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Abstract: The cellular complexity of the human brain is established via dynamic changes in
gene expression throughout development that is mediated, in part, by the spatiotemporal activity
of cisregulatory elements. We simultaneously profiled gene expression and chromatin
accessibility in 45,549 cortical nuclei across 6 broad developmental time-points from fetus to
adult. We identified cell-type specific domains in which chromatin accessibility is highly
correlated with gene expression. Differentiation pseudotime trgectory analysis indicates that
chromatin accessibility at cis-regulatory elements precedes transcription and that dynamic
changes in chromatin structure play a critical role in neuronal lineage commitment. In addition,
we mapped cell-type and temporally specific genetic loci implicated in neuropsychiatric traits,
including schizophrenia and bipolar disorder. Together, our results describe the complex
regulation of cell composition at critical stages in lineage determination, serve as a
developmental blueprint of the human brain and shed light on the impact of spatiotemporal
alterations in gene expression on neuropsychiatric disease.

One-Sentence Summary: Simultaneous profiling of gene expression and chromatin
accessibility in single nuclei from 6 developmental time-points sheds light on cell fate
determination in the human cerebral cortex and on the molecular basis of neuropsychiatric
disease.
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Main text

Human brain development starts during the early stages of embryogenesis and extends postnatally
through infancy, childhood, adolescence, and young adulthood (1, 2). To produce distinct circuits in the
human cortex, neurons are born in an immature state and undergo a variety of molecular and
morphological changes as they differentiate, migrate, and establish synaptic networks. Environmental and
genetic risk factors can disrupt these highly orchestrated developmental processes, potentialy leading to
neuropsychiatric disease (3, 4). Given the variable age of onset of different neurodevelopmental disorders,
itiscritical to examine the effect of risk factors across the full spectrum of human brain development.

The developmental transition of cell lineages is highly orchestrated by dynamic changes in gene
expression, mediated in part by spatiotemporal patterns of transcription factor (TF) binding to cis-
regulatory DNA elements (5-9). Single-cell transcriptome analysis has expanded our knowledge of
cellular diversity and the molecular changes that occur during differentiation, migration, and synaptic
network formation in the human cortex (9-13). Recently, simultaneous multi-omic (gene expression and
chromatin accessibility) single cell profiling has emerged as a means to decipher how combinations of
TFs drive gene expression programs and to infer cell lineage transitions during development (14).
Consequently, joint analysis of gene expression and chromatin accessibility at the single-cell level can
provide a more complete understanding of the gene-regulatory dynamics associated with human brain
development.

To that end, we generated a transcriptomic and chromatin accessibility atlas, profiling 45,549 cells using
multi-omic single-nucleus RNA-seq and ATAC-seq, across a broad developmental time frame that
includes human fetal cortica plate, early postnatal, adolescent and adult specimens. We explored gene
regulatory interactions by combining chromatin accessibility with gene expression within the same cells,
and identified a subset of genes that are regulated by multiple nearby putative enhancers and have an
important role in lineage determination during cortical development. To better understand the regulatory
mechanisms driving neurogenesis, we performed pseudotime trgjectory analysis and detected dynamic
changes in chromatin accessibility preceding transcript production as a critical component of neuronal
lineage commitment. We evaluated the enrichment of lineage-specific genes and chromatin accessible
regions with genetic risk loci for neuropsychiatric disorders in order to explore their cellular ontogeny.
Taken together, our data present a valuable resource for understanding the gene-regulatory dynamics
associated with human brain development, and for prioritizing targets for further study as well as the
generation of therapeutics to treat neurodevel opmental disorders.

Results

Single-nucleus gene expression and chromatin accessibility profiles revealed
congruent cell types in the human cortex

We used the 10X Chromium Single Cell Multiome ATAC + Gene Expression kit to simultaneousy
profile the transcriptome (via snRNA-seq) and chromatin accessibility (via snATAC-seq) in twelve
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human neocortex samples from six developmenta periods (early mid gestation fetal, late mid gestation
fetal, infancy, childhood, adolescence and adulthood) (Fig. 1A; table S1). To confirm that the paired
profiles were truly derived from the same cells, we first performed multi-omic profiling on two samples
containing mixtures of human and mouse cell lines, and asked whether the co-assayed cells were
consistently assigned to the same species labels. As expected, no doublets were identified and we
observed that human and mouse reads were well separated based on the chromatin and transcriptome
profiles of filtered cells (fig. S1A).

We then processed human neocortex samples, obtaining joint profiles of chromatin accessibility and gene
expression from 45,549 out of 53,185 single nuclei that met quality control and filtering criteria
(Materials and M ethods). To assess the similarities and differences between the two modalities, we first
clustered the RNA-seq and ATAC-seq data sets independently (Fig. 1B; Materials and M ethods).
Broadly, both modalities revealed the same major neocortical cell types and that cell identities assigned to
RNA-seq and ATAC-seq derived cell types were highly congruent (Fig. 1C; adjusted Rand index [ARI] =
0.78).

Similar to previous multi-omic single-cell studies (14, 15), the independent modality analyses exhibit
differences, primarily in the composition of cell populations in the fetal and postnatal stages (fig. S1B).
On one hand, some cell types were broadly identified but not distinguishable in the ATAC-seq clustering
results. For example, the medial ganglionic eminence (MGE)-derived and caudal ganglionic eminence
(CGE)-derived inhibitory neuron subtypes were not distinguished; various stromal cell types with smaller
population sizes, including endothelial cells, pericytes and vascular smooth muscle cells (VSMCs), were
blended together. On the other hand, RNA-seq data showed insufficient power to identify progenitor
cells, as evidenced by nearly 20% fewer detected radia glia (RG) and intermediate progenitor cells (IPCs)
when compared with the ATAC-seq results (1,427 for RNA-seq vs. 1,743 for ATAC-seq), indicating that
active gene-regulatory dynamics at different developmental stages might be better reflected in chromatin
accessibility than in the transcriptome (16). These results motivated us to anticipate more comprehensive
information about cell-type classifications by leveraging both modalities.

Joint analysis of multi-omic dataimproved de novo taxonomy

We next performed joint clustering on the paired modalities of the same single cells using a weighted-
nearest neighbor (WNN) analysis (15). WNN is an unsupervised method that generates an integrated
representation of cellular identity by learning the information content of each modality. The WNN
analysis results were in agreement with those derived from either single modality (ARI = 0.88 for RNA-
seg, ARI = 0.86 for ATAC-seq), while the inferred relative modality weights varied across cell types (fig.
S1C), reflecting the biological importance of each modality in determining cellular identity. The WNN
analysis resulted in 28 clusters, including all the major and minor cell types in the human brain cortex,
which were further grouped into 15 cell types (Fig. 1D; Materials and M ethods). We confirmed that
each cluster comprised cells from different samples (fig. S1D), suggesting that taxonomy was not
determined by donor or other technical covariates.

Gene activity inferred by gene expression and chromatin accessibility of known cell type-specific markers
consistently confirmed cluster identity (Fig. 1E; see lists of differentially expressed genes and accessible
peaks in table S2 and table S3; Materials and M ethods). Specifically, we found neural progenitor cells
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expressing PAX6, including RG (1 cluster; HESB, VIM) and IPCs (1 cluster; EOMES). We also identified
three subtypes of excitatory neurons (SATB2, SLC17A7, NEUROD?2) representing different
developmenta stages, one enriched for cells from early fetal samples (‘EN-feta-early’; 4 clusters), one
for late fetal samples (‘EN-fetal-late’; 2 clusters), and the third for postnatal samples (‘EN’; 2 clusters).
Similarly, there were three subtypes of inhibitory neurons identified (GAD1, GAD2), two of which
represent MGE-derived (‘IN-MGE’; 1 cluster; LHX6) and CGE-derived (‘IN-CGE’; 1 cluster; VIP,
ADARB?2) subtypes in postnatal samples, while the remaining subtype was enriched in fetal samples (*IN-
fetal’; 1 cluster). The types of neurons that are distinct between fetal and postnatal human brain samples
support previous findings (17). In addition, we observed clusters of mgjor glia cell typesin the neocortex,
including oligodendrocyte progenitor cells (OPCs; 2 clusters; OLIG1, SOX10), astrocytes (3 clusters;
AQP4, GFAP), aligodendrocytes (3 clusters; MOBP, OPALIN), microglia (4 clusters; PTPRC, CX3CRL1),
as well as endothelial cells (1 cluster; CLDNS), pericytes (1 cluster; PDGFRB) and VSMCs (1 cluster;
COL1A2).

Sample-specific cell type composition varied significantly across developmental stages (Fig. 1F). In the
four fetal samples, neuronal populations accounted for the vast majority of cells, whereas postnatal
samples had much higher proportions of non-neurona cells. The changing patterns of cell type
composition were in line with the results from a previous deconvolution study using multiple bulk and
single-cell datasets (18). Moreover, we found that most of the neural progenitors (91%), including the
transient cell types of RG and IPCs, were only detected in the two early fetal samples (gestational week
[GW] 18-19; Fig. 1F, fig. S1E), consistent with the fact that the bulk of neurogenesis in the human
cerebral cortex has occurred by midgestation (at GW20) and these progenitor cells start disappearing or
transforming with the completion of cortical development (19, 20). Notably, the results derived from joint
analysis identified every cell type that was found in either single-omic analyses, while not losing power
for detection of neura progenitors (1,736 by joint analysis vs. 1,743 by ATAC-seq aone vs. 1,427 by
RNA-seq alone).

Cis-regulatory associations between chromatin peaks and target genes

Multi-omic data offer the advantage to explore gene regulatory interactions by combining chromatin
accessibility with gene expression within the same cells. Due to the sparsity of sSnATAC-seg and snRNA-
seq data, we examined the relationships between the two modalities using pseudobulk aggregates rather
than individual cells (14, 16, 21). We generated 500 pseudobulk samples by aggregating RNA-seq and
ATAC-seq signals from similar cell types (fig. S2A; Methods). First, we sought to globally quantify the
relative contribution of proximal (i.e., promoter) and distal (i.e.,, enhancer) chromatin accessibility to
transcriptional variance. We applied a variance component model to the expression of each gene using the
covariance of chromatin accessibility at promoter and enhancer regions as inputs, and corrected for donor
and age effects by adding the inter-individual and inter-age-group covariance to the model (22, 23)
(Materials and Methods). This approach does not model the relationship of each gene to its own
promoters or enhancers, but instead models the genome-wide relationships to all enhancers or promoters.
Our results suggested that more than 80% of expression variance was attributed to promoter and enhancer
accessibility (Fig. 2A), indicating that transcriptional heterogeneity is broadly associated with the
variation of chromatin accessibility. As control, we randomly permuted the dataset and, as expected, a
minimal proportion of variance (< 1%) was explained by the epigenome in the shuffled anaysis (fig.
S2B). There was a small group of genes (n = 56) for which > 60% of the expression variance could be
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best explained by the inter-age-group covariance. Gene ontology (GO) enrichment analysis of these genes
revealed enrichment in DNA-binding transcriptional activators (FDR g-value = 0.02; including known
TFs like SOX11, SOX4, NEURODG6, NR3C1), suggesting the temporal role for these TFs in human brain
development.

With the aim of linking a regulatory element to its target gene(s), we next used a correlation-based
approach to examine the pairwise relationships between chromatin accessibility and gene expression
(Materials and Methods). This led to the identification of 7,291 significant peak-gene associations
(within £500kb around transcription start sites (TSSs), Spearman correlation coefficient |p| > 0.3, FDR-
adjusted P value < 0.1; table $4), involving 3,082 unique genes. The mgjority (97.6%) of these links
included peaks that were positively correlated with gene expression (fig. S2C). As expected, these
associations were enriched in the vicinity of TSSs, and the correlations decayed exponentially with
distance (Fig. 2B). Nevertheless, only 22% of the peak-gene links occur between an ATAC-seq peak and
the nearest gene, indicating that the mgjority of predicted regulatory interactions skip at least one gene
aong the linear genome (Fig. 2C), demonstrating the shortcomings of purely applying the ‘nearest
neighbor gene' rule to define regulatory targets (22, 24, 25). The expression of most genesis, on average,
correlated with at |east two different peaks, while most peaks (84%) are predicted to interact with asingle
target gene (Fig. 2C). To validate the set of identified peak-gene links, we employed the ‘activity-by-
contact’ (ABC) approach (26) (M aterials and M ethods) and compared them with the enhancer-promoter
(E-P) interactions that were previously derived from the matched bulk brain tissues (27). We observed
significantly higher ABC scores in the group of E-P interactions overlapping with the peak-gene links (P
value< 2.2 x 10716 by Wilcoxon test; fig. S2D), thereby providing further validation.

Cell type specific cis-regulatory domains determine cell lineage during cortical
devel opment

To investigate the specificity of peak-gene associations across cell types and developmenta stages, we
assigned each interaction to the cell type with the highest average gene expression and chromatin
accessibility. Peak-gene associations were strongest in the early developmental stage while they became
diminished in more differentiated stages (fig. S2E). Specifically, RG-specific peak-gene links were the
strongest across al cell types; in the group of neurons (either excitatory or inhibitory), which consist of
samples from fetal to postnatal stages, we observed a clear weakening pattern of the associated links with
developmental age. We defined a ‘pseudo-age’ for each cell type (Materials and Methods) and
confirmed a significantly negative relationship with the median link strengths (Pearson’'s r = -0.57, P
value = 0.026; fig. S2E).

Despite the fact that most genes involved in peak-gene links were associated with one or two peaks, a
subset of genes were associated with a relatively large number of peaks, suggesting orchestrated
coregulation of the target gene activity by multiple factors that act upon a broad chromatin domain. In
total, we identified 364 domains of regulatory chromatin (DORCs) (14) in which there are at least five
significant peak-gene links associated with the same gene (Fig. 2D; M ethods). In previous studies, it has
been shown that DORCs are often associated with super-enhancers -- large clusters of enhancer regions
that are known to play key regulatory roles in defining cell identity and are affected across multiple
diseases (28, 29). Consistent with these studies, we found that DORCs identified here were aso
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prominently overlapped with super-enhancers, which were identified by utilizing neurona and glial ChlP-
seq H3K27 acetylation data from human brain samples (27) (P value = 8.3 x 10758 by hypergeometric
test; table Sb). For example, the DORC of the DSCAML1 gene contained 27 peak-gene associations. The
epigenetic dysfunction of this super-enhancer has been implicated in Alzheimer’s disease pathol ogy (30).

Motivated by previous studies (14, 31), we hypothesized that DORCs are highly cell-type-specific. We
defined a DORC score for each gene as the aggregated normalized counts from all peaks significantly
associated with that gene (Materials and Methods). Covariation of chromatin accessibility and gene
expression distinguished the identified cell types in both RNA-seq and ATAC-seq data (Fig. 2E),
suggesting the cell-type specificity of DORC-gene links. Gene ontology (GO) analysis of the genes
involved in the top decile of the peak-gene correlations in DORCs revedled strong enrichment of
developmental processes in both neurons and glia (Fig. 2F), highlighting the important role of DORCs in
cell fate determination during cortical development. Through comparison of neurons from different
developmenta stages (table S6), we found a higher number of DORCs specific to earlier stages (e.g.,
fetal versus postnatal, early fetal versus late fetal), suggesting a role in regulating early
neurodevel opmental processes.

Chromatin priming precedes gene expression during neuronal lineage commitment

Having identified various neuronal subtypes from early fetal cortical plate to adult cortical samples, we
next utilized the paired multi-omic single nuclei profiles to infer the developmental dynamics of gene
regulation throughout corticogenesis and neuron differentiation. We performed a pseudotime trajectory
analysis by focusing on the neuronal populations (including RG, IPC, EN-fetal-early, EN-fetal-late, EN,
IN-fetal, IN-MGE, and IN-CGE) and by anchoring the starting point in the RG cluster (M aterials and
Methods). Different cell types were properly laid on the inferred trgectories in terms of their
developmental stages (Fig. 3A, fig. S3A), with the fetal-sample-specific neurona populations located
between the initial progenitor populations and the mature neurons from postnatal samples (i.e., EN, IN-
MGE, IN-CGE). The developmental trajectories separated into EN lineage and IN lineages shortly after
the starting point, and the IN lineage later split into IN-MGE and IN-CGE subtypes (Fig. 3B). The
respective numbers of cells assigned to each of the three lineages are: EN lineage (14,146), IN-MGE
lineage (5,728) and IN-CGE lineage (4,904).

We repeated the peak-gene association analysis focusing on the neuronal populations (Methods), resulting
in 1,638 significant associations involving 930 unigue genes (table S7). Similarly, we defined 55 neuron-
specific DORCs (associated with at least five peaks), which strongly overlapped with the DORCs that we
defined using al cells (P value = 5.8 x 107>, by hypergeometric test). GO analysis of the genes
involved in these DORCs revealed a significant enrichment for neuron differentiation pathways as well as
the overrepresentation of DNA-binding TFs, either activators or repressors (table S8).

Given the potentially tight regulation of DORC target genes by dynamic changes in chromatin
accessibility during lineage commitment, we sought to explore whether chromatin accessibility at DORCs
precedes gene expression. For each of the DORCs, we quantified a ‘residua’ by subtracting the
corresponding gene expression value from the DORC score (14) (M aterials and M ethods). Remarkably,
we observed that the residuals were typically positive (46 out of 55) across lineages (Fig. 3C), which
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reflected the lineage-priming of cis-regulatory elements, as the DORCs generally became accessible prior
to onset of their associated gene's expression. Furthermore, we found that the lineage-priming pattern
became more robust for DORCs with a higher number of peaks, indicating higher confidence in the
chromatin accessibility-primed states. Overall, these findings suggest that dynamic changes in chromatin
accessibility is a critical component of neuronal lineage commitment, similar to previous observations
during hair follicle differentiation (14).

NEUROD1 induces CUX2 chromatin priming and gene expression during
development of excitatory neurons

We next looked deeper into the peak-gene links on the EN lineage, which started from neuronal
progenitors, including RGs and IPCs, and then differentiated into excitatory neuron subtypes specific to
different developmental stages sequentialy, from early feta to late fetal and then to postnatal (Fig. 3, A
and B). We found that the expression levels of over 87% of the linked genes (811/930) varied
significantly along the pseudotime trajectory (M aterials and M ethods). We then grouped these genes
into four clusters using k-means (km) clustering, each of which corresponding to a different
developmental period (Fig. 3D). GO enrichment analysis on this gene set revealed the unique biological
activities occurring during different time periods (Fig. 3E). Specifically, at the beginning of the trgjectory
(‘km1’), the linked genes were enriched in processes relating to cell fate specification, timing regulation
of cell differentiation, and neural precursor cell proliferation. In the next early fetal period (‘km2'), the
peak-gene interactions became associated with neuron migration, morphogenesis, synapse organization,
and axonogenesis. Afterwards, in the late feta (‘km3') and postnatal stages (‘kmd4’), the excitatory
neurons acquired the ability for neurotransmitter transport and regulation, indicating cell maturation.

The dynamic regulatory activities during the developmental transition of cell lineages are highly
orchestrated by the spatiotemporal patterning of TFs. To identify TFs that control these dynamic
regulatory activities, we performed TF motif enrichment analysis in the different clusters (M aterials and
M ethods). TF motifs with an established function in cell differentiation and development were enriched
in the earliest stage, including EN1, which has been implicated as a crucial mediator of dopaminergic
subset specification (32), and HESX1, which has been identified as a hub gene for neura commitment
(33) (Fig. 3F; table S9). In the intermediate stages (including early and late fetal), the associated peak-
gene links were more enriched in motifs of neuronal TFs such as NEUROD1, NEUROG2 and BHLHE22,
suggesting the most active neurogenesis processes occur during these particular developmental periods.
Fewer TF motifs were found enriched in the last postnatal peak-gene link cluster, including cell cycle
regulators such as E2F2.

Cut Like Homeobox 2 (CUX2) was identified as a neuron-specific DORC gene, regulated by the highest
number (n=21) of nearby putative enhancers (Fig. 3C), and as a marker for the second earliest stage in the
EN lineage (‘km2'; Fig. 3D). This is consistent with the well-known function of CUX2 as a neuron-
specific TF regulating dendritic branching and synapse formation (34). Next, we investigated which TH(S)
might activate CUX2 enhancers by leveraging the correlation between the DORC score of CUX2, the TF
motif activity (inferred from ATAC-seq) and the TF motif enrichment for the km2 cluster (M aterials and
M ethods). The binding motif for the TF NEUROD1 was strongly enriched in km2 chromatin accessible
regions and NEUROD1 activity was highly correlated with the CUX2 DORC chromatin accessibility state
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(Fig. 3G). NEURODL is essential for eiciting the neuronal development program and possesses the
ability to reprogram other cell types into neurons (35). We next ordered single cells based on the inferred
pseudotime for the km2 stage and identified a clear pattern where the activity of NEUROD1 precedes the
CUX2 DORC chromatin state, followed by CUX2 gene expression (Fig. 3H). Additionally, we found that,
as NEUROD1 activity decreases, the rate of CUX2 expression slows down accordingly. These results
suggest that NEURODL is likely a key TF during early neurogenesis (35) to induce CUX2 DORC
accessibility followed by CUX2 transcription.

Repression of NEUROD1 expression in cultured neural progenitor cells suppress
CUX2 expression

We sought to validate the predicted causal relationship between NEUROD1 and CUX2 by performing
CRISPRI in cultured neural progenitor cells (NPCs) followed by RNAscope to directly image mRNAs in
single cells. We transduced guide RNAs against both NEUROD1 and CUX2 into NPCs stably expressing
dCas9-KRAB and then differentiated the NPCs using an established protocol (36). In the negative control
experiment, in which cells were treated with a scrambled guide RNA, we observe that CUX2 is widely
expressed albeit at low numbers per cell, whereas NEUROD1 expression is restricted to a smaller subset
of cells but with a broader range of MRNA numbers per cell, including afraction displaying strong bursts
of transcription (Fig. 4A). We quantified the frequency distribution of fluorescent dots per nucleus for
both genes at week 2 post-differentiation and found that NEUROD1 expression is more variable than
CUX2 across the population, as measured by the fano factor ((variance/mean), CUX2 = 1.78, NEUROD1
=17.02) (Fig. 4B).

Inactivation of NEURODL1 led to a down-regulation of NEUROD1 mRNA compared to the control (P
value = 0.0002 by negative binomial test), while CUX2 transcription is completely suppressed (Fig. 4, A
and B). Given that around 80% of nuclel in the control NPCs do not show transcription of NEUROD,
the NEUROD1 promoter may be tightly repressed for long periods but alows for infrequent, strong
bursts of transcription. In turn, inactivation of CUX2 with CRISPRI led to down-regulation of CUX2
MRNA and a decrease in the proportion of cells expressing CUX2 compared to control (P value = 0.0006
by negative binomial test), without affecting NEUROD1 expression (P value = 0.223 by negative
binomial test). Altogether, our data suggests that athough NEURODL is expressed infrequently, it is
required to maintain ongoing transcription of CUX2.

Dissociation of risk loci for neuropsychiatric traits using single cell-derived marker
genes and peaks

Despite the notable progress in exploring the genetic causes of neuropsychiatric disorders, their
underlying molecular mechanisms are still not fully understood (37). To reveal whether disorder-
associated variants are enriched in a particular cell type or developmental stage, we used linkage
disequilibrium-aware approaches (M aterials and Methods) (38, 39) to assess the overlap between a
collection of relevant GWAS studies and lineage-defining genes and chromatin peaks derived from our
multi-omic single cell data. By analyzing 9 neuropsychiatric and 3 unrelated control traitsin 15 cell types,
we identified 33 and 28 significant associations in cell type-specific chromatin accessibility and
transcriptome data, respectively (Fig. 5A, table S10 and S11). We observed a high overlap of significant
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cell-type - GWAS trait pairs (20/41 of significant pairs are shared; Spearman correlation of all pairs
p=0.62), suggesting that both modalities report reliable and informative associations.

Consistent with previous studies, schizophrenia (SCZ), bipolar disorder (BD), attention deficit
hyperactivity disorder (ADHD) and mgjor depressive disorder (MDD) are enriched in multiple neuronal
subtypes (40-42). However, to our knowledge, our results identified several associations that have not yet
been described by genetic data (see Discussion), including oligodendrocytes for Tourette syndrome (TS),
astrocytes for obsessive-compulsive disorder (OCD), OPCs for anxiety and fetal neurons for anorexia
nervosa (AN). For non-psychiatric, immune-related traits, including Alzheimer’s disease (AD), ulcerative
colitis, and inflammatory bowel disease (IBD) we only observed enrichment for microglia, thus further
strengthening the credibility of our results. To dissect the temporal specificity in neuropsychiatric
diseases, we compared fetal and adult neuronal enrichment using both epigenome and transcriptome data.
We found a high concordance between enrichment of both assays, allowing us to classify ADHD, AN and
autism as being more strongly associated with fetal neuronal stages, while, for TS, BD, SCZ and MDD,
we found an equal contribution of both fetal and adult neuronal stages (Fig. 5B).

We next aimed to nominate the candidate functional genes for disease-associated loci (Fig. 5C, Materials
and Methods). First, we collected a set of 491 genome-wide significant variants associated with
neuropsychiatric traits (P<5x10®) and extended it to 16,005 variants based on the presence of high

linkage disequilibrium (LD; R?20.8). We overlapped putative disease-relevant variants (index
SNP and LD buddy) with the peaks that demonstrate significant peak-gene associations to

pinpoint at least one gene under regulation for 97 genome-wide significant loci (table S12). Out of

152 genes mapped to those 97 laci, 7 were linked to two disease traits simultaneously and 17 genes were
shown to have significantly atered expression along the pseudotime trajectory of neuronal lineage
specification (km1/2/3/4) (Fig. 5D). While the original GWAS studies usualy nominate severa plausible
gene targets for each disease-relevant locus, their prioritization is mostly based on imprecise distance-
based annotation. Using our approach, we were able to refine their predictions and, in some cases,
nominate novel genes. One example of a replicated finding is the association of DCLK3 (encoding a
neuroprotective kinase) with both SCZ and BD, which was previously observed by TWAS (43) and
eQTL approaches (44) (Fig. 5E). Notably, this association is derived from the overlap of putative disease-
relevant variants with two distinct peaks, both predominantly accessible in adult excitatory neurons.

Discussion

We generated multi-modal chromatin accessibility and gene expression data in the human cortex across 6
broad developmental time-points from fetus to adult. Joint analysis of 45,549 individual nuclei facilitated
the identification of genes and cis-regulatory elements with fundamental roles in lineage determination.
By using the covariance of chromatin accessibility at promoter and enhancer regions as inputs, we show
that the majority of expression variance was attributed to promoter and enhancer accessibility, indicating
that gene expression is broadly associated with chromatin accessibility. Moreover, through comparison of
neurons from different developmenta stages, we found that there were more DORCs specific to earlier
stages (e.g., fetal versus postnatal, early fetal versus late fetal), suggesting a role for chromatin
reorganization in regulating early neurodevel opmental processes. The temporal nature of our data allowed
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us to examine neural trajectories across 4 broad developmenta phases. The first of these contains genes
involved in cell fate specification, differentiation, and NPC proliferation. The second cluster specifies
genes involved in neuron migration, morphogenesis, synapse organization, and axonogenesis, while the
3rd and 4th clusters contain genes associated with neurotransmitter transport and regulation. As an
example, we chose to focus on CUX2, a TF involved in synaptogenesis that is expressed in the 2nd
cluster. CUX2 expression coincides with a number of nearby open chromatin regions containing putative
enhancers, among which are binding sites for NEUROD1, a well known pioneer factor involved in
neuronal cell fate specification. It has recently been shown that overexpressing NEUROD1 in astrocytes
can convert them into neurons, suppressing the astroglial gene expression program while upregulating
neuronal genes, including CUX2 (45). Thus, we hypothesized that NEUROD1 might activate CUX2
during early neural development, and subsequently showed that inactivation of NEURODL in cultured
NPCs led to a complete suppression of CUX2, while inactivation of CUX2 did not affect expression of
NEUROD1.

Lineage specific genes and chromatin accessible regions are enriched for risk loci associated with
neuropsychiatric traits, and implicate 152 putative risk genes in a range of disorders, including SCZ, BD,
ADHD and MDD. SCZ, BD, ADHD, and MDD are enriched in multiple neuronal subtypes, consistent
with previous studies (4042). Beyond aready known associations between various cell types and
disease, our results identified several associations that, to our knowledge, have not been described
previously. First, TS was found to be enriched in oligodendrocyte cells in both epigenome and
transcriptome assays. The critical role of oligodendrocytes is supported by tract-based spatial statistics
measurements of TS patients, indicating a reduced fractional anisotropy that reflects deficits in axonal
myelination (46). Second, OCD was enriched in astrocytes. While the literature supporting this
relationship is more established for the striatum (47), the involvement of the prefrontal cortex was
previously studied through an astrocyte-specific deletion of glutamate transporter 1 (48) and vesicular
monoamine transporter 2 (49), both resulting in OCD-like behavior. Third, anxiety was enriched in OPCs,
further implicating the well-established role for aberrant myelination in neuropsychiatric disorders (50).
This relationship was emphasized by a recent study linking anxiety-like behavior in a mouse model of
cuprizone-induced demyelination which displays impaired OPC differentiation (51). Lastly, we report the
enrichment of fetal neurons in AN. While this disorder phenotypically manifests in adolescence or early
adulthood, a number of studies suggest substantial changes during earlier stages of development (52, 53).
Furthermore, significant differences in gene expression were previously measured between AN case and
control subjects using hiPSC-derived cortical neurons (54) that are known to resemble fetal, rather than
adult, brain cells (55).

In conclusion, we generated an atlas of gene expression and chromatin accessibility in single nuclel from
6 developmental time-points that provides additional insights on cell fate determination in the human
cerebral cortex and on the molecular basis of neuropsychiatric disease. We present our data as an
interactive web browser that can be utilized by the scientific community to explore spatiotemporal
aterationsin gene expression in development and disease.
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Materials and Methods Summary

Nuclei were isolated from frozen human cortical brain specimens from 6 developmental time-points (fetal
18-20 gestational weeks (GW) (n=2), 23-24 GW (n=2), 0 years (n=2), 4-6 years (n=2), 14 years (n=2) and
20-39 years (n=2)) and subjected to fluorescence-activated nuclear sorting (FANS). Purified nuclei were
processed using the Chromium Next GEM Single Cell Multiome ATAC-seq and Gene Expression
protocol (10x Genomics). Resulting libraries were sequenced using the Novaseq platform (I1lumina),
obtaining 100 bp paired-end reads that were aligned by cellranger-arc (v.1.0.0). MACS2 (56) was used to
call peaks. We used Seurat v4.0 (15) to construct a weighted nearest neighbor (WNN) graph and shared
nearest neighbor graphs as well as to find differentially expressed genes for each identified cal type.
Differentially accessible peaks were identified by Signac v1.1.0 (57). We applied the variance component
analysis (22, 23) to quantify the proportion of gene expression variation that is attributable to promoter,
enhancer and individual covariance. We used chromV AR (58) to perform transcription factor analysis for
al DNA motifs from the JASPAR 2020 database (59). For each cell type, we created psedobulk
populations and used them to calculate correlations between peaks and nearby genes (within 0.5Mbp
window), thus reconstructing gene regulatory associations. Pseudobulk populations were also used to
define ‘pseudo-age’ for each cell type based on the proportion of cells found in the six different
developmenta stages. Monocle3 (60) was used to construct the trgjectories across neuronal populations
and to find differentialy expressed genes on the trgectory of a specific lineage. We applied LD-score
score partitioned heritability (39) (SNnATAC-seq) and MAGMA (38) (snRNA-seq) to investigate whether
the cell specific peaks and genes might play a role in disease, and quantified their co-localization with
common risk variants from 53 GWAS studies. We examined the relationship between NEUROD1 and
CUX2 via CRISPR mediated knock down in differentiating NPCs, followed by RNAscope.
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Figure 1. Joint single-cell profiling of RNA expression and chromatin accessibility of human neocortex.

(A) Frozen human cortical brain specimens from 6 developmental time points were homogenized and purified by
FANS prior to tagmentation and partitioning into single nuclei using the 10x Genomics platform. Libraries for
snRNA-seq and snATAC-seq were prepared, sequenced and analyzed independently. (B) UMAP visualizations of
single cells defined by RNA-seq and ATAC-seq data, respectively. Cell type annotations are derived from either
modality independently. (C) Heatmap showing the concordance of cell memberships between the two clustering
results, measured in F1 score. (D) UMAP visualization of single cells defined by integrating two modalities using
WNN analysis. Cell type annotations are determined on the basis of marker genes. (E) Dot plot showing selected
marker gene expression and chromatin-derived gene activity across cell types. (F) Proportions of cell types in each

age group.
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Figure 2. Global and local characterization of cisregulation patterns

(A) Variance component analysis showing chromatin accessibility explains variation in gene expression. Genes, in
columns, are sorted by decreasing proportion of variance explained by the epigenome (enhancers and promoters),
with the mean variance explained by each component shown in parenthesis. (B) Distribution of the distance from
each peak to the transcription start site (TSS) of the linked gene. (C) Histograms showing (from left to right)
distribution of the number of peaks significantly linked per gene; distribution of the number genes significantly
linked per peak; distribution of the number of genes “skipped” by a peak to reach its linked gene. (D) The number of
significantly linked peaks for each gene, with genes sorted in increasing order. (E) Heatmap showing chromatin
accessibility and gene expression of the linked peak-gene pairs (rows, |eft aggregated peak accessibility, right linked
gene expression) in the DORCs across 500 pseudobulk samples (columns, sorted in terms of cell types); values are
z-score normalized. (F) Top 15 GO enrichment results for genes linked to DORCs.

15


https://doi.org/10.1101/2022.10.14.512250
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.14.512250; this version posted October 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

I-festarl
IN-MGE
IN-CGE

[ A RN N NN N
m
z

0.34

GRAMDIR
-

Residual

NEUROGT * cug * ciemn
o1 ACKR3 ™

DscAwLT 3 OLX2GRIE 1
Acowrzg.z (CIR | ARX
NREF2_ CXGR4

01

mprEDt § § i

i g

.y NEU.PW ?I.ﬂ
wizn 3 MAF— kg

.
2ALLY

NFIX

1 -
LiNGo1205 & HINGOES - ® ainya7a7.2

ACOITORR 1
O

.
FROM1G

.
nIgRa,

Mumber of corralated peaks

E

el Fale specihcabion 4
requiation of timing of cell differantiation 4
feural precursor cell profieration

neuran migration §

regulation of cell morphogenesls

synapse organization 1

requlation of axonopenesls 4

rogulation of nourstransmiller levels.

ReurTtransmitier ransport 1
synaptic vesicle maturation 4

putassium channet complex

POUGF1
NEUROD1
NEUROGE

SMADZ SMADS SMADS
TAL1:TCFS

HHLHEZ2

HOR AL

REST

ZETRIC

EGHD

RELA

(=5

GO enrichment

TF motif enrichment

R T EN NN EY KRR

i"...t...l.l......
T PR N RN KRN R

i{re0es - 00000000000

»
a
@

»
E |
=

—r————————
kmi km2 km3  kmd

cuxz
.

“logaglp-val}
« 0
[
®
®:

“logya{p-val)
® s
® n
®

fold ennghment
3
2
1

IN-lineage

40

RNA z-score  ATAC z-score
4.0- L |

4 4 0 4

-legaip value)

0.00

0. 0.0 0z

2

DORC score-TF activity carrelation
km2 cluster in EN lineage

? Y

i
’ g~

— CUX2DOAC
== GLIKE HNA
== NEUROR! molif
—  NEUROD! RNA

pseudotime
celltype



https://doi.org/10.1101/2022.10.14.512250
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.14.512250; this version posted October 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 3. Trajectories of generegulation during neuronal development.

(A) Trajectories identified within the neuronal subpopulations, shown on the RNA gene expression coordinates (root
node was annotated as ‘1’, cells were colored for annotated cell types). (B) Inferred pseudotime along the lineages
for excitatory neurons (‘EN-lineage’) and inhibitory neurons (‘IN-lineage’), respectively. (C) Average residuals
between chromatin accessibility and gene expression versus the number of significantly linked peaks for each gene
involved in the DORCs identified within the neuronal populations. Positive and negative residuals are colored in red
and gray, respectively. (D) Heatmap showing gene expression and DORC chromatin accessibility of the peak-gene
links that significantly varied along the pseudotime for the EN lineage. Rows (genes) are clustered using k-means
clustering (k=4), columns (cells) are ordered by pseudotime. The top five most differentially expressed genes in
each cluster (‘km1/2/3/4’) are annotated. (E) Respective GO enrichment of genes represented in the four peak-gene
link clusters of the EN lineage. (F) TF motifs enrichment of peaks represented in the peak-gene link clusters of the
EN lineage. (G) P values of TF motif enrichment in km2 peaks plotted against Spearman correlation of TF motif
activity with CUX2 DORC score. (H) Lineage dynamics of NEUROD1 motif activity and expression precede CUX2
DORC chromatin accessibility and gene expression in the EN lineage, from the beginning to the end of the km2
stage, using the min-max normalized, smoothed values over pseudotime.
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Figure 4. Assessment of therelationship between NEUROD1 and CUX2 in differentiating neural progenitor
cells.

(A) Maximum intensity projection images (from 200 nm z stacks obtained at 63x magnification) of CUX2 (red)
and NEURODL1 (green) expression in NPCs 2 weeks podt-differentiation treated with scrambled gRNA, a
NEUROD1 specific gRNA and a CUX2 specific gRNA. Charts show fregquency distributions of RNAscope dots
per nucleus for CUX2 and NEURODL in cells treated with scrambled gRNA (n=444 cells), NEUROD1 specific
gRNA (n=111 cells) and CUX2 specific gRNA (n=183 cells). % ON corresponds to % of nuclei with detectable
RNAs. (B) Violin plots of nuclear RNA frequency distributions in all conditions. A negative binomial test was
performed. The center line (yellow) indicates the median, the box shows the interquartile range, whiskers indicate
the highest/lowest values within 1.5x the interquartile range.
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Figure 5. Mapping of risk variants associated with neuropsychiatric traits to causal genes using single cell-
derived marker genes and peaks.

(A) Heritability enrichment of brain cell types in neuropsychiatric disorders and unrelated control traits. Heatmaps
highlight significant co-localization of GWAS-derived common genetic variants with cell-specific open chromatin
regions in snATAC-seq data (left panel) and cell marker genes in snRNA-seq data (right panel) (Methods). “*”:
significant after correction across all tests (FDR<0.05). (B) Comparison between fetal and adult neuronal signalsin
selected neuropsychiatric disorders (traits need to be enriched in either fetal or adult category; therefore, OCD and
Anxiety were not involved). Fetal and adult neurons are represented by peaksets / genesets compiled from unions of
the top 2,500 / 500 the most cell-specific peaks / genes from each fetal neuron (i.e., EN-fetal-early, EN-fetal-late,
and IN-fetal) and adult neuron (i.e., EN, IN-CGE, and IN-MGE) category. To calculate the ratio “fetal neurons /
adult neurons’ (y-axis), we used LDsc regression coefficient (SnATAC-seq) and MAGMA beta coefficients
(snRNA-seq); joint score is an average of snATAC-seq and snRNA-seq scores. (C) Schematic of the overall strategy
to connect risk variants associated with neuropsychiatric disorders to their causal genes. (M ethods). (D) Subset of
candidate causal genes for risk variants that are either prioritized in two disorders, or show significantly altered
expression along the developmental trajectory of the neuronal lineage (km1/2/3/4; full list of causal genesin Table
S12). (E) Normalized snATAC-seg-derived pseudobulk tracks demonstrating the complex cell-specific regulation of
the DCLK3 gene that is predicted to be the causal gene for SCZ and BD GWAS risk variants (rs75968099 and
rs75968099).
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