

# Single-cell phenotypic plasticity modulates social behaviour in *Dictyostelium discoideum*

Mathieu Forget<sup>a,b,\*</sup>, Sandrine Adiba<sup>a,1</sup>, Silvia De Monte<sup>a,b,1,\*</sup>

<sup>a</sup>*Institut de Biologie de l'ENS (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France*

<sup>b</sup>*Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany*

---

---

## 1 **Abstract:**

2 In *Dictyostelium* chimeras, strains social behaviour is defined based on their  
3 relative representation in the spores – the reproductive cells resulting from de-  
4 velopment – referred to as spore bias. Some strains, called ‘cheaters’, display  
5 systematically positive spore bias in chimeras and are considered a threat to  
6 the evolutionary stability of multicellular organization. The selective advantage  
7 gained by cheaters is indeed predicted to undermine collective functions when-  
8 ever social behaviours are genetically determined. However, genotypes are not  
9 the only determinant of spore bias, and the relative role of genetic and plastic  
10 phenotypic differences in strains evolutionary success is unclear.

11 Here, we control phenotypic heterogeneity by harvesting cells in different  
12 growth phases, and study the effects of plastic variation on spore bias in chimeras  
13 composed of isogenic or genetically different populations. Spore bias is shown  
14 to depend both on growth phase and on population composition, and to be  
15 negatively correlated to the fraction of ‘loners’, *i.e.* cells that do not join aggre-  
16 gates. We examined several single-cell mechanical properties that are expected  
17 to affect aggregation efficiency, and found that variations in the fraction of

---

\*Correspondence:

Email addresses: [forget@bio.ens.psl.eu](mailto:forget@bio.ens.psl.eu) (Mathieu Forget), [demonte@bio.ens.psl.eu](mailto:demonte@bio.ens.psl.eu) (Silvia De Monte )

<sup>1</sup>Equal contributors

18 slowly moving cells with growth phase may explain why earlier cultures appear  
19 to be underrepresented in the spores. The involvement of a go-or-grow mecha-  
20 nism during cell aggregation is also consistent with known variations of cell-cycle  
21 phase distribution during population growth. We confirm the expected ubiquity  
22 of growth-phase induced spore bias variation by showing that it is not negligible  
23 in genetic chimeras, and can even reverse the classification of a strain's social be-  
24 haviour. These results suggest that aggregation can provide an efficient 'lottery'  
25 system to harness the evolutionary spread of cheaters.

26 **Introduction**

27 A recognized function of multicellular organization is division of labour, em-  
28 blematically represented by somatic cells, whose death contributes to the re-  
29 productive success of the germline. Such extreme differences in the fate of cells  
30 that belong to the same multicellular structure are also found in a number of  
31 unicellular organisms – both prokaryotes and eukaryotes – that have indepen-  
32 dently evolved the capacity of generating multicellular, differentiated structures  
33 by aggregation of formerly free-living cells. The most spectacular examples of  
34 such aggregative multicellular life cycles are provided by cellular slime moulds,  
35 among which *Dictyostelium discoideum* has become a model organism for evo-  
36 lutionary biology (Strassmann and Queller, 2011; Forget et al., 2021).

37 When they run out of food, cells of *D. discoideum* converge to form multi-  
38 cellular aggregates, that subsequently differentiate in two main terminal fates.  
39 One type dies forming the stalk that lifts the other – the spores – above ground  
40 and favours their dispersion (Raper, 1940; Smith et al., 2014). In paradigm-  
41 atic multicellular organisms, where the body derives from the clonal growth  
42 of the zygote, the coexistence of germ and somatic cells is facilitated by their  
43 genetic uniformity. In aggregative microbes, conversely, where barriers to co-  
44 aggregation of cells with different genetic background are weaker, multicellular  
45 structures often harbour different lineages (Fortunato et al., 2003; Gilbert et al.,  
46 2007; Sathe et al., 2013). Conflicts in reproductive investment among geneti-

47     cally diverse cells are expected to threaten collective functions, and to have  
48     been particularly acute at the transition to multicellular organization (Rainey  
49     and De Monte, 2014). In *D. discoideum*, such conflicts are evidenced by compar-  
50     ing, for one of the co-aggregating types, the fraction of cells that are passed on  
51     to the following generation (the spores) to the fraction of cells that were present  
52     before aggregation (that sets the null expectation for spore pool composition,  
53     in the absence of differential reproductive success). ‘Spore bias’ is thus used to  
54     identify strains that have qualitatively different social behaviour (Kuzdzal-Fick  
55     et al., 2010, 2011; Gilbert et al., 2007; Buttery et al., 2009): cheaters increase  
56     their representation in the following generation with respect to cooperators, who  
57     on the contrary reduce it.

58     Theory predicts that, all else being equal, a positive spore bias results in an  
59     increase in the frequency of cheaters across multiple social cycles of aggregation-  
60     development-dispersal. Hence, in the absence of mechanisms that produce pos-  
61     itive assortment between cells with different social investment, cheaters should  
62     prevail on the evolutionary time scale, in what is known as the ‘tragedy of the  
63     commons’ (Hardin, 1968; Rankin et al., 2007). This conclusion is based on two  
64     assumptions: first, that spore bias profiles (spore bias as a function of frequency  
65     of the focal strain) are genetically determined, so that they are maintained over  
66     the time-scale where cheaters and cooperators strains compete; second, that the  
67     spore bias of cheater strains is positive for any frequency of the other type it  
68     interacts with.

69     These assumptions are violated in some cases at least. It is for instance well  
70     known that the probability of forming spores, hence spore bias, is affected by  
71     phenotypic variation also when cells that co-aggregate are isogenic. For instance,  
72     cells have been shown to form spores with different propensity, depending on  
73     nutritional history (Leach et al., 1973), cell cycle phase (Zada-Hames and Ash-  
74     worth, 1978; McDonald and Durston, 1984; Huang et al., 1997; Araki et al., 1994;  
75     Azhar et al., 2001; Gruenheit et al., 2018), and duration of starvation (Kuzdzal-  
76     Fick et al., 2010) among others (reviewed in (Chattwood and Thompson, 2011)  
77     and Forget et al. (2021)). Therefore, spore bias is not exclusively a function of

78 the genetic background of cells, but also of the environment –biotic and abiotic–  
79 and of cell physiology. Moreover, several studies of pair-wise chimeras showed  
80 that the sign of the spore bias can change with the frequency of the focal type  
81 in *D. discoideum* (Madgwick et al., 2018) or in closely related species (Sathe  
82 and Nanjundiah, 2018), thus leading to the prediction that cheaters would not  
83 exclude cooperators on the evolutionary time scale. These observations chal-  
84 lenge the idea that ‘cheater’ genotypes always pose an actual problem to the  
85 evolution of multicellular function. However, the extent to which phenotypic  
86 variation modifies genetically-established spore bias profiles is unclear. Indeed,  
87 experiments have dealt separately with co-aggregation of populations whose  
88 phenotypic differences were of plastic or genetic origin (Jang and Gomer, 2011;  
89 Strassmann and Queller, 2011; Forget et al., 2021). Despite recent advances in  
90 understanding gene regulation in the course of development (Gruenheit et al.,  
91 2018; Antolović et al., 2019; Noh et al., 2020; Katoh-Kurasawa et al., 2021), the  
92 relation between gene expression and general organizing principles that have  
93 been proposed to link cell-level properties to spore bias in chimeras is still largely  
94 uncharted.

95 We have designed an assay to study within a common framework how plas-  
96 tic variation influences social behaviour in binary mixtures of cells with the  
97 same or different genetic background. The phenotypic state of cells is (contin-  
98 uously, in principle) modulated by changing the growth phase of cultures when  
99 starvation-induced aggregation begins. On the one hand, we can thus affect the  
100 nutritional state of cells – a factor that was suggested to be primordial in defin-  
101 ing cell fate (Leach et al., 1973; Thompson and Kay, 2000; Zahavi et al., 2018).  
102 On the other hand, differences in aggregation timing seem to be more physio-  
103 logical than those imposed by well-distinct culture conditions, even though the  
104 amplitude of the difference is enhanced here for effects to be measurable despite  
105 unavoidable experimental variability. The ensuing ‘chronochimeras’, obtained  
106 by co-aggregation of cells harvested at different growth phases, can be realized  
107 both when the two populations have the same or a different genotype, so that  
108 cell phenotypic variation is driven by both plastic and genetic differences.

109 First, we show that, for two populations with the same genotype mixed in  
110 various proportions, the time of harvesting affects quantitatively, and some-  
111 times even qualitatively, the spore bias profile, to an extent comparable to that  
112 observed when mixing genetically different populations. We next address how  
113 physiological variation acquired in the course of growth, which defines the state  
114 of the populations at the beginning of aggregation, gives rise to spore bias. Dif-  
115 ferences in the proportion of non-aggregated cells suggest that early-established  
116 biases can impact reproductive success – coherently with previous studies on  
117 ‘loner’ cells (Dubravcic et al., 2014; Tarnita et al., 2015; Martínez-García and  
118 Tarnita, 2016, 2018; Rossine et al., 2020) – independently of other effects that  
119 they may have during multicellular development. The observation that single-  
120 cell physical properties change during growth, moreover, supports the idea that  
121 cell self-organization in the very first phases of the multicellular cycle may im-  
122 pact evolutionarily relevant biases in more general circumstances, as indicated  
123 by numerical models (Garcia et al., 2014; Joshi et al., 2017; Forget et al., 2022).  
124 We verify that, according to this hypothesis, spore bias modulation by a change  
125 in aggregation timing also occurs when mixing genetically distinct strains. Not  
126 only phenotypic effects combine with genetic differences in determining the so-  
127 cial behaviour of cells, but – by modifying the frequency-dependence of spore  
128 bias – they can change the qualitative nature of the ensuing evolutionary dy-  
129 namics. Our results confirm that understanding how cells self-organize into  
130 aggregates can be as important as deciphering multicellular development for  
131 predicting the evolution of social strategies in facultatively multicellular mi-  
132 crobes. Moreover, they suggest that simple and general phenotypic differences,  
133 such as in cell motility, could translate a multiplicity of molecular mechanisms  
134 in their evolutionary effects – something that may illuminate on the emergence  
135 of aggregative multicellularity from ancestral unicellular microbes.

136 **1. Results**

137 *Chronochimeras*

138 We designed an experimental protocol to examine the combined effects of  
139 different sources of cell-cell diversity on the social outcome of co-aggregation of  
140 two *Dictyostelium* populations, at least one of which is the axenic lab strain  
141 AX3 (Loomis, 1971). Plastic variation in cell phenotype at the moment of  
142 aggregation was induced by changing the phase of vegetative growth where  
143 cultures were harvested. Populations progression in the growth cycle is indeed  
144 known to induce changes in single-cell properties mediated by the accumulation  
145 of secreted factors (see Gomer et al. (2011) for a review). For instance, cells  
146 harvested at low density are round whereas cells harvested at higher density have  
147 multiple pseudopodia, hence possibly different mechanical interactions with the  
148 environment and other cells (Yuen et al., 1995). Parameters that correlate with  
149 spore bias, e.g. cell-cycle phase distribution and nutritional status (Leach et al.,  
150 1973; Azhar et al., 2001; Kuzdzal-Fick et al., 2010), are moreover expected to  
151 change as a growing population moves from exponential to stationary phase  
152 (Soll et al., 1976; Gomer et al., 2011). A same initial density of cells was grown  
153 in standard culture medium for different time intervals. In order to approach  
154 natural conditions, minimize the presence of polynucleated cells (Pollitt and  
155 Insall, 2008), and avoid drastic changes in their interaction with surfaces, cells  
156 were grown in unshaken culture flasks for periods ranging from 24 to 92 hours  
157 before harvesting (see Methods and growth curves in Fig. S1). At the beginning  
158 of aggregation, cultures were thus in one of four growth phases: Early, Mid, Late  
159 Exponential (EE, ME, LE, respectively) and Early Stationary phase (ES). We  
160 expect that the phenotypic properties of cells change continuously from one  
161 phase to the other, so that the time of harvesting acts as a tunable control  
162 parameter.

163 As illustrated schematically in Fig. 1, two populations harvested at dif-  
164 ferent phases of growth were starved by replacing the growth medium with  
165 buffer, then mixed in different proportions at a reference time  $t = 0$  h. We call  
166 *chrono-chimeras* such binary mixes, whether they belong to the same or differ-  
167 ent strains. In order to count individual cells belonging to different populations,  
168 we transformed AX3 strains with plasmids that bear a fluorescent protein gene

169 (GFP or RFP, see Methods). This fluorescent labelling is maintained in the  
170 course of the multicellular cycle, allowing us to quantify, by flow cytometry (see  
171 Methods), the proportion of cells of a focal type before aggregation ( $f$ ), and  
172 among the spores ( $f_S$ ).

173 The social cycle is started by plating a binary cell mix on Phytigel. The  
174 aggregation (about 8 hours long) is followed by multicellular development, which  
175 results in the formation of mature fruiting bodies. Spores were collected by  
176 washing whole dishes after 24h. The *spore bias of the focal strain* (specified for  
177 every assay) could be thus quantified as the deviation  $f_S - f$  of its proportion  
178 in the spores from that in the initial mix.

179 *Variable frequency-dependent biases in isogenic chrono-chimeras*

180 First, we quantified biases in spore production induced by growth phase  
181 differences in isogenic chrono-chimeras. Frequency-dependence in spore bias is  
182 the basis for inferring evolutionary trajectories, as it connects the composition of  
183 the population at the beginning of a social cycle – *i.e.* the onset of aggregation –  
184 to its composition at the beginning of the following. Hence, we assessed several  
185 initial compositions of the binary mixes, so as to derive spore bias as a function  
186 of the fraction of cells of the focal type  $f$  (referred to, in the following, as *spore*  
187 *bias profile*).

188 Figure 2 displays the spore bias profiles when populations harvested at dif-  
189 ferent stages of vegetative growth (ME,LE,SE), labeled with GFP, are mixed  
190 with a RFP-labeled reference EE population. Insertion of different fluorescent  
191 proteins introduced a reproducible intrinsic bias, which was used to correct the  
192 measures by a frequency-dependent term identical for all chrono-chimeras (see  
193 Methods).

194 Our observations indicate that phenotypic differences induced by the phase  
195 of population growth at the beginning of aggregation bias spore production.  
196 The spore bias profiles are frequency-dependent and resemble in shape and  
197 magnitude those observed in genetic chimeras. Even though we never observed

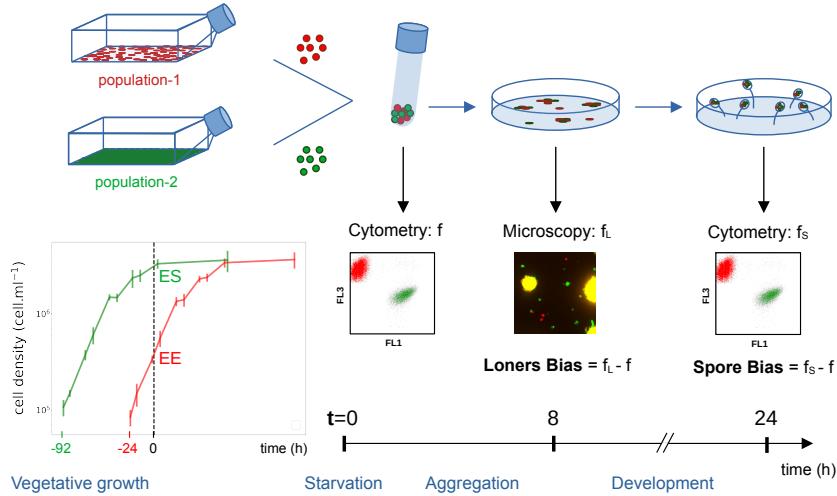



Figure 1: **Schematic representation of the experimental protocol to produce chrono-chimeras.** Cell populations carrying green or red fluorescent markers were harvested at a specific phase of their logistic growth. Cultures were started at different discrete times before the beginning of the experiment. When the culture was started 24 hours before, cells were called Early Exponential (EE), and they were called Mid-Exponential (ME), Late Exponential (LE), or Early Stationary (ES) when they had been cultured for 46, 68 or 92 hours, respectively. Figure S1 illustrates where in the culture's growth curve these time are located. As detailed in the Methods, different measures were realized in order to characterize the way biases got established in the course of the multicellular cycle, which was triggered at time  $t = 0$  by cell starvation and plating on Petri dishes covered with Phytagel. Before the start of aggregation, the fraction  $f$  of cells of one population was measured by flow cytometry. Similarly, the fraction  $f_S$  of the same population in the spores was performed after completion of development, 24 hours later. Time lapse movies of the aggregation were recorded on an inverted microscope, allowing to count the proportion  $f_L$  of each population within the fraction of cells that remained outside aggregates (the so-called 'loners'). Moreover, measures of single cell properties (discussed later in the text) were realized at  $t = 0$  in order to connect initial phenotypic variability to realized biases.

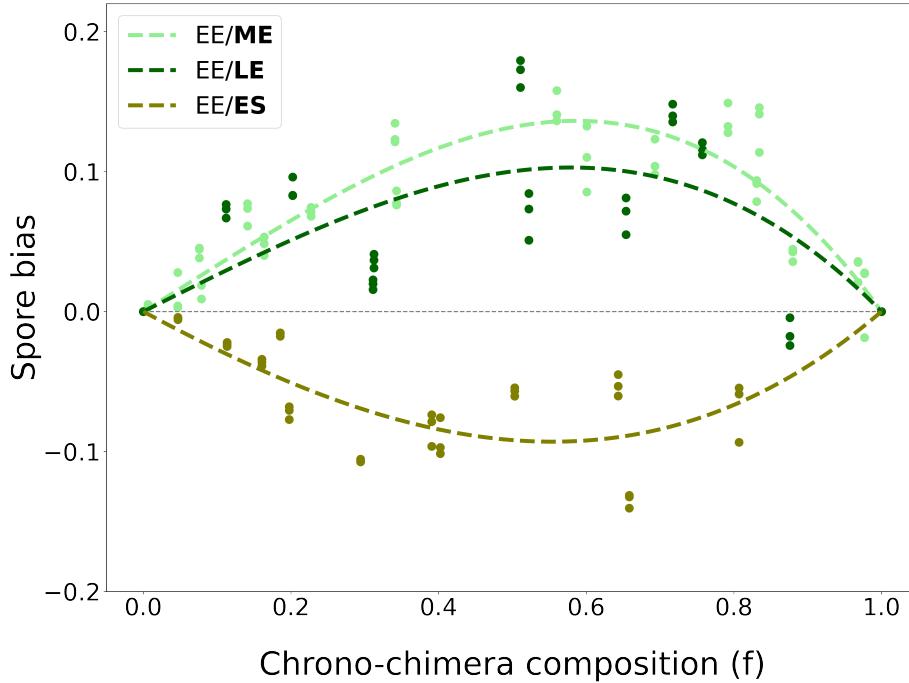



Figure 2: **Spore bias profiles depend on growth phase-induced phenotypic variation.** Corrected (see Methods) spore bias for a focal AX3-GFP population harvested in different growth phases (indicated in bold in the legend), mixed to a reference AX3-RFP EE population, as a function of the proportion  $f$  of the focal strain. Measures of spore bias were realized in three replicates (same initial mix plated on three different plates) and the error bars indicate the standard deviation of the spore measure realized 24h later. The observations have been interpolated (dashed lines) with a third degree polynomial constrained with  $f = 0$  and  $f = 1$ .

198 spore bias profiles that changes sign at intermediate frequencies (Sathe and  
199 Nanjundiah, 2018; Madgwick et al., 2018), it is possible that this may manifest  
200 if we sampled more extensively the growth curve.

201 ME and LE populations are reproducibly associated with a positive spore  
202 bias when co-aggregating with EE populations (as was previously observed when  
203 mixing cultures that had been starved for different periods (Kuzdzal-Fick et al.,  
204 2010)). However, such advantage appears to wane for older ES cultures, that  
205 can display a negative bias. Different isogenic populations would be therefore  
206 alternatively classified as cheaters or cooperators depending on their ecological

207 history at the onset of aggregation.

208 *Efficiency of aggregation links phenotypic variation to spore bias*

209 Growth phase at the onset of aggregation is thus able, together with other  
210 documented sources of plastic phenotypic variation (Leach et al., 1973; Zada-  
211 Hames and Ashworth, 1978; Azhar et al., 2001; Hiraoka et al., 2020), to affect  
212 the probability that a cell will turn into a spore. How early phenotypic hetero-  
213 geneity results in biases that manifest themselves many hours later is generally  
214 unknown. Indeed, if genetic differences are maintained on the time scale of the  
215 social cycle, and beyond, differences associated to growth phase may be read-  
216 ily erased after aggregation, when cell signalling – common to all cells in the  
217 chimera – drives cell differentiation.

218 If growth-phase induced spore biases were chiefly due to processes acting  
219 within multicellular aggregates, one should suppose that social interactions were  
220 primed by phenotypic differences present several hours before the aggregation is  
221 completed. Such long-lasting phenotypic imprinting may then result in sorting  
222 within the slug, as commonly observed when mixing different genotypes (Ennis  
223 et al., 2000; McDonald and Durston, 1984; Houle et al., 1989; Escalante et al.,  
224 1997). In our case, however, no noticeable segregation or sorting was observed  
225 either in the mound stage or during slug migration (Fig. S4 A and B), suggesting  
226 that social, strategic interactions within the aggregates may not be the main  
227 factor determining spore bias differences in chronochimeras.

228 Alternatively (or additionally) biases may get established early enough, so  
229 that initial differences among co-aggregating cells matter, even if these differ-  
230 ences are inconsequential at later developmental stages. This hypothesis was  
231 proposed in models that stressed the evolutionary relevance of cells that remain  
232 outside aggregates, called ‘loners’ (Dubravcic et al., 2014; Tarnita et al., 2015;  
233 Martínez-García and Tarnita, 2016, 2018; Rossine et al., 2020). Different strains  
234 were shown to leave a different proportion of non-aggregated cells (Dubravcic  
235 et al., 2014; Rossine et al., 2020), however spore bias was not directly assessed  
236 in those experiments.

237 We therefore considered whether the spore biases observed in isogenic chrono-  
238 chimeras could reflect a disproportional representation of phenotypically differ-  
239 ent populations within aggregates, thus also in the fraction of non-aggregated  
240 cells. We measured, at a time when mounds were completely formed (about 8  
241 hours into the social cycle, see Fig. 1), the loner bias. This was quantified (see  
242 Methods) in isogenic chrono-chimeras by subtracting the proportion of the focal  
243 population in the pool of loners to its expected proportion, that is the initial  
244 fraction  $f \sim 50\%$ . We decided to focus on this relative measure because it is  
245 very complicated to count the absolute number of loners over a whole field of  
246 aggregation, and moreover the loner bias compares directly to the spore bias.  
247 Figure 3 shows that the loner bias is negatively correlated to spore bias when  
248 chrono-chimeras with different growth differences are taken into account (Pear-  
249 son correlation coefficient =  $-0.58$ ,  $p = 0.01$ ). It should be noted, however,  
250 that the loner bias of ES populations varied when the experiment was repeated,  
251 possibly reflecting the difficulty of precisely controlling the conditions that cells  
252 meet at the entry in stationary phase.

253 Cultures that leave more cells as loners, are thus under-represented in the  
254 pool of spores, as would be expected in the absence of strong developmental  
255 biases. A substantial part of spore bias variation might then be attributed to  
256 cells being more or less efficient in aggregating, depending on their growth phase.  
257 In particular, it appears that aggregation is maximised at intermediate times  
258 during logistic growth, while cultures that are close to the stationary phase tend  
259 to leave more cells behind.

260 *A go-or-grow single-cell mechanism may link growth phase to aggregation effi-  
261 ciency*

262 In order to understand how initial phenotypic differences lead to the observed  
263 biases in aggregation efficiency, we looked for relevant single-cell parameters that  
264 might operate early in the social cycle. Differences in sensitivity to an external,  
265 diffusing signal was proposed to underpin differential aggregation propensity,  
266 and a mathematical model confirmed that this mechanism can result in variable

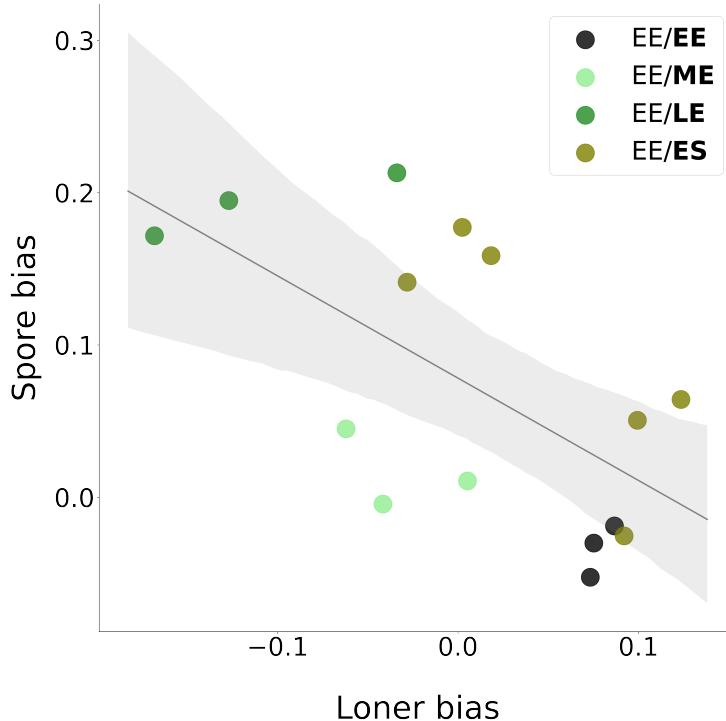



Figure 3: **Spore bias negatively correlates to loner bias.** Corrected spore bias (see main text and Methods) as a function of loner bias in isogenic chrono-chimeras composed of the strain AX3-GFP with  $f \sim 50\%$  of a reference AX3-RFP EE population. The growth phase of the focal population (AX3-GFP) is indicated in bold in the legend.

267 proportions of loner cells (Rossine et al., 2020). If it is biologically reasonable  
268 to assume that signalling gets affected by growth phase, and that differences in  
269 the perception of signals may last long enough to cause differential aggregation,  
270 the specific molecules involved in this process have not yet been identified.

271 Another possible – and by no means alternative – explanation of loner bi-  
272 ases is that different aggregation propensity stems from changes, along the  
273 culture growth, of cell mechanical properties. Numerical models for cell self-  
274 organization into groups indeed show that differences in cell-to-cell adhesion or  
275 velocity can lead to loner biases and be potentially involved in the evolution  
276 of aggregative multicellularity (Garcia et al., 2014, 2015; Miele and De Monte,

277 2021; Forget et al., 2022). We thus characterized the variation during vegeta-  
278 tive growth of three parameters that are involved in single-cell behaviour and  
279 in short-range cell-cell interactions.

280 First, we considered surface and cell-cell adhesion (that can also encompass  
281 systems evolved for self-recognition (Hirose et al., 2011)). The former was quan-  
282 tified (see Methods) by measuring the fraction of cells that adhere to a culture  
283 vial at low cell density, so that direct interactions among cells should be negli-  
284 gible and our measures pertain to traits of individual cells. Cell-cell adhesion  
285 was quantified by measuring the percentage of cells that formed multicellular  
286 clusters in shaken cultures (see Methods). Cell adhesion was found to change  
287 gradually during demographic growth. Cell-substrate adhesion significantly in-  
288 creases in the course of vegetative growth (Fig. 4 A). Cell-cell adhesion, on  
289 the contrary, significantly decreases as a population ages (Fig. 4 B). Studies on  
290 the role of differential adhesion in the evolution of social behaviour focused on  
291 cell-cell interactions, and predict that less adhesive cells are found more often  
292 among the loners (Garcia et al., 2015), which is not what we observe. Another  
293 expectation that is not met in chrono-chimeras (Fig. S4 A) is that if cells were  
294 able to recognise the internal state, differential cell adhesion would, like for  
295 kin recognition, induce segregation of the two co-aggregating populations into  
296 aggregates that are mainly composed by one or the other type. We therefore  
297 presume that, beyond 'social', cell-cell contacts, cell-substratum adhesion plays  
298 a key role in establishing social behaviour, as also supported by recent directed  
299 evolution experiments (Adiba et al., 2022).

300 Then, we addressed single-cell motility. As amoebae crawl by extending  
301 pseudopods (Kessin, 2001), variations in adhesion to the substratum may al-  
302 ter the probability of aggregation by altering the speed of displacement. This  
303 hypothesis is supported by numerical models for binary mixes of self-propelled  
304 particles, that showed that differential motility can result into assortment within  
305 the aggregated phase (Forget et al., 2022; Kolb and Klotza, 2020; S. Punla et al.,  
306 2022). Moreover, cell motility has been recently invoked as the basis of differ-  
307 entiation biases observed in cells with different intracellular ATP concentration

308 (Hiraoka et al., 2020, 2022). We measured individual cell motility in populations harvested in EE, ME, LE, and ES phase.

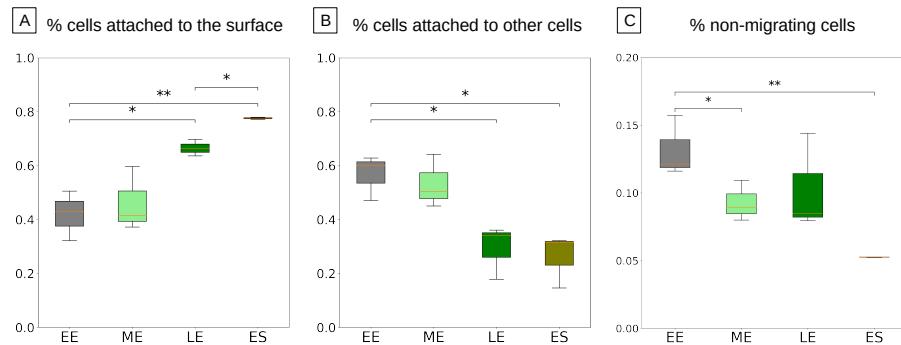
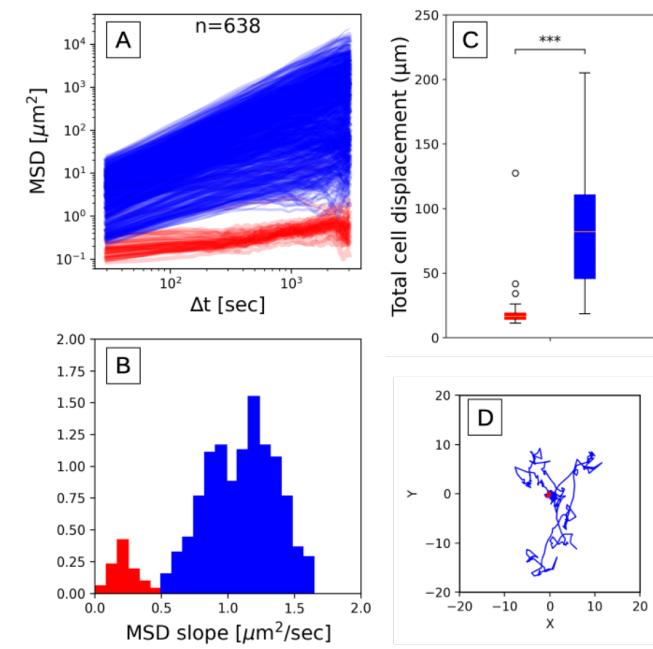




Figure 4: **Variation of cell adhesion and motility properties in the course of vegetative growth of AX3 populations.** Cell-substrate adhesion increases (A), cell-cell adhesion decreases (B) and the proportion of non-migrating cells (see Fig. 5) decreases as a population ages (C). In each assay, three replicates were performed for each condition. \*: Student test p-value < 0.05 \*\*: Student test p-value < 0.005.

309  
310 Individual cell motility can be studied by tracking single cells in diluted  
311 cultures, so that encounters are rare. We analyzed a large number of cell  
312 trajectories ( $\sim 600$  for each condition) in populations harvested at different  
313 growth phases and diluted before realizing time-lapse movies (see Methods).  
314 Cell position was measured every 30 seconds in the course of 1 hour. The slope  
315 of individual Mean Square Displacement (MSD) as a function of time lag  $\Delta t$   
316 (Fig. 5 A and Fig. S5) reveals the co-existence of two classes of cells with  
317 markedly different motility. Figure 5 D shows that part of the cells barely move  
318 during the experiment ('non-migrating cells', red), while the others efficiently  
319 crawl on the substratum ('migrating-cells', blue). Differences between these  
320 classes, quantified for instance by their total displacement, are highly signifi-  
321 cant (Mann-Whitney U test p-values < 0.0005 , Fig. 5 C and Fig. S6). A  
322 bimodal distribution of cell motility is consistent with a previous analysis of  
323 a small number ( $\sim 40$  cells) of *Dictyostelium* AX2-cells just before starvation  
324 (Goury-Sistla et al., 2012)). Cell speed within these two motility classes is not



**Figure 5: AX3 populations display a bimodal distribution of cell motility.** **A:** Individual mean square displacement as a function of time lag ( $\Delta t$ ). **B:** Distribution of the initial rate of increase of the MSD (slope of the log MSD vs log  $\Delta t$ ,  $\Delta t < 150$  secs). Cells were clustered into two motility classes (indicated in all panels in red and blue respectively), where such slope was below or above the threshold value 0.5. **C:** Total displacement of cells from these two classes in the course of 1 hour, showing that the initial slope is a good proxy for how much cells displace (\*\*\*: Mann-Whitney U test p-value < 0.0005.) **D:** Typical cell trajectories from the two motility classes with their origins brought to a common point, illustrating the difference in motility. Results are shown for one LE population (see Figs. S5 and S6 for all replicates and growth phases).

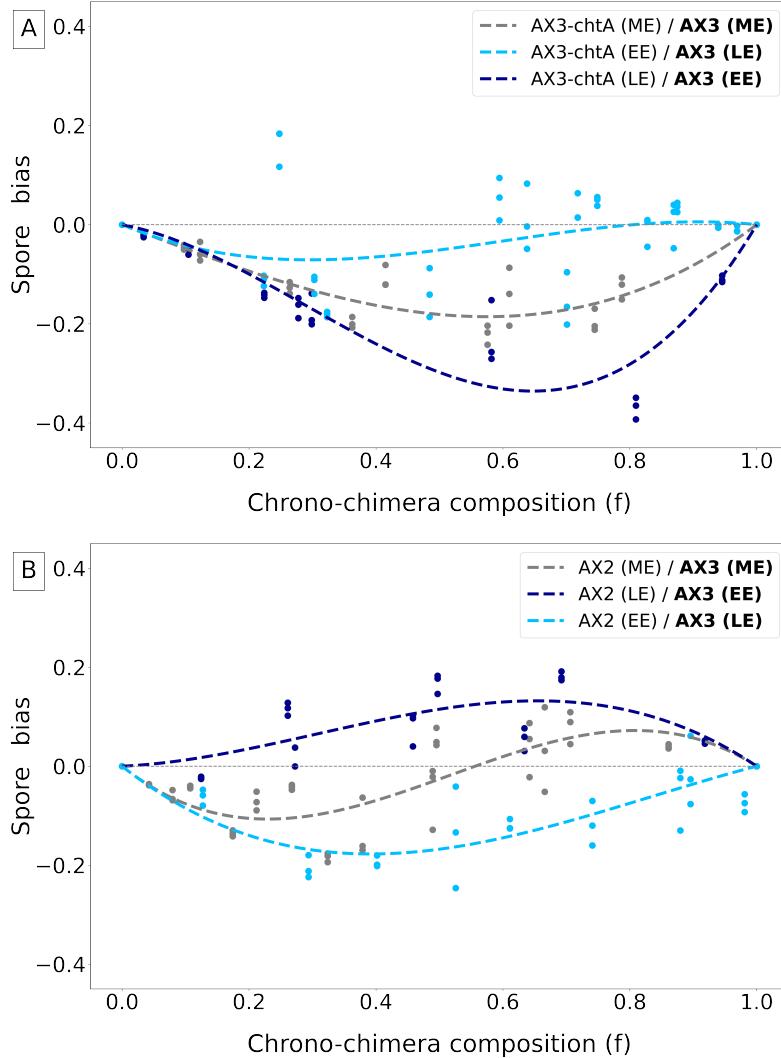
325 significantly different in different growth phases (total displacement of migrating  
 326 cells was compared with a mixed effects model ANOVA, p-value=0.4691,  
 327 Fig. S6). However, growth phase alters population partitioning between slow  
 328 and fast cells, the percentage of low-motility cells decreasing as cell culture ages  
 329 (Figure 4 C). By comparing these results to variations in adhesion, we can spec-  
 330 ulate that cells belonging to the slower class also adhere less to the surface and  
 331 are more likely to end up as loners. A progressive decrease in the fraction of

332 non-migrating cells, which are more likely to remain outside aggregates, could  
333 thus explain why ME and LE cultures tend to have a positive bias relative  
334 to EE/EE chrono-chimeras. However, in order to explain the decrease of the  
335 bias observed in EE/ES chrono-chimeras, other yet uncharacterized mechanisms  
336 should be identified.

337 The observed variations in cell motility and surface adhesion are consistent,  
338 as we discuss later, with a change during population growth of cells distribution  
339 among different phases of the cell cycle. Older cultures are indeed enriched in  
340 cells that have stopped their progression through the cell cycle and are blocked  
341 in G2 (Soll et al., 1976). It is known that G2 cells have a higher chance of be-  
342 coming spores (Zada-Hames and Ashworth, 1978; Gomer and Ammann, 1996;  
343 McDonald and Durston, 1984; Gruenheit et al., 2018). Our results suggest that,  
344 by the relation of cell cycle phase and motility, aggregation efficiency mediates  
345 between the initial cell cycle phase differences and spore bias. Like the go-or-  
346 grow hypothesis (Giese et al., 1996), cells that are dividing may make up the  
347 low motility subpopulation. Rearrangement of the cytoskeleton during mitosis  
348 indeed would cause cells to detach from the substratum (Nagasaki et al., 2002;  
349 Plak et al., 2014) and therefore reduce their migration efficiency, underpin-  
350 ning the concomitant increase in surface adherence and motility during culture  
351 growth.

352 The go-or-grow mechanism is independent of possible later effects of cell cy-  
353 cle phase on differentiation within the multicellular aggregates. As suggested  
354 by theoretical models (Forget et al., 2022; Kolb and Klotsa, 2020; S. Punla  
355 et al., 2022), it may thus be relevant more broadly, whenever two cell types  
356 with different mechanical properties co-aggregate. In particular, we expect that  
357 growth-phase induced biases manifest also when the populations that are mixed  
358 belong to distinct strains. They could, however, be negligible with respect  
359 to genetically-induced biases, thus making the spore bias profile largely inde-  
360 pendent of the specific experimental settings, and thus predictive of long-term  
361 competition among strains.

362 *Growth phase affects social behaviour also in genetic chronochimeras*


363 We considered chrono-chimeras obtained by mixing strains whose synchronous  
364 co-aggregation resulted in differential spore production. We compared spore bias  
365 profiles in three conditions: when the two strains were both harvested in the  
366 ME phase (see Fig. S1 for the growth curves of different strains), when the  
367 focal strain was in EE and the other in LE, and vice-versa. The first condition  
368 corresponds to standard settings, where the two populations are harvested at  
369 the same time, and is used to set the 'baseline' spore bias profile. If growth  
370 phase had the same effect as for isogenic chronochimeras, the latter two condi-  
371 tions would induce changes of the profile in opposite directions. Quantification  
372 of these effects allows to determine if and when such changes are comparable to  
373 those induced by distinct genetic backgrounds.

374 In line with the hypothesis that adhesion plays a key role in determining the  
375 efficiency of aggregation, we started examining chimeras composed of strains  
376 with highly divergent cell-substratum adhesion. The AX3-Bottom strain was  
377 evolved from the ancestral AX3 strain by imposing selection for increased ad-  
378 herence to a culture vial, and has a strong spore bias relative to the ancestor  
379 (Adiba et al., 2022). Differences between AX3 and AX3-Bottom are not known  
380 at the genotypic level, but these strains are expected to diverge chiefly for the  
381 phenotype that was under selection (single cell adhesion to the substratum).  
382 Compared to the 'baseline' profile, spore bias of the focal strain increased or de-  
383 creased for all frequencies, depending on whether it is harvested later or earlier  
384 (Fig. S6 A). Similar results are obtained when the more advanced population is  
385 harvested in ME phase rather than in LE phase (Fig. S6 B). Spore bias is thus  
386 concomitantly affected by plastic variation and phenotypic differences resulting  
387 from selection on single-cell adhesion. Even though growth differences modify  
388 the bias, however, they are not sufficient to alter the qualitative classification  
389 of social behaviour. The ancestor strain keeps being classified as a cheater, so  
390 that it is predicted to outcompete the evolved strain over multiple rounds of  
391 aggregation and dispersal.

392 A similar growth phase-dependent variation in the bias was obtained in

393 chrono-chimeras where the reference strain AX3 was mixed with another strain  
394 derived from an AX3 ancestor, the well-known cheater strain chtA (Ennis et al.,  
395 2000). ChtA displays the most extreme and disruptive form of selfish behaviour,  
396 obligate cheating: it is unable to form spores when developing clonally, but  
397 induces its ancestor to differentiate into stalk. Consistent with this classification,  
398 we found that the AX3 strain had a negative bias when harvested at the same  
399 time as chtA (Fig. 6 A). Such bias tends to increase when AX3 is harvested in  
400 EE phase and chtA in LE phase, but is reduced to almost zero for the reversed  
401 growth phase relation (when AX3 is in high proportion in the chrono-chimera),  
402 confirming again that populations in different growth states can produce variable  
403 contributions to the spore pool.

404 AX3-Bottom and AX3-chtA were obtained by artificial selection (directional  
405 selection of single-cell adhesion and mutagenesis followed by screening for strong  
406 spore biases, respectively). Correspondingly, they manifest extreme social be-  
407 haviours. However, in natural conditions co-aggregating strains may not be as  
408 phenotypically divergent, having evolved under selective pressures that likely  
409 were both weaker and acting on many traits simultaneously. We examined  
410 chrono-chimeras for another pairwise combination of strains, where AX3 was  
411 mixed with the axenic strain AX2. Both these strains derive from the same nat-  
412 ural isolate (NC-4), but have genome-wide differences: AX3 carries a large du-  
413 plication, corresponding to 608 genes (Sucgang et al., 2011). Despite such large  
414 genomic differences, AX2 is not known to display a marked social behaviour  
415 with respect to AX3. Indeed, we found that, in the absence of growth phase  
416 heterogeneity, AX3 cells co-aggregating with AX2 cells are under-represented  
417 in the spores when in low proportion in the chimera, whereas they are associ-  
418 ated to a positive spore bias when prevalent (Fig. 6 B). Spore bias profiles that  
419 change sign with the frequency of one strain in the mix are commonly observed  
420 in natural isolates (Madgwick et al., 2018; Sathe and Nanjundiah, 2018), and  
421 are likely to be more representative of interactions in the wild than the previ-  
422 ously considered chimeras. In the AX2/AX3 chrono-chimera the focal strain  
423 AX3 shifts from behaving like a cheater (when it is harvested in EE while AX2



**Figure 6: Social behaviour in chimeras depends on populations growth phase at the onset of aggregation.** Spore bias measured in two different genetic chimeras, using a population of AX3-RFP cells as the focal population. **A:** chrono-chimeras composed of AX3-RFP and chtA cells. **B:** chrono-chimeras composed of AX3-RFP and AX2 cells. Three different cases are considered: strains are grown in co-culture and harvested in ME phase, the focal population is harvested in EE phase and the other in LE phase (dark blue line), or vice-versa (light blue line).

424 is in LE) to behaving as a cooperator (in the opposite case).

425 Taken together, results on chrono-chimeras involving different strains indicate  
426 that the effects on social behaviour of growth phase-induced phenotypic  
427 differences at the time of aggregation combine with those due to genetic diversity.  
428 In some cases, growth phase-induced phenotypic differences can reverse the  
429 classification of a strain from cheater to cooperator. The contribution of these  
430 two sources of variation to spore bias is not additive. Instead, the direction of  
431 change in spore profile as a function of the growth phase of the two cultures  
432 depends on the chimeras genetic background, as summarized in Fig. S7.

## 433 2. Discussion

434 Division of labour within multicellular structures, whereby different cells take  
435 up different tasks, is essential for sustaining collective functions, but is often as-  
436 sociated to differences in reproductive success among distinct cell types, e.g.  
437 between germ and somatic lineages. Such differences are particularly disrup-  
438 tive when cell heterogeneity is transmitted across generations of the collective  
439 association. In aggregative microbes like *Dictyostelium discoideum*, where mul-  
440 ticellular groups are formed by gathering previously isolated cells, cell types that  
441 are overrepresented in the spore pool have the potential to get, over successive  
442 aggregation cycles, progressively enriched in the population. Crucial for this to  
443 occur is however a heritable relation between cell genotype and its reproductive  
444 success. This is realized when the outcome of social interactions is by and large  
445 genetically determined, as assumed by the theory of sociobiology (Strassmann  
446 and Queller, 2011).

447 Several recent studies have started to question the relevance of this assump-  
448 tion for *Dictyostelium* and revealed complex relationships between properties  
449 of single cells and their reproductive success. Madgwick et al. (Madgwick  
450 et al., 2018) proposed that frequency-dependent spore bias profiles in pairwise  
451 chimeras of natural strains are explained by cells adjusting their probability of  
452 sporulating as a response to the multicellular context. In this perspective, cheat-

453 ing would result from a 'strategic' choice of each cell, influenced for instance by  
454 the diffusion of morphogens during multicellular development (Parkinson et al.,  
455 2011). Therefore, a same cellular genotype could give rise to multiple possible  
456 biases depending on how many and what kind of cells happen to surround a  
457 focal cell, giving rise to frequency-dependent spore bias profiles.

458 Our results show that spore bias profiles depend on the nature of the social  
459 partner also in isogenic chrono-chimeras, where recognition of genetic identity  
460 is not an issue. Not only the intensity of the bias depends on the composition  
461 of the mix (Fig. 2), but a population harvested in early exponential phase can  
462 be associated to a positive or a negative spore bias, depending on the growth  
463 phase of the co-aggregating population. The correlation between spore and loner  
464 bias suggests that biases do not necessarily require 'negotiations' involving a  
465 multitude of cells, and can get established ahead of multicellular development,  
466 as a result of cell self-organization during aggregation.

467 Similar mechanisms acting at early stages of the social cycle were suggested  
468 to underpin the role of loner cells in the evolution of cooperative behaviour  
469 (Dubravcic et al., 2014; Tarnita et al., 2015; Rossine et al., 2020). While early  
470 models proposed that the probability of aggregation (hence the ensuing spore  
471 bias) was determined by strain genotype, additional measures revealed that  
472 the situation is more complex, and context-dependence widespread (Dubravcic  
473 et al., 2014; Rossine et al., 2020). In the absence of direct measures of spore  
474 bias, a mathematical model was used to show that differences in the sensitivity  
475 to an aggregation signal induce frequency-dependent loner bias profiles, which  
476 can be leveraged for maintaining - over multiple social cycles - coexistence of  
477 different, conflicting genotypes (Rossine et al., 2020).

478 If biases are broadly set before multicellular development, then pre-existing  
479 differences in single-cell phenotypic properties can matter as long as they persist  
480 throughout the aggregation phase, whether their origin is genetic or plastic.  
481 Models for cell aggregation indeed point to the possible role of cell-cell adhesion  
482 and motility (Garcia et al., 2014, 2015; Martínez-García and Tarnita, 2016, 2018;  
483 Arias Del Angel et al., 2020; Forget et al., 2022) – on top of the chemotactic

484 response to diffusing signals (Rossine et al., 2020) – in establishing loner biases.  
485 With this hypothesis in mind, we looked for single-cell mechanical properties  
486 that varied with the growth phase of the cell culture.

487 Cell-surface attachment, cell-cell adhesion and single-cell motility all show  
488 related changes during the initial phases of culture growth. We focused in  
489 particular on characterizing variation in the distribution of single-cell motility  
490 because, on the one hand, motility appears to be regulated by ATP indepen-  
491 dently from cAMP oscillations (Hiraoka et al., 2022). On the other hand, it  
492 can be connected more directly to the observed increase in proportion of ag-  
493 gregated cells as the growth phase advances. When a population ages, indeed,  
494 the fraction of actively dividing cells (in the M phase of the cell cycle) is known  
495 to decrease (Soll et al., 1976; Zada-Hames and Ashworth, 1978). *Dictyostelium*  
496 cells entering cytokinesis tend to round up and to be less adhesive to the sub-  
497 stratum (Nagasaki et al., 2002; Plak et al., 2014). As a consequence, they may  
498 contribute disproportionately to the pool of non-migrating cells that end up  
499 not joining any aggregate, with a mechanism analogous to the "go-or-grow"  
500 hypothesis proposed for cancer cells (Giese et al., 1996) and recently applied  
501 to *Dictyostelium* motility under hypoxia (Cochet-Escartin et al., 2021). Such  
502 a mechanism, moreover, roots the previously reported negative correlation be-  
503 tween the fraction of M/S cells and spore production in mechanical processes  
504 occurring at the onset of the multicellular cycle, when cell behaviour is least  
505 influenced by social interactions (Zada-Hames and Ashworth, 1978; McDonald  
506 and Durston, 1984; Huang et al., 1997; Araki et al., 1994; Azhar et al., 2001;  
507 Gruenheit et al., 2018).

508 Mathematical and numerical models showed that heterogeneity in single-cell  
509 motility can result in differential partaking of the multicellular organization,  
510 with consequences that extend to the evolutionary time scale (Rossine et al.,  
511 2020; Miele and De Monte, 2021; Forget et al., 2022). It is therefore possible that  
512 some of the principles illustrated by our observations in controlled lab settings  
513 may apply more broadly.

514 Growth phase differences at the moment of starvation are expected to oc-

515 cur in natural populations, where the history of cells during vegetative growth  
516 may vary greatly even within a single clone, due to different timing of spore  
517 germination, which sets the onset of demographic growth. As cyclic adenosine  
518 monophosphate (cAMP), the main signal driving aggregation of *D. discoideum*,  
519 diffuses very fast, it seems moreover likely that, in the soil, the aggregation do-  
520 mains of a few centimeters encompass micro-scale variation in biotic and abiotic  
521 factors. Here, we have used growth phase as a control parameter to continu-  
522 ously tune the phenotype of cells in a population, and explored large time lags  
523 in order to quantify differences with more ease. Whether the hypothesis of  
524 synchronous or asynchronous aggregation is closer to natural aggregative cycles  
525 would require additional studies in the wild.

526 Temporal differences are just one possible non-genetic source of cell phe-  
527 nototype variation that affects representation in the pool of spores. Plastic het-  
528 erogeneity could be caused by both environmental and physiological variation  
529 (Leach et al., 1973; Kuzdzal-Fick et al., 2010; Kubohara et al., 2007; Hiraoka  
530 et al., 2020). How it gets transmitted across the aggregation phase and through  
531 multicellular development is however still unclear. Indeed, given the fast changes  
532 in gene expression during *Dictyostelium*'s social cycle (Coates and Harwood,  
533 2001; González-Velasco et al., 2019), phenotypic variation forged during vege-  
534 tative growth should in principle fade shortly after the beginning of the social  
535 cycle. On the contrary, non-aggregated cells are irreversibly excluded from  
536 multicellular development, so that differences in aggregation efficiency might  
537 explain biases in isogenic populations derived from different sources of plastic  
538 variation. The possibility that initial mechanical heterogeneity may compete in  
539 more general settings with genetically-established social behaviour will require  
540 further exploration.

541 Single-cell phenotypes can influence aggregation probability irrespective of  
542 their genetic or non-genetic origin. However, their underpinning and the way  
543 they get transmitted along the multicellular cycle are important to understand  
544 the evolution of social behaviours. In particular, the prediction that 'cheaters'  
545 have a long-term advantage could be upended if short-term measures of repro-

546 ductive success do not carry over to successive generations, so that relevant  
547 variation is effectively neutral (Arias Del Angel et al., 2020; Nanjundiah, 2019;  
548 Forget et al., 2021). Our results point to a role of unpredictable variation that  
549 may be much larger than previously considered when associating a genotype to  
550 a social behaviour. Single-cell properties at the moment of aggregation and the  
551 derived biases are not only shaped by the genetic identity of a strain, but also  
552 by factors that are not under direct genetic control. Such factors have more  
553 to do with the ecological history of individual cells and its consequences on cell  
554 mechanics than with the genetically-determined behaviour in a multicellular, so-  
555 cial context. We can thus speculate that spore bias variability may have similar  
556 underpinnings, whatever the origin of phenotypic variation. If such explana-  
557 tion holds true also in natural populations, it may contribute to understand  
558 how aggregative multicellular life-cycles persist on evolutionary times despite  
559 unavoidable genetic conflicts.

560 **Acknowledgments**

561 This work has received support under the program "Investissements d'Avenir"  
562 launched by the French Government and implemented by ANR with the refer-  
563 ences ANR-10-LABX-54 MEMOLIFE and ANR-10-IDEX-0001-02 PSL\* Uni-  
564 versité Paris, Q-life ANR-17-CONV-6150005, and the project ANR-19-CE45-  
565 0002 'ADHeC' PSL research University.

566 **STAR★Methods**

567 ***Resource availability***

568 ***Lead contact***

569 Further information and requests for resources and reagents should be di-  
570 rected to and will be fulfilled by the Lead Contact, Dr. Mathieu Forget (for-  
571 get@bio.ens.psl.eu).

572 ***Materials Availability***

573 Materials generated in this study are available from the Lead Contact with  
574 a completed Materials Transfer Agreement.

575 ***Data and Code Availability***

576 The data and Python scripts generating the figures are available from the  
577 Lead Contact on request.

578 ***Key resources table***

579 ***Experimental model and subject details***

580 ***Strains and media***

581 *Dictyostelium discoideum* strains used in this study are AX3 (Dictybase  
582 ID: DBS0235545), AX3-chtA (Dictybase ID: DBS0236369), AX2 (donation by  
583 Clément Nizak), and the AX3-Bottom line (Adiba et al., 2022). AX3-GFP and  
584 AX3-RFP cell lines were obtained by transforming AX3 cells with plasmids  
585 pTX-RFP (Dictybase ID: 112) or pTX-GFP (Dictybase ID: 11) (Dubravcic  
586 et al., 2014). Both plasmids carry a gene for antibiotic resistance (Gentamicin  
587 418, Sigma-Aldrich: G418). Vegetative growth was started from frozen aliquots  
588 thawed every week to prevent the accumulation of undesired mutations due to  
589 prolonged culturing. Cells were grown in autoclaved HL5 medium (per L, 35.5  
590 g HL5 from *formedium*, pH=6.7) at 22°C with a concentration of 300 µg mL<sup>-1</sup>  
591 Streptomycin. Additional 20 µg mL<sup>-1</sup> G418 were supplemented when growing  
592 transformed strains. Pre-cultures were prepared by thawing frozen aliquots  
593 and growing in 25 cm<sup>2</sup> TC treated flasks (*CytoOne* CC7682-4825) with 10 mL  
594 culture medium for 30 hours, which allows the population to restart and enter  
595 the exponential growth phase. Cells were grown in static cultures to limit the  
596 risk of impaired cytokinesis as observed in shaken suspension. SorC buffer was  
597 prepared with 0.0555 g *CaCl*<sub>2</sub>; 0.55 g *Na*<sub>2</sub>*HPO*<sub>4</sub> 7*H*<sub>2</sub>*O*; 2 g *KH*<sub>2</sub>*PO*<sub>4</sub> per Liter.



Key resources table

| REAGENT or RESOURCE                    | SOURCE             | IDENTIFIER                      |
|----------------------------------------|--------------------|---------------------------------|
| Bacterial and virus strains            |                    |                                 |
| pTX-GFP                                | Dicty stock Center | 11                              |
| pTX-RFP                                | Dicty stock Center | 12                              |
| Experimental models: Organisms/strains |                    |                                 |
| Dictyostelium discoideum AX3           | Dicty Stock Center | DBS0235545                      |
| Dictyostelium discoideum AX2           | Dicty Stock Center | DBS0350762                      |
| Dictyostelium discoideum chtA          | Dicty Stock Center | DBS0236370                      |
| Dictyostelium discoideum AX3 Bottom    | Our lab            | Available from the lead contact |
| Deposited data                         |                    |                                 |
| Raw and analyzed data                  | This paper         | Available from the lead contact |

598 **Method details**

599 **Strains growth kinetics**

600 Growth kinetics of AX3-GFP, AX3-RFP, AX3-Bottom, AX3-chtA and AX2  
601 were characterized to estimate the timing of their growth cycle under the ex-  
602 perimental conditions (Fig. S1). Pre-cultures were diluted to  $10^5$  cells/ml and

603 re-suspended in fresh medium. At each time point, cell density was scored us-  
604 ing an hemocytometer. Three replicate cultures of each strain were examined  
605 in parallel.

606 *Starvation protocol*

607 In order to trigger *Dictyostelium* social cycle, cell populations were starved  
608 by washing out the nutrient medium via three successive centrifugations with  
609 buffer at 4°C (2000 rpm for 7 min). Cells were kept on ice between succes-  
610 sive rounds of centrifugation. After the last centrifugation, the pellet was re-  
611 suspended in buffer and the cell density adjusted to  $2.10^7$  cells  $\text{mL}^{-1}$ .

612 *Chrono-chimeras preparation*

613 Chrono-chimeras are composed of a mix of starved cells from two popu-  
614 lations harvested at different times during vegetative growth, *i.e* in different  
615 growth phases at the time  $t = 0$  when the experiment was begun (Fig. 1).  
616 Each population was started from a pre-culture diluted into fresh medium to a  
617 density of  $10^5$  cells  $\text{mL}^{-1}$ . In order for them to attain different growth phases  
618 (established based on the growth kinetics displayed in Fig. S1) at  $t = 0$ , cultures  
619 were started a fixed number of hours before the beginning of the experiment:  
620 24h hours for early-exponential phase (EE); 46 hours for mid-exponential phase  
621 (ME); 68 hours for late-exponential phase (LE) and 92 hours for early-stationary  
622 phase (ES). Beforehand, we made sure that transformed cells used in isogenic  
623 chronochimeras had indistinguishable growth curves (Fig. S1) to confirm that  
624 populations harvested after the same growth duration were in the same growth  
625 phase.

626 At  $t = 0\text{h}$  (Fig. 1), the two cultures were starved as described in the previous  
627 section. Starved cells from the two populations were then mixed so as to attain  
628 a target proportion. Deviations from the target proportion sometimes occurred  
629 due to fluctuations in dilution. The actual mix composition  $f$  was thus quan-  
630 tified by measuring the proportion of labelled cells by flow cytometry (Cube8  
631 cytometer, using Forward Scatter (FSC), Side Scatter (SSC), fluorescence chan-

632 nels : FL1 (GFP) and FL3 (RFP)). The accuracy of this measurement was first  
633 validated by comparison with manual countings with a hemocytometer. A vol-  
634 ume of 40  $\mu$ L of the mix (corresponding to  $8 \cdot 10^5$  cells) was then plated on 6 cm  
635 Petri dishes filled with 2 mL of 2% Phytagel (Sigma-Aldrich), following Dubrav-  
636 cic *et al* (Dubravcic et al., 2014). Cells were then incubated for 24 hours at 22°C.  
637 For each mix, three technical replicates were performed by plating three 40  $\mu$ L  
638 droplets of cell suspension on 3 different Petri dishes.

639 ***Quantification and statistical analysis***

640 *Quantification of spore bias in chrono-chimeras*

641 24h after plating, spores were harvested by washing the three Petri dishes  
642 corresponding to the three technical replicates in 500  $\mu$ L SorC buffer. Spores  
643 suspensions were incubated for 5 minutes with 0.5% Triton X-100 and then  
644 centrifuged for 7 min at 2000 rpm to remove stalk cells or unaggregated cells  
645 that would have survived the 24h-starvation-period. Finally, the pellet was re-  
646 suspended in 800 $\mu$ L SorC buffer and the proportion of GFP and/or RFP-spores  
647 was scored using a cytometer. Spore bias of the focal population was quantified  
648 as the deviation between its proportion in the spores  $f_S$  and its proportion  $f$  in  
649 the initial mix.

650 To quantify the effect of growth phase heterogeneity on spore bias, we mea-  
651 sured spore bias in chrono-chimeras composed of cells harvested in EE, ME, LE  
652 and ES phases of vegetative growth. Starting from the same batch of frozen  
653 aliquots, we tested a range (between 7 and 15 for each binary combination) of  
654 proportions  $f$  to assess frequency-dependent effects on spore bias. In principle,  
655 transformed strains were expected to produce no bias upon co-aggregation if  
656 the inserted fluorescent markers were strictly equivalent. However, we realized  
657 that chimeras composed of AX3-RFP and AX3-GFP cells grown in co-culture  
658 and both harvested in EE phase yielded a reproducible and significant bias (Fig.  
659 S2 A). The same bias was observed after having repeated the transformation  
660 protocol. In order to compensate for such labelling effect on spore bias, we  
661 subtracted from our measures of the spore bias the bias predicted based on

662 co-culture of differently labeled populations. Such intrinsic bias was computed  
663 for every frequency by interpolating with a third degree polynomial constrained  
664 with  $f = 0$  and  $f = 1$  (Fig. S2 A). In order to validate the use of this correc-  
665 tion, we confirmed that spore biases are reversed when the fluorescent labels are  
666 swapped in a chrono-chimera where cells in EE and ME phase are mixed (Fig.  
667 S2 B).

668 *Quantification of loner bias in chrono-chimeras*

669 loner bias was estimated in chrono-chimeras composed of a comparable num-  
670 ber of cells from the two populations (*i.e*  $f \sim 0.5$ ). Chrono-chimeras were pre-  
671 pared as previously described and plated on a Petri dish that was scanned and  
672 imaged at regular time intervals (5 min). Images were taken with an automated  
673 inverted microscope Zeiss Axio Observer Z1 with a Camera Orca Flash 4.0 LT  
674 Hamamatsu, using a 10X objective, which yielded phase contrast and fluores-  
675 cence images. Cell aggregation was considered complete when the last streams  
676 disappear. At that time, the number of unaggregated cells from the two pop-  
677 ulations was scored. Images corresponding to different areas of the Petri dish  
678 were first analysed using ImageJ software (Schindelin et al., 2012): aggregates  
679 were manually contoured and discarded and the "Find edges" ImageJ function  
680 was applied to highlight the contour of individual unaggregated cells.  $f_L$ , the  
681 fraction of loners produced by the focal population, was then estimated on sev-  
682 eral images as the number of unaggregated cells from this population divided  
683 by the total number of unaggregated cells. Based on this observable we were  
684 able to quantify the bias in the fraction of unaggregated cells as the deviation  
685 between the proportion of cells from the focal population found in the pool of  
686 unaggregated cells ( $f_L$ ) and  $f$ .

687 The chrono-chimeras for which we measured the loner bias in parallel of the  
688 spore bias (Fig. 3) were started from a stock of frozen aliquots with higher  
689 initial cell density than that used to measure spore bias for a range of  $f$  values  
690 (Fig. 2). If spore bias variation is overall consistent, the EE/ES chimeras showed  
691 a more variable and mostly positive spore bias, suggesting possible long-term

692 memory effects of population density.

693 *Motility assay*

694 Cells were first starved as previously described. After the last centrifugation,  
695 the pellet was re-suspended in 3 ml of buffer with a density of  $10^4$  cells  
696  $\text{mL}^{-1}$ . This cell density was sufficiently low for cells not to touch with one  
697 another during the assay. The cell suspension was then poured in an empty 6  
698 cm Petri dish. After 30 min –the time for the cells to attach to the bottom  
699 of the dish– cells trajectories were tracked for 1h (one image per 30 seconds)  
700 under an inverted microscope equipped with a moving stage and a 5X objective  
701 (alike to the measure of 'loner bias'). A large area of the Petri dish was scanned  
702 to analyze around 600 cells trajectories per sample. Cell trajectories were then  
703 automatically extracted from the time lapse movies using the Python package  
704 *Trackpy* (Allan et al., 2018). Three biological replicates were imaged for pop-  
705 ulations harvested in EE , ME , LE and ES phase. Another script was used  
706 to analyse trajectories. Mean square displacement (MSD) was computed as a  
707 function of time lag for every single cell. The slope of the  $\log(\text{MSD})$  vs  $\log(\text{time}$   
708  $\text{lag})$  curve at low  $\Delta t$  values ( $\Delta t < 150$  seconds) was used as a criterion to dis-  
709 tinguish slowly moving (slope  $<$  threshold) from fast-moving cells (otherwise).  
710 The threshold value was set to 0.5 in order to separate the two modes of the  
711 slope distribution (Fig. S5), and the proportion of cells belonging to each class  
712 was scored. Individual cell total displacement was quantified as the sum of cells  
713 displacements between two successive frames along the trajectory.

714 *Cell-substratum adhesion assay*

715 Cell-substratum adhesion was quantified based on cells' ability to attach to  
716 the bottom of a TC treated culture flask (*CytoOne*, CC7682-4325) as in Adiba  
717 et al. (2022). Cells were first starved as previously described. After the last  
718 centrifuging, the pellet was re-suspended in 10 ml buffer and cell density was  
719 adjusted to  $2,5.10^5$  cells  $\text{mL}^{-1}$ . The cell suspension was then incubated in a  
720 25  $\text{cm}^2$  flask (*CytoOne* CC7682-4825) for 30 minutes at 22 °C, the time for

721 cells to attach to the bottom of the flask. Each culture flask was gently shaken  
722 to resuspend cells that were not attached to the bottom of the flask. The  
723 supernatant (containing unattached cells) was transferred into a 15 ml tube.  
724 Cell density in the supernatant was measured using a hemocytometer. The  
725 fraction of adhesive cells was obtained by dividing the density of cells in the  
726 supernatant by the total cell density inoculated in the flask and used as a proxy  
727 for cell-substrate adhesion level. This assay was performed on three biological  
728 replicates for populations harvested in EE , ME , LE and ES phase.

729 *Cell-cell adhesion assay*

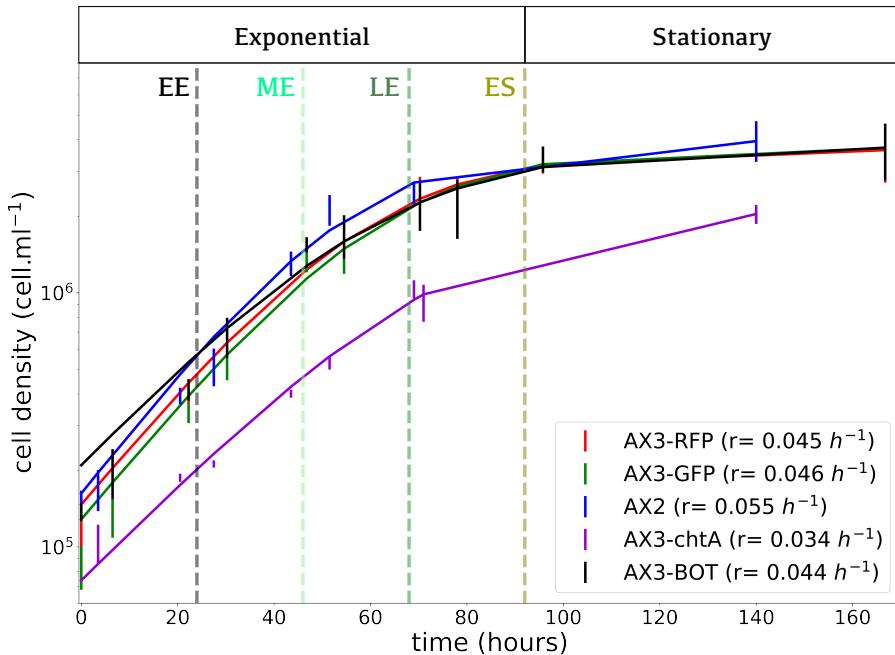
730 Cell-cell adhesion was quantified with a modification of the method by Ger-  
731 risch (Gerisch, 1968). Cells were first starved as previously described. After the  
732 last centrifugation, the pellet was re-suspended in 0.5 ml buffer at a density of  
733  $10^6$  cells mL<sup>-1</sup>. The cell suspension was rotated at 150 rpm and 22°C for 1  
734 hour, allowing cells to form multicellular clumps. The number of unaggregated  
735 cells (singlets and doublets) was determined using a hemocytometer. The per-  
736 centage of cells that had been recruited into aggregates was calculated as the  
737 total cell density minus the density of unaggregated cells, divided by the total  
738 cell density. This quantity was used as a proxy for cell-cell adhesion level. The  
739 assay was performed on three biological replicates for populations harvested in  
740 EE, ME , LE and ES phase.

741 *Statistical analysis*

742 Significance of pairwise comparisons was established based on two-sample  
743 Student t test or Mann–Whitney U test using the python module *Scipy* (Virta-  
744 nen et al., 2020). Significance of the effect of populations growth phase on cells'  
745 total displacement was tested with a linear mixed effects model using replicates  
746 as random effects ('nlme' library, R). The significance level was set equal to 5%.

747 **Limitations of the study**

748 A first limitation of our experimental approach comes from the high level of  
749 variability in spore bias measurements. Such variability seems to be irreducible  
750 even in controlled experimental conditions, and constrains the extent to which  
751 the effect of small phenotypic differences can be quantified. For this reason, we  
752 have pushed temporal differences in chronochimeras to extreme levels, which  
753 may not be attained in natural settings.


754 Second, our experimental setup does not allow to count the total number of  
755 loners produced at the end of aggregation, but only their composition. As a re-  
756 sult, we could not test if the bias established during chronochimeras aggregation  
757 explains exactly the bias in the spores pool composition observed at the end of  
758 development (which would anyway require to assume a fixed proportioning of  
759 cell types in the multicellular body).

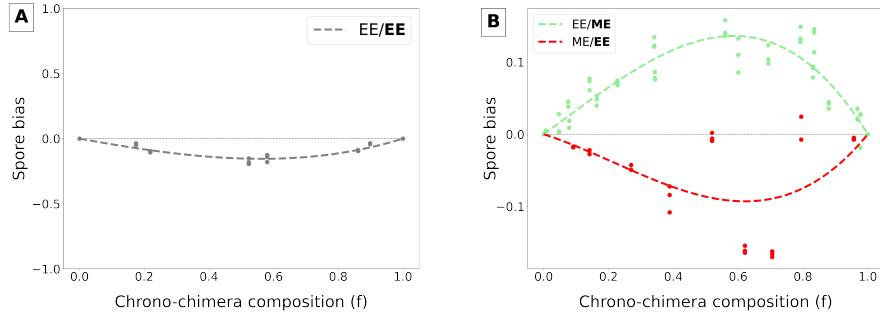
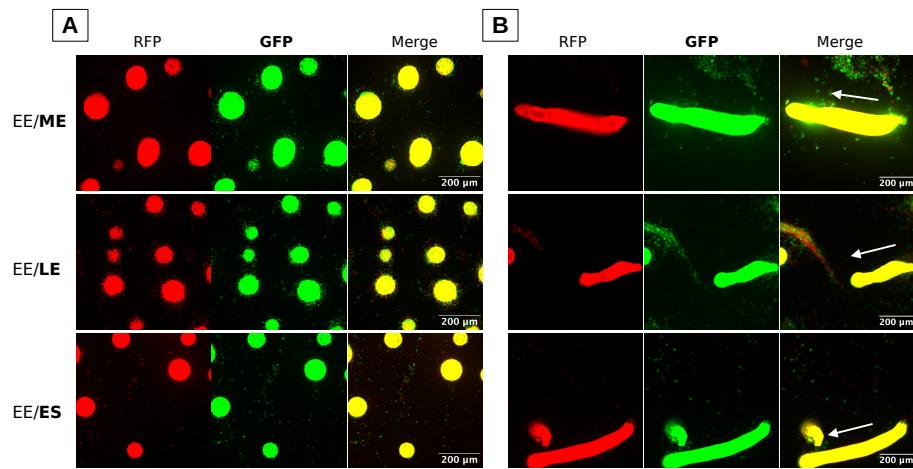
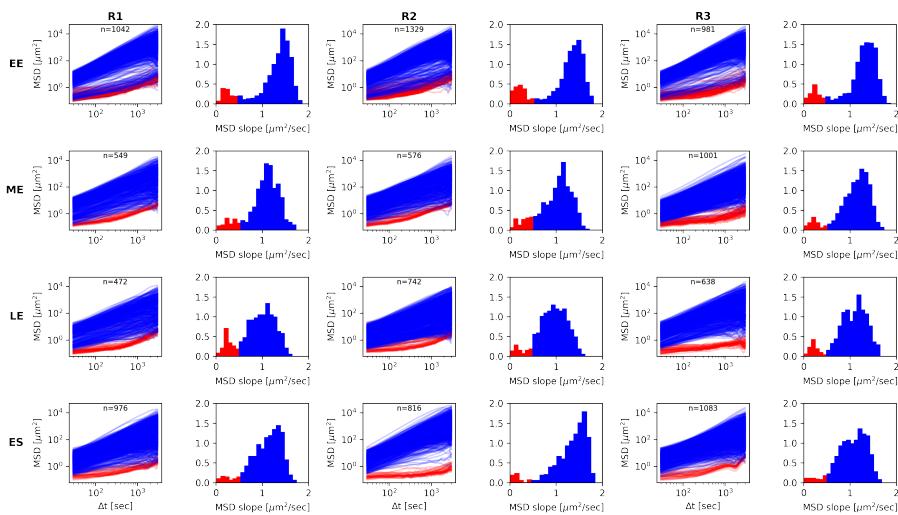
760 Finally, when exploring the mechanistic basis of loner bias, we did not explore  
761 single-cell heterogeneity in signalling and chemotaxis. Characterizing cAMP  
762 signaling dynamics of populations harvested in different growth phases would  
763 allow to test the hypothesis that variation in population signaling properties  
764 is a source of loner bias (Rossine et al., 2020). In particular, differences in  
765 signalling may explain the inconsistency between the loner bias observed in  
766 EE/ES chronochimeras and the motility properties of ES-cells.

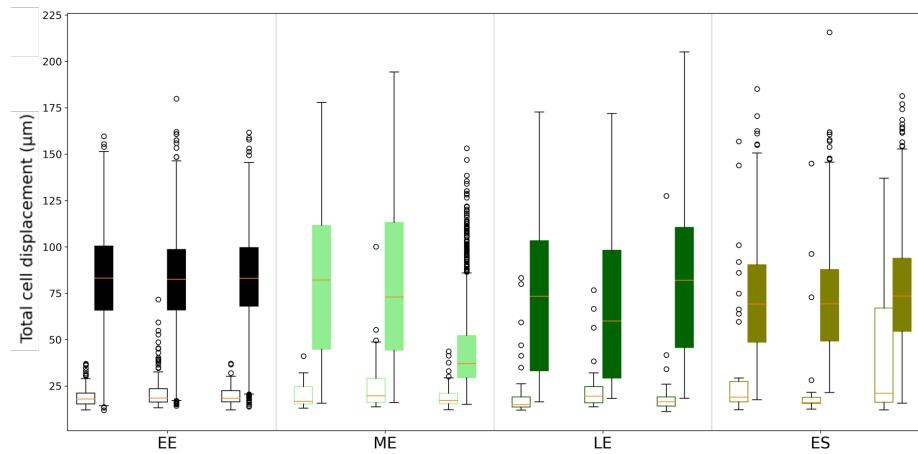
767 **Author contributions**

768 MF, SA and SD: conceptualization, methodology. MF: investigation. MF,  
769 SA and SD: writing—original draft and revised manuscript. SD: funding ac-  
770 quisition. All authors contributed to the article and approved the submitted  
771 version.

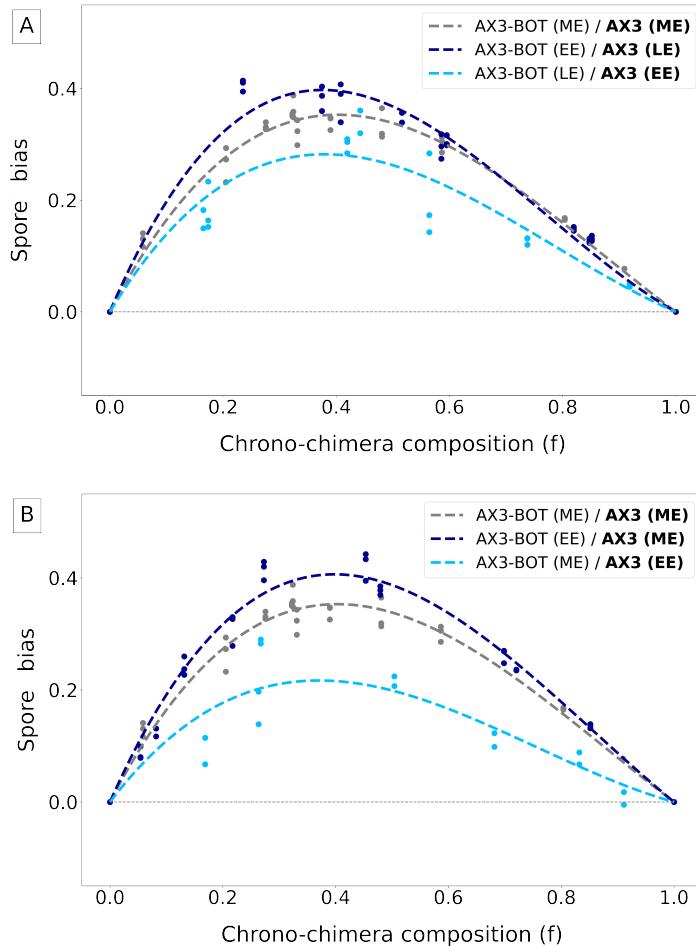
772 **Supplementary Information**



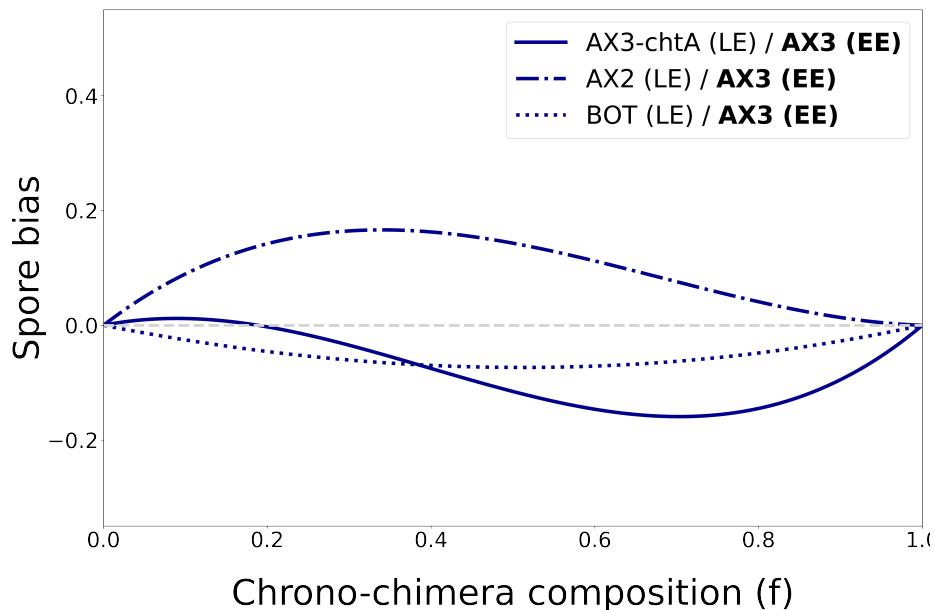






Figure S2: **A: AX3-GFP spore bias at the end of chimeric development with AX3-RFP cells.** The two populations were grown in co-cultures for 24 hours prior to aggregation to ensure they are in the same growth phase at the onset of the social cycle. Transformation with different plasmids introduced a spore bias (consistent when the transformation was repeated). We used this frequency-dependent bias to correct the measures realized in isogenic chronochimeras (main text and Methods). **B: Check for consistency of spore bias measures.** Corrected spore bias measured in two types of 'chrono-chimeras', using the AX3-GFP as the reference population: the AX3-GFP population was harvested in ME phase and mixed with a EE AX3-RFP population (light green line), and vice-versa (red line). Spore biases are reversed when the fluorescent labels are swapped, validating the use of the frequency correction.




**Figure S3: Heterogeneity in populations growth phase at the onset of starvation does not translate into detectable cell sorting during *Dictyostelium* social cycle.**  
AX3-RFP cells harvested in EE phase of the growth cycle are mixed in chimeras with AX3-GFP cells harvested either in ME (first row), LE (second row) or ES phase (third row). **A:** RFP and GFP-cell populations do not segregate during aggregation but rather form chimeric aggregates with no noticeable difference in composition between aggregates, nor evident spatial sorting within aggregates. **B:** RFP and GFP-cell populations do not show significant signs of sorting along the slug axis during its migration. The white arrow indicates the direction of slug migration. Notice that since all cells bear a fluorescent marker, the high density of the mound and slug stages make it impossible to distinguish single cells in the images.




**Figure S4: Bimodal distribution of single-cell motility depends on growth phase.**  
 Individual mean square displacement of cells from populations harvested in EE, ME, LE and ES phase as a function of time lag ( $\Delta t$ ). Cells were clustered into two classes based on the initial rate of increase of the MSD (slope of the log MSD vs log  $\Delta t$ ,  $\Delta t < 150$  secs, below or above the threshold value 0.5). As shown in Fig. 4 C, the proportion of cells belonging to the non-migrating class decreases in the course of vegetative growth.



**Figure S5: Total cell displacement of cells harvested from populations in EE, ME, LE and ES phases.** Cells total displacement during the time of the experiment (1h) measured for the non-migrating cells class (empty boxes) and the migrating cells class (filled boxes) for populations harvested in EE, ME, LE and ES phase. Total displacement of non-migrating cells is significantly lower than that of migrating cells in every populations (Mann–Whitney U test, p-values < 0.0005). No significant variation in total displacement of migrating cells was observed between populations harvested in different growth phases (mixed effects model ANOVA, p-value=0.4691).



**Figure S6: Spore bias measured in chrono-chimeras with a lineage selected for increased adhesion.** Aggregation was initiated by mixing a strain that was obtained through experimental evolution for higher adhesiveness to the substratum (AX3-Bottom, Adiba et al. (2022)) with its ancestor (AX3). Three different combinations of growth phases are considered (as indicated in the legend). **A:** Strains are grown in co-culture and harvested in ME phase (gray line), the focal population is harvested in EE phase and the other in ME phase (dark blue line), or vice-versa (light blue line). **B:** Strains are grown in co-culture and harvested in ME phase (gray line), the focal population is harvested in EE phase and the other in LE phase (dark blue line), or vice-versa (light blue line). Spore bias variations are consistent whether the more advanced population is harvested in middle or late exponential phase, as it was observed for isogenic strains (Fig. 2), but starting from a high baseline bias.



**Figure S7: Contribution of growth phase differences to spore bias depends on genetic background.** Comparison of spore bias when the focal population AX3 (EE) is mixed with different strains in late exponential phase (LE). For every chimera, the curve indicates the deviation of the fitted spore bias from that for reference chimeras, where the two strains were harvested in the same growth phase (ME). The qualitative effect of growth phase differences is not consistent across the different chrono-chimeras, suggesting that it does not simply add up to variation induced by genetic differences, but instead depends on the genetic background.

773 **References**

774 Adiba, S., Forget, M., De Monte, S., 2022. Evolving social behaviour through  
775 selection of single-cell adhesion in *Dictyostelium discoideum*. *iScience* ,  
776 105006doi:10.1016/j.isci.2022.105006.

777 Allan, D.B., Caswell, T., Keim, N.C., van der Wel, C.M., 2018. *trackpy*: Trackpy  
778 v0.4.1. doi:10.5281/ZENODO.1226458.

779 Antolović, V., Lenn, T., Miermont, A., Chubb, J.R., 2019. Transition state  
780 dynamics during a stochastic fate choice. *Development* 146, dev173740.  
781 doi:10.1242/dev.173740.

782 Araki, T., Nakao, H., Takeuchi, I., Maeda, Y., 1994. Cell-cycle-dependent sort-  
783 ing in the development of *Dictyostelium* cells. *Developmental Biology* 162,  
784 221–228. doi:10.1006/dbio.1994.1080.

785 Arias Del Angel, J.A., Nanjundiah, V., Benítez, M., Newman, S.A., 2020.  
786 Interplay of mesoscale physics and agent-like behaviors in the parallel evo-  
787 lution of aggregative multicellularity. *EvoDevo* 11, 21. doi:10.1186/  
788 s13227-020-00165-8.

789 Azhar, M., Kennedy, P.K., Pande, G., Espiritu, M., Holloman, W., Brazill,  
790 D., Gomer, R.H., Nanjundiah, V., 2001. Cell cycle phase, cellular Ca<sup>2+</sup>  
791 and development in *Dictyostelium discoideum*. *The International Journal of*  
792 *Developmental Biology* 45, 405–414.

793 Buttery, N.J., Rozen, D.E., Wolf, J.B., Thompson, C.R., 2009. Quantification  
794 of Social Behavior in *D. discoideum* Reveals Complex Fixed and Facultative  
795 Strategies. *Current Biology* 19, 1373–1377. doi:10.1016/j.cub.2009.06.  
796 058.

797 Chattwood, A., Thompson, C.R.L., 2011. Non-genetic heterogeneity and cell  
798 fate choice in *dictyostelium discoideum*. *Development, Growth & Differ-  
799 entiation* 53, 558–566. doi:10.1111/j.1440-169x.2011.01270.x.

800 Coates, J.C., Harwood, a.J., 2001. Cell-cell adhesion and signal transduction  
801 during *Dictyostelium* development. *Journal of Cell Science* 114, 4349–4358.  
802 doi:10.1078/1434-4610-00039.

803 Cochet-Escartin, O., Demircigil, M., Hirose, S., Allais, B., Gonzalo, P.,  
804 Mikaelian, I., Funamoto, K., Anjard, C., Calvez, V., Rieu, J.P., 2021. Hypoxia  
805 triggers collective aerotactic migration in *dictyostelium discoideum*. *eLife* 10.  
806 doi:10.7554/elife.64731.

807 Dubravcic, D., van Baalen, M., Nizak, C., 2014. An evolutionarily significant  
808 unicellular strategy in response to starvation stress in *Dictyostelium* social  
809 amoebae. *F1000Research* 3. doi:10.12688/f1000research.4218.1.

810 Ennis, H.L., Dao, D.N., Pukatzki, S.U., Kessin, R.H., 2000. *Dictyostelium*  
811 amoebae lacking an F-box protein form spores rather than stalk in chimeras  
812 with wild type. *Proceedings of the National Academy of Sciences* 97, 3292–  
813 3297. doi:10.1073/pnas.97.7.3292.

814 Escalante, R., Wessels, D., Soll, D.R., Loomis, W.F., 1997. Chemotaxis to  
815 cAMP and slug migration in *Dictyostelium* both depend on migA, a BTB  
816 protein. *Molecular Biology of the Cell* 8, 1763–1775. doi:10.1091/mbc.8.9.  
817 1763.

818 Forget, M., Adiba, S., De Monte, S., 2021. Social conflicts in *Dictyostelium*  
819 *discoideum* : a matter of scales. *Peer Community Journal* 1, e58. doi:10.  
820 24072/pcjournal.39.

821 Forget, M., Adiba, S., Gregory Brunnet, L., De Monte, S., 2022. Heterogeneous  
822 individual motility biases group composition in a model of aggregating cells.  
823 *Frontiers in Ecology and Evolution* 10. doi:10.3389/fevo.2022.1052309.

824 Fortunato, A., Strassmann, J.E., Santorelli, L., Queller, D.C., 2003. Co-  
825 occurrence in nature of different clones of the social amoeba, *Dictyostelium*  
826 *discoideum*. *Molecular Ecology* 12, 1031–1038. doi:10.1046/j.1365-294X.  
827 2003.01792.x.

828 Garcia, T., Brunnet, L.G., De Monte, S., 2014. Differential adhesion between  
829 moving particles as a mechanism for the evolution of social groups. PLoS  
830 computational biology 10, e1003482. doi:10.1371/journal.pcbi.1003482.

831 Garcia, T., Doulcier, G., De Monte, S., 2015. The evolution of adhesiveness as  
832 a social adaptation. eLife 4, e08595. doi:10.7554/eLife.08595.

833 Gerisch, G., 1968. Chapter 6 Cell Aggregation and Differentiation in Dic-  
834 tyostelium, in: Current Topics in Developmental Biology. Elsevier. volume 3,  
835 pp. 157–197. doi:10.1016/S0070-2153(08)60354-3.

836 Giese, A., Loo, M.A., Tran, N., Haskett, D., Coons, S.W., Berens, M.E., 1996.  
837 Dichotomy of astrocytoma migration and proliferation. International Jour-  
838 nal of Cancer 67, 275–282. doi:10.1002/(sici)1097-0215(19960717)67:  
839 2<275::aid-ijc20>3.0.co;2-9.

840 Gilbert, O.M., Foster, K.R., Mehdiabadi, N.J., Strassmann, J.E., Queller, D.C.,  
841 2007. High relatedness maintains multicellular cooperation in a social amoeba  
842 by controlling cheater mutants. Proceedings of the National Academy of  
843 Sciences 104, 8913–8917. doi:10.1073/pnas.0702723104.

844 Gomer, R.H., Ammann, R.R., 1996. A Cell-Cycle Phase-Associated Cell-Type  
845 Choice Mechanism Monitors the Cell Cycle Rather Than Using an Indepen-  
846 dent Timer. Developmental Biology 174, 82–91. doi:10.1006/dbio.1996.  
847 0053.

848 Gomer, R.H., Jang, W., Brazill, D., 2011. Cell density sensing and  
849 size determination. Development, Growth & Differentiation 53, 482–  
850 494. doi:<https://doi.org/10.1111/j.1440-169X.2010.01248.x>,  
851 arXiv:<https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1440-169X.2010.01248.x>.

852 González-Velasco, De Las Rivas, Lacal, 2019. Proteomic and Transcrip-  
853 tomic Profiling Identifies Early Developmentally Regulated Proteins in Dic-  
854 tyostelium Discoideum. Cells 8, 1187. doi:10.3390/cells8101187.

855 Goury-Sistla, P., Nanjundiah, V., Pande, G., 2012. Bimodal distribution of  
856 motility and cell fate in *Dictyostelium discoideum*. International Journal of  
857 Developmental Biology 56, 263–272. doi:10.1387/ijdb.113384ps.

858 Gruenheit, N., Parkinson, K., Brimson, C.A., Kuwana, S., Johnson, E.J., Na-  
859 gayama, K., Llewellyn, J., Salvidge, W.M., Stewart, B., Keller, T., van Zon,  
860 W., Cotter, S.L., Thompson, C.R.L., 2018. Cell cycle heterogeneity can gen-  
861 erate robust cell type proportioning. Developmental Cell 47, 494–508.e4.  
862 doi:10.1016/j.devcel.2018.09.023.

863 Hardin, 1968. The Tragedy of the Commons. Science 162, 1243–1248. doi:10.  
864 1126/science.162.3859.1243.

865 Hiraoka, H., Nakano, T., Kuwana, S., Fukuzawa, M., Hirano, Y., Ueda, M.,  
866 Haraguchi, T., Hiraoka, Y., 2020. Intracellular ATP levels influence cell  
867 fates in *Dictyostelium discoideum* differentiation. Genes to Cells 25, 312–  
868 326. doi:10.1111/gtc.12763.

869 Hiraoka, H., Wang, J., Nakano, T., Hirano, Y., Yamazaki, S., Hiraoka, Y.,  
870 Haraguchi, T., 2022. scpATP/scp levels influence cell movement during the  
871 mound phase in *dictyostelium discoideum*/i as revealed by scpATP/scp vi-  
872 sualization and simulation. FEBS Open Bio 12, 2042–2056. doi:10.1002/  
873 2211-5463.13480.

874 Hirose, S., Benabentos, R., Ho, H.I., Kuspa, A., Shaulsky, G., 2011. Self-  
875 Recognition in Social Amoebae Is Mediated by Allelic Pairs of Tiger Genes.  
876 Science 333, 467–470. doi:10.1126/science.1203903.

877 Houle, J., Balthazar, J., West, C.M., 1989. A glycosylation mutation affects cell  
878 fate in chimeras of *Dictyostelium discoideum*. Proceedings of the National  
879 Academy of Sciences 86, 3679–3683. doi:10.1073/pnas.86.10.3679.

880 Huang, H.J., Takagawa, D., Weeks, G., Pears, C., 1997. Cells at the Center  
881 of *Dictyostelium* Aggregates Become Spores. Developmental Biology 192, 564–  
882 571. doi:10.1006/dbio.1997.8769.

883 Jang, W., Gomer, R.H., 2011. Initial cell type choice in *dictyostelium*. *Eukary-  
884 otic Cell* 10, 150–155. doi:10.1128/ec.00219-10.

885 Joshi, J., Couzin, I.D., Levin, S.A., Guttal, V., 2017. Mobility can promote  
886 the evolution of cooperation via emergent self-assortment dynamics. *PLOS  
887 Computational Biology* 13, e1005732. doi:10.1371/journal.pcbi.1005732.

888 Katoh-Kurasawa, M., Hrovatin, K., Hirose, S., Webb, A., Ho, H.I., Zupan, B.,  
889 Shaulsky, G., 2021. Transcriptional milestones in *idictyostelium/i* develop-  
890 ment. *Genome Research* 31, 1498–1511. doi:10.1101/gr.275496.121.

891 Kessin, R.H., 2001. *Dictyostelium: Evolution, Cell Biology, and the Devel-  
892 opment of Multicellularity*. Cambridge University Press. Google-Books-ID:  
893 rm7wHyUYSiAC.

894 Kolb, T., Klotsa, D., 2020. Active binary mixtures of fast and slow hard spheres.  
895 *Soft Matter* 16, 1967–1978. doi:10.1039/C9SM01799B.

896 Kubohara, Y., Arai, A., Gokan, N., Hosaka, K., 2007. Pharmacological ev-  
897 idence that stalk cell differentiation involves increases in the intracellular  
898  $\text{Ca}^{2+}$  and  $\text{H}^+$  concentrations in *Dictyostelium discoideum*:  $\text{H}^+$ ,  $\text{Ca}^{2+}$  and  
899 cell differentiation. *Development, Growth & Differentiation* 49, 253–264.  
900 doi:10.1111/j.1440-169X.2007.00920.x.

901 Kuzdzal-Fick, J.J., Fox, S.A., Strassmann, J.E., Queller, D.C., 2011. High  
902 relatedness is necessary and sufficient to maintain multicellularity in *Dic-  
903 tyostelium*. *Science (New York, N.Y.)* 334, 1548–51. doi:10.1126/science.  
904 1213272.

905 Kuzdzal-Fick, J.J., Queller, D.C., Strassmann, J.E., 2010. An invitation to die:  
906 initiators of sociality in a social amoeba become selfish spores. *Biology Letters*  
907 6, 800–802. doi:10.1098/rsbl.2010.0257.

908 Leach, C.K., Ashworth, J.M., Garrod, D.R., 1973. Cell sorting out during  
909 the differentiation of mixtures of metabolically distinct populations of *Dic-*

910       *tyostelium discoideum*. Development 29, 647–661. doi:10.1242/dev.29.3.

911       647.

912       Loomis, W., 1971. Sensitivity of *Dictyostelium discoideum* to nucleic

913       acid analogues. Experimental Cell Research 64, 484–486. doi:10.1016/

914       0014-4827(71)90107-8.

915       Madgwick, P.G., Stewart, B., Belcher, L.J., Thompson, C.R.L., Wolf, J.B.,

916       2018. Strategic investment explains patterns of cooperation and cheating in a

917       microbe. Proceedings of the National Academy of Sciences 115, E4823–E4832.

918       doi:10.1073/pnas.1716087115.

919       Martínez-García, R., Tarnita, C.E., 2016. Lack of ecological and life history con-

920       text can create the illusion of social interactions in *dictyostelium discoideum*.

921       PLOS Computational Biology 12, e1005246. doi:10.1371/journal.pcbi.

922       1005246.

923       Martínez-García, R., Tarnita, C.E., 2018. Correction: Lack of ecologi-

924       cal and life history context can create the illusion of social interactions

925       in *dictyostelium discoideum*. PLOS Computational Biology 14, e1005850.

926       doi:10.1371/journal.pcbi.1005850.

927       McDonald, S.A., Durston, A.J., 1984. The cell cycle and sorting behaviour in

928       *Dictyostelium discoideum*. Journal of Cell Science 66, 195–204.

929       Miele, L., De Monte, S., 2021. Aggregative cycles evolve as a solution to conflicts

930       in social investment. PLOS Computational Biology 17, e1008617. doi:10.

931       1371/journal.pcbi.1008617.

932       Nagasaki, A., de Hostos, E.L., Uyeda, T.Q.P., 2002. Genetic and morphological

933       evidence for two parallel pathways of cell-cycle-coupled cytokinesis in *Dic-*

934       *tyostelium*. Journal of Cell Science 115, 2241–2251. doi:10.1242/jcs.115.

935       10.2241.

936 Nanjundiah, V., 2019. Many roads lead to Rome: Neutral phenotypes in mi-  
937 croorganisms. *Journal of Experimental Zoology Part B: Molecular and De-*  
938 *velopmental Evolution* 332, 339–348. doi:10.1002/jez.b.22909.

939 Noh, S., Christopher, L., Strassmann, J.E., Queller, D.C., 2020. Wild  
940 *dictyostelium discoideum*/i social amoebae show plastic responses to the pres-  
941 ence of nonrelatives during multicellular development. *Ecology and Evolution*  
942 10, 1119–1134. doi:10.1002/ece3.5924.

943 Parkinson, K., Butterly, N.J., Wolf, J.B., Thompson, C.R.L., 2011. A simple  
944 mechanism for complex social behavior. *PLoS Biology* 9, e1001039. doi:10.  
945 1371/journal.pbio.1001039.

946 Plak, K., Keizer-Gunnink, I., van Haastert, P.J.M., Kortholt, A., 2014. Rap1-  
947 dependent pathways coordinate cytokinesis in *Dictyostelium*. *Molecular Bi-*  
948 *iology of the Cell* 25, 4195–4204. doi:10.1091/mbc.e14-08-1285.

949 Pollitt, A.Y., Insall, R.H., 2008. Abi mutants in *dictyostelium* reveal specific  
950 roles for the SCAR/WAVE complex in cytokinesis. *Current Biology* 18, 203–  
951 210. doi:10.1016/j.cub.2008.01.026.

952 Rainey, P.B., De Monte, S., 2014. Resolving conflicts during the evolutionary  
953 transition to multicellular life. *Annual Review of Ecology, Evolution, and*  
954 *Systematics* 45, 599–620. doi:10.1146/annurev-ecolsys-120213-091740.

955 Rankin, D.J., Bargum, K., Kokko, H., 2007. The tragedy of the commons in  
956 evolutionary biology. *Trends in Ecology & Evolution* 22, 643–651. doi:10.  
957 1016/j.tree.2007.07.009.

958 Raper, K.B., 1940. Pseudoplasmodium formation and organization in *Dic-*  
959 *tyostelium discoideum*. *Journal of the Elisha Mitchell Scientific Society* 56.2,  
960 241–282.

961 Rossine, F.W., Martinez-Garcia, R., Sgro, A.E., Gregor, T., Tarnita, C.E.,  
962 2020. Eco-evolutionary significance of “loners”. *PLOS Biology* 18, e3000642.  
963 doi:10.1371/journal.pbio.3000642.

964 S. Punla, C., <https://orcid.org/0000-0002-1094-0018>, cspunla@bpsu.edu.ph,  
965 C. Farro, R., <https://orcid.org/0000-0002-3571-2716>, rcfarro@bpsu.edu.ph,  
966 Bataan Peninsula State University Dinalupihan, Bataan, Philippines, 2022.  
967 Are we there yet?: An analysis of the competencies of BEED graduates of  
968 BPSU-DC. International Multidisciplinary Research Journal 4, 50–59.

969 Sathe, S., Khetan, N., Nanjundiah, V., 2013. Interspecies and intraspecies  
970 interactions in social amoebae. Journal of Evolutionary Biology 27, 349–362.  
971 doi:10.1111/jeb.12298.

972 Sathe, S., Nanjundiah, V., 2018. Complex interactions underpin social be-  
973 haviour in *Dictyostelium giganteum*. Behavioral Ecology and Sociobiology  
974 72, 167. doi:10.1007/s00265-018-2572-9.

975 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Piet-  
976 zsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.Y.,  
977 White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A., 2012.  
978 Fiji: an open-source platform for biological-image analysis. Nature Methods  
979 9, 676–682. doi:10.1038/nmeth.2019.

980 Smith, J., Queller, D.C., Strassmann, J.E., 2014. Fruiting bodies of the social  
981 amoeba *Dictyostelium discoideum* increase spore transport by *Drosophila*.  
982 BMC evolutionary biology 14, 105. doi:10.1186/1471-2148-14-105.

983 Soll, D., Yarger, J., Mirick, M., 1976. Stationary phase and the cell cycle of  
984 *Dictyostelium discoideum* in liquid nutrient medium. Journal of Cell Science  
985 20, 513–523. doi:10.1242/jcs.20.3.513.

986 Strassmann, J.E., Queller, D.C., 2011. Evolution of cooperation and control of  
987 cheating in a social microbe. Proceedings of the National Academy of Sciences  
988 108, 10855–10862. doi:10.1073/pnas.1102451108.

989 Sucgang, R., Kuo, A., Tian, X., Salerno, W., Parikh, A., Feasley, C.L., Dalin,  
990 E., Tu, H., Huang, E., Barry, K., Lindquist, E., Shapiro, H., Bruce, D.,  
991 Schmutz, J., Salamov, A., Fey, P., Gaudet, P., Anjard, C., Babu, M.M.,

992 Basu, S., Bushmanova, Y., van der Wel, H., Katoh-Kurasawa, M., Dinh,  
993 C., Coutinho, P.M., Saito, T., Elias, M., Schaap, P., Kay, R.R., Henrissat,  
994 B., Eichinger, L., Rivero, F., Putnam, N.H., West, C.M., Loomis, W.F.,  
995 Chisholm, R.L., Shaulsky, G., Strassmann, J.E., Queller, D.C., Kuspa, A.,  
996 Grigoriev, I.V., 2011. Comparative genomics of the social amoebae *Dic-*  
997 *tyostelium discoideum* and *Dictyostelium purpureum*. *Genome Biology* 12,  
998 R20. doi:10.1186/gb-2011-12-2-r20.

999 Tarnita, C.E., Washburne, A., Martinez-Garcia, R., Sgro, A.E., Levin, S.A.,  
1000 2015. Fitness tradeoffs between spores and nonaggregating cells can explain  
1001 the coexistence of diverse genotypes in cellular slime molds. *Proceedings*  
1002 *of the National Academy of Sciences* 112, 2776–2781. doi:10.1073/pnas.  
1003 1424242112.

1004 Thompson, C.R., Kay, R.R., 2000. Cell-Fate Choice in *Dictyostelium*: Intrinsic  
1005 Biases Modulate Sensitivity to DIF Signaling. *Developmental Biology* 227,  
1006 56–64. doi:10.1006/dbio.2000.9877.

1007 Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cour-  
1008 napeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der  
1009 Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J.,  
1010 Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, , Feng, Y., Moore, E.W.,  
1011 VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quin-  
1012 tero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van  
1013 Mulbregt, P., SciPy 1.0 Contributors, Vijaykumar, A., Bardelli, A.P., Roth-  
1014 berg, A., Hilboll, A., Kloeckner, A., Scopatz, A., Lee, A., Rokem, A., Woods,  
1015 C.N., Fulton, C., Masson, C., Häggström, C., Fitzgerald, C., Nicholson, D.A.,  
1016 Hagen, D.R., Pasechnik, D.V., Olivetti, E., Martin, E., Wieser, E., Silva, F.,  
1017 Lenders, F., Wilhelm, F., Young, G., Price, G.A., Ingold, G.L., Allen, G.E.,  
1018 Lee, G.R., Audren, H., Probst, I., Dietrich, J.P., Silterra, J., Webber, J.T.,  
1019 Slavić, J., Nothman, J., Buchner, J., Kulick, J., Schönberger, J.L., de Mi-  
1020 randa Cardoso, J.V., Reimer, J., Harrington, J., Rodríguez, J.L.C., Nunez-  
1021 Iglesias, J., Kuczynski, J., Tritz, K., Thoma, M., Newville, M., Kümmeler,

1022 M., Bolingbroke, M., Tartre, M., Pak, M., Smith, N.J., Nowaczyk, N., She-  
1023 banov, N., Pavlyk, O., Brodtkorb, P.A., Lee, P., McGibbon, R.T., Feldbauer,  
1024 R., Lewis, S., Tygier, S., Sievert, S., Vigna, S., Peterson, S., More, S., Pudlik,  
1025 T., Oshima, T., Pingel, T.J., Robitaille, T.P., Spura, T., Jones, T.R., Cera,  
1026 T., Leslie, T., Zito, T., Krauss, T., Upadhyay, U., Halchenko, Y.O., Vázquez-  
1027 Baeza, Y., 2020. SciPy 1.0: fundamental algorithms for scientific computing  
1028 in Python. *Nature Methods* 17, 261–272. doi:10.1038/s41592-019-0686-2.

1029 Yuen, I.S., Jain, R., Bishop, J.D., Lindsey, D.F., Deery, W.J.,  
1030 Van Haastert, P.J., Gomer, R.H., 1995. A density-sensing fac-  
1031 tor regulates signal transduction in *Dictyostelium*. *Journal of*  
1032 *Cell Biology* 129, 1251–1262. doi:10.1083/jcb.129.5.1251,  
1033 arXiv:<https://rupress.org/jcb/article-pdf/129/5/1251/1264393/1251.pdf>.

1034 Zada-Hames, I.M., Ashworth, J.M., 1978. The cell cycle and its relationship to  
1035 development in *Dictyostelium discoideum*. *Developmental Biology* 63, 307–  
1036 320. doi:10.1016/0012-1606(78)90136-7.

1037 Zahavi, A., Harris, K.D., Nanjundiah, V., 2018. An individual-level selection  
1038 model for the apparent altruism exhibited by cellular slime moulds. *Journal*  
1039 *of Biosciences* 43, 49–58. doi:10.1007/s12038-018-9734-9.