observed that samples treated with siRNAs against Giantin and RAD51C showed
231 significantly longer comet tails when compared to the control siRNA treatment. Quantifications
232 of the comets (**Fig. 5b**) showed that the knockdown of RAD51C resulted in a 2.5-fold increase
233 in the comet tail length and fluorescence intensity, here quantified as a standard metric known
234 as olive tail moment³³. Depletion of Giantin using two different siRNAs (siGiantin#1 and
235 siGiantin#2) resulted in 1.8 and 1.6-fold change in the olive tail moment ratio. Next, we
236 validated this effect on genomic stability by measuring the incidence of micronuclei (denoted
237 with white arrows) (**Fig. 5c, d**). We therefore analysed cell populations depleted of Giantin and
238 RAD51C for their occurrence. Our results highlighted a significantly larger percentage of the
239 cell population displayed micronuclei formation and aberrant nuclear structure after the
240 depletion of Giantin and RAD51C when compared to our control samples (**Fig. 5d**).

241

242 RAD51C is required for DSB repair by HR and therefore its change in localisation due to
243 Giantin depletion might lead to inhibition of this pathway and activation of the alternative repair
244 system, the Non-Homologous End Joining (NHEJ) repair³⁴. To gain insight into the mechanism
245 by which the redistribution of RAD51C leads to a decrease in genomic stability, cells depleted
246 of Giantin were assessed for their ability to phosphorylate and thereby activate well-
247 characterised regulators of HR and NHEJ repair pathways in response to DNA damage (**Fig.**
248 **5e, f**). In our negative control, HK cells treated with DOXO and CPT, we observe increased
249 levels of phosphorylated ATM, CHK2, H2AX (**Fig. 5e**) and DNA-PK (**Fig. 5f**) in response to the
250 treatment when compared to our solvent control. Cells depleted of the Golgi protein Giantin
251 when treated with DOXO and CPT showed significantly lower levels of phosphorylation of the
252 tested HR DDR proteins, when compared to our control siRNA (**Fig. 5e, f**). Finally, to assess
253 whether this effect is not a result of cell cycle perturbations, we assessed the cell cycle profile
254 of cells depleted of Giantin (**Fig. 5g**), using Fluorescence Activated Cell Sorting (FACS)
255 analysis, where no significant effects were observed.

256

257 **Discussion**

258

259 In this study, we have explored how the Golgi complex and the cell nucleus can communicate
260 with each other in a functional manner. Analysis of genome-scale localisation data of the HPA
261 project¹⁵ revealed a surprisingly high number of double-localising Golgi-nuclear proteins and,
262 even more remarkable, a protein cluster of DNA repair proteins. The latter reflecting important

263 regulatory proteins of various DNA repair pathways (**Fig. 1a**), not only specific for HR-
264 mediated DNA repair but also Non-Homologous End Joining (NHEJ), Mismatch Repair (MMR)
265 and Base Excision DNA Repair (BER), as well as other integral regulators of DNA repair
266 cellular response such as chromatin cohesion, ubiquitination, cell cycle and signalling. To our
267 knowledge, these findings present the first report of DNA repair protein cluster to localise to
268 the Golgi complex. Exploring in more detail one of the major DNA repair proteins identified,
269 RAD51C, confirmed a functional involvement of its Golgi population in the regulation of HR-
270 mediated DNA repair.

271

272 Here, we propose a model (**Fig. 6**) where the cytoplasmic tail of Giantin anchors RAD51C to
273 the Golgi complex. When required, RAD51C is activated by the kinase ATM and recruited to
274 the DNA damage site, where it engages other HR proteins to repair the incurred DNA lesions
275 and, in turn, regulate DDR signalling. In line with the proposed model, we found that the
276 redistribution of RAD51C by Giantin depletion impairs HR signalling response and results in a
277 significant increase in genomic instability. Consistently, the knockdown of Giantin has been
278 reported to inhibited HR repair rates²⁸ and phosphorylation of the DDR signalling protein,
279 H2AX²⁹. Nonetheless, we cannot exclude that the downregulation of Giantin impacts other
280 nuclear events beyond the redistribution of RAD51C, although none of our data and previous
281 literature would suggest this. Interestingly, similarly to Giantin, other members of the Golgin
282 family have also been reported to HR rates²⁸ and DDR signalling protein²⁹. Furthermore,
283 numerous studies have also implicated the role of Giantin and the Golgins in cancer
284 progression^{14,35-37} and although further studies are required to clarify their role, these
285 observations raise the intriguing possibility that this protein family can be integral for DDR
286 regulation.

287

288 Taking in the wide array of the novel double-localising proteins identified in our study and their
289 respective roles in important cellular processes such as membrane trafficking, and DDR, our
290 results propose a high degree of interconnectivity between the Golgi and nuclear
291 compartment. The Golgi complex has an established role in signalling, transport and post-
292 translation modifications^{1,38}, our work here adds an additional so far unappreciated function,
293 as part of DNA repair. Consistent with this thinking, we postulate that the Golgi, in its
294 integrating function of several critical pathways, could act as a link to ensure that cellular
295 homeostasis is maintained in response to DNA damage. It is tempting to speculate that the
296 interaction we find for RAD51C and Giantin to regulate HR-mediated DNA repair could be
297 extrapolated to the other DDR proteins identified from this study and their interaction with
298 various other members of the Golgin protein family. Although, more work will be required to
299 strengthen our hypothesis, our results and the large number of double-localising proteins
300 identified in our study build a strong case in its support.

301

302 Taken together, our study presents strong evidence for a so far unappreciated Golgi regulatory
303 pathway for the coordination of HR-mediated repair through the activity of RAD51C and
304 Giantin. Furthermore, our results would also suggest that this regulation is not just restricted
305 to HR-mediated DNA repair but could extend to all other types of DNA repair mechanisms
306 such as NHEJ, MMR, and BER. This discovery has the potential to open new scientific fields
307 from different ends and has the potential to significantly change the way we understand DNA
308 repair regulation.

309

310 **Materials and Methods**

311

312 **Antibodies and chemicals.** Several commercially antibodies and chemical were used in the
313 paper, including RAD51C (ab72063, Abcam; 1:500 for immunostaining) & (ab95069, Abcam,
314 1:2000 for western blotting; 1:500 for immunoprecipitation), GOLGB1/Giantin (AF8159, R&D
315 systems; 1:500 for immunostaining and immunoprecipitation, 1:2000 for western blotting) &
316 (G1/M1, Enzo Life Sciences, 1:500 for immunostaining), GM130 (610822, BD Biosciences,
317 1:500 for immunostaining, 1:2000 for western blotting), ATM Ser1981 (MA1-2020, Invitrogen;
318 1:500 for immunostaining; 1:2000 for western blotting), CHK2 pThr68 (PA5-17818, Invitrogen;
319 1:2000 for western blotting), DNA-PKcs (Ser2056) (PA5-78130, Invitrogen, 1:2000 for western
320 blotting), gamma-H2AX pSer139 (613402, Biolegend; 1:500 for immunostaining, 1:2000 for
321 western blotting), alpha-tubulin (MS-581, Thermo Fisher; 1:10,000 for western blotting) Lamin
322 B1 (ab16048, Abcam; 1:2000 for western blotting) vinculin (ab219649, abcam; 1:2000 for
323 western blotting), doxorubicin (ab120629, Abcam); Importazole (SML0341, Sigma-Aldrich),
324 KU55933 (ATMi, SML1109, Sigma-Aldrich); ve-821 (ATRi, HY-14731; MedChemExpress)
325 NU7441 (DNA-PKi, HY-11006; MedChemExpress), etoposide (ab120227, Abcam), mitomycin
326 C (M7949, Sigma-Aldrich), and camptothecin (ab120115, Abcam).

327

328 **Cell lines, cell culture and siRNA transfection.** HeLa Kyoto, U2-O S, MCF7, were cultured
329 in DMEM (Life Technologies) supplemented with 10% FBS (Invitrogen) and 1% L-glutamine
330 (Invitrogen). Cells were checked for mycoplasma contamination by PCR. siRNA transfections
331 were performed with Lipofectamine 2000 (Invitrogen) using SilencerSelect siRNAs (Ambion)
332 according to the manufacturer's instructions. Transfections were carried out for 72 h and the
333 final siRNA concentrations used were 15nM for all siRNAs. Giantin siRNA-1: 5951 & siRNA-
334 2: 5953; GMAP210 siRNA-1: s17811 & siRNA-2: s17812; RAD51C siRNA: s11737.

335

336 **Drug treatments.** Cells were treated 24 h after seeding. For camptothecin, etoposide and
337 mitomycin C experiments, cells were treated for 16 h at a concentration of 0.1 μ M, 50 μ M and
338 5 μ M, respectively. After treatment cells were incubated with fresh medium for 2 hours.
339 Doxorubicin was used at a concentration of 40 μ M for 3 h unless indicated otherwise. For
340 kinase and importin- β inhibitor treatments, cells were pre-treated for 30 min with the described
341 inhibitor prior to the addition of doxorubicin. The inhibitors were used at the following
342 concentrations: importazole (IPZ) (20 μ M), KU55933 (ATMi) (30 μ M), NU7441 (DNA-Pki)
343 (10 μ M) and ve-821 (ATRi) (10 μ M).

344

345 **Immunofluorescence assay.** Cells were fixed with 4% paraformaldehyde in PBS and
346 permeabilized with 0.1% Triton X-100 for 15 min at room temperature, then cells were blocked
347 with 5% bovine serum albumin in 0.05% Triton X-100 for 60 min and incubated with primary
348 antibodies in blocking buffer at room temperature for 3 h. Following 3 washes with PBS, cells
349 were incubated with fluorescent dye-conjugated secondary antibodies diluted in a blocking
350 buffer for 1 h at room temperature.

351

352 **Image and data analysis.** Confocal microscopy experiments were performed with fixed and
353 immunostained cell samples on a microscope FV3000, Olympus. Z stacks of images covering
354 the entire cell thickness were acquired. All image analysis was performed using Cell Profiler³⁹
355 and Fiji⁴⁰. Briefly, first nuclei were segmented in the Hoechst channel. When appropriate, the
356 Golgi complex was segmented in the Golgi marker channel and using the segmented nuclei
357 as seeds, the two structures were associated. Intensity profiles, morphology features and
358 structuring counting analysis were performed when required using Cell Profiler.

359

360 **Comet assay.** The assay was carried out as previously described⁴¹. Briefly, cells were
361 trypsinized, pelletized and resuspended in ice-cold PBS at a concentration of 25×10^4 cells
362 per ml. The cells were resuspended in 2% low melting agarose (Sigma) and spread quickly
363 onto gel bond film (Biozym) covered in 1% agarose (Sigma). Samples were immersed into a
364 lysis buffer (100mM EDTA, 2.5M NaCl, 10mM Tris-HCl and 1% Triton-X100; pH 10) overnight
365 at 4°C. Followed by a wash with ice cold water and run in an electrophoresis chamber (alkaline
366 buffer: 1mM EDTA, 300mM NaOH; pH 13) at 15V, 300mA for 60 min at 4°C. Slides were first
367 washed in a Tris-HCl neutralisation buffer (0.4M; pH 7.5) followed by water, stained with SYBR
368 Gold (Thermo Fisher Scientific) (1:10000) and finally dried. Comets were imaged by
369 automated Olympus Scan^R screening microscope and comet tails scored using OpenComet
370 plugin (Gyori et al., 2014).

371

372 **Western blotting analysis.** HK cells were lysed using RIPA buffer (Thermo Scientific) with
373 complete protease inhibitor cocktail (Roche). SDS-PAGE was performed on pre-cast Tris-
374 Acetate gels followed by transfer to PVDF transfer membrane (Merck Millipore). Proteins were
375 detected using primary antibodies as described followed by incubation with secondary
376 antibodies coupled with HRP (Invitrogen). Detection of protein was performed using Pierce
377 ECL Plus Western Blotting Substrate reagent (Thermo Scientific) and visualised on Azure 280
378 chemiluminescent imaging system. Subcellular fractionation was performed using a
379 subcellular protein fractionation kit for cultured cells (Thermo scientific) according to the
380 manufacturer's instructions. Fractions were verified using well-established markers (GM130
381 for Golgi membranes, Lamin B1 for the nuclear compartment, alpha-tubulin for the cytoplasmic
382 fraction) and probed for RAD51C presence in each compartment. The RAD51C
383 membrane:nuclear distribution ratio was calculated by first dividing the RAD51C protein level
384 in each fraction by the protein level of the appropriate control, the resulting membrane (M_{RAD51C}
385 / M_{GM130}) and nuclear (N_{RAD51C} / $N_{LaminB1}$) ratios were further divided to give the ratio = (M_{RAD51C}
386 / M_{GM130}) / (N_{RAD51C} / $N_{LaminB1}$). The ratios obtained from the control were normalised to 1 and
387 compared to the treated group.

388

389 **Immunoprecipitation.** HK cells were lysed using a lysis buffer (50mM Hepes, 130mM NaCl,
390 1mM DTT 1% NP-40) with complete protease inhibitor cocktail (Roche). Cell lysates were
391 centrifuged at 13,000 rpm for 10 mins at 4°C. For immunoprecipitation, the lysates were
392 incubated with the primary antibody described and rotated overnight at 4°C. Next, the lysates
393 were incubated with G-agarose beads (Roche) and rotated for 4 h at 4°C. The samples were
394 washed with cold lysis buffer and then precipitated proteins were eluted by 2x SDS sample
395 buffer and analysed by Western blotting.

396

397 **Localisation validation siRNA assay.** A custom-designed siRNA library targeting our
398 proteins of interest (Ambion) was designed and prepared in 96-well glass bottom plates
399 (Miltenyi Biotec) using a protocol for solid phase reverse transfection as previously
400 described^{16,42}. Non-targeting siRNA was used as a negative control. 72 hours after cell
401 seeding, cells were fixed with 4% paraformaldehyde, permeabilized with 0.1% Triton-X100
402 and immunostained against the HPA antibodies of interest and a Golgi marker, GM130.
403 Hoechst 33342 was used as a nuclear stain. siRNAs and antibodies details are available in
404 **Supplementary table S1**. Images were acquired on a fully automated Molecular Devices IXM
405 with a 10x/0.45 NA P-APO objective. The resulting images were analysed using Cell Profiler
406 software³⁹ for quantitative and automated measurements of fluorescence from the antibodies

407 as previously described¹⁶. Briefly, nuclei were segmented in the Hoechst channel, the Golgi
408 complex was segmented in the Golgi marker channel and using the segmented nuclei as
409 seeds, the two structures were associated. Intensity profiles of each compartment were
410 acquired. Reduction of 25% or more of the antibody staining in both Golgi and nuclear
411 compartments was considered as a validation of the antibody specificity (**Supplementary**
412 **table S1**).

413
414 **Statistical analysis.** All data were obtained from at least three independent experiments if
415 not otherwise stated. Statistical analyses were performed using two tailed t-test for pairwise
416 comparison and one-way analysis of variance (ANOVA) for multiple comparisons on
417 GraphPad Prism 9. Data are expressed as standard error of the mean (s.e.m.). n values
418 indicate biologically independent samples and experiments. P < 0.05 was considered
419 statistically significant.

420
421 **Acknowledgements.** We thank the ALMF, FCCF and the Pepperkok team for their support.
422 In addition, we acknowledge Jan Ellenberg, Claudia Lukas, Diana Ordonez and Simone
423 Köhler for their assistance in developing the project and manuscript. G.G. was supported by
424 the EMBL EIPOD programme, K.K. by the EMBL PhD programme and M.M.K. by the German
425 Centre for Lung Research.

426
427 **Figure legend**
428

429 **Figure 1. RAD51C localises to both the Golgi and nuclear compartment and**
430 **redistributes in response to DNA damage events.** (a) STRING protein-protein interaction
431 network showing the DDR proteins identified to localise to both the Golgi complex and nucleus;
432 yellow nodes indicate double-localising proteins, grey nodes are filler untested proteins;
433 experimentally-based string network. (b) Representative images of HeLa Kyoto cells stained
434 with antibodies against RAD51C (green) and GM130 (red). DNA was stained with Hoechst
435 33342 (blue). (c) Western blot showing the subcellular membrane (M), nuclear (N) and
436 cytoplasmic (C) fractions of RAD51C markers (GM130 for Golgi membranes, Lamin B1 for the
437 nuclear compartment, alpha-tubulin for the cytoplasmic fraction) (n = 3 biologically
438 independent experiments). (d) HK cells treated with the DNA damage inducing drug,
439 doxorubicin (DOX), for increasing lengths of time. Yellow arrows denote the Golgi membrane;
440 white arrows denote nuclear foci; scale bar: 10 µm. (e) Quantification of sum intensity of
441 RAD51C Golgi population, (f) RAD51C nuclear population, and (g) a ratio of RAD51C Golgi-
442 nuclear distribution after treatment with DOX. Data represent the mean ± standard error of the
443 mean (s.e.m.) (n = 3 biologically independent samples with a total of 2343 cells analysed). P
444 values were determined by one-way analysis of variance (ANOVA).

445
446 **Figure 2. Redistribution of RAD51C Golgi fraction is required for the formation of**
447 **RAD51C nuclear foci and is dependent on the kinase ATM.** HK cells were stained with
448 antibodies against RAD51C and GM130. (a) Cells were treated with DMSO or IPZ prior to a
449 3-hour treatment with DOX. Yellow arrows denote the Golgi membrane; white denote nuclear
450 foci. Results were quantified as (b) relative sum intensity of RAD51C at the Golgi and (c) ratio
451 of RAD51C Golgi-nuclear distribution. Scale bar 10 µm. Data represent the mean ± standard
452 error of the mean (s.e.m.) (n = 3 biologically independent samples with a total of 445 cells
453 analysed). (d) HK cells were treated with DMSO (control) alone or with ATM inhibitor
454 (KU55933) or ATR inhibitor (VE-821) or DNA-PK inhibitor (NU7441) prior to a 3-hour treatment

455 with doxorubicin. Results were quantified as an (e) relative sum intensity of RAD51C at the
456 Golgi and (f) ratio of RAD51C Golgi-nuclear distribution. Scale bar 10 μ m. Data represent the
457 mean \pm standard error of the mean (s.e.m.) ($n = 3$ biologically independent samples with a total
458 of 1679 cells analysed). Statistical significance was determined using one-way analysis of
459 variance (ANOVA).

460

461 **Figure 3. RAD51C Golgi localization and activation is dependent on the Golgin protein**
462 **Giantin.** (a) HK cells were transfected with control, or Giantin siRNAs for 72 hours. The cells
463 were stained with antibodies against RAD51C and Golgi marker, GM130. Yellow arrows
464 indicate the Golgi and white arrows indicate nuclear foci; scale bar 10 μ m. Quantification of
465 the localisation changes of RAD51C were quantified as (b) relative sum intensity of RAD51C
466 at the Golgi, (c) fluorescent intensity ratio of the RAD51C Golgi-nuclear distribution and (d)
467 relative number of RAD51C foci per cell. Data represent the mean \pm standard error of the mean
468 (s.e.m.) ($n = 3$ biologically independent samples with a total of 1445 cell analysed). Statistical
469 significance was determined using one-way ANOVA; (e) Immunoprecipitation of Giantin with
470 RAD51C.

471

472 **Figure 4. Colocalization analysis of RAD51C nuclear foci induced by Giantin depletion**
473 **with DDR markers.** (a-d) Co-localisation experiment of cells treated with control siRNA, or
474 Giantin siRNA. Cell stain with antibody against RAD51C (green) and HR DDR markers (red):
475 (a) y-H2AX, and (c) p-ATM. Co-localisation of structure is denoted by an arrow; Scale bar 10
476 μ m. Quantification of percentage RAD51C foci co-localising with (b) y-H2AX and (d) p-ATM.
477 Data represent the mean \pm standard error of the mean (s.e.m.) ($n = 3$ biologically independent
478 samples with a total number of 318 and 285 cells analysed for the colocalization experiments
479 with y-H2AX and p-ATM, respectively). Statistical significance was determined using a two-
480 tailed unpaired Student's *t*-test.

481

482 **Figure 5. Depletion of Giantin led to increased genomic instability and disruption of**
483 **DDR signalling.** (a) Representative images of comet assay detection genomic DNA
484 fragmentation in HK cells treated with control, Giantin, or RAD51C targeting siRNA. (b)
485 Quantification of comet OliveMoment. Data represent the mean \pm standard error of the mean
486 (s.e.m.). ($n = 3$ biologically independent samples with 1552 cells analysed). Statistical
487 significance was determined using one-way analysis of variance (ANOVA); (c, d)
488 Representative images and quantification of percentage cells displaying micronuclei after
489 siRNA treatment; scale bar 10 μ m. White arrows denote micronuclei structures. Data
490 represent the mean \pm standard error of the mean (s.e.m.) ($n = 3$ biologically independent
491 samples with over 10,000 cell analysed). Statistical significance was determined using one-
492 way analysis of variance (ANOVA). (e, f) HK cells transfected with control or Giantin siRNAs
493 and treated with doxorubicin or camptothecin after 72 h transfection, the extracts were
494 prepared and immunoblotted as indicated ($n = 2$ biologically independent samples). (g) Cell
495 cycle profile of HK cell treated with Giantin or control siRNA. Data represent the
496 mean \pm standard error of the mean (s.e.m.) ($n = 3$ biologically independent samples).

497

498 **Figure 6. Proposed model for the regulation of HR-mediated repair through the**
499 **activation of RAD51C at the Golgi complex.** RAD51C, a regulatory HR protein, is anchored
500 to the Golgi through its interaction with cytoplasmic tail of Giantin, in response to double-strand
501 DNA breaks, this RAD51C Golgi population redistributes to form nuclear foci. This response

502 requires importin-beta mediated nuclear import and the phosphorylation of ATM protein
503 kinase.

504

505 **EXTENDED DATA FIGURE 1.** (a) Representative images showing U-2 OS and MCF7 cells
506 stained with antibodies against RAD51C (green) and GM130 (red). DNA was stained with
507 Hoechst 33342 (blue). (b) Representative images showing the RAD51C antibody specificity.
508 HK cells are stained with antibodies against RAD51C and GM130; DNA was stained with
509 Hoechst 33342. (c) Quantification of RAD51C sum intensity after RAD51C depletion. Data
510 represent the mean \pm standard error of the mean (s.e.m.). ($n=3$ biologically independent
511 samples with a total of 831 cells analysed). (d) Western blot showing the level of RAD51C
512 protein level, in RAD51C-depleted and control cells ($n=3$ biologically independent samples).
513 (e) Western blot showing the subcellular localization of RAD51C treated with the DMSO and
514 doxorubicin. (f) Quantification of WB showing a ratio of RAD51C membrane-nuclear
515 distribution. Data represent the mean \pm standard error of the mean (s.e.m.) ($n=2$ biologically
516 independent samples). Statistical significance was determined using a two-tailed unpaired
517 Student's *t*-test.

518

519 **EXTENDED DATA FIGURE 2.** Representative images of HK cells were stained with
520 antibodies against RAD51C and GM130. HK cells were treated with DMSO (control) alone or
521 with ATM inhibitor (KU55933) or ATR inhibitor (VE-821) or DNA-PK inhibitor (NU7441); scale
522 bar 10 μ m.

523

524 **EXTENDED DATA FIGURE 3.** HK cell stained with antibodies against RAD51C and GM130.
525 Cells were treated with (a) Camptothecin (CPT), (d) etoposide (ETO) and (g) mitomycin C
526 (MMC) for 16 h followed by media change for 2 h; scale bar 10 μ m. Quantification of RAD51C
527 percentage distribution between the Golgi and nuclear compartment after (b) CPT, (e) ETO
528 and (h) MMC treatments. Quantification of RAD51C percentage distribution between the Golgi
529 and nuclear compartment after (c) CPT, (f) ETO and (i) MMC treatments. Data
530 represent the mean \pm standard error of the mean (s.e.m.). ($n=3$ biologically independent
531 samples with more than 600 cells analysed per treatment). Statistical significance was
532 determined using a two-tailed unpaired Student's *t*-test.

533

534 **EXTENDED DATA FIGURE 4.** (a) siRNA screen data (Adamson *et al.*, 2012) showing the
535 relative homologous recombination (HR) repair rate upon systematic knockdown of the Golgin
536 protein family (grey) and HR complex proteins (black). (b) siRNA screen data (Paulsen *et al.*,
537 2009) showing the relative percent cell population with phosphorylation of H2AX upon
538 systematic knockdown of the Golgins. The datasets are normalised to the negative control set
539 at 1. (c) HK cells were transfected with control, or Giantin siRNAs for 72 hours. The cells were
540 stained with antibodies against Giantin and nuclei stained with Hoechst 33342; scale bar 10
541 μ m.

542

543 **References**

544

- 545 1. Wilson, C. *et al.* The Golgi apparatus: an organelle with multiple complex functions. *Biochem. J.* **433**, 1–9 (2011).
- 546 2. Makhoul, C., Gosavi, P. & Gleeson, P. A. The Golgi architecture and cell sensing. *Biochem. Soc. Trans.* **46**, 1063–1072 (2018).
- 547 3. Machamer, C. E. The Golgi complex in stress and death. *Front. Neurosci.* **9**, (2015).

550 4. Liu, J. *et al.* The role of the Golgi apparatus in disease. *Int. J. Mol. Med.* **47**, (2021).

551 5. Zappa, F., Failli, M. & De Matteis, M. A. The Golgi complex in disease and therapy. *Curr. Opin. Cell Biol.* **50**, 102–116 (2018).

552 6. Freeze, H. H. & Ng, B. G. Golgi Glycosylation and Human Inherited Diseases. *Cold*
553 *Spring Harb. Perspect. Biol.* **3**, 1–22 (2011).

554 7. Brown, M. S., Radhakrishnan, A. & Goldstein, J. L. Retrospective on Cholesterol
555 Homeostasis: The Central Role of Scap. *Annu. Rev. Biochem.* **87**, 783–807 (2018).

556 8. Haze, K., Yoshida, H., Yanagi, H., Yura, T. & Mori, K. Mammalian transcription factor
557 ATF6 is synthesized as a transmembrane protein and activated by proteolysis in
558 response to endoplasmic reticulum stress. *Mol. Biol. Cell* **10**, 3787–3799 (1999).

559 9. Colanzi, A. & Sütterlin, C. Signaling at the Golgi during mitosis. *Methods Cell Biol.* **118**,
560 383–400 (2013).

561 10. Kulkarni-Gosavi, P., Makhoul, C. & Gleeson, P. A. Form and function of the Golgi
562 apparatus: scaffolds, cytoskeleton and signalling. *FEBS Lett.* **593**, 2289–2305 (2019).

563 11. Petrosyan, A. Onco-Golgi: Is Fragmentation a Gate to Cancer Progression? *Biochem.*
564 *Mol. Biol. J.* **01**, 1–11 (2015).

565 12. Zhang, X. Alterations of Golgi Structural Proteins and Glycosylation Defects in Cancer.
566 *Front Cell Dev Biol* **9**, 665289 (2021).

567 13. Farber-Katz, S. E. *et al.* DNA damage triggers golgi dispersal via DNA-PK and
568 GOLPH3. *Cell* **156**, 413–427 (2014).

569 14. Bui, S., Mejia, I., Diaz, B. & Wang, Y. Adaptation of the Golgi Apparatus in Cancer Cell
570 Invasion and Metastasis. *Front Cell Dev Biol* **9**, 806482 (2021).

571 15. Thul, P. J. *et al.* A subcellular map of the human proteome. *Science (80-)* **356**, (2017).

572 16. Stadler, C. *et al.* Systematic validation of antibody binding and protein subcellular
573 localization using siRNA and confocal microscopy. *J. Proteomics* **75**, 2236–2251
574 (2012).

575 17. Prakash, R., Zhang, Y., Feng, W. & Jasin, M. Homologous recombination and human
576 health: the roles of BRCA1, BRCA2, and associated proteins. *Cold Spring Harb.*
577 *Perspect. Biol.* **7**, a016600 (2015).

578 18. Rein, H. L., Bernstein, K. A. & Baldock, R. A. RAD51 paralog function in replicative DNA
579 damage and tolerance. *Curr. Opin. Genet. Dev.* **71**, 86–91 (2021).

580 19. Sullivan, M. R. & Bernstein, K. A. RAD-ical new insights into RAD51 regulation. *Genes*
581 *(Basel)* **9**, (2018).

582 20. Badie, S. *et al.* RAD51C facilitates checkpoint signaling by promoting CHK2
583 phosphorylation. *J. Cell Biol.* **185**, 587–600 (2009).

584 21. Thorn, C. F. *et al.* Doxorubicin pathways: pharmacodynamics and adverse effects.
585 *Pharmacogenet. Genomics* **21**, 440 (2011).

586 22. Soderholm, J. F. *et al.* Importazole, a small molecule inhibitor of the transport receptor
587 importin-β. *ACS Chem. Biol.* **6**, 700–708 (2011).

588 23. Ciccia, A. & Elledge, S. J. The DNA Damage Response: Making It Safe to Play with
589 Knives. *Mol. Cell* **40**, 179–204 (2010).

590 24. Hickson, I. *et al.* Identification and characterization of a novel and specific inhibitor of
591 the ataxia-telangiectasia mutated kinase ATM. *Cancer Res.* **64**, 9152–9159 (2004).

592 25. Fokas, E. *et al.* Targeting ATR in vivo using the novel inhibitor VE-822 results in
593 selective sensitization of pancreatic tumors to radiation. *Cell Death & Disease* vol. 3
594 e441--e441 (2012).

595 26. Tavecchio, M., Munck, J. M., Cano, C., Newell, D. R. & Curtin, N. J. Further
596 characterisation of the cellular activity of the DNA-PK inhibitor, NU7441, reveals
597 potential cross-talk with homologous recombination. *Cancer Chemother. Pharmacol.*
598 **69**, 155–164 (2012).

599 27. Jekimovs, C. *et al.* Chemotherapeutic compounds targeting the DNA double-strand
600 break repair pathways: the good, the bad, and the promising. *Front. Oncol.* **4**, 86 (2014).

601 28. Adamson, B., Smogorzewska, A., Sigoillot, F. D., King, R. W. & Elledge, S. J. A
602 genome-wide homologous recombination screen identifies the RNA-binding protein
603 RBMX as a component of the DNA-damage response. *Nat. Cell Biol.* **14**, 318–328
604

605 (2012).

606 29. Paulsen, R. D. *et al.* A genome-wide siRNA screen reveals diverse cellular processes
607 and pathways that mediate genome stability. *Mol. Cell* **35**, 228–239 (2009).

608 30. Witkos, T. M. & Lowe, M. The Golgin Family of Coiled-Coil Tethering Proteins. *Front*
609 *Cell Dev Biol* **3**, 86 (2015).

610 31. Vitor, A. C., Huertas, P., Legube, G. & de Almeida, S. F. Studying DNA Double-Strand
611 Break Repair: An Ever-Growing Toolbox. *Front Mol Biosci* **7**, 24 (2020).

612 32. Møller, P. The comet assay: ready for 30 more years. *Mutagenesis* **33**, 1–7 (2018).

613 33. Olive, P. L., Banáth, J. P. & Durand, R. E. Heterogeneity in Radiation-Induced DNA
614 Damage and Repair in Tumor and Normal Cells Measured Using the Comet Assay.
615 *Radiation Research* vol. 178 AV35–AV42 (2012).

616 34. Brandsma, I. & Gent, D. C. Pathway choice in DNA double strand break repair: obser-
617 vations of a balancing act. *Genome Integr.* **3**, 9 (2012).

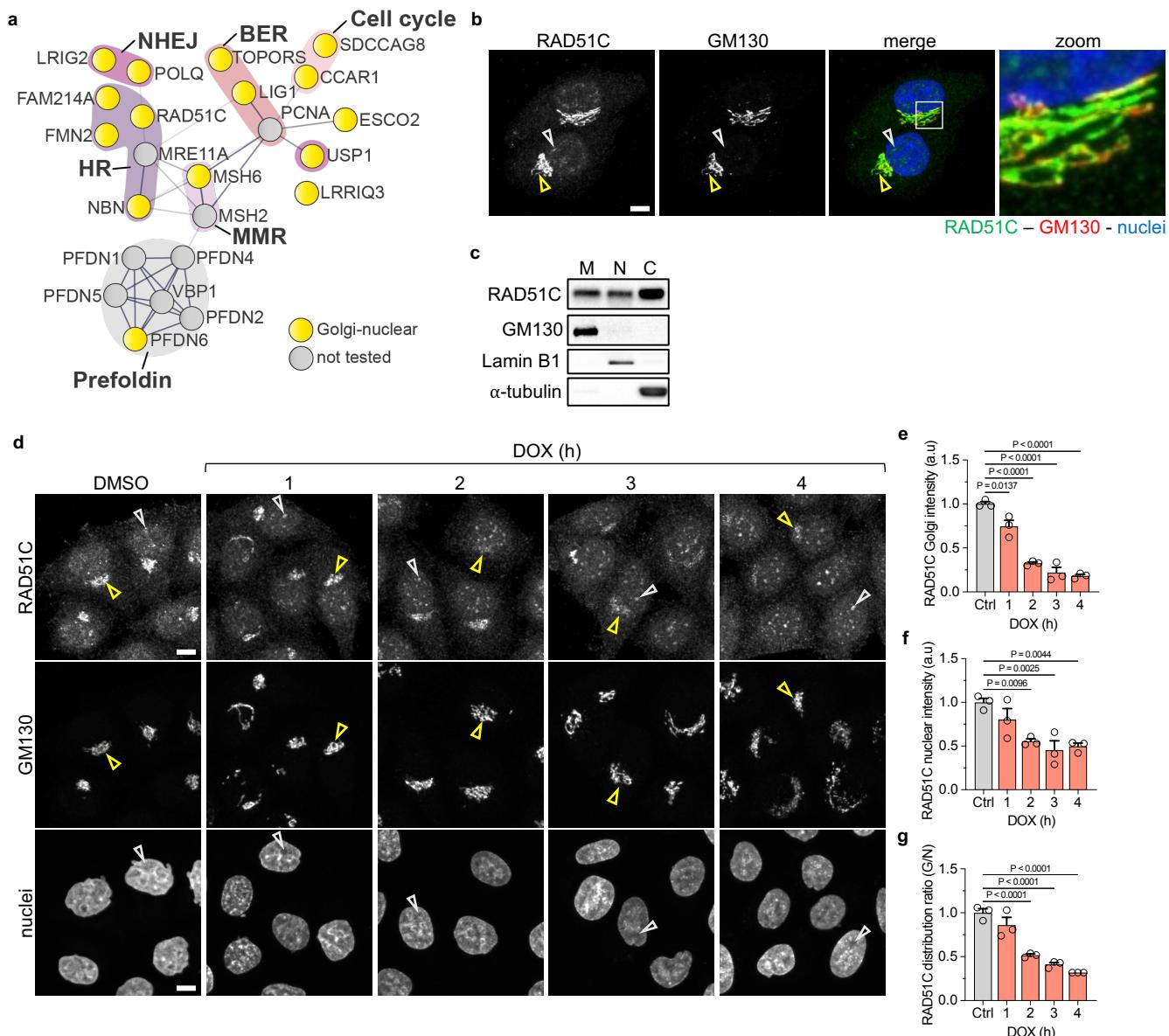
618 35. Baschieri, F., Uetz-von Allmen, E., Legler, D. F. & Farhan, H. Loss of GM130 in breast
619 cancer cells and its effects on cell migration, invasion and polarity. *Cell Cycle* **14**, 1139–
620 1147 (2015).

621 36. Bhat, G., Hothpet, V. R., Lin, M. F. & Cheng, P. W. Shifted Golgi targeting of
622 glycosyltransferases and α -mannosidase IA from giantin to GM130-GRASP65 results
623 in formation of high mannose N-glycans in aggressive prostate cancer cells. *Biochim.*
624 *Biophys. Acta - Gen. Subj.* **1861**, 2891–2901 (2017).

625 37. Ghannoum, S. *et al.* A combined experimental-computational approach uncovers a role
626 for the Golgi matrix protein Giantin in breast cancer progression. *bioRxiv* (2022).

627 38. Jackson, C. L. Mechanisms of transport through the Golgi complex. *J. Cell Sci.* **122**,
628 443–452 (2009).

629 39. Carpenter, A. E. *et al.* CellProfiler: image analysis software for identifying and
630 quantifying cell phenotypes. *Genome Biol.* **7**, R100 (2006).


631 40. Schindelin, J. *et al.* Fiji: an open-source platform for biological-image analysis. *Nat.*
632 *Methods* **9**, 676–682 (2012).

633 41. Vodenkova, S. *et al.* An optimized comet-based in vitro DNA repair assay to assess
634 base and nucleotide excision repair activity. *Nat. Protoc.* **15**, 3844–3878 (2020).

635 42. Erfle, H. *et al.* Work flow for multiplexing siRNA assays by solid-phase reverse
636 transfection in multiwell plates. *J. Biomol. Screen.* **13**, 575–580 (2008).

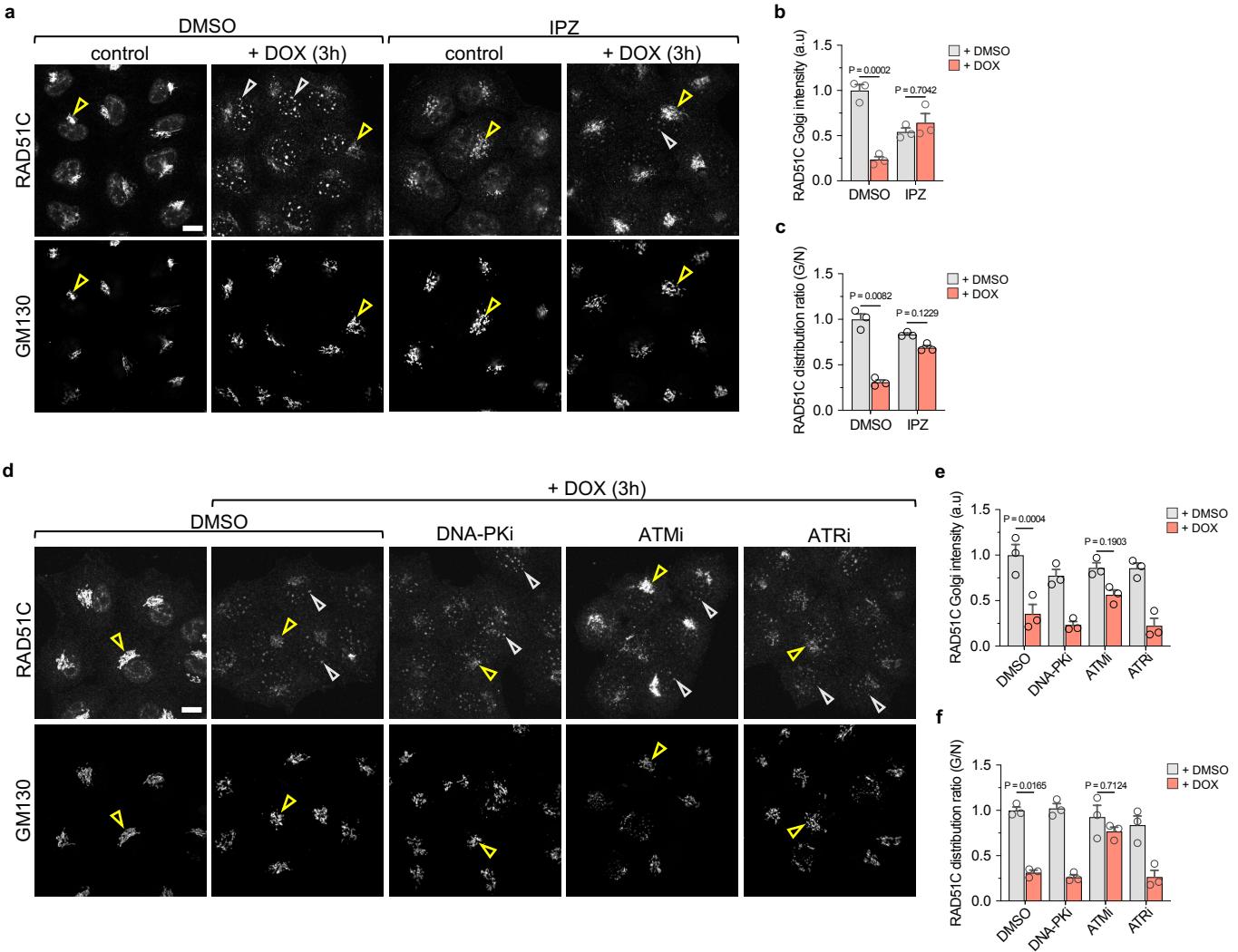

637

FIGURE 1

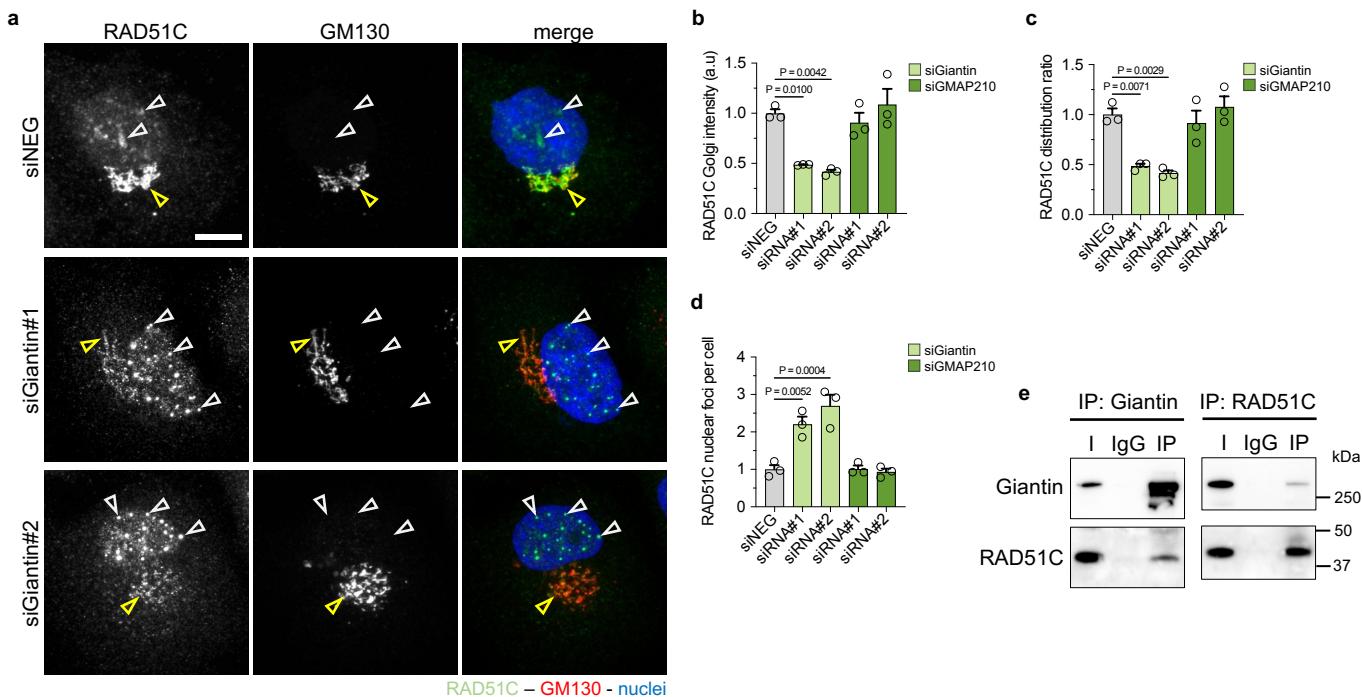

Figure 1. RAD51C localises to both the Golgi and nuclear compartment and redistributes in response to DNA damage events. (a) STRING protein-protein interaction network showing the DDR proteins identified to localise to both the Golgi complex and nucleus; yellow nodes indicate double-localising proteins, grey nodes are filler untested proteins; experimentally-based string network. (b) Representative images of HeLa Kyoto cells stained with antibodies against RAD51C (green) and GM130 (red). DNA was stained with Hoechst 33342 (blue). (c) Western blot showing the subcellular membrane (M), nuclear (N) and cytoplasmic (C) fractions of RAD51C markers (GM130 for Golgi membranes, Lamin B1 for the nuclear compartment, alpha-tubulin for the cytoplasmic fraction) ($n = 3$ biologically independent experiments). (d) HK cells treated with the DNA damage inducing drug, doxorubicin (DOX), for increasing lengths of time. Yellow arrows denote the Golgi membrane; white arrows denote nuclear foci; scale bar: 10 μ m. (e) Quantification of sum intensity of RAD51C Golgi population, (f) RAD51C nuclear population, and (g) a ratio of RAD51C Golgi-nuclear distribution after treatment with DOX. Data represent the mean \pm standard error of the mean (s.e.m.) ($n = 3$ biologically independent samples with a total of 2343 cells analysed). P values were determined by one-way analysis of variance (ANOVA).

FIGURE 2

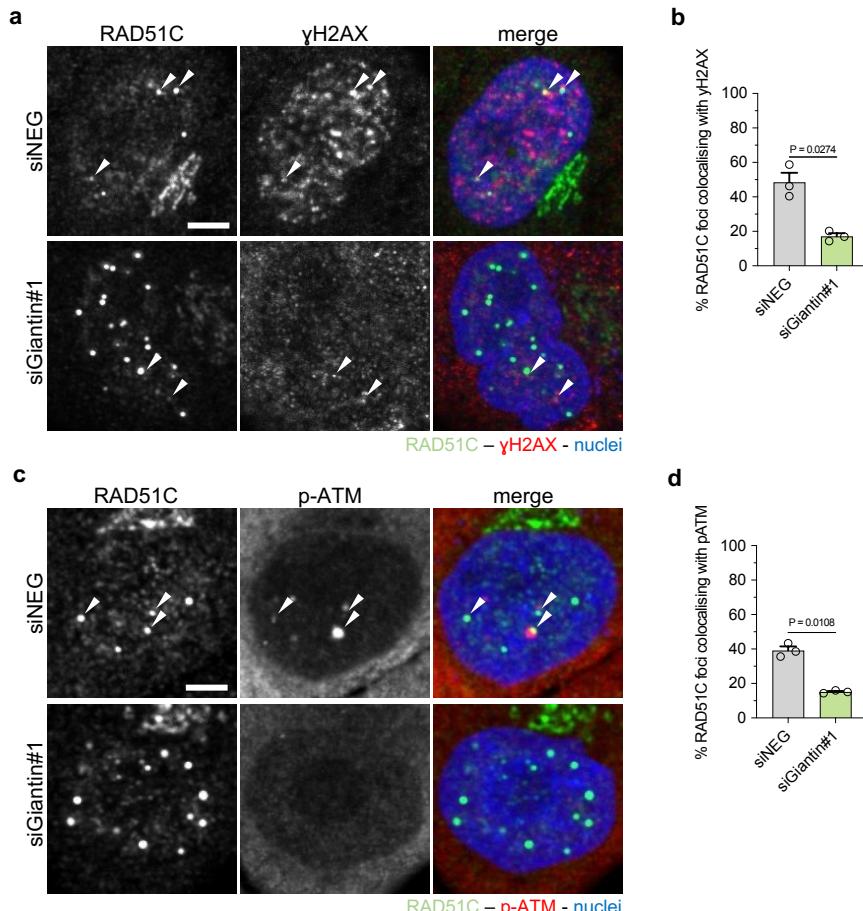

Figure 2. Redistribution of RAD51C Golgi fraction is required for the formation of RAD51C nuclear foci and is dependent on the kinase ATM. HK cells were stained with antibodies against RAD51C and GM130. (a) Cells were treated with DMSO or IPZ prior to a 3-hour treatment with DOX. Yellow arrows denote the Golgi membrane; white denote nuclear foci. Results were quantified as (b) relative sum intensity of RAD51C at the Golgi and (c) ratio of RAD51C Golgi-nuclear distribution. Scale bar 10 μ m. Data represent the mean \pm standard error of the mean (s.e.m.) (n = 3 biologically independent samples with a total of 445 cells analysed). (d) HK cells were treated with DMSO (control) alone or with ATM inhibitor (KU55933) or ATR inhibitor (VE-821) or DNA-PK inhibitor (NU7441) prior to a 3-hour treatment with doxorubicin. Results were quantified as an (e) relative sum intensity of RAD51C at the Golgi and (f) ratio of RAD51C Golgi-nuclear distribution. Scale bar 10 μ m. Data represent the mean \pm standard error of the mean (s.e.m.) (n = 3 biologically independent samples with a total of 1679 cells analysed). Statistical significance was determined using one-way analysis of variance (ANOVA).

FIGURE 3

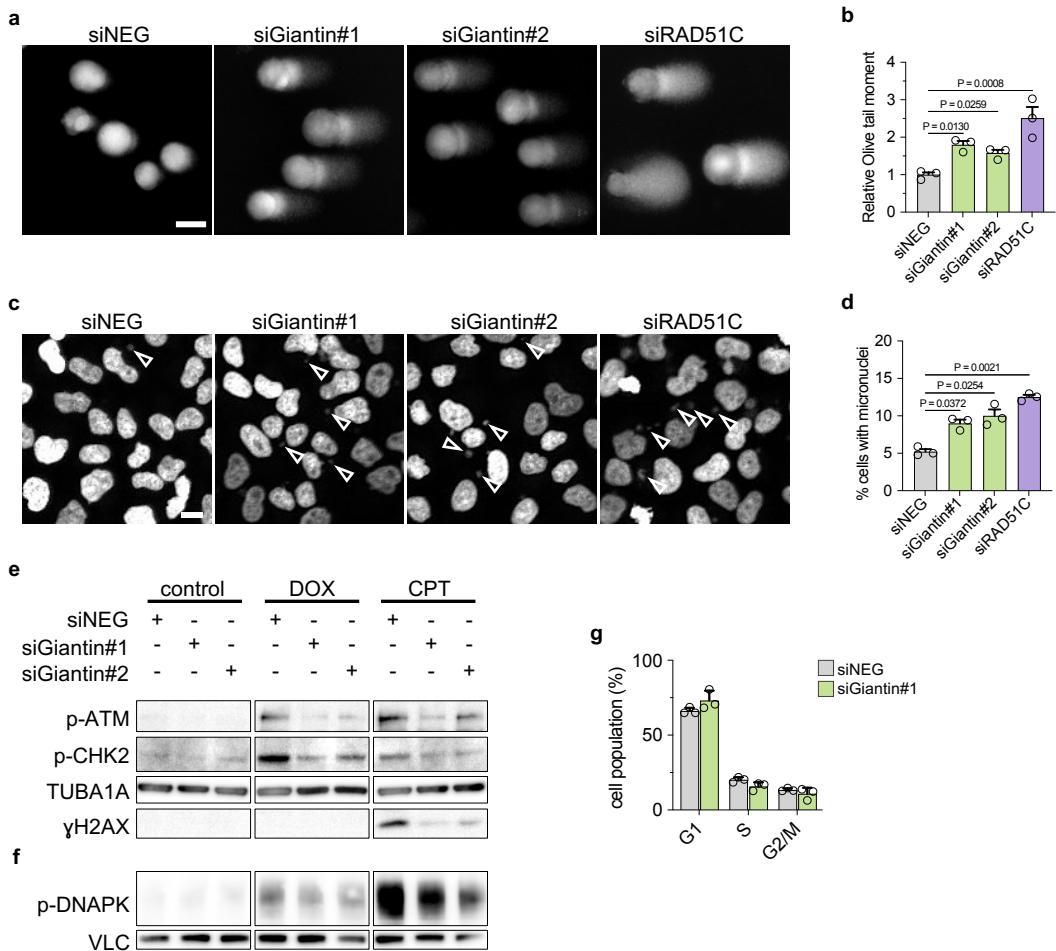

Figure 3. RAD51C Golgi localization and activation is dependent on the Golgin protein Giantin. (a) HK cells were transfected with control, or Giantin siRNAs for 72 hours. The cells were stained with antibodies against RAD51C and Golgi marker, GM130. Yellow arrows indicate the Golgi and white arrows indicate nuclear foci; scale bar 10 μ m. Quantification of the localisation changes of RAD51C were quantified as (b) relative sum intensity of RAD51C at the Golgi, (c) fluorescent intensity ratio of the RAD51C Golgi-nuclear distribution and (d) relative number of RAD51C foci per cell. Data represent the mean \pm standard error of the mean (s.e.m.) (n = 3 biologically independent samples with a total of 1445 cell analysed). Statistical significance was determined using one-way ANOVA; (e) Immunoprecipitation of Giantin with RAD51C.

FIGURE 4


Figure 4. Colocalization analysis of RAD51C nuclear foci induced by Giantin depletion with DDR markers. (a-d) Co-localisation experiment of cells treated with control siRNA, or Giantin siRNA. Cell stain with antibody against RAD51C (green) and HR DDR markers (red): (a) γ -H2AX, and (c) p-ATM. Co-localisation of structure is denoted by an arrow; Scale bar 10 μ m. Quantification of percentage RAD51C foci co-localising with (b) γ -H2AX and (d) p-ATM. Data represent the mean \pm standard error of the mean (s.e.m.) ($n = 3$ biologically independent samples with a total number of 318 and 285 cells analysed for the colocalization experiments with γ -H2AX and p-ATM, respectively). Statistical significance was determined using a two-tailed unpaired Student's t-test.

FIGURE 5

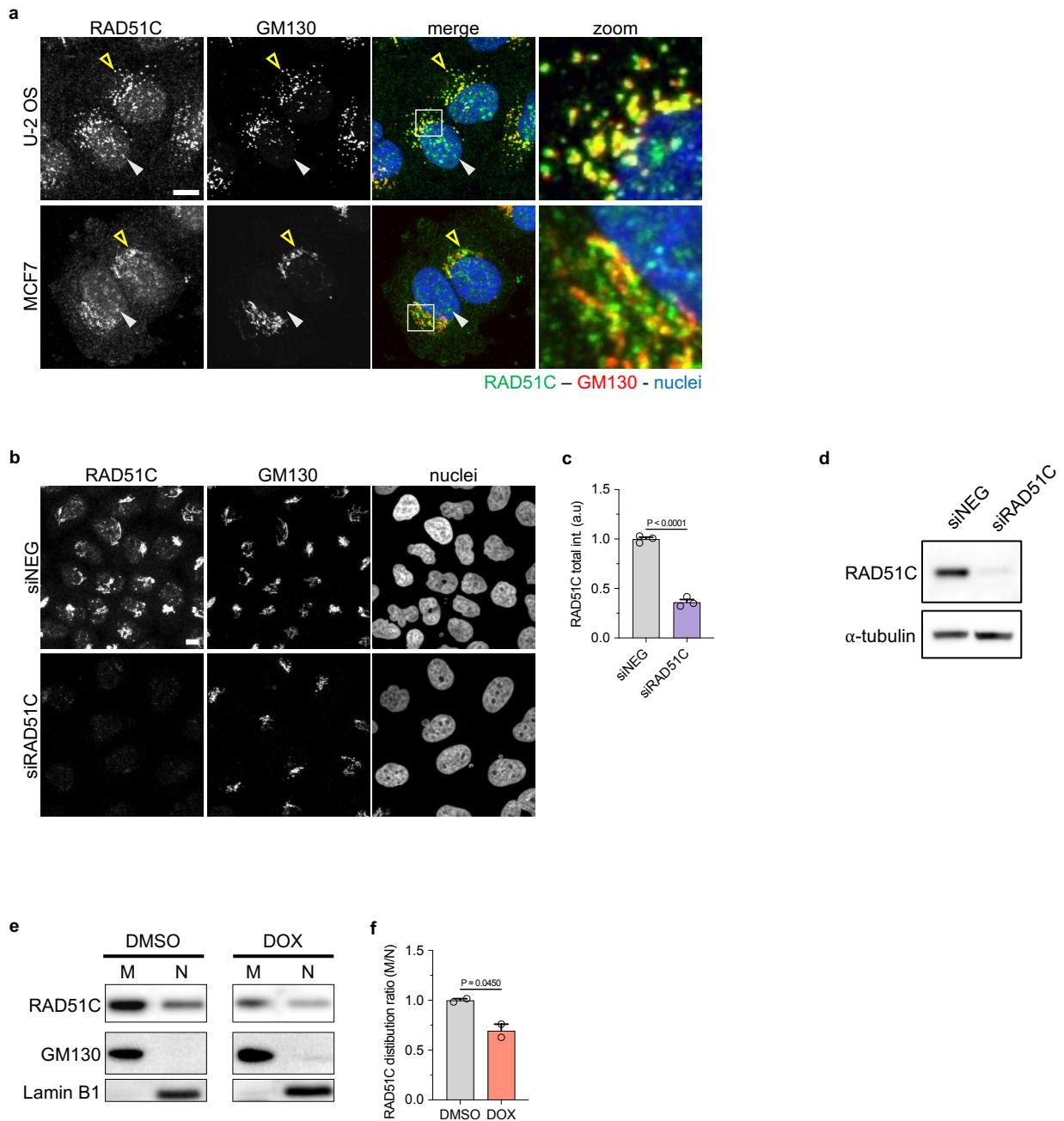
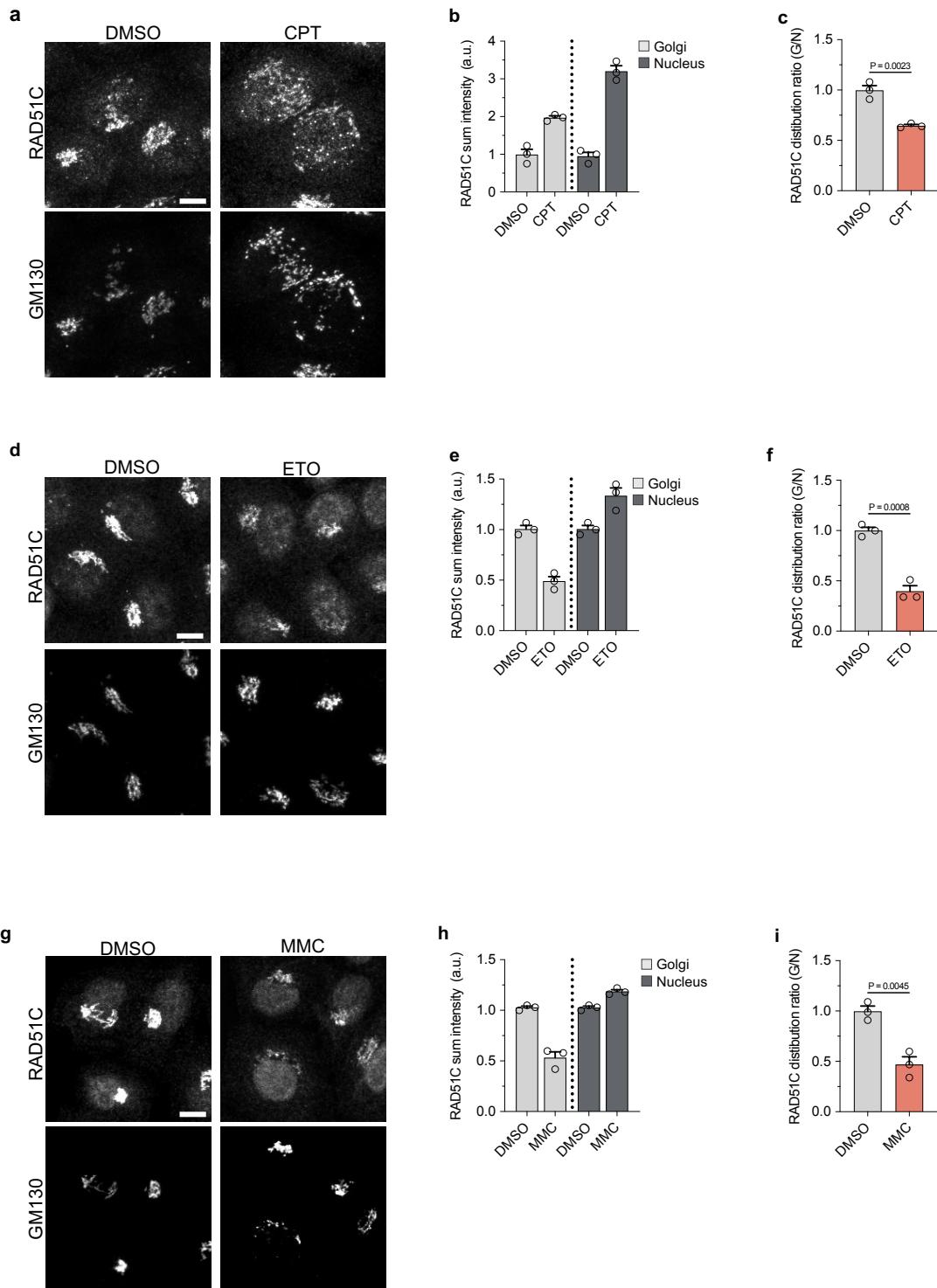

Figure 5. Depletion of Giantin led to increased genomic instability and disruption of DDR signalling. (a) Representative images of comet assay detection genomic DNA fragmentation in HK cells treated with control, Giantin, or RAD51C targeting siRNA. (b) Quantification of comet OliveMoment. Data represent the mean \pm standard error of the mean (s.e.m.). (n = 3 biologically independent samples with 1552 cells analysed). Statistical significance was determined using one-way analysis of variance (ANOVA); (c, d) Representative images and quantification of percentage cells displaying micronuclei after siRNA treatment; scale bar 10 μ m. White arrows denote micronuclei structures. Data represent the mean \pm standard error of the mean (s.e.m.) (n = 3 biologically independent samples with over 10,000 cell analysed). Statistical significance was determined using one-way analysis of variance (ANOVA). (e, f) HK cells transfected with control or Giantin siRNAs and treated with doxorubicin or camptothecin after 72 h transfaction, the extracts were prepared and immunoblotted as indicated (n = 2 biologically independent samples). (g) Cell cycle profile of HK cell treated with Giantin or control siRNA. Data represent the mean \pm standard error of the mean (s.e.m.) (n = 3 biologically independent samples).

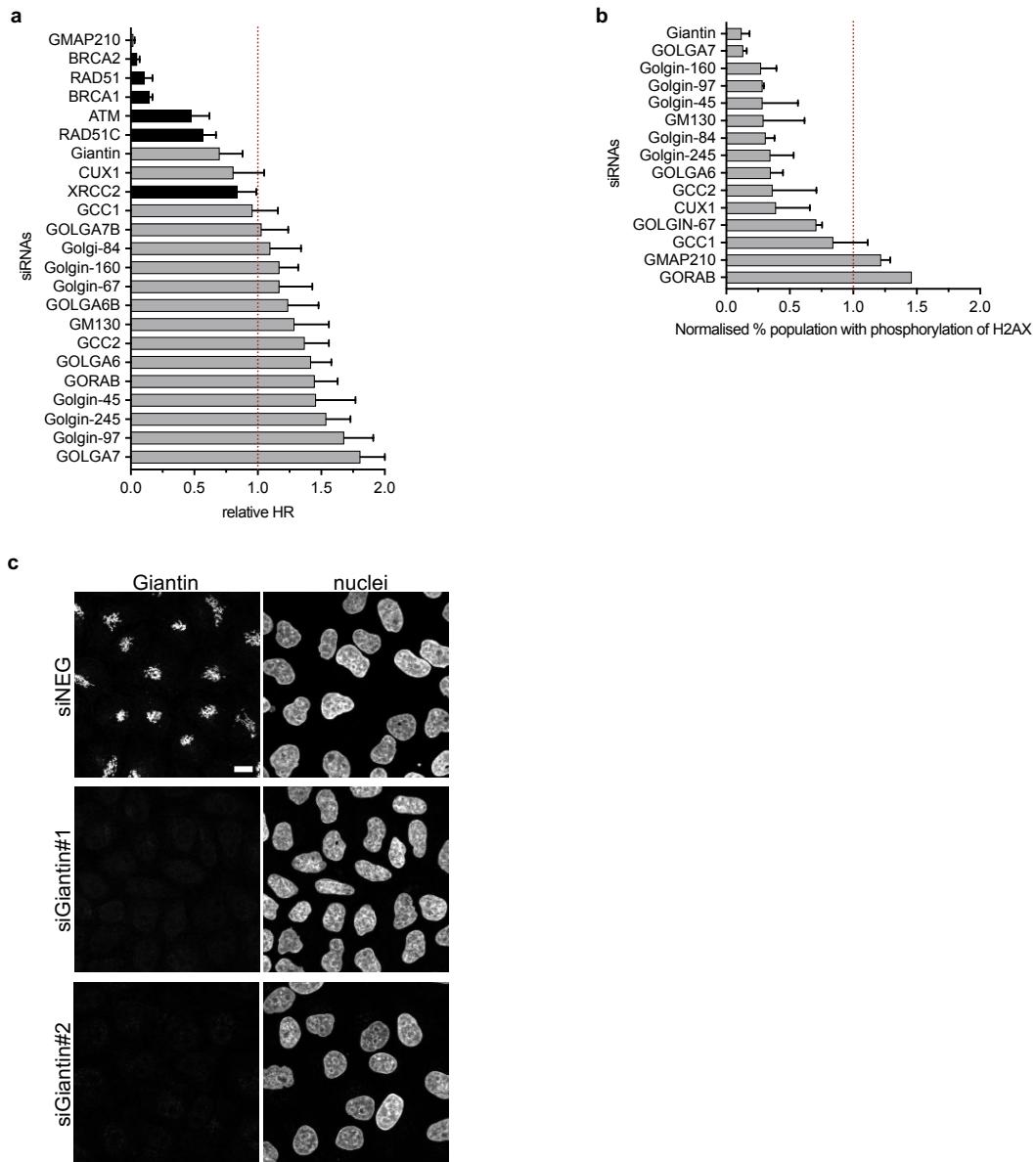
FIGURE 6

Figure 6. Proposed model for the regulation of HR-mediated repair through the activation of RAD51C at the Golgi complex. RAD51C, a regulatory HR protein, is anchored to the Golgi through its interaction with cytoplasmic tail of Giantin, in response to double-strand DNA breaks, this RAD51C Golgi population redistributes to form nuclear foci. This response requires importin-beta mediated nuclear import and the phosphorylation of ATM protein kinase.

EXTENDED DATA FIGURE 1


EXTENDED DATA FIGURE 1. (a) Representative images showing U-2 OS and MCF7 cells stained with antibodies against RAD51C (green) and GM130 (red). DNA was stained with Hoechst 33342 (blue). (b) Representative images showing the RAD51C antibody specificity. HK cells are stained with antibodies against RAD51C and GM130; DNA was stained with Hoechst 33342. (c) Quantification of RAD51C sum intensity after RAD51C depletion. Data represent the mean \pm standard error of the mean (s.e.m.). (n = 3 biologically independent samples with a total of 831 cells analysed). (d) Western blot showing the level of RAD51C protein level, in RAD51C-depleted and control cells (n = 3 biologically independent samples). (e) Western blot showing the subcellular localization of RAD51C treated with the DMSO and doxorubicin. (f) Quantification of WB showing a ratio of RAD51C membrane-nuclear distribution. Data represent the mean \pm standard error of the mean (s.e.m.) (n = 2 biologically independent samples). Statistical significance was determined using a two-tailed unpaired Student's t-test.

EXTENDED DATA FIGURE 2


EXTENDED DATA FIGURE 2. Representative images of HK cells were stained with antibodies against RAD51C and GM130. HK cells were treated with DMSO (control) alone or with ATM inhibitor (KU55933) or ATR inhibitor (VE-821) or DNA-PK inhibitor (NU7441); scale bar 10 μ m.

EXTENDED DATA FIGURE 3

EXTENDED DATA FIGURE 3. HK cell stained with antibodies against RAD51C and GM130. Cells were treated with (a) Camptothecin (CPT), (d) etoposide (ETO) and (g) mitomycin C (MMC) for 16 h followed by media change for 2 h; scale bar 10 μ m. Quantification of RAD51C percentage distribution between the Golgi and nuclear compartment after (b) CPT, (e) ETO and (h) MMC treatments. Quantification of RAD51C percentage distribution between the Golgi and nuclear compartment after (c) CPT, (f) ETO and (i) MMC treatments. Data represent the mean \pm standard error of the mean (s.e.m.). (n = 3 biologically independent samples with more than 600 cells analysed per treatment). Statistical significance was determined using a two-tailed unpaired Student's t-test.

EXTENDED DATA FIGURE 4

EXTENDED DATA FIGURE 4. (a) siRNA screen data (Adamson et al, 2012) showing the relative homologous recombination (HR) repair rate upon systematic knockdown of the Golgin protein family (grey) and HR complex proteins (black). (b) siRNA screen data (Paulsen et al., 2009) showing the relative percent cell population with phosphorylation of H2AX upon systematic knockdown of the Golkins. The datasets are normalised to the negative control set at 1. (c) HK cells were transfected with control, or Giantin siRNAs for 72 hours. The cells were stained with antibodies against Giantin and nuclei stained with Hoechst 33342; scale bar 10 μ m.