

1 **Single-gene resolution of diversity-driven community overyielding**

2

3

4 Samuel E. Wuest*^{1,2,3,4}, Lukas Schulz⁵, Surbhi Rana⁶, Julia Frommelt¹, Merten
5 Ehmig⁷, Nuno D. Pires², Ueli Grossniklaus², Christian S. Hardtke⁶, Ulrich Hammes⁵,
6 Bernhard Schmid^{1,3} and Pascal A. Niklaus¹

7

8

9

10 **Affiliations**

11 1) Department of Evolutionary Biology and Environmental Studies and Zurich-Basel
12 Plant Science Center, University of Zurich, Winterthurerstrasse 190, 8057 Zurich

13 2) Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center,
14 University of Zurich, Zollikerstrasse 107, 8008 Zurich

15 3) Department of Geography, Remote Sensing Laboratories, University of Zurich,
16 8057 Zurich, Switzerland

17 4) Agroscope, Group Breeding Research, Mueller-Thurgau-Strasse 8, 8820
18 Waedenswil, Switzerland

19 5) Plant Systems Biology, School of Life Sciences, Technical University of Munich,
20 85354 Freising, Germany

21 6) Department of Plant Molecular Biology, University of Lausanne, Biophore
22 Building, Lausanne 1015, Switzerland

23 7) Department of Systematic and Evolutionary Botany, University of Zurich,
24 Zollikerstrasse 107, 8008 Zürich

25

26

27

28 *correspondence to: Samuel E. Wuest (samuel.wuest@agroscope.admin.ch)

29 **Summary**

30

31 In plant communities, diversity often increases community productivity and
32 functioning, but the specific underlying drivers are difficult to identify. Most
33 ecological theories attribute the positive diversity effects to complementary niches
34 occupied by different species or genotypes. However, the type of niche
35 complementarity often remains unclear, including how complementarity is expressed
36 in terms of trait differences between plants. Here, we use a gene-centred approach to
37 identify differences associated with positive diversity effects in mixtures of natural
38 *Arabidopsis thaliana* genotypes. Using two orthogonal genetic mapping approaches,
39 we found that between-plant allelic differences at the *AtSUC8* locus contribute
40 strongly to mixture overyielding. The corresponding gene encodes a proton-sucrose
41 symporter and is expressed in root tissues. Genetic variation in *AtSUC8* affected the
42 biochemical activities of protein variants and resulted in different sensitivities of root
43 growth to changes in substrate pH. We thus speculate that - in the particular case
44 studied here - evolutionary divergence along an edaphic gradient resulted in the niche
45 complementarity between genotypes that now drives overyielding in mixtures.
46 Identifying such genes important for ecosystem functioning may ultimately allow the
47 linking of ecological processes to evolutionary drivers, help to identify the traits
48 underlying positive diversity effects, and facilitate the development of high-
49 performing crop variety mixtures in agriculture.

50 **Introduction**

51

52 Functional differences between plants are major determinants of the composition,
53 diversity, and functioning of communities (Loreau, 2000; Lavorel and Garnier, 2002;
54 McGill et al., 2006; Plas et al., 2020). Some of these differences represent adaptations
55 of species to sets of environmental conditions, also termed niches (Violle and Jiang,
56 2009; Roscher et al., 2015). Many theories support the notion that niche

57 complementarity among plants-underlies commonly observed positive biodiversity–
58 ecosystem functioning relationships ((Tilman et al., 1996; Hector et al., 1999; Tilman
59 et al., 2006; Reich et al., 2012; Zuppinger-Dingley et al., 2014; Turnbull et al., 2016)).

60 While plausible, it currently is less clear how the relevant niche dimensions
61 underlying such functional complementarity can be identified, and how
62 complementarity manifests itself in specific trait differences between plants (Kraft et
63 al., 2015; Crutsinger, 2016; Barry et al., 2019; Plas et al., 2020). An important reason
64 for this knowledge gap is that, rather than quantifying niche space directly, niche

65 complementarity is mostly indirectly implied from observed higher-level phenomena,
66 such as increasing productivity with increasing biodiversity, with little reference to
67 the underlying physiology (Barry et al., 2019; Plas et al., 2020). Furthermore,
68 approaches focusing on traits as surrogates for niches (Roscher et al., 2015) struggle
69 with the problem of co-varying explanatory variables and the difficulty to separate
70 correlation from causation: traits often co-vary because of fundamental evolutionary
71 trade-offs between ecological strategies (Wright et al., 2004; Díaz et al., 2015).

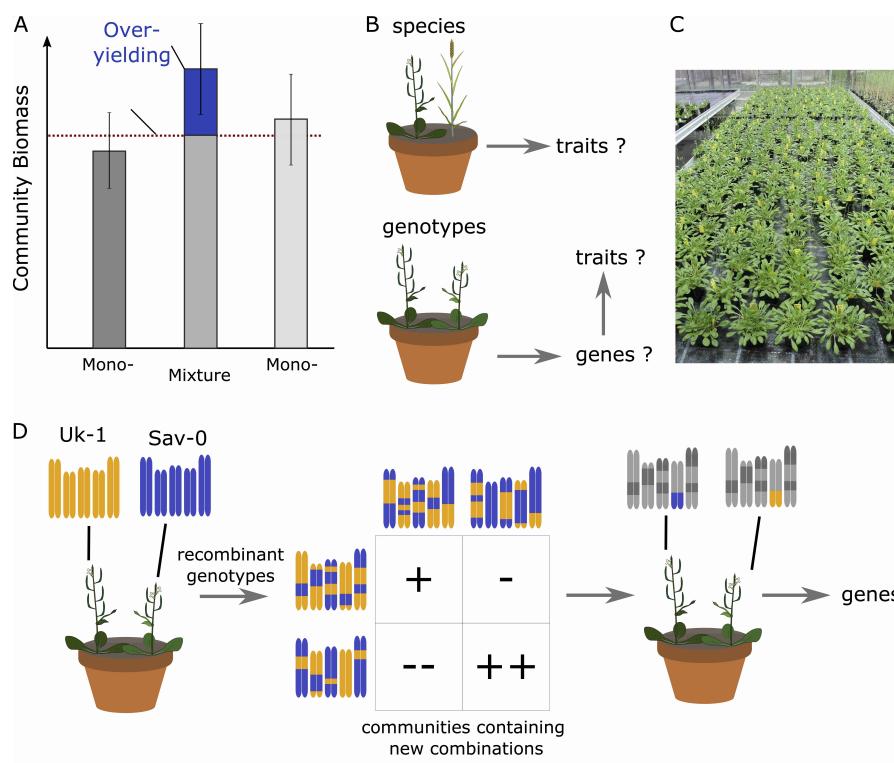
72 Finally, it also is likely that not a single but many small phenotypic trait differences
73 together determine niche complementarity between plants (Kraft et al., 2015;
74 Montazeaud et al., 2020). The multivariate nature of phenotypic differences
75 associated with niche complementarity thus makes it difficult to pinpoint specific
76 mechanisms that underly biodiversity–productivity relationships (Cadotte, 2017;
77 Huang et al., 2018). Therefore, the question arises whether niche complementarity as
78 manifested in functional trait differences (Roscher et al., 2015) is a phenomenon too
79 complex to be studied using reductionistic experimental methods.

80 Positive biodiversity–productivity relationships occur not only at the inter- but also at
81 the intra-specific level; for example, mixtures of genotypes of natural plants and crops
82 often overyield relative to monocultures of the same genotypes (see, e.g., Hughes and

83 Stachowicz, 2004; Crutsinger et al., 2006; Kiær et al., 2009; Crawford and Whitney,
84 2010; Reiss and Drinkwater, 2018), although there are exceptions (Bongers et al.,
85 2020). It is reasonable to assume that the mechanisms underlying niche
86 complementarity and overyielding are similar in both cases, although there is clearly a
87 larger potential for niche differences among species than among genotypes of the
88 same species.

89 Here, we focus on the study of complementarity among genotypes of the model plant
90 species *Arabidopsis thaliana*. A major advantage of this approach is that the diversity
91 of traits and alleles cannot only be manipulated by assembling communities from an
92 existing pool of genotypes but also through crosses (**Figure 1**). Crosses allow, within
93 the limits of linkage disequilibrium, a redistribution of genetic variation, and therefore
94 trait variation, between genotypes. The assembly of new communities that differ in
95 their genetic composition then allows us to establish causal links between genetic
96 diversity and community-level properties (Wuest and Niklaus, 2018; McGale et al.,
97 2020) (**Figure 1**). Several recently published papers have expanded the traditional
98 approach that links genetic differences amongst individuals to their phenotypic
99 variation to the genetic study of the properties of ecological communities (Wuest and
100 Niklaus, 2018; Wuest et al., 2019; McGale et al., 2020; Turner et al., 2020;
101 Montazeaud et al., 2022). For example, and in analogy to keystone species that
102 exhibit disproportionately large effects on ecosystems, Barbour and colleagues
103 describe a plant “keystone gene” whose presence determined the stability of an
104 experimental trophic food web containing plants, aphids and their parasitoids
105 (Barbour et al., 2022). Together, these publications demonstrate that genetic effects
106 can cascade across layers of increasing biological complexity, sometimes in
107 unexpected ways. Here, we employed a genetic approach to study how genetic
108 diversity affects plant community overyielding and combined it with ecological and
109 physiological experiments to investigate the specific type of complementarity.

110

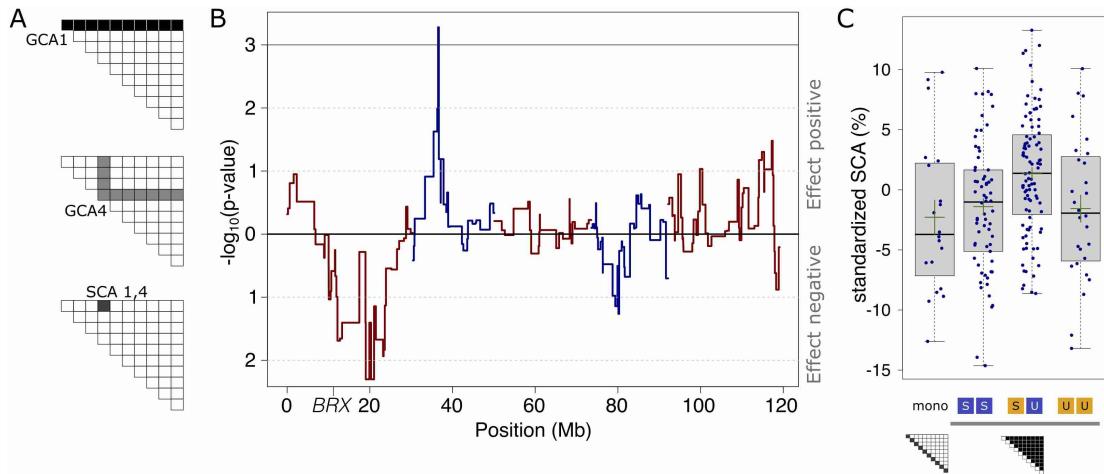

111 **Results**

112

113 In order to genetically dissect the mechanisms that underly biodiversity effects on
114 productivity, we first needed to identify genotypes that overyield when grown
115 together in mixture, i.e., communities that produce more biomass than the average of

116 their monocultures (**Figure 1 A**). We tested overyielding in communities containing
117 one of ten pairs of *Arabidopsis thaliana* (L.) Heynh. genotypes. (**Supplementary**
118 **Figure 1 A**). We used these pairs because they are the parents of publicly available
119 recombinant inbred lines, a formidable resource for genetic studies and mapping.
120 Overyielding estimates in this experiment were all not significantly different from
121 zero. This was not unexpected, because overyielding is calculated as difference
122 between three yield values (of the mixture, and the two monocultures); a high
123 replication of all three communities is therefore required to compensate for the error
124 propagation in this calculation. However, model plant communities that contained the
125 two accessions Slavice-0 (Sav-0) and Umkirch-1 (Uk-1) overyielded consistently
126 across three substrates and across different pot sizes. We replicated this effect in a
127 second experiment with two different pot sizes and two plant densities
128 (**Supplementary Figure 1 B**). Across all experimental settings, mixtures of Sav-0
129 and Uk-1 yielded an average 5.6% more biomass (range: 0–12%) than expected based
130 on monoculture productivities. This effect is relatively large for a pot-based within-
131 species experiment. For comparison, the average overyielding in field trials with crop
132 variety mixtures typically ranges from 2 to 4% (Kiær et al., 2009; Borg et al., 2018;
133 Reiss and Drinkwater, 2018; Kristoffersen et al., 2020).

134

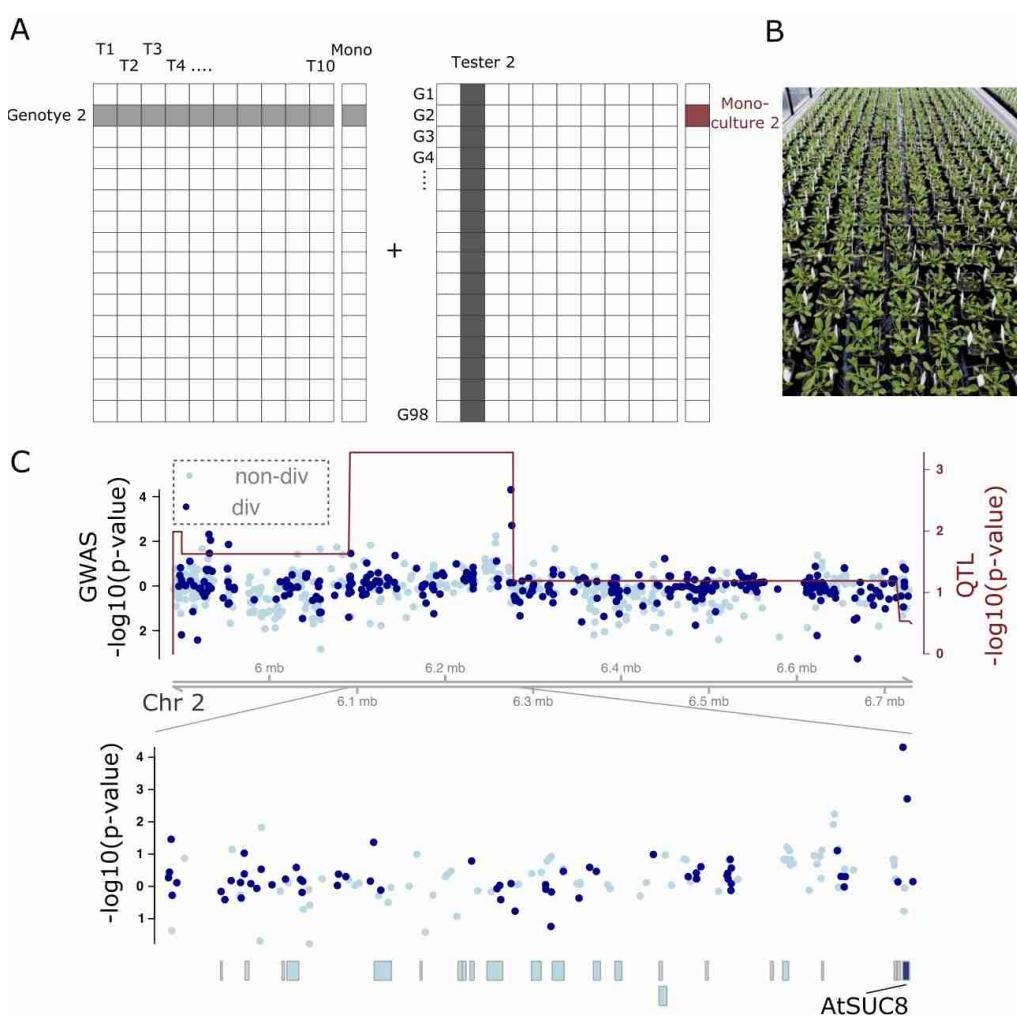

136 **Figure 1: Experimental approaches to the genetic dissection of positive diversity
137 effects. A.** A positive diversity effect (blue) in pair-wise mixtures denotes the
138 estimated deviation of mixture yield from expectations based on monoculture yields.
139 Estimating this deviation is difficult, because it combines three error terms (two
140 monoculture productivity estimates and one mixture productivity estimate). **B.**
141 Positive effects on productivity can be found with increasing species or increasing
142 genotype diversity within a community. Past work has put much effort into studying
143 the underlying functional trait differences, but our work is concerned with firstly
144 studying the underlying genetic differences, and then trying to infer functional trait
145 differences from genes **C.** Experimental setup used in this study, showing model
146 communities consisting of four plants and different pairwise genotype combinations.
147 **D.** Schematic representation of how a genotypic diversity effects (left; *Umkirch-1* +
148 *Slavice-0*) can be further dissected into genetic diversity effect, by the use of crosses
149 and genetic recombination followed by the assembly of new genotype pairs into model
150 communities. “+” (or “-”) denote community performances that are either higher (or
151 lower) than expected.

152

153 To overcome the challenges in determining overyielding due to low power resulting
154 from error propagation (**Figure 1 A**), we adopted competition diallels (**Figure 2 A**)
155 (Griffing, 1956; Harper, 1977; Griffing, 1989; Bossdorf et al., 2004). In these, general
156 and specific combining abilities (GCAs and SCAs, **Figure 2 A**) can be taken as
157 proxies for additive and non-additive mixing properties of genotypes and genotype
158 combinations. Here, we used a half-diallel containing 18 randomly selected
159 recombinant inbred lines (RIL) derived from a cross between Sav-0 and Uk-1, and the
160 two parental lines. These RILs had been created to allow the map-based cloning of the
161 BREVIS RADIX (BRX) gene, at which natural variation causes strong root
162 architectural differences between Sav-0 and Uk-1 (Mouchel et al., 2004) - differences
163 that may be expected to drive complementarity in genotype mixtures. The 20 chosen
164 genotypes were now grown in all pair-wise combinations. The diallel was replicated
165 four times, at different dates (temporal blocks). We further used two different
166 substrates (sand-rich and peat-rich soils, two blocks each). We determined the average
167 SCA across the four blocks for each of the 210 community compositions (190
168 genotype mixtures plus 20 monocultures). To adjust for differences in community
169 productivity between substrates, and to obtain a normal distribution of residuals, we
170 scaled the estimated SCAs by division by the average community biomass on the
171 respective substrate. SCA thus was expressed as effect relative to the mean
172 productivity of all communities on the substrate. Next, we tested if variation in SCA
173 among the different communities could be attributed to genetic differences at specific
174 genomic regions. Since the published marker density for the RIL population used here
175 was relatively low, we first constructed high-resolution genotype maps by whole-
176 genome re-sequencing of each line (Methods, **Supplementary Figure S 2 A**). We
177 then used marker-regression to compare SCAs of communities that were either mono-
178 allelic or bi-allelic at a given marker region, i.e., we tested for effects of allelic
179 diversity. We found that specific combining ability was positively associated with
180 genetic differences at a single quantitative trait locus (QTL) on chromosome 2. The
181 high-density marker map allowed us to resolve this QTL to a very small genomic
182 region, spanning approximately 178 kb (**Figure 2 B**). Mixtures that exhibited allelic
183 diversity in this region exhibited a 2.8% (+/- 0.8% s.e.m.) higher SCA than mixtures
184 that contained only one of the two alleles (“mono-allelic” communities, **Figure 2 C**).
185 At the same time, mono-allelic genotype mixtures (mixtures containing only the Sav-
186 0 or only the Uk-1 allele at the identified QTL on chromosome 2, but any allele

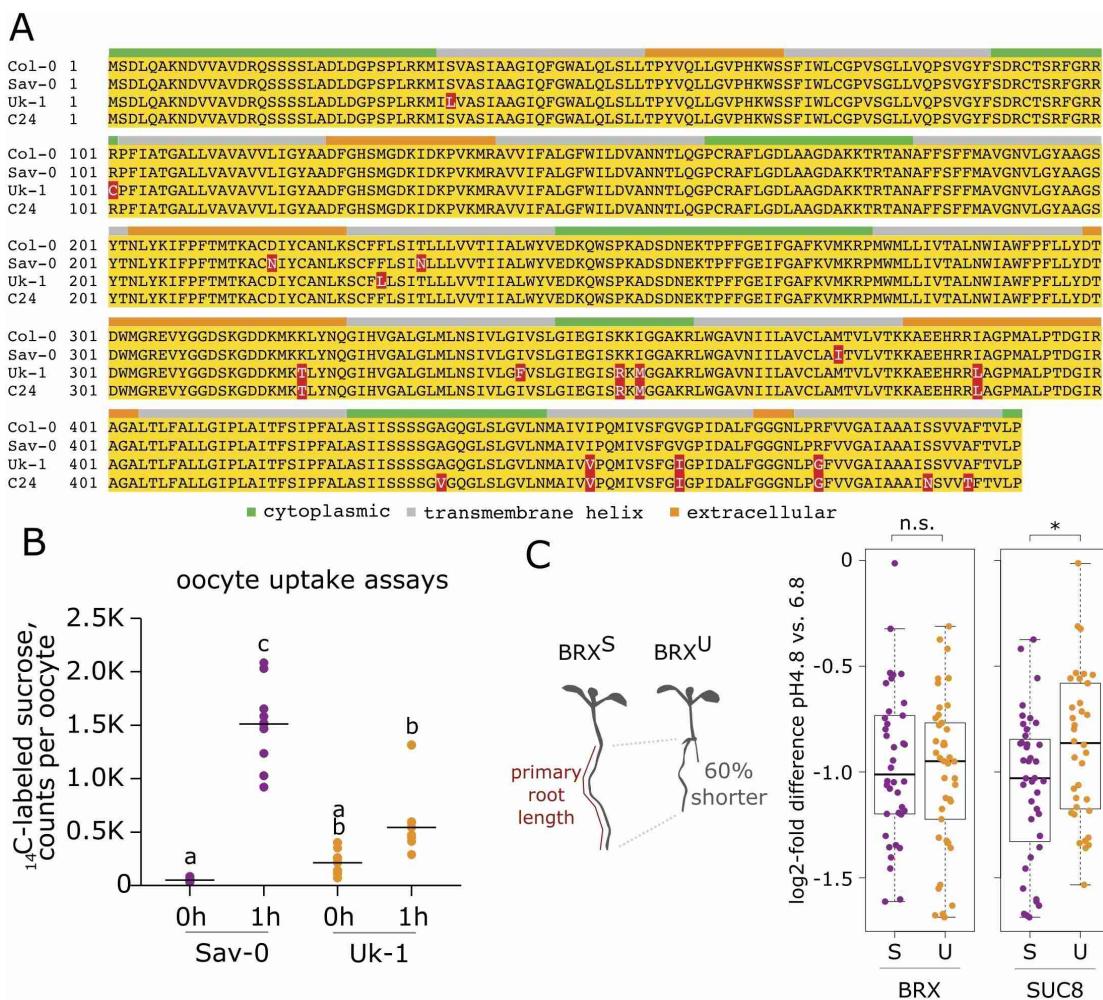
187 combination at other loci) had a 0.8% higher SCA than genotype monocultures (no
188 allelic differences at any locus). Therefore, a single QTL on chromosome 2 seems to
189 explain a high proportion of overyielding in Sav-0-Uk-1 genotype mixtures.

190


192 **Figure 2: Genotypic and allelic diversity effects.** **A.** Illustration of the concepts of
193 General and Specific Combining Abilities (GCA and SCA) derived from genotypic
194 communities assembled according to a competition half-diallel design. GCAs of
195 genotypes 1 and 4 are estimated from productivities of all mixtures in which these
196 genotypes occur, $SCA_{1,4}$ denotes the estimated productivity deviation of communities
197 containing these two genotypes after accounting for GCAs. **B.** QTL map of allelic
198 diversity associated with variation in SCA within genotypic mixtures. Blue and red
199 lines denote the different chromosomes. "BRX" indicates the location of the BREVIS
200 RADIUS gene. **C.** Boxplots showing SCA distributions of different communities:
201 genotypic monocultures (mono), genotypic mixtures but allelic monocultures at the
202 QTL on chromosome 2 (SS and UU), genotypic mixtures and allelic mixtures at the
203 QTL (SU). Green lines denote mean values +/- s.e.m. Genotypic mixtures overall
204 exhibit slightly but significantly higher standardized SCAs values than genotypic
205 monocultures (~ 0 vs -2.7%).

206

207 The Uk-1 accession was originally collected from the banks of the Dreisam river in
208 the Schwarzwald of southern Germany. This region is characterized by an edaphic
209 gradient with pH ranging from neutral to strongly acidic (**Supplementary Figure 3**).
210 Previous work has shown that the Uk-1 loss-of-function allele of the BREVIS RADIUS


211 (*BRX*) gene confers a fitness advantage to plants grown on acidic soil (Gujas et al.,
212 2012) and alters root architecture and plant competition (Mouchel et al., 2004; Shindo
213 et al., 2008). In our experiment, allelic diversity at the *BRX* locus was not associated
214 with community overyielding (**Figure 2 B**, on lower arm of chromosome 1).
215 Nevertheless, we speculated that the observed overyielding might have been driven by
216 niche complementarity that resulted from adaptive divergence along this edaphic
217 gradient. The identified QTL contained 16 protein-coding putative candidate genes
218 (**Supplementary Table S1**, putative pseudogenes excluded), including the
219 *Arabidopsis thaliana SUCROSE-PROTON-SYMPORER 8* (*AtSUC8*), a candidate
220 diversity-effect gene. The gene encodes for a proton symporter that is fueled by the
221 electrochemical gradient across the membrane. *AtSUC8* is predominantly expressed in
222 the root columella (Denyer et al., 2019; Graeff et al., 2021), and therefore in cells that
223 are in direct contact with the soil, whose pH might affect its activity. To explore the
224 idea that natural genetic variation at the *AtSUC8* locus could drive functional
225 complementarity among *Arabidopsis* genotypes, we re-analyzed previously published
226 data on competition between *Arabidopsis* genotypes (Wuest et al., 2019). Single
227 individuals of ten tester genotypes (including Sav-0 and Uk-1) each competed
228 separately with each genotype of a panel of 98 natural accessions, in a factorial design
229 (**Figure 3 A and B**). For each tester-competitor pair, we determined specific
230 combining abilities (SCAs) as in the present study (**Methods and Supplementary**
231 **Figure 4 A and B**). We then tested for associations of these SCAs with between-
232 genotype differences at single-nucleotide polymorphisms (SNPs) within the identified
233 QTL on chromosome 2. After adjustment for multiple testing, only one SNP was
234 significantly associated with a positive diversity effect within the QTL (**Figure 3C**,
235 test for differences between mono-allelic and bi-allelic mixture SCAs by linear
236 contrast $t_{947} = 4.1$; $P = 5 \cdot 10^{-5}$, Bonferroni-adjusted $P = 0.007$; standardized effect size
237 $= 3.2\%$). This SNP indeed resides in the *AtSUC8* coding region. Although this is not
238 unequivocal proof that the identified SNP is the causal genetic polymorphism (it may
239 instead be in tight linkage disequilibrium with the causal one), our finding provides
240 further evidence that genetic differences in or around the *AtSUC8* gene contribute to
241 community overyielding in genotype mixtures.

242

243 **Figure 3: Single nucleotide polymorphism differences at the AtSUC8 locus**
244 **associate with positive diversity effects in genotype mixtures.** A. The experimental
245 design represents a full-factorial combination of ten tester genotypes with each
246 genotype of a panel of 98 natural *Arabidopsis* accessions B. Picture of the experiment
247 C. The QTL mapping results (red line and right axis) overlaid with the genetic
248 association results (blue dots and left axis). Light blue dots denote SNPs at which the
249 *Sav-0* and the *Uk-1* tester lines do not differ (non-div), dark blue dots denote those at
250 which they do differ (div). Dots above zero indicated positive diversity-SCA
251 associations, dots below zero negative ones. Boxes in the bottom panel denote gene
252 regions, the *AtSUC8* gene region is colored dark blue.
253
254 SUC transporters are highly conserved within and across plant species. Sanger
255 sequencing of the *AtSUC8* alleles from *Uk-1*, *Sav-0* and the reference accession *Col-0*

256 confirmed the presence of several non-synonymous SNPs. Compared with the
257 reference allele, the *AtSUC8* coding region of Sav-0 carries three amino acid
258 replacements (one non-conservative) , and the Uk-1 allele carries eleven amino acid
259 polymorphisms (six non-conservative) (**Figure 4 A**). Among the latter, the K320T
260 and the R472G replacements might be functionally relevant, because they also occur
261 in the C24 accession which we had also used as tester genotype in the association
262 study described above. C24 shares seven amino acid polymorphisms with Uk-1 and
263 shows similar patterns of diversity effects across genotypes (**Supplementary Figure**
264 **4 C**). To determine whether the identified polymorphisms in Uk-1 and Sav-0 affect
265 *SUC8* function, we used sucrose uptake in a heterologous system as assay of function.
266 We expressed the Uk-1 and Sav-0 variants of *SUC8* in *Xenopus laevis* oocytes and
267 measured their sucrose uptake kinetics. Whereas *SUC8*^{Sav-0} conferred efficient sucrose
268 uptake as compared with mock-transformed oocytes, significantly lower import was
269 observed with *SUC8*^{Uk-1} (**Figure 4 B**). We next tested if such functional protein
270 differences also affect root growth under different pH conditions by growing 80 RILs
271 from the Uk-1×Sav-0 RIL population on two media with pH ~6.8 or ~4.8. For this,
272 we grew seedlings on these media and measured their root length. As expected, root
273 length was reduced (by ≈50%) at low pH and (by ≈60%) in genotypes carrying
274 *BRX*^{Uk-1} (**Figure 4 C**). Relative root length reduction at low pH versus neutral pH did
275 not vary among genotypes carrying different *BRX* alleles (**Figure 4 C**). However, the
276 relative root length reduction was significantly smaller when genotypes carried the
277 *AtSUC8*^{Uk-1} instead of the *AtSUC8*^{Sav-0} allele (linear model ANOVA $F_{1,74} = 5.8$; $P =$
278 0.02; **Figure 4 C**). These findings indicate that Uk-1 carries alleles at multiple loci,
279 including *BRX* and *AtSUC8*, that change root growth and allocation in response to
280 edaphic conditions, in particular environmental proton concentration. Overall, our
281 results thus suggest that genetic differences associated with community overyielding
282 in genotype mixtures are related to allele-specific differences in protein and root
283 functioning.

285 **Figure 4: Genetic variation in AtSUC8 affects protein function and is associated**
 286 **with different root growth sensitivities to changes in substrate proton**
 287 **concentrations. A. Protein sequence alignments of natural SUC8 variants. Amino**
 288 **acid differences from Col-0 reference sequence are highlighted in red B. Sucrose**
 289 **transport activities of the Sav-0 and Uk-1 protein variants in oocytes. Different letters**
 290 **denote significant differences in Tukey's post-hoc contrasts C. Primary root length**
 291 **differences of genotypes carrying either Sav-0 (S) or Uk-1 (U) alleles at the**
 292 **two loci (BRX and AtSUC8), and grown on agarose plates exhibiting different**
 293 **substrate pH. Relative root length of different RILs carrying either alleles at the BRX**
 294 **(right) or AtSUC8 locus (left); shown are log2-fold root length differences of each**
 295 **RIL at pH 4.8 vs. 6.8 (e.g., a log-fold difference of -1 denoting roots being 2-fold**
 296 **shorter at pH 4.8 than at pH 6.8); * = p-value < 0.05; n.s. = not significant.**

297 **Discussion**

298

299 Here, we used two complementary genetic strategies, QTL- and association-mapping,
300 to identify the genetic differences between *Arabidopsis* genotypes that overyield when
301 grown in mixed-genotype communities. We found that a large proportion of the
302 overyielding of mixtures of the *Arabidopsis* accessions Sav-0 and Uk-1 was due to
303 allelic diversity at a major-effect QTL on chromosome 2. Two aspects of this QTL
304 mapping study are worth noting. First, our QTL mapping resolution was very high
305 despite using only 18 recombinant lines and their parents. This was due to the
306 competition diallel experimental design in which genotypes with high-density marker
307 maps are systematically combined into different communities. Second, although
308 complex traits of individuals such as growth are often determined by genetic variants
309 at many loci, each with small effect (Lynch and Walsh, 1998; MacKay et al., 2009;
310 Wieters et al., 2021). Our results together with findings from recent studies (Wuest
311 and Niklaus, 2018; McGale et al., 2020; Barbour et al., 2022; Montazeaud et al.,
312 2022) suggest that complex community-level properties that depend on interactions
313 between plant individuals can have surprisingly simple genetic underpinnings. Our
314 work thus suggests that positive effects of plant diversity need not be irreducibly
315 complex emergent properties but can have simple causes that are identifiable at the
316 genetic level, even if the mixed genotypes differ at many positions along the genome.
317 We think that understanding the origins of overyielding may in fact – at least in some
318 cases – be simpler based on genetics than based on traits, where complementarity
319 seems to generally manifest itself as a high-dimensional phenomenon involving a
320 number of different traits (Montazeaud et al., 2020). The community genetic
321 approaches presented here and elsewhere (Frachon et al., 2019; McGale et al., 2020;
322 Turner et al., 2020; Sato et al., 2021; Subrahmaniam et al., 2021; Barbour et al., 2022;
323 Montazeaud et al., 2022) may thus provide an effective way to understand the
324 propagation of effects across different layers of biological organization, from genes to
325 communities and ecosystems.

326

327 Identifying the genes that are important for ecosystem processes may ultimately also
328 be useful to link ecological processes to some of the dominant evolutionary drivers

329 (Johnson and Stinchcombe, 2007; Crutsinger, 2016). In our study, we were able to
330 associate diversity at the *AtSUC8* locus with community-level overyielding. The
331 respective gene encodes for a proton-sucrose symporter, i.e., a membrane-associated
332 protein that utilizes a proton gradient to transport sucrose across membranes. The
333 gene is expressed predominantly in root tissues that are in direct contact with the soil.
334 Genetic differences at the *AtSUC8* locus affect protein function and were also
335 associated with differences in root growth, in a substrate - pH dependent way. Soil
336 chemistry, composition and texture and resulting effects on plant – plant interactions
337 are major selective forces, but also important drivers of community structure (Tilman
338 et al., 1997; McKane et al., 2002; Kahmen et al., 2006; Jiménez-Alfaro et al., 2018).
339 Consistent with the idea that the Uk-1 genotype exhibits traits that make it better
340 adapted to grow on acidic soil (Gujas et al., 2012), plants carrying the *AtSUC8*^{Uk-1}
341 allele showed root growth that was less sensitive to substrate acidification. However,
342 and perhaps surprisingly, genetic variation at the BRX locus itself, which had
343 previously been shown to underlie adaptive divergence along this environmental
344 gradient (Mouchel et al., 2004; Gujas et al., 2012), did not drive overyielding in our
345 model communities. Future work should be able to establish possible reasons for
346 these differences between *AtSUC8* and *BRX*, and the specific physiological and
347 morphological effects of the identified genetic variation at the *AtSUC8* locus and their
348 consequences for plant fitness under natural conditions.

349 One question that remains open is how specific aspects of SUC8-mediated trait
350 differences account for overyielding in genetically diverse communities. We think
351 that the different responses of root growth to changes in soil acidity associated with
352 the *AtSUC8* locus promote the partitioning of the physical soil space between plants.
353 In other words, these effects may result in different root foraging strategies in a
354 substrate heterogeneous in soil solution pH, resulting in more efficient use of the
355 available biotope space (Dimitrakopoulos and Schmid, 2004; Tylianakis et al., 2008;
356 Jousset et al., 2011). A pH gradient, possibly at a very small scale, would then
357 represent a niche dimension along which niche partitioning promotes community
358 productivity. Obviously, there may be different environmental settings under which
359 other traits, related to other genetic differences, may underly niche partitioning and
360 complementarity among plants. In each case, the trait-based approaches currently
361 applied for the study of ecological phenomena such as overyielding might strongly

362 profit from gene-based approaches, ultimately not only at the within- but also at the
363 between-species level. On the other hand, our work may offer new ways to design
364 more sustainable cropping systems, in which species or genotype diversity can
365 improve both yield and yield stability in the face of biotic and abiotic stress (Finckh et
366 al., 2000; Zhu et al., 2000; Brooker et al., 2015; Litrico and Violette, 2015;
367 Kristoffersen et al., 2020; Wuest et al., 2021). Here, the gene-centered approach may
368 complement currently used trait-centered methods to facilitate the design of high-
369 performing mixtures.

370

371 **Materials and Methods**

372

373 Germplasm

374 The Sav-0 and Uk-1 seeds were initially obtained from the Arabidopsis Biological
375 Resource Center at Ohio State University. The Sav-0*Uk-1 RIL population was
376 described previously (Mouchel et al., 2004). The lines used for the association
377 analysis are described in detail in (Wuest et al., 2019)

378

379 Plants and growth conditions

380 Seeds were sown directly on soil and germinated in trays covered with plastic lids
381 under high humidity in a growth chamber at the University of Zurich Irchel Campus
382 (16hrs light, 8 hrs dark; 20°C, 60% humidity). The soil substrates are described
383 below. After approximately two weeks, the trays were moved into a greenhouse
384 chamber, where day-time and night-time temperatures were maintained around 20–25
385 °C and 16–20 °C, respectively. Additional light was provided if required to achieve a
386 photoperiod of 14–16 hours. Seedlings were thinned continuously until a single
387 healthy seedling remained per position. The pots were watered *ad libitum*, and in case
388 of high herbivory pressure by larvae of the dark-winged fungus gnat the insecticide
389 ActaraG (Syngenta Agro AG) was applied according to the manufacturer's
390 recommendation. The date of harvesting was determined through the occurrence of 5–
391 10 dehiscent siliques on the earliest flowering genotypes in a given block. The
392 aboveground biomass was dried at 65°C for at least three days and then weighed.

393

394 Assessing accession pair mixtures: Nine accession pairs, for which recombinant
395 inbred line populations are publicly available, were chosen for the screen of pair-wise
396 interactions through comparisons of monoculture and two-genotype mixtures. A
397 further pair was chosen based on a large estimate of mixture effects in a previous
398 study. These selected genotypes were grown as either monocultures or pair-wise
399 mixtures on different soils and in pots of different size as follows: peat-rich
400 Einheitserde ED73 soil substrate (pH ~5.8, N 250 mg L⁻¹; P₂O₅ 300 mg L⁻¹; 75%
401 organic matter content; Gebrüder Patzer GmbH, Sinntal-Jossa, Germany) and in
402 6*6*5.5 cm or 7*7*8 cm or 9*9*10 cm pot sizes, a 4:1 mixture of quartz sand:ED73
403 and 7*7*8 cm pots, and *Arabidopsis* legacy soil, i.e., soil collected from an unrelated
404 previous experiment on which *Arabidopsis* had grown (originally ED73). Each
405 monoculture or mixture composition in each soil or pot size was grown in each of
406 seven blocks, with the exception of communities on sand-rich and legacy-soil
407 conditions. The legacy and sandy soil conditions were included only in five of the
408 blocks for logistical reasons. Community overyielding in genotypic mixtures
409 containing Sav-0 and Uk-1 was confirmed by growing either i) four plants in medium
410 sized pots (7*7*8 cm); ii) four plants in small pots (5.5*5.5*6 cm) or iii) two plants in
411 small pots, all containing ED73 soil. For each pot/density type, 48 mixtures and 24 of
412 each monoculture were sown, treated and processed as described above.

413

414 QTL mapping and association study: The QTL-mapping experiment was designed as
415 a half-diallel containing all pair-wise combinations, and monocultures of, 18 RILs
416 derived from Sav-0 and Uk-1 (Mouchel et al., 2004) and the two parents. The
417 experiment was performed in four sequential blocks; we used a soil consisting of 3
418 parts ED73 and 1 part quartz sand for the first two blocks. However, because seedling
419 establishment was rather poor on this soil, we changed soil type in blocks three and
420 four to 1 part ED73 and 3 parts sand. Plants were grown and harvested as described
421 above (42–51 days after sowing).

422

423 Experimental conditions for the genome-wide association experiment are described in
424 detail elsewhere (Wuest et al., 2019). In short, the association study experimental
425 design consisted of a full factorial competition treatment of growing ten tester
426 genotypes (Sav-0; Uk-1; Col-0; Sf-2; St-0; C24; Sha; Bay-0; Ler-1; Cvi-0) with each
427 genotype of an association panel of 98 natural *Arabidopsis* accessions (a subset of the

428 RegMap population (Horton et al., 2012), including all monocultures and in two
429 replicate blocks. Each community consisted of two plants (one plant per genotype).
430 The raw data of the association study are available at
431 <https://zenodo.org/record/2659735#.YCt0u2Mo8mI>.

432

433 Genotyping and line re-sequencing

434 For the 18 RIL genotypes used in the QTL-mapping competition diallel, we
435 performed whole-genome resequencing and genotype reconstructions before the
436 genetic analysis. DNA extractions for genome resequencing, library preparation,
437 sequencing and genome reconstruction was performed as previously described (Wuest
438 and Niklaus, 2018), whereby the genome reconstruction approach broadly followed
439 the method described by Xie and colleagues (Xie et al., 2010). Raw reads of
440 resequencing the parental accessions Sav-0 and Uk-1 were downloaded from the
441 NCBI SRA homepage (www.ncbi.nlm.nih.gov/sra, SRX011868 and SRX145024).
442 To genotype a wider set of RIL lines at the *AtSUC8* locus (At2g14670), a Cleaved
443 Amplified Polymorphism (CAPS)-marker assay was developed based on a EcoRV-
444 restriction site in the SUC8 coding sequence that is present in the Sav-allele but
445 missing in the Uk-Allele using PCR primers 5'-GGA GAG TGT TGT TAG CCA
446 CGT C-3' and 5'-ACG ATG TGG TAG CTG TAG ATA GAC-3'. DNA extractions
447 for CAPS-genotyping were performed using the protocol following Edwards and
448 colleagues (Edwards et al., 1991). For four RIL genotypes where the PCR-genotyping
449 yielded ambiguous results, so we inferred it from flanking markers AtMSQTsnp 123:
450 (Chr 2 pos 1798324) and AtMSQTsnp 138 (Chr 2 pos 8370574) (Kim et al., 2007).
451 We also tried to identify RIL-lines that exhibited heterozygosity at the *AtSUC8* locus
452 to isolate heterogeneous inbred families, but failed to find any among the 101 lines
453 screened.

454 To verify polymorphisms identified in the resequencing, Sanger sequencing of the
455 *AtSUC8* alleles was performed by amplifying the gene body from genomic DNA
456 using oligonucleotides 5'-ATG AGT GAC CTC CAA GCA AAA AAC GAT-3' and
457 5'- TTA AGG TAA CAC GGT AAA TGC CAC AAC ACT GC-3'. The PCR
458 fragments were then sequenced using those same oligonucleotides as well as
459 oligonucleotide 5'-CAC AAT GAC TAA AGC ATG TGA C-3'. The C24 allele of
460 *SUC8* was retrieved from published sequence data (Jiao and Schneeberger, 2020).

461 Note that because of genomic rearrangements, the gene ID for *AtSUC8* (AtC24-
462 2G29550) in the C24 accession differs from the other accessions.

463

464 Oocyte uptake assays

465 Oocyte assays were performed essentially as described (Fastner et al., 2017). Briefly,
466 the SUC8 cDNAs were cloned into pOO2 (Ludewig et al., 2002). cRNA was
467 synthesized using the mmessage mmachine kit (Lifetechnologies). Oocyte s were
468 injected with 50 nL of 150 ng/µL cRNA and incubated in Barth's (88 mM NaCl, 1
469 mM KCl, 2.4 mM NaHCO₃, 10 mM HEPES-NaOH, 0.33 mM Ca(NO₃)₂ x 4 H₂O,
470 0.41 mM CaCl₂ x 2 H₂O, 0.82 mM MgSO₄ x 7 H₂O pH7.4) for four days. For uptake
471 experiments 10 oocytes were kept in 1 ml Barth solution supplemented with [³H]-
472 sucrose or [¹⁴C]-sucrose at a final concentration of 1 mM or substrate-free control for
473 one hour. Afterwards, Oocytes were washed twice in Barth solution containing
474 Gentamycin and were then separated into scintillation vials. 100 µl of 10 % SDS
475 (w/v) was added to each scintillation vial and the samples were incubated for 10
476 minutes. Then 2 mL of scintillation cocktail (Rotiszint eco plus, Roth, Germany) was
477 added and the vials were vortexed vigorously. Radioactivity was determined by liquid
478 scintillation counting. Experiments were carried out using [¹⁴C]-sucrose and repeated
479 with [³H]-sucrose yielding essentially identical results. [¹⁴C]-sucrose (536 mCi/mmol,
480 1 mCi/ml) and [³H]-sucrose (3 Ci/mmol, 1 mCi/ml) were purchased from Hartmann
481 Analytic, Braunschweig, Germany)

482

483 Plate assays and root measurements

484 Seeds were surface-sterilized with 70% ethanol, followed by 15 minutes in a solution
485 containing 1% bleach and 0.01% Triton-X100 and three sequential washes, then left
486 for stratification at 4°C overnight. Square MS plates (12 cm) were prepared with 0.8%
487 agarose (instead of agar) and containing 1% sucrose (w/v). The pH was adjusted to
488 4.5 or 7 using hydrochloric acid or potassium hydroxide and the medium autoclaved.
489 After autoclaving, the measured media pH was again determined (4.8 and 6.8). Six
490 seeds of each of six different genotypes were sown on a plate pair (identical sowing
491 pattern on pH 4.8 and 6.8) and grown in a climate chamber with long-day conditions
492 (16 hours light at 20°C; 8 hours dark at 16°C) for seven days. Plates were scanned
493 twice, once after 3 days and again after 7 days using an EPSON flatbed scanner

494 (model 2450). The primary root length of seedlings was measured using the Fiji
495 software (Schindelin et al., 2012).

496

497 Statistical analyses

498 In the screen for consistently positive pairwise interactions between genotypes, we
499 fitted a linear model of community biomass as function of genotype composition and
500 substrate type (i.e., substrate composition or volume), including a block term.
501 Overyielding of a genotype pair on a given substrate was then estimated as linear
502 contrast between the average monoculture productivity and the mixture productivity
503 (i.e., specifying the contrast matrix $K=[-0.5, -0.5, 1]$, equivalent to the term $1m_{AB} -$
504 $0.5m_{AA} - 0.5m_{BB}$ for the case of a monocultures and mixtures of genotypes A and B),
505 using the `glht`-function of the `multcomp`-package (Hothorn et al., 2008).

506 The mapping experiment was performed on two different substrates (two replicated
507 blocks each), and both mean and variance of community productivities differed across
508 substrates. The blocks with more nutrient-rich substrate also had some pots with
509 missing plants due to seedling mortality, which were removed for the analysis. In
510 order to combine all four blocks for the estimation of specific combining abilities, we
511 therefore first estimated mean community biomass within substrate and calculated
512 specific combining abilities (SCA) within substrates from average total pot biomass
513 values (BM) as $BM = Z*u + SCA$ whereby Z is the design matrix describing genotype
514 composition of a mixture. To make SCAs comparable across substrates, we divided
515 SCA through the mean pot biomass produced on this substrate. The standardized
516 SCA_{ij} value of a genotype composition (containing genotypes G_i and G_j) was then
517 estimated by averaging across substrates. SCA outliers were removed if they differed
518 more than two standard deviations from the population mean in their absolute value.
519 QTL mapping of standardized mixture SCA estimates was then performed by a
520 marker regression approach, where we first fitted a linear model predicting *SCA from*
521 *allelic composition (3 levels, SS, UU, SU)*, followed by a contrast between allelic
522 monocultures and mixtures (e.g., $SCA_{SU} - 0.5(SCA_{UU} + SCA_{SS})$), again using the `glht`
523 function

524 A LOD score (-log₁₀(p-value) of 3 was considered significant, as determined by
525 large-scale simulations (Van Ooijen, 1999) assumptions: two QTL genotypes, “bi-
526 allelic” and “mono-allelic” and an average chromosome length of 200 cM for
527 *Arabidopsis* genotype pairs, where recombination events are combined in

528 communities). Such a threshold is also in agreement with our previous work
529 comparing this approach to a standard QTL mapping method and a LOD-cutoff based
530 on re-sampling (Wuest and Niklaus, 2018).

531

532 Analysis of association-study competition experiment

533 The association study represents a factorial design in which each of ten different
534 genotype (testers) was grown in combination with each of 98 different *Arabidopsis*
535 genotypes, with all monocultures realized too. This design was replicated in two
536 blocks. Pots with missing data (e.g., due to seedling mortality) were removed from the
537 analysis. A genotype's general combining ability was estimated as described above
538 within each block and values were then averaged across blocks.

539 Pot biomass depended non-linearly on average genotype GCA (Supplementary Figure
540 4). To determine SCAs, we therefore used a quadratic form of the mean GCA to
541 adjust for this non-linearity. Marker regressions on these SCA values for the SNPs
542 within the QTL interval were performed as described for the QTL mapping approach
543 described above.

544 **Author contributions**

545

546 SEW conducted and analyzed the screen for overyielding amongst *Arabidopsis*
547 accessions with support from ME, and the QTL mapping experiment, with support
548 from BS and PAN. CSH provided the genotyped Uk-1 x Sav-0 RIL population. SEW
549 and NP performed the association study with input from UG. SR and CSH performed
550 the sequence analyses of the *AtSUC8* gene. LS and UH conducted the oocyte uptake
551 assays. SEW and UG raised funding. SEW together with PAN wrote the first draft of
552 the manuscript. All authors revised and approved the final version of the manuscript.

553

554 **Acknowledgements**

555

556 We thank Matthias Philipp, Daniela Stöckli and Nicole Ponta for help with plant
557 maintenance and measurements and Matthias Furler for technical support in the
558 greenhouse. This work was supported by the University of Zurich, Agroscope, grants
559 from the Swiss National Science Foundation (Ambizione Fellowship
560 PZ00P3_148223) and the University Research Priority Program “Evolution in

561 Action” and of the Swiss National Science Foundation to S.E.W., and Advanced
562 Grant of the European Research Council (AdG #250358) to U.G..

563 **Data availability**

564

565 The datasets described are available through the Zenodo data repository
566 (DOI:10.5281/zenodo.7104830).

567

568 **Competing interests**

569 The authors declare no competing financial interests.

570

571 **References**

572

573 **Barbour MA, Kliebenstein DJ, Bascompte J** (2022) A keystone gene underlies the
574 persistence of an experimental food web. *Science* **376**: 70–73

575 **Barry KE, Mommer L, van Ruijven J, Wirth C, Wright AJ, Bai Y, Connolly J, De Deyn GB, de Kroon H, Isbell F, et al** (2019) The Future of
576 Complementarity: Disentangling Causes from Consequences. *Trends Ecol Evol*
577 **34**: 167–180

579 **Bongers FJ, Schmid B, Durka W, Li S, Bruelheide H, Hahn CZ, Yan H, Ma K, Liu X** (2020) Genetic richness affects trait variation but not community
580 productivity in a tree diversity experiment. *New Phytol* **227**: 744–756

582 **Borg J, Kiær LP, Lecarpentier C, Goldringer I, Gauffreteau A, Saint-Jean S, Barot S, Enjalbert J** (2018) Unfolding the potential of wheat cultivar mixtures: A meta-analysis perspective and identification of knowledge gaps. *F Crop Res*
583 **221**: 298–313

586 **Bosendorf O, Prati D, Auge H, Schmid B** (2004) Reduced competitive ability in an
587 invasive plant. *Ecol Lett* **7**: 346–353

588 **Brooker RW, Bennett AE, Cong WF, Daniell TJ, George TS, Hallett PD, Hawes C, Iannetta PPM, Jones HG, Karley AJ, et al** (2015) Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. *New Phytol*
589 **206**: 107–117

592 **Cadotte MW** (2017) Functional traits explain ecosystem function through opposing
593 mechanisms. *Ecol Lett* **20**: 989–996

594 **Crawford KM, Whitney KD** (2010) Population genetic diversity influences
595 colonization success. *Mol Ecol* **19**: 1253–1263

596 **Crutsinger GM** (2016) A community genetics perspective: Opportunities for the
597 coming decade. *New Phytol* **210**: 65–70

598 **Crutsinger GM, Collins MD, Fordyce JA, Gompert Z, Nice CC, Sanders NJ**
599 (2006) Plant genotypic diversity predicts community structure and governs an
600 ecosystem process. *Science* **313**: 966–968

601 **Denyer T, Ma X, Klesen S, Scacchi E, Nieselt K, Timmermans MCP** (2019)
602 Spatiotemporal Developmental Trajectories in the *Arabidopsis* Root Revealed
603 Using High-Throughput Single-Cell RNA Sequencing. *Dev Cell* **48**: 840-852.E5

604 **Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer**
605 **M, Wirth C, Prentice IC, et al** (2015) The global spectrum of plant form and
606 function. *Nature* **529**: 167–171

607 **Dimitrakopoulos PG, Schmid B** (2004) Biodiversity effects increase linearly with
608 biotope space. *Ecol Lett* **7**: 574–583

609 **Fastner A, Absmanner B, Hammes UZ** (2017) Use of *Xenopus laevis* Oocytes to
610 Study Auxin Transport. *Methods Mol Biol* **1497**: 259–270

611 **Finckh MR, Gacek ES, Goyeau H, Lannou C, Merz U, Mundt CC, Munk L,**
612 **Nadziak J, Newton AC, De Vallavielle-Pope C, et al** (2000) Cereal variety and
613 species mixtures in practice, with emphasis on disease resistance. *Agronomie* **20**:
614 813–837

615 **Frachon L, Mayjonade B, Bartoli C, Hautekèete NC, Roux F** (2019) Adaptation to
616 plant communities across the genome of *Arabidopsis thaliana*. *Mol Biol Evol* **36**:
617 1442–1456

618 **Graeff M, Rana S, Wendrich JR, Dorier J, Eekhout T, Aliaga Fandino AC, Guex**
619 **N, Bassel GW, De Rybel B, Hardtke CS** (2021) A single-cell morpho-
620 transcriptomic map of brassinosteroid action in the *Arabidopsis* root. *Mol Plant*
621 **14**: 1–15

622 **Griffing B** (1956) Concept of General and Specific Combining Ability in Relation to
623 Diallel Crossing Systems. *Aust J Biol Sci* **9**: 463–493

624 **Griffing B** (1989) Genetic-Analysis of Plant Mixtures. *Genetics* **122**: 943–956

625 **Gujas B, Alonso-Blanco C, Hardtke CS** (2012) Natural *Arabidopsis brx* loss-of-
626 function alleles confer root adaptation to acidic soil. *Curr Biol* **22**: 1962–1968

627 **Harper JL** (1977) Population Biology of Plants. Academic Press, London

628 **Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M,**
629 **Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, et al** (1999)

630 Plant diversity and productivity experiments in European grasslands. *Science*
631 **286**: 1123–1127

632 **Horton MW, Hancock AM, Huang YS, Toomajian C, Atwell S, Auton A, Mulyiati NW, Platt A, Sperone FG, Vilhjálmsdóttir BJ, et al** (2012) Genome-wide patterns of genetic variation in worldwide *Arabidopsis thaliana* accessions from the RegMap panel. *Nat Genet* **44**: 212–216

636 **Hothorn T, Bretz F, Westfall P** (2008) Simultaneous inference in general parametric models. *Biometrical J* **50**: 346–363

638 **Huang Y, Chen Y, Castro-Izaguirre N, Baruffol M, Brezzi M, Lang A, Li Y, Härdtle W, Von Oheimb G, Yang X, et al** (2018) Impacts of species richness on productivity in a large-scale subtropical forest experiment. *Science* **362**: 80–83

642 **Hughes AR, Stachowicz JJ** (2004) Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. *Proc Natl Acad Sci* **101**: 8998–9002

644 **Jiao WB, Schneeberger K** (2020) Chromosome-level assemblies of multiple *Arabidopsis* genomes reveal hotspots of rearrangements with altered evolutionary dynamics. *Nat Commun* **11**: 989

647 **Jiménez-Alfaro B, Girardello M, Chytrý M, Svenning J-C, Willner W, Gégout J-C, Agrillo E, Campos JA, Jandt U, Kącki Z, et al** (2018) History and environment shape species pools and community diversity in European beech forests. *Nat. Ecol. Evol.* **2**: 483–490

651 **Johnson MTJ, Stinchcombe JR** (2007) An emerging synthesis between community ecology and evolutionary biology. *Trends Ecol Evol* **22**: 250–257

653 **Jousset A, Schmid B, Scheu S, Eisenhauer N** (2011) Genotypic richness and dissimilarity opposingly affect ecosystem functioning. *Ecol Lett* **14**: 537–545

655 **Kahmen A, Renker C, Unsicker SB, Buchmann N** (2006) Niche complementarity for nitrogen: An explanation for the biodiversity and ecosystem functioning relationship? *Ecology* **87**: 1244–1255

658 **Kiær LP, Skovgaard IM, Østergård H** (2009) Grain yield increase in cereal variety mixtures: A meta-analysis of field trials. *F Crop Res* **114**: 361–373

660 **Kim S, Plagnol V, Hu TT, Toomajian C, Clark RM, Ossowski S, Ecker JR, Weigel D, Nordborg M** (2007) Recombination and linkage disequilibrium in *Arabidopsis thaliana*. *Nat Genet* **39**: 1151–1155

663 **Kraft NJB, Godoy O, Levine JM** (2015) Plant functional traits and the multidimensional nature of species coexistence. *Proc Natl Acad Sci U S A* **112**: 797–802

666 **Kristoffersen R, Jørgensen LN, Eriksen LB, Nielsen GC, Kiær LP** (2020) Control
667 of *Septoria tritici* blotch by winter wheat cultivar mixtures: Meta-analysis of 19
668 years of cultivar trials. *F Crop Res* **249**: 107696

669 **Lavorel S, Garnier E** (2002) Predicting changes in community composition and
670 ecosystem functioning from plant traits: Revisiting the Holy Grail. *Funct Ecol*
671 **16**: 545–556

672 **Litrico I, Violle C** (2015) Diversity in Plant Breeding: A New Conceptual
673 Framework. *Trends Plant Sci* **20**: 604–613

674 **Loreau M** (2000) Biodiversity and ecosystem functioning: Recent theoretical
675 advances. *Oikos* **91**: 3–17

676 **Ludewig U, Von Wieren N, Frommer WB** (2002) Uniport of NH₄⁺ by the root hair
677 plasma membrane ammonium transporter LeAMT1;1. *J Biol Chem* **277**: 13548–
678 13555

679 **Lynch M, Walsh B** (1998) Genetics and Analysis of Quantitative Traits. Sinauer,
680 Sunderland, Mass. doi: 10.1086/318209

681 **MacKay TFC, Stone EA, Ayroles JF** (2009) The genetics of quantitative traits:
682 Challenges and prospects. *Nat Rev Genet* **10**: 565–577

683 **McGale E, Valim H, Mittal D, Morales Jimenez J, Halitschke R, Schuman MC,**
684 **Baldwin IT** (2020) Determining the scale at which variation in a single gene
685 changes population yields. *Elife* **9**: e53517

686 **McGill BJ, Enquist BJ, Weiher E, Westoby M** (2006) Rebuilding community
687 ecology from functional traits. *Trends Ecol Evol* **21**: 178–185

688 **McKane RB, Johnson LC, Shaver GR, Nadelhoffer KJ, Rastetter EB, Fry B,**
689 **Giblin AE, Kielland K, Kwlatkowski BL, Laundre JA, et al** (2002) Resource-
690 based niches provide a basis for plant species diversity and dominance in arctic
691 tundra. *Nature* **415**: 68–71

692 **Montazeaud G, Flutre T, Ballini E, Morel J-B, David J, Girodolle J, Rocher A,**
693 **Ducasse A, Violle C, Fort F, et al** (2022) From cultivar mixtures to allelic
694 mixtures: opposite effects of allelic richness between genotypes and genotype
695 richness in wheat. *New Phytol* **233**: 2573–2584

696 **Montazeaud G, Violle C, Roumet P, Rocher A, Ecarnot M, Compan F, Maillet**
697 **G, Fort F, Fréville H** (2020) Multifaceted functional diversity for multifaceted
698 crop yield: Towards ecological assembly rules for varietal mixtures. *J Appl Ecol*
699 **57**: 2285–2295

700 **Mouchel CF, Briggs GC, Hardtke CS** (2004) Natural genetic variation in
701 *Arabidopsis* identifies *BREVIS RADIX*, a novel regulator of cell proliferation and
702 elongation in the root. *Genes Dev* **18**: 700–714

703 **Van Ooijen JW** (1999) LOD significance thresholds for QTL analysis in
704 experimental populations of diploid species. *Heredity* **83**: 613–624

705 **Plas F Van Der, Schröder-Georgi T, Weigelt A, Barry K, Meyer S, Alzate A, Barnard RL, Buchmann N, Kroon H De, Ebeling A, et al** (2020) Plant traits
706 alone are poor predictors of ecosystem properties and long-term ecosystem
707 functioning. *Nat Ecol Evol* **4**: 1602–1611

709 **Reich PB, Tilman D, Isbell F, Mueller K, Hobbie SE, Flynn DFB, Eisenhauer N**
710 (2012) Impacts of biodiversity loss escalate through time as redundancy fades.
711 *Science* **336**: 589–592

712 **Reiss ER, Drinkwater LE** (2018) Cultivar mixtures: A meta-analysis of the effect of
713 intraspecific diversity on crop yield. *Ecol Appl* **28**: 62–77

714 **Roscher C, Schumacher J, Schmid B, Schulze ED** (2015) Contrasting effects of
715 intraspecific trait variation on trait-based niches and performance of legumes in
716 plant mixtures. *PLoS One* **10**: e0119786

717 **Sato Y, Yamamoto E, Shimizu KK, Nagano AJ** (2021) Neighbor GWAS:
718 incorporating neighbor genotypic identity into genome-wide association studies
719 of field herbivory. *Heredity* **126**: 597–614

720 **Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al** (2012) Fiji: An open-source platform for biological-image analysis. *Nat Methods* **9**: 676–682

723 **Shindo C, Bernasconi G, Hardtke CS** (2008) Intraspecific competition reveals
724 conditional fitness effects of single gene polymorphism at the *Arabidopsis* root
725 growth regulator *BRX*. *New Phytol* **180**: 71–80

726 **Subrahmaniam HJ, Roby D, Roux F** (2021) Toward Unifying Evolutionary
727 Ecology and Genomics to Understand Positive Plant–Plant Interactions Within
728 Wild Species. *Front Plant Sci* **12**: 1357

729 **Tilman D, Lehman CL, Thomson KT** (1997) Plant diversity and ecosystem
730 productivity: theoretical considerations. *Proc Natl Acad Sci U S A* **94**: 1857–
731 1861

732 **Tilman D, Reich PB, Knops JMH** (2006) Biodiversity and ecosystem stability in a
733 decade-long grassland experiment. *Nature* **441**: 629–632

734 **Tilman D, Wedin D, Knops J** (1996) Productivity and sustainability influenced by
735 biodiversity in grassland ecosystems. *Nature* **379**: 718–720

736 **Turnbull LA, Isbell F, Purves DW, Loreau M, Hector A** (2016) Understanding the
737 value of plant diversity for ecosystem functioning through niche theory. *Proc. R. Soc. London B Biol. Sci.* **283**:

739 **Turner KG, Lorts CM, Haile AT, Lasky JR** (2020) Effects of genomic and
740 functional diversity on stand-level productivity and performance of non-native
741 *Arabidopsis*. *Proc R Soc B Biol Sci* **287**: 20202041

742 **Tylianakis JM, Rand TA, Kahmen A, Klein AM, Buchmann N, Perner J, Tscharntke T** (2008) Resource heterogeneity moderates the biodiversity-function relationship in real world ecosystems. *PLoS Biol* **6**: 947–956

745 **Violle C, Jiang L** (2009) Towards a trait-based quantification of species niche. *J Plant Ecol* **2**: 87–93

747 **Wieters B, Steige KA, He F, Koch EM, Ramos-Onsins SE, Gu H, Guo YL, Sunyaev S, de Meaux J** (2021) Polygenic adaptation of rosette growth in *Arabidopsis thaliana*. *PLoS Genet* **17**: e1008748

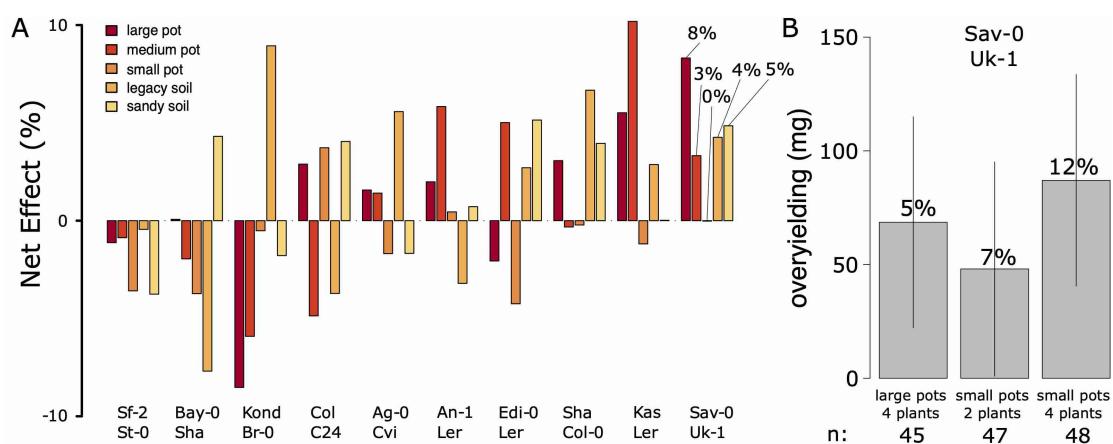
750 **Wright IJ, Westoby M, Reich PB, Oleksyn J, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornellissen JHC, et al** (2004) The worldwide leaf economics spectrum. *Nature* **428**: 821–827

753 **Wuest SE, Niklaus PA** (2018) A plant biodiversity effect resolved to a single chromosomal region. *Nat Ecol Evol* **2**: 1933–1939

755 **Wuest SE, Peter R, Niklaus PA** (2021) Ecological and evolutionary approaches to improving crop variety mixtures. *Nat Ecol Evol* **5**: 1068–1077

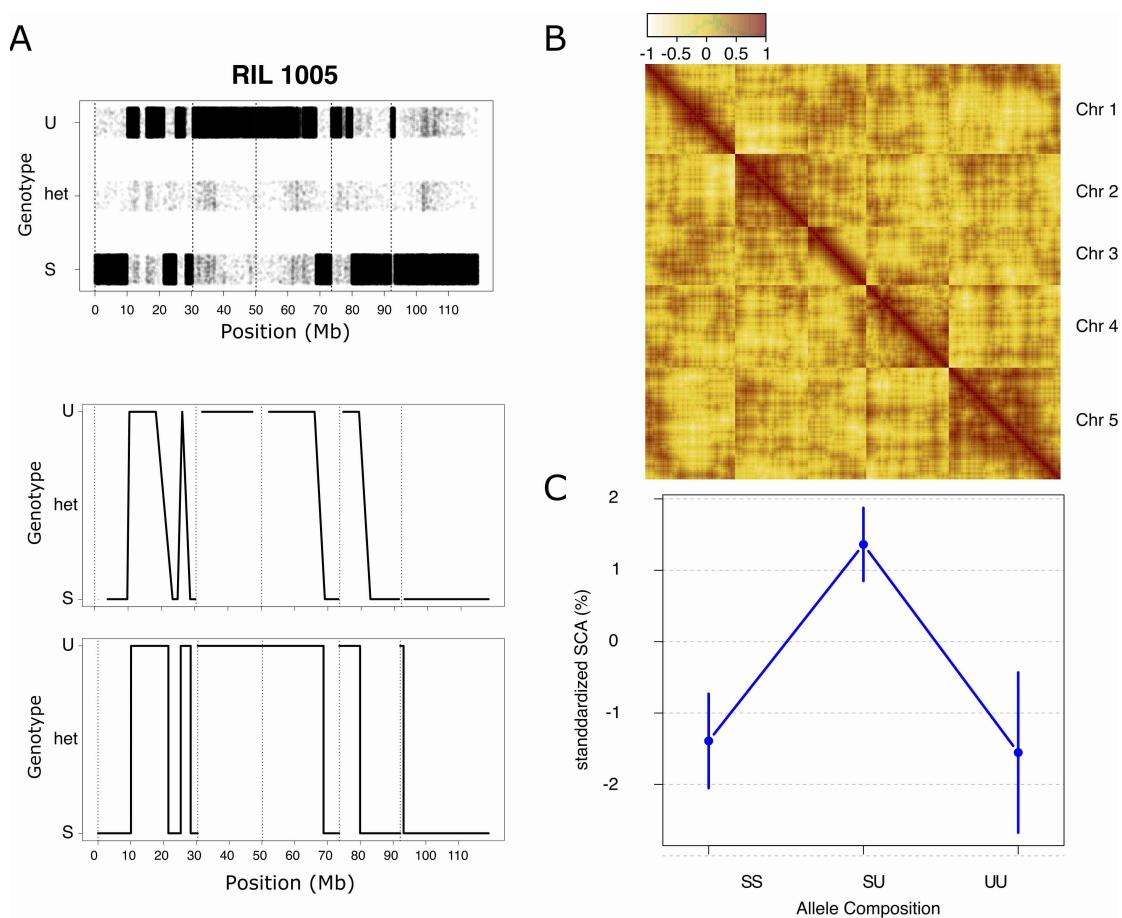
757 **Wuest SE, Pires ND, Luo S, Vasseur F, Messier J, Grossniklaus U, Niklaus PA** (2019) Increasing plant group productivity through latent genetic variation for cooperation. *bioRxiv*. doi: 10.1101/641449

760 **Xie W, Feng Q, Yu H, Huang X, Zhao Q, Xing Y, Yu S, Han B, Zhang Q** (2010) Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. *Proc Natl Acad Sci* **107**: 10578–10583

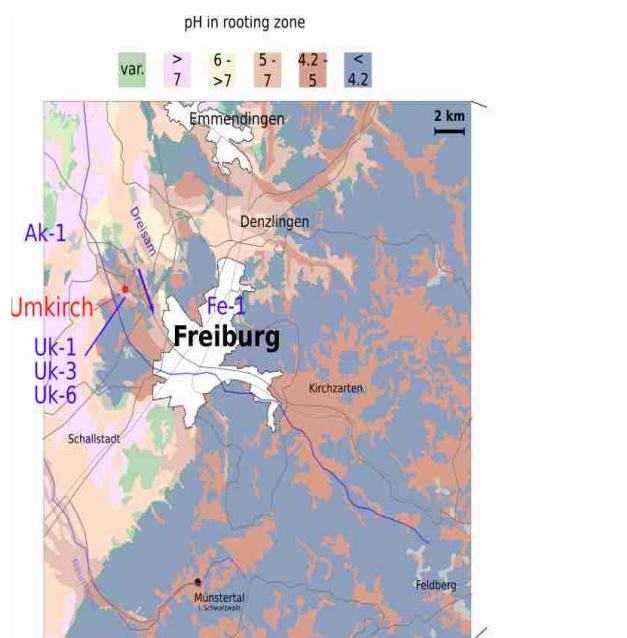

763 **Zhu Y, Chen H, Fan J, Wang Y, Li Y, Chen J, Fan JX, Yang S, Hu L, Leung H, et al** (2000) Genetic diversity and disease control in rice. *Nature* **406**: 718–722

765 **Zuppinger-Dingley D, Schmid B, Petermann JS, Yadav V, De Deyn GB, Flynn DFB** (2014) Selection for niche differentiation in plant communities increases biodiversity effects. *Nature* **515**: 108–111

768


769 **Supplementary Figures**

770



771 **Supplementary Figure 1 A.** A screen for consistent genotypic diversity effects
772 between divergent *Arabidopsis* accession pairs. Shown are estimates of net
773 overyielding (observed mixture yield compared with average yields of component
774 monocultures) of ten *Arabidopsis* accession pairs across different soil types or pot
775 sizes. For each estimate, seven pots (large pot, medium pot, small pot) or five pots
776 (legacy soil, sandy soil) of each monoculture and the mixture were sown, resulting in
777 a total of 930 pots containing four plants each. Note that both consistent negative
778 (left) or consistent positive (right) effects appear. Furthermore, a soil-by-diversity
779 interaction in the Bay-0 * Sha combination has been examined in more detail
780 previously (Wuest and Niklaus, 2018). **B.** Confirmation of consistently positive
781 genotypic diversity effects in the genotype combination Slavice-0 (Sav-0) and
782 Umkirch-1 (Uk-1) under three different conditions. Shown are estimated net
783 overyielding for each condition, number above bars indicate the relative net effect
784 (%). Error bars: +/- s.e.m.

785



786 **Supplementary Figure 2.** Reconstruction of RIL genotypes from low-coverage
787 genome re-sequencing and QTL effect sizes. **A.** Top: Genotype calls across the
788 genome in RIL US1005; and comparison of molecular markers (middle) and genotype
789 reconstruction based on low-coverage genome re-sequencing (Viterbi-Path, bottom).
790 **B.** Correlations of allelic compositions between all markers and across all genotype
791 combinations **C.** Effect of allelic composition on specific combining abilities at the
792 QTL chromosome 2 (QTL2, bottom).

793 **Supplementary Figure 3.** Soil acidity map of the southern black forest region, the
794 area in which the Uk-1 accession was collected. Transect sampling performed by
795 Shindo and colleagues (Shindo et al.): purple arrow. Data from [http://maps.lgrb-
796 bw.de/](http://maps.lgrb-bw.de/). var = variable

797

798 **Supplementary Figure 4: Determination of SCAs in factorial (tester-associate)
799 competition design for GWAS and SCA across different tester lines and the
800 different allelic diversity levels at a SNP within *AtSUC8*. A. Specific combining
801 ability of a genotypic composition is typically estimated from deviates of observed
802 community productivities from expectations (in this case, the average GCA of both
803 genotypes); however, because different communities varied so strongly in total
804 productivities, the relationship between the mean GCA of a genotype composition and**

805 the overall community productivity might become non-linear (e.g., driven by
806 increasingly restricted space for combinations of highly productive genotypes). In this
807 case, such a systematic relationship can first be modeled, and the SCA estimated as
808 the deviation from this modeled relationship. **B.** Observed relationship between the
809 average GCA of a genotype composition and its community productivity. **C.** Uk-1
810 and C24 both carry the minor (T) allele at SNP Chr2-6274693. When combined with
811 genotypes also carrying the minor allele, the resulting mixtures show on average
812 lower SCA, when combined with genotypes carrying the major allele (A), they exhibit
813 on average higher SCA.

814

815 **Supplementary Table 1: Descriptions of protein-coding genes found within the**
816 **QTL on chromosome 2.**

Locus	Description	Symbols
AT2G14378	Encodes a ECA1 gametogenesis related family protein	NA
AT2G14390	Hypothetical protein	NA
AT2G14440	Leucine-rich repeat protein kinase family protein	NA
AT2G14460	hypothetical proteinH	NA
AT2G14500	F-box family protein	ATFDB14
AT2G14510	Leucine-rich repeat protein kinase family protein	NA
AT2G14520	CBS domain protein (DUF21)	NA
AT2G14530	Encodes a member of the TRICHOME BIREFRINGENCE-LIKE gene family	TBL13
AT2G14540	Serpin 2	SRP2; ATSRP2
AT2G14560	Encodes LURP1, a member of the LURP cluster (late upregulated in response to <i>Hyaloperonospora parasitica</i>). LURP1 is required for full basal defense to <i>H. parasitica</i> .	NA
AT2G14580	Pathogenesis related protein, encodes a basic PR1-like protein.	PRB1; ATCAPE7; ATPRB1
AT2G14610	PR1 gene expression is induced in response to a variety of pathogens. It is a useful molecular marker for the SAR response. Expression of this gene is salicylic-acid responsive.	PR1; ATCAPE9
AT2G14620	Xyloglucan endotransglucosylase/hydrolase 10	XTH10
AT2G14635	ARABIDILLO protein	NA

AT2G14660	Thymocyte nuclear-like protein	NA
AT2G14670	Sucrose-proton symporter 8	SUC8; AtSUC8