

1 **Declining autozygosity over time: an exploration in over 1 million individuals from**
2 **three diverse cohorts**

3

4 Sarah M.C. Colbert*,¹ Frank R. Wendt,^{2,3,4,5} Gita A. Pathak,^{2,3} Drew A. Helmer,^{6,7}
5 Elizabeth R. Hauser,^{8,9} Matthew C. Keller,^{10,11} Renato Polimanti,^{2,3} Emma C. Johnson¹

6

7 ¹Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO

8 ²Department of Psychiatry, Yale School of Medicine, New Haven, CT

9 ³VA Cooperative Studies Program Clinical Epidemiology Research Center (CSP-
10 CERC), VA CT Healthcare System, West Haven, CT

11 ⁴Department of Anthropology, University of Toronto, Mississauga, ON

12 ⁵Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto,
13 Toronto, ON

14 ⁶Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.

15 ⁷Center for Innovations in Quality, Effectiveness, and Safety (IQuEST), Michael E.
16 DeBakey VA Medical Center, Houston, TX 77030, USA.

17 ⁸Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27705,
18 USA.

19 ⁹VA Cooperative Studies Program Epidemiology Center-Durham, Department of
20 Veterans Affairs, Durham, NC 27705, USA.

21 ¹⁰Department of Psychology and Neuroscience, University of Colorado Boulder,
22 Boulder, CO

23 ¹¹Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO

24 *Correspondence: sarah.colbert@icahn.mssm.edu

25 **ABSTRACT**

26 We hypothesized that overall autozygosity is decreasing over generational time. In this
27 report, we present data that partially support this hypothesis from three large cohorts of
28 diverse ancestries, two from the US (All of Us and the Million Veteran Program,
29 N=82,474 and 622,497, respectively) and one from the UK (UK Biobank, N=380,899).
30 Our results from a mixed-effect meta-analysis demonstrate an overall trend of
31 decreasing autozygosity over generational time (meta-analyzed slope=-0.029,
32 se=0.009, p=6.03e-4). Using a chi-square difference test, we determined that a model
33 including an ancestry-by-country interaction term fit the data best, indicating that
34 ancestry differences in this trend differ by country. We found further evidence to suggest
35 a difference between the US and UK cohorts by meta-analyzing within country,
36 observing a significant negative estimate in the US cohorts (meta-analyzed slope=-
37 0.058, se=0.015, p=1.50e-4) but a non-significant estimate in the UK (meta-analyzed
38 slope=-0.001, se=0.008, p=0.945). We also found that the association between
39 autozygosity and year of birth in the overall meta-analysis was substantially attenuated
40 when accounting for educational attainment and income (meta-analyzed slope=-0.011,
41 se=0.008, p=0.167), suggesting that increases in education and income may partially
42 account for decreasing levels of autozygosity over time. To our knowledge, this is the
43 largest demonstration of decreasing autozygosity over time in a modern sample (birth
44 years 1904-2003), and we speculate that this trend can be attributed to increases in
45 population size, urbanization and panmixia, with differences in demographic and
46 sociocultural processes leading to country-specific differences in the rate of decline.

47 **MANUSCRIPT**

48 There has been great interest in using measures of autozygosity - the proportion of the
49 genome contained in runs of homozygosity (ROH) that are identical by descent (i.e.,
50 inherited from a common ancestor shared by both parents) - to examine evolutionary
51 hypotheses about complex traits in humans ¹⁻³ and to quantify the extent to which
52 inbreeding depression impacts health and disease ³⁻⁵. While longer and more frequent
53 ROHs are found in samples with close inbreeding, ROHs are ubiquitously found in
54 samples across the world, even in seemingly outbred populations. By examining the
55 proportion of the genome contained in ROHs (F_{ROH}) alongside other measures of
56 inbreeding (e.g., F_{UNI} , the correlation between uniting gametes⁶), studies have shown
57 how demographic history can influence the distribution of these different measures of
58 inbreeding ^{3,7}.

59 In a previous study⁸ using a sample of adolescents, we found an unexpectedly low
60 mean level of autozygosity relative to previous autozygosity reports (mean $F_{ROH} =$
61 0.0005⁸ compared to 0.0016-0.007 ⁹⁻¹¹) while the variance of F_{ROH} was similar to other
62 studies. The particular sample used in that study, the Adolescent Brain Cognitive
63 Development Study (ABCD Study®)¹², consisted of individuals who were much
64 younger than most other samples analyzed in previous studies of autozygosity, with all
65 individuals in the ABCD study having been born in 2006 or 2007. In researching this
66 finding, we came across a study from Nalls *et al.* (2009)¹³, who found that in a sample of
67 809 North Americans of European descent aged 19-99 years old, autozygosity steadily
68 declined in relation to birth year at a rate of 0.1% decrease in F_{ROH} for every 20 years
69 decrease in chronological age. Aside from Nalls *et al.* (2009), there seem to be few
70 mentions of this phenomenon in the literature, except for an interesting analysis of

71 ancient DNA samples which found decreasing F_{ROH} over 1000s of years during the
72 Holocene⁷. We hypothesized that the relatively low level of autozygosity in the young
73 ABCD Study sample might be reflective of secular trends of decreasing autozygosity
74 over generational time in the modern era. In the previous study, we tested this by
75 conducting a brief assessment of an independent cohort, the Collaborative Study on the
76 Genetics of Alcoholism (COGA)¹⁴⁻¹⁶, and observed a small but highly significant
77 decrease in F_{ROH} with increasing birth year (standardized beta= -0.06, s.e.= 0.01, p= 78 2.5e-9)⁸. Based on this finding, we would predict a 0.001 decrease in F_{ROH} over a period
79 of 100 years. However, this trend has so far only been examined in relatively small (N <
80 11,000) North American cohorts comprised mostly of individuals of European and
81 African descent. Thus, it is unclear to what extent this association between F_{ROH} and
82 birth year generalizes across different and more diverse samples.

83 In the current report, we sought to address this gap in the literature using data from
84 three large cohorts spanning the US (All of Us (AoU), N = 82,474; Million Veteran
85 Program (MVP), N = 622,497) and UK (UK Biobank (UKB), N = 380,899) which include
86 individuals of six ancestry groups determined by genetic principal components, broadly
87 defined as Admixed American ancestry (AMR), African ancestry (AFR), Central South
88 Asian ancestry (CSA), East Asian ancestry (EAS), European ancestry (EUR), and
89 Middle Eastern ancestry (MID).

90 As linkage disequilibrium patterns and allele frequencies can differ across genetic
91 ancestry groups and potentially induce spurious associations due to population
92 stratification, we performed ROH calling and F_{ROH} regressions separately in each
93 genetic ancestry subset of the cohorts, before meta-analyzing to increase sample size

94 and statistical power. Thus, initial association tests were conducted in unrelated
95 individuals in each ancestry subset of each cohort using a linear fixed-effect regression
96 model which tested for the effect of birth year on F_{ROH} , controlling for age, sex, and the
97 first 10 within-ancestry genetic principal components, as well as genotyping batch and
98 assessment center in the UK Biobank (Table 1). In this report we avoid comparing the
99 F_{ROH} -birth year relationships between genetic ancestries because sample sizes in
100 some genetic ancestry subsets are too small to draw substantive conclusions (but
101 individual within-ancestry estimates of the F_{ROH} -birth year association are presented in
102 Figure 1b). Using the effect sizes from the ancestry- and cohort-specific models, we
103 performed two separate meta-analyses. First, we meta-analyzed across all cohorts and
104 genetic ancestry groups using a mixed-effect meta-analysis model. We first tested a
105 model with main effects only (ancestry and country as fixed effects, cohort as a random
106 effect); when we then tested a model with an interaction term between ancestry group
107 and country, this model fit significantly better than the main effects-only model (chi-
108 square difference = 27.156, $p = 5.32e-5$). Given this finding, we decided to also
109 examine country-specific estimates; thus, we also present a mixed-effect meta-analysis
110 (controlling for genetic ancestry group as a fixed effect and cohort as a random effect)
111 of the two US cohorts and a fixed-effect meta-analysis of the UK cohort (since there
112 was only one UK cohort, we did not need to include cohort as a random effect) to
113 calculate and compare country-specific estimates. In this report, we present the meta-
114 analyzed slope (β_M) from our meta-analysis models; this represents the effect of
115 birth year on F_{ROH} on average across ancestry groups, countries, and cohorts. We
116 applied a Bonferroni correction to correct for six total tests: two models (main model,

117 model correcting for educational attainment and income) meta-analyzed three ways
118 (across all cohorts, only in US samples, only in UK samples), resulting in a significance
119 threshold of $p = 0.0083$. We note that this threshold is somewhat conservative given the
120 substantial overlap amongst the tests.

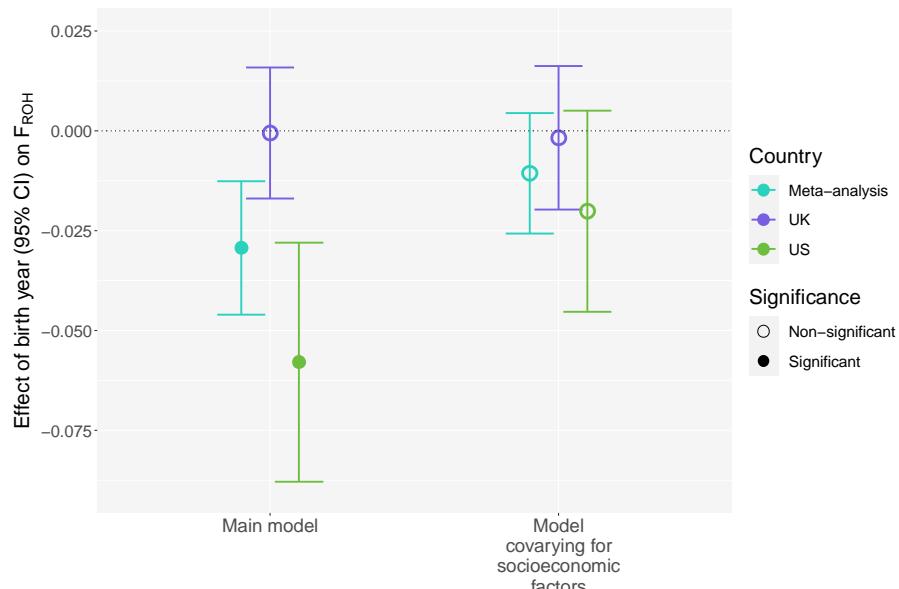
121 In the primary meta-analysis across all ancestry groups and cohorts, birth year was
122 negatively associated with F_{ROH} on average ($\beta_M = -0.029$, $se = 0.009$, $p = 6.03e-4$;
123 Figure 1a, Table S1). We found divergent effects in the within-country meta-analysis,
124 observing a significant and strong negative effect of birth year on F_{ROH} in the US cohorts
125 ($\beta_M = -0.058$, $se = 0.015$, $p = 1.50e-4$), but a non-significant effect in the UK cohort
126 ($\beta_M = -0.001$, $se = 0.008$, $p = 0.945$). We note that a significant negative
127 association was observed in the UKB sample of European descent ($\beta = -0.010$, $se =$
128 0.002 , $p = 6.11e-9$); still, the effect was much weaker than in the genetically-defined
129 European ancestry subsets of the AoU ($\beta = -0.035$, $se = 0.005$, $p = 2.22e-13$) and
130 MVP ($\beta = -0.044$, $se = 0.001$, $p = 2.65e-195$) cohorts (Figure 1b). This may reflect
131 differences across the US and UK in terms of the rate of urbanization and/or
132 demographic changes. While the percent of the population living in urban areas has
133 surged 29% over the last 70 years in the US, urbanization in the UK has only increased
134 by 6.2% ¹⁷, potentially contributing to the weaker changes in autozygosity in the UK
135 cohort. Another possible reason for this difference is migration patterns; consistent
136 immigration to the US from many different countries over the 20th century has facilitated
137 more diverse and frequent admixture in Americans ¹⁸, leading to a more rapid decline in
138 average autozygosity compared to the UK where immigration rates are lower ¹⁹.
139 Furthermore, the physical isolation of Britain from the rest of Europe has presented

140 challenges to migration historically²⁰, providing an explanation for the more stable rate
141 of autozygosity in this population. We also acknowledge that the UK Biobank, compared
142 to the two US cohorts, is much more limited in the chronological age span of its cohort.
143 Individuals in the UK Biobank were born between 1936 and 1970, while individuals in
144 the MVP and AoU cohorts had birth years ranging from 1904-1999 and 1915-2003,
145 respectively. It is possible that the decline in autozygosity observed in the US cohorts
146 may only become identifiable over many generations, as shorter periods of time may
147 reflect short-term trends in response to historical and sociocultural changes.

148 We also estimated the association between birth year and a second measure of
149 inbreeding, F_{UNI} . Since F_{ROH} can better capture the effects of homozygosity at rare
150 variants while F_{UNI} is thought to be a better measure of homozygosity at common
151 variants^{3,5}, we tested both measures to determine whether common and/or rare
152 variants were contributing to this trend in decreasing autozygosity, or whether variants
153 contributing to this decline span a range of frequencies. We observed consistent
154 direction of effects of F_{UNI} (albeit non-significant) in the overall meta-analysis ($\beta_M =$
155 -0.015 , $SE = 0.009$, $p = 0.105$) and the US-specific meta-analysis ($\beta_M = -0.045$, $SE =$
156 0.080 , $p = 0.011$), while the estimate in the UK-specific meta-analysis was positive but
157 non-significant ($\beta_M = 0.014$, $SE = 0.008$, $p = 0.055$). While the associations with F_{UNI}
158 were weaker, the generally consistent direction of effects was unsurprising given the
159 strong correlation between F_{ROH} and F_{UNI} measures (e.g., r^2 in the genetically-defined
160 European ancestry subset of AoU = 0.66) and suggests that these patterns of decline
161 are not specific to F_{ROH} and likely represent trends in autozygosity more generally
162 across variants of all frequencies. We note that, while imputed SNP data can lead to

163

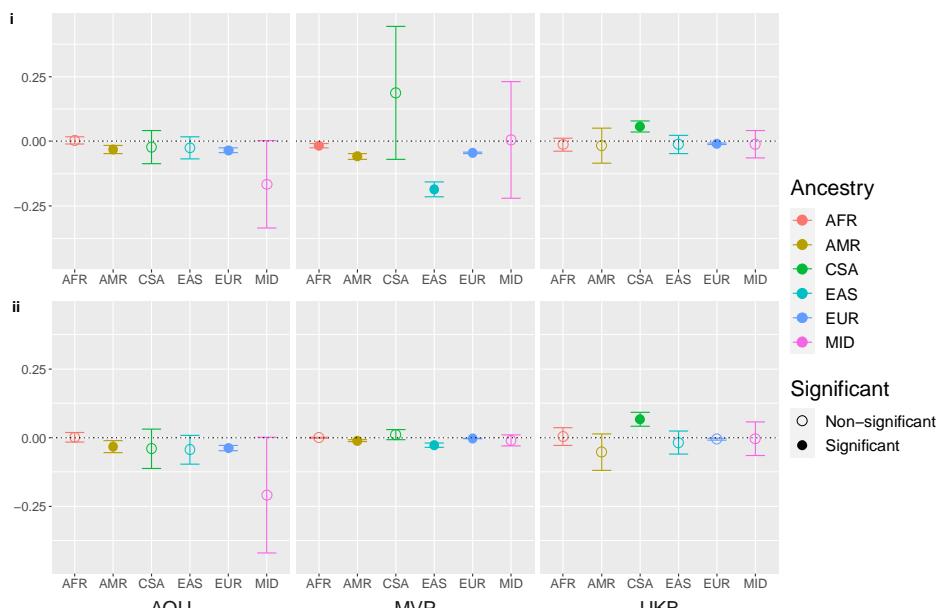
A



164

165

B



166

167

Figure 1. (A) Effect of birth year on F_{ROH} in each meta-analysis and model type. Points represent meta-analyzed slope values and bars represent 95% confidence intervals. Significance was determined using a conservative Bonferroni correction for 6 tests (3 types of meta-analysis [UK, US, and overall] and 2 possible models [main model, model controlling for socioeconomic factors]), resulting in a p-value threshold of 0.0083. **(B)** Effect of birth year on F_{ROH} in each ancestry and cohort. Points represent betas and bars represent 95% confidence intervals. Effects in the main model are shown in panel i, effects when controlling for educational attainment and income are shown in panel ii. Significance was determined using the previously mentioned threshold of $p = 0.0083$. AFR = African genetic ancestry; AMR = Admixed American genetic ancestry; CSA = Central South Asian genetic ancestry; EAS = East Asian genetic ancestry; EUR = European genetic ancestry; MID = Middle Eastern genetic ancestry.

177 biased estimates of F_{ROH} , estimates of F_{UNI} are more powerful and unbiased when
178 derived from imputed data⁵. Imputed data was not available for the AoU cohort and
179 thus we have used non-imputed genotype array data to estimate both F_{ROH} and F_{UNI} in
180 all cohorts for consistency, acknowledging that our estimates of F_{UNI} may be
181 underpowered.

182 Previous studies have demonstrated strong relationships between educational
183 attainment, social mobility, and autozygosity, with greater educational attainment
184 correlating with more mobility²¹, and greater mobility in the parental generation
185 mediating observed relationships between their educational attainment and their child's
186 autozygosity¹¹. To investigate whether differences in educational attainment and other
187 socioeconomic factors such as income might be responsible for the observed decline in
188 autozygosity over time, we tested an additional model in which birth year, educational
189 attainment and income simultaneously predicted F_{ROH} (while controlling for the same
190 covariates as above, see Supplemental Material and Methods). After meta-analyzing
191 across cohorts and genetic ancestry groups, the effect of birth year on F_{ROH} was
192 attenuated ($\beta_M = -0.011$, $se = 0.008$, $p = 0.167$; Figure 1a) when educational
193 attainment and income were included in the model. We subsequently meta-analyzed
194 within countries and found that educational attainment and income substantially
195 weakened the effect in the US cohorts ($\beta_M = -0.020$, $se = 0.013$, $p = 0.117$) (Figure
196 1a). In the UK, where the association between F_{ROH} and birth year was already close to
197 null when averaged across ancestry groups, controlling for educational attainment and
198 income had no notable effect on the F_{ROH} -birth year relationship ($\beta_M = -0.002$, $se =$
199 0.009 , $p = 0.848$). We speculated that generations have become increasingly more

200 educated over time and this has changed patterns in mobility; perhaps these patterns of
201 increased geographic mobility, acting in concert with assortative mating on
202 socioeconomic status, have partially contributed to the observed decrease in
203 autozygosity over time. To test whether levels of education and income have increased
204 over generations, we regressed educational attainment and income on birth year and
205 indeed observed a significant increase in educational attainment over time ($\beta_M =$
206 0.102, $se = 0.034$, $p = 0.003$), while the change in income was not significant ($\beta_M =$
207 -0.081, $se = 0.116$, $p = 0.487$). Within-country meta-analyses revealed a much stronger
208 positive relationship between educational attainment and birth year in the UK ($\beta_M =$
209 0.136, $se = 0.009$, $p = 1.04e-56$) than in the US ($\beta_M = 0.069$, $se = 0.068$, $p =$
210 0.309). Furthermore, this null result in the US meta-analysis seemed to be driven by
211 conflicting ancestry-specific results in the AoU cohort, with the two largest ancestry
212 groups showing significant *negative* relationships between educational attainment and
213 birth year, and the third-largest ancestry group demonstrating a significant association
214 in the expected, positive direction (Supplemental Table S1). Results did not change
215 when we restricted the age range in AoU to match the birth years of the UK Biobank
216 (1936-1970).

217 Like Nalls *et al.* (2009), we consider that the overall pattern of decreasing autozygosity
218 may be associated with population growth, urbanization, and increased mobility.
219 Population sizes have increased both in the US and worldwide ²² and previous analyses
220 have noted that rapid growth in population size or large effective population size is
221 associated with a decrease in autozygosity ^{3,7,23}. For example, a study from Ceballos *et*
222 *al.* (2021) found a decrease in F_{ROH} over 1000s of years during the Holocene, likely in

223 response to population growth arising from the development of agriculture at the time.

224 Population expansion, therefore, appears to contribute to decreases in autozygosity

225 over both short and long time periods, as well as in both modern and ancient samples.

226 In addition to modern population growth, the flocking of individuals from many small,

227 isolated rural areas to densely populated cities breaks down previous geographic and

228 population barriers to panmixia, in turn reducing endogamy and increasing the likelihood

229 that individuals mate with those who are more genetically different from themselves²⁴.

230 Our results also suggest that socioeconomic factors, especially educational attainment,

231 at least partially explain the F_{ROH} -birth year relationship. We found that educational

232 attainment is higher on average in more recent generations, although this relationship

233 was stronger in the UK Biobank and the MVP cohorts than in AoU, where results were

234 mixed. One previous study found that those with higher educational attainment were

235 more likely to move large distances away from their birthplace and subsequently mate

236 with an individual that is less closely related to them but who also shares a similarly high

237 level of educational attainment. As a result, offspring of these individuals were more

238 outbred (had low levels of autozygosity) and would have inherited genes associated

239 with greater educational attainment¹¹. As individuals became increasingly more

240 educated, this pattern of migration and mating may have become more common,

241 leading to overall declines in average autozygosity. It may also be that increased

242 globalization and mobility are reflected in higher levels of educational attainment^{25,26},

243 which then are associated with lower autozygosity on average in the countries we have

244 studied. Still, the relationships between socioeconomic factors and birth year were not

245 as clear-cut in the US cohorts as in the UK Biobank, and further studies are needed to
246 clarify the role of these factors in the observed decline in autozygosity.

247 Nalls *et al.* (2009) also hypothesized that decreasing autozygosity should correlate with
248 decreasing rates of rare recessive genetic diseases, while Campbell *et al.* (2009)²⁷
249 estimated that this effect measured by Nalls *et al.* (2009) has prevented 1% of the
250 annual births that would be affected with an autosomal recessive disorder. We might
251 also expect slight changes in complex traits that are partly influenced by recessive
252 variants, such as cognitive abilities. We used our estimated rates of declining
253 autozygosity and estimates of associations between F_{ROH} and complex traits from
254 published literature³ to predict estimated changes in several traits. For example, based
255 on our findings in the European-ancestry subset of the AoU sample and published
256 associations in Clark *et al.* (2019), we predict a 0.004 standard deviation increase in
257 cognitive g , a 0.019 kg increase in grip strength, a 0.019 cm increase in height, and a
258 0.0095 year increase in educational attainment over a 100-year period due to
259 decreases in autozygosity. Of course, these are only illustrative predictions, but we
260 expect that while declining autozygosity might have small effects on complex traits,
261 such as those estimated here, this decline may show more appreciable effects on traits
262 and diseases that are more strongly influenced by rare, recessive genetic variants.

263 Importantly, we also note that these findings shed light on the consequences of
264 overlooking sample composition - including range of birth years - when conducting
265 comparisons of inbreeding across populations. Future studies that wish to analyze
266 measures of inbreeding, such as F_{ROH} , across populations should be aware that sample

267 differences not only in geography or genetically-defined ancestry groups, but also in
268 age, can affect the mean level of F_{ROH} .

269 We note several limitations to the current study, the first being that our analyses only
270 include samples from the US and UK. Given the differences observed between the US
271 and UK cohorts, we would also expect changes in autozygosity over time to differ in
272 cohorts from other countries in response to region-specific cultural practices (e.g.,
273 consanguinity) and demographic trends (e.g., migration rates). As biobanks in other
274 countries continue to grow and include more diverse samples, we will be better able to
275 assess how this pattern may differ from country to country. While we were able to
276 include a diverse sample encompassing individuals from six different genetic ancestry
277 clusters, a major limitation of our sample ($N = 1,085,870$) is that it still consisted mainly
278 of individuals with European genetic ancestry ($N = 847,427$; 78.0%). Therefore, the
279 overall generalizability of our findings across samples of non-European ancestry groups
280 is limited. Furthermore, the degree of admixture in individuals in this study likely varies
281 amongst the different genetic ancestry groups and cohorts. For example, a majority of
282 the individuals in the genetically defined American and African ancestry subsets of the
283 UK Biobank are likely admixed and share ancestry with the individuals in the European
284 ancestry subset. On the other hand, individuals in the UK Biobank with less common
285 patterns of admixture could not be grouped into sufficient sized groups and were thus
286 excluded by the PanUKB analysis team²⁸. Cross-ancestry mating is likely a contributing
287 factor to declining autozygosity, and by excluding some individuals with admixture we
288 are likely under-estimating the true decline in autozygosity over time. Finally, while we
289 show that educational attainment and income partly drive the observed association, we

290 were unable to investigate how other variables linked to assortative mating, such as
291 religiosity, may also influence autozygosity ²⁹.

292

293 In summary, we demonstrate an overall trend of declining autozygosity over time on
294 average across multiple ancestry groups and countries, with a stronger overall effect in
295 the US than in the UK. Controlling for educational attainment and income substantially
296 attenuates this relationship but does not fully explain the decline in autozygosity
297 observed. We hypothesize that population growth combined with increased
298 urbanization, globalization, and mobility are likely to be driving this trend. Future
299 research should assess the relationship between autozygosity and birth year in better-
300 powered samples of more diverse ancestry groups and ages in order to determine how
301 autozygosity has changed across different time spans and regions.

302 **SUPPLEMENTAL MATERIAL AND METHODS**

303 **Samples**

304 This study used data from two North American samples, the All of Us biobank (AoU)
305 and the Million Veteran Program (MVP). We stratified these cohorts into six categorical
306 ancestry groups commonly defined by genetic principal components: African, Admixed
307 American, Central/South Asian, East Asian, European, and Middle Eastern. These were
308 defined using reference populations from the 1000 Genomes Project³⁰ and the Human
309 Genome Diversity Project³¹ as previously reported³².

310 The AoU research program includes over 1 million diverse individuals from across the
311 U.S. and combines data from a variety of sources, such as an initial physical
312 examination, follow-up self-report surveys, electronic health records and even genetic
313 data from a subset of individuals. Individuals with genetic data spanned a wide range of
314 chronological ages (birth years between 1915-2003), making the sample ideal for the
315 current study. While our analyses use array data, the AoU biobank only provides
316 ancestry assignments and relatedness data for the whole-genome sequencing dataset
317 (N = 98,590), leaving us with 82,474 unrelated, genotyped individuals with ancestry
318 assignments to use in the current analysis. We opted to use unrelated individuals in our
319 analyses as the power that would have been gained by including related individuals
320 would have been relatively small whereas the increase in computational resources and
321 time required to control for relatedness in our analyses would be large and likely exceed
322 the resources available to us via the All of Us Researcher workbench. For similar
323 reasons we used the pre-computed ancestry assignments from the AoU dataset.

324 The MVP sample also includes individuals with a wide range of birth years (1904-1999)
325 and is highly diverse. A detailed description of ancestry prediction in the MVP sample
326 has been discussed previously³². We used KING³³ to identify pairs of individuals who
327 were estimated to be third-degree relatives or closer (kinship coefficient > 0.0442) and
328 randomly removed one individual from each pair. Restricting to unrelated individuals left
329 622,497 individuals from MVP in our analyses.

330 To assess how trends of changing autozygosity over time may differ across countries,
331 we also included data from the UKB (N ~ 500,000), which has collected genetic
332 samples from individuals born between 1936 and 1970 at 23 assessment centers
333 across the United Kingdom. We used ancestry and relatedness assignments provided
334 by the Pan-UKB Team²⁸ to remove related individuals (N = 65,887) and subset the UKB
335 sample into the six previously mentioned genetically predicted ancestry categories.
336 Doing so resulted in a total of 380,899 unrelated individuals.

337 **Measures**

338 Educational Attainment

339 Educational attainment data in the AoU sample was collected by asking individuals the
340 highest grade or year of school they completed (item concept =
341 educationlevel_highestgrade) and individuals were given eight choices (e.g., “never
342 attended school or only attended kindergarten”, “grades 1 through 4 (Primary school)”,
343 etc.) to choose from. Choices were equated to approximate “years of education”,
344 averaged across the possible range of a category, such that, for example, an individual
345 who selected “grades 1 through 4” would be assigned 2.5 years of education. The UKB

346 dataset does not provide a “years of education” measure, but does record each
347 individual's educational qualifications (Data-Field 6138). Qualifications in the UKB
348 dataset were mapped to the International Standard Classification of Education (ISCED)
349 levels and then converted to a “years of education” value, following the procedure from
350 Okbay *et al.* (2016)³⁴. Individuals with multiple qualifications were assigned a “years of
351 education” value corresponding to the highest qualification. In the MVP dataset,
352 educational attainment was measured using 7 answers (lowest being “less than high
353 school” and highest being “professional or doctorate degree”) to the question “What is
354 the highest degree or level of school you have completed?” which were then recoded
355 into numeric values 1-7.

356 **Income**

357 The AoU dataset provided annual household income (item concept =
358 income_annualincome) in the form of an ordinal measure with 9 categories (e.g., “less
359 than \$10,000”, “\$10,000-24,999”, etc.), which we re-assigned to corresponding numeric
360 values 1-9. Similarly, UKB annual household income (Data-Field 738) data was also in
361 the form of an ordinal variable, and we transformed the five income brackets into
362 numeric values 1-5. Finally, in MVP, annual household income was also reported as an
363 ordinal variable, with ten income brackets being recoded to numeric values 1-10.

364 **Analyses**

365 We performed F_{ROH} and F_{UNI} estimation and association testing separately for each
366 ancestry group within each cohort. Following the procedure from Clark *et al.* (2019), we
367 used PLINK 1.9³⁵ to clean the genotypic data before calling ROHs and estimating F_{ROH}

368 and F_{UNI} . Genotypic data cleaning consisted of excluding SNPs with > 3% missingness
369 or MAF < 5% and individuals with > 3% missing data. The resulting data was used to
370 call ROHs in PLINK 1.9, using the following parameters: --homozyg-window-snp 50; --
371 homozyg-snp 50; --homozyg-kb 1500; --homozyg-gap 1000; --homozyg-density 50; --
372 homozyg-window-missing 5; homozyg-window-het 1. No linkage disequilibrium pruning
373 was performed. We calculated F_{ROH} as the total length of ROHs summed for each
374 individual, and then divided by the total SNP-mappable autosomal distance (2.77×10^6
375 kilobases). F_{UNI} was estimated using the --ibc command in PLINK 1.9 (F_{UNI}
376 corresponding to 'Fhat3' in the output, the correlation between uniting gametes⁶).

377 We performed multiple linear regression models to determine if there was a significant
378 effect of birth year on autozygosity in our samples. In the UKB sample, fixed-effect
379 regression models controlled for sex, genotyping batch, assessment center and the first
380 10 genetic within ancestry principal components as covariates. In the MVP and AoU
381 cohorts, we used fixed-effect regression models to control for sex and the first 10
382 genetic within ancestry principal components as covariates.

383

384 In addition to these main models, we conducted a follow-up analysis in which we tested
385 for a mediating effect of socioeconomic status by constructing models in which we
386 covaried for educational attainment and income (along with the original covariates
387 mentioned above). Separately, we measured trends in these socioeconomic factors
388 over time by regressing them on birth year (e.g., educational attainment ~ birth year). In
389 these models we only covaried for the non-genetic covariates listed above.

390

391 All models were run separately by genetic ancestry and cohort. Meta-analyses were
392 performed in R using the metafor package ³⁶. To meta-analyze across all cohorts and
393 ancestries, we used a mixed-effect meta-analysis model, controlling for ancestry and
394 country as fixed effects, an interaction term between ancestry and country, and cohort
395 as a random effect (e.g., rma.mv(yi=estimate, V=sampvar, mods =
396 ~ancestry.c*country.c, random = ~1|cohort, data=dat, method="ML"). We chose to
397 include the interaction term between ancestry and country after using a chi-squared
398 difference test to compare the fit between the model including this interaction and the
399 model without the interaction. To be consistent, meta-analyses of results from all other
400 models (e.g., models controlling for educational attainment and income) also include the
401 interaction term.

402

403 **Acknowledgements**

404 The authors thank Keith Lohse for his help implementing and interpreting mixed-effect
405 meta-analysis models. Analyses were performed under UKB application #58146.

406

407 The All of Us Research Program is supported by the National Institutes of Health, Office
408 of the Director: Regional Medical Centers: 1 OT2 OD026549; 1 OT2 OD026554; 1 OT2
409 OD026557; 1 OT2 OD026556; 1 OT2 OD026550; 1 OT2 OD 026552; 1 OT2
410 OD026553; 1 OT2 OD026548; 1 OT2 OD026551; 1 OT2 OD026555; IAA #: AOD
411 16037; Federally Qualified Health Centers: HHSN 263201600085U; Data and Research
412 Center: 5 U2C OD023196; Biobank: 1 U24 OD023121; The Participant Center: U24
413 OD023176; Participant Technology Systems Center: 1 U24 OD023163;
414 Communications and Engagement: 3 OT2 OD023205; 3 OT2 OD023206; and

415 Community Partners: 1 OT2 OD025277; 3 OT2 OD025315; 1 OT2
416 OD025276. In addition, the All of Us Research Program would not be possible without
417 the partnership of its participants.

418

419 **Data and code availability**

420 The UK Biobank data used in this study are available from the UK Biobank by applying
421 for access via the Access Management System ([https://www.ukbiobank.ac.uk/enable-
422 your-research/apply-for-access](https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access)). Original All of Us Biobank data are available to
423 registered and approved All of Us researchers
424 (<https://www.researchallofus.org/register/>). Genetic data requires controlled tier access,
425 which researchers can register for through their institutions. Data from the Million
426 Veteran Program are only available to VA investigators and other approved partners.

427

428 Code to analyze the UK Biobank data is available via github:

429 https://github.com/sarahcolbert/autozygosity_time_ukbb. For privacy reasons, we are
430 unable to share the code used to analyze the AoU and MVP data, but the code is
431 almost identical to the code used to analyze the UK Biobank data.

432

433 **Funding**

434 The MVP analyses were supported by VA Cooperative Studies Program study #2006
435 and the Million Veteran Program. The contents represent the views of the authors and
436 do not represent the views of the U.S. Department of Veterans Affairs, the Substance
437 Abuse and Mental Health Services Administration, the U.S. Food and Drug

438 Administration, the U.S. Department of Health and Human Services, or the United
439 States Government. Yale Investigators acknowledge support from the National
440 Institutes of Health (R33 DA047527 and R21 DC018098) and One Mind. GAP is funded
441 by T32MH014276. MCK was funded by NIMH R01 MH100141. ECJ was supported by
442 NIDA K01 DA051759.

443

444 **Conflict of Interest**

445 Dr. Polimanti is paid for their editorial work on the journal Complex Psychiatry and
446 reports a research grant from Alkermes.

Table S1. Results from all models.

Genetic						
Cohort	ancestry	estimate	std. error	p	Outcome	Predictor(s)
MVP	AFR	-0.017	0.004	3.30E-05	F _{ROH}	Year of birth
MVP	AMR	-0.058	0.006	6.91E-24	F _{ROH}	Year of birth
MVP	CSA	0.187	0.131	0.153	F _{ROH}	Year of birth
MVP	EAS	-0.186	0.015	5.45E-36	F _{ROH}	Year of birth
MVP	EUR	-0.044	0.001	2.65E-195	F _{ROH}	Year of birth
MVP	MID	0.006	0.115	0.958	F _{ROH}	Year of birth
AOU	AFR	0.003	0.007	0.677	F _{ROH}	Year of birth
AOU	AMR	-0.031	0.008	1.72E-04	F _{ROH}	Year of birth
AOU	CSA	-0.022	0.032	0.496	F _{ROH}	Year of birth
AOU	EAS	-0.025	0.022	0.253	F _{ROH}	Year of birth
AOU	EUR	-0.035	0.005	2.22E-13	F _{ROH}	Year of birth
AOU	MID	-0.166	0.086	0.055	F _{ROH}	Year of birth
UKB	AFR	-0.012	0.013	0.338	F _{ROH}	Year of birth
UKB	AMR	-0.016	0.035	0.638	F _{ROH}	Year of birth
UKB	CSA	0.057	0.011	9.27E-08	F _{ROH}	Year of birth
UKB	EAS	-0.012	0.018	0.517	F _{ROH}	Year of birth
UKB	EUR	-0.010	0.002	6.11E-09	F _{ROH}	Year of birth
UKB	MID	-0.011	0.027	0.686	F _{ROH}	Year of birth
META	META	-0.029	0.009	6.03E-04	F _{ROH}	Year of birth
META_US	META	-0.058	0.015	1.50E-04	F _{ROH}	Year of birth
META_UK	META	-0.001	0.008	0.945	F _{ROH}	Year of birth
MVP	AFR	-0.035	0.003	4.57E-27	F _{UNI}	Year of birth
MVP	AMR	-0.021	0.005	3.93E-06	F _{UNI}	Year of birth
MVP	CSA	0.090	0.047	0.056	F _{UNI}	Year of birth
MVP	EAS	-0.136	0.010	8.48E-42	F _{UNI}	Year of birth
MVP	EUR	-0.081	0.002	< 5e-324	F _{UNI}	Year of birth
MVP	MID	-0.044	0.040	0.270	F _{UNI}	Year of birth
AOU	AFR	0.013	0.007	0.061	F _{UNI}	Year of birth
AOU	AMR	-0.014	0.008	0.079	F _{UNI}	Year of birth
AOU	CSA	-0.037	0.032	0.245	F _{UNI}	Year of birth
AOU	EAS	-0.053	0.021	0.011	F _{UNI}	Year of birth
AOU	EUR	-0.049	0.005	9.94E-28	F _{UNI}	Year of birth
AOU	MID	-0.203	0.085	0.018	F _{UNI}	Year of birth
UKB	AFR	0.018	0.013	0.165	F _{UNI}	Year of birth
UKB	AMR	0.025	0.032	0.430	F _{UNI}	Year of birth
UKB	CSA	0.063	0.011	3.63E-09	F _{UNI}	Year of birth

UKB	EAS	-0.007	0.014	0.632	F_{UNI}	Year of birth
UKB	EUR	-0.005	0.002	0.002	F_{UNI}	Year of birth
UKB	MID	-0.008	0.023	0.735	F_{UNI}	Year of birth
META	META	-0.015	0.009	0.105	F_{UNI}	Year of birth
META_US	META	-0.045	0.018	0.011	F_{UNI}	Year of birth
META_UK	META	0.014	0.008	0.055	F_{UNI}	Year of birth
MVP	AFR	0.000	0.001	0.622	F_{ROH}	Year of birth, education, income
MVP	AMR	-0.012	0.002	1.06E-09	F_{ROH}	Year of birth, education, income
MVP	CSA	0.010	0.009	0.270	F_{ROH}	Year of birth, education, income
MVP	EAS	-0.028	0.004	1.56E-11	F_{ROH}	Year of birth, education, income
MVP	EUR	-0.003	0.000	1.27E-12	F_{ROH}	Year of birth, education, income
MVP	MID	-0.011	0.010	0.306	F_{ROH}	Year of birth, education, income
AOU	AFR	0.001	0.009	0.889	F_{ROH}	Year of birth, education, income
AOU	AMR	-0.033	0.011	0.002	F_{ROH}	Year of birth, education, income
AOU	CSA	-0.040	0.037	0.269	F_{ROH}	Year of birth, education, income
AOU	EAS	-0.044	0.027	0.101	F_{ROH}	Year of birth, education, income
AOU	EUR	-0.038	0.005	2.51E-14	F_{ROH}	Year of birth, education, income
AOU	MID	-0.209	0.108	0.055	F_{ROH}	Year of birth, education, income
UKB	AFR	0.004	0.016	0.803	F_{ROH}	Year of birth, education, income
UKB	AMR	-0.053	0.034	0.119	F_{ROH}	Year of birth, education, income
UKB	CSA	0.066	0.013	2.56E-07	F_{ROH}	Year of birth, education, income
UKB	EAS	-0.018	0.021	0.389	F_{ROH}	Year of birth, education, income
UKB	EUR	-0.005	0.002	0.005	F_{ROH}	Year of birth, education, income
UKB	MID	-0.004	0.031	0.890	F_{ROH}	Year of birth, education, income
META	META	-0.011	0.008	0.168	F_{ROH}	Year of birth, education,

						income
META_US	META	-0.020	0.013	0.117	F _{ROH}	Year of birth, education, income
META_UK	META	-0.002	0.009	0.848	F _{ROH}	Year of birth, education, income
MVP	AFR	0.110	0.008	1.23E-40	Education	Year of birth
MVP	AMR	0.201	0.012	2.14E-60	Education	Year of birth
MVP	CSA	0.021	0.116	0.856	Education	Year of birth
MVP	EAS	0.090	0.025	3.31E-04	Education	Year of birth
MVP	EUR	0.045	0.004	3.25E-30	Education	Year of birth
MVP	MID	0.253	0.106	0.018	Education	Year of birth
AOU	AFR	-0.042	0.007	3.22E-09	Education	Year of birth
AOU	AMR	0.171	0.009	6.71E-86	Education	Year of birth
AOU	CSA	-0.071	0.033	0.031	Education	Year of birth
AOU	EAS	0.006	0.022	0.805	Education	Year of birth
AOU	EUR	-0.101	0.005	2.36E-101	Education	Year of birth
AOU	MID	0.081	0.081	0.319	Education	Year of birth
UKB	AFR	0.208	0.013	4.29E-58	Education	Year of birth
UKB	AMR	0.156	0.034	6.24E-06	Education	Year of birth
UKB	CSA	0.084	0.011	1.26E-13	Education	Year of birth
UKB	EAS	0.131	0.021	2.05E-10	Education	Year of birth
UKB	EUR	0.222	0.002	< 5e-324	Education	Year of birth
UKB	MID	0.011	0.027	0.683	Education	Year of birth
META	META	0.102	0.034	0.003	Education	Year of birth
META_US	META	0.069	0.068	0.309	Education	Year of birth
META_UK	META	0.136	0.009	1.04E-56	Education	Year of birth
MVP	AFR	-0.026	0.161	0.874	Income	Year of birth
MVP	AMR	0.324	0.231	0.162	Income	Year of birth
MVP	CSA	3.243	1.975	0.102	Income	Year of birth
MVP	EAS	0.557	0.508	0.272	Income	Year of birth
MVP	EUR	-0.780	0.070	1.21E-28	Income	Year of birth
MVP	MID	0.676	2.143	0.753	Income	Year of birth
AOU	AFR	-0.102	0.008	1.19E-34	Income	Year of birth
AOU	AMR	0.018	0.011	0.098	Income	Year of birth
AOU	CSA	-0.176	0.037	3.26E-06	Income	Year of birth
AOU	EAS	-0.179	0.026	8.48E-12	Income	Year of birth
AOU	EUR	-0.100	0.005	6.52E-87	Income	Year of birth
AOU	MID	-0.178	0.095	0.065	Income	Year of birth
UKB	AFR	0.229	0.015	3.93E-51	Income	Year of birth
UKB	AMR	0.245	0.039	8.25E-10	Income	Year of birth

UKB	CSA	0.164	0.013	1.67E-37	Income	Year of birth
UKB	EAS	0.157	0.023	2.05E-11	Income	Year of birth
UKB	EUR	0.349	0.002	< 5e-324	Income	Year of birth
UKB	MID	-0.054	0.031	0.086	Income	Year of birth
META	META	-0.081	0.116	0.487	Income	Year of birth
META_US	META	-0.351	0.238	0.140	Income	Year of birth
META_UK	META	0.182	0.010	5.67E-77	Income	Year of birth

References

1. Yengo, L., Zhu, Z., Wray, N.R., Weir, B.S., Yang, J., Robinson, M.R., and Visscher, P.M. (2017). Detection and quantification of inbreeding depression for complex traits from SNP data. *Proc Natl Acad Sci U S A* **114**. 10.1073/pnas.1621096114.
2. Johnson, E.C., Evans, L.M., and Keller, M.C. (2018). Relationships between estimated autozygosity and complex traits in the UK Biobank. *PLoS Genet* **14**. 10.1371/journal.pgen.1007556.
3. Clark, D.W., Okada, Y., Moore, K.H.S., Mason, D., Pirastu, N., Gandin, I., Mattsson, H., Barnes, C.L.K., Lin, K., Zhao, J.H., et al. (2019). Associations of autozygosity with a broad range of human phenotypes. *Nat Commun* **10**. 10.1038/s41467-019-12283-6.
4. Ceballos, F.C., Hazelhurst, S., Clark, D.W., Agongo, G., Asiki, G., Boua, P.R., Xavier Gómez-Olivé, F., Mashinya, F., Norris, S., Wilson, J.F., et al. (2020). Autozygosity influences cardiometabolic disease-associated traits in the AWI-Gen sub-Saharan African study. *Nature Communications* **2020** **11**:1 11, 1–8. 10.1038/s41467-020-19595-y.
5. Yengo, L., Yang, J., Keller, M.C., Goddard, M.E., Wray, N.R., and Visscher, P.M. (2021). Genomic partitioning of inbreeding depression in humans. *The American Journal of Human Genetics* **108**, 1488–1501. 10.1016/J.AJHG.2021.06.005.
6. Yang, J., Lee, S.H., Goddard, M.E., and Visscher, P.M. (2011). GCTA: A Tool for Genome-wide Complex Trait Analysis. *Am J Hum Genet* **88**, 76. 10.1016/J.AJHG.2010.11.011.
7. Ceballos, F.C., Gürün, K., Altınışık, N.E., Gemici, H.C., Karamurat, C., Koptykin, D., Vural, K.B., Mapelli, I., Sağlıcan, E., Sürer, E., et al. (2021). Human inbreeding has decreased in time through the Holocene. *Current Biology* **31**. 10.1016/j.cub.2021.06.027.
8. Colbert, S.M., Keller, M.C., Agrawal, A., and Johnson, E.C. (2022). Exploring the Relationships Between Autozygosity, Educational Attainment, and Cognitive Ability in a Contemporary, Trans-Ancestral American Sample. *Behavior Genetics* **2022**, 1–9. 10.1007/S10519-022-10113-Y.
9. Power, R.A., Nagoshi, C., DeFries, J.C., and Plomin, R. (2014). Genome-wide estimates of inbreeding in unrelated individuals and their association with cognitive ability. *European Journal of Human Genetics* **22**. 10.1038/ejhg.2013.155.
10. Howrigan, D.P., Simonson, M.A., Davies, G., Harris, S.E., Tenesa, A., Starr, J.M., Liewald, D.C., Deary, I.J., McRae, A., Wright, M.J., et al. (2016). Genome-wide autozygosity is associated with lower general cognitive ability. *Mol Psychiatry* **21**. 10.1038/mp.2015.120.
11. Abdellaoui, A., Hottenga, J.J., Willemsen, G., Bartels, M., van Beijsterveldt, T., Ehli, E.A., Davies, G.E., Brooks, A., Sullivan, P.F., Penninx, B.W.J.H., et al. (2015). Educational Attainment Influences Levels of Homozygosity through Migration and Assortative Mating. *PLoS One* **10**, e0118935. 10.1371/JOURNAL.PONE.0118935.
12. Jernigan, T.L., Brown, S.A., and Dowling, G.J. (2018). The Adolescent Brain Cognitive Development Study. *Journal of Research on Adolescence* **28**. 10.1111/jora.12374.
13. Nalls, M.A., Simon-Sánchez, J., Gibbs, J.R., Paisan-Ruiz, C., Bras, J.T., Tanaka, T., Matarin, M., Scholz, S., Weitz, C., Harris, T.B., et al. (2009). Measures of autozygosity in

- decline: Globalization, urbanization, and its implications for medical genetics. *PLoS Genet* 5. 10.1371/journal.pgen.1000415.
- 14. Begleiter, H., Reich, T., Hesselbrock, V., Porjesz, B., Li, T.-K., Schuckit, M.A., Edenberg, H.J., and Rice, J.P. (1995). The collaborative study on the genetics of alcoholism: An update. *Alcohol Research and Health* 19, 228–236.
 - 15. Bucholz, K.K., McCutcheon, V. V., Agrawal, A., Dick, D.M., Hesselbrock, V.M., Kramer, J.R., Kuperman, S., Nurnberger, J.I., Salvatore, J.E., Schuckit, M.A., et al. (2017). Comparison of Parent, Peer, Psychiatric, and Cannabis Use Influences Across Stages of Offspring Alcohol Involvement: Evidence from the COGA Prospective Study. *Alcohol Clin Exp Res* 41, 359–368. 10.1111/ACER.13293.
 - 16. Nurnberger, J.I., Wiegand, R., Bucholz, K., O'Connor, S., Meyer, E.T., Reich, T., Rice, J., Schuckit, M., King, L., Petti, T., et al. (2004). A family study of alcohol dependence: coaggregation of multiple disorders in relatives of alcohol-dependent probands. *Arch Gen Psychiatry* 61, 1246–1256. 10.1001/ARCHPSYC.61.12.1246.
 - 17. UNDESA (2018). World Urbanization Prospects: The 2018 Revision.
 - 18. Nothnagel, M., Tehua Lu, T., Kayser, M., and Krawczak, M. (2010). Genomic and geographic distribution of SNP-defined runs of homozygosity in Europeans. *Hum Mol Genet* 19, 2927–2935. 10.1093/hmg/ddq198.
 - 19. United Nations (2019). International migration 2019 report.
 - 20. O'Dushlaine, C.T., Morris, D., Moskvina, V., Kirov, G., Gill, M., Corvin, A., Wilson, J.F., and Cavalleri, G.L. (2010). Population structure and genome-wide patterns of variation in Ireland and Britain. *European Journal of Human Genetics* 18, 1248. 10.1038/EJHG.2010.87.
 - 21. Abdellaoui, A., Hugh-Jones, D., Yengo, L., Kemper, K.E., Nivard, M.G., Veul, L., Holtz, Y., Zietsch, B.P., Frayling, T.M., Wray, N.R., et al. (2019). Genetic correlates of social stratification in Great Britain. *Nature Human Behaviour* 2019 3:12 3, 1332–1342. 10.1038/s41562-019-0757-5.
 - 22. Roser, M., Ritchie, H., and Ortiz-Ospina, E. (2020). World Population Growth- Our World in Data. Population Reference Bureau.
 - 23. Keller, M.C., Visscher, P.M., and Goddard, M.E. (2011). Quantification of inbreeding due to distant ancestors and its detection using dense single nucleotide polymorphism data. *Genetics* 189. 10.1534/genetics.111.130922.
 - 24. Rudan, I., Carothers, A.D., Polasek, O., Hayward, C., Vitart, V., Biloglav, Z., Kolcic, I., Zgaga, L., Ivankovic, D., Vorko-Jovic, A., et al. (2008). Quantifying the increase in average human heterozygosity due to urbanisation. *European Journal of Human Genetics* 16. 10.1038/ejhg.2008.48.
 - 25. Meyer, J.W. (2007). Globalization: Theory and Trends. <http://dx.doi.org/10.1177/0020715207079529> 48, 261–273. 10.1177/0020715207079529.
 - 26. Schofer, E., and Meyer, J.W. (2005). The Worldwide Expansion of Higher Education in the Twentieth Century. *Source* 70, 898–920.
 - 27. Campbell, H., Rudan, I., Bittles, A.H., and Wright, A.F. (2009). Human population structure, genome autozygosity and human health. *Genome Med* 1. 10.1186/gm91.
 - 28. Pan-UKB team (2020). <https://pan.ukbb.broadinstitute.org>.

29. Abdellaoui, A., Hottenga, J.J., Xiao, X., Scheet, P., Ehli, E.A., Davies, G.E., Hudziak, J.J., Smit, D.J.A., Bartels, M., Willemsen, G., et al. (2013). Association between Autozygosity and Major Depression: Stratification due to Religious Assortment. *Behav Genet* 43, 455–467. 10.1007/S10519-013-9610-1.
30. Auton, A., Abecasis, G.R., Altshuler, D.M., Durbin, R.M., Bentley, D.R., Chakravarti, A., Clark, A.G., Donnelly, P., Eichler, E.E., Flicek, P., et al. (2015). A global reference for human genetic variation. *Nature* 526. 10.1038/nature15393.
31. Li, J.Z., Absher, D.M., Tang, H., Southwick, A.M., Casto, A.M., Ramachandran, S., Cann, H.M., Barsh, G.S., Feldman, M., Cavalli-Sforza, L.L., et al. (2008). Worldwide human relationships inferred from genome-wide patterns of variation. *Science* (1979) 319, 1100–1104. 10.1126/SCIENCE.1153717/SUPPL_FILE/LI_SOM.PDF.
32. Wendt, F.R., Pathak, G.A., Vahey, J., Qin, X., Koller, D., Cabrera-Mendoza, B., Haeny, A., Harrington, K.M., Rajeevan, N., Duong, L.M., et al. (2022). Modeling the longitudinal changes of ancestry diversity in the Million Veteran Program. *bioRxiv*, 2022.01.24.477583. 10.1101/2022.01.24.477583.
33. Manichaikul, A., Mychaleckyj, J.C., Rich, S.S., Daly, K., Sale, M., and Chen, W.M. (2010). Robust relationship inference in genome-wide association studies. *Bioinformatics* 26, 2867. 10.1093/BIOINFORMATICS/BTQ559.
34. Okbay, A., Beauchamp, J.P., Fontana, M.A., Lee, J.J., Pers, T.H., Rietveld, C.A., Turley, P., Chen, G.B., Emilsson, V., Meddents, S.F.W., et al. (2016). Genome-wide association study identifies 74 loci associated with educational attainment. *Nature* 2016 533:7604 533, 539–542. 10.1038/nature17671.
35. Chang, C.C., Chow, C.C., Tellier, L.C.A.M., Vattikuti, S., Purcell, S.M., and Lee, J.J. (2015). Second-generation PLINK: Rising to the challenge of larger and richer datasets. *Gigascience* 4, s13742-015. 10.1186/s13742-015-0047-8.
36. Viechtbauer, W. (2010). Conducting Meta-Analyses in R with the metafor Package. *J Stat Softw* 36, 1–48. 10.18637/JSS.V036.I03.