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Summary

In plant communities, diversity often increases community productivity and
functioning, but the specific underlying drivers are difficult to identify. Most
ecological theories attribute the positive diversity effects to complementary niches
occupied by different species or genotypes. However, the type of niche
complementarity often remains unclear, including how complementarity is expressed
in terms of trait differences between plants. Here, we use a gene-centred approach to
identify differences associated with positive diversity effects in mixtures of natural
Arabidopsis thaliana genotypes. Using two orthogonal genetic mapping approaches,
we found that between-plant allelic differences at the AtSUC8 locus contribute
strongly to mixture overyielding. The corresponding gene encodes a proton-sucrose
symporter and is expressed in root tissues. Genetic variation in AtSUC8 affected the
biochemical activities of protein variants and resulted in different sensitivities of root
growth to changes in substrate pH. We thus speculate that - in the particular case
studied here - evolutionary divergence along an edaphic gradient resulted in the niche
complementarity between genotypes that now drives overyielding in mixtures.
Identifying such genes important for ecosystem functioning may ultimately allow the
linking of ecological processes to evolutionary drivers, help to identify the traits
underlying positive diversity effects, and facilitate the development of high-

performing crop variety mixtures in agriculture.
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Introduction

Functional differences between plants are major determinants of the composition,
diversity, and functioning of communities (Loreau, 2000; Lavorel and Garnier, 2002;
McGill et al., 2006; Plas et al., 2020). Some of these differences represent adaptations
of species to sets of environmental conditions, also termed niches (Violle and Jiang,
2009; Roscher et al., 2015). Many theories support the notion that niche
complementarity among plants-underlies commonly observed positive biodiversity—
ecosystem functioning relationships ((Tilman et al., 1996; Hector et al., 1999; Tilman
et al., 2006; Reich et al., 2012; Zuppinger-Dingley et al., 2014; Turnbull et al., 2016).
While plausible, it currently is less clear how the relevant niche dimensions
underlying such functional complementarity can be identified, and how
complementarity manifests itself in specific trait differences between plants (Kraft et
al., 2015; Crutsinger, 2016; Barry et al., 2019; Plas et al., 2020). An important reason
for this knowledge gap is that, rather than quantifying niche space directly, niche
complementarity is mostly indirectly implied from observed higher-level phenomena,
such as increasing productivity with increasing biodiversity, with little reference to
the underlying physiology (Barry et al., 2019; Plas et al., 2020). Furthermore,
approaches focusing on traits as surrogates for niches (Roscher et al., 2015) struggle
with the problem of co-varying explanatory variables and the difficulty to separate
correlation from causation: traits often co-vary because of fundamental evolutionary
trade-offs between ecological strategies (Wright et al., 2004; Diaz et al., 2015).
Finally, it also is likely that not a single but many small phenotypic trait differences
together determine niche complementarity between plants (Kraft et al., 2015;
Montazeaud et al., 2020). The multivariate nature of phenotypic differences
associated with niche complementarity thus makes it difficult to pinpoint specific
mechanisms that underly biodiversity—productivity relationships (Cadotte, 2017;
Huang et al., 2018). Therefore, the question arises whether niche complementarity as
manifested in functional trait differences (Roscher et al., 2015) is a phenomenon too
complex to be studied using reductionistic experimental methods.

Positive biodiversity—productivity relationships occur not only at the inter- but also at
the intra-specific level; for example, mixtures of genotypes of natural plants and crops

often overyield relative to monocultures of the same genotypes (see, e.g., Hughes and
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83 Stachowicz, 2004; Crutsinger et al., 2006; Kier et al., 2009; Crawford and Whitney,
84 2010; Reiss and Drinkwater, 2018), although there are exceptions (Bongers et al.,
85 2020). It is reasonable to assume that the mechanisms underlying niche
86 complementarity and overyielding are similar in both cases, although there is clearly a
87 larger potential for niche differences among species than among genotypes of the
88 same species.
89 Here, we focus on the study of complementarity among genotypes of the model plant
90 species Arabidopsis thaliana. A major advantage of this approach is that the diversity
91 of traits and alleles cannot only be manipulated by assembling communities from an
92 existing pool of genotypes but also through crosses (Figure 1). Crosses allow, within
93 the limits of linkage disequilibrium, a redistribution of genetic variation, and therefore
94 trait variation, between genotypes. The assembly of new communities that differ in
95 their genetic composition then allows us to establish causal links between genetic
96 diversity and community-level properties (Wuest and Niklaus, 2018; McGale et al.,
97 2020) (Figure 1). Several recently published papers have expanded the traditional
98 approach that links genetic differences amongst individuals to their phenotypic
99 variation to the genetic study of the properties of ecological communities (Wuest and

100 Niklaus, 2018; Wuest et al., 2019; McGale et al., 2020; Turner et al., 2020;

101 Montazeaud et al., 2022). For example, and in analogy to keystone species that

102 exhibit disproportionately large effects on ecosystems, Barbour and colleagues

103  describe a plant “keystone gene” whose presence determined the stability of an

104 experimental trophic food web containing plants, aphids and their parasitoids

105 (Barbour et al., 2022). Together, these publications demonstrate that genetic effects

106 can cascade across layers of increasing biological complexity, sometimes in

107 unexpected ways. Here, we employed a genetic approach to study how genetic

108 diversity affects plant community overyielding and combined it with ecological and

109 physiological experiments to investigate the specific type of complementarity.

110

111 Results

112

113 In order to genetically dissect the mechanisms that underly biodiversity effects on

114 productivity, we first needed to identify genotypes that overyield when grown

115 together in mixture, i.e., communities that produce more biomass than the average of
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their monocultures (Figure 1 A). We tested overyielding in communities containing
one of ten pairs of Arabidopsis thaliana (L.) Heynh. genotypes. (Supplementary
Figure 1 A). We used these pairs because they are the parents of publicly available
recombinant inbred lines, a formidable resource for genetic studies and mapping.
Overyielding estimates in this experiment were all not significantly different from
zero. This was not unexpected, because overyielding is calculated as difference
between three yield values (of the mixture, and the two monocultures); a high
replication of all three communities is therefore required to compensate for the error
propagation in this calculation. However, model plant communities that contained the
two accessions Slavice-0 (Sav-0) and Umkirch-1 (Uk-1) overyielded consistently
across three substrates and across different pot sizes. We replicated this effect in a
second experiment with two different pot sizes and two plant densities
(Supplementary Figure 1 B). Across all experimental settings, mixtures of Sav-0
and Uk-1 yielded an average 5.6% more biomass (range: 0—12%) than expected based
on monoculture productivities. This effect is relatively large for a pot-based within-
species experiment. For comparison, the average overyielding in field trials with crop
variety mixtures typically ranges from 2 to 4% (Kieer et al., 2009; Borg et al., 2018;
Reiss and Drinkwater, 2018; Kristoffersen et al., 2020).
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Figure 1: Experimental approaches to the genetic dissection of positive diversity
effects. A. A positive diversity effect (blue) in pair-wise mixtures denotes the
estimated deviation of mixture yield from expectations based on monoculture yields.
Estimating this deviation is difficult, because it combines three error terms (two
monoculture productivity estimates and one mixture productivity estimate). B.
Positive effects on productivity can be found with increasing species or increasing
genotype diversity within a community. Past work has put much effort into studying
the underlying functional trait differences, but our work is concerned with firstly
studying the underlying genetic differences, and then trying to infer functional trait
differences from genes C. Experimental setup used in this study, showing model
communities consisting of four plants and different pairwise genotype combinations.
D. Schematic representation of how a genotypic diversity effects (left; Umkirch-1 +
Slavice-0) can be further dissected into genetic diversity effect, by the use of crosses
and genetic recombination followed by the assembly of new genotype pairs into model
communities. “+” (or “-”) denote community performances that are either higher (or

lower) than expected.
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To overcome the challenges in determining overyielding due to low power resulting
from error propagation (Figure 1 A), we adopted competition diallels (Figure 2 A)
(Griffing, 1956; Harper, 1977; Griffing, 1989; Bossdorf et al., 2004). In these, general
and specific combining abilities (GCAs and SCAs, Figure 2 A) can be taken as
proxies for additive and non-additive mixing properties of genotypes and genotype
combinations. Here, we used a half-diallel containing 18 randomly selected
recombinant inbred lines (RIL) derived from a cross between Sav-0 and Uk-1, and the
two parental lines. These RILs had been created to allow the map-based cloning of the
BREVIS RADIX (BRX) gene, at which natural variation causes strong root
architectural differences between Sav-0 and Uk-1 (Mouchel et al., 2004) - differences
that may be expected to drive complementarity in genotype mixtures. The 20 chosen
genotypes were now grown in all pair-wise combinations. The diallel was replicated
four times, at different dates (temporal blocks). We further used two different
substrates (sand-rich and peat-rich soils, two blocks each). We determined the average
SCA across the four blocks for each of the 210 community compositions (190
genotype mixtures plus 20 monocultures). To adjust for differences in community
productivity between substrates, and to obtain a normal distribution of residuals, we
scaled the estimated SCAs by division by the average community biomass on the
respective substrate. SCA thus was expressed as effect relative to the mean
productivity of all communities on the substrate. Next, we tested if variation in SCA
among the different communities could be attributed to genetic differences at specific
genomic regions. Since the published marker density for the RIL population used here
was relatively low, we first constructed high-resolution genotype maps by whole-
genome re-sequencing of each line (Methods, Supplementary Figure S 2 A). We
then used marker-regression to compare SCAs of communities that were either mono-
allelic or bi-allelic at a given marker region, i.e., we tested for effects of allelic
diversity. We found that specific combining ability was positively associated with
genetic differences at a single quantitative trait locus (QTL) on chromosome 2. The
high-density marker map allowed us to resolve this QTL to a very small genomic
region, spanning approximately 178 kb (Figure 2 B). Mixtures that exhibited allelic
diversity in this region exhibited a 2.8% (+/- 0.8% s.e.m.) higher SCA than mixtures
that contained only one of the two alleles (“mono-allelic” communities, Figure 2 C).
At the same time, mono-allelic genotype mixtures (mixtures containing only the Sav-

0 or only the Uk-1 allele at the identified QTL on chromosome 2, but any allele
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187 combination at other loci) had a 0.8% higher SCA than genotype monocultures (no
188 allelic differences at any locus). Therefore, a single QTL on chromosome 2 seems to
189 explain a high proportion of overyielding in Sav-0—Uk-1 genotype mixtures.
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192 Figure 2: Genotypic and allelic diversity effects. A. Illustration of the concepts of
193  General and Specific Combining Abilities (GCA and SCA) derived from genotypic
194 communities assembled according to a competition half-diallel design. GCAs of

195 genotypes 1 and 4 are estimated from productivities of all mixtures in which these
196 genotypes occur, SCA;  denotes the estimated productivity deviation of communities
197 containing these two genotypes dfter accounting for GCAs. B. QTL map of allelic
198 diversity associated with variation in SCA within genotypic mixtures. Blue and red
199 lines denote the different chromosomes. “BRX” indicates the location of the BREVIS
200 RADIX gene. C. Boxplots showing SCA distributions of different communities:

201 genotypic monocultures (mono), genotypic mixtures but allelic monocultures at the
202 QTL on chromosome 2 (SS and UU), genotypic mixtures and allelic mixtures at the
203 QTL (SU). Green lines denote mean values +/- s.e.m. Genotypic mixtures overall
204 exhibit slightly but significantly higher standardized SCAs values than genotypic
205 monocultures (~ 0 vs -2.7%).

206

207 The Uk-1 accession was originally collected from the banks of the Dreisam river in
208 the Schwarzwald of southern Germany. This region is characterized by an edaphic
209 gradient with pH ranging from neutral to strongly acidic (Supplementary Figure 3).
210 Previous work has shown that the Uk-1 loss-of-function allele of the BREVIS RADIX


https://doi.org/10.1101/2022.10.14.512290
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.14.512290; this version posted October 18, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

211 (BRX) gene confers a fitness advantage to plants grown on acidic soil (Gujas et al.,
212 2012) and alters root architecture and plant competition (Mouchel et al., 2004; Shindo
213 et al., 2008). In our experiment, allelic diversity at the BRX locus was not associated
214 with community overyielding (Figure 2 B, on lower arm of chromosome 1).

215 Nevertheless, we speculated that the observed overyielding might have been driven by
216 niche complementarity that resulted from adaptive divergence along this edaphic

217 gradient. The identified QTL contained 16 protein-coding putative candidate genes
218 (Supplementary Table S1, putative pseudogenes excluded), including the

219 Arabidopsis thaliana SUCROSE-PROTON-SYMPORTER 8 (AtSUC8), a candidate
220 diversity-effect gene. The gene encodes for a proton symporter that is fueled by the
221 electrochemical gradient across the membrane. AtSUCS is predominantly expressed in
222  the root columella (Denyer et al., 2019; Graeff et al., 2021), and therefore in cells that
223 are in direct contact with the soil, whose pH might affect its activity. To explore the
224  idea that natural genetic variation at the AtSUCS8 locus could drive functional

225 complementarity among Arabidopsis genotypes, we re-analyzed previously published
226 data on competition between Arabidopsis genotypes (Wuest et al., 2019). Single

227 individuals of ten tester genotypes (including Sav-0 and Uk-1) each competed

228 separately with each genotype of a panel of 98 natural accessions, in a factorial design
229 (Figure 3 A and B). For each tester-competitor pair, we determined specific

230 combining abilities (SCASs) as in the present study (Methods and Supplementary
231 Figure 4 A and B). We then tested for associations of these SCAs with between-

232 genotype differences at single-nucleotide polymorphisms (SNPs) within the identified
233 QTL on chromosome 2. After adjustment for multiple testing, only one SNP was

234 significantly associated with a positive diversity effect within the QTL (Figure 3C,
235 test for differences between mono-allelic and bi-allelic mixture SCAs by linear

236  contrast tyy; = 4.1; P = 5-10°, Bonferroni-adjusted P = 0.007; standardized effect size
237 =3.2%). This SNP indeed resides in the AtSUCS8 coding region. Although this is not
238 unequivocal proof that the identified SNP is the causal genetic polymorphism (it may
239 instead be in tight linkage disequilibrium with the causal one), our finding provides
240 further evidence that genetic differences in or around the AtSUCS8 gene contribute to

241 community overyielding in genotype mixtures.
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Figure 3: Single nucleotide polymorphism differences at the AtSUC8 locus
associate with positive diversity effects in genotype mixtures. A. The experimental
design represents a full-factorial combination of ten tester genotypes with each
genotype of a panel of 98 natural Arabidopsis accessions B. Picture of the experiment
C. The QTL mapping results (red line and right axis) overlaid with the genetic
association results (blue dots and left axis). Light blue dots denote SNPs at which the
Sav-0 and the Uk-1 tester lines do not differ (non-div), dark blue dots denote those at
which they do differ (div). Dots above zero indicated positive diversity-SCA
associations, dots below zero negative ones. Boxes in the bottom panel denote gene

regions, the AtSUCS8 gene region is colored dark blue.

SUC transporters are highly conserved within and across plant species. Sanger

sequencing of the AtSUCS alleles from Uk-1, Sav-0 and the reference accession Col-0


https://doi.org/10.1101/2022.10.14.512290
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.14.512290; this version posted October 18, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

perpetuity. It is made available under aCC-BY 4.0 International license.

confirmed the presence of several non-synonymous SNPs. Compared with the
reference allele, the AtSUCS coding region of Sav-0 carries three amino acid
replacements (one non-conservative) , and the Uk-1 allele carries eleven amino acid
polymorphisms (six non-conservative) (Figure 4 A). Among the latter, the K320T
and the R472G replacements might be functionally relevant, because they also occur
in the C24 accession which we had also used as tester genotype in the association
study described above. C24 shares seven amino acid polymorphisms with Uk-1 and
shows similar patterns of diversity effects across genotypes (Supplementary Figure
4 C). To determine whether the identified polymorphisms in Uk-1 and Sav-0 affect
SUCS function, we used sucrose uptake in a heterologous system as assay of function.
We expressed the Uk-1 and Sav-0 variants of SUC8 in Xenopus laevis oocytes and
measured their sucrose uptake kinetics. Whereas SUC8%*° conferred efficient sucrose
uptake as compared with mock-transformed oocytes, significantly lower import was
observed with SUC8"! (Figure 4 B). We next tested if such functional protein
differences also affect root growth under different pH conditions by growing 80 RILs
from the Uk-1xSav-0 RIL population on two media with pH ~6.8 or ~4.8. For this,
we grew seedlings on these media and measured their root length. As expected, root
length was reduced (by #50%) at low pH and (by #60%) in genotypes carrying
BRX"*! (Figure 4 C). Relative root length reduction at low pH versus neutral pH did
not vary among genotypes carrying different BRX alleles (Figure 4 C). However, the
relative root length reduction was significantly smaller when genotypes carried the
AtSUC8Y*! instead of the AtSUC8%allele (linear model ANOVA F,,,=5.8;P =
0.02; Figure 4 C). These findings indicate that Uk-1 carries alleles at multiple loci,
including BRX and AtSUCS8, that change root growth and allocation in response to
edaphic conditions, in particular environmental proton concentration. Overall, our
results thus suggest that genetic differences associated with community overyielding
in genotype mixtures are related to allele-specific differences in protein and root

functioning.
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Cc24 301 DWMGREVYGGDSKGDD! LYNOGIHVGALGLMLNSIVLGIVSLGIEGIS){KUGGAKRLWGAVNIILAVCLAMTVLVTKKAEEHR! GPMALPTDGIR

Il -
Col-0 401 AGALTLFALLGIPLAITFSIPFALASIISSSSGAGQGLSLGVLNMAIVIPQMIVSFGVGPIDALFGGGNLPRFVVGATIAAATISSVVAFTVLP
Sav-0 401 AGALTLFALLGIPLAITFSIPFALASIISSSSGAGQGLSLGVLNMAIVIPOMIVSFGVGPIDALFGGGNLPRFVVGAIAAAISSVVAFTVLP
Uk-1 401 AGALTLFALLGIPLAITFSIPFALASIISSSSGAGQGLSLGVLNMAIL PQMIVSFGIGPIDALFGGGNLPEFVVGAIAAAISSVVAFTVLP
Cc24 401 AGALTLFALLGIPLAITFSIPFALASIISSSSGEGQGLSLGVLNMAI PQMIVSFGIGPIDALFGGGNLPHFVVGAIAAAINSVVEFTVLP
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285 Figure 4: Genetic variation in AtSUCS dffects protein function and is associated
286 with different root growth sensitivities to changes in substrate proton

287 concentrations. A. Protein sequence alignments of natural SUC8 variants. Amino
288 acid differences from Col-0 reference sequence are highlighted in red B. Sucrose
289 transport activities of the Sav-0 and Uk-1 protein variants in oocytes. Different letters
290 denote significant differences in Tukey’s post-hoc contrasts C. Primary root length
291 differences of genotypes carrying carrying either Sav-0 (S) or Uk-1 (U) alleles at the
292  two loci (BRX and AtSUC8), and grown on agarose plates exhibiting different

293 substrate pH. Relative root length of different RILs carrying either alleles at the BRX
294  (right) or AtSUCS locus (left); shown are log2-fold root length differences of each
295 RIL at pH 4.8 vs. 6.8 (e.g., a log-fold difference of —1 denoting roots being 2-fold
296  shorter at pH 4.8 than at pH 6.8); * = p-value < 0.05; n.s. = not significant.
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297 Discussion

298

299 Here, we used two complementary genetic strategies, QTL- and association-mapping,
300 to identify the genetic differences between Arabidopsis genotypes that overyield when
301 grown in mixed-genotype communities. We found that a large proportion of the

302 overyielding of mixtures of the Arabidopsis accessions Sav-0 and Uk-1 was due to
303 allelic diversity at a major-effect QTL on chromosome 2. Two aspects of this QTL
304 mapping study are worth noting. First, our QTL mapping resolution was very high
305 despite using only 18 recombinant lines and their parents. This was due to the

306 competition diallel experimental design in which genotypes with high-density marker
307 maps are systematically combined into different communities. Second, although

308 complex traits of individuals such as growth are often determined by genetic variants
309 at many loci, each with small effect (Lynch and Walsh, 1998; MacKay et al., 2009;
310 Wieters et al., 2021). Our results together with findings from recent studies (Wuest
311 and Niklaus, 2018; McGale et al., 2020; Barbour et al., 2022; Montazeaud et al.,

312 2022) suggest that complex community-level properties that depend on interactions
313 Dbetween plant individuals can have surprisingly simple genetic underpinnings. Our
314 work thus suggests that positive effects of plant diversity need not be irreducibly

315 complex emergent properties but can have simple causes that are identifiable at the
316 genetic level, even if the mixed genotypes differ at many positions along the genome.
317 We think that understanding the origins of overyielding may in fact — at least in some
318 cases — be simpler based on genetics than based on traits, where complementarity

319 seems to generally manifest itself as a high-dimensional phenomenon involving a
320 number of different traits (Montazeaud et al., 2020). The community genetic

321 approaches presented here and elsewhere (Frachon et al., 2019; McGale et al., 2020;
322 Turner et al., 2020; Sato et al., 2021; Subrahmaniam et al., 2021; Barbour et al., 2022;
323 Montazeaud et al., 2022) may thus provide an effective way to understand the

324 propagation of effects across different layers of biological organization, from genes to

325 communities and ecosystems.
326

327 Identifying the genes that are important for ecosystem processes may ultimately also

328 be useful to link ecological processes to some of the dominant evolutionary drivers
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(Johnson and Stinchcombe, 2007; Crutsinger, 2016). In our study, we were able to
associate diversity at the AtSUC8 locus with community-level overyielding. The
respective gene encodes for a proton-sucrose symporter, i.e., a membrane-associated
protein that utilizes a proton gradient to transport sucrose across membranes. The
gene is expressed predominantly in root tissues that are in direct contact with the soil.
Genetic differences at the AtSUCS8 locus affect protein function and were also
associated with differences in root growth, in a substrate - pH dependent way. Soil
chemistry, composition and texture and resulting effects on plant — plant interactions
are major selective forces, but also important drivers of community structure (Tilman
et al., 1997; McKane et al., 2002; Kahmen et al., 2006; Jiménez-Alfaro et al., 2018).
Consistent with the idea that the Uk-1 genotype exhibits traits that make it better
adapted to grow on acidic soil (Gujas et al., 2012), plants carrying the AtSUC8*!
allele showed root growth that was less sensitive so substrate acidification. However,
and perhaps surprisingly, genetic variation at the BRX locus itself, which had
previously been shown to underlie adaptive divergence along this environmental
gradient (Mouchel et al., 2004; Gujas et al., 2012), did not drive overyielding in our
model communities. Future work should be able to establish possible reasons for
these differences between AtSUCS8 and BRX, and the specific physiological and
morphological effects of the identified genetic variation at the AtSUC8 locus and their

consequences for plant fitness under natural conditions.

One question that remains open is how specific aspects of SUC8-mediated trait
differences account for overyielding in genetically diverse communities. We think
that the different responses of root growth to changes in soil acidity associated with
the AtSUCS locus promote the partitioning of the physical soil space between plants.
In other words, these effects may result in different root foraging strategies in a
substrate heterogeneous in soil solution pH, resulting in more efficient use of the
available biotope space (Dimitrakopoulos and Schmid, 2004; Tylianakis et al., 2008;
Jousset et al., 2011). A pH gradient, possibly at a very small scale, would then
represent a niche dimension along which niche partitioning promotes community
productivity. Obviously, there may be different environmental settings under which
other traits, related to other genetic differences, may underly niche partitioning and
complementarity among plants. In each case, the trait-based approaches currently

applied for the study of ecological phenomena such as overyielding might strongly
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profit from gene-based approaches, ultimately not only at the within- but also at the
between-species level. On the other hand, our work may offer new ways to design
more sustainable cropping systems, in which species or genotype diversity can
improve both yield and yield stability in the face of biotic and abiotic stress (Finckh et
al., 2000; Zhu et al., 2000; Brooker et al., 2015; Litrico and Violle, 2015;
Kristoffersen et al., 2020; Wuest et al., 2021). Here, the gene-centered approach may
complement currently used trait-centered methods to facilitate the design of high-

performing mixtures.

Materials and Methods

Germplasm
The Sav-0 and Uk-1 seeds were initially obtained from the Arabidopsis Biological

Resource Center at Ohio State University. The Sav-0*Uk-1 RIL population was
described previously (Mouchel et al., 2004). The lines used for the association

analysis are described in detail in (Wuest et al., 2019)

Plants and growth conditions

Seeds were sown directly on soil and germinated in trays covered with plastic lids
under high humidity in a growth chamber at the University of Zurich Irchel Campus
(16hrs light, 8 hrs dark; 20°C, 60% humidity). The soil substrates are described
below. After approximately two weeks, the trays were moved into a greenhouse
chamber, where day-time and night-time temperatures were maintained around 20-25
°C and 16-20 °C, respectively. Additional light was provided if required to achieve a
photoperiod of 14-16 hours. Seedlings were thinned continuously until a single
healthy seedling remained per position. The pots were watered ad libitum, and in case
of high herbivory pressure by larvae of the dark-winged fungus gnat the insecticide
ActaraG (Syngenta Agro AG) was applied according to the manufacturer’s
recommendation. The date of harvesting was determined through the occurrence of 5—
10 dehiscent siliques on the earliest flowering genotypes in a given block. The

aboveground biomass was dried at 65°C for at least three days and then weighed.
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Assessing accession pair mixtures: Nine accession pairs, for which recombinant

inbred line populations are publicly available, were chosen for the screen of pair-wise
interactions through comparisons of monoculture and two-genotype mixtures. A
further pair was chosen based on a large estimate of mixture effects in a previous
study. These selected genotypes were grown as either monocultures or pair-wise
mixtures on different soils and in pots of different size as follows: peat-rich
Einheitserde ED73 soil substrate (pH ~5.8, N 250 mg L*; P,Os 300 mg L*; 75%
organic matter content; Gebriider Patzer GmbH, Sinntal-Jossa, Germany) and in
6*6*5.5 cm or 7*7*8 cm or 9*9*10 cm pot sizes, a 4:1 mixture of quartz sand:ED73
and 7*7*8 cm pots, and Arabidopsis legacy soil, i.e., soil collected from an unrelated
previous experiment on which Arabidopsis had grown (originally ED73). Each
monoculture or mixture composition in each soil or pot size was grown in each of
seven blocks, with the exception of communities on sand-rich and legacy-soil
conditions. The legacy and sandy soil conditions were included only in five of the
blocks for logistical reasons. Community overyielding in genotypic mixtures
containing Sav-0 and Uk-1 was confirmed by growing either i) four plants in medium
sized pots (7*7*8 cm); ii) four plants in small pots (5.5*5.5*6 cm) or iii) two plants in
small pots, all containing ED73 soil. For each pot/density type, 48 mixtures and 24 of

each monoculture were sown, treated and processed as described above.

QTL mapping and association study: The QTL-mapping experiment was designed as

a half-diallel containing all pair-wise combinations, and monocultures of, 18 RILs
derived from Sav-0 and Uk-1 (Mouchel et al., 2004) and the two parents. The
experiment was performed in four sequential blocks; we used a soil consisting of 3
parts ED73 and 1 part quartz sand for the first two blocks. However, because seedling
establishment was rather poor on this soil, we changed soil type in blocks three and
four to 1 part ED73 and 3 parts sand. Plants were grown and harvested as described

above (42-51 days after sowing).

Experimental conditions for the genome-wide association experiment are described in
detail elsewhere (Wuest et al., 2019). In short, the association study experimental
design consisted of a full factorial competition treatment of growing ten tester
genotypes (Sav-0; Uk-1; Col-0; Sf-2; St-0; C24; Sha; Bay-0; Ler-1; Cvi-0) with each

genotype of an association panel of 98 natural Arabidopsis accessions (a subset of the
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RegMap population (Horton et al., 2012), including all monocultures and in two
replicate blocks. Each community consisted of two plants (one plant per genotype).
The raw data of the association study are available at

https://zenodo.org/record/2659735#.Y CtOu2Mo8ml).

Genotyping and line re-sequencing
For the 18 RIL genotypes used in the QTL-mapping competition diallel, we

performed whole-genome resequencing and genotype reconstructions before the
genetic analysis. DNA extractions for genome resequencing, library preparation,
sequencing and genome reconstruction was performed as previously described (Wuest
and Niklaus, 2018), whereby the genome reconstruction approach broadly followed
the method described by Xie and colleagues (Xie et al., 2010). Raw reads of
resequencing the parental accessions Sav-0 and Uk-1 were downloaded from the
NCBI SRA homepage (www.ncbi.nlm.nih.gov/sra, SRX011868 and SRX145024).
To genotype a wider set of RIL lines at the AtSUC8 locus (At2g14670), a Cleaved
Amplified Polymorphism (CAPS)-marker assay was developed based on a EcoRV-
restriction site in the SUC8 coding sequence that is present in the Sav-allele but
missing in the Uk-Allele using PCR primers 5’-GGA GAG TGT TGT TAG CCA
CGT C-3’and 5’-ACG ATG TGG TAG CTG TAG ATA GAC-3’. DNA extractions
for CAPS-genotyping were performed using the protocol following Edwards and
colleagues (Edwards et al., 1991). For four RIL genotypes where the PCR-genotyping
yielded ambiguous results, so we inferred it from flanking markers AtMSQTsnp 123:
(Chr 2 pos 1798324) and AtMSQTsnp 138 (Chr 2 pos 8370574) (Kim et al., 2007).
We also tried to identify RIL-lines that exhibited heterozygosity at the AtSUC8 locus
to isolate heterogeneous inbred families, but failed to find any among the 101 lines
screened.

To verify polymorphisms identified in the resequencing, Sanger sequencing of the
AtSUCS alleles was performed by amplifying the gene body from genomic DNA
using oligonucleotides 5’-ATG AGT GAC CTC CAA GCA AAA AAC GAT-3 and
5’- TTA AGG TAA CAC GGT AAA TGC CAC AAC ACT GC-3’. The PCR
fragments were then sequenced using those same oligonucleotides as well as
oligonucleotide 5’-CAC AAT GAC TAA AGC ATG TGA C-3’. The C24 allele of
SUCS8 was retrieved from published sequence data (Jiao and Schneeberger, 2020).
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461 Note that because of genomic rearrangements, the gene ID for AtSUCS8 (AtC24-

462 2G29550) in the C24 accession differs from the other accessions.

463

464 Oocyte uptake assays

465 Oocyte assays were performed essentially as described (Fastner et al., 2017). Briefly,
466 the SUC8 cDNAs were cloned into pOO2 (Ludewig et al., 2002). cRNA was

467 synthesized using the mmessage mmachine kit (Lifetechnologies). Oocyte s were
468 injected with 50 nL of 150 ng/pL. cRNA and incubated in Barth’s (88 mM NaCl, 1
469 mM KCl, 2.4 mM NaHCO;, 10 mM HEPES-NaOH, 0.33 mM Ca(NO3), x 4 H;0,
470 0.41 mM CaCl, x 2 H,0, 0.82 mM MgSO, x 7 H,O pH7.4) for four days. For uptake
471 experiments 10 oocytes were kept in 1 ml Barth solution supplemented with[*H]-
472  sucrose or [*“*C]-sucrose at a final concentration of 1 mM or substrate-free control for
473  one hour. Afterwards, Oocytes were washed twice in Barth solution containing

474 Gentamycin and were then separated into scintillation vials. 100 pl of 10 % SDS
475 (w/v) was added to each scintillation vial and the samples were incubated for 10

476 minutes. Then 2 mL of scintillation cocktail (Rotiszint eco plus, Roth, Germany) was
477 added and the vials were vortexed vigorously. Radioactivity was determined by liquid
478 scintillation counting. Experiments were carried out using ['“C]-sucrose and repeated
479  with [*H]-sucrose yielding essentially identical results. [**C]-sucrose (536 mCi/mmol,
480 1 mCi/ml) and [*H]-sucrose (3 Ci/mmol, 1 mCi/ml) were purchased from Hartmann
481 Analytic, Braunschweig, Germany)

482

483 Plate assays and root measurements

484 Seeds were surface-sterilized with 70% ethanol, followed by 15 minutes in a solution
485 containing 1% bleach and 0.01% Triton-X100 and three sequential washes, then left
486 for stratification at 4°C overnight. Square MS plates (12 cm) were prepared with 0.8%
487 agarose (instead of agar) and containing 1% sucrose (w/v). The pH was adjusted to
488 4.5 or 7 using hydrochloric acid or potassium hydroxide and the medium autoclaved.
489  After autoclaving, the measured media pH was again determined (4.8 and 6.8). Six
490 seeds of each of six different genotypes were sown on a plate pair (identical sowing
491 pattern on pH 4.8 and 6.8) and grown in a climate chamber with long-day conditions
492 (16 hours light at 20°C; 8 hours dark at 16°C) for seven days. Plates were scanned

493 twice, once after 3 days and again after 7 days using an EPSON flatbed scanner
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(model 2450). The primary root length of seedlings was measured using the Fiji

software (Schindelin et al., 2012).

Statistical analyses

In the screen for consistently positive pairwise interactions between genotypes, we
fitted a linear model of community biomass as function of genotype composition and
substrate type (i.e., substrate composition or volume), including a block term.
Overyielding of a genotype pair on a given substrate was then estimated as linear
contrast between the average monoculture productivity and the mixture productivity
(i.e., specifying the contrast matrix K=[-0.5, -0.5, 1], equivalent to the term 1mag —
0.5mas — 0.5mgg for the case of a monocultures and mixtures of genotypes A and B),
using the glht-function of the multcomp-package (Hothorn et al., 2008).

The mapping experiment was performed on two different substrates (two replicated
blocks each), and both mean and variance of community productivities differed across
substrates. The blocks with more nutrient-rich substrate also had some pots with
missing plants due to seedling mortality, which were removed for the analysis. In
order to combine all four blocks for the estimation of specific combining abilities, we
therefore first estimated mean community biomass within substrate and calculated
specific combining abilities (SCA) within substrates from average total pot biomass
values (BM) as BM = Z*u + SCA whereby Z is the design matrix describing genotype
composition of a mixture. To make SCAs comparable across substrates, we divided
SCA through the mean pot biomass produced on this substrate. The standardized
SCA; value of a genotype composition (containing genotypes G; and G;) was then
estimated by averaging across substrates. SCA outliers were removed if they differed
more than two standard deviations from the population mean in their absolute value.
QTL mapping of standardized mixture SCA estimates was then performed by a
marker regression approach, where we first fitted a linear model predicting SCA from
allelic composition (3 levels, SS, UU, SU), followed by a contrast between allelic
monocultures and mixtures (e.g., SCAsy — 0.5(SCAyy + SCAss), again using the glht
function

A LOD score (-log10(p-value) of 3 was considered significant, as determined by
large-scale simulations (Van Ooijen, 1999) assumptions: two QTL genotypes, “bi-
allelic” and “mono-allelic” and an average chromosome length of 200 cM for

Arabidopsis genotype pairs, where recombination events are combined in
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communities). Such a threshold is also in agreement with our previous work
comparing this approach to a standard QTL mapping method and a LOD-cutoff based
on re-sampling (Wuest and Niklaus, 2018).

Analysis of association-study competition experiment

The association study represents a factorial design in which each of ten different
genotype (testers) was grown in combination with each of 98 different Arabidopsis
genotypes, with all monocultures realized too. This design was replicated in two
blocks. Pots with missing data (e.g., due to seedling mortality) were removed from the
analysis. A genotype’s general combining ability was estimated as described above
within each block and values were then averaged across blocks.

Pot biomass depended non-linearly on average genotype GCA (Supplementary Figure
4). To determine SCAs, we therefore used a quadratic form of the mean GCA to
adjust for this non-linearity. Marker regressions on these SCA values for the SNPs
within the QTL interval were performed as described for the QTL mapping approach

described above.
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771 Supplementary Figure 1 A. A screen for consistent genotypic diversity effects
772 between divergent Arabidopsis accession pairs. Shown are estimates of net

773 overyielding (observed mixture yield compared with average yields of component
774 monocultures) of ten Arabidopsis accession pairs across different soil types or pot
775 sizes. For each estimate, seven pots (large pot, medium pot, small pot) or five pots
776 (legacy soil, sandy soil) of each monoculture and the mixture were sown, resulting in
777 atotal of 930 pots containing four plants each. Note that both consistent negative
778  (left) or consistent positive (right) effects appear. Furthermore, a soil-by-diversity
779 interaction in the Bay-0 * Sha combination has been examined in more detail

780 previously (Wuest and Niklaus, 2018). B. Confirmation of consistently positive
781 genotypic diversity effects in the genotype combination Slavice-0 (Sav-0) and
782 Umkirch-1 (Uk-1) under three different conditions. Shown are estimated net

783 overyielding for each condition, number above bars indicate the relative net effect

784 (%). Error bars: +/- s.e.m.
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Supplementary Figure 2. Reconstruction of RIL genotypes from low-coverage
genome re-sequencing and QTL effect sizes. A. Top: Genotype calls across the
genome in RIL US1005; and comparison of molecular markers (middle) and genotype
reconstruction based on low-coverage genome re-sequencing (Viterbi-Path, bottom).
B. Correlations of allelic compositions between all markers and across all genotype
combinations C. Effect of allelic composition on specific combining abilities at the
QTL chromosome 2 (QTLZ2, bottom).


https://doi.org/10.1101/2022.10.14.512290
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.14.512290; this version posted October 18, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

793
794
795
796

perpetuity. It is made available under aCC-BY 4.0 International license.

pH in rooting zone

Supplementary Figure 3. Soil acidity map of the southern black forest region, the
area in which the Uk-1 accession was collected. Transect sampling performed by
Shindo and colleagues (Shindo et al,): purple arrow. Data from http://maps.lgrb-

bw.de/. var = variable
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798 Supplementary Figure 4: Determination of SCAs in factorial (tester-associate)
799 competition design for GWAS and SCA across different tester lines and the
800 different allelic diversity levels at a SNP within AtSUCS. A. Specific combining
801 ability of a genotypic composition is typically estimated from deviates of observed
802 community productivities from expectations (in this case, the average GCA of both
803 genotypes); however, because different communities varied so strongly in total

804 productivities, the relationship between the mean GCA of a genotype composition and
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805 the overall community productivity might become non-linear (e.g., driven by

806 increasingly restricted space for combinations of highly productive genotypes). In this
807 case, such a systematic relationship can first be modeled, and the SCA estimated as
808 the deviation from this modeled relationship. B. Observed relationship between the
809 average GCA of a genotype composition and its community productivity. C. Uk-1
810 and C24 both carry the minor (T) allele at SNP Chr2-6274693. When combined with
811 genotypes also carrying the minor allele, the resulting mixtures show on average

812 lower SCA, when combined with genotypes carrying the major allele (A), they exhibit
813 on average higher SCA.

814

815 Supplementary Table 1: Descriptions of protein-coding genes found within the

816 QTL on chromosome 2.

Locus Description Symbols
AT2G14378 Enco@es a ECA1 gametogenesis related family NA
protein
AT2G14390 |Hypothetical protein NA
AT2G14440 |Leucine-rich repeat protein kinase family protein |[NA
AT2G14460 |hypothetical proteinH NA
AT2G14500 |F-box family protein ATFDB14
AT2G14510 |Leucine-rich repeat protein kinase family protein |[NA
AT2G14520 |CBS domain protein (DUF21) NA
AT2G14540 |Serpin 2 SRP2; ATSRP2
Encodes LURP1, a member of the LURP cluster
AT2G14560 g:}ir:i(;lpperreoglilcﬁ;eoi;npzi‘?s)irilcsff)?CI)JURP 1is required NA
for full basal defense to H. parasitica.
PRB1;
AT2G14580 |Pathogenesis related protein, encodes a basic ATCAPE7;
PR1-like protein. ATPRB1
PR1 gene expression is induced in response to a
AT2G14610 | o the SAR response, Expression ofchis |PR1: ATCAPE9
gene is salicylic-acid responsive.
AT2G14620 |Xyloglucan endotransglucosylase/hydrolase 10 |XTH10
AT2G14635 |ARABIDILLO protein NA
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AT2G14660 |Thymocyte nuclear-like protein NA
AT2G14670 |Sucrose-proton symporter 8 SUCS; AtSUCS8

817
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