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ABSTRACT 25 

We hypothesized that overall autozygosity is decreasing over generational time. In this 26 

report, we present data that partially support this hypothesis from three large cohorts of 27 

diverse ancestries, two from the US (All of Us and the Million Veteran Program, 28 

N=82,474 and 622,497, respectively) and one from the UK (UK Biobank, N=380,899). 29 

Our results from a mixed-effect meta-analysis demonstrate an overall trend of 30 

decreasing autozygosity over generational time (meta-analyzed slope=-0.029, 31 

se=0.009, p=6.03e-4). Using a chi-square difference test, we determined that a model 32 

including an ancestry-by-country interaction term fit the data best, indicating that 33 

ancestry differences in this trend differ by country. We found further evidence to suggest 34 

a difference between the US and UK cohorts by meta-analyzing within country, 35 

observing a significant negative estimate in the US cohorts (meta-analyzed slope=-36 

0.058, se=0.015, p=1.50e-4) but a non-significant estimate in the UK (meta-analyzed 37 

slope=-0.001, se=0.008, p=0.945). We also found that the association between 38 

autozygosity and year of birth in the overall meta-analysis was substantially attenuated 39 

when accounting for educational attainment and income (meta-analyzed slope=-0.011, 40 

se=0.008, p=0.167), suggesting that increases in education and income may partially 41 

account for decreasing levels of autozygosity over time. To our knowledge, this is the 42 

largest demonstration of decreasing autozygosity over time in a modern sample (birth 43 

years 1904-2003), and we speculate that this trend can be attributed to increases in 44 

population size, urbanization and panmixia, with differences in demographic and 45 

sociocultural processes leading to country-specific differences in the rate of decline. 46 

MANUSCRIPT 47 
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There has been great interest in using measures of autozygosity - the proportion of the 48 

genome contained in runs of homozygosity (ROH) that are identical by descent (i.e., 49 

inherited from a common ancestor shared by both parents) - to examine evolutionary 50 

hypotheses about complex traits in humans 1–3 and to quantify the extent to which 51 

inbreeding depression impacts health and disease 3–5. While longer and more frequent 52 

ROHs are found in samples with close inbreeding, ROHs are ubiquitously found in 53 

samples across the world, even in seemingly outbred populations. By examining the 54 

proportion of the genome contained in ROHs (FROH) alongside other measures of 55 

inbreeding (e.g., FUNI, the correlation between uniting gametes6), studies have shown 56 

how demographic history can influence the distribution of these different measures of 57 

inbreeding 3,7. 58 

In a previous study8 using a sample of adolescents, we found an unexpectedly low 59 

mean level of autozygosity relative to previous autozygosity reports (mean FROH = 60 

0.00058 compared to 0.0016-0.007 9–11) while the variance of FROH was similar to other 61 

studies. The particular sample used in that study, the Adolescent Brain Cognitive 62 

Development Study� (ABCD Study®�)12, consisted of individuals who were much 63 

younger than most other samples analyzed in previous studies of autozygosity, with all 64 

individuals in the ABCD study having been born in 2006 or 2007. In researching this 65 

finding, we came across a study from Nalls et al. (2009)13, who found that in a sample of 66 

809 North Americans of European descent aged 19-99 years old, autozygosity steadily 67 

declined in relation to birth year at a rate of 0.1% decrease in FROH for every 20 years 68 

decrease in chronological age. Aside from Nalls et al. (2009), there seem to be few 69 

mentions of this phenomenon in the literature, except for an interesting analysis of 70 
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ancient DNA samples which found decreasing FROH over 1000s of years during the 71 

Holocene 7. We hypothesized that the relatively low level of autozygosity in the young 72 

ABCD Study sample might be reflective of secular trends of decreasing autozygosity 73 

over generational time in the modern era. In the previous study, we tested this by 74 

conducting a brief assessment of an independent cohort, the Collaborative Study on the 75 

Genetics of Alcoholism (COGA) 14–16, and observed a small but highly significant 76 

decrease in FROH with increasing birth year (standardized beta= -0.06, s.e.= 0.01, p= 77 

2.5e-9)8. Based on this finding, we would predict a 0.001 decrease in FROH over a period 78 

of 100 years. However, this trend has so far only been examined in relatively small (N < 79 

11,000) North American cohorts comprised mostly of individuals of European and 80 

African descent. Thus, it is unclear to what extent this association between FROH and 81 

birth year generalizes across different and more diverse samples. 82 

In the current report, we sought to address this gap in the literature using data from 83 

three large cohorts spanning the US (All of Us (AoU), N = 82,474; Million Veteran 84 

Program (MVP), N = 622,497) and UK (UK Biobank (UKB), N = 380,899) which include 85 

individuals of six ancestry groups determined by genetic principal components, broadly 86 

defined as Admixed American ancestry (AMR), African ancestry (AFR), Central South 87 

Asian ancestry (CSA), East Asian ancestry (EAS), European ancestry (EUR), and 88 

Middle Eastern ancestry (MID). 89 

As linkage disequilibrium patterns and allele frequencies can differ across genetic 90 

ancestry groups and potentially induce spurious associations due to population 91 

stratification, we performed ROH calling and FROH regressions separately in each 92 

genetic ancestry subset of the cohorts, before meta-analyzing to increase sample size 93 
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and statistical power. Thus, initial association tests were conducted in unrelated 94 

individuals in each ancestry subset of each cohort using a linear fixed-effect regression 95 

model which tested for the effect of birth year on FROH, controlling for age, sex, and the 96 

first 10 within-ancestry genetic principal components, as well as genotyping batch and 97 

assessment center in the UK Biobank (Table 1). In this report we avoid comparing the 98 

FROH~birth year relationships between genetic ancestries because sample sizes in 99 

some genetic ancestry subsets are too small to draw substantive conclusions (but 100 

individual within-ancestry estimates of the FROH~birth year association are presented in 101 

Figure 1b). Using the effect sizes from the ancestry- and cohort-specific models, we 102 

performed two separate meta-analyses. First, we meta-analyzed across all cohorts and 103 

genetic ancestry groups using a mixed-effect meta-analysis model. We first tested a 104 

model with main effects only (ancestry and country as fixed effects, cohort as a random 105 

effect); when we then tested a model with an interaction term between ancestry group 106 

and country, this model fit significantly better than the main effects-only model (chi-107 

square difference = 27.156, p = 5.32e-5). Given this finding, we decided to also 108 

examine country-specific estimates; thus, we also present a mixed-effect meta-analysis 109 

(controlling for genetic ancestry group as a fixed effect and cohort as a random effect) 110 

of the two US cohorts and a fixed-effect meta-analysis of the UK cohort (since there 111 

was only one UK cohort, we did not need to include cohort as a random effect) to 112 

calculate and compare country-specific estimates. In this report, we present the meta-113 

analyzed slope (beta_M) from our meta-analysis models; this represents the effect of 114 

birth year on FROH on average across ancestry groups, countries, and cohorts. We 115 

applied a Bonferroni correction to correct for six total tests: two models (main model, 116 
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model correcting for educational attainment and income) meta-analyzed three ways 117 

(across all cohorts, only in US samples, only in UK samples), resulting in a significance 118 

threshold of p = 0.0083. We note that this threshold is somewhat conservative given the 119 

substantial overlap amongst the tests.  120 

In the primary meta-analysis across all ancestry groups and cohorts, birth year was 121 

negatively associated with FROH on average (beta_M = -0.029, se = 0.009, p= 6.03e-4; 122 

Figure 1a, Table S1). We found divergent effects in the within-country meta-analysis, 123 

observing a significant and strong negative effect of birth year on FROH in the US cohorts 124 

(beta_M = -0.058, se = 0.015, p = 1.50e-4), but a non-significant effect in the UK cohort 125 

(beta_M = -0.001, se = 0.008, p = 0.945). We note that a significant negative 126 

association was observed in the UKB sample of European descent (beta = -0.010, se = 127 

0.002, p = 6.11e-9); still, the effect was much weaker than in the genetically-defined 128 

European ancestry subsets of the AoU (beta = -0.035, se = 0.005, p = 2.22e-13) and 129 

MVP (beta = -0.044, se = 0.001, p = 2.65e-195) cohorts (Figure 1b). This may reflect 130 

differences across the US and UK in terms of the rate of urbanization and/or 131 

demographic changes. While the percent of the population living in urban areas has 132 

surged 29% over the last 70 years in the US, urbanization in the UK has only increased 133 

by 6.2% 17, potentially contributing to the weaker changes in autozygosity in the UK 134 

cohort. Another possible reason for this difference is migration patterns; consistent 135 

immigration to the US from many different countries over the 20th century has facilitated 136 

more diverse and frequent admixture in Americans 18, leading to a more rapid decline in 137 

average autozygosity compared to the UK where immigration rates are lower 19. 138 

Furthermore, the physical isolation of Britain from the rest of Europe has presented 139 
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challenges to migration historically 20, providing an explanation for the more stable rate 140 

of autozygosity in this population. We also acknowledge that the UK Biobank, compared 141 

to the two US cohorts, is much more limited in the chronological age span of its cohort. 142 

Individuals in the UK Biobank were born between 1936 and 1970, while individuals in 143 

the MVP and AoU cohorts had birth years ranging from 1904-1999 and 1915-2003, 144 

respectively. It is possible that the decline in autozygosity observed in the US cohorts 145 

may only become identifiable over many generations, as shorter periods of time may 146 

reflect short-term trends in response to historical and sociocultural changes.  147 

We also estimated the association between birth year and a second measure of 148 

inbreeding, FUNI. Since FROH can better capture the effects of homozygosity at rare 149 

variants while FUNI is thought to be a better measure of homozygosity at common 150 

variants 3,5, we tested both measures to determine whether common and/or rare 151 

variants were contributing to this trend in decreasing autozygosity, or whether variants 152 

contributing to this decline span a range of frequencies. We observed consistent 153 

direction of effects of FUNI (albeit non-significant) in the overall meta-analysis (beta_M = 154 

-0.015, se = 0.009, p = 0.105) and the US-specific meta-analysis (beta_M = -0.045, se = 155 

0.080, p = 0.011), while the estimate in the UK-specific meta-analysis was positive but 156 

non-significant (beta_M = 0.014, se = 0.008, p = 0.055). While the associations with FUNI 157 

were weaker, the generally consistent direction of effects was unsurprising given the 158 

strong correlation between FROH and FUNI measures (e.g., r2 in the genetically-defined 159 

European ancestry subset of AoU = 0.66) and suggests that these patterns of decline 160 

are not specific to FROH and likely represent trends in autozygosity more generally 161 

across variants of all frequencies. We note that, while imputed SNP data can lead to  162 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 17, 2022. ; https://doi.org/10.1101/2022.10.13.512166doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.13.512166
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

9 

A 163 

 164 

B 165 

 166 

Figure 1. (A) Effect of birth year on FROH in each meta-analysis and model type. Points represent meta-167 
analyzed slope values and bars represent 95% confidence intervals. Significance was determined using a 168 
conservative Bonferroni correction for 6 tests (3 types of meta-analysis [UK, US, and overall] and 2 169 
possible models [main model, model controlling for socioeconomic factors]), resulting in a p-value 170 
threshold of 0.0083. (B) Effect of birth year on FROH in each ancestry and cohort. Points represent betas 171 
and bars represent 95% confidence intervals. Effects in the main model are shown in panel i, effects 172 
when controlling for educational attainment and income are shown in panel ii. Significance was 173 
determined using the previously mentioned threshold of p = 0.0083. AFR = African genetic ancestry; AMR 174 
= Admixed American genetic ancestry; CSA = Central South Asian genetic ancestry; EAS = East Asian 175 
genetic ancestry; EUR = European genetic ancestry; MID = Middle Eastern genetic ancestry. 176 
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biased estimates of FROH, estimates of FUNI are more powerful and unbiased when 177 

derived from imputed data 5. Imputed data was not available for the AoU cohort and 178 

thus we have used non-imputed genotype array data to estimate both FROH and FUNI in 179 

all cohorts for consistency, acknowledging that our estimates of FUNI may be 180 

underpowered.  181 

Previous studies have demonstrated strong relationships between educational 182 

attainment, social mobility, and autozygosity, with greater educational attainment 183 

correlating with more mobility21, and greater mobility in the parental generation 184 

mediating observed relationships between their educational attainment and their child’s 185 

autozygosity11. To investigate whether differences in educational attainment and other 186 

socioeconomic factors such as income might be responsible for the observed decline in 187 

autozygosity over time, we tested an additional model in which birth year, educational 188 

attainment and income simultaneously predicted FROH (while controlling for the same 189 

covariates as above, see Supplemental Material and Methods). After meta-analyzing 190 

across cohorts and genetic ancestry groups, the effect of birth year on FROH was 191 

attenuated (beta_M = -0.011, se = 0.008, p = 0.167; Figure 1a) when educational 192 

attainment and income were included in the model. We subsequently meta-analyzed 193 

within countries and found that educational attainment and income substantially 194 

weakened the effect in the US cohorts (beta_M = -0.020, se = 0.013, p = 0.117) (Figure 195 

1a). In the UK, where the association between FROH and birth year was already close to 196 

null when averaged across ancestry groups, controlling for educational attainment and 197 

income had no notable effect on the FROH~birth year relationship (beta_M = -0.002, se = 198 

0.009, p = 0.848). We speculated that generations have become increasingly more 199 
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educated over time and this has changed patterns in mobility; perhaps these patterns of 200 

increased geographic mobility, acting in concert with assortative mating on 201 

socioeconomic status, have partially contributed to the observed decrease in 202 

autozygosity over time. To test whether levels of education and income have increased 203 

over generations, we regressed educational attainment and income on birth year and 204 

indeed observed a significant increase in educational attainment over time (beta_M = 205 

0.102, se = 0.034, p = 0.003), while the change in income was not significant (beta_M = 206 

-0.081, se = 0.116, p = 0.487). Within-country meta-analyses revealed a much stronger 207 

positive relationship between educational attainment and birth year in the UK (beta_M = 208 

0.136, se = 0.009, p = 1.04e-56) than in the US (beta_M = 0.069, se = 0.068, p = 209 

0.309). Furthermore, this null result in the US meta-analysis seemed to be driven by 210 

conflicting ancestry-specific results in the AoU cohort, with the two largest ancestry 211 

groups showing significant negative relationships between educational attainment and 212 

birth year, and the third-largest ancestry group demonstrating a significant association 213 

in the expected, positive direction (Supplemental Table S1). Results did not change 214 

when we restricted the age range in AoU to match the birth years of the UK Biobank 215 

(1936-1970). 216 

Like Nalls et al. (2009), we consider that the overall pattern of decreasing autozygosity 217 

may be associated with population growth, urbanization, and increased mobility. 218 

Population sizes have increased both in the US and worldwide 22 and previous analyses 219 

have noted that rapid growth in population size or large effective population size is 220 

associated with a decrease in autozygosity 3,7,23. For example, a study from Ceballos et 221 

al. (2021) found a decrease in FROH over 1000s of years during the Holocene, likely in 222 
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response to population growth arising from the development of agriculture at the time. 223 

Population expansion, therefore, appears to contribute to decreases in autozygosity 224 

over both short and long time periods, as well as in both modern and ancient samples. 225 

In addition to modern population growth, the flocking of individuals from many small, 226 

isolated rural areas to densely populated cities breaks down previous geographic and 227 

population barriers to panmixia, in turn reducing endogamy and increasing the likelihood 228 

that individuals mate with those who are more genetically different from themselves 24. 229 

Our results also suggest that socioeconomic factors, especially educational attainment, 230 

at least partially explain the FROH~birth year relationship. We found that educational 231 

attainment is higher on average in more recent generations, although this relationship 232 

was stronger in the UK Biobank and the MVP cohorts than in AoU, where results were 233 

mixed. One previous study found that those with higher educational attainment were 234 

more likely to move large distances away from their birthplace and subsequently mate 235 

with an individual that is less closely related to them but who also shares a similarly high 236 

level of educational attainment. As a result, offspring of these individuals were more 237 

outbred (had low levels of autozygosity) and would have inherited genes associated 238 

with greater educational attainment11.  As individuals became increasingly more 239 

educated, this pattern of migration and mating may have become more common, 240 

leading to overall declines in average autozygosity. It may also be that increased 241 

globalization and mobility are reflected in higher levels of educational attainment 25,26, 242 

which then are associated with lower autozygosity on average in the countries we have 243 

studied. Still, the relationships between socioeconomic factors and birth year were not 244 
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as clear-cut in the US cohorts as in the UK Biobank, and further studies are needed to 245 

clarify the role of these factors in the observed decline in autozygosity.  246 

Nalls et al. (2009) also hypothesized that decreasing autozygosity should correlate with 247 

decreasing rates of rare recessive genetic diseases, while Campbell et al. (2009)27 248 

estimated that this effect measured by Nalls et al. (2009) has prevented 1% of the 249 

annual births that would be affected with an autosomal recessive disorder. We might 250 

also expect slight changes in complex traits that are partly influenced by recessive 251 

variants, such as cognitive abilities. We used our estimated rates of declining 252 

autozygosity and estimates of associations between FROH and complex traits from 253 

published literature3 to predict estimated changes in several traits. For example, based 254 

on our findings in the European-ancestry subset of the AoU sample and published 255 

associations in Clark et al. (2019), we predict a 0.004 standard deviation increase in 256 

cognitive g, a 0.019 kg increase in grip strength, a 0.019 cm increase in height, and a 257 

0.0095 year increase in educational attainment over a 100-year period due to 258 

decreases in autozygosity. Of course, these are only illustrative predictions, but we 259 

expect that while declining autozygosity might have small effects on complex traits, 260 

such as those estimated here, this decline may show more appreciable effects on traits 261 

and diseases that are more strongly influenced by rare, recessive genetic variants.  262 

Importantly, we also note that these findings shed light on the consequences of 263 

overlooking sample composition - including range of birth years - when conducting 264 

comparisons of inbreeding across populations. Future studies that wish to analyze 265 

measures of inbreeding, such as FROH, across populations should be aware that sample 266 
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differences not only in geography or genetically-defined ancestry groups, but also in 267 

age, can affect the mean level of FROH. 268 

We note several limitations to the current study, the first being that our analyses only 269 

include samples from the US and UK. Given the differences observed between the US 270 

and UK cohorts, we would also expect changes in autozygosity over time to differ in 271 

cohorts from other countries in response to region-specific cultural practices (e.g., 272 

consanguinity) and demographic trends (e.g., migration rates). As biobanks in other 273 

countries continue to grow and include more diverse samples, we will be better able to 274 

assess how this pattern may differ from country to country. While we were able to 275 

include a diverse sample encompassing individuals from six different genetic ancestry 276 

clusters, a major limitation of our sample (N = 1,085,870) is that it still consisted mainly 277 

of individuals with European genetic ancestry (N = 847,427; 78.0%). Therefore, the 278 

overall generalizability of our findings across samples of non-European ancestry groups 279 

is limited. Furthermore, the degree of admixture in individuals in this study likely varies 280 

amongst the different genetic ancestry groups and cohorts. For example, a majority of 281 

the individuals in the genetically defined American and African ancestry subsets of the 282 

UK Biobank are likely admixed and share ancestry with the individuals in the European 283 

ancestry subset. On the other hand, individuals in the UK Biobank with less common 284 

patterns of admixture could not be grouped into sufficient sized groups and were thus 285 

excluded by the PanUKB analysis team28. Cross-ancestry mating is likely a contributing 286 

factor to declining autozygosity, and by excluding some individuals with admixture we 287 

are likely under-estimating the true decline in autozygosity over time. Finally, while we 288 

show that educational attainment and income partly drive the observed association, we 289 
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were unable to investigate how other variables linked to assortative mating, such as 290 

religiosity, may also influence autozygosity 29. 291 

 292 

In summary, we demonstrate an overall trend of declining autozygosity over time on 293 

average across multiple ancestry groups and countries, with a stronger overall effect in 294 

the US than in the UK. Controlling for educational attainment and income substantially 295 

attenuates this relationship but does not fully explain the decline in autozygosity 296 

observed. We hypothesize that population growth combined with increased 297 

urbanization, globalization, and mobility are likely to be driving this trend. Future 298 

research should assess the relationship between autozygosity and birth year in better-299 

powered samples of more diverse ancestry groups and ages in order to determine how 300 

autozygosity has changed across different time spans and regions.  301 
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SUPPLEMENTAL MATERIAL AND METHODS 302 

Samples 303 

This study used data from two North American samples, the All of Us biobank (AoU) 304 

and the Million Veteran Program (MVP). We stratified these cohorts into six categorical 305 

ancestry groups commonly defined by genetic principal components: African, Admixed 306 

American, Central/South Asian, East Asian, European, and Middle Eastern. These were 307 

defined using reference populations from the 1000 Genomes Project30 and the Human 308 

Genome Diversity Project31 as previously reported32. 309 

The AoU research program includes over 1 million diverse individuals from across the 310 

U.S. and combines data from a variety of sources, such as an initial physical 311 

examination, follow-up self-report surveys, electronic health records and even genetic 312 

data from a subset of individuals. Individuals with genetic data spanned a wide range of 313 

chronological ages (birth years between 1915-2003), making the sample ideal for the 314 

current study. While our analyses use array data, the AoU biobank only provides 315 

ancestry assignments and relatedness data for the whole-genome sequencing dataset 316 

(N = 98,590), leaving us with 82,474 unrelated, genotyped individuals with ancestry 317 

assignments to use in the current analysis. We opted to use unrelated individuals in our 318 

analyses as the power that would have been gained by including related individuals 319 

would have been relatively small whereas the increase in computational resources and 320 

time required to control for relatedness in our analyses would be large and likely exceed 321 

the resources available to us via the All of Us Researcher workbench. For similar 322 

reasons we used the pre-computed ancestry assignments from the AoU dataset. 323 
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The MVP sample also includes individuals with a wide range of birth years (1904-1999) 324 

and is highly diverse. A detailed description of ancestry prediction in the MVP sample 325 

has been discussed previously32. We used KING33 to identify pairs of individuals who 326 

were estimated to be third-degree relatives or closer (kinship coefficient > 0.0442) and 327 

randomly removed one individual from each pair. Restricting to unrelated individuals left 328 

622,497 individuals from MVP in our analyses.  329 

To assess how trends of changing autozygosity over time may differ across countries, 330 

we also included data from the UKB (N ~ 500,000), which has collected genetic 331 

samples from individuals born between 1936 and 1970 at 23 assessment centers 332 

across the United Kingdom. We used ancestry and relatedness assignments provided 333 

by the Pan-UKB Team28 to remove related individuals (N = 65,887) and subset the UKB 334 

sample into the six previously mentioned genetically predicted ancestry categories. 335 

Doing so resulted in a total of 380,899 unrelated individuals. 336 

Measures 337 

Educational Attainment 338 

Educational attainment data in the AoU sample was collected by asking individuals the 339 

highest grade or year of school they completed (item concept = 340 

educationlevel_highestgrade) and individuals were given eight choices (e.g., “never 341 

attended school or only attended kindergarten”, “grades 1 through 4 (Primary school)”, 342 

etc.) to choose from. Choices were equated to approximate “years of education”, 343 

averaged across the possible range of a category, such that, for example, an individual 344 

who selected “grades 1 through 4” would be assigned 2.5 years of education. The UKB 345 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 17, 2022. ; https://doi.org/10.1101/2022.10.13.512166doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.13.512166
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

18 

dataset does not provide a “years of education” measure, but does record each 346 

individual's educational qualifications (Data-Field 6138). Qualifications in the UKB 347 

dataset were mapped to the International Standard Classification of Education (ISCED) 348 

levels and then converted to a “years of education” value, following the procedure from 349 

Okbay et al. (2016)34. Individuals with multiple qualifications were assigned a “years of 350 

education” value corresponding to the highest qualification. In the MVP dataset, 351 

educational attainment was measured using 7 answers (lowest being “less than high 352 

school’ and highest being “professional or doctorate degree”’) to the question “What is 353 

the highest degree or level of school you have completed?” which were then recoded 354 

into numeric values 1-7. 355 

Income 356 

The AoU dataset provided annual household income (item concept = 357 

income_annualincome) in the form of an ordinal measure with 9 categories (e.g., “less 358 

than $10,000”, “$10,000-24,999”, etc.), which we re-assigned to corresponding numeric 359 

values 1-9. Similarly, UKB annual household income (Data-Field 738) data was also in 360 

the form of an ordinal variable, and we transformed the five income brackets into 361 

numeric values 1-5. Finally, in MVP, annual household income was also reported as an 362 

ordinal variable, with ten income brackets being recoded to numeric values 1-10.   363 

Analyses 364 

We performed FROH and FUNI estimation and association testing separately for each 365 

ancestry group within each cohort. Following the procedure from Clark et al. (2019), we 366 

used PLINK 1.935 to clean the genotypic data before calling ROHs and estimating FROH 367 
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and FUNI. Genotypic data cleaning consisted of excluding SNPs with > 3% missingness 368 

or MAF < 5% and individuals with > 3% missing data. The resulting data was used to 369 

call ROHs in PLINK 1.9, using the following parameters: --homozyg-window-snp 50; --370 

homozyg-snp 50; --homozyg-kb 1500; --homozyg-gap 1000; --homozyg-density 50; --371 

homozyg-window-missing 5; homozyg-window-het 1. No linkage disequilibrium pruning 372 

was performed. We calculated FROH as the total length of ROHs summed for each 373 

individual, and then divided by the total SNP-mappable autosomal distance (2.77 × 106 374 

kilobases). FUNI was estimated using the --ibc command in PLINK 1.9 (FUNI 375 

corresponding to ‘Fhat3’ in the output, the correlation between uniting gametes6).  376 

We performed multiple linear regression models to determine if there was a significant 377 

effect of birth year on autozygosity in our samples. In the UKB sample, fixed-effect 378 

regression models controlled for sex, genotyping batch, assessment center and the first 379 

10 genetic within ancestry principal components as covariates. In the MVP and AoU 380 

cohorts, we used fixed-effect regression models to control for sex and the first 10 381 

genetic within ancestry principal components as covariates.  382 

 383 

In addition to these main models, we conducted a follow-up analysis in which we tested 384 

for a mediating effect of socioeconomic status by constructing models in which we 385 

covaried for educational attainment and income (along with the original covariates 386 

mentioned above). Separately, we measured trends in these socioeconomic factors 387 

over time by regressing them on birth year (e.g., educational attainment ~ birth year). In 388 

these models we only covaried for the non-genetic covariates listed above.  389 

 390 
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All models were run separately by genetic ancestry and cohort. Meta-analyses were 391 

performed in R using the metafor package 36. To meta-analyze across all cohorts and 392 

ancestries, we used a mixed-effect meta-analysis model, controlling for ancestry and 393 

country as fixed effects, an interaction term between ancestry and country, and cohort 394 

as a random effect (e.g., rma.mv(yi=estimate, V=sampvar, mods = 395 

~ancestry.c*country.c, random = ~1|cohort, data=dat, method="ML"). We chose to 396 

include the interaction term between ancestry and country after using a chi-squared 397 

difference test to compare the fit between the model including this interaction and the 398 

model without the interaction. To be consistent, meta-analyses of results from all other 399 

models (e.g., models controlling for educational attainment and income) also include the 400 

interaction term.  401 
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Table S1. Results from all models. 

Cohort 

Genetic 

ancestry estimate std. error p Outcome Predictor(s) 

MVP AFR -0.017 0.004 3.30E-05 FROH Year of birth 

MVP AMR -0.058 0.006 6.91E-24 FROH Year of birth 

MVP CSA 0.187 0.131 0.153 FROH Year of birth 

MVP EAS -0.186 0.015 5.45E-36 FROH Year of birth 

MVP EUR -0.044 0.001 2.65E-195 FROH Year of birth 

MVP MID 0.006 0.115 0.958 FROH Year of birth 

AOU AFR 0.003 0.007 0.677 FROH Year of birth 

AOU AMR -0.031 0.008 1.72E-04 FROH Year of birth 

AOU CSA -0.022 0.032 0.496 FROH Year of birth 

AOU EAS -0.025 0.022 0.253 FROH Year of birth 

AOU EUR -0.035 0.005 2.22E-13 FROH Year of birth 

AOU MID -0.166 0.086 0.055 FROH Year of birth 

UKB AFR -0.012 0.013 0.338 FROH Year of birth 

UKB AMR -0.016 0.035 0.638 FROH Year of birth 

UKB CSA 0.057 0.011 9.27E-08 FROH Year of birth 

UKB EAS -0.012 0.018 0.517 FROH Year of birth 

UKB EUR -0.010 0.002 6.11E-09 FROH Year of birth 

UKB MID -0.011 0.027 0.686 FROH Year of birth 

META META -0.029 0.009 6.03E-04 FROH Year of birth 

META_US META -0.058 0.015 1.50E-04 FROH Year of birth 

META_UK META -0.001 0.008 0.945 FROH Year of birth 

MVP AFR -0.035 0.003 4.57E-27 FUNI Year of birth 

MVP AMR -0.021 0.005 3.93E-06 FUNI Year of birth 

MVP CSA 0.090 0.047 0.056 FUNI Year of birth 

MVP EAS -0.136 0.010 8.48E-42 FUNI Year of birth 

MVP EUR -0.081 0.002 < 5e-324 FUNI Year of birth 

MVP MID -0.044 0.040 0.270 FUNI Year of birth 

AOU AFR 0.013 0.007 0.061 FUNI Year of birth 

AOU AMR -0.014 0.008 0.079 FUNI Year of birth 

AOU CSA -0.037 0.032 0.245 FUNI Year of birth 

AOU EAS -0.053 0.021 0.011 FUNI Year of birth 

AOU EUR -0.049 0.005 9.94E-28 FUNI Year of birth 

AOU MID -0.203 0.085 0.018 FUNI Year of birth 

UKB AFR 0.018 0.013 0.165 FUNI Year of birth 

UKB AMR 0.025 0.032 0.430 FUNI Year of birth 

UKB CSA 0.063 0.011 3.63E-09 FUNI Year of birth 
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UKB EAS -0.007 0.014 0.632 FUNI Year of birth 

UKB EUR -0.005 0.002 0.002 FUNI Year of birth 

UKB MID -0.008 0.023 0.735 FUNI Year of birth 

META META -0.015 0.009 0.105 FUNI Year of birth 

META_US META -0.045 0.018 0.011 FUNI Year of birth 

META_UK META 0.014 0.008 0.055 FUNI Year of birth 

MVP AFR 0.000 0.001 0.622 

FROH Year of birth, education, 

income 

MVP AMR -0.012 0.002 1.06E-09 

FROH Year of birth, education, 

income 

MVP CSA 0.010 0.009 0.270 

FROH Year of birth, education, 

income 

MVP EAS -0.028 0.004 1.56E-11 

FROH Year of birth, education, 

income 

MVP EUR -0.003 0.000 1.27E-12 

FROH Year of birth, education, 

income 

MVP MID -0.011 0.010 0.306 

FROH Year of birth, education, 

income 

AOU AFR 0.001 0.009 0.889 

FROH Year of birth, education, 

income 

AOU AMR -0.033 0.011 0.002 

FROH Year of birth, education, 

income 

AOU CSA -0.040 0.037 0.269 

FROH Year of birth, education, 

income 

AOU EAS -0.044 0.027 0.101 

FROH Year of birth, education, 

income 

AOU EUR -0.038 0.005 2.51E-14 

FROH Year of birth, education, 

income 

AOU MID -0.209 0.108 0.055 

FROH Year of birth, education, 

income 

UKB AFR 0.004 0.016 0.803 

FROH Year of birth, education, 

income 

UKB AMR -0.053 0.034 0.119 

FROH Year of birth, education, 

income 

UKB CSA 0.066 0.013 2.56E-07 

FROH Year of birth, education, 

income 

UKB EAS -0.018 0.021 0.389 

FROH Year of birth, education, 

income 

UKB EUR -0.005 0.002 0.005 

FROH Year of birth, education, 

income 

UKB MID -0.004 0.031 0.890 

FROH Year of birth, education, 

income 

META META -0.011 0.008 0.168 FROH Year of birth, education, 
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income 

META_US META -0.020 0.013 0.117 

FROH Year of birth, education, 

income 

META_UK META -0.002 0.009 0.848 FROH 

Year of birth, education, 

income 

MVP AFR 0.110 0.008 1.23E-40 Education Year of birth 

MVP AMR 0.201 0.012 2.14E-60 Education Year of birth 

MVP CSA 0.021 0.116 0.856 Education Year of birth 

MVP EAS 0.090 0.025 3.31E-04 Education Year of birth 

MVP EUR 0.045 0.004 3.25E-30 Education Year of birth 

MVP MID 0.253 0.106 0.018 Education Year of birth 

AOU AFR -0.042 0.007 3.22E-09 Education Year of birth 

AOU AMR 0.171 0.009 6.71E-86 Education Year of birth 

AOU CSA -0.071 0.033 0.031 Education Year of birth 

AOU EAS 0.006 0.022 0.805 Education Year of birth 

AOU EUR -0.101 0.005 2.36E-101 Education Year of birth 

AOU MID 0.081 0.081 0.319 Education Year of birth 

UKB AFR 0.208 0.013 4.29E-58 Education Year of birth 

UKB AMR 0.156 0.034 6.24E-06 Education Year of birth 

UKB CSA 0.084 0.011 1.26E-13 Education Year of birth 

UKB EAS 0.131 0.021 2.05E-10 Education Year of birth 

UKB EUR 0.222 0.002 < 5e-324 Education Year of birth 

UKB MID 0.011 0.027 0.683 Education Year of birth 

META META 0.102 0.034 0.003 Education Year of birth 

META_US META 0.069 0.068 0.309 Education Year of birth 

META_UK META 0.136 0.009 1.04E-56 Education Year of birth 

MVP AFR -0.026 0.161 0.874 Income Year of birth 

MVP AMR 0.324 0.231 0.162 Income Year of birth 

MVP CSA 3.243 1.975 0.102 Income Year of birth 

MVP EAS 0.557 0.508 0.272 Income Year of birth 

MVP EUR -0.780 0.070 1.21E-28 Income Year of birth 

MVP MID 0.676 2.143 0.753 Income Year of birth 

AOU AFR -0.102 0.008 1.19E-34 Income Year of birth 

AOU AMR 0.018 0.011 0.098 Income Year of birth 

AOU CSA -0.176 0.037 3.26E-06 Income Year of birth 

AOU EAS -0.179 0.026 8.48E-12 Income Year of birth 

AOU EUR -0.100 0.005 6.52E-87 Income Year of birth 

AOU MID -0.178 0.095 0.065 Income Year of birth 

UKB AFR 0.229 0.015 3.93E-51 Income Year of birth 

UKB AMR 0.245 0.039 8.25E-10 Income Year of birth 
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UKB CSA 0.164 0.013 1.67E-37 Income Year of birth 

UKB EAS 0.157 0.023 2.05E-11 Income Year of birth 

UKB EUR 0.349 0.002 < 5e-324 Income Year of birth 

UKB MID -0.054 0.031 0.086 Income Year of birth 

META META -0.081 0.116 0.487 Income Year of birth 

META_US META -0.351 0.238 0.140 Income Year of birth 

META_UK META 0.182 0.010 5.67E-77 Income Year of birth 
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