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ABSTRACT

The creation of induced pluripotent stem cells (iPSCs) has enabled scientists to explore the derivation
of many types of cells. While there are diverse general approaches for cell-fate engineering, one of the
fastest and most efficient approaches is transcription factor (TF) over-expression. However, finding
the right combination of TFs to over-express to differentiate iPSCs directly into other cell-types is a
difficult task. Here were describe a machine-learning (ML) pipeline, called CellCartographer, for
using chromatin accessibility data to design multiplex TF pooled-screens for cell type conversions.
We validate this method by differentiating iPSCs into twelve diverse cell types at low efficiency
in preliminary screens and then iteratively refining our TF combinations to achieve high efficiency
differentiation for six of these cell types in < 6 days. Finally, we functionally characterized engineered
iPSC-derived cytotoxic T-cells (iCytoT), regulatory T-cells (iTReg), type II astrocytes (iAstll), and
11 hepatocytes (iHep) to validate functionally accurate differentiation.
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13 1 Introduction

14 It is not know exactly how many human cell types exist, but current estimates put the number in the hundreds [[1], all
15 originating from a single ‘totipotent’ embryonic stem cell. Since the creation of induced pluripotent stem cells (iPSCs)
16 [2], scientists have been trying to recreate differentiation of iPSCs into all of these other types of cells and combine
17 them into tissues or tissue-like structures (a.k.a. ‘cell-fate engineering’). This goal seems feasible given that it has been
18 generally accepted that iPSCs are functionally identical to embryonic stem cells (ESCs) [3].

19 To perform cell-fate engineering, a litany of approaches have been employed that fall into three general categories: (1)
20 application of growth factors into media in either 2D or 3D cell culture [10} [11], (2) modifications to cell matrix and
21 plate surface conditions [12]], and (3) over-expression of transcription factors (TFs) [13]. Generally speaking, the first
22 two categories of approaches have been effective in differentiating many different cell types simultaneously — this
23 makes sense because the general idea is to recapitulate aspects of natural development in vitro, where many cell types
24 would differentiate in unison with each other. The drawbacks of these first two approaches are threefold: first, these
25 protocols typically take a long time (often many weeks); second, the efficiency in converting to a single type of cell is
26 often poor; and third, reproducibility across these experiments remains a large challenge. Because TF-based approaches
27 directly manipulate the epigenetic landscape of individual cells [14} 1516, 8], they have proved to address these three
28 issues to a great extent.

29 While TF-based approaches have been fruitful, the task of identifying the correct TFs for a fast, efficient, and robust
30 cell conversion remains a challenging problem. There are two general ways to go about this research process: (1) an
31 exhaustive literature search for potentially relevant transcription factors for a desired cell type and identify successful
32 combinations via trial-and-error or (2) to use computational tools to predict TFs. While iPSCs were created through a
33 systematic version of the former [2], this process does not scale — it is very laborious, requires deep expertise of the
3+ cell types being converted, and can only account for previously studied TFs associated with specific cell types. The
35 latter approach has been successful in recent years [[17, 18} [19, [20] and can be used as a more general approach in
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Figure 1: CellCartographer workflow a. The CellCartographer workflow uses epigenetics, then transcriptomics NGS
data (computational steps in green) to determine TF pools for iterative screening with the TFome (experimental steps in
red). Iterative rounds of screening are refined with barcode sequencing and statistical analysis. Polyclonal cell lines
with sufficient differentiation (>10%) undergo clonal isolation to isolate high-efficiency clones. Cells are nucleofected
with barcoded TF-cassette pools that are integrated randomly into the genome where any one cell may receive some
combination of these factors in either multiple copies (blue) or not at all (green/yellow), resulting in 800,000 TF combo
experiments per nucleofection. The distribution of TFs that are delivered to cells’ nuclei is approximated by a Poison
distribution that can be statistically evaluated to refine screens to TFs b. In silico validation of screening lists — for four
cell types with previously validated TF-overexpression differentiation factors [4} 5, [6} [7, [8] 9], our model accurately
re-identifies these factors (magenta) in the top TFs that would be put into a screen.
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36 minimizing time required to identify effective conversion factors. While these tools have demonstrated some predictive
37 power, they have key limitations: (1) they cannot account for experimental details such as DNA copy count, clonality
38 (i.e. polyclonal v. monoclonal cell lines), expression method, or cell culture conditions; (2) they generally only provide
39 a single combination of TFs for a cell-type conversion that cannot be iteratively revised; and (3) the experimental
40 validation of a vast majority of the new outputs from these remain untested and are optimized towards very small
41 sets of TF-combinations validated in the literature. Therefore, most tools are not geared towards finding novel TF
42 combinations for direct trans-differentiation that may be faster and more efficient than prior reporting (Supplementary
43 Table 1) [21) 17, 221 123 24} 19} 125! 26} 27} 28| [29] 130, 31]] and (4) only one other known tool explicitly attempts to
44 select combinations for maximal experimental differentiation efficiency [22] and no other known tool aims to maximize
45 the speed of these differentiations. Moreover, while iterative, machine-learning (ML)-driven screening pipelines have
46 yielded impressive results in various areas of molecular biology to date 32} 33|34} 135]], currently no tools use iterative,
47 ML-driven screening platforms to discover novel TF combos for extremely fast cell-fate engineering.

48 To address these gaps, we built an epigenetics-based, ML-driven pooled screening tool for engineering cell-fate,
49 called CellCartographer. CellCartographer uses next generation sequencing based readouts of chromatin accessibility
50 (eg. DNase-seq, ATAC-seq, ChIP-seq) and transcription (RNA-seq) to predict TFs to be correlated with cell-type
51 identity. Using the predictions made by CellCartographer, we can define multiplex pooled-screens of TFs for over-
52 expression, which allows us to explore many experimental variables such as variable stable expression quantities,
53 genomic integration copy count and location, and culture conditions with the option to add more nuance depending
s4 on experimental conditions. Furthermore, we can implicitly select TF over-expression combinations based on speed
55 and efficiency depending on the differentiation and screening conditions. CellCartographer gives outputs agnostic to
s6  starting cell type because it has been demonstrated that the same (or similar) TF set can be used to differentiate cells
57 from a variety of originating cell types [22] and because the iterative engineering process from this starting in silico
58 screen should be able to accommodate for these differences. We demonstrate how the CellCartographer predictions
s9 are sufficient for differentiating small sub-populations of cell-surface marker-positive cells for twelve target cell-type
60 samples from all three germ layers (resulting in the exploration of up to 10 million TF combinations for these twelve
61 types). We then show how we can use bulk-RNA sequencing to refine the original TF predictions and zoom in on
62 minimal TF combo sets to differentiate stem cells for six cell types from all three germ layers. Once a sufficiently-high
63 percentage of polyclonal cell line differentiation was created, we showed that isolating clones from these populations
64 results in the creation of high-performance clonal lines with extremely high differentiation speed and efficiency. Finally,
65 we functionally characterized robust clonal lines of differentiation-inducible iPSC lines for each of the three germ
66 layers: regulatory T-cells (iTReg) and cytotoxic T-cells (iCytoTs) - mesoderm, hepatocytes (iHep) - endoderm, and
67 type-1II astrocytes (1Astll) - ectoderm) to validate that the cells are functional in vitro and molecularly accurate. We
68 were able to differentiate four cell types using novel combinations of TFs in as little as 6 days. Importantly, our
69 unprecentdented derivation of iTRegs and iCytoTs directly from iPSCs in simple media conditions in <6 days may
70 considerably accelerate the investigation of T-cell biology.

7 2 Results

72 2.1 Machine learning for determining TF sub-libraries

73 As many TFs are controlled for activity by nuclear localization [36], RNA expression alone is not a sufficient indicator
74 of TF activity and importance for cell identity. A stronger indicator of TF activity is occupancy of TFs at active DNA
75 regulatory elements, which are marked by methylation and acetylation marks [37, [38]]. While chromatin immunoprecip-
76 itation sequencing (ChIP-seq) [39]] can be used to determine TF binding and DNA histone methylation/acetylation,
77 performing assays for each possible pioneer factor for a cell would be infeasible. Chromatin accessibility assays such
78 as DNAse-seq and ATAC-seq captures the super set of all transcription factor binding sites and allows for the indirect
79 observation of TF binding through their DNA binding motifs. With the aim of minimizing resource requirements for
go studying a novel cell type, the CellCartographer model leverages chromatin accessibility data to make initial predictions
g1 of TFs for differentiating towards that cell type. After initial TF predictions are made, TF transcript levels are used
g2 to exclude TFs that are not expressed. The CellCartographer pipeline can leverage a variety of assays for chromatin
83 accessibility and transcriptomics to predict a set of TFs for a target cell type, which can then be tested in a pooled
s+ screen (Figure[Th). To broaden the functionality of CellCartographer, input data can be either manually uploaded
85 or automatically queried and downloaded from the ENCODE database [40] or GEO [41]. While we use chromatin
86 accessibility only during our studies, additional assays that can be used to exclude inactive regulatory elements such as
g7 DNA histone acetylation/methylation and nascent RNA expression would likely improve the quality of predictions.

88 Since the number of TFs in the TFome (1732) with characterized binding sites [42] (891), yields 28°! possible outcomes
so (Figure[Th), a full library screen is intractable. In a full library screen, the chance of observing a correct combination
90 of TFs that differentiate a target cell type with 10° starting cells would be unlikely (on the order of 1 in 10'67). And
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Figure 2: Computational analysis of 34 cell types with CellCartographer. a. Multidimensional scaling of the
similarity in gene expression between different cell types. b. Multidimensional scaling of the similarity in TFs
correlated with open chromatin. ¢. Motifs correlated (red) and anti-correlated (blue) with open chromatin vary across
34 cell types analyzed. d. Highly ranked motifs correlated with open chromatin for cell types derived from yolk sac
(microglia), endoderm (hepatocyte), mesoderm (B-cell, T-cell, regulatory T-cell), and ectoderm (astrocyte)
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91 so, we reasoned that the number of starting cells and the number of possible combinations formed from the set of
92 transfected TFs should be similar (i.e. 2”77 m_ ;). In our case, we nucleofected 10° cells per experiment and the
93 screening pools contained approximately 16 plasmids containing integratable TF-over expression cassettes driven by a
94 doxycycline-inducible promoter (Figure[Th). Each TF cassette is integrated randomly within each cell from zero to n
95 times, allowing us to explore a large parameter space of DNA integration location and resulting expression amounts of
96 each TF in combination.

97 In order to identify TFs of interest for each cell type, we begin by learning a relationship between TF motifs and
98 chromatin accessibility. Specifically, we train a logistic regression classifier model to distinguish between open
99 chromatin regions and a set of background genomic loci, matched for GC content, using known DNA TF binding
100 motifs drawn from the JASPAR database (Figure[Th) [43]]. By training a model using all motifs, we can model the
101 cooperative binding of lineage determining TFs [9} 44]. Given that we want to select a small number of TFs, we use
102 LASSO regularization when training the model. One dvantage of linear models in comparison to more complex models
103 such as deep neural networks, is greater interpretability. By examining the sign of the model coefficients, we can
104 determine whether the presence of a motif is negatively or positively correlated with open chromatin. We exclude
105 all TF motifs that have a negative coefficient and are negatively correlated to open chromatin. Correlated features,
106 in our case similar TF motifs, can result in multiple-collinearity and unstable model coefficient values. We mitigate
107 multiple-collienarity by first using a non-redundant set of motifs [45]]; additionally, we train an ensemble of models
108 across five cross validation splits and use the mean result across the ensemble. To further increase the stringency
109 of our results, we determine the significance of each TF motif using the likelihood ratio test, which is an in silico
110 analog of a mutagenesis experiment. In the likelihood ratio test, the performance of a model trained on all motifs
111 is compared to a model trained on all but one motif. We can identify and exclude constitutively active TFs pooling
112 results from across several cell types; we rescale (z-score normalization) the coefficients of models for all cell types
113 (Supplementary Figure[I) and remove all motifs that has a mean absolute z-score greater than 2.5 (Supplementary
114 Figure[2). As many TFs share DNA-binding motifs [46]], we then use transcriptomics data to identify which TFs are
115 expressed in a given cell type; we select the most significant motifs that are positively correlated with binding and
116 the top 16 corresponding genes that have RNA expression. Our procedure for selecting TFs for testing is outlined in
117 (Figure[Ib) and (Supplementart Figure 3). Using publicly available DNase-seq data from ENCODE, we applied our
118 approach on several cell types with simple known combinations of one to two lineage determining TFs and confirmed
119 that these TFs appear in the top TFs predicted by CellCartographer (Figure[Tb).

120 To computationally validate our model on a larger scale, we applied CellCartographer to 34 primary cells types and 29
121 tissue types. We found that each TF DNA binding motifs strongly correlated with chromatin accessibility had different
122 behaviors in each cell type and tissue type (Figure Zc, Supplementary Figure 5c). Given that related cell types have
123 similar transcriptional profiles (Figure 2, Supplementary Figure 5a), we reasoned that they may also have similar
124 TFs correlated with open chromatin that drive transcriptional profiles. To visualize the similarity between transcriptional
125 profiles, we calculated the pairwise Pearson correlation between the gene expression values of each cell type (log
126 RPKM values) and used multidimensional scaling to embed each cell type in way that respects the pairwise similarity
127 between cell types; using the Spearman correlation model coefficient for each TF, we can also visualize the similarity of
128 TF motifs correlated with open chromatin. We observe that cell types that group together when considering similarities
129 in transcriptional profiles such as adaptive immune cells (eg. B-cells and T-cells) and progenitor cell types (H1-hESC,
130 GM23338, and neural stem progenitor) tend to look similar from the perspective of TF motifs correlated with open
131 chromatin (Figure2b, Supplementary Figure 5b).

132 2.2 Primary pooled TF screens for differentiation

133 To demonstrate that our pooled screening method could be generally applied to any cell type of interest, we identified
134 cell types from each human germ layer and screened TFs combinations to identify populations of cells that came up
135 positive for canonical markers. Specifically, we generated TF pools for: Mesoderm — T-cells (subtypes cytotoxic,
136 delta-gamma, and regulatory), B-cells, macrophages, epithelial cells (subtypes kidney, bronchial, and mammary), and
137 osteoblasts; Endoderm — hepatocytes; Ectoderm — type II astrocytes; and Yolk Sac — microglia. For each cell type,
138 we designed two TF pools for each cell type using CellCartographer — one pool containing TFs with expression level
139 > 1 RPKM and another containing TFs with expression level > 4 RPKM (Supplementary Tables 1-12). We then
140 prepared mixed DNA pools of equal concentration of each TF and nucleofected and screened iPSCs for differentiation
141 (Figure[Id). We found that the percentage of cells appearing positive in most cases was very small, but ranged from
142 0.05% (Regulatory T-cells) to 17.64% (B-cells), although in almost all cases, the positive population was <1% (Figure
143 Supplementary Figure 7). Thus it appeared that all samples yielded at least a small population of differentiated
144 cells that can be sequenced to determine which TFs from the TFome were present.
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Figure 3: Primary pooled screens for cell types originating from each germ layer. For each cell type, a negative
antibody stain for iPSCs without TFs (LEFT), the cell population with induced TFs (MIDDLE), and the barcoded TF
appearance frequency in the transcriptome of double-positive cell populations (RIGHT) is shown. a. Type II Astrocytes
(ectoderm) b. Microglia (yolk sac) ¢. CD8-positive T-cells (mesoderm) d. B-cells (mesoderm). e. Regulatory T-cells
(mesoderm) f. Hepatocytes (endoderm).

145 From this set of diverse screened cell types, we decided to iteratively refine a set of six that had high clinical relevance
146 — cytotoxic T-cells, Regulatory T-cells, B-cells, hepatocytes, type II astrocytes, and microglia. A comparison of the top
147 motifs positively correlated with open chromatin for these six celltypes is shown in Figure 2ld; the screening pools for
148 each of these six celltypes are shown in Supplementary Table 1-6. It should be noted that at this step, the selection of
149 specific surface markers biases the downstream analysis and refinement. For example, although TF pools for astrocytes
150 were determined from data based on generic astrocytes (type I or type II), our selection of A2B5 as a surface marker
151 in combination with CD44 selected specifically for type II astrocytes. In the case of the epithelial sub-types, there
152 was some uncertainty of the ideal cell surface markers to use since CD24 was unexpectedly present in the stem cells
153 and stem cells are partially epithelial in quality and express EpCAM [47] to a slightly lesser degree than differentiated
154 epithelial types. Nonetheless, from the pooled screens we were able to sort at least 1000 double-positive cells from each
155 large population for bulk RNA-sequencing. We lysed the sorted cells, prepared sequencing libraries, and amplified the
156 barcoded regions of the TFome cassettes to tell us the relative abundance of TFome cassettes in the double-positive
157 cells (Figure[3). We found that the distributions for each cell type had some variability, but that in general, each cell
158 type had TFs that were represented in the positive population more than others. In fact, only one of the six cell types
159 (cytotoxic T-cells) had all TFs show up in sequencing at least once.

160 2.3 Iterative pooled TF screening and clonal isolation

161 Using the barcode frequencies, we calculated 3 refined TF pools for each cell type: All TFs that appear in sequencing,
12 TFs that appear greater than average, and TFs that appear one standard deviation or more than average (Figure da-d.
163 Using the refined TF pools, we performed a second round of differentiation. Given that this round of screening generally
164 limited TF pools to <5 TFs per pool, we built stable cell lines for additional testing and refinement. iPSCs were
165 nucleofected as before, but we selected and stabilized the cell lines before screening differentiation in different settings.
166 Specifically, given the stability of the constructed cell lines (i.e. less cell death), we opted to test them for only six
167 days, and also decided to test their performance in target-cell-type growth medium in addition to stem cell medium
168 (Supplementary Figure 8).

160 In this round, we found broad improvement in differentiation percentage across all six cell types (Figure da-d,
170 Supplementary Figure 11). While B-cells already had a considerably high differentiation percentage in the primary
171 screening round (17.6%), it improved to an average of greater than 50%. For all other five cell types, the refined lines
172 appeared to improve in differentiation percentage dramatically compared to the populations seen in the primary screen.
173 However, since these populations have mixed identity, it is likely that many of these cells were still only partially
174 differentiated. When we examined the number of cells that were positive for just one (or both) markers, all cell types
175 improved differentiation rates compared to the primary screens (Supplementary Figure 10). When we examined
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Figure 4: Iteratively engineered poly-clonal and mono-clonal cell lines. (a-d) For each cell type, we show percent
double-positive for FACS analysis of canonical markers for non-clonal (turquoise) and mono-clonal (red) cell lines
mono-clonal (red) cell lines, and an iPSC + media control (green) differentiated for six days in cell-type-specific media +
DOX for a. Type II Astrocytes (iAstlls) b. Cytotoxic T-cells (iCytoTs) c¢. Hepatocytes (iHeps) and d. Regulatory T-cells
(iTRegs). e. Differential gene expression (quantified by Z-score) for all genes for two replicates of each differentiated
cell type in both media conditions. f. Principal component analysis of all genes for each cell type in each media
condition and a primary cell control. g. Differential gene expression (quantified by RPKM) for key marker genes across
target cell types and iPSCs. h. Metascape [48]] analysis of gene enrichment of high-efficiency clones for genes that
were upregulated in these lines and differentiation conditions compared to iPSCs. Analysis of select highly-significant
GO Terms from TOP 50 for each differentiated cell type and condition is shown (-log10(P) > 3).

differentiation percentage (both partial and total) in target-cell-type growth media, we saw even more near-complete
differentiation of these cell lines (Supplementary Figure 8,12). While it was clear that the growth medium is a
contributor to differentiation efficiency, the TFs were the major driver of differentiation for all cell types.

Given that our cell lines were clearly making progress towards robust differentiation, but in a limited capacity, we
reasoned that perhaps many micro-scale experimental details could be to blame — for example, perhaps cell-cell
communication from non-differentiating cells in the population was the issue, or perhaps the details of how many TF
cassettes were integrated and in what location was very important. Since we use PiggyBac integrase that integrates
variable copies of TF over-expression cassettes in random genomic locations, we hypothesized that perhaps some
cells in the cell line population are holding back the rest of the population, and that isolating monoclonal cell lines
could improve our differentiation efficiency. Ergo, we sorted random single cells in the population to form monoclonal
lines and characterized them. To our satisfaction, for CD8 T-cells, microglia, astrocytes, and hepatocytes, this solved
the problem — several clones of each were able to dramatically outcompete the mixed population in differentiation
efficiency in all of the aforementioned differentiation conditions (Figure @a-d, Supplementary Figure 11).

After differentiation of high-performance clones, we performed RNA-sequencing to validate that our clones were
generally reflective of target cell types at a molecular level in addition to surface markers. We found that across all genes,
our differentiated cells clustered well by cell type in both media conditions (Figure de). Specifically, it was important to
see that the molecular characteristics of the T-cell subtypes were in general agreement and were significantly different
from all other types. As expected, since these cell types were all from different germ layers (except the T-cell subtypes),
the expression profiles were dramatically different across differentiated cell types. This was further reflected in principal
component analysis (Figure df) - we observed that our differentiated cell types generally clustered very tightly across
both media conditions and that they clustered somewhat well with primary cell types. The clustering of cell types across
variable media reinforces that TF over-expression is a more dominant factor than the different media conditions. Next,
when we zoom in on key canonical markers for our differentiated cells, they once again cluster as expected and generally
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Figure 5: Functional validation of iAstlls, iHeps, iCytoTs, and iTRegs. a-c. Stimulation of Type II astrocytes
over 10 min with small molecules with a. 100uM ATP b. 100uM glutamate, and ¢. 30mM KCI. (LEFT) Relative
fluorescence of six individual astrocytes. Astrocyte cell population shown before (TOP) and after (BOTTOM) addition
of small molecule. d. Phase-contrasted BF image of induced iHeps prior to hepatotoxicity testing. Key features in
select cells such as multiple nuclei (blue circles) and approximately cuboidal shape (red circles) are called out. iHeps,
primary hepatocytes and iPCs titrated with e. Nefazodone, f. Acetaminophen, and g. Troglitazone for 24h and assayed
for percent viability (survival rate normalized to each cell type without toxins applied). h. Brightfield imaging of
T-cell populations (LEFT to RIGHT): Primary CDS8 T-cells, iTRegs, Primary CD8 T-cells + activation beads, iCytoTs +
activation beads. i. Suppression assay for iTRegs co-cultured with activated primary CD8 T-cells j. Calculated percent
suppression with titrated dosing of iTRegs in suppression assay. Primary T-cells have been shown to suppress in the
range of 20/30/40% respectively [49]. k. Activation assay for iCytoTs L. Percent of proliferating primary CD8 T-cells
and iCD8 cells post-activation.

190 show upregulation of expected markers (Figure[djg). In the case of iAstIls and iTRegs, there were some interesting
200 marked difference of key factors across media conditions, suggesting that media formulation may play a key role in the
201 final condition and function of these cells. Finally, when we analyze the complete sets of significantly up-regulated
202 genes (P < 0.1) for our high-efficiency clonal lines compared to iPSCs with Metascape [48]], we see enrichment of GO
203 terms that is supportive of cell-type specific features (Figure dh).

204 2.4 Functional characterization of differentiated cells

205 Finally, after refinement of our differentiating cell lines and molecular validation of their identities, we wanted to
206 validate that the cells also functionally perform their intended function for down-stream clinical applications. To this
207 end, we opted to focus on at least one cell type from each germ layer - regulatory T-cells (iTRegs), cytotoxic T-cells
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208 (iICD8s), type II astrocytes (iAstlls) and hepatocytes (iHeps). To functionally characterize these cell types, we performed
200 in vitro assays based on biological function (Figure[5).

210 For the iAstlls, we validated that the morphology was correct and that they were stimulated as expected by certain
211 standard small molecules [50] (Figure [Sh-c). We observed that at standard concentrations of small-molecules of three
212 classes (glutamate - neurotrasmitter, ATP - nucleotide, and KCl - ionic), many plated astrocytes were stimulated. We
213 observed strong increases of relative Fluo-4 fluoresence immediately after induction for individual astrocytes that were
214 both inactive before stimulation and active at times before stimulation. Furthermore, while glutamate and KCl should
215 stimulate both astrocytes and other neuronal types, only astrocytes are stimulated by ATP, confirming that the cells we
216 assayed both had correct astrocyte morphology and exclusive functionality.

217 For the iHeps, we validated the morphology (Figure[5d) and compared their viability compared to primary hepatocytes
218 and undifferentiated cells when exposed to hepatotoxins for 24hrs [51}152]]. We observed that our iHeps had highly
219 similar viability to primary hepatocytes after being exposed to Nefazodone (Figure [5e), Acetaminophen (Figure [5f),
220 and Troglitozone (Figure[5jg), and demonstrated significantly higher viability compared to undifferentiated iPSCs.

221 iTregs were validated by demonstrating that the cells inhibited the expansion of responder T-cells [S3]]. Before this step,
222 we confirmed that our iTRegs had size and morphology approximately the same as primary cytotoxic responder cells
223 (Figure[5h). While the size and shape were generally consistent, with both iTRegs and iCytoTs, the primary responder
224 T-cells took on an elongated shape when stimulated, while our iCytoTs did not clearly show this morphological change
225 to stimulus. Responder T-cells were stimulated to activate with IL-2 and CD3+CD28+ beads for three days. After this
226 activation step, responder T-cells were labeled with a fluorescent dye and co-cultured with iTregs in variable quantities.
227 After 11 days, fluorescence was recorded to validate that the addition of more iTregs resulted in reduced responder
228 T-cell proliferation (Figure [5j,j). We observed some reduction in responder T-cell proliferation as we increased the
229 number of iTRegs, albeit modestly compared to prior results with primary regulatory T-cells [49]. Finally, to validate
230 the iCytoTs, we activated them with the same bead-based method used in the the regulatory T-cell assay and examined
231 their morphology and interaction with the activator beads (Figure[Sh) and then recorded proliferation. We found that as
232 with the iTRegs, the proliferation was modest, but increased by the number of days the iCytoTs were induced from
233 stem cells prior to the initiation of the assay (Figure 5k,l).

2+ 3 Discussion

235 In summary, we have described how the CellCartographer tool and pipeline can guide and refine cell-fate engineering
236 with machine learning and synthetic TF-cassettes from the human TFome. We demonstrated that the primary TF pools
237 for differentiating iPSCs into a diverse set of cell types yields a small population of positive cells for each of the tested
238 types. We then went on to focus on six cell types from each germ layer to show how we can use NGS data from
239 partially-engineered cell lines with CellCartographer to engineer high-efficiency differentiation-inducible cell lines.
240 Finally, we isolated high-performance clones for four cell types and functionally characterized at least one cell type
241 from each germ layer to validate that our engineered cell lines were functionally accurate in vitro.

242 While CellCartographer is not the first software to identify TFs for cell-fate engineering, it presents an advance in
243 three main areas from a software perspective. First, it leverages a machine-learning driven, iterative screening pipeline
244 by making TF predictions using epigenetics data and enables an iterative pipeline for refining engineered cell lines.
245 We hypothesize that as sequencing technologies continue to improve and more data is generated, CellCartographer’s
246  predictions should only improve. Second, CellCartographer has a very minimal requirement for producing useful TF
247 pools — it does not require re-training large models for additional cell types, which can prove useful for engineering
248 cell lines for differentiation into exotic cell types with little data available. Furthermore, we were able to successfully
249 engineer iTRegs using TFs determined from Mus Musculus data since that was the only epigenetic NGS data available
250 for this cell type, meaning calculations of factors can work cross-species. Finally, the pooled screening philosophy of
251 CellCartographer, allows biologists to explore and debug many experimental variables that are generally invisible to
252 software tools — namely synthetic DNA genomic integration location, copy count, and cell culture conditions and their
253 resulting differentiation speed and efficiency. Pooled screening and paired ML analysis allows us to screen out these
254 issues. Furthermore, while we use the starting predictions from CellCartographer to iteratively refine our cell lines
255 in this study, all of the down-stream tools are compatible with starting predictions from other tools (i.e. another tool
256 could provide the starting prediction and CellCartographer and the TFome can still be used downstream), meaning
257 CellCartographer can be used to compliment other existing tools that generate complete lists of TFs predicted to be
258 associated with cell type [28, 24} 29] (Supplementary Table 1.).

259 This work also represents a major advance in terms of identifying four robust TF combinations for differentiation
260 into high-value cell types relevant to therapeutics. At this time, aside from hepatocytes, there are no experimentally
261 established TF combinations for directly differentiating stem cells into type II astrocytes, regulatory T-cells, or cytotoxic
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262 T-cells. Furthermore, we demonstrate that this differentiation can be driven in stem cell media in six days or less,
263 meaning that the TF combinations are fast, robust, and solely to credit for the differentiation in these examples. Finally
264 by performing additional optimizations with specialized media conditions and performing functional assays on iAstlIs,
265 iHeps, iTregs, and iCytoTs, we show that this strategy should be robust in ultimately obtaining functional clonal cell
266 lines of theoretically any type that can differentiate rapidly, efficiently, and robustly from iPSCs. While the functional
267 qualities of the iAstIls, and iHeps were more dramatic and complete, the function and viability of the induced T-cells
268 1is likely very sensitive to media conditions and could be further improved with additional optimization of growth
269 conditions starting from the stem cell state. A clear next step from this work would be to further optimize culture
270 conditions for these cell types to improve functionality and even perhaps to re-perform screens in these optimized
271 medias.

272 In conclusion, we believe that CellCartographer provides a clear benefit to the field of stem cell biology and cell-line
273 engineering. While we have already generated interesting inducibly-differentiating iPSC lines, we strongly believe
274 that this tool can be applied immediately to aid the engineering of other stem cell lines for any number of therapeutic,
275 diagnostic, or other commercial applications.

276 4 Methods

277 DNAse-seq and ATAC-seq analysis Adapters from sequencing reads were trimmed with Homer [9], using the
278 command: homerTools trim -len 40. Following adapter trimming, reads were aligned using Bowtie2 [54] (with default
279 parameters) and then converted into a Homer tag directory. We called open chromatin regions or peaks with Homer
280 using the following findPeaks command with the following parameters -C 0 -L 0 -fdr 0.9. We then use IDR [55] to
281 identify high confidence open chromatin regions.

282 Prediction of transcription factors for cell fate engineering For the set of open chromatin regions for each cell
283 type, we sample from the genome an equivalent number of background peaks that has matching GC content and size.
284 Using a set of non-redundant DNA motifs [45]], which specify the frequency of each nucleotide at each position in the
285 motif, and a background frequency (0.25 at each position), we can calculate a log odds score that indicates how well a
286 sequence matches a motif. For each open chromatin region and background loci, we calculate the highest log odds score
287 for each motif. We standardize the motif scores such that the mean score value is 0 and the variance is 1. Then we train
288 a LASSO-regularized logistic regression model [56] to discriminate between open chromatin regions and background
289  sites. We assess the importance of a motif using a log-likelihood ratio test where we compare the performance of a
290 perturbed model where a single motif is not used as a feature during model training and the performance of the full
291 model that is trained using all motifs. We convert the difference in likelihoods given by the two models to p-values
292 using the chi-squared test. Model coefficients and p-values reported are the average across five randomly assigned
293 cross-validation splits (80% training, 20% testing). As a sanity check, for each model, we measure the area under the
294 receiver operating characteristic (ROC) curve, and ensure that the model is making non-random predictions. The model
205 training procedure and TF selection procedure is summarized in (Figure [Ib) and (Supplementary Figure 3). Data
296 processing, model training, and statistical analysis was performed using python and the following packages: pandas
297 [57]], numpy [58], scipy [S9], sklearn [60], biopython[61]. Data plotting performed using R bioconductor packages
208 [62].

299 Transcriptomics analysis Adapters from sequencing reads were trimmed with Homer, using the command: homer-
300 Tools trim -len 40. Following adapter trimming, reads were aligned using Bowtie2 (with default parameters) and then
301 converted into a Homer tag directory. We used the Homer analyzeRepeats command to quantify gene expression as
302 RPKM values. Raw read counts at each gene were used as input to DeSeq?2 [63] for identifying differentially expressed
303 genes.

304 Cloning of transcription factors Transcription factors were cloned into puromycin-resistant cassettes with flanking
305 piggyBac transposon [SystemsBio] genomic integration regions under the control of the mammalian DOX-unducible
sos promoter pTRET. Plasmids for each transcription factor are members of the ‘Human TFome’ library deposited on
307 Addgene.

308 Creation of cell lines and cell culture All differentiating cell lines and differentiation screens were performed on
so9 reprogrammed PGP1 fibroblasts using the Sendai-reprogramming-factor virus. PGP1 iPS cells were expanded and
310 nucleofected with P3 Primary cell 4D Nuceleofection kits with pulse code CB150 using 2ug of total DNA for 800,000
s11 cells (1.6 ug TF pool/0.4 g SPB) [Lonza]. Cells were plated onto Matrigel-cotated plates [Corning] with ROCK-
s12  inhibitor [Millipore] and selected with puromycin [Sigma]. Stable cell lines were expanded over several passages using
313 TrypLE [Gibco] in mTeSR1 [StemCell Technologies] and frozen in mFreSR [StemCell Technologies]. Cells were

10
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314 differentiated with 2ng/mL doxycycline [Sigma] at variable conditions as described in (Supplementary Figure 8) in
315 either mTeSR1 [StemCell Technologies], RPMI-1640 (microglia) [Gibco] + 10% FBS [Gibco], Williams’ E Medium
st6  (hepatocytes) [Gibco] + 10% FBS [Gibco], Immunocult-XF T-Cell Expansion Media (T-cells) [StemCell Technologies],
317 LGM-3 (B-cells) [Lonza], or BrainPhys Media (Astrocytes) [Stem Cell Technologies].

sie Flow Cytometry and Cell Sorting Cells were digested in TrypLE [Gibco] and resuspended in growth media before
319 staining with cell surface markers. The following antibodies were used for analysis and cell sorting: [Microglia:
320 CDI11b-FITC, CX3CR1-PE]; [CDS8-positive T-Cells: CD3-PerCP-Cy5.5, CDS-FITC]; [T-Regulatory cells: CD3-PerCP-
321 Cy5.5, CD4-PE-Cy7, FOXP3-PE, CD127-V450]; [B-cells: CD19-PE-Cy7, CD27-FITC]; [Hepatocytes: ASGPR1-PE,
322 CD184-APC]; [Astrocytes: CD44-FITC, A2B5-PE]. Cells were sorted and collected on a Sony SH800 FACS for
323 primary screens. For characterization of stable cell lines, cells were stained and analyzed on a BD LSR Fortessa
324 Analyzer flow cytometer. The gating strategy is exemplified in (Supplementary Figure 6).

325 RNA sequencing Cells were either collected from FACS (primary screens) or collected directly from culture (refined
326 screens and stable cell line characterization) and were lysed in TRIzol [Invitrogen]. RNA was purified with Direct-zol
327z RNA MicroPrep and RNA MiniPrep kits [Zymo]. Library prep was performed using a SMARTer Stranded Total
326 RNA-Seq Kit v2 - Pico Input Mammalian [TARAKA] (primary screens) and NEBNext Ultra II RNA Kits [NEB]
329 (refined screens and stable cell line characterization). Barcodes were amplified from the prepped cDNA using two
a3 alternative primer pairs (Supplementary Table 5). Amplicons were sequenced with a MiSeq kit [Illumina] using
331 Illumina TruSeq indexes. Transcriptomes were sequenced on either NextSeq or NovaSeq platforms [Illuminal].

332 Astrocyte stimulation assays iAstlls were differentiated as described in (Supplementary Figure 8) and then trans-
333 ferred to imaging dishes for stimulation as previously described [50]. Briefly, glass bottom dishes [Ibidi 81158] were
334 coated in Poly-d-lysine (0.1 mg/mL) for 2 hours at room temperature, washed twice in PBS [Gibco], and coated
335 overnight in fibronectin (10 pg/mL) [Thermo] at 37°C. Differentiated astrocytes were digested in TrypLE [Gibco] for
336 7-10 minutes, and 40,000-50,000 cells were transferred to coated dishes and maintained for 2 days before stimulation
337 and imaging. Prior to stimulation and imaging the astrocytes were stained with Fluo-4 (1 pg/mL) [Invitrogen] in
ss8 BrainPhys medium without phenol red [StemCell] and incubated in the dark for at least 25 minutes at 37°C. Cells were
339 then washed with fresh media three times and transferred immediately to a Zeiss Axio 3 Inverted Microscope with COq
340 (5%) and temperature control (37°C). After staging, basal activity was measured for at least 2 minutes, after which
341 small molecule stimuli were applied.

ss2 Hepatocyte hepatotoxicity assays iHeps were differentiated as described in (Supplementary Figure 8) and then
343 transferred to 96-well plates pre-coated with Matrigel [Corning] and treated with hepatotoxins as previously described
a4 [51]]. Briefly, after differentiation, 25,000 iHeps, undifferentiated iPSCs, and plateable primary human hepatocytes
345 [ZenBio] were plated in each well and incubated overnight at 37°C. The next day, media was changed to Hepatocyte
a6 Medium E (William’s E Medium [Gibco], Maintenance Cocktail B [Gibco], and 0.1uM Dexamethasone [Gibco])
s47 for one day. The following day, media was exchanged and supplemented with hepatotoxins (Acetaminophen at
a8 [3.125,6.25,12.5,25,50,100] mM [Spectrum], Nefazodone at [1,3,10,30,100,300] M [Sigma], and Troglitazone at
s49  [1,3,10,30,100,300] uM [Sigma]). Cells were incubated again at 37°C for 24 hours, and viability was measured with
350 CellTiter-Glo Luminescent Cell Viability Assay [Promega].

35t Cytotoxic T-cell activation assays Primary cytotoxic T-cells (Human Peripheral Blood CD4+CD45RA+ T Cells)
352 [StemCell] and iCytoTs were cultured and activated in the same manner. Briefly, cells were incubated in ImmunoCult-
353 XF T Cell Expansion Medium [StemCell] + IL-2 [R&D Systems] with DYNAL Dynabeads Human T-Activator
ss4 CD3/CD28 for T Cell Expansion and Activation [Gibco] for 3 days. After this incubation, the cells were stained with
355 Celltrace Violet [Invitrogen] and moved into new wells at the concentration of 1M cells/well with fresh media (as
356 above) and grown at 37°C for 11 days, changing media every 2-3 days. Finally, cells were analyzed via flow cytometry.
357 Percent activated was determined by gating cells that had diminished fluorescence after proliferation.

sss8  Regulatory T-cell proliferation suppression assays iTRegs were co-cultured with activated primary cytotoxic T-
3s9  cells in variable quantities as previously described [49]. Briefly, iTRegs were differentiated in ImmunoCult-XF T Cell
sso Expansion Medium [StemCell] + IL-2 [R&D Systems] for 4 days and then moved into co-culture with activated and
ss1  CellTrace Violet [Fisher] stained cytotoxic T-cells and grown at 37°C for 11 days, changing media every 2-3 days.
se2 Finally, cells were analyzed via flow cytometry. The percentage of suppression was determined as 100 x [1 - (% of
ss3 proliferating cells with iTRegs) / (% of proliferating cells without iTRegs)] after applying gates for proliferating v.
ss4 non-proliferating cells and subtracting auto-fluorescence resulting from unstained iTRegs.
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