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ABSTRACT

The creation of induced pluripotent stem cells (iPSCs) has enabled scientists to explore the derivation1

of many types of cells. While there are diverse general approaches for cell-fate engineering, one of the2

fastest and most efficient approaches is transcription factor (TF) over-expression. However, finding3

the right combination of TFs to over-express to differentiate iPSCs directly into other cell-types is a4

difficult task. Here were describe a machine-learning (ML) pipeline, called CellCartographer, for5

using chromatin accessibility data to design multiplex TF pooled-screens for cell type conversions.6

We validate this method by differentiating iPSCs into twelve diverse cell types at low efficiency7

in preliminary screens and then iteratively refining our TF combinations to achieve high efficiency8

differentiation for six of these cell types in < 6 days. Finally, we functionally characterized engineered9

iPSC-derived cytotoxic T-cells (iCytoT), regulatory T-cells (iTReg), type II astrocytes (iAstII), and10

hepatocytes (iHep) to validate functionally accurate differentiation.11

Keywords Stem cell biology · Machine Learning · Cell-fate Engineering · Computer-aided design12

1 Introduction13

It is not know exactly how many human cell types exist, but current estimates put the number in the hundreds [1], all14

originating from a single ‘totipotent’ embryonic stem cell. Since the creation of induced pluripotent stem cells (iPSCs)15

[2], scientists have been trying to recreate differentiation of iPSCs into all of these other types of cells and combine16

them into tissues or tissue-like structures (a.k.a. ‘cell-fate engineering’). This goal seems feasible given that it has been17

generally accepted that iPSCs are functionally identical to embryonic stem cells (ESCs) [3].18

To perform cell-fate engineering, a litany of approaches have been employed that fall into three general categories: (1)19

application of growth factors into media in either 2D or 3D cell culture [10, 11], (2) modifications to cell matrix and20

plate surface conditions [12], and (3) over-expression of transcription factors (TFs) [13]. Generally speaking, the first21

two categories of approaches have been effective in differentiating many different cell types simultaneously — this22

makes sense because the general idea is to recapitulate aspects of natural development in vitro, where many cell types23

would differentiate in unison with each other. The drawbacks of these first two approaches are threefold: first, these24

protocols typically take a long time (often many weeks); second, the efficiency in converting to a single type of cell is25

often poor; and third, reproducibility across these experiments remains a large challenge. Because TF-based approaches26

directly manipulate the epigenetic landscape of individual cells [14, 15, 16, 8], they have proved to address these three27

issues to a great extent.28

While TF-based approaches have been fruitful, the task of identifying the correct TFs for a fast, efficient, and robust29

cell conversion remains a challenging problem. There are two general ways to go about this research process: (1) an30

exhaustive literature search for potentially relevant transcription factors for a desired cell type and identify successful31

combinations via trial-and-error or (2) to use computational tools to predict TFs. While iPSCs were created through a32

systematic version of the former [2], this process does not scale — it is very laborious, requires deep expertise of the33

cell types being converted, and can only account for previously studied TFs associated with specific cell types. The34

latter approach has been successful in recent years [17, 18, 19, 20] and can be used as a more general approach in35
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Figure 1: CellCartographer workflow a. The CellCartographer workflow uses epigenetics, then transcriptomics NGS
data (computational steps in green) to determine TF pools for iterative screening with the TFome (experimental steps in
red). Iterative rounds of screening are refined with barcode sequencing and statistical analysis. Polyclonal cell lines
with sufficient differentiation (>10%) undergo clonal isolation to isolate high-efficiency clones. Cells are nucleofected
with barcoded TF-cassette pools that are integrated randomly into the genome where any one cell may receive some
combination of these factors in either multiple copies (blue) or not at all (green/yellow), resulting in 800,000 TF combo
experiments per nucleofection. The distribution of TFs that are delivered to cells’ nuclei is approximated by a Poison
distribution that can be statistically evaluated to refine screens to TFs b. In silico validation of screening lists — for four
cell types with previously validated TF-overexpression differentiation factors [4, 5, 6, 7, 8, 9], our model accurately
re-identifies these factors (magenta) in the top TFs that would be put into a screen.
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minimizing time required to identify effective conversion factors. While these tools have demonstrated some predictive36

power, they have key limitations: (1) they cannot account for experimental details such as DNA copy count, clonality37

(i.e. polyclonal v. monoclonal cell lines), expression method, or cell culture conditions; (2) they generally only provide38

a single combination of TFs for a cell-type conversion that cannot be iteratively revised; and (3) the experimental39

validation of a vast majority of the new outputs from these remain untested and are optimized towards very small40

sets of TF-combinations validated in the literature. Therefore, most tools are not geared towards finding novel TF41

combinations for direct trans-differentiation that may be faster and more efficient than prior reporting (Supplementary42

Table 1) [21, 17, 22, 23, 24, 9, 25, 26, 27, 28, 29, 30, 31] and (4) only one other known tool explicitly attempts to43

select combinations for maximal experimental differentiation efficiency [22] and no other known tool aims to maximize44

the speed of these differentiations. Moreover, while iterative, machine-learning (ML)-driven screening pipelines have45

yielded impressive results in various areas of molecular biology to date [32, 33, 34, 35], currently no tools use iterative,46

ML-driven screening platforms to discover novel TF combos for extremely fast cell-fate engineering.47

To address these gaps, we built an epigenetics-based, ML-driven pooled screening tool for engineering cell-fate,48

called CellCartographer. CellCartographer uses next generation sequencing based readouts of chromatin accessibility49

(eg. DNase-seq, ATAC-seq, ChIP-seq) and transcription (RNA-seq) to predict TFs to be correlated with cell-type50

identity. Using the predictions made by CellCartographer, we can define multiplex pooled-screens of TFs for over-51

expression, which allows us to explore many experimental variables such as variable stable expression quantities,52

genomic integration copy count and location, and culture conditions with the option to add more nuance depending53

on experimental conditions. Furthermore, we can implicitly select TF over-expression combinations based on speed54

and efficiency depending on the differentiation and screening conditions. CellCartographer gives outputs agnostic to55

starting cell type because it has been demonstrated that the same (or similar) TF set can be used to differentiate cells56

from a variety of originating cell types [22] and because the iterative engineering process from this starting in silico57

screen should be able to accommodate for these differences. We demonstrate how the CellCartographer predictions58

are sufficient for differentiating small sub-populations of cell-surface marker-positive cells for twelve target cell-type59

samples from all three germ layers (resulting in the exploration of up to 10 million TF combinations for these twelve60

types). We then show how we can use bulk-RNA sequencing to refine the original TF predictions and zoom in on61

minimal TF combo sets to differentiate stem cells for six cell types from all three germ layers. Once a sufficiently-high62

percentage of polyclonal cell line differentiation was created, we showed that isolating clones from these populations63

results in the creation of high-performance clonal lines with extremely high differentiation speed and efficiency. Finally,64

we functionally characterized robust clonal lines of differentiation-inducible iPSC lines for each of the three germ65

layers: regulatory T-cells (iTReg) and cytotoxic T-cells (iCytoTs) - mesoderm, hepatocytes (iHep) - endoderm, and66

type-II astrocytes (iAstII) - ectoderm) to validate that the cells are functional in vitro and molecularly accurate. We67

were able to differentiate four cell types using novel combinations of TFs in as little as 6 days. Importantly, our68

unprecentdented derivation of iTRegs and iCytoTs directly from iPSCs in simple media conditions in <6 days may69

considerably accelerate the investigation of T-cell biology.70

2 Results71

2.1 Machine learning for determining TF sub-libraries72

As many TFs are controlled for activity by nuclear localization [36], RNA expression alone is not a sufficient indicator73

of TF activity and importance for cell identity. A stronger indicator of TF activity is occupancy of TFs at active DNA74

regulatory elements, which are marked by methylation and acetylation marks [37, 38]. While chromatin immunoprecip-75

itation sequencing (ChIP-seq) [39] can be used to determine TF binding and DNA histone methylation/acetylation,76

performing assays for each possible pioneer factor for a cell would be infeasible. Chromatin accessibility assays such77

as DNAse-seq and ATAC-seq captures the super set of all transcription factor binding sites and allows for the indirect78

observation of TF binding through their DNA binding motifs. With the aim of minimizing resource requirements for79

studying a novel cell type, the CellCartographer model leverages chromatin accessibility data to make initial predictions80

of TFs for differentiating towards that cell type. After initial TF predictions are made, TF transcript levels are used81

to exclude TFs that are not expressed. The CellCartographer pipeline can leverage a variety of assays for chromatin82

accessibility and transcriptomics to predict a set of TFs for a target cell type, which can then be tested in a pooled83

screen (Figure 1a). To broaden the functionality of CellCartographer, input data can be either manually uploaded84

or automatically queried and downloaded from the ENCODE database [40] or GEO [41]. While we use chromatin85

accessibility only during our studies, additional assays that can be used to exclude inactive regulatory elements such as86

DNA histone acetylation/methylation and nascent RNA expression would likely improve the quality of predictions.87

Since the number of TFs in the TFome (1732) with characterized binding sites [42] (891), yields 2891 possible outcomes88

(Figure 1a), a full library screen is intractable. In a full library screen, the chance of observing a correct combination89

of TFs that differentiate a target cell type with 106 starting cells would be unlikely (on the order of 1 in 10167). And90
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Figure 2: Computational analysis of 34 cell types with CellCartographer. a. Multidimensional scaling of the
similarity in gene expression between different cell types. b. Multidimensional scaling of the similarity in TFs
correlated with open chromatin. c. Motifs correlated (red) and anti-correlated (blue) with open chromatin vary across
34 cell types analyzed. d. Highly ranked motifs correlated with open chromatin for cell types derived from yolk sac
(microglia), endoderm (hepatocyte), mesoderm (B-cell, T-cell, regulatory T-cell), and ectoderm (astrocyte)
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so, we reasoned that the number of starting cells and the number of possible combinations formed from the set of91

transfected TFs should be similar (i.e. 2nTFs mcells). In our case, we nucleofected 106 cells per experiment and the92

screening pools contained approximately 16 plasmids containing integratable TF-over expression cassettes driven by a93

doxycycline-inducible promoter (Figure 1a). Each TF cassette is integrated randomly within each cell from zero to n94

times, allowing us to explore a large parameter space of DNA integration location and resulting expression amounts of95

each TF in combination.96

In order to identify TFs of interest for each cell type, we begin by learning a relationship between TF motifs and97

chromatin accessibility. Specifically, we train a logistic regression classifier model to distinguish between open98

chromatin regions and a set of background genomic loci, matched for GC content, using known DNA TF binding99

motifs drawn from the JASPAR database (Figure 1a) [43]. By training a model using all motifs, we can model the100

cooperative binding of lineage determining TFs [9, 44]. Given that we want to select a small number of TFs, we use101

LASSO regularization when training the model. One dvantage of linear models in comparison to more complex models102

such as deep neural networks, is greater interpretability. By examining the sign of the model coefficients, we can103

determine whether the presence of a motif is negatively or positively correlated with open chromatin. We exclude104

all TF motifs that have a negative coefficient and are negatively correlated to open chromatin. Correlated features,105

in our case similar TF motifs, can result in multiple-collinearity and unstable model coefficient values. We mitigate106

multiple-collienarity by first using a non-redundant set of motifs [45]; additionally, we train an ensemble of models107

across five cross validation splits and use the mean result across the ensemble. To further increase the stringency108

of our results, we determine the significance of each TF motif using the likelihood ratio test, which is an in silico109

analog of a mutagenesis experiment. In the likelihood ratio test, the performance of a model trained on all motifs110

is compared to a model trained on all but one motif. We can identify and exclude constitutively active TFs pooling111

results from across several cell types; we rescale (z-score normalization) the coefficients of models for all cell types112

(Supplementary Figure 1) and remove all motifs that has a mean absolute z-score greater than 2.5 (Supplementary113

Figure 2). As many TFs share DNA-binding motifs [46], we then use transcriptomics data to identify which TFs are114

expressed in a given cell type; we select the most significant motifs that are positively correlated with binding and115

the top 16 corresponding genes that have RNA expression. Our procedure for selecting TFs for testing is outlined in116

(Figure 1b) and (Supplementart Figure 3). Using publicly available DNase-seq data from ENCODE, we applied our117

approach on several cell types with simple known combinations of one to two lineage determining TFs and confirmed118

that these TFs appear in the top TFs predicted by CellCartographer (Figure 1b).119

To computationally validate our model on a larger scale, we applied CellCartographer to 34 primary cells types and 29120

tissue types. We found that each TF DNA binding motifs strongly correlated with chromatin accessibility had different121

behaviors in each cell type and tissue type (Figure 2c, Supplementary Figure 5c). Given that related cell types have122

similar transcriptional profiles (Figure 2a, Supplementary Figure 5a), we reasoned that they may also have similar123

TFs correlated with open chromatin that drive transcriptional profiles. To visualize the similarity between transcriptional124

profiles, we calculated the pairwise Pearson correlation between the gene expression values of each cell type (log125

RPKM values) and used multidimensional scaling to embed each cell type in way that respects the pairwise similarity126

between cell types; using the Spearman correlation model coefficient for each TF, we can also visualize the similarity of127

TF motifs correlated with open chromatin. We observe that cell types that group together when considering similarities128

in transcriptional profiles such as adaptive immune cells (eg. B-cells and T-cells) and progenitor cell types (H1-hESC,129

GM23338, and neural stem progenitor) tend to look similar from the perspective of TF motifs correlated with open130

chromatin (Figure 2b, Supplementary Figure 5b).131

2.2 Primary pooled TF screens for differentiation132

To demonstrate that our pooled screening method could be generally applied to any cell type of interest, we identified133

cell types from each human germ layer and screened TFs combinations to identify populations of cells that came up134

positive for canonical markers. Specifically, we generated TF pools for: Mesoderm — T-cells (subtypes cytotoxic,135

delta-gamma, and regulatory), B-cells, macrophages, epithelial cells (subtypes kidney, bronchial, and mammary), and136

osteoblasts; Endoderm — hepatocytes; Ectoderm — type II astrocytes; and Yolk Sac — microglia. For each cell type,137

we designed two TF pools for each cell type using CellCartographer — one pool containing TFs with expression level138

≥ 1 RPKM and another containing TFs with expression level ≥ 4 RPKM (Supplementary Tables 1-12). We then139

prepared mixed DNA pools of equal concentration of each TF and nucleofected and screened iPSCs for differentiation140

(Figure 1d). We found that the percentage of cells appearing positive in most cases was very small, but ranged from141

0.05% (Regulatory T-cells) to 17.64% (B-cells), although in almost all cases, the positive population was <1% (Figure142

3, Supplementary Figure 7). Thus it appeared that all samples yielded at least a small population of differentiated143

cells that can be sequenced to determine which TFs from the TFome were present.144
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Figure 3: Primary pooled screens for cell types originating from each germ layer. For each cell type, a negative
antibody stain for iPSCs without TFs (LEFT), the cell population with induced TFs (MIDDLE), and the barcoded TF
appearance frequency in the transcriptome of double-positive cell populations (RIGHT) is shown. a. Type II Astrocytes
(ectoderm) b. Microglia (yolk sac) c. CD8-positive T-cells (mesoderm) d. B-cells (mesoderm). e. Regulatory T-cells
(mesoderm) f. Hepatocytes (endoderm).

From this set of diverse screened cell types, we decided to iteratively refine a set of six that had high clinical relevance145

— cytotoxic T-cells, Regulatory T-cells, B-cells, hepatocytes, type II astrocytes, and microglia. A comparison of the top146

motifs positively correlated with open chromatin for these six celltypes is shown in Figure 2d; the screening pools for147

each of these six celltypes are shown in Supplementary Table 1-6. It should be noted that at this step, the selection of148

specific surface markers biases the downstream analysis and refinement. For example, although TF pools for astrocytes149

were determined from data based on generic astrocytes (type I or type II), our selection of A2B5 as a surface marker150

in combination with CD44 selected specifically for type II astrocytes. In the case of the epithelial sub-types, there151

was some uncertainty of the ideal cell surface markers to use since CD24 was unexpectedly present in the stem cells152

and stem cells are partially epithelial in quality and express EpCAM [47] to a slightly lesser degree than differentiated153

epithelial types. Nonetheless, from the pooled screens we were able to sort at least 1000 double-positive cells from each154

large population for bulk RNA-sequencing. We lysed the sorted cells, prepared sequencing libraries, and amplified the155

barcoded regions of the TFome cassettes to tell us the relative abundance of TFome cassettes in the double-positive156

cells (Figure 3). We found that the distributions for each cell type had some variability, but that in general, each cell157

type had TFs that were represented in the positive population more than others. In fact, only one of the six cell types158

(cytotoxic T-cells) had all TFs show up in sequencing at least once.159

2.3 Iterative pooled TF screening and clonal isolation160

Using the barcode frequencies, we calculated 3 refined TF pools for each cell type: All TFs that appear in sequencing,161

TFs that appear greater than average, and TFs that appear one standard deviation or more than average (Figure 4a-d.162

Using the refined TF pools, we performed a second round of differentiation. Given that this round of screening generally163

limited TF pools to <5 TFs per pool, we built stable cell lines for additional testing and refinement. iPSCs were164

nucleofected as before, but we selected and stabilized the cell lines before screening differentiation in different settings.165

Specifically, given the stability of the constructed cell lines (i.e. less cell death), we opted to test them for only six166

days, and also decided to test their performance in target-cell-type growth medium in addition to stem cell medium167

(Supplementary Figure 8).168

In this round, we found broad improvement in differentiation percentage across all six cell types (Figure 4a-d,169

Supplementary Figure 11). While B-cells already had a considerably high differentiation percentage in the primary170

screening round (17.6%), it improved to an average of greater than 50%. For all other five cell types, the refined lines171

appeared to improve in differentiation percentage dramatically compared to the populations seen in the primary screen.172

However, since these populations have mixed identity, it is likely that many of these cells were still only partially173

differentiated. When we examined the number of cells that were positive for just one (or both) markers, all cell types174

improved differentiation rates compared to the primary screens (Supplementary Figure 10). When we examined175

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2023. ; https://doi.org/10.1101/2022.10.14.512279doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.14.512279
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4: Iteratively engineered poly-clonal and mono-clonal cell lines. (a-d) For each cell type, we show percent
double-positive for FACS analysis of canonical markers for non-clonal (turquoise) and mono-clonal (red) cell lines
mono-clonal (red) cell lines, and an iPSC + media control (green) differentiated for six days in cell-type-specific media +
DOX for a. Type II Astrocytes (iAstIIs) b. Cytotoxic T-cells (iCytoTs) c. Hepatocytes (iHeps) and d. Regulatory T-cells
(iTRegs). e. Differential gene expression (quantified by Z-score) for all genes for two replicates of each differentiated
cell type in both media conditions. f. Principal component analysis of all genes for each cell type in each media
condition and a primary cell control. g. Differential gene expression (quantified by RPKM) for key marker genes across
target cell types and iPSCs. h. Metascape [48] analysis of gene enrichment of high-efficiency clones for genes that
were upregulated in these lines and differentiation conditions compared to iPSCs. Analysis of select highly-significant
GO Terms from TOP 50 for each differentiated cell type and condition is shown (-log10(P) ≥ 3).

differentiation percentage (both partial and total) in target-cell-type growth media, we saw even more near-complete176

differentiation of these cell lines (Supplementary Figure 8,12). While it was clear that the growth medium is a177

contributor to differentiation efficiency, the TFs were the major driver of differentiation for all cell types.178

Given that our cell lines were clearly making progress towards robust differentiation, but in a limited capacity, we179

reasoned that perhaps many micro-scale experimental details could be to blame — for example, perhaps cell-cell180

communication from non-differentiating cells in the population was the issue, or perhaps the details of how many TF181

cassettes were integrated and in what location was very important. Since we use PiggyBac integrase that integrates182

variable copies of TF over-expression cassettes in random genomic locations, we hypothesized that perhaps some183

cells in the cell line population are holding back the rest of the population, and that isolating monoclonal cell lines184

could improve our differentiation efficiency. Ergo, we sorted random single cells in the population to form monoclonal185

lines and characterized them. To our satisfaction, for CD8 T-cells, microglia, astrocytes, and hepatocytes, this solved186

the problem — several clones of each were able to dramatically outcompete the mixed population in differentiation187

efficiency in all of the aforementioned differentiation conditions (Figure 4a-d, Supplementary Figure 11).188

After differentiation of high-performance clones, we performed RNA-sequencing to validate that our clones were189

generally reflective of target cell types at a molecular level in addition to surface markers. We found that across all genes,190

our differentiated cells clustered well by cell type in both media conditions (Figure 4e). Specifically, it was important to191

see that the molecular characteristics of the T-cell subtypes were in general agreement and were significantly different192

from all other types. As expected, since these cell types were all from different germ layers (except the T-cell subtypes),193

the expression profiles were dramatically different across differentiated cell types. This was further reflected in principal194

component analysis (Figure 4f) - we observed that our differentiated cell types generally clustered very tightly across195

both media conditions and that they clustered somewhat well with primary cell types. The clustering of cell types across196

variable media reinforces that TF over-expression is a more dominant factor than the different media conditions. Next,197

when we zoom in on key canonical markers for our differentiated cells, they once again cluster as expected and generally198
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Figure 5: Functional validation of iAstIIs, iHeps, iCytoTs, and iTRegs. a-c. Stimulation of Type II astrocytes
over 10 min with small molecules with a. 100µM ATP b. 100µM glutamate, and c. 30mM KCl. (LEFT) Relative
fluorescence of six individual astrocytes. Astrocyte cell population shown before (TOP) and after (BOTTOM) addition
of small molecule. d. Phase-contrasted BF image of induced iHeps prior to hepatotoxicity testing. Key features in
select cells such as multiple nuclei (blue circles) and approximately cuboidal shape (red circles) are called out. iHeps,
primary hepatocytes and iPCs titrated with e. Nefazodone, f. Acetaminophen, and g. Troglitazone for 24h and assayed
for percent viability (survival rate normalized to each cell type without toxins applied). h. Brightfield imaging of
T-cell populations (LEFT to RIGHT): Primary CD8 T-cells, iTRegs, Primary CD8 T-cells + activation beads, iCytoTs +
activation beads. i. Suppression assay for iTRegs co-cultured with activated primary CD8 T-cells j. Calculated percent
suppression with titrated dosing of iTRegs in suppression assay. Primary T-cells have been shown to suppress in the
range of 20/30/40% respectively [49]. k. Activation assay for iCytoTs l. Percent of proliferating primary CD8 T-cells
and iCD8 cells post-activation.

show upregulation of expected markers (Figure 4g). In the case of iAstIIs and iTRegs, there were some interesting199

marked difference of key factors across media conditions, suggesting that media formulation may play a key role in the200

final condition and function of these cells. Finally, when we analyze the complete sets of significantly up-regulated201

genes (P < 0.1) for our high-efficiency clonal lines compared to iPSCs with Metascape [48], we see enrichment of GO202

terms that is supportive of cell-type specific features (Figure 4h).203

2.4 Functional characterization of differentiated cells204

Finally, after refinement of our differentiating cell lines and molecular validation of their identities, we wanted to205

validate that the cells also functionally perform their intended function for down-stream clinical applications. To this206

end, we opted to focus on at least one cell type from each germ layer - regulatory T-cells (iTRegs), cytotoxic T-cells207
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(iCD8s), type II astrocytes (iAstIIs) and hepatocytes (iHeps). To functionally characterize these cell types, we performed208

in vitro assays based on biological function (Figure 5).209

For the iAstIIs, we validated that the morphology was correct and that they were stimulated as expected by certain210

standard small molecules [50] (Figure 5a-c). We observed that at standard concentrations of small-molecules of three211

classes (glutamate - neurotrasmitter, ATP - nucleotide, and KCl - ionic), many plated astrocytes were stimulated. We212

observed strong increases of relative Fluo-4 fluoresence immediately after induction for individual astrocytes that were213

both inactive before stimulation and active at times before stimulation. Furthermore, while glutamate and KCl should214

stimulate both astrocytes and other neuronal types, only astrocytes are stimulated by ATP, confirming that the cells we215

assayed both had correct astrocyte morphology and exclusive functionality.216

For the iHeps, we validated the morphology (Figure 5d) and compared their viability compared to primary hepatocytes217

and undifferentiated cells when exposed to hepatotoxins for 24hrs [51, 52]. We observed that our iHeps had highly218

similar viability to primary hepatocytes after being exposed to Nefazodone (Figure 5e), Acetaminophen (Figure 5f),219

and Troglitozone (Figure 5g), and demonstrated significantly higher viability compared to undifferentiated iPSCs.220

iTregs were validated by demonstrating that the cells inhibited the expansion of responder T-cells [53]. Before this step,221

we confirmed that our iTRegs had size and morphology approximately the same as primary cytotoxic responder cells222

(Figure 5h). While the size and shape were generally consistent, with both iTRegs and iCytoTs, the primary responder223

T-cells took on an elongated shape when stimulated, while our iCytoTs did not clearly show this morphological change224

to stimulus. Responder T-cells were stimulated to activate with IL-2 and CD3+CD28+ beads for three days. After this225

activation step, responder T-cells were labeled with a fluorescent dye and co-cultured with iTregs in variable quantities.226

After 11 days, fluorescence was recorded to validate that the addition of more iTregs resulted in reduced responder227

T-cell proliferation (Figure 5i,j). We observed some reduction in responder T-cell proliferation as we increased the228

number of iTRegs, albeit modestly compared to prior results with primary regulatory T-cells [49]. Finally, to validate229

the iCytoTs, we activated them with the same bead-based method used in the the regulatory T-cell assay and examined230

their morphology and interaction with the activator beads (Figure 5h) and then recorded proliferation. We found that as231

with the iTRegs, the proliferation was modest, but increased by the number of days the iCytoTs were induced from232

stem cells prior to the initiation of the assay (Figure 5k,l).233

3 Discussion234

In summary, we have described how the CellCartographer tool and pipeline can guide and refine cell-fate engineering235

with machine learning and synthetic TF-cassettes from the human TFome. We demonstrated that the primary TF pools236

for differentiating iPSCs into a diverse set of cell types yields a small population of positive cells for each of the tested237

types. We then went on to focus on six cell types from each germ layer to show how we can use NGS data from238

partially-engineered cell lines with CellCartographer to engineer high-efficiency differentiation-inducible cell lines.239

Finally, we isolated high-performance clones for four cell types and functionally characterized at least one cell type240

from each germ layer to validate that our engineered cell lines were functionally accurate in vitro.241

While CellCartographer is not the first software to identify TFs for cell-fate engineering, it presents an advance in242

three main areas from a software perspective. First, it leverages a machine-learning driven, iterative screening pipeline243

by making TF predictions using epigenetics data and enables an iterative pipeline for refining engineered cell lines.244

We hypothesize that as sequencing technologies continue to improve and more data is generated, CellCartographer’s245

predictions should only improve. Second, CellCartographer has a very minimal requirement for producing useful TF246

pools — it does not require re-training large models for additional cell types, which can prove useful for engineering247

cell lines for differentiation into exotic cell types with little data available. Furthermore, we were able to successfully248

engineer iTRegs using TFs determined from Mus Musculus data since that was the only epigenetic NGS data available249

for this cell type, meaning calculations of factors can work cross-species. Finally, the pooled screening philosophy of250

CellCartographer, allows biologists to explore and debug many experimental variables that are generally invisible to251

software tools — namely synthetic DNA genomic integration location, copy count, and cell culture conditions and their252

resulting differentiation speed and efficiency. Pooled screening and paired ML analysis allows us to screen out these253

issues. Furthermore, while we use the starting predictions from CellCartographer to iteratively refine our cell lines254

in this study, all of the down-stream tools are compatible with starting predictions from other tools (i.e. another tool255

could provide the starting prediction and CellCartographer and the TFome can still be used downstream), meaning256

CellCartographer can be used to compliment other existing tools that generate complete lists of TFs predicted to be257

associated with cell type [28, 24, 29] (Supplementary Table 1.).258

This work also represents a major advance in terms of identifying four robust TF combinations for differentiation259

into high-value cell types relevant to therapeutics. At this time, aside from hepatocytes, there are no experimentally260

established TF combinations for directly differentiating stem cells into type II astrocytes, regulatory T-cells, or cytotoxic261
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T-cells. Furthermore, we demonstrate that this differentiation can be driven in stem cell media in six days or less,262

meaning that the TF combinations are fast, robust, and solely to credit for the differentiation in these examples. Finally263

by performing additional optimizations with specialized media conditions and performing functional assays on iAstIIs,264

iHeps, iTregs, and iCytoTs, we show that this strategy should be robust in ultimately obtaining functional clonal cell265

lines of theoretically any type that can differentiate rapidly, efficiently, and robustly from iPSCs. While the functional266

qualities of the iAstIIs, and iHeps were more dramatic and complete, the function and viability of the induced T-cells267

is likely very sensitive to media conditions and could be further improved with additional optimization of growth268

conditions starting from the stem cell state. A clear next step from this work would be to further optimize culture269

conditions for these cell types to improve functionality and even perhaps to re-perform screens in these optimized270

medias.271

In conclusion, we believe that CellCartographer provides a clear benefit to the field of stem cell biology and cell-line272

engineering. While we have already generated interesting inducibly-differentiating iPSC lines, we strongly believe273

that this tool can be applied immediately to aid the engineering of other stem cell lines for any number of therapeutic,274

diagnostic, or other commercial applications.275

4 Methods276

DNAse-seq and ATAC-seq analysis Adapters from sequencing reads were trimmed with Homer [9], using the277

command: homerTools trim -len 40. Following adapter trimming, reads were aligned using Bowtie2 [54] (with default278

parameters) and then converted into a Homer tag directory. We called open chromatin regions or peaks with Homer279

using the following findPeaks command with the following parameters -C 0 -L 0 -fdr 0.9. We then use IDR [55] to280

identify high confidence open chromatin regions.281

Prediction of transcription factors for cell fate engineering For the set of open chromatin regions for each cell282

type, we sample from the genome an equivalent number of background peaks that has matching GC content and size.283

Using a set of non-redundant DNA motifs [45], which specify the frequency of each nucleotide at each position in the284

motif, and a background frequency (0.25 at each position), we can calculate a log odds score that indicates how well a285

sequence matches a motif. For each open chromatin region and background loci, we calculate the highest log odds score286

for each motif. We standardize the motif scores such that the mean score value is 0 and the variance is 1. Then we train287

a LASSO-regularized logistic regression model [56] to discriminate between open chromatin regions and background288

sites. We assess the importance of a motif using a log-likelihood ratio test where we compare the performance of a289

perturbed model where a single motif is not used as a feature during model training and the performance of the full290

model that is trained using all motifs. We convert the difference in likelihoods given by the two models to p-values291

using the chi-squared test. Model coefficients and p-values reported are the average across five randomly assigned292

cross-validation splits (80% training, 20% testing). As a sanity check, for each model, we measure the area under the293

receiver operating characteristic (ROC) curve, and ensure that the model is making non-random predictions. The model294

training procedure and TF selection procedure is summarized in (Figure 1b) and (Supplementary Figure 3). Data295

processing, model training, and statistical analysis was performed using python and the following packages: pandas296

[57], numpy [58], scipy [59], sklearn [60], biopython[61]. Data plotting performed using R bioconductor packages297

[62].298

Transcriptomics analysis Adapters from sequencing reads were trimmed with Homer, using the command: homer-299

Tools trim -len 40. Following adapter trimming, reads were aligned using Bowtie2 (with default parameters) and then300

converted into a Homer tag directory. We used the Homer analyzeRepeats command to quantify gene expression as301

RPKM values. Raw read counts at each gene were used as input to DeSeq2 [63] for identifying differentially expressed302

genes.303

Cloning of transcription factors Transcription factors were cloned into puromycin-resistant cassettes with flanking304

piggyBac transposon [SystemsBio] genomic integration regions under the control of the mammalian DOX-unducible305

promoter pTRET. Plasmids for each transcription factor are members of the ‘Human TFome’ library deposited on306

Addgene.307

Creation of cell lines and cell culture All differentiating cell lines and differentiation screens were performed on308

reprogrammed PGP1 fibroblasts using the Sendai-reprogramming-factor virus. PGP1 iPS cells were expanded and309

nucleofected with P3 Primary cell 4D Nuceleofection kits with pulse code CB150 using 2µg of total DNA for 800,000310

cells (1.6 µg TF pool/0.4 µg SPB) [Lonza]. Cells were plated onto Matrigel-cotated plates [Corning] with ROCK-311

inhibitor [Millipore] and selected with puromycin [Sigma]. Stable cell lines were expanded over several passages using312

TrypLE [Gibco] in mTeSR1 [StemCell Technologies] and frozen in mFreSR [StemCell Technologies]. Cells were313
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differentiated with 2ng/mL doxycycline [Sigma] at variable conditions as described in (Supplementary Figure 8) in314

either mTeSR1 [StemCell Technologies], RPMI-1640 (microglia) [Gibco] + 10% FBS [Gibco], Williams’ E Medium315

(hepatocytes) [Gibco] + 10% FBS [Gibco], Immunocult-XF T-Cell Expansion Media (T-cells) [StemCell Technologies],316

LGM-3 (B-cells) [Lonza], or BrainPhys Media (Astrocytes) [Stem Cell Technologies].317

Flow Cytometry and Cell Sorting Cells were digested in TrypLE [Gibco] and resuspended in growth media before318

staining with cell surface markers. The following antibodies were used for analysis and cell sorting: [Microglia:319

CD11b-FITC, CX3CR1-PE]; [CD8-positive T-Cells: CD3-PerCP-Cy5.5, CD8-FITC]; [T-Regulatory cells: CD3-PerCP-320

Cy5.5, CD4-PE-Cy7, FOXP3-PE, CD127-V450]; [B-cells: CD19-PE-Cy7, CD27-FITC]; [Hepatocytes: ASGPR1-PE,321

CD184-APC]; [Astrocytes: CD44-FITC, A2B5-PE]. Cells were sorted and collected on a Sony SH800 FACS for322

primary screens. For characterization of stable cell lines, cells were stained and analyzed on a BD LSR Fortessa323

Analyzer flow cytometer. The gating strategy is exemplified in (Supplementary Figure 6).324

RNA sequencing Cells were either collected from FACS (primary screens) or collected directly from culture (refined325

screens and stable cell line characterization) and were lysed in TRIzol [Invitrogen]. RNA was purified with Direct-zol326

RNA MicroPrep and RNA MiniPrep kits [Zymo]. Library prep was performed using a SMARTer Stranded Total327

RNA-Seq Kit v2 - Pico Input Mammalian [TARAKA] (primary screens) and NEBNext Ultra II RNA Kits [NEB]328

(refined screens and stable cell line characterization). Barcodes were amplified from the prepped cDNA using two329

alternative primer pairs (Supplementary Table 5). Amplicons were sequenced with a MiSeq kit [Illumina] using330

Illumina TruSeq indexes. Transcriptomes were sequenced on either NextSeq or NovaSeq platforms [Illumina].331

Astrocyte stimulation assays iAstIIs were differentiated as described in (Supplementary Figure 8) and then trans-332

ferred to imaging dishes for stimulation as previously described [50]. Briefly, glass bottom dishes [Ibidi 81158] were333

coated in Poly-d-lysine (0.1 mg/mL) for 2 hours at room temperature, washed twice in PBS [Gibco], and coated334

overnight in fibronectin (10 µg/mL) [Thermo] at 37◦C. Differentiated astrocytes were digested in TrypLE [Gibco] for335

7-10 minutes, and 40,000-50,000 cells were transferred to coated dishes and maintained for 2 days before stimulation336

and imaging. Prior to stimulation and imaging the astrocytes were stained with Fluo-4 (1 µg/mL) [Invitrogen] in337

BrainPhys medium without phenol red [StemCell] and incubated in the dark for at least 25 minutes at 37◦C. Cells were338

then washed with fresh media three times and transferred immediately to a Zeiss Axio 3 Inverted Microscope with CO2339

(5%) and temperature control (37◦C). After staging, basal activity was measured for at least 2 minutes, after which340

small molecule stimuli were applied.341

Hepatocyte hepatotoxicity assays iHeps were differentiated as described in (Supplementary Figure 8) and then342

transferred to 96-well plates pre-coated with Matrigel [Corning] and treated with hepatotoxins as previously described343

[51]. Briefly, after differentiation, 25,000 iHeps, undifferentiated iPSCs, and plateable primary human hepatocytes344

[ZenBio] were plated in each well and incubated overnight at 37◦C. The next day, media was changed to Hepatocyte345

Medium E (William’s E Medium [Gibco], Maintenance Cocktail B [Gibco], and 0.1µM Dexamethasone [Gibco])346

for one day. The following day, media was exchanged and supplemented with hepatotoxins (Acetaminophen at347

[3.125,6.25,12.5,25,50,100] mM [Spectrum], Nefazodone at [1,3,10,30,100,300] µM [Sigma], and Troglitazone at348

[1,3,10,30,100,300] µM [Sigma]). Cells were incubated again at 37◦C for 24 hours, and viability was measured with349

CellTiter-Glo Luminescent Cell Viability Assay [Promega].350

Cytotoxic T-cell activation assays Primary cytotoxic T-cells (Human Peripheral Blood CD4+CD45RA+ T Cells)351

[StemCell] and iCytoTs were cultured and activated in the same manner. Briefly, cells were incubated in ImmunoCult-352

XF T Cell Expansion Medium [StemCell] + IL-2 [R&D Systems] with DYNAL Dynabeads Human T-Activator353

CD3/CD28 for T Cell Expansion and Activation [Gibco] for 3 days. After this incubation, the cells were stained with354

Celltrace Violet [Invitrogen] and moved into new wells at the concentration of 1M cells/well with fresh media (as355

above) and grown at 37◦C for 11 days, changing media every 2-3 days. Finally, cells were analyzed via flow cytometry.356

Percent activated was determined by gating cells that had diminished fluorescence after proliferation.357

Regulatory T-cell proliferation suppression assays iTRegs were co-cultured with activated primary cytotoxic T-358

cells in variable quantities as previously described [49]. Briefly, iTRegs were differentiated in ImmunoCult-XF T Cell359

Expansion Medium [StemCell] + IL-2 [R&D Systems] for 4 days and then moved into co-culture with activated and360

CellTrace Violet [Fisher] stained cytotoxic T-cells and grown at 37◦C for 11 days, changing media every 2-3 days.361

Finally, cells were analyzed via flow cytometry. The percentage of suppression was determined as 100 x [1 - (% of362

proliferating cells with iTRegs) / (% of proliferating cells without iTRegs)] after applying gates for proliferating v.363

non-proliferating cells and subtracting auto-fluorescence resulting from unstained iTRegs.364
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