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Abstract: The cellular complexity of the human brain is established via dynamic changes in 
gene expression throughout development that is mediated, in part, by the spatiotemporal activity 
of cis-regulatory elements. We simultaneously profiled gene expression and chromatin 
accessibility in 45,549 cortical nuclei across 6 broad developmental time-points from fetus to 
adult. We identified cell-type specific domains in which chromatin accessibility is highly 
correlated with gene expression. Differentiation pseudotime trajectory analysis indicates that 
chromatin accessibility at cis-regulatory elements precedes transcription and that dynamic 
changes in chromatin structure play a critical role in neuronal lineage commitment. In addition, 
we mapped cell-type and temporally specific genetic loci implicated in neuropsychiatric traits, 
including schizophrenia and bipolar disorder. Together, our results describe the complex 
regulation of cell composition at critical stages in lineage determination, serve as a 
developmental blueprint of the human brain and shed light on the impact of spatiotemporal 
alterations in gene expression on neuropsychiatric disease. 

 

One-Sentence Summary: Simultaneous profiling of gene expression and chromatin 
accessibility in single nuclei from 6 developmental time-points sheds light on cell fate 
determination in the human cerebral cortex and on the molecular basis of neuropsychiatric 
disease. 
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Main text 
 
Human brain development starts during the early stages of embryogenesis and extends postnatally 
through infancy, childhood, adolescence, and young adulthood (1, 2). To produce distinct circuits in the 
human cortex, neurons are born in an immature state and undergo a variety of molecular and 
morphological changes as they differentiate, migrate, and establish synaptic networks. Environmental and 
genetic risk factors can disrupt these highly orchestrated developmental processes, potentially leading to 
neuropsychiatric disease (3, 4). Given the variable age of onset of different neurodevelopmental disorders, 
it is critical to examine the effect of risk factors across the full spectrum of human brain development. 
 
The developmental transition of cell lineages is highly orchestrated by dynamic changes in gene 
expression, mediated in part by spatiotemporal patterns of transcription factor (TF) binding to cis-
regulatory DNA elements (5–9). Single-cell transcriptome analysis has expanded our knowledge of 
cellular diversity and the molecular changes that occur during differentiation, migration, and synaptic 
network formation in the human cortex (9–13). Recently, simultaneous multi-omic (gene expression and 
chromatin accessibility) single cell profiling has emerged as a means to decipher how combinations of 
TFs drive gene expression programs and to infer cell lineage transitions during development (14). 
Consequently, joint analysis of gene expression and chromatin accessibility at the single-cell level can 
provide a more complete understanding of the gene-regulatory dynamics associated with human brain 
development. 
 
To that end, we generated a transcriptomic and chromatin accessibility atlas, profiling 45,549 cells using 
multi-omic single-nucleus RNA-seq and ATAC-seq, across a broad developmental time frame that 
includes human fetal cortical plate, early postnatal, adolescent and adult specimens. We explored gene 
regulatory interactions by combining chromatin accessibility with gene expression within the same cells, 
and identified a subset of genes that are regulated by multiple nearby putative enhancers and have an 
important role in lineage determination during cortical development. To better understand the regulatory 
mechanisms driving neurogenesis, we performed pseudotime trajectory analysis and detected dynamic 
changes in chromatin accessibility preceding transcript production as a critical component of neuronal 
lineage commitment. We evaluated the enrichment of lineage-specific genes and chromatin accessible 
regions with genetic risk loci for neuropsychiatric disorders in order to explore their cellular ontogeny. 
Taken together, our data present a valuable resource for understanding the gene-regulatory dynamics 
associated with human brain development, and for prioritizing targets for further study as well as the 
generation of therapeutics to treat neurodevelopmental disorders. 
 
 

Results 

Single-nucleus gene expression and chromatin accessibility profiles revealed 
congruent cell types in the human cortex 
We used the 10X Chromium Single Cell Multiome ATAC + Gene Expression kit to simultaneously 
profile the transcriptome (via snRNA-seq) and chromatin accessibility (via snATAC-seq) in twelve 
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human neocortex samples from six developmental periods (early mid gestation fetal, late mid gestation 
fetal, infancy, childhood, adolescence and adulthood) (Fig. 1A; table S1). To confirm that the paired 
profiles were truly derived from the same cells, we first performed multi-omic profiling on two samples 
containing mixtures of human and mouse cell lines, and asked whether the co-assayed cells were 
consistently assigned to the same species labels. As expected, no doublets were identified and we 
observed that human and mouse reads were well separated based on the chromatin and transcriptome 
profiles of filtered cells (fig. S1A).  
 
We then processed human neocortex samples, obtaining joint profiles of chromatin accessibility and gene 
expression from 45,549 out of 53,185 single nuclei that met quality control and filtering criteria 
(Materials and Methods). To assess the similarities and differences between the two modalities, we first 
clustered the RNA-seq and ATAC-seq data sets independently (Fig. 1B; Materials and Methods). 
Broadly, both modalities revealed the same major neocortical cell types and that cell identities assigned to 
RNA-seq and ATAC-seq derived cell types were highly congruent (Fig. 1C; adjusted Rand index [ARI] = 
0.78).  
 
Similar to previous multi-omic single-cell studies (14, 15), the independent modality analyses exhibit 
differences, primarily in the composition of cell populations in the fetal and postnatal stages (fig. S1B). 
On one hand, some cell types were broadly identified but not distinguishable in the ATAC-seq clustering 
results. For example, the medial ganglionic eminence (MGE)-derived and caudal ganglionic eminence 
(CGE)-derived inhibitory neuron subtypes were not distinguished; various stromal cell types with smaller 
population sizes, including endothelial cells, pericytes and vascular smooth muscle cells (VSMCs), were 
blended together. On the other hand, RNA-seq data showed insufficient power to identify progenitor 
cells, as evidenced by nearly 20% fewer detected radial glia (RG) and intermediate progenitor cells (IPCs) 
when compared with the ATAC-seq results (1,427 for RNA-seq vs. 1,743 for ATAC-seq), indicating that 
active gene-regulatory dynamics at different developmental stages might be better reflected in chromatin 
accessibility than in the transcriptome (16). These results motivated us to anticipate more comprehensive 
information about cell-type classifications by leveraging both modalities. 
 

Joint analysis of multi-omic data improved de novo taxonomy 

We next performed joint clustering on the paired modalities of the same single cells using a weighted-
nearest neighbor (WNN) analysis (15). WNN is an unsupervised method that generates an integrated 
representation of cellular identity by learning the information content of each modality. The WNN 
analysis results were in agreement with those derived from either single modality (ARI = 0.88 for RNA-
seq, ARI = 0.86 for ATAC-seq), while the inferred relative modality weights varied across cell types (fig. 
S1C), reflecting the biological importance of each modality in determining cellular identity. The WNN 
analysis resulted in 28 clusters, including all the major and minor cell types in the human brain cortex, 
which were further grouped into 15 cell types (Fig. 1D; Materials and Methods). We confirmed that 
each cluster comprised cells from different samples (fig. S1D), suggesting that taxonomy was not 
determined by donor or other technical covariates.  
 
Gene activity inferred by gene expression and chromatin accessibility of known cell type-specific markers 
consistently confirmed cluster identity (Fig. 1E; see lists of differentially expressed genes and accessible 
peaks in table S2 and table S3; Materials and Methods). Specifically, we found neural progenitor cells 
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expressing PAX6, including RG (1 cluster; HES5, VIM) and IPCs (1 cluster; EOMES). We also identified 
three subtypes of excitatory neurons (SATB2, SLC17A7, NEUROD2) representing different 
developmental stages, one enriched for cells from early fetal samples (‘EN-fetal-early’; 4 clusters), one 
for late fetal samples (‘EN-fetal-late’; 2 clusters), and the third for postnatal samples (‘EN’; 2 clusters). 
Similarly, there were three subtypes of inhibitory neurons identified (GAD1, GAD2), two of which 
represent MGE-derived (‘IN-MGE’; 1 cluster; LHX6) and CGE-derived (‘IN-CGE’; 1 cluster; VIP, 
ADARB2) subtypes in postnatal samples, while the remaining subtype was enriched in fetal samples (‘IN-
fetal’; 1 cluster). The types of neurons that are distinct between fetal and postnatal human brain samples 
support previous findings (17). In addition, we observed clusters of major glial cell types in the neocortex, 
including oligodendrocyte progenitor cells (OPCs; 2 clusters; OLIG1, SOX10), astrocytes (3 clusters; 
AQP4, GFAP), oligodendrocytes (3 clusters; MOBP, OPALIN), microglia (4 clusters; PTPRC, CX3CR1), 
as well as endothelial cells (1 cluster; CLDN5), pericytes (1 cluster; PDGFRB) and VSMCs (1 cluster; 
COL1A2).   
      
Sample-specific cell type composition varied significantly across developmental stages (Fig. 1F). In the 
four fetal samples, neuronal populations accounted for the vast majority of cells, whereas postnatal 
samples had much higher proportions of non-neuronal cells. The changing patterns of cell type 
composition were in line with the results from a previous deconvolution study using multiple bulk and 
single-cell datasets (18). Moreover, we found that most of the neural progenitors (91%), including the 
transient cell types of RG and IPCs, were only detected in the two early fetal samples (gestational week 
[GW] 18-19; Fig. 1F, fig. S1E), consistent with the fact that the bulk of neurogenesis in the human 
cerebral cortex has occurred by midgestation (at GW20) and these progenitor cells start disappearing or 
transforming with the completion of cortical development (19, 20). Notably, the results derived from joint 
analysis identified every cell type that was found in either single-omic analyses, while not losing power 
for detection of neural progenitors (1,736 by joint analysis vs. 1,743 by ATAC-seq alone vs. 1,427 by 
RNA-seq alone).   
 

Cis-regulatory associations between chromatin peaks and target genes 

Multi-omic data offer the advantage to explore gene regulatory interactions by combining chromatin 
accessibility with gene expression within the same cells. Due to the sparsity of snATAC-seq and snRNA-
seq data, we examined the relationships between the two modalities using pseudobulk aggregates rather 
than individual cells (14, 16, 21). We generated 500 pseudobulk samples by aggregating RNA-seq and 
ATAC-seq signals from similar cell types (fig. S2A; Methods). First, we sought to globally quantify the 
relative contribution of proximal (i.e., promoter) and distal (i.e., enhancer) chromatin accessibility to 
transcriptional variance. We applied a variance component model to the expression of each gene using the 
covariance of chromatin accessibility at promoter and enhancer regions as inputs, and corrected for donor 
and age effects by adding the inter-individual and inter-age-group covariance to the model (22, 23) 
(Materials and Methods). This approach does not model the relationship of each gene to its own 
promoters or enhancers, but instead models the genome-wide relationships to all enhancers or promoters. 
Our results suggested that more than 80% of expression variance was attributed to promoter and enhancer 
accessibility (Fig. 2A), indicating that transcriptional heterogeneity is broadly associated with the 
variation of chromatin accessibility. As control, we randomly permuted the dataset and, as expected, a 
minimal proportion of variance (< 1%) was explained by the epigenome in the shuffled analysis (fig. 
S2B). There was a small group of genes (n = 56) for which > 60% of the expression variance could be 
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best explained by the inter-age-group covariance. Gene ontology (GO) enrichment analysis of these genes 
revealed enrichment in DNA-binding transcriptional activators (FDR q-value = 0.02; including known 
TFs like SOX11, SOX4, NEUROD6, NR3C1), suggesting the temporal role for these TFs in human brain 
development. 
 
With the aim of linking a regulatory element to its target gene(s), we next used a correlation-based 
approach to examine the pairwise relationships between chromatin accessibility and gene expression 
(Materials and Methods). This led to the identification of 7,291 significant peak-gene associations 
(within ±500kb around transcription start sites (TSSs), Spearman correlation coefficient |ρ| > 0.3, FDR-
adjusted P value < 0.1; table S4), involving 3,082 unique genes. The majority (97.6%) of these links 
included peaks that were positively correlated with gene expression (fig. S2C). As expected, these 
associations were enriched in the vicinity of TSSs, and the correlations decayed exponentially with 
distance (Fig. 2B). Nevertheless, only 22% of the peak-gene links occur between an ATAC-seq peak and 
the nearest gene, indicating that the majority of predicted regulatory interactions skip at least one gene 
along the linear genome (Fig. 2C), demonstrating the shortcomings of purely applying the ‘nearest 
neighbor gene’ rule to define regulatory targets (22, 24, 25). The expression of most genes is, on average, 
correlated with at least two different peaks, while most peaks (84%) are predicted to interact with a single 
target gene (Fig. 2C). To validate the set of identified peak-gene links, we employed the ‘activity-by-
contact’ (ABC) approach (26) (Materials and Methods) and compared them with the enhancer-promoter 
(E-P) interactions that were previously derived from the matched bulk brain tissues (27). We observed 
significantly higher ABC scores in the group of E-P interactions overlapping with the peak-gene links (P 
value < 2.2 � 10

��� by Wilcoxon test; fig. S2D), thereby providing further validation.  
 

Cell type specific cis-regulatory domains determine cell lineage during cortical 
development 
To investigate the specificity of peak-gene associations across cell types and developmental stages, we 
assigned each interaction to the cell type with the highest average gene expression and chromatin 
accessibility. Peak-gene associations were strongest in the early developmental stage while they became 
diminished in more differentiated stages (fig. S2E). Specifically, RG-specific peak-gene links were the 
strongest across all cell types; in the group of neurons (either excitatory or inhibitory), which consist of 
samples from fetal to postnatal stages, we observed a clear weakening pattern of the associated links with 
developmental age. We defined a ‘pseudo-age’ for each cell type (Materials and Methods) and 
confirmed a significantly negative relationship with the median link strengths (Pearson’s r = -0.57, P 
value = 0.026; fig. S2E).   
 
Despite the fact that most genes involved in peak-gene links were associated with one or two peaks, a 
subset of genes were associated with a relatively large number of peaks, suggesting orchestrated 
coregulation of the target gene activity by multiple factors that act upon a broad chromatin domain. In 
total, we identified 364 domains of regulatory chromatin (DORCs) (14) in which there are at least five 
significant peak-gene links associated with the same gene (Fig. 2D; Methods). In previous studies, it has 
been shown that DORCs are often associated with super-enhancers -- large clusters of enhancer regions 
that are known to play key regulatory roles in defining cell identity and are affected across multiple 
diseases (28, 29). Consistent with these studies, we found that DORCs identified here were also 
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prominently overlapped with super-enhancers, which were identified by utilizing neuronal and glial ChIP-
seq H3K27 acetylation data from human brain samples (27) (P value = 8.3 � 10

��� by hypergeometric 
test; table S5). For example, the DORC of the DSCAML1 gene contained 27 peak-gene associations. The 
epigenetic dysfunction of this super-enhancer has been implicated in Alzheimer’s disease pathology (30).  
 
Motivated by previous studies (14, 31), we hypothesized that DORCs are highly cell-type-specific. We 
defined a DORC score for each gene as the aggregated normalized counts from all peaks significantly 
associated with that gene (Materials and Methods). Covariation of chromatin accessibility and gene 
expression distinguished the identified cell types in both RNA-seq and ATAC-seq data (Fig. 2E), 
suggesting the cell-type specificity of DORC-gene links. Gene ontology (GO) analysis of the genes 
involved in the top decile of the peak-gene correlations in DORCs revealed strong enrichment of 
developmental processes in both neurons and glia (Fig. 2F), highlighting the important role of DORCs in 
cell fate determination during cortical development. Through comparison of neurons from different 
developmental stages (table S6), we found a higher number of DORCs specific to earlier stages (e.g., 
fetal versus postnatal, early fetal versus late fetal), suggesting a role in regulating early 
neurodevelopmental processes.     
 

Chromatin priming precedes gene expression during neuronal lineage commitment 

Having identified various neuronal subtypes from early fetal cortical plate to adult cortical samples, we 
next utilized the paired multi-omic single nuclei profiles to infer the developmental dynamics of gene 
regulation throughout corticogenesis and neuron differentiation. We performed a pseudotime trajectory 
analysis by focusing on the neuronal populations (including RG, IPC, EN-fetal-early, EN-fetal-late, EN, 
IN-fetal, IN-MGE, and IN-CGE) and by anchoring the starting point in the RG cluster (Materials and 
Methods). Different cell types were properly laid on the inferred trajectories in terms of their 
developmental stages (Fig. 3A, fig. S3A), with the fetal-sample-specific neuronal populations located 
between the initial progenitor populations and the mature neurons from postnatal samples (i.e., EN, IN-
MGE, IN-CGE). The developmental trajectories separated into EN lineage and IN lineages shortly after 
the starting point, and the IN lineage later split into IN-MGE and IN-CGE subtypes (Fig. 3B). The 
respective numbers of cells assigned to each of the three lineages are: EN lineage (14,146), IN-MGE 
lineage (5,728) and IN-CGE lineage (4,904).  
 
We repeated the peak-gene association analysis focusing on the neuronal populations (Methods), resulting 
in 1,638 significant associations involving 930 unique genes (table S7). Similarly, we defined 55 neuron-
specific DORCs (associated with at least five peaks), which strongly overlapped with the DORCs that we 
defined using all cells (P value = 5.8 � 10

���, by hypergeometric test). GO analysis of the genes 
involved in these DORCs revealed a significant enrichment for neuron differentiation pathways as well as 
the overrepresentation of DNA-binding TFs, either activators or repressors (table S8).  
 
Given the potentially tight regulation of DORC target genes by dynamic changes in chromatin 
accessibility during lineage commitment, we sought to explore whether chromatin accessibility at DORCs 
precedes gene expression. For each of the DORCs, we quantified a ‘residual’ by subtracting the 
corresponding gene expression value from the DORC score (14) (Materials and Methods). Remarkably, 
we observed that the residuals were typically positive (46 out of 55) across lineages (Fig. 3C), which 
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reflected the lineage-priming of cis-regulatory elements, as the DORCs generally became accessible prior 
to onset of their associated gene’s expression. Furthermore, we found that the lineage-priming pattern 
became more robust for DORCs with a higher number of peaks, indicating higher confidence in the 
chromatin accessibility-primed states. Overall, these findings suggest that dynamic changes in chromatin 
accessibility is a critical component of neuronal lineage commitment, similar to previous observations 
during hair follicle differentiation (14). 
 

NEUROD1 induces CUX2 chromatin priming and gene expression during 
development of excitatory neurons 

We next looked deeper into the peak-gene links on the EN lineage, which started from neuronal 
progenitors, including RGs and IPCs, and then differentiated into excitatory neuron subtypes specific to 
different developmental stages sequentially, from early fetal to late fetal and then to postnatal (Fig. 3, A 
and B). We found that the expression levels of over 87% of the linked genes (811/930) varied 
significantly along the pseudotime trajectory (Materials and Methods). We then grouped these genes 
into four clusters using k-means (km) clustering, each of which corresponding to a different 
developmental period (Fig. 3D). GO enrichment analysis on this gene set revealed the unique biological 
activities occurring during different time periods (Fig. 3E). Specifically, at the beginning of the trajectory 
(‘km1’), the linked genes were enriched in processes relating to cell fate specification, timing regulation 
of cell differentiation, and neural precursor cell proliferation. In the next early fetal period (‘km2’), the 
peak-gene interactions became associated with neuron migration, morphogenesis, synapse organization, 
and axonogenesis. Afterwards, in the late fetal (‘km3’) and postnatal stages (‘km4’), the excitatory 
neurons acquired the ability for neurotransmitter transport and regulation, indicating cell maturation.    
 
The dynamic regulatory activities during the developmental transition of cell lineages are highly 
orchestrated by the spatiotemporal patterning of TFs. To identify TFs that control these dynamic 
regulatory activities, we performed TF motif enrichment analysis in the different clusters (Materials and 
Methods). TF motifs with an established function in cell differentiation and development were enriched 
in the earliest stage, including EN1, which has been implicated as a crucial mediator of dopaminergic 
subset specification (32), and HESX1, which has been identified as a hub gene for neural commitment 
(33) (Fig. 3F; table S9). In the intermediate stages (including early and late fetal), the associated peak-
gene links were more enriched in motifs of neuronal TFs such as NEUROD1, NEUROG2 and BHLHE22, 
suggesting the most active neurogenesis processes occur during these particular developmental periods. 
Fewer TF motifs were found enriched in the last postnatal peak-gene link cluster, including cell cycle 
regulators such as E2F2.  
 
Cut Like Homeobox 2 (CUX2) was identified as a neuron-specific DORC gene, regulated by the highest 
number (n=21) of nearby putative enhancers (Fig. 3C), and as a marker for the second earliest stage in the 
EN lineage (‘km2’; Fig. 3D). This is consistent with the well-known function of CUX2 as a neuron-
specific TF regulating dendritic branching and synapse formation (34). Next, we investigated which TF(s) 
might activate CUX2 enhancers by leveraging the correlation between the DORC score of CUX2, the TF 
motif activity (inferred from ATAC-seq) and the TF motif enrichment for the km2 cluster (Materials and 
Methods). The binding motif for the TF NEUROD1 was strongly enriched in km2 chromatin accessible 
regions and NEUROD1 activity was highly correlated with the CUX2 DORC chromatin accessibility state 
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(Fig. 3G). NEUROD1 is essential for eliciting the neuronal development program and possesses the 
ability to reprogram other cell types into neurons (35). We next ordered single cells based on the inferred 
pseudotime for the km2 stage and identified a clear pattern where the activity of NEUROD1 precedes the 
CUX2 DORC chromatin state, followed by CUX2 gene expression (Fig. 3H). Additionally, we found that, 
as NEUROD1 activity decreases, the rate of CUX2 expression slows down accordingly. These results 
suggest that NEUROD1 is likely a key TF during early neurogenesis (35) to induce CUX2 DORC 
accessibility followed by CUX2 transcription.  
 

Repression of NEUROD1 expression in cultured neural progenitor cells suppress 
CUX2 expression 
We sought to validate the predicted causal relationship between NEUROD1 and CUX2 by performing 
CRISPRi in cultured neural progenitor cells (NPCs) followed by RNAscope to directly image mRNAs in 
single cells. We transduced guide RNAs against both NEUROD1 and CUX2 into NPCs stably expressing 
dCas9-KRAB and then differentiated the NPCs using an established protocol (36). In the negative control 
experiment, in which cells were treated with a scrambled guide RNA, we observe that CUX2 is widely 
expressed albeit at low numbers per cell, whereas NEUROD1 expression is restricted to a smaller subset 
of cells but with a broader range of mRNA numbers per cell, including a fraction displaying strong bursts 
of transcription (Fig. 4A). We quantified the frequency distribution of fluorescent dots per nucleus for 
both genes at week 2 post-differentiation and found that NEUROD1 expression is more variable than 
CUX2 across the population, as measured by the fano factor ((variance/mean), CUX2 = 1.78, NEUROD1 
= 17.02) (Fig. 4B).  
 
Inactivation of NEUROD1 led to a down-regulation of NEUROD1 mRNA compared to the control (P 
value = 0.0002 by negative binomial test), while CUX2 transcription is completely suppressed (Fig. 4, A 
and B). Given that around 80% of nuclei in the control NPCs do not show transcription of NEUROD1, 
the NEUROD1 promoter may be tightly repressed for long periods but allows for infrequent, strong 
bursts of transcription. In turn, inactivation of CUX2 with CRISPRi led to down-regulation of CUX2 
mRNA and a decrease in the proportion of cells expressing CUX2 compared to control (P value = 0.0006 
by negative binomial test), without affecting NEUROD1 expression (P value = 0.223 by negative 
binomial test). Altogether, our data suggests that although NEUROD1 is expressed infrequently, it is 
required to maintain ongoing transcription of CUX2. 
 

Dissociation of risk loci for neuropsychiatric traits using single cell-derived marker 
genes and peaks 
Despite the notable progress in exploring the genetic causes of neuropsychiatric disorders, their 
underlying molecular mechanisms are still not fully understood (37). To reveal whether disorder-
associated variants are enriched in a particular cell type or developmental stage, we used linkage 
disequilibrium-aware approaches (Materials and Methods) (38, 39) to assess the overlap between a 
collection of relevant GWAS studies and lineage-defining genes and chromatin peaks derived from our 
multi-omic single cell data. By analyzing 9 neuropsychiatric and 3 unrelated control traits in 15 cell types, 
we identified 33 and 28 significant associations in cell type-specific chromatin accessibility and 
transcriptome data, respectively (Fig. 5A, table S10 and S11). We observed a high overlap of significant 
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cell-type - GWAS trait pairs (20/41 of significant pairs are shared; Spearman correlation of all pairs 
ρ=0.62), suggesting that both modalities report reliable and informative associations.  
 
Consistent with previous studies, schizophrenia (SCZ), bipolar disorder (BD), attention deficit 
hyperactivity disorder (ADHD) and major depressive disorder (MDD) are enriched in multiple neuronal 
subtypes (40–42). However, to our knowledge, our results identified several associations that have not yet 
been described by genetic data (see Discussion), including oligodendrocytes for Tourette syndrome (TS), 
astrocytes for obsessive-compulsive disorder (OCD), OPCs for anxiety and fetal neurons for anorexia 
nervosa (AN). For non-psychiatric, immune-related traits, including Alzheimer’s disease (AD), ulcerative 
colitis, and inflammatory bowel disease (IBD) we only observed enrichment for microglia, thus further 
strengthening the credibility of our results. To dissect the temporal specificity in neuropsychiatric 
diseases, we compared fetal and adult neuronal enrichment using both epigenome and transcriptome data. 
We found a high concordance between enrichment of both assays, allowing us to classify ADHD, AN and 
autism as being more strongly associated with fetal neuronal stages, while, for TS, BD, SCZ and MDD, 
we found an equal contribution of both fetal and adult neuronal stages (Fig. 5B). 
 
We next aimed to nominate the candidate functional genes for disease-associated loci (Fig. 5C, Materials 
and Methods). First, we collected a set of 491 genome-wide significant variants associated with 
neuropsychiatric traits (P<5×10-8) and extended it to 16,005 variants based on the presence of high 

linkage disequilibrium (LD; R2≥0.8). We overlapped putative disease-relevant variants (index 

SNP and LD buddy) with the peaks that demonstrate significant peak-gene associations to 

pinpoint at least one gene under regulation for 97 genome-wide significant loci (table S12). Out of 

152 genes mapped to those 97 loci, 7 were linked to two disease traits simultaneously and 17 genes were 
shown to have significantly altered expression along the pseudotime trajectory of neuronal lineage 
specification (km1/2/3/4) (Fig. 5D). While the original GWAS studies usually nominate several plausible 
gene targets for each disease-relevant locus, their prioritization is mostly based on imprecise distance-
based annotation. Using our approach, we were able to refine their predictions and, in some cases, 
nominate novel genes. One example of a replicated finding is the association of DCLK3 (encoding a 
neuroprotective kinase) with both SCZ and BD, which was previously observed by TWAS (43) and 
eQTL approaches (44) (Fig. 5E). Notably, this association is derived from the overlap of putative disease-
relevant variants with two distinct peaks, both predominantly accessible in adult excitatory neurons. 

Discussion 
We generated multi-modal chromatin accessibility and gene expression data in the human cortex across 6 
broad developmental time-points from fetus to adult. Joint analysis of 45,549 individual nuclei facilitated 
the identification of genes and cis-regulatory elements with fundamental roles in lineage determination. 
By using the covariance of chromatin accessibility at promoter and enhancer regions as inputs, we show 
that the majority of expression variance was attributed to promoter and enhancer accessibility, indicating 
that gene expression is broadly associated with chromatin accessibility. Moreover, through comparison of 
neurons from different developmental stages, we found that there were more DORCs specific to earlier 
stages (e.g., fetal versus postnatal, early fetal versus late fetal), suggesting a role for chromatin 
reorganization in regulating early neurodevelopmental processes. The temporal nature of our data allowed 
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us to examine neural trajectories across 4 broad developmental phases. The first of these contains genes 
involved in cell fate specification, differentiation, and NPC proliferation. The second cluster specifies 
genes involved in neuron migration, morphogenesis, synapse organization, and axonogenesis, while the 
3rd and 4th clusters contain genes associated with neurotransmitter transport and regulation. As an 
example, we chose to focus on CUX2, a TF involved in synaptogenesis that is expressed in the 2nd 
cluster. CUX2 expression coincides with a number of nearby open chromatin regions containing putative 
enhancers, among which are binding sites for NEUROD1, a well known pioneer factor involved in 
neuronal cell fate specification. It has recently been shown that overexpressing NEUROD1 in astrocytes 
can convert them into neurons, suppressing the astroglial gene expression program while upregulating 
neuronal genes, including CUX2 (45). Thus, we hypothesized that NEUROD1 might activate CUX2 
during early neural development, and subsequently showed that inactivation of NEUROD1 in cultured 
NPCs led to a complete suppression of CUX2, while inactivation of CUX2 did not affect expression of 
NEUROD1.  
 
Lineage specific genes and chromatin accessible regions are enriched for risk loci associated with 
neuropsychiatric traits, and implicate 152 putative risk genes in a range of disorders, including SCZ, BD, 
ADHD and MDD. SCZ, BD, ADHD, and MDD are enriched in multiple neuronal subtypes, consistent 
with previous studies (40–42). Beyond already known associations between various cell types and 
disease, our results identified several associations that, to our knowledge, have not been described 
previously. First, TS was found to be enriched in oligodendrocyte cells in both epigenome and 
transcriptome assays. The critical role of oligodendrocytes is supported by tract-based spatial statistics 
measurements of TS patients, indicating a reduced fractional anisotropy that reflects deficits in axonal 
myelination (46). Second, OCD was enriched in astrocytes. While the literature supporting this 
relationship is more established for the striatum (47), the involvement of the prefrontal cortex was 
previously studied through an astrocyte-specific deletion of glutamate transporter 1 (48) and vesicular 
monoamine transporter 2 (49), both resulting in OCD-like behavior. Third, anxiety was enriched in OPCs, 
further implicating the well-established role for aberrant myelination in neuropsychiatric disorders (50). 
This relationship was emphasized by a recent study linking anxiety-like behavior in a mouse model of 
cuprizone-induced demyelination which displays impaired OPC differentiation (51). Lastly, we report the 
enrichment of fetal neurons in AN. While this disorder phenotypically manifests in adolescence or early 
adulthood, a number of studies suggest substantial changes during earlier stages of development (52, 53). 
Furthermore, significant differences in gene expression were previously measured between AN case and 
control subjects using hiPSC-derived cortical neurons (54) that are known to resemble fetal, rather than 
adult, brain cells (55). 
 
In conclusion, we generated an atlas of gene expression and chromatin accessibility in single nuclei from 
6 developmental time-points that provides additional insights on cell fate determination in the human 
cerebral cortex and on the molecular basis of neuropsychiatric disease. We present our data as an 
interactive web browser that can be utilized by the scientific community to explore spatiotemporal 
alterations in gene expression in development and disease. 
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Materials and Methods Summary 
Nuclei were isolated from frozen human cortical brain specimens from 6 developmental time-points (fetal 
18-20 gestational weeks (GW) (n=2), 23-24 GW (n=2), 0 years (n=2), 4-6 years (n=2), 14 years (n=2) and 
20-39 years (n=2)) and subjected to fluorescence-activated nuclear sorting (FANS). Purified nuclei were 
processed using the Chromium Next GEM Single Cell Multiome ATAC-seq and Gene Expression 
protocol (10x Genomics). Resulting libraries were sequenced using the Novaseq platform (Illumina), 
obtaining 100 bp paired-end reads that were aligned by cellranger-arc (v.1.0.0). MACS2 (56) was used to 
call peaks. We used  Seurat v4.0 (15) to construct a weighted nearest neighbor (WNN) graph and shared 
nearest neighbor graphs as well as to find differentially expressed genes for each identified call type. 
Differentially accessible peaks were identified by Signac v1.1.0 (57). We applied the variance component 
analysis (22, 23) to quantify the proportion of gene expression variation that is attributable to promoter, 
enhancer and individual covariance. We used chromVAR (58) to perform transcription factor analysis for 
all DNA motifs from the JASPAR 2020 database (59). For each cell type, we created psedobulk 
populations and used them to calculate correlations between peaks and nearby genes (within 0.5Mbp 
window), thus reconstructing gene regulatory associations. Pseudobulk populations were also used to 
define ‘pseudo-age’ for each cell type based on the proportion of cells found in the six different 
developmental stages. Monocle3 (60) was used to construct the trajectories across neuronal populations 
and to find differentially expressed genes on the trajectory of a specific lineage. We applied LD-score 
score partitioned heritability (39) (snATAC-seq) and MAGMA (38) (snRNA-seq) to investigate whether 
the cell specific peaks and genes might play a role in disease, and quantified their co-localization with 
common risk variants from 53 GWAS studies. We examined the relationship between NEUROD1 and 
CUX2 via CRISPR mediated knock down in differentiating NPCs, followed by RNAscope.  
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Figure 1. Joint single-cell profiling of RNA expression and chromatin accessibility of human neocortex. 

(A) Frozen human cortical brain specimens from 6 developmental time points were homogenized and purified by 
FANS prior to tagmentation and partitioning into single nuclei using the 10x Genomics platform. Libraries for 
snRNA-seq and snATAC-seq were prepared, sequenced and analyzed independently. (B) UMAP visualizations of 
single cells defined by RNA-seq and ATAC-seq data, respectively. Cell type annotations are derived from either 
modality independently. (C) Heatmap showing the concordance of cell memberships between the two clustering 
results, measured in F1 score. (D) UMAP visualization of single cells defined by integrating two modalities using 
WNN analysis. Cell type annotations are determined on the basis of marker genes. (E) Dot plot showing selected 
marker gene expression and chromatin-derived gene activity across cell types. (F) Proportions of cell types in each 
age group. 
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Figure 2. Global and local characterization of cis regulation patterns  
(A) Variance component analysis showing chromatin accessibility explains variation in gene expression. Genes, in 
columns, are sorted by decreasing proportion of variance explained by the epigenome (enhancers and promoters), 
with the mean variance explained by each component shown in parenthesis. (B) Distribution of the distance from 
each peak to the transcription start site (TSS) of the linked gene. (C) Histograms showing (from left to right) 
distribution of the number of peaks significantly linked per gene; distribution of the number genes significantly 
linked per peak; distribution of the number of genes “skipped” by a peak to reach its linked gene. (D) The number of 
significantly linked peaks for each gene, with genes sorted in increasing order. (E) Heatmap showing chromatin 
accessibility and gene expression of the linked peak-gene pairs (rows, left aggregated peak accessibility, right linked 
gene expression) in the DORCs across 500 pseudobulk samples (columns, sorted in terms of cell types); values are 
z-score normalized. (F) Top 15 GO enrichment results for genes linked to DORCs.   
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Figure 3. Trajectories of gene regulation during neuronal development. 
(A) Trajectories identified within the neuronal subpopulations, shown on the RNA gene expression coordinates (root 
node was annotated as ‘1’, cells were colored for annotated cell types). (B) Inferred pseudotime along the lineages 
for excitatory neurons (‘EN-lineage’) and inhibitory neurons (‘IN-lineage’), respectively. (C) Average residuals 
between chromatin accessibility and gene expression versus the number of significantly linked peaks for each gene 
involved in the DORCs identified within the neuronal populations. Positive and negative residuals are colored in red 
and gray, respectively. (D) Heatmap showing gene expression and DORC chromatin accessibility of the peak-gene 
links that significantly varied along the pseudotime for the EN lineage. Rows (genes) are clustered using k-means 
clustering (k=4), columns (cells) are ordered by pseudotime. The top five most differentially expressed genes in 
each cluster (‘km1/2/3/4’) are annotated. (E) Respective GO enrichment of genes represented in the four peak-gene 
link clusters of the EN lineage. (F) TF motifs enrichment of peaks represented in the peak-gene link clusters of the 
EN lineage. (G) P values of TF motif enrichment in km2 peaks plotted against Spearman correlation of TF motif 
activity with CUX2 DORC score. (H) Lineage dynamics of NEUROD1 motif activity and expression precede CUX2 
DORC chromatin accessibility and gene expression in the EN lineage, from the beginning to the end of the km2 
stage, using the min-max normalized, smoothed values over pseudotime.  
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Figure 4. Assessment of the relationship between NEUROD1 and CUX2 in differentiating neural progenitor 
cells. 
(A) Maximum intensity projection images (from 200 nm z stacks obtained at 63x magnification) of CUX2 (red) 
and NEUROD1 (green) expression in NPCs 2 weeks post-differentiation treated with scrambled gRNA, a 
NEUROD1 specific gRNA and a CUX2 specific gRNA. Charts show frequency distributions of RNAscope dots 
per nucleus for CUX2 and NEUROD1 in cells treated with scrambled gRNA (n=444 cells), NEUROD1 specific 
gRNA (n=111 cells) and CUX2 specific gRNA (n=183 cells). % ON corresponds to % of nuclei with detectable 
RNAs. (B) Violin plots of nuclear RNA frequency distributions in all conditions. A negative binomial test was 
performed. The center line (yellow) indicates the median, the box shows the interquartile range, whiskers indicate 
the highest/lowest values within 1.5x the interquartile range. 
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Figure 5. Mapping of risk variants associated with neuropsychiatric traits to causal genes using single cell-
derived marker genes and peaks. 
(A) Heritability enrichment of brain cell types in neuropsychiatric disorders and unrelated control traits. Heatmaps 
highlight significant co-localization of GWAS-derived common genetic variants with cell-specific open chromatin 
regions in snATAC-seq data (left panel) and cell marker genes in snRNA-seq data (right panel) (Methods). “*”: 
significant after correction across all tests (FDR<0.05). (B) Comparison between fetal and adult neuronal signals in 
selected neuropsychiatric disorders (traits need to be enriched in either fetal or adult category; therefore, OCD and 
Anxiety were not involved). Fetal and adult neurons are represented by peaksets / genesets compiled from unions of 
the top 2,500 / 500 the most cell-specific peaks / genes from each fetal neuron (i.e., EN-fetal-early, EN-fetal-late, 
and IN-fetal) and adult neuron (i.e., EN, IN-CGE, and IN-MGE) category. To calculate the ratio “fetal neurons / 
adult neurons” (y-axis), we used LDsc regression coefficient (snATAC-seq) and MAGMA beta coefficients 
(snRNA-seq); joint score is an average of snATAC-seq and snRNA-seq scores. (C) Schematic of the overall strategy 
to connect risk variants associated with neuropsychiatric disorders to their causal genes. (Methods). (D) Subset of 
candidate causal genes for risk variants that are either prioritized in two disorders, or show significantly altered 
expression along the developmental trajectory of the neuronal lineage (km1/2/3/4; full list of causal genes in Table 
S12). (E) Normalized snATAC-seq-derived pseudobulk tracks demonstrating the complex cell-specific regulation of 
the DCLK3 gene that is predicted to be the causal gene for SCZ and BD GWAS risk variants (rs75968099 and 
rs75968099).  
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