

1 **Structural surfaceomics reveals an AML-specific conformation of Integrin- β 2**
2 **as a CAR-T therapy target**
3

4 **Authors:**

5 Kamal Mandal¹, Gianina Wicaksono¹, Clinton Yu³, Jarrett J. Adams⁴, Michael R. Hoopmann⁷, William C.
6 Temple^{2,9}, Bonell Patiño Escobar¹, Maryna Gorelik⁴, Christian H. Ihling⁶, Matthew A. Nix¹, Akul Naik¹,
7 Emilio Ramos¹, Corynn Kasap⁵, Veronica Steri⁸, Juan Antonio Camara Serrano⁸,
8 Fernando Salangsang⁸, Paul Phojanakong⁸, Melanie McMillan¹, Victor Gavallos¹, Andrew D. Leavitt¹,
9 Andrea Sinz⁶, Benjamin J. Huang², Elliot Stieglitz^{2,8}, Catherine C. Smith⁵, Robert L. Moritz⁷, Sachdeva S.
10 Sidhu⁴, Lan Huang³, Arun P. Wiita^{1,8,#}
11

12 **Affiliations:**

13 ¹Department of Laboratory Medicine, University of California, San Francisco, CA, USA

14 ²Dept. of Pediatrics, Division of Hematology/Oncology, University of California, San Francisco, CA,
15 USA

16 ³Department of Physiology & Biophysics, University of California, Irvine, CA, USA

17 ⁴The Donnelly Centre, University of Toronto, ON, Canada

18 ⁵Dept. of Medicine, Division of Hematology/Oncology, University of California, San Francisco, CA,
19 USA

20 ⁶Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin-Luther
21 University Halle-Wittenberg, Halle, Germany

22 ⁷Institute for Systems Biology, Seattle, WA, USA

23 ⁸Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA

24 ⁹Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation,
25 University of California, San Francisco, San Francisco, CA

27 **#Correspondence:**

28 Arun P. Wiita, MD, PhD

29 University of California, San Francisco

30 Dept. of Laboratory Medicine

31 185 Berry St., Ste 290

32 San Francisco, CA 94107

33 E-mail: arun.wiita@ucsf.edu

34

35 **Keywords:** Proteomics, XL-MS, acute myeloid leukemia, CAR-T, immunotherapy

1 **ABSTRACT**

2 Safely expanding indications for cellular therapies has been challenging given a lack of highly
3 cancer-specific surface markers. Here, we explore the hypothesis that tumor cells express cancer-
4 specific surface protein conformations, invisible to standard target discovery pipelines evaluating
5 gene or protein expression, that can be identified and immunotherapeutically targeted. We term
6 this strategy, integrating cross-linking mass spectrometry (XL-MS) with glycoprotein surface
7 capture, “structural surfaceomics”. As a proof of principle, we apply this technology to acute
8 myeloid leukemia, a hematologic malignancy with dismal outcomes and no known optimal
9 immunotherapy target. We identify the activated conformation of integrin- β 2 as a structurally-
10 defined, widely-expressed, AML-specific target. We develop and characterize recombinant
11 antibodies to this protein conformation, and show that chimeric antigen receptor (CAR) T-cells
12 eliminate AML cells and patient-derived xenografts without notable toxicity versus normal
13 hematopoietic cells. Our findings validate an AML conformation-specific target antigen while
14 demonstrating a toolkit for applying these strategies more broadly.

15

1 INTRODUCTION

2 Cellular therapies are one of the most exciting modalities in cancer care, leading to the
3 promise of long-term tumor control as “living drugs”¹. However, safely applying these therapies
4 to cancers beyond B-cell malignancies has remained clinically challenging². A major hurdle
5 remains identification of surface antigens that are specifically expressed on tumor cells but not
6 on other essential tissues, with a goal of minimizing “on target, off tumor” toxicity^{3,4}.

7 Recently, we were intrigued by the discovery of an activated conformation of integrin- β 7
8 as a specific cellular therapy in multiple myeloma⁵. In commonly-used target discovery
9 pipelines, relying entirely on analysis of transcript and/or protein expression levels⁶, integrin- β 7
10 would not be considered an optimal target due to widespread expression on other hematopoietic
11 cells⁷. However, oncogenic signaling was proposed to drive the aberrant constitutive activation
12 of this integrin on myeloma^{8,9}. This change in protein state led to the opportunity to target the
13 active conformation of integrin- β 7 while sparing other normal blood cells, where it remained in
14 the closed, resting conformation.

15 This finding raised the exciting hypothesis that given aberrancies in tumor signaling,
16 metabolism, or cell-microenvironment communication – all of which heavily involve membrane
17 proteins – cancer-specific surface protein conformations may in fact be widespread. However,
18 this result in myeloma was the serendipitous outcome of a hybridoma screen, without any
19 intention to identify a conformation-selective immunotherapy target. Thus, here we aimed to
20 develop a technology to systematically probe this possible untapped source of tumor-specific
21 surface antigens. Specifically, we took advantage of cross-linking mass spectrometry, commonly
22 known as XL-MS¹⁰. This technology most commonly employs bifunctional lysine-reactive
23 reagents to define inter- or intra-protein interactions based on identified peptide-peptide cross-
24 links. While XL-MS is most often employed to define protein-protein interactions or structural
25 constraints¹⁰, this approach can also yield low-resolution structural information for hundreds or
26 thousands of proteins in a sample^{11,12}.

27 However, one of the major hurdles in XL-MS is the low fraction of cross-linked peptides
28 compared to total peptides in any given sample analyzed by mass spectrometry (MS)¹³.
29 Therefore, to specifically focus on cell surface antigens, we combined XL-MS with cell surface
30 capture (CSC), a method to specifically enrich cell surface N-linked glycoproteins¹⁴. We and
31 others have used CSC to successfully identify immunotherapy targets based on surface protein

1 abundance^{15,16}. Here, by combining XL-MS and CSC in “structural surfaceomics”, we aim to
2 move to the next level of protein-centric target discovery.

3 As an initial proof of principle, we apply structural surfaceomics to target discovery in
4 acute myeloid leukemia (AML), a frequently-diagnosed hematologic malignancy with dismal
5 prognosis¹⁷. In contrast to B-cell acute lymphoblastic leukemia, chimeric antigen receptor (CAR)
6 T cells in AML have generally led to either significant toxicities or disappointing clinical
7 efficacy^{18,19}. As demonstrated in an integrated study of the AML transcriptome and surface
8 proteome¹⁶, one major hurdle to CAR-T therapy for AML is lack of optimal immunotherapy
9 targets. Leading current targets include CD33 and CD123, both of which are expressed widely
10 on AML blasts but also on normal myeloid cells as well as hematopoietic stem and progenitor
11 cells (HSPCs)^{18,20,21}. Treatment with these CAR-Ts therefore lead to myeloablation and must be
12 followed by allogeneic stem cell transplantation¹⁸. Other non-myeloablative targets exist,
13 including CLL-1/CLEC12A, but this antigen is also expressed widely on normal myeloid cells,
14 and thus can still spur toxicities, and also shows significant heterogeneity on patient blasts,
15 potentially leading to reduced efficacy¹⁶. Thus, there remains a significant need to identify AML-
16 specific cellular therapy targets which may eliminate tumor while sparing normal myeloid cells.

17 Here, we apply structural surfaceomics to an AML model and identify the activated
18 conformation of integrin- β 2 as a promising immunotherapeutic target, expressed widely across
19 cell lines and patient tumors. We develop and characterize humanized recombinant antibodies
20 specific for this activated conformation of this protein. We further demonstrate that CAR-T cells
21 incorporating these recombinant binders are efficacious versus AML models, and, importantly,
22 do not show any evidence of toxicity versus normal hematopoietic cells in a humanized immune
23 system murine model, unlike anti-CD33 CAR-T. Our results validate active integrin- β 2 as a
24 promising cellular therapy target in AML with a favorable toxicity profile. In addition, our
25 findings suggest structural surfaceomics as a strategy to unlock a previously unexplored class of
26 immunotherapy targets, invisible to standard discovery strategies.

27

28 RESULTS

29 Development and application of the structural surfaceomics technology

30 Our overall strategy for structural surfaceomics is to first use a bifunctional chemical cross-linker
31 applied to live cells, followed by glycoprotein oxidation and biotinylation using the CSC strategy

1 (Fig. 1a). The goal of this strategy is to “freeze” the native protein conformation *in situ*, thereby
2 preserving relevant structural information, followed by streptavidin-based enrichment of surface
3 proteins, to increase MS coverage of our most relevant peptides versus much more abundant
4 intracellular protein cross-links.

5 As an initial model system, we used the Nomo-1 AML cell line, derived from a patient
6 with a monocytic leukemia²². Using Nomo-1, we explored two complementary chemical
7 strategies in parallel for XL-MS. One strategy incorporates the MS-cleavable cross-linker DSSO
8 (disuccinimidyl sulfoxide), which we and others have used frequently to study protein-protein
9 interactions in both recombinant proteins and whole cell lysates^{23–25}. We also employed the
10 recently-described non-cleavable cross-linker PhoX (disuccinimidyl phenyl phosphonic acid)
11 which incorporates a phosphonate-based handle allowing for enrichment of cross-links via
12 immobilized metal affinity chromatography (IMAC)¹³. We applied these strategies in separate
13 experiments to Nomo-1, using cellular input of 0.4-5e9 cells (Fig. 1a,b).

14 XL-MS can identify inter-linked (type 2; bridging two separate peptides), intra-linked
15 (“loop linked”, type 1; two lysines crosslinked in the same peptide), and mono-linked (“dead
16 end”, type 0; single modified lysine) peptides. Inter- and intra-linked peptides could be
17 informative for our strategy, whereas mono-linked are not. For DSSO, we used our previously
18 published XL-MS computational approach²³ to analyze these data, and also adapted this strategy
19 to a publicly-available version compatible with the Trans-Proteomic Pipeline²⁶, called Ving
20 (Extended Data Fig. 1a, 2 and Methods). In our initial DSSO experiment, we enriched
21 crosslinked peptides by size exclusion chromatography (SEC) alone, whereas in our subsequent
22 experiment we followed SEC with tip-based reversed-phase high pH fractionation (HpHt) to
23 optimize coverage²⁷. Between these two DSSO experiments, a total of 700 unique inter-linked
24 peptides from 236 proteins were identified (Fig. 1c and Supplementary Dataset 1). 42.4% of
25 these crosslinks mapped to Uniprot-annotated membrane-spanning proteins, demonstrating a
26 strong focus on this compartment. The PhoX sample, processed using IMAC and SEC (see
27 Methods), resulted in 85.3% of total peptides demonstrating a crosslinked lysine (669 unique
28 inter-links, 1257 loop-links, 6534 uninformative mono-links), derived from 782 proteins (Fig. 1d
29 and Supplementary Dataset 2). While enrichment for membrane-spanning proteins for PhoX
30 was less than DSSO, at 27.9 %, this value was still broadly consistent with our prior studies

1 using CSC alone⁷. Combining DSSO and PhoX data, our “structural surfaceomics” approach
2 identified 2,390 total inter-linked and intra-linked peptides on Nomo-1 cells.

3

4 **Active integrin- β 2 as a potential conformation-selective target in AML**

5 We manually inspected the crosslinked peptides obtained from our structural surfaceomics
6 analysis, with our primary metric being comparison to published structures in the Protein Data
7 Bank. In our DSSO data, we were particularly intrigued to find several crosslinks mapping to the
8 protein integrin- β 2 as well as its heterodimer partner integrin- α_L (PDB:5E6R)²⁸. We first noted
9 several intra-protein cross-links within integrin- β 2 itself that fell within the C_{α} Lys-Lys distance
10 constraints of the DSSO cross-linker, < 20 Å. However, we found four cross-links that did not
11 match the C_{α} - C_{α} distance constraint on the available crystal structure, extending to ~ 38.5 Å
12 between Lys194 and Lys196 of the β I domain of integrin- β 2 and Lys305 and Lys330 on the I
13 domain of integrin- α_L (ref.^{28,29}) (**Fig. 2a**). Notably, the crystal structure appears to represent the
14 inactive, closed form of this integrin heterodimer^{28,29}. Our XL-MS data suggested that these
15 domains are instead in closer proximity on Nomo-1, potentially consistent with the open, active
16 conformation in these AML tumor cells (**Extended Data Fig. 3a**).

17 This finding was notable as integrin- β 2 has been identified on several immune cell types
18 including monocytes, neutrophils, NK cells, and T cells^{30,31}. However, at the protein level, it is
19 known to largely remain in the closed, resting conformation until cellular activation, after
20 exposure to appropriate cytokines, adhesion molecules, or other proteins³²⁻³⁵. Furthermore, a
21 previous study suggested that constitutive signaling through integrin- β 2 maintains proliferation
22 in AML blasts³⁶. Taken together, these results suggest that aberrant AML biology may lead to
23 constitutive activation of integrin- β 2, thus creating a possible tumor-specific conformation that,
24 when targeted, would largely spare normal, resting hematopoietic cells.

25 To explore this hypothesis, we took advantage of the murine monoclonal antibody
26 “M24”, widely used to selectively recognize the activated form of integrin- β 2 by flow
27 cytometry³⁷. We profiled four AML cell lines of varying genotype (Nomo-1, THP-1, HL-60,
28 MV4-11) and confirmed that all showed clear expression of activated integrin- β 2 by M24
29 staining, in addition to high levels of total integrin- β 2 by TS1/18 clone (**Fig. 2b**). In contrast, B-
30 cell malignancy lines BV and Namalwa showed total integrin- β 2 but no discernable activated

1 conformation expression (**Fig. 2b**). To extend this result to normal hematopoietic progenitors, we
2 further obtained GM-CSF mobilized peripheral blood samples from five hematopoietic stem cell
3 transplant donors at our institution. We found that CD34+ hematopoietic stem and progenitor
4 cells (HSPCs) from these individuals showed no evidence of activated integrin- β 2 by flow
5 cytometry (**Fig. 2c**), though they did express total integrin- β 2 (**Extended Data Fig. 3c**). This
6 result provides an initial suggestion of a favorable therapeutic index for this target.

7 To further evaluate activated integrin- β 2 in primary AML, we obtained de-identified
8 bone marrow aspirate specimens from ten patients at our institution (**Fig. 2d**) and two patient
9 derived-xenograft (PDX) models of AML from the PRoXe biobank³⁸ (**Extended Data Fig. 3f**).
10 Gating on the mature blast population, we found that activated integrin- β 2 appeared highly
11 expressed in nine of twelve total samples analyzed. We further analyzed bulk RNA-seq data
12 across three AML patient tumor datasets (TCGA and BEAT AML: adult; TARGET: pediatric)^{39–}
13 ⁴¹, finding high levels of expression of *ITGB2* transcript across patient blasts (**Fig. 2e**).
14 Interestingly, we found a complimentary expression pattern of *ITGB2* with leading AML targets
15 *CD33* and *IL3RA* (CD123), suggesting that tumors with low expression of these current leading
16 antigens may potentially benefit from anti-integrin- β 2 therapy (**Fig. 2e**). We also found
17 consistent, high expression of *ITGB2* across various AML genotypes (**Extended Data Fig. 4a**).
18 However, we do note that transcript expression alone cannot report as to whether surface
19 integrin- β 2 is in the activated or resting conformation. Toward the safety profile of this target,
20 we evaluated aggregated single cell RNA-seq data in the Human Protein Atlas⁴². We noted that
21 *ITGB2* transcript is only detectably expressed on hematopoietic cell types (**Fig. 2f**), with high
22 expression across the myeloid lineage^{34,35}. Already, this transcript expression pattern compares
23 favorably with that of other known AML immunotherapy targets (**Extended Data Fig. 4b**).
24 However, we anticipate that conformation-selective targeting will lead to an additional layer of
25 discrimination between tumor and normal cells not available to these other targets.

26

27 **Characterization of recombinant antibody binders versus active integrin- β 2**

28 Our next goal was to develop chimeric antigen receptor (CAR) T cells versus active integrin- β 2
29 as a proof-of-principle therapeutic for AML. We first explored two commercially available
30 antibody clones versus active integrin- β 2, M24 (ref.⁴³) and AL57 (ref.⁴⁴). Using the sequence of
31 these antibodies, we designed single chain variable fragment (scFv) binders and incorporated

1 them into a CD28-based CAR backbone. While we found no activity for AL57-based scFv's, we
2 did find that both the designs (V_H-V_L and V_L-V_H) of the M24-derived scFv did indeed lead to
3 some Nomo-1 cytotoxicity (**Extended Data Fig. 5**). Here and throughout the study, we also used
4 a previously-described anti-CD33 CAR as a positive control²⁰.

5 While this result was promising that CAR-T's could be developed versus active integrin-
6 β 2, these M24-derived CAR-T's showed relatively limited *in vitro* potency versus Nomo-1 when
7 compared to anti-CD33 CAR-T. Furthermore, the M24 framework sequences are fully murine⁴³,
8 increasing potential for immunogenicity when used in a human therapeutic. Therefore, we sought
9 to develop alternative CAR-T cell designs.

10 As a first step, we used our previously-described Fab-phage display platform⁴⁵, based on
11 a fully human framework sequence, to perform selections versus recombinant integrin- β 2 (**Fig.**
12 **3a** and **Methods**). From the initial library diversity of $\sim 10^{10}$ binders, we identified ten initial hits
13 versus integrin- β 2, five of which were validated using bio-layer interferometry (BLI) and non-
14 specific ELISA (**Fig. 3b, c** and **Extended Data Fig. 6**) to have binding affinities to integrin- β 2
15 in the low-nM range and lack of binding to irrelevant proteins, respectively (**Extended Data Fig.**
16 **6b, c** and **Supplementary Table 1**). These five Fabs were cloned into a human IgG1 backbone
17 and were purified following recombinant expression in mammalian cells (**Extended Data Fig.**
18 **6**). As a validation system, we chose the Jurkat T-ALL cell line, which we found expresses high
19 levels of integrin- β 2 with a fraction appearing to show constitutive activation at baseline based
20 on M24 staining (**Fig. 3d**). Encouragingly, we found that four of our five recombinant antibodies
21 versus integrin- β 2 showed positive signal by flow cytometry on Jurkat (**Fig. 3d**).

22 We next took advantage of the fact that integrins can be biochemically converted from
23 the inactive, closed conformation to the active, open conformation by treatment with the divalent
24 cation Mn²⁺ (ref.⁴⁶). While two clones (7060, 7062) did not show any responsiveness to 2 mM
25 Mn²⁺ treatment, clones 7065 and 7341 showed increased signal in response to Mn²⁺ (**Fig. 3d**).
26 Indeed, the profile of clone 7065 appeared highly similar to that of the well-validated antibody
27 M24, with limited signal in the absence of Mn²⁺ but ~ 3 -fold increased median fluorescence
28 intensity after cation exposure. The higher signal from 7341 at baseline suggests that it may also
29 have some binding to the closed conformation of integrin- β 2, in addition to recognizing the
30 active conformation. These findings suggest that clone 7065 may be particularly selective for the
31 activated conformation of integrin- β 2.

1 **Development of anti-active integrin- β 2 CAR-T cells**

2 Toward CAR-T generation, the sequences of clones 7065 and 7341 were engineered into scFv
3 format and cloned into a backbone with a CD28 co-stimulatory domain (**Fig. 4a**). For each
4 antibody we again tried two different scFv orientations, either V_H-V_L or V_L-V_H with a 3x
5 Gly₄Ser linker. Based on Nomo-1 cytotoxicity *in vitro*, the 7065 V_L-V_H design appeared to be
6 most efficacious (**Extended Data Fig. 7a**) compared to control “empty” CAR-T cells (construct
7 with full CAR backbone but no antibody binder). This 7065 design also showed no discernible
8 activity versus a negative control of AMO-1 multiple myeloma cells, which do not express
9 activated integrin- β 2 (**Extended Data Fig. 7a, c**).

10 While these initial *in vitro* experiments were promising, we did anecdotally observe
11 decreased proliferation and final yield of these CAR-T cells during manufacturing, compared to
12 other CAR-Ts produced in our group. We also noted that even the best performing CAR-T
13 design had moderate Nomo-1 cytotoxicity compared to the positive control anti-CD33 CAR-T
14 (**Extended Data Fig. 7a**). We hypothesized that T-cell stimulation was leading to integrin- β 2
15 activation, and thus some degree of CAR-T “fratricide” during expansion, eliminating some
16 CAR-Ts and negatively impacting others due to constant activation. To test this hypothesis, we
17 used an approach employed in manufacturing for other CAR-T targets present on activated T-
18 cells, such as CD70 (ref.⁴⁷). Namely, we used a CRISPR-Cas9 ribonucleoprotein (RNP) strategy
19 to knock out *ITGB2* prior to T-cell stimulation and lentiviral transduction. We evaluated four
20 sgRNA designs and found sgRNA-1 and 4 showed high knockout efficiency (**Extended Data**
21 **Fig. 7d**). Using this manufacturing protocol, we no longer observed any deficit in CAR-T
22 expansion (**Extended Data Fig. 7e**), and, furthermore, we observed *in vitro* cytotoxicity versus
23 Nomo-1 and THP-1 cells comparable to anti-CD33 CAR-T (**Fig. 4b**). The CAR-Ts were also
24 found to have potent degranulation against Nomo-1 (**Extended Data Fig. 8a**).

25 We further varied the V_L-V_H linker length between 1x-4x Gly₄Ser and found largely
26 consistent cytotoxicity (**Extended Data Fig. 8b**). In assays below, we thus chose either the 3x or
27 4x linker designs as lead candidates for further evaluation. To assess proliferation kinetics of
28 these anti-active integrin- β 2 CAR-T (aITGB2) designs, we performed live cell imaging assays of
29 Nomo-1 co-culture. We found that at 1:1 Effector to Tumor (E:T) ratio, aITGB2 CAR-Ts
30 showed similar proliferation and cytotoxicity to anti-CD33 CAR-Ts (**Fig. 4c**). However, at 1:10
31 E:T, aITGB2 CAR-Ts outperformed anti-CD33 CAR-T (**Fig. 4c**). Both CAR-Ts showed similar

1 proliferation in this co-culture assay (**Fig. 4c**). Profiling of aITGB2 and CD33 CAR-T pre- and
2 post-tumor exposure demonstrated similar expression of memory-like phenotype markers based
3 on CD62L and CD45RA staining (**Extended Data Fig. 8d**). Taken together, these findings
4 encourage further preclinical investigation of our aITGB2 CAR-Ts as an AML therapy.
5

6 **aITGB2 CAR-T is specific against the active conformation of integrin- β 2**

7 We next evaluated specificity of our CAR-T cell for the active conformation of integrin- β 2.
8 First, we used our Cas9 RNP strategy to confirm that *ITGB2* knockout in Nomo-1 fully
9 abrogated aITGB2 CAR-T activity (**Fig. 4d, e**). While this finding supports that our CAR-T is
10 specific to integrin- β 2, it does not confirm conformation specificity. As a first test, we confirmed
11 no aITGB2 CAR-T cytotoxicity versus the B-cell leukemia line Namalwa, which expresses total
12 integrin- β 2 but not the active conformation based on M24 staining (**Extended Data Fig. 9a, Fig.**
13 **2b**). As a second test, in an overnight assay we incubated GFP-labeled aITGB2 CAR-Ts with
14 normal donor peripheral blood mononuclear cells (PBMCs). At baseline, we found that aITGB2
15 showed no cytotoxicity versus resting CD3+ T-cells, which are positive for total integrin- β 2 but
16 not the activated conformation (**Fig. 5a, e** and **Extended Data Fig. 9b**). However, with PBMC
17 stimulation using ionomycin, lipopolysaccharide and IL-2 overnight during aITGB2 CAR-T co-
18 culture, we found that there was partial depletion of the GFP-negative (i.e. non-CAR-T, derived
19 from PBMC) T-cell population (**Fig. 5a, c**). Indeed, this partial depletion was consistent with the
20 fraction of T-cells we found to express active integrin- β 2 after stimulation, which notably was a
21 much smaller fraction than CD69-positive cells (**Fig. 5b**). These results suggest that aITGB2
22 CAR-T cells specifically eliminate target cells displaying the activated conformation of this
23 protein, while ignoring cells expressing even high levels of total integrin- β 2 in the inactive,
24 closed conformation.
25

26 **aITGB2 CAR-T appears to have minimal toxicity versus normal hematopoietic cells**

27 Given that *ITGB2* only appears expressed in hematopoietic cells (**Fig. 2f**), we focused our further
28 toxicity analysis on these populations. By M24 flow cytometry on peripheral blood we showed
29 that resting T- and B-cells did not express active integrin- β 2 (**Extended Data Fig. 9b**).
30 Analyzing granulocytes and monocytes, we did find that these cells appeared strongly positive
31 for active integrin- β 2; however, it is well known that this finding is an artifact of *ex vivo*

1 activation of these cells after blood collection⁴⁸. We reasoned that evaluating potential aITGB2
2 CAR-T cytotoxicity impacts versus myeloid cells would require *in vivo* studies, in the absence of
3 this activation artifact.

4 However, prior to these *in vivo* studies, we first performed overnight *in vitro* co-culture
5 assays of aITGB2 with GM-CSF mobilized peripheral blood. Consistent with lack of active
6 integrin- β 2 on CD34+ HSPCs by flow cytometry (**Fig. 2c**), we found no depletion of HSPCs
7 after aITGB2 co-culture (**Fig. 5d**). Similarly, in PBMCs we observed no depletion of T-cells
8 (**Fig. 5e**), consistent with our findings in **Fig. 5a**. Surprisingly, we saw a modest depletion of
9 CD19+ B-cells compared to “empty” control; the mechanism for this effect is unclear, but it does
10 not appear to be specific to aITGB2 CAR-T given similar depletion in anti-CD33 CAR-T
11 (**Extended Data Fig. 9c**). As expected, based on known artifactual integrin- β 2 activation
12 (**Extended Data Fig. 9d**), and confirming *in vitro* potency of aITGB2 CAR-T versus primary
13 cells, we found strong depletion of monocytes and neutrophils (**Extended Data Fig. 9e**).

14 We next moved into a “humanized immune system” (HIS) murine model, where CD34+
15 HSPCs isolated from GM-CSF mobilized peripheral blood are intravenously implanted into
16 busulfan treated NSG-SGM3 mice⁴⁹ (**Fig. 5f**). Mice were monitored by peripheral blood draw at
17 8 weeks post-implant to confirm hematopoietic engraftment, assessed by at least 1.5%
18 circulating human CD45+ mononuclear cells. At this time, we treated all successfully engrafted
19 mice (16 of 25 total implanted) with aITGB2, anti-CD33, or empty CAR-T cells and 6 days later
20 sacrificed mice and analyzed peripheral blood. While rigorous quantification of CD14+ cells was
21 not possible due to high variability in myeloid engraftment at the time of CAR-T treatment, we
22 found no discernible depletion after aITGB2 CAR-T (**Fig. 5g**). Importantly, we found a
23 significant depletion of total human CD45+ cells in PBMC obtained from blood draw after
24 treatment with CD33 CAR-T (**Fig. 5h**). This result recapitulated expected toxicity of targeting
25 this marker expressed on HSPCs and myeloid cells, and served as a positive control that the
26 chosen time point is effective in discerning CAR-T impacts on normal human blood cells. In
27 contrast, human CD45+ cells continued to expand in mice treated with either aITGB2 or
28 “empty” CAR-Ts (**Fig. 5h**).

29 Furthermore, we probed the 7065 antibody clone and found it was cross-reactive with
30 murine activated integrin- β 2 (**Extended Data Fig. 9g**). This cross-reactivity gave us the
31 opportunity to evaluate toxicity directly to murine hematopoietic cells. We thus performed

1 complete blood count (CBC) analysis of murine peripheral blood from our HIS mouse study
2 above. At 5 days after aITGB2 CAR-T treatment, we found no depletion of any murine PBMC
3 types (**Fig. 5i**). Taken together, these results suggest that treatment with aITGB2 CAR-T may
4 carry minimal toxicities to bystander immune cells, unlike CD33 CAR-T, thus underscoring a
5 promising safety profile.

6

7 **aITGB2 CAR-T is efficacious against AML patient-derived xenografts (PDX) *in vivo***

8 Finally, we evaluated *in vivo* efficacy of aITGB2 CAR-T. We established 2 separate monocytic
9 leukemia PDX obtained from PRoXe³⁸, one from a female and the other from a male patient, via
10 intravenous implantation in NSG mice. Both of these samples appeared to express active
11 integrin- β 2 based on M24 flow cytometry (**Extended Data Fig. 3f**). 5 days post implantation of
12 2 million PDX AML cells, we treated mice with 5 million empty, aITGB2, or CD33 CAR-Ts.
13 Tumor burden was monitored by periodic peripheral blood draw, evaluating for human CD45+
14 mononuclear cells, and/or ultrasonography for spleen size (**Fig. 6b, c, Extended Data Fig. 10a,**
15 **b**). Notably, in both of these PDX models we saw marked elimination of human CD45+ cells, as
16 well as decreased spleen size, in aITGB2 or CD33 CAR-T treated mice, with prominent
17 outgrowth of tumor cells in “empty” CAR control (**Fig. 6b, c**). In both models, survival was
18 significantly improved in aITGB2 CAR-T-treated mice compared to empty control, and was
19 similar between aITGB2 CAR-T and anti-CD33 CAR-T (**Fig. 6a**). We further evaluated anti-
20 tumor efficacy of aITGB2 CAR-T in a Nomo-1 cell line xenograft mouse model implanted in
21 NSG mice (**Fig. 6d, e**). Tumor burden was monitored non-invasively via stable luciferase
22 expression. In this study we again noted improved tumor control over empty CAR-T, as well as
23 similar efficacy of aITGB2 CAR-T and anti-CD33 CAR-T (**Fig. 6d, e**). However, in this
24 aggressive model, neither tested CAR-T could lead to complete tumor eradication. Toward initial
25 investigation of a possible mechanism of relapse after aITGB2 CAR-T, we performed flow
26 cytometry on murine spleens harvested after sacrifice at Day 42 post-tumor implant. Gating on
27 human CD45+ AML blasts, we found no evidence of tumor downregulation or loss of activated
28 integrin- β 2 (**Extended Data Fig. 10c**). This initial experiment suggests that loss of the activated
29 conformation of ITGB2 may not be an immediate mechanism of resistance to our structurally-
30 selective targeting.

31

1 **DISCUSSION**

2 Our structural surfaceomics approach presented here, integrating XL-MS with cell surface
3 glycoprotein enrichment, is a technology designed to expand the targetable space of cell surface
4 immunotherapy antigens. Using this strategy, we identified the active, open conformation of
5 integrin- β 2 as a promising immunotherapy target in AML, a hematologic malignancy in
6 significant need of new therapeutic options. We further developed humanized scFv-based CAR-
7 T cells against active integrin- β 2 and found them to be both safe and efficacious using *in vitro*
8 and *in vivo* models. Taken together, our results demonstrate a first application of a potential
9 pipeline for conformation-selective immunotherapy target discovery, not possible with
10 traditional transcriptome- or proteome-focused abundance analysis.

11 We believe that the structural surfaceomics approach carries promise in applications not
12 only for immunotherapy target discovery, but also basic or translational science in other fields.
13 These could range from infectious disease to neuroscience, where obtaining low-resolution
14 structural information on a broad swath of plasma membrane proteins may spur new areas of
15 investigation. However, we do acknowledge that our current structural surfaceomics approach
16 carries limitations. First, sample input: XL-MS has traditionally required large sample inputs
17 (10^9 cell scale) and extensive mass spectrometer time to identify cross-linked peptides. These
18 limitations led us to focus our initial efforts here on a single AML cell line with multiple XL-MS
19 approaches. However, future optimization of enrichable cross-linkers, alternative cross-linker
20 reactivities, as well as further technological MS advances, may enable broader scale profiling of
21 both tumor and normal cells, or even primary samples. Second, analysis and validation of
22 potential targets: in the current study we manually compared identified crosslinks to PDB
23 structures to find targets of interest. Future work will aim to develop automated computational
24 structural analysis to identify the most promising targets for workup. In terms of validation, we
25 chose to first investigate integrin- β 2 in depth because we had flow cytometry and biochemical
26 (i.e. Mn^{2+}) tools by which to probe its conformation status. For other potential targets these tools
27 will not exist *a priori*. We thus anticipate future efforts to develop alternative strategies (for
28 example, “disulfide locking”, as used in many structural biology studies of membrane proteins⁵⁰)
29 to generate putative tumor-selective conformations for recombinant antibody selection and
30 subsequent validation.

1 The active conformation of integrin- β 2 carries particular promise compared to other
2 known AML immunotherapy targets given a potentially improved safety profile, with no
3 discernible activity versus HSPCs or resting myeloid cells. While we do anticipate there will be
4 some unwanted activity versus activated myeloid or T-cells, we predict this toxicity will still be
5 significantly lower than other AML targets such as CD33, CD123, or CLL-1 that are expressed
6 widely on all mature myeloid cells⁵¹. Our results also suggest that depletion of activated T-cells
7 may be limited in humans, as *in vitro* only a fraction of donor T-cells appeared to express active
8 integrin- β 2 even after potent stimulation.

9 In terms of efficacy, like many other AML targets^{16,52}, we observed heterogeneity of
10 active integrin- β 2 on primary patient tumor samples. Therefore, we acknowledge that aITGB2
11 CAR-T is unlikely to be a curative therapy for all AML patients. However, for tumors with
12 elevated expression of this target, in our *in vitro* and *in vivo* experiments we did not observe
13 distinctly decreased efficacy versus anti-CD33 CAR-T, a leading AML CAR-T target but with
14 marked toxicity concerns¹⁹. The favorable safety profile of aITGB2 CAR-Ts also may create
15 future opportunities for multi-targeting CARs versus two or more antigens with complementary
16 but heterogeneous tumor expression patterns, particularly if the additional antigens beyond active
17 integrin- β 2 also are non-myeloablative. Future antibody engineering efforts, or incorporation of
18 recently-described chimeric CAR-TCR designs⁴⁷, may be able to enhance efficacy of aITGB2
19 CAR-Ts versus tumor cells expressing low antigen levels.

20 In conclusion, our studies demonstrate a potential systematic approach to identify and
21 target conformation-specific antigens in cancer. Humanized aITGB2 CAR-Ts, discovered via
22 this approach, stand as a promising proof of principle therapeutic warranting further preclinical
23 evaluation in AML and a pathway for many other applications of structurally directed
24 immunotherapeutic targets.

25
26 **Author Contributions:** K.M. and A.P.W. conceptualized the study, acquired the funding,
27 performed data analysis/interpretation, and wrote the manuscript. K.M., G.W., C.Y., J.J.A.,
28 W.C.T., B.P.E., M.G., M.R.H., C.H.I., A.N., J.A.C.S., F.S., P.P. and B.J.H. performed
29 experiments and/or data analysis. E.R., C.K., M.M., E.S. and C.C.S.: primary patient sample

1 acquisition and/or analysis. A.P.W., M.A.N., V.S., A.S., S.S.S., L.H. and R.L.M. provided
2 resources and/or supervised the study.

3 **Acknowledgements:** We thank Prof. Dean Sheppard (UCSF) for providing his expert opinion
4 and consultation on integrin biology. We also thank Dr. Susanna K. Elledge (UCSF) and Dr.
5 Mark A. Burlingame (UCSF) for technical assistance with MS sample analysis. We thank Neil
6 Wiita for assistance in figure graphics. We also thank patients and their families who contributed
7 research specimens to associated tissue banks. We acknowledge funding from the Michelson
8 Prize-2019 (to K.M.) awarded by Michelson Medical Research Foundation and Human Vaccine
9 Project; NIH R21 CA263299 (to A.P.W.); NIH R01GM074830 and NIH R01GM130144 (to
10 L.H.); Canadian Institutes of Health Research (MOPS-136944) and from Bristol-Myers Squibb
11 (to S.S.S.); National Cancer Institute Cancer Center Support Grant P30CA082103 (to the
12 University of California, San Francisco) to support the Pediatric Hematopoietic Tissue Cell
13 Bank); NIH R01GM087221, NIH S10OD026936, and the National Science Foundation award
14 1920268 (to R.L.M and M.R.H); American Society of Hematology Research Training Award for
15 Fellows and Chan Zuckerberg Biohub Physician-Scientist Fellowship Program (to W.C.T). Flow
16 cytometry was performed at the UCSF Laboratory for Cell Analysis and murine studies
17 performed at the UCSF Preclinical Therapeutics Core, both part of the Helen Diller Family
18 Comprehensive Cancer Center and supported by P30 CA082103.

19 **Conflicts of Interest:** K.M., J.J.A., S.S.S., and A.P.W. have filed a provisional patent related to
20 the antibody sequences described herein. A.P.W. has received research funding from Genentech.
21 C.S. has received research funding from Revolution Medicines, Abbvie and Erasca, Inc. and has
22 served on advisory boards for Genentech, Abbvie and Astellas. All other authors declare no
23 conflict of interest.

24

1 **References**

- 2 1. Lim, W. A. & June, C. H. The Principles of Engineering Immune Cells to Treat Cancer.
3 *Cell* **168**, 724–740 (2017).
- 4 2. Brooks, J. D. Translational genomics: The challenge of developing cancer biomarkers.
5 *Genome Res.* **22**, 183–187 (2012).
- 6 3. Beck, A., Goetsch, L., Dumontet, C. & Corvaia, N. Strategies and challenges for the next
7 generation of antibody–drug conjugates. *Nat. Rev. Drug Discov.* **16**, 315–337 (2017).
- 8 4. Brudno, J. N. & Kochenderfer, J. N. Toxicities of chimeric antigen receptor T cells:
9 Recognition and management. *Blood* vol. 127 3321–3330 (2016).
- 10 5. Hosen, N. *et al.* The activated conformation of integrin β 7 is a novel multiple myeloma-
11 specific target for CAR T cell therapy. *Nat. Med.* **23**, 1436–1443 (2017).
- 12 6. Hu, Z. *et al.* The Cancer Surfaceome Atlas integrates genomic, functional and drug
13 response data to identify actionable targets. *Nat. cancer* **2**, 1406–1422 (2021).
- 14 7. Ferguson, I. D. *et al.* The surfaceome of multiple myeloma cells suggests potential
15 immunotherapeutic strategies and protein markers of drug resistance. *Nat. Commun.* **2022**
16 *13* **13**, 1–17 (2022).
- 17 8. Hosen, N. Integrins in multiple myeloma. *Inflamm. Regen.* **40**, (2020).
- 18 9. Neri, P. *et al.* Integrin β 7-mediated regulation of multiple myeloma cell adhesion,
19 migration, and invasion. *Blood* **117**, 6202–6213 (2011).
- 20 10. Leitner, A., Walzthoeni, T. & Aebersold, R. Lysine-specific chemical cross-linking of
21 protein complexes and identification of cross-linking sites using LC-MS/MS and the
22 xQuest/xProphet software pipeline. *Nat. Protoc.* **9**, 120–137 (2014).
- 23 11. Yu, C. & Huang, L. Cross-Linking Mass Spectrometry (XL-MS): an Emerging
24 Technology for Interactomics and Structural Biology. *Anal. Chem.* **90**, 144 (2018).
- 25 12. Piersimoni, L., Kastritis, P. L., Arlt, C. & Sinz, A. Cross-Linking Mass Spectrometry for
26 Investigating Protein Conformations and Protein-Protein Interactions—A Method for All
27 Seasons. *Chem. Rev.* **122**, 7500–7531 (2022).
- 28 13. Steigenberger, B., Pieters, R. J., Heck, A. J. R. & Scheltema, R. A. PhoX: An IMAC-
29 Enrichable Cross-Linking Reagent. *ACS Cent. Sci.* **5**, 1514–1522 (2019).
- 30 14. Wollscheid, B. *et al.* Mass-spectrometric identification and relative quantification of N-
31 linked cell surface glycoproteins. *Nat. Biotechnol.* **27**, 378–86 (2009).

- 1 15. Nix, M. A. *et al.* Surface Proteomics Reveals CD72 as a Target for In Vitro-Evolved
- 2 Nanobody-Based CAR-T Cells in KMT2A/MLL1-Rearranged B-ALL. *Cancer Discov.*
- 3 **11**, 2032–2049 (2021).
- 4 16. Perna, F. *et al.* Integrating Proteomics and Transcriptomics for Systematic Combinatorial
- 5 Chimeric Antigen Receptor Therapy of AML. *Cancer Cell* **32**, 506–519 (2017).
- 6 17. Kantarjian, H. *et al.* Acute myeloid leukemia: current progress and future directions.
- 7 *Blood Cancer J.* **2021** *112* **11**, 1–25 (2021).
- 8 18. Mardiana, S. & Gill, S. CAR T Cells for Acute Myeloid Leukemia: State of the Art and
- 9 Future Directions. *Front. Oncol.* **10**, 697 (2020).
- 10 19. Maucher, M. *et al.* Current Limitations and Perspectives of Chimeric Antigen Receptor-T-
- 11 Cells in Acute Myeloid Leukemia. *Cancers (Basel)*. **13**, (2021).
- 12 20. Kenderian, S. S. *et al.* CD33-specific chimeric antigen receptor T cells exhibit potent
- 13 preclinical activity against human acute myeloid leukemia. *Leukemia* **29**, 1637–1647
- 14 (2015).
- 15 21. Gill, S. *et al.* Anti-CD123 Chimeric Antigen Receptor T Cells (CART-123) Provide A
- 16 Novel Myeloablative Conditioning Regimen That Eradicates Human Acute Myeloid
- 17 Leukemia In Preclinical Models. *Blood* **122**, 143–143 (2013).
- 18 22. Quentmeier, H. *et al.* Expression of HOX genes in acute leukemia cell lines with and
- 19 without MLL translocations. *Leuk. Lymphoma* **45**, 567–574 (2004).
- 20 23. Kao, A. *et al.* Development of a novel cross-linking strategy for fast and accurate
- 21 identification of cross-linked peptides of protein complexes. *Mol. Cell. Proteomics* **10**,
- 22 M110.002212 (2011).
- 23 24. Liu, F., Rijkers, D. T. S., Post, H. & Heck, A. J. R. Proteome-wide profiling of protein
- 24 assemblies by cross-linking mass spectrometry. *Nat. Methods* **12**, 1179–1184 (2015).
- 25 25. Klykov, O. *et al.* Efficient and robust proteome-wide approaches for cross-linking mass
- 26 spectrometry. *Nat. Protoc.* **13**, 2964–2990 (2018).
- 27 26. Deutsch, E. W. *et al.* Trans-Proteomic Pipeline, a standardized data processing pipeline
- 28 for large-scale reproducible proteomics informatics. *Proteomics. Clin. Appl.* **9**, 745–54
- 29 (2015).
- 30 27. Jiao, F. *et al.* Two-Dimensional Fractionation Method for Proteome-Wide Cross-Linking
- 31 Mass Spectrometry Analysis. *Anal. Chem.* **94**, 4236–4242 (2022).

- 1 28. Sen, M. & Springer, T. A. Leukocyte integrin α β 2 headpiece structures: The α i domain,
2 the pocket for the internal ligand, and concerted movements of its loops. *Proc. Natl. Acad.*
3 *Sci. U. S. A.* **113**, 2940–2945 (2016).
- 4 29. Chen, X. *et al.* Requirement of open headpiece conformation for activation of leukocyte
5 integrin α X β 2. *Proc. Natl. Acad. Sci. U. S. A.* **107**, 14727–14732 (2010).
- 6 30. Fagerholm, S. C., Guenther, C., Asens, M. L., Savinko, T. & Uotila, L. M. Beta2-Integrins
7 and Interacting Proteins in Leukocyte Trafficking, Immune Suppression, and
8 Immunodeficiency Disease. *Front. Immunol.* **10**, (2019).
- 9 31. Schittenhelm, L., Hilkens, C. M. & Morrison, V. L. β 2 Integrins As Regulators of
10 Dendritic Cell, Monocyte, and Macrophage Function. *Front. Immunol.* **8**, 1866 (2017).
- 11 32. Herter, J. & Zarbock, A. Integrin Regulation during Leukocyte Recruitment. *J Immunol*
12 **190**, 4451–4457 (2020).
- 13 33. Ley, K., Laudanna, C., Cybulsky, M. I. & Nourshargh, S. Getting to the site of
14 inflammation: the leukocyte adhesion cascade updated. *Nat. Rev. Immunol.* **7**, 678–689
15 (2007).
- 16 34. Petri, B., Phillipson, M. & Kubes, P. The physiology of leukocyte recruitment: an in vivo
17 perspective. *J. Immunol.* **180**, 6439–6446 (2008).
- 18 35. Phillipson, M. & Kubes, P. The neutrophil in vascular inflammation. *Nat. Med.* (2011)
19 doi:10.1038/nm.2514.
- 20 36. Oellerich, T., Oellerich, M. F., Engelke, M. & Silvia, M. b 2 integrin – derived signals
21 induce cell survival and proliferation of AML blasts by activating a Syk / STAT signaling
22 axis. *Blood* **121**, 3889–3900 (2017).
- 23 37. Dransfield, I., Cabañas, C., Craig, A. & Hogg, N. Divalent cation regulation of the
24 function of the leukocyte integrin LFA-1. *J. Cell Biol.* **116**, 219–226 (1992).
- 25 38. Townsend, E. C. *et al.* The Public Repository of Xenografts Enables Discovery and
26 Randomized Phase II-like Trials in Mice. *Cancer Cell* **29**, 574–586 (2016).
- 27 39. Weinstein, J. N. *et al.* The Cancer Genome Atlas Pan-Cancer Analysis Project. *Nat.*
28 *Genet.* **45**, 1113 (2013).
- 29 40. Tyner, J. W. *et al.* Functional Genomic Landscape of Acute Myeloid Leukemia. *Nature*
30 **562**, 526 (2018).
- 31 41. Bolouri, H. *et al.* The molecular landscape of pediatric acute myeloid leukemia reveals

1 recurrent structural alterations and age-specific mutational interactions. *Nat. Med.* **2017**
2 **24**, 103–112 (2017).

3 42. Uhlén, M. *et al.* Tissue-based map of the human proteome. *Science (80-.)*. **347**, (2015).

4 43. Hogg, N. & Selvendran, Y. An anti-human monocyte/macrophage monoclonal antibody,
5 reacting most strongly with macrophages in lymphoid tissue. *Cell. Immunol.* **92**, 247–253
6 (1985).

7 44. Shimaoka, M. *et al.* AL-57, a ligand-mimetic antibody to integrin LFA-1, reveals
8 chemokine-induced affinity up-regulation in lymphocytes. *Proc. Natl. Acad. Sci. U. S. A.*
9 **103**, 13991–13996 (2006).

10 45. Persson, H. *et al.* CDR-H3 diversity is not required for antigen recognition by synthetic
11 antibodies. *J. Mol. Biol.* **425**, 803–811 (2013).

12 46. Ye, F., Kim, C. & Ginsberg, M. H. Reconstruction of integrin activation. *Blood* **119**, 26–
13 33 (2012).

14 47. Mansilla-Soto, J. *et al.* HLA-independent T cell receptors for targeting tumors with low
15 antigen density. *Nat. Med.* **28**, 345–352 (2022).

16 48. Blanter, M. *et al.* Method Matters: Effect of Purification Technology on Neutrophil
17 Phenotype and Function. *Front. Immunol.* **13**, (2022).

18 49. Allen, T. M. *et al.* Humanized immune system mouse models: progress, challenges and
19 opportunities. *Nature Immunology* vol. 20 770–774 (2019).

20 50. DeCaen, P. G., Yarov-Yarovoy, V., Zhao, Y., Scheuer, T. & Catterall, W. A. Disulfide
21 locking a sodium channel voltage sensor reveals ion pair formation during activation.
22 *Proc. Natl. Acad. Sci. U. S. A.* **105**, 15142–15147 (2008).

23 51. Ma, H., Padmanabhan, I. S., Parmar, S. & Gong, Y. Targeting CLL-1 for acute myeloid
24 leukemia therapy. *J. Hematol. Oncol.* **12**, (2019).

25 52. Li, S., Mason, C. & Melnick, A. Genetic and epigenetic heterogeneity in acute myeloid
26 leukemia. *Curr. Opin. Genet. Dev.* **36**, 100–106 (2016).

27 53. Kong, A. T., Leprevost, F. V., Avtonomov, D. M., Mellacheruvu, D. & Nesvizhskii, A. I.
28 MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-
29 based proteomics. *Nat. Methods* **14**, 513–520 (2017).

30 54. Martens, L. *et al.* mzML--a community standard for mass spectrometry data. *Mol. Cell.*
31 *Proteomics* **10**, (2011).

1 55. Keller, A., Eng, J., Zhang, N., Li, X. jun & Aebersold, R. A uniform proteomics MS/MS
2 analysis platform utilizing open XML file formats. *Mol. Syst. Biol.* **1**, (2005).

3 56. Ihling, C. H., Piersimoni, L., Kipping, M. & Sinz, A. Cross-Linking/Mass Spectrometry
4 Combined with Ion Mobility on a timsTOF Pro Instrument for Structural Proteomics.
5 *Anal. Chem.* **93**, 11442–11450 (2021).

6 57. Chambers, M. C. *et al.* A cross-platform toolkit for mass spectrometry and proteomics.
7 *Nat. Biotechnol.* **30**, 918–920 (2012).

8 58. Chen, Z. L. *et al.* A high-speed search engine pLink 2 with systematic evaluation for
9 proteome-scale identification of cross-linked peptides. *Nat. Commun.* **10**, (2019).

10 59. Jain, T. *et al.* Biophysical properties of the clinical-stage antibody landscape. *Proc. Natl.*
11 *Acad. Sci. U. S. A.* **114**, 944–949 (2017).

12 60. Doench, J. G. *et al.* Optimized sgRNA design to maximize activity and minimize off-
13 target effects of CRISPR-Cas9. *Nat. Biotechnol.* **34**, 184–191 (2016).

14

15

1 **Materials and Methods**

2 *Cell lines, PDX and patient samples.*

3 Nomo-1 cell line was obtained from DMSZ. THP1, HL60, MV411, Jurkat and S49.1 were
4 obtained from ATCC. All cell lines were grown in RPMI-1640 media (Gibco, 11875093) with
5 20% FBS (BenchMark, Gemini, 100-106) and 100 U/ml Penicillin-Streptomycin (UCSF Cell
6 Culture Facility). All the cells were grown in 5% CO₂ at 37° C. All AML PDX were procured
7 from Public Repository for Xenografts (PRoXe) at Dana-Farber Cancer Center under an
8 appropriate Materials Transfer Agreement. Primary AML samples were obtained from the UCSF
9 Hematologic Malignancies Tissue Bank and the Pediatric Hematopoietic Tissue Cell Bank under
10 protocols approved by the UCSF Committee on Human Research Institutional Review Board
11 (IRB).

12

13 *Cross-linking and Cell surface labelling:*

14 The DSSO (Sigma Aldrich, 909602) based XL-MS involving high-pH fractionation, and PhoX
15 (Thermo Fisher Scientific, A52286) based XL-MS was each performed with 2.4 X 10⁹ cells (in
16 batches of 6 X 10⁸). However, the initial DSSO experiment without high-pH fractionation was
17 done with 4 X 10⁸ cells. For each experiment, the cells were harvested and washed (300 RCF for
18 5 min) thrice with PBS each time to get rid of all the amine containing components of the media
19 and finally resuspended in PBS. Then the amine reactive cross-linker DSSO or PhoX pre-
20 dissolved in DMSO (Sigma Aldrich, 276855) is added to the cells at a final concentration of
21 10mM and incubated at RT for 45 minutes. The cross-linking step was followed by biotinylation
22 of the cell surface proteins using glycoxidation chemistry of the N-linked glycosylation-site.
23 Briefly, the cells were then washed with PBS thrice and treated with 1.6 mM sodium
24 metaperiodate (VWR, 13798-22) for 20 minutes at 4C for oxidation of the N-linked sugar
25 residues. The cells were again washed twice with PBS and treated with 10 mM aniline (Sigma-
26 Aldrich, 242284) and 1 mM biocytin hydrazide (Biotium, 90060) for 90 minutes at 4° C, for
27 installation of biotin on the oxidized sugar residues. The cells were then washed thrice to get rid
28 of the excess of biotinylation reagents and snap froze in liquid nitrogen, and stored at -80° C until
29 further processing. All the incubation steps were carried out in end-to-end rotor for gentle mixing
30 during the reactions.

31

1 *Cell surface proteomics sample preparation*

2 The frozen cell pellets were thawed in ice and were resuspended in 1 ml RIPA lysis buffer
3 (Millipore Sigma, 20-188) with Halt protease inhibitor (Thermo Fisher Scientific, 78430) and 1
4 mM EDTA (Invitrogen, 15575-038). The cell suspension was then sonicated to lysis the cells
5 followed by incubation in ice for 10 minutes with intermittent vortexing every 2-3 minutes. The
6 lysate was then centrifuged at 17000 RCF for 10 minutes at 4° C to get the clarified supernatant
7 containing the biotinylated cell surface proteins. This clear supernatant was added to the 0.5 ml
8 of Neutravidin beads (Thermo Fisher Scientific, PI29204) prewashed and equilibrated with RIPA
9 lysis buffer + 1 mM EDTA. This pulldown step was allowed to happen at 4° C for 2 hours. To
10 remove non-specifically bound proteins, the beads were washed extensively using vacuum
11 manifold (Promega), consecutively with 50 mL RIPA lysis buffer + 1mM EDTA, 50 mL PBS +
12 1 M NaCl and 50 mL 2 M Urea (VWR, 97063-798) + 50 mM Ammonium Bicarbonate. The
13 beads bound with biotinylated cell surface proteins were resuspended in 50 mM Tris (pH 8.5) +
14 4 M urea + 10 mM TCEP (Gold Biotechnology, TCEP10) and 20 mm IAA (VWR, 97064-926).
15 10 ug Trypsin-LysC (Thermo Fisher Scientific, PRV5073) mix was added to this mixture to
16 allow on-bead digestion of the bound proteins for simultaneous reduction and alkylation of
17 cysteines residues at RT in end-to-end rotor. At 4 M urea, LysC continues digestion for 2 hours
18 after which the mixture is diluted to 1.5 M urea using 50 mM tris (pH 8.5) upon which trypsin
19 also gets activated and this protease digestion goes overnight (16-20 hours). The solution is
20 centrifuged to pellet down the beads and the supernatant contained the tryptic peptides were
21 transferred to fresh tube and acidified with 0.5% Trifluoroacetic acid (TFA). The peptides were
22 then desalted using SOLA HRP Column (Thermo Scientific, 60109-001) and eluted with 50%
23 acetonitrile (ACN) + 0.1% formic acid (FA). Finally, the peptides were dried down in speedvac
24 (CentriVap, Labconco).

25

26 *Immobilized metal affinity chromatography (IMAC) purification for PhoX:*

27 Dry peptides were reconstituted in 80% ACN + 0.1% TFA. Meanwhile, Superflow Ni-NTA
28 beads were stripped off using EDTA and reloaded with FeCl₃ (Sigma Aldrich, 451649) on a
29 polyprep chromatography column (Biorad, 7326008). Fe³⁺ loaded beads were transferred to C18
30 tips (Nest Group, SEM SS18V.25) where it was incubated for 4 - 6 minutes with intermittent
31 mixing with the reconstituted peptides to allow specific binding of the PhoX (cross-linker with

1 IMAC handle) bearing peptides. The beads were then rigorously washed with 0.5 % formic acid
2 (FA) to rid of the unbound or the non-specifically bound peptides. The bound peptides were then
3 eluted with 0.5 M Potassium Phosphate buffer (pH 7.4). The peptides eluted from the beads gets
4 again gets bound to the C18 chromatographic material of the nest tips. The tips were washed
5 thrice with 0.5 % FA and finally eluted with 50% ACN + 0.1 % FA and dried down in speedvac.
6

7 *Size-Exclusion Chromatography (SEC):*

8 Size based fractionation of the peptides were done using Superdex Peptide 3.2/300 (GE
9 Healthcare) column and HPLC (Agilent 1260 Infinity II). The dried peptides were reconstituted
10 in the mobile phase constituting 30% ACN + 0.1% TFA and loaded on to the column. The run
11 time was 90 minutes at a flow rate of 50 μ l/min and 45 fractions (2 minutes per fraction) were
12 collected in total. The fractions associated with the desired molecular weight were dried down in
13 speedvac and stored at -80 for MS analysis.

14

15 *LC-MS and data analysis for data-dependent acquisition (DDA) proteomics:*

16 The peptide samples prepared for building Nomo-1 sufaceome custom database were loaded on
17 to the an EASY-Spray nanocolumn (Thermo Fisher Scientific, ES900) installed on Dionex
18 Ultimate 3000 NanoRSCLC instrument coupled with Q-Exactive Plus mass spectrometer (Thermo
19 Fisher Scientific). Peptides were separated over a 313 minute gradient of ACN ranging from
20 2.4% to 32% ACN and subsequently stepped up to 80% ACN over next 10 minutes, all with a
21 flow rate of 0.3 μ L/min. MS scans were performed over mass range of m/z 299-1799 with
22 resolution of 70,000 FWHM at m/z 200. The resolution for MS/MS scans was set to 17,500
23 FWHM at m/z 200. Normalized collision energies of 27, 30 and 33 in stepped higher collision-
24 induced dissociation (HCD) mode was used for fragmentation of the topmost 15 most intense
25 precursor ions with isolation window of 1.7 m/z . To avoid the repeated sampling of high
26 abundant ions, dynamic exclusion was turned on and set to 20 seconds. The data collected for
27 MS and MS/MS was in profile mode centroided mode, respectively.

28 MS generated .raw files were processed using MSFragger⁵³ within FragPipe with default settings
29 unless stated otherwise. Briefly, the spectral data were searched against the human proteome
30 database (UniProt, downloaded 05/11/21, 20,395 entries). The contaminant and decoy protein
31 sequences were added to the search database using the inbuilt feature of the FragPipe pipeline

1 downstream statistical analysis. The search was run with “Mass calibration and parameter
2 optimization” and “closed search default config” allowing ± 20 ppm mass tolerance for precursor
3 ions and ± 20 ppm for that of fragment ions. The inbuilt tools PeptideProphet and ProteinProphet
4 were used for statistical validation of search results and subsequent mapping of the peptides to
5 the proteins respectively with 1% FDR.

6

7 *High pH reverse-phase tip (HpHt) based fractionation of DSSO cross-linked peptides*

8 The SEC fractions 13 and 14 which are enriched with DSSO cross-linked peptides (**Extended**
9 **Data Fig. 1b**) were further fractionated by high pH reverse-phase tip (HpHt) as described
10 previously²⁷. Briefly, the HpH tip was constructed in a 200- μ L pipette tip by packing C8
11 membrane (Empore 3M) and 5 mg of C18 solid phase (3 μ m, Durashell, Phenomenex). The
12 HpHt column was sequentially washed with a series of 3 different solvents/solutions namely
13 methanol, ACN and ammonia water (pH 10), 90 μ l each. Then, each SEC fraction was loaded
14 onto the HpHt column, which was centrifuged at 1,200 PRM for 5 min. The bound peptides were
15 washed with 90 μ L of ammonia water (pH 10) followed by elution with a series of ammonia
16 water containing increasing concentration of ACN (6%, 9%, 12%, 15%, 18%, 21%, 25%, 30%,
17 35%, and 50%). The fractions with 25%, 30%, 35% and 50% of ACN were combined with
18 fractions containing 6%, 9%, 12% and 21% of ACN, respectively. The resultant 6 fractions were
19 the dried and stored at -80 oC for LC-MSn analysis.

20

21 *LC-MS³ analysis of DSSO cross-linked peptides*

22 The SEC-HpHt fractions were subjected to LC MS³ analysis using an UltiMate 3000 RSLC
23 nano-HPLC system coupled to an Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher
24 Scientific) as described previously²⁷. The peptides were separated by RPLC (50 cm x 75 μ m
25 Acclaim PepMap C18 column, Thermo Fisher Scientific) with over an 87-min gradient of ACN
26 (4% to 25%) at 300 nL/min flow rate. MS1 scans were measured in the Orbitrap with a scan
27 range from 375 to 1800 m/z, 60,000 resolution, and AGC target 4 \times 105 at top speed per 4 s cycle
28 time. Ions with charge 4+ or greater were selected for MS2 and subjected to fragmentation using
29 CID with NCE 23. For MS2 scans, the resolution was set to 30,000, AGC target 5e4, precursor
30 isolation width 1.6 m/z, and maximum injection time 100 ms. A targeted inclusion on ions with
31 mass difference corresponding to the difference in alkene and thiol DSSO fragments (31.9721

1 Da) was used to select precursors for MS3 analysis. For MS3 scans, HCD was used with a
2 normalized collision energy of 28%, the AGC target was set to 2×10^4 , and the maximum
3 injection time was set to 125 ms.

4

5 *Identification of DSSO cross-linked peptides*

6 Peaklists were extracted from the LC MSⁿ raw files using the in-house software PAVA (UCSF)
7 and the extracted MS³ spectra were searched against a SwissProt database (2021.10.02 version)
8 concatenated with its randomized decoy sequences using Protein Prospector (v.6.3.5). The mass
9 tolerances allowed were ± 20 ppm for precursor ions and 0.6 Da for fragment ions. The database
10 search was performed with trypsin as a protease with a maximum of three allowed missed
11 cleavages. Cysteine carbamidomethylation was set as the fixed modification. The variable
12 modifications included N-terminal protein acetylation, methionine oxidation, and N-terminal
13 conversion of glutamine to pyroglutamic acid. Additionally, three specific modifications
14 resulting from DSSO were included in the search: thiol (C₃H₂SO, +86 Da), alkene (C₃H₂O, +54
15 Da), and sulfenic acid (C₃H₄O₂S, +104 Da)²³. The in-house software XL-Tools was used to
16 automatically identify, summarize and validate cross-linked peptides based on Protein Prospector
17 database search results and MSⁿ data. No decoy hits were found after the integration of MS¹,
18 MS² and MS³ data.

19

20 *Development of MS³ based XL-MS analysis tool*

21 We developed Ving, a software to assess the MS²/MS³-based cleavable cross-linking database
22 search results to produce a set of cross-linked-spectrum matches (CSMs) (**Extended Data Fig.**
23 **1a**). Ving input consists of raw spectral data in mzML format⁵⁴, and database search results of
24 MS² and MS³ spectra in PepXML format⁵⁵. The output of Ving is a human-readable text file
25 listing the CSMs observed from the spectral data and database search results. Ving functions by
26 first parsing the mzML spectral data file to create spectral groups (SGs) consisting of MS² and
27 MS³ events that are associated with a single precursor ion selection. Each SG specifies the scan
28 numbers and retention times of the spectra contained within the group, as well as the precursor
29 ion mass and charge states of the MS² and MS³ events. Next, database search results from two
30 separate searches of either the MS² or MS³ scan events are added to each SG. The searches were
31 performed using the TPP²⁶ as described previously, and are used to assign peptide sequences and

1 associated probabilities to the scan events. As the MS² and MS³ database searches are performed
2 independently, peptide sequences and probabilities are first assigned to the MS² events in each
3 SG, then peptide sequences and probabilities are assigned to the MS³ events in each SG. Both
4 MS² and MS³ database search results are required, as the MS²-based results are essential for
5 assessing whether or not a SG is derived from a single peptide precursor ion, i.e. produces a
6 single peptide-spectrum match (PSM), while the MS³-based results are essential to identify both
7 peptides if a SG is interpreted to be a CSM.

8 Assessment of each SG to determine probable CSMs occurs after all peptide sequence
9 assignments have been made to all MS² and MS³ spectra within all the groups. A series of
10 thresholds categorize each group into either PSMs, or various types of CSMs. First, the
11 probabilities of the peptide sequence assignments of the MS² scan events are evaluated, and all
12 assignments with a probability > 0.8 are assigned the status of a single, non-linked PSM. If the
13 sequence assignment also contains evidence for a modification mass of the hydrolyzed cross-
14 linker on an internal lysine, it is further classified as a dead-end or mono-linked PSM. For SGs
15 with MS² assignments of probability below 0.8, the MS³ peptide assignments and probabilities
16 are evaluated. If multiple MS³-level peptide sequence identifications were made with a
17 probability > 0.8 and containing a lysine residue with a modification mass approximating the
18 cross-linker cleavage product, those sequences are further evaluated as candidate CSMs. If the
19 masses of the two peptide sequences plus the crosslinker summed together to match the mass of
20 the original precursor ion, then the group is classified as a CSM. If none of the peptide sequences
21 sum to the precursor mass, despite evidence of a modified lysine, then the SG is classified as
22 Incomplete CSM. If the SG has only zero or one MS³-level peptide sequence with a probability >
23 0.8, the group is classified simply as Unknown PSM. Following classification of all SG, a simple
24 summary report is presented to the user and the entirety of the results are exported to a human-
25 readable, tab-delimited text file.

26

27 *LC-MS analysis of PhoX cross linked peptides*

28 The PhoX cross-linked peptides samples were analyzed on a timsTOF Pro mass spectrometer
29 (Bruker Daltonics) as described previously⁵⁶. Briefly, peptides from each SEC fraction 9 – 24
30 (**Extended Data Fig. 1c**) were loaded on to the column operated using UltiMate 3000 RSLC
31 nano-HPLC system (Thermo Fisher Scientific) and eluted peptides were analyzed with the

1 timsTOF Pro mass spectrometer using CaptiveSpray source (Bruker Daltonics). Peptides were
2 first trapped on a C18 precolumn (Acclaim PepMap 100, 300 μ m \times 5 mm, 5 μ m, 100 \AA)
3 (Thermo Fisher Scientific) and eluted peptides were subsequently separated on a μ PAC 50
4 column (PharmaFluidics) over 180 min with ACN gradient ramping up from 3% to 35%. During
5 elution, the flow rate of the gradient changed from 900 to 600 nL/min for the first 15 min,
6 followed by a constant flow rate of 600 nL/min. The column was then washed for 15 minutes
7 with higher ACN concentration (35% to 85%, 85%, 85% to 3%, for 5 minutes each) at a flow
8 rate of 600 nL/min.

9 For MS analysis with the timsTOF Pro mass spectrometer, the mobility-dependent
10 collision energy ramping settings were 95 eV at an inversed reduced mobility ($1/k_0$) of 1.6 V
11 s/cm² and 23 eV at 0.73 V s/cm². The collision energies were interpolated linearly between the
12 two $1/k_0$ values and were kept constant above or below. TIMS scans were not merged and the
13 target intensity per individual parallel accumulation serial fragmentation (PASEF) precursor ion
14 was kept at 20,000. The range of each scan was kept between 0.6 and 1.6 V s/cm² with a ramp
15 time of 166 ms. The number of PASEF MS/MS scans triggered were 14 per cycle (2.57 s) with a
16 maximum of seven allowed precursors per mobilogram. The precursor ions selected for
17 fragmentation ranged between *m/z* 100 and 1700 with charge states between 3+ to 8+. The active
18 exclusion was allowed/set to 0.4 min (mass width 0.015 Th, $1/k_0$ width 0.015 V s/cm²).

19

20 *TimsTOF MS data analysis*

21 TimsTOF-MS data were converted to .mgf format using MSConvert⁵⁷. The mgf files were then
22 processed for identification of cross-linked peptides using pLink-2(ref.⁵⁸) with default settings
23 unless stated otherwise. All files were searched against Nomo-1 surfaceome specific custom
24 database generated from regular DDA analysis. The custom database was generated from SEC
25 fractionated samples. For pLink based cross linked peptide analysis, trypsin was set as the
26 protease allowing three missed cleavages. Cysteine carbamidomethylation was set as fixed
27 modification with methionine oxidation and N-terminal acetylation as variable modification. The
28 search was performed with \pm 20 ppm mass tolerance window for precursor as well as fragment
29 ions, and results were reported at 1% FDR.

30

31

1 *Flow cytometry*

2 Immunostaining of cells were performed as per the instructions from antibody vendor unless
3 stated otherwise. Briefly, 1 million cells were resuspended in 100 μ l of FACS buffer (PBS + 2%
4 FBS) with 1 ug antibody added to it. The cells were incubated at 4C for 10-15 minutes and then
5 washed thrice with the FACS buffer. For staining active form of ITGB2, antibody incubation
6 step was performed at 37C for 1 hour. In case of staining primary AML cells for activated
7 ITGB2, recipe of FACS buffer was RPMI-1640 + 5% FBS + 2% BSA + 50 μ g/ml DNase-I
8 (Gold Biotechnology, D-301-500). For all other primary cell staining, FACS buffer recipe was
9 D-PBS + 5% FBS + 2% BSA + 5 mM EDTA + 50 μ g/ml DNase-I with Human Trustain
10 (Biologend, 422302). All the compensation was done using UltraComp eBeadsTM Compensation
11 Beads (Invitrogen, 01-2222-42). All the flow cytometry analysis was done with Cytoflex
12 (Beckman Coulter) and data was analyzed using FlowJo_v10.8.1. The antibodies used in this
13 study are CD3 (Biologend, 980008, 300412, clone- UCHT1), CD19 (Biologend, 363006,
14 363036, clone- SJ25C1), CD45 (Biologend, 368512, clone- 2D1), CD14 (Biologend, 367118,
15 367104, clone- 63D3), CD34 (Biologend, 343510, 343510, clone- 581), CD69 (Biologend,
16 985206, clone- FN50), CD11a/CD18 (Biologend, 363406, 363416, clone- m24), CD18
17 (Biologend, 302106, clone- TS1/18), CD33 (Biologend, 303404, clone- WM53), CD62L (BD
18 Biosciences, 559772, clone: DREG-56), CD45RA (Thermo Fisher Scientific, 12-0458-42, clone:
19 HI100), CD16 (Biologend, 302032, clone- 3G8) and CD64 (Biologend, 305018, clone- 10.1).
20 Secondary antibody used was anti-human IgG Fc antibody (Biologend, 410720). All the
21 respective isotype antibodies used were procured and used as per the vendor's instructions.
22

23 *Phage display selections*

24 A synthetic, phage-displayed Fab library⁴⁵ was selected for binding to either Integrin- β 2/Integrin
25 α M (R and D 4047-AM, Antibody #7062, 7#063, #7065) or Integrin- β 2/Integrin α L (R and D
26 3868-AV, Antibody # 7060, #7341) recombinant protein complexes. Briefly, Integrin- β 2
27 recombinant protein complexes were immobilized on Maxisorp Immuno plates (ThermoFisher,
28 12-565-135) and used for positive binding selections with library phage pools that were first
29 exposed to neutravidin coated wells to deplete nonspecific binders. After four rounds of binding
30 selections, clonal phage was prepared and evaluated by phage ELISA and sequencing as
31 described⁴⁵.

1 *Antibody production*

2 Antibodies were produced using the human Expi293 expression system (Thermo Fisher).
3 Expi293 cells (in 2 mL volume) were transiently transfected with construct DNA using FectoPro
4 transfection reagent (Polyplus Transfection, 101000014). Following 5-day expression period,
5 antibodies were purified using rProteinA Sepharasoe (GE Healthcare) and stored in phosphate
6 buffer (50 mM NaH₂PO₄, 75 mM Na₂HPO₄, 100 mM H₃PO₄, 154 mM NaCl).

7

8 *Bio-Layer Interferometry (BLI) binding assays*

9 The binding of human Integrin- β 2 antibodies was tested against three different Integrin- β 2
10 complexes including Integrin- β 2/Integrin α M (R and D 4047-AM), Integrin- β 2/Integrin α X (R
11 and D 5755-AX), and Integrin- β 2/Integrin α L (R and D 3868-AV). To determine the binding
12 kinetic parameters of the antibodies, BLI experiments were performed on an Octet HTX
13 instrument (Sartorius) at 1000 rpm and 25°C. All proteins were diluted in an assay buffer (PBS,
14 1% BSA, 0.05% Tween 20). Tested and negative control antibodies at a concentration of 2 μ g/ml
15 were first captured on AHQ biosensors to achieve the binding signals of 0.8-1.3 nm. Unoccupied
16 Fc-binding sites on the antibody-coated sensors were subsequently quenched by 20 μ g/mL of the
17 Fc protein. After equilibration with the assay buffer, the biosensors were then dipped for 600 s
18 into wells containing 5-fold serial dilution of Integrin- β 2 complexes (association phase),
19 followed by a transfer back into an assay buffer for additional 600 s (dissociation phase). Assay
20 buffer alone served as a negative control. Binding response data were reference subtracted and
21 were globally fitted with 1:1 binding model using ForteBio's Octet Systems software v9.0.

22

23 *Non-specific ELISA panel*

24 The ELISA protocol to assess interactions of the antibodies with unrelated macromolecules were
25 performed as described previously⁵⁹. The tested antigens included Cardiolipin (50 μ g/mL, Sigma
26 C0563), KLH (5 μ g/mL, Sigma H8283), LPS (10 μ g/mL, InvivoGen tlr1-eblps), ssDNA (1
27 μ g/mL, Sigma D8899), dsDNA (1 μ g/mL, Sigma D4522), and Insulin (5 μ g/mL, Sigma I9278).
28 In addition, the binding of each antibody was also tested against empty wells (BSA only control)
29 and wells containing goat anti-human Fc antibody (positive control, 1 μ g/mL, Jackson 109-005-
30 098). The antigens were coated at 30 μ L per well in 384-well Maxisorp plates and incubated at
31 4°C overnight. Plates were blocked with 0.5% bovine serum albumin (BSA) for 1 hour at room

1 temperature and washed with PBS + 0.05% Tween20. The antibodies were added at 100 nM and
2 allowed to bind for 60 min at room temperature. Plates were washed with PBS + 0.05%
3 Tween20 and binding was detected with anti-kappa HRP antibody (1:5000, Southern Biotech
4 #2060-05) and developed with the TMB substrate (KPL (Mandel) KP-50-76-03).

5

6 *Plasmid constructs*

7 All the plasmid constructs were generated using NEBuilder® HiFi DNA Assembly Master Mix
8 (NEB, E2621L) as per the vendor's instructions with some modifications. The DNA fragments
9 containing the binder (scFv) sequence along with the 40 bp vector compatible flanking region for
10 Gibson assembly was procured from Twist Bioscience. Meanwhile, the target CAR plasmid
11 backbone was linearized with BamHI-HF (NEB, R3136T) and cleaned up using Zymo Research
12 DNA purification kit (Zymo Research, D4013). 10 ng of linearized vector and 5 ng of the DNA
13 fragment (insert) was used to set 10 uL of gibson assembly reaction. This reaction mixture was
14 then transformed into stbl3 competent *E.coli* cells (QB3 MacroLab, UC Berkeley) and the
15 colonies obtained were screened for the positive clones with sanger's sequencing services from
16 Genewiz.

17

18 *Primary T cell isolation*

19 Primary T cells were isolated from LeukoPaks obtained from Stem Cell Technologies (200-
20 0092). CD8 and CD4 cells were isolated separately using their EasySep™ Human CD8+/CD4+
21 T Cell Isolation Kit as per manufacturer's instructions. Briefly, all the unwanted cells were
22 labelled with magnet conjugated antibody cocktail which is separated using their EasySep
23 magnetic stand leaving CD4 or CD8 cell in suspension using the vendor supplied EasySep
24 Human CD4/CD8 T Cell Iso Kit (Stem Cell Technologies, 17952 for CD4 and 17953 for CD8).
25 This negative selection approach results in isolation of untouched CD8 or CD4 T cells and stored
26 frozen with 10% DMSO (MP Biomedicals, 196055). In total, primary T cells from five different
27 donors were used for the *in vitro* and *in vivo* studies here.

28

29 *CAR-T generation*

30 T cells were thawed and grown in T cell media constituting Optmizer CTS media (Gibco,
31 A10221-01) + CTS supplement (Gibco, A10484-02) + 5% Human AB Serum (Valley

1 Biomedical, HP1022) + Penicillin/Streptamycin + glutamax (Gibco, 35050-061). Recombinant
2 human IL7 (Peprotech, 200-07) and IL15 (Peprotech, 200-15), 10 ng/mL final concentration for
3 each was freshly added to the cells every 2-3 days. For manufacturing CAR-T cells, primary T
4 cells (CD4 or CD8) were thawed and cultured overnight. For the aITGB2 CAR-T, the cells were
5 then additionally nucleofected with ribonuclease complex of ITGB2 sgRNA and Cas9 using P3
6 Primary Cell 4D-Nucleofector™ X Kit S (Lonza, V4XP-3032) using 4D-Nucleofector (Lonza)
7 with its inbuilt program EO-115. The cells were then stimulated with 20 µl of CD3/CD28
8 Dynabeads (Thermo Fisher Scientific, 11131-D) per million cells. Meanwhile, lentivirus
9 carrying the CAR expression cassette was added to the cells the day after adding the stimulation
10 beads. The virus was withdrawn from the culture after 24 followed by 2-3 rounds of PBS wash
11 using centrifugation at 300 RCF for 5 minutes. Assuming bead stimulation as day 0, beads were
12 withdrawn on day 4 using magnetic rack and the T cells. On day 6 or 7, the cells were MACS
13 sorted for the CAR positive cells using myc tag of the CAR constructs as a handle using
14 biotinylated c-myc antibody (Milteni Biotec, 130-124-877). The CAR-T cells were used for *in*
15 *vitro* and *in vivo* studies within day 10 – 14 of the manufacturing process.

16

17 *T cell activation assay*

18 PBMC cells were treated with 3 µM ionomycin (Sigma Aldrich, 407950) + 25ng/mL LPS
19 (Sigma Aldrich, L4391) + 100U/mL IL-2 (Prospec, CYT-209) and cultured overnight in CO2
20 incubator. The cells were then co-stained with CD3 and CD69 and analyzed with flowcytometry.
21 CD3 was used to gate on T cells and CD69 was used as a T cell activation marker.

22

23 *In vitro cytotoxicity assay*

24 The AML cell lines used for *in vitro* cytotoxicity analysis were engineered to stably express
25 luciferase using lentiviral transduction. The cell lines were co-cultured overnight with CAR-T
26 cells in various ratios in a 96 well white plate. 150 µg/mL of d-luciferin (Gold Biotechnology,
27 LUCK-1G) was then added to each well and incubated for 3 - 5 minutes at RT, after which the
28 plate is read for luciferase signal using GloMax Explorer Plate Reader (Promega). For each ratio
29 (CAR-T : Tumor), the bioluminescence reading from the tumor cells co-cultured with
30 untransduced T cells were considered 100% viable and thus used for normalization.

31

1 *Degranulation assay*

2 CAR-T cells were co-cultured with tumor at ratio of 2:1 for 6 hours at 37° C in CO₂ incubator
3 with CD107a antibody (Biolegend, 328620, clone-H4A3) and golgistop (BD Biosciences, 51-
4 2092KZ). The cells were washed twice with centrifugation at 500 RCF for minutes at RT. Levels
5 of CD107a was then measured with flow cytometer as a read out of degranulation. CAR-T cells
6 were labelled with GFP which was used for gating them for analysis.

7

8 *Generation of ITGB2 knockout cells*

9 Knockout cell lines or Primary T cells were generated using invitro nucleofection of Cas9
10 ribonuclease protein complex. Briefly, 2 µl each of sgRNA (100 µM) (Synthego Corporation)
11 and recombinant Cas9 protein (40 µM) (QB3 MacroLab, UC Berkeley) was incubated at 37° C
12 for 15 minutes. The sgRNA used in this study were obtained from Brunello library⁶⁰ (sgRNA-1-
13 TCAGATAGTACAGGTCGATG, sgRNA-2- CTCCAACCAGTTTCAGACCG, sgRNA-3-
14 TCAGGGTGCCTGTTCACGAA, sgRNA-4-TCATCCCCAAGTCAGCCGTG). Meanwhile,
15 1e6 cells were washed once with PBS (500 x g for 5 min at RT) and resuspended in a mixture of
16 16.4 µl SF cell line solution and 3.6 µl supplemental solution-1 (Lonza, V4XC-2032). The
17 sgRNA and Cas9 ribonuclease protein complex under incubation was then mixed with the cell
18 suspension and 20 µl of it was put a cuvette and nucleofected using 4D- Nucleofector (Lonza)
19 with the inbuilt program DS-137 for cell lines and EO-115 for primary T cells. The cells were
20 then allowed to rest at RT for 2-5 minutes and added to fresh media pre-warmed at 37° C.

21

22 *Humanized Immune System (HIS) mice generation*

23 All the mice used for HIS mice generation were of NSG-SGM3 strain (NOD.Cg-
24 *Prkdc*^{scid} *Il2rg*^{tm1Wjl} Tg(CMV-IL3,CSF2,KITLG)1Eav/MloySzJ) and obtained from Jackson
25 Laboratories. Each mouse was treated with busulfan (12.5 mg/kg) for two consecutive days then
26 one recovery day followed by injection with 70,000 CD34+ human hematopoietic cells
27 intravenously through tail vein. Fully de-identified human CD34 cells enriched blood samples
28 were obtained from Bone Marrow and Transplantation Laboratory at UCSF and were MACS
29 sorted using CD34 MicroBead Kit (Miltenyi Biotec, 130-046-702) and incubated with CD3
30 antibody (Biolegend, 317302, clone – OKT3) for T cell depletion10 minutes prior to injection in
31 mice, to limit any possible development of graft-vs-host disease. The blood draw of these mice

1 were analyzed using flow cytometry 8 weeks post CD34 cells injection, to determine the
2 engraftment efficiency using Human CD45+ cells as a read out (>1.5% threshold).

3

4 *Murine CAR-T efficacy experiments*

5 All the mice used in the experiments were 6-8 weeks old (either all male or all female for a
6 particular study) and obtained from either Jackson laboratory (NSG-SMG3) or from in-house
7 (NSG) bred stocks of Pre-Clinical Therapeutics Core of UCSF. Each mouse was injected with 1
8 million AML cell lines or 2 million PDX AML lines intravenously through tail vein. In case of
9 PDX, the mice were irradiated with dose of 250cGy 4-6 hours prior to injection. 5 days later,
10 each mice were treated with a total of 5 million CAR-T cells at 1:1 ratio of CD4 and CD8.
11 Tumor burden in case of cell lines (luciferased lines) was assessed using bioluminescence
12 imaging with Xenogen In Vivo Imaging System (Caliper Life Sciences). In case of PDX, using
13 flowcytometry analysis of blood draws and spleen size determination with ultrasonography was
14 used as a readout for tumor burden. All the mice experiments were conducted in accordance with
15 UCSF Institutional Animal Care and Usage Committee.

16

17 *Statistical analysis*

18 All statistical analysis was performed using GraphPad Prism v.9 unless stated otherwise. The
19 data have been represented as \pm mean and *p*-value < 0.05 were considered statistically
20 significant. All the proteomics related statistics were performed by the respective analysis suite
21 used and stated in those sections. All mice were randomized before therapeutics treatment. Other
22 statistical details are stated in the legends of the respective figures.

23

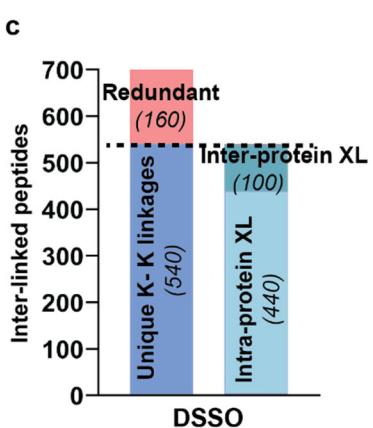
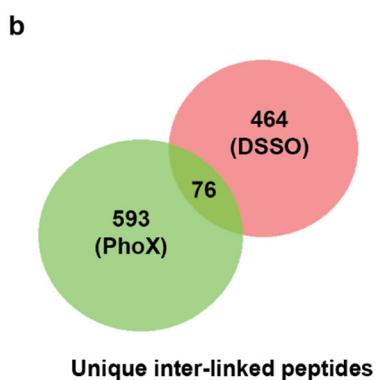
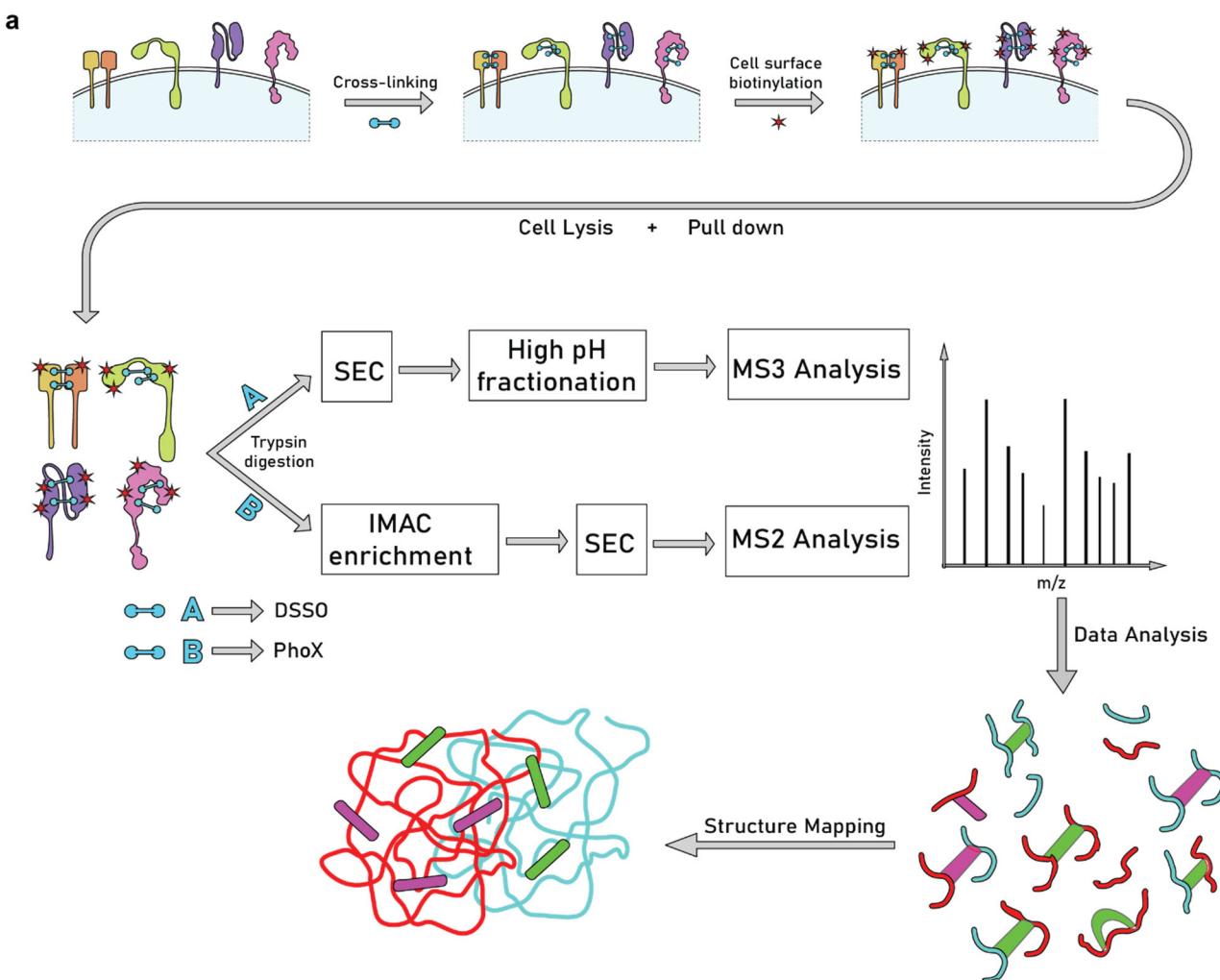
24 *Data Availability*

25 Raw proteomic data generated here has been deposited at the ProteomeXchange/PRIDE
26 repository with accession numbers: PXD035404, PXD035589 and PXD035591.

27 [Reviewer access details: Username: reviewer_pxd035404@ebi.ac.uk Password: xXqWy1wG]

28 [Reviewer access details: Username: reviewer_pxd035589@ebi.ac.uk Password: KYp5TVLG]

29 [Reviewer access details: Username: reviewer_pxd035591@ebi.ac.uk Password: foasTSFF]




30

31

1 *Code Availability*

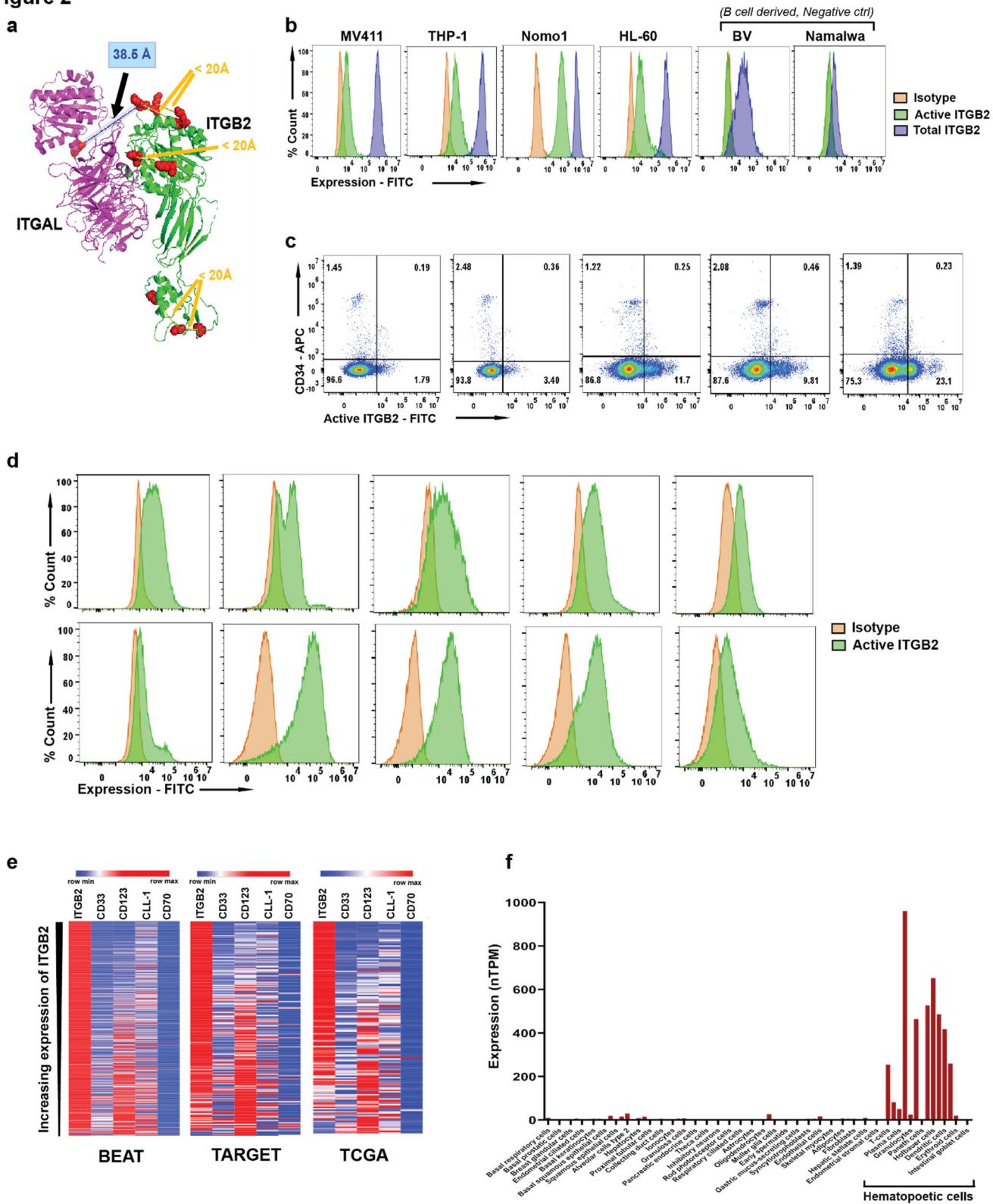
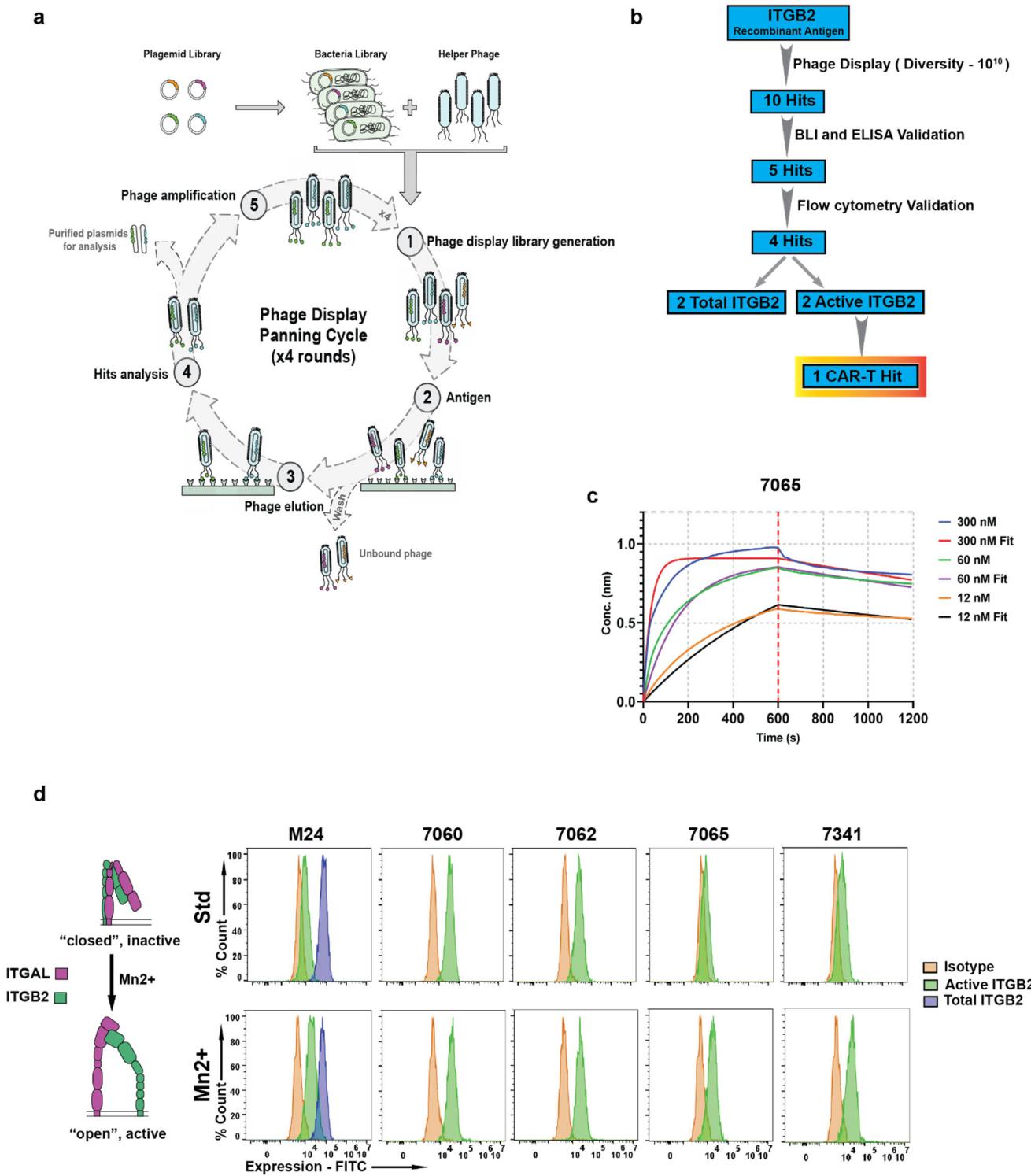

2 Ving software package for analysis of DSSO XL-MS data is available at github -
3 <https://github.com/mhoopmann/Ving>.

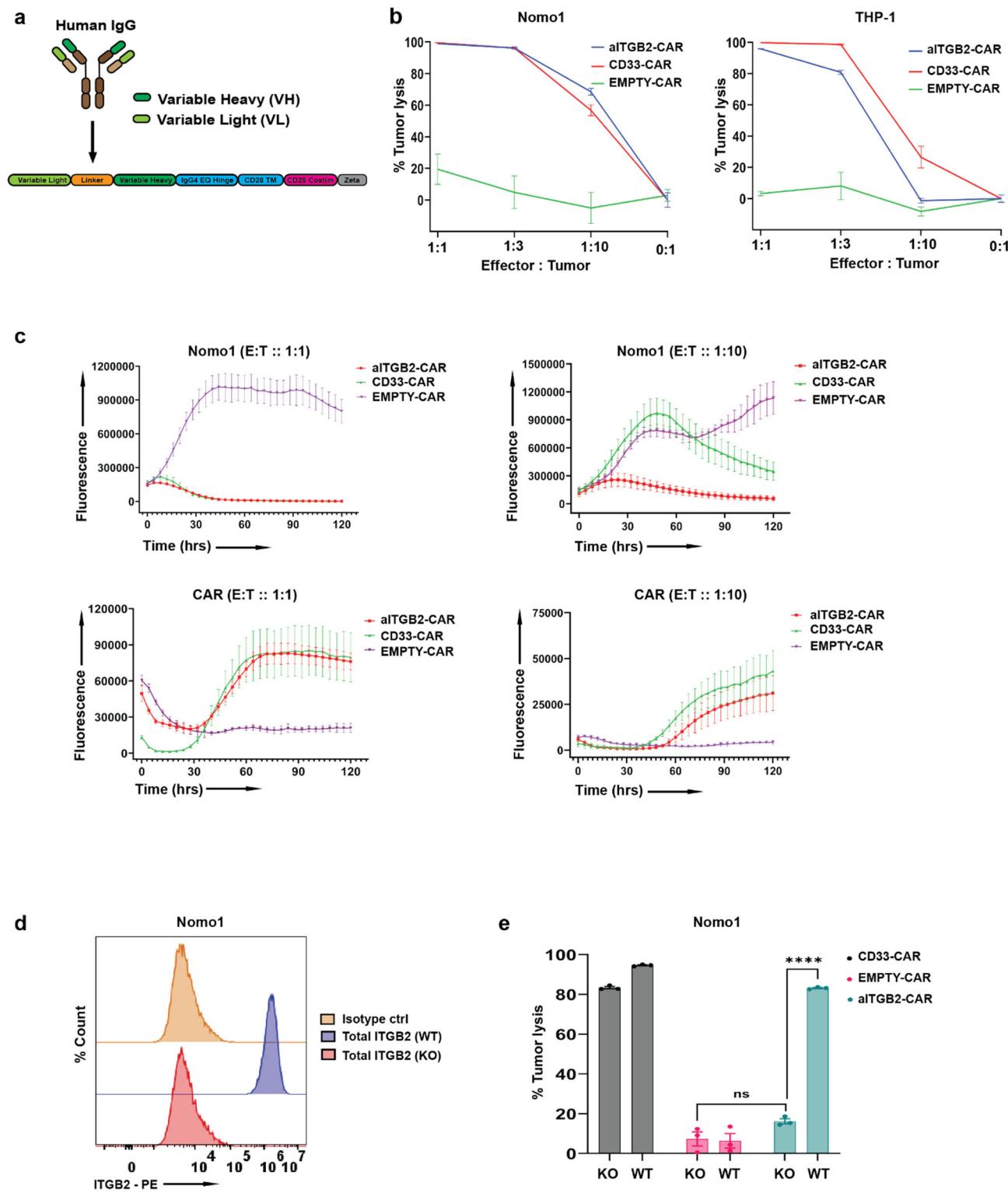
Figure 1

1 **Figure 1. XL-MS + surface glycoprotein capture strategy to identify conformation specific cancer antigens. a.**
2 Schematic flow diagram of “structural surfaceomics” approach. **b.** Venn diagram showing the total number of cross-linked
3 peptides identified from the two different approaches (MS² and MS³ based). PhoX and DSSO was used as a cross-linker
4 for the MS² and MS³ approach, respectively. **c.** Bar graph showing distribution of inter- and intra- protein cross-links (XL)
5 from MS³ (DSSO) based XL-MS. **d.** Pie chart showing distribution of the various types of cross-links obtained from PhoX
6 MS²-based XL-MS. All the cross-links were identified with ≤ 1% FDR (See Methods for details). “Regular” peptides = no
7 PhoX modification detected on any lysines. Source data in Supplementary Dataset 1, 2.
8


Figure 2

1 **Figure 2. Activated Integrin- β 2 is conformationally selective antigen in AML.** **a.** Identified cross-linked peptides
2 mapped on to the crystal structure of integrin- α L/integrin- β 2 heterodimer (PDB: 5E6R). **b.** Flow cytometry histogram plot
3 showing expression of total and activated integrin- β 2 on AML and B-cell lines (BV and Namlwa). The y-axis represents
4 percent count normalized to mode. Gating strategy shown in (Extended Data Fig. 3b). Representative plots from $n = 3$
5 independent experiments. **c.** Flow cytometry plot showing absence of active Integrin- β 2 on CD34+ HSPCs from GM-CSF
6 mobilized peripheral blood. Gating strategy shown in (Extended Data Fig. 3d). Deidentified patient samples were used for
7 this analysis ($n = 5$ independent donors). Representative of 1-2 independent experiments. **d.** Representative flow
8 cytometry histogram plots showing expression of active Integrin- β 2 on primary AML cells. The y-axis represents percent
9 count normalized to mode. Gating strategy shown in (Extended Data Fig. 3e). (Representative of $n = 10$ total deidentified
10 samples, performed in single assay each). **e.** Heat map showing inverse expression pattern of *ITGB2* against other AML
11 targets in publicly available primary AML RNA-seq data. Color bar represents maximum expression in each row based on
12 normalized read counts. Sample size of BEAT⁴⁰ AML (adult), TARGET⁴¹ (pediatric) and TCGA³⁹ were 510, 255 and 150
13 respectively. **f.** Aggregated single cell RNA-seq data showing essentially exclusive expression of *ITGB2* in hematopoietic
14 tissue, obtained from the Human Protein Atlas⁴².

15


Figure 3

1 **Figure 3. Antibody 7065 binds preferentially to the active conformation of Integrin- β 2. a.** Schematic flow diagram of
2 phage display selection strategy used for developing anti-Integrin- β 2 antibodies. **b.** Schematic flow diagram showing
3 triage of antibodies obtained from phage display library and the downstream validation/funneling to identify an active
4 integrin- β 2 binder. **c.** Representative biolayer interferometry plot showing determination of binding affinity (K_D) of 7065
5 antibody against integrin- α L/integrin β 2. $n = 3$ different concentrations of antibody was used for this experiment (also see
6 Extended Data Fig. 6c). **d.** Flow cytometry analysis of Jurkat T-ALL cells in presence and absence of 2 mM Mn^{2+} ions, to
7 determine/identify antibodies having specificity against active integrin- β 2. The y-axis represents percent count normalized
8 to mode. Gating strategy shown in (Extended Data Fig. 3b). (representative of $n = 2$ independent experiments)

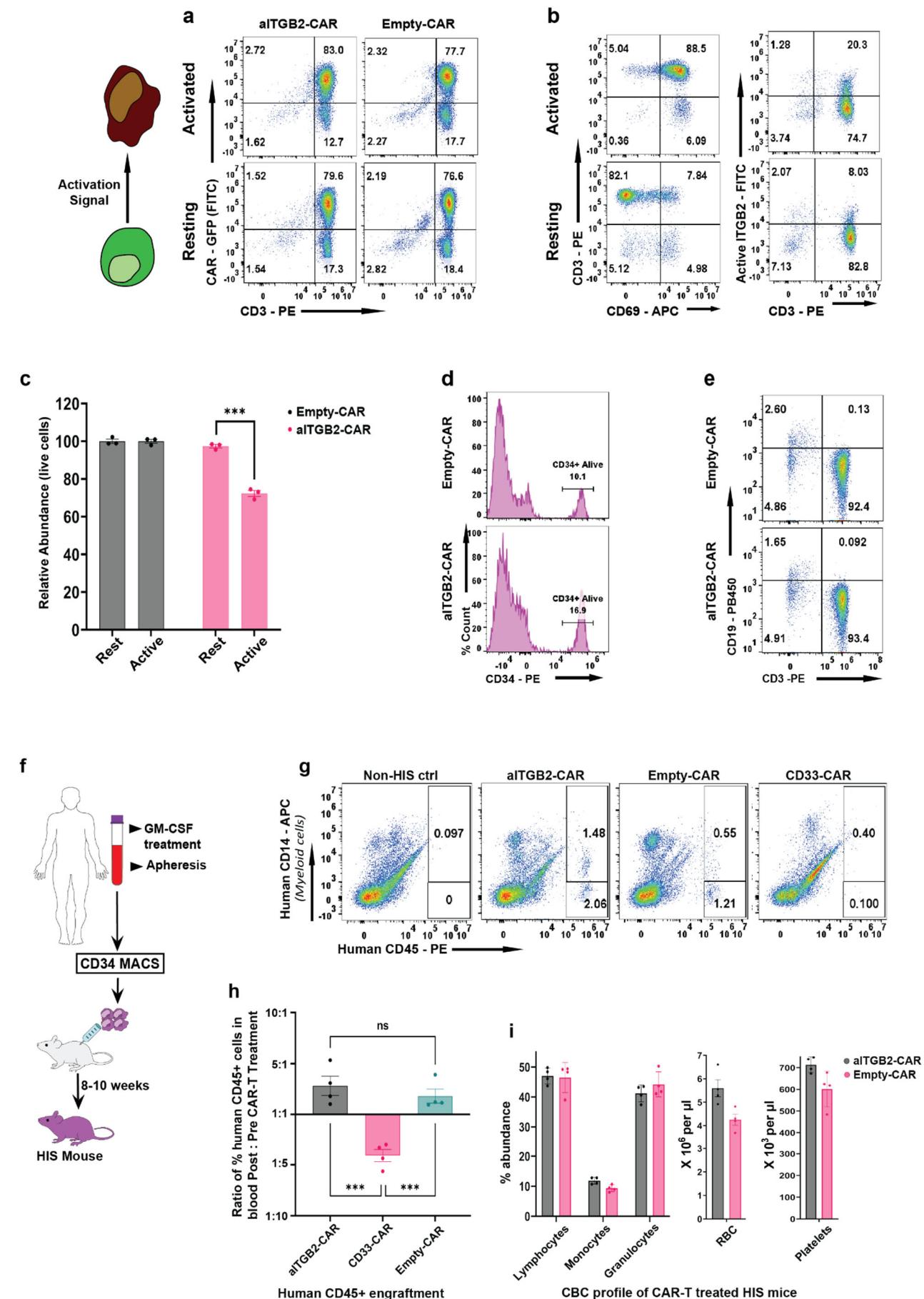
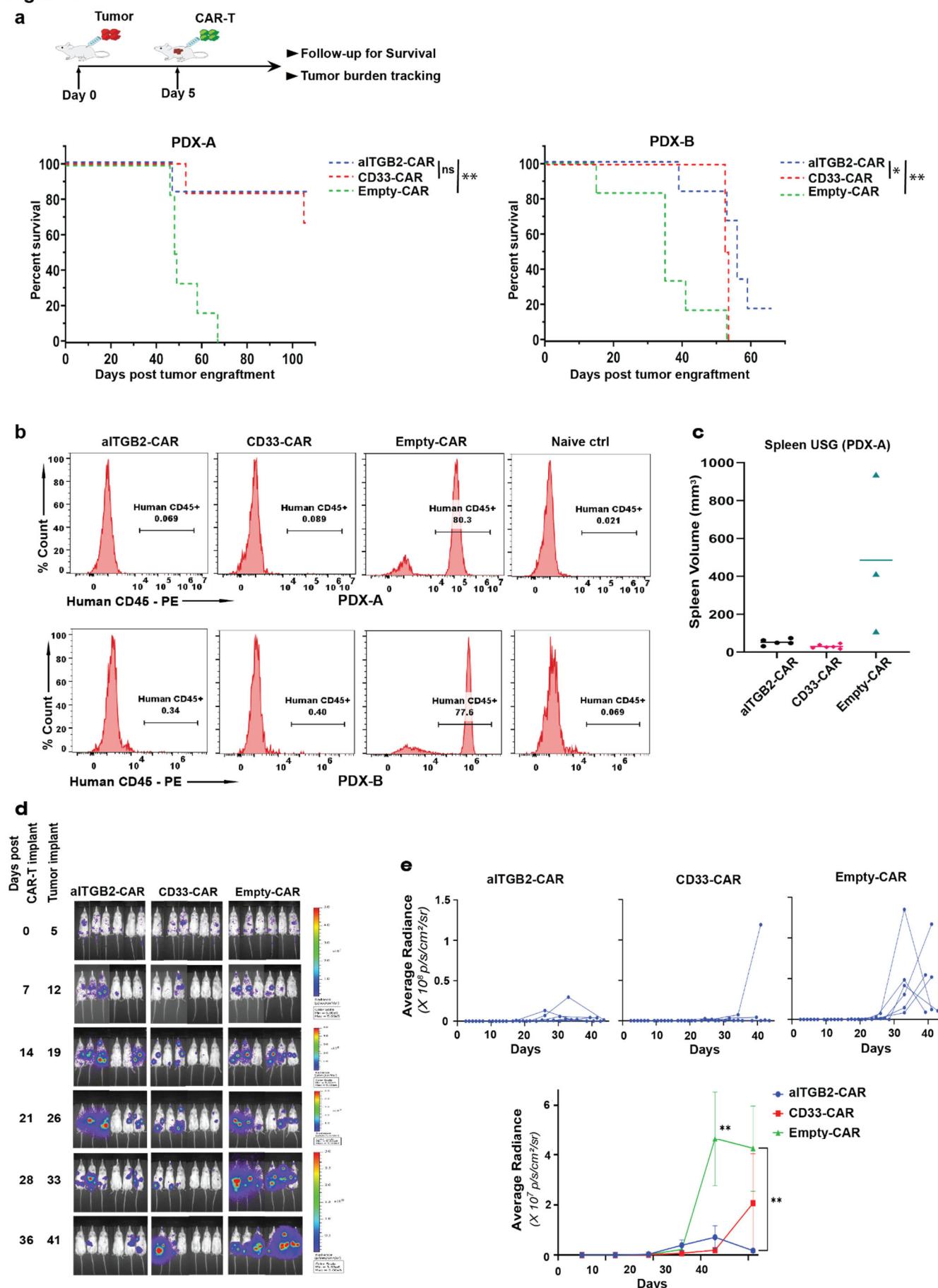

9

Figure 4

1 **Figure 4. Anti-active integrin- β 2 (aITGB2) CAR-T derived from 7065 antibody is cytotoxic to AML cells. a.**
2 Schematic diagram of CAR-T construct used. **b.** Luciferase based cytotoxicity of aITGB2 CAR-T design against Nomo1
3 and THP-1 AML cell lines. $n = 3$ technical replicates, representative plot from 4 independent experiments. **c.** Incucyte
4 live-cell imaging data demonstrating efficient cytotoxicity of aITGB2 CAR-T against Nomo1 at 2 different E:T ratio, 1:1 and
5 1:10 over 5 days period. CAR-T cells were labelled with GFP and tumor cells (Nomo-1) with mCherry to facilitate
6 fluorescence-based quantification. The y-axis represents integrated fluorescence used as a proxy to monitor cell
7 proliferation. Performed with $n = 6$ technical replicates. **d.** Flow cytometry histogram showing successfully generated
8 *ITGB2* knockout version of Nomo-1 using CRISPR-Cas9. The y-axis represents percent count normalized to mode.
9 Gating strategy shown in (Extended Data Fig. 3b). Representative of $n = 3$ independent experiments. **e.** Luciferase based
10 cytotoxicity data showing specific activity of aITGB2 CAR-T against WT Nomo-1 and not against its *ITGB2* knockout
11 Nomo-1 (E:T ratio was 1:1 with overnight incubation). $n = 3$ technical replicates. The luciferase signals of the cytotoxicity
12 assays in this figure were normalized against untransduced CAR-T of their respective E:T ratios. All statistical data in this
13 figure are represented as mean \pm SEM, with p -value by two-tailed t -test.


Figure 5

1 **Figure 5. Toxicity assessment of aITGB2 CAR-T demonstrates a promising safety profile.** **a.** Representative flow
2 cytometry-based cytotoxicity assay showing specificity of aITGB2 CAR-T against activated peripheral blood T cells which
3 harbors activated integrin- β 2 (focus on lower right quadrant, with CAR-negative, CD3-positive T-cells). Both resting and
4 activated conditions performed in overnight co-culture assays with aITGB2 CAR-T cells. (Gating strategy similar to shown
5 Extended Data Fig. 3d.) **b.** Representative flow cytometry analysis showing successful activation of T cells and partial
6 abundance of activated integrin- β 2 on activated T cells. (Gating strategy similar to shown in Extended Data Fig. 3d.) **c.**
7 Quantitative analysis of active T-cell depletion data in (a); $n = 3$ technical replicates. **d.** Representative flow cytometry
8 analysis showing no discernible impact of aITGB2 CAR-T against CD34+ HSPCs from GM-CSF mobilized peripheral
9 blood. The y-axis represents percent count normalized to mode. (Gating strategy similar to that shown in Extended Data
10 Fig. 8c) ($n = 1$ donor) and similarly for **e.** T cells and B cells. (Gating strategy similar to shown in Extended Data Fig. 3d.)
11 ($n = 3$ technical replicates and representative of 2 independent experiments). Also see Extended Data Fig. 9c. **f.**
12 Schematic flow diagram for generation of humanized immune system (HIS) mice. **g.** Representative flow cytometry data
13 from HIS mice data showing apparent non-toxicity of aITGB2 CAR-T against myeloid cells (CD14+). All events were used
14 for gating and analysis. (Representative plot from $n = 4 - 6$ mice and 6 days post CAR-T treatment). **h.** Quantification of
15 hCD45+ data in (g). Gating strategy similar to shown (Extended Data Fig. 10d). *p*-value by two-tail *t*-test. ****p* < 0.005. **i.**
16 Complete blood count profiling of HIS mice treated with aITGB2 CAR-T at day 5 (data from $n = 4$ mice). All the statistical
17 data in this figure are represented as mean \pm SEM. For all the *in vitro* cytotoxicity assays, E:T ratio was 1:1 with overnight
18 incubation time.

19

Figure 6

1 **Figure 6. Efficacy of aITGB2 CAR-T against AML models *in vivo*.** **a.** Survival of NSG mice implanted with 2
2 independent AML PDX and treated with aITGB2, anti-CD33, or empty CAR-T cells. $n = 6$ mice per arm. p -value by log-
3 rank test. 2 million AML tumor cells injected on Day 0, 5 million CAR-T cells injected on Day 5. **b.** Representative flow
4 cytometry histogram plots of peripheral blood draw showing tumor burden at 8-week post tumor injection for PDX-A and
5 3.5 weeks for PDX-B. (also see Extended Data Figure 10a, b.). Naïve control mice have no human cells (AML tumor or
6 CAR-T) injected and used to assess background noise in flow cytometry assay. The y-axis represents percent count
7 normalized to mode. Gating strategy similar to shown (Extended Data Fig. 10d). Representative of data from $n = 4 - 6$
8 mice per arm dependent on number of mice alive until that time point. **c.** Spleen ultrasonography from Empty CAR-treated
9 group compared to CD33 or aITGB2 CAR-T treated mice. All mice alive at day 49 post tumor implantation were scanned
10 ($n = 3 - 6$ mice/arm still surviving at this time). **d.** BLI imaging showing efficacy of aITGB2 CAR-T against intravenously
11 implanted AML cell line Nomo-1 ($n = 6$ mice/arm). **e.** Quantitative analysis of bioluminescence intensity of these mice
12 plotted individually ($n = 6$). Mann Whitney test was used for statistical analysis of mice bioluminescence quantification. All
13 the statistical data in this figure are represented as mean \pm SEM.

1

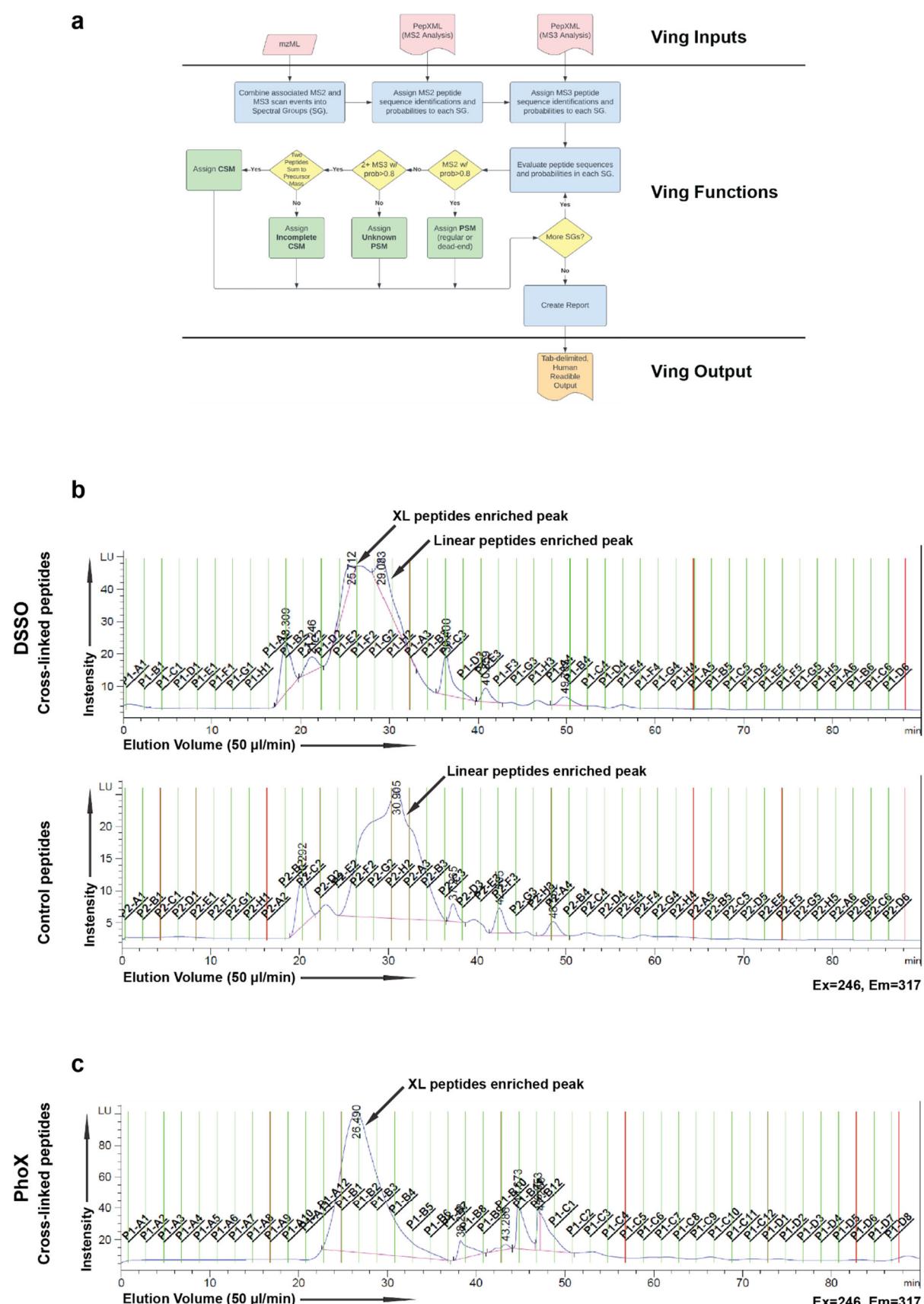
2

3

4

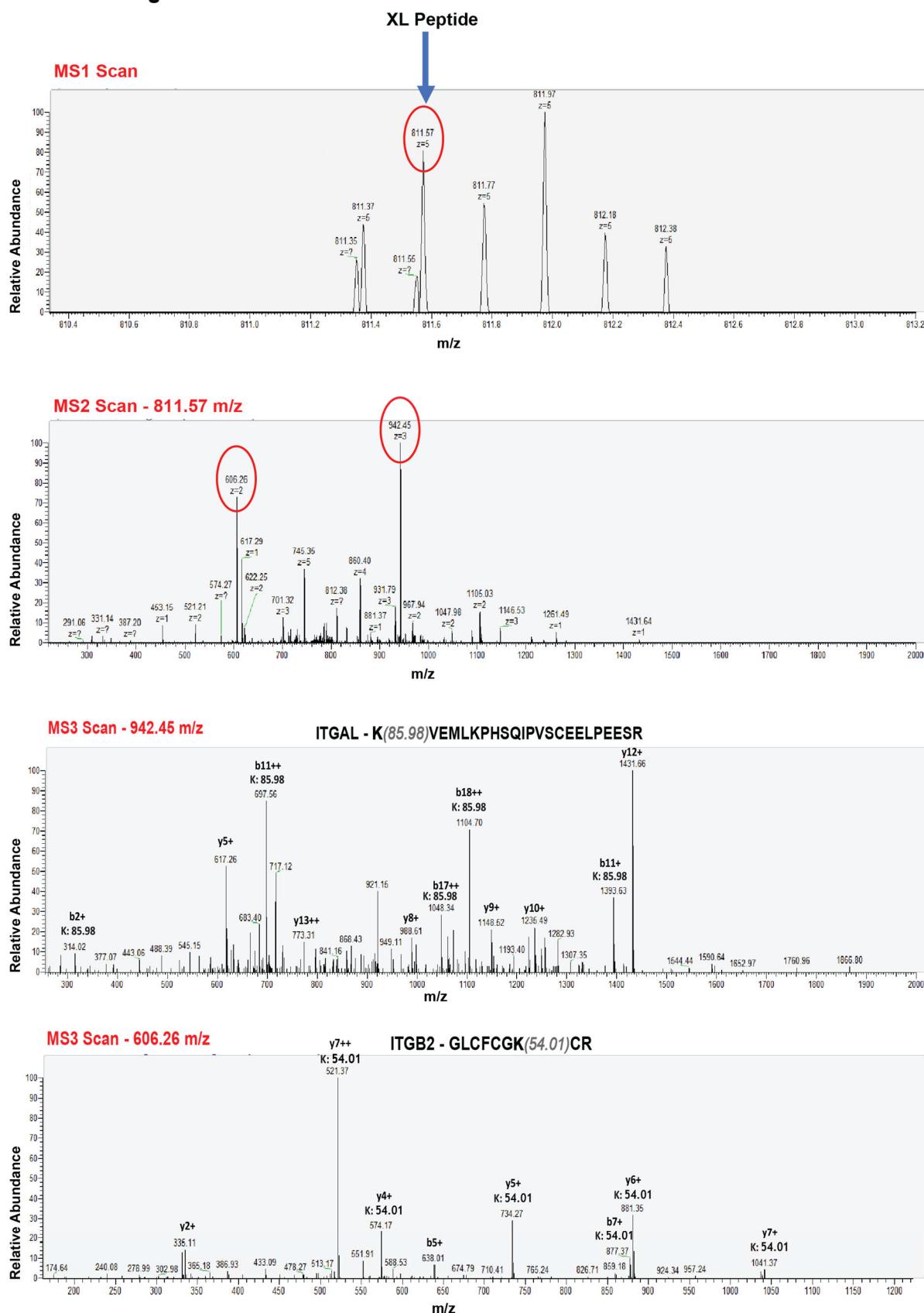
5

6


7

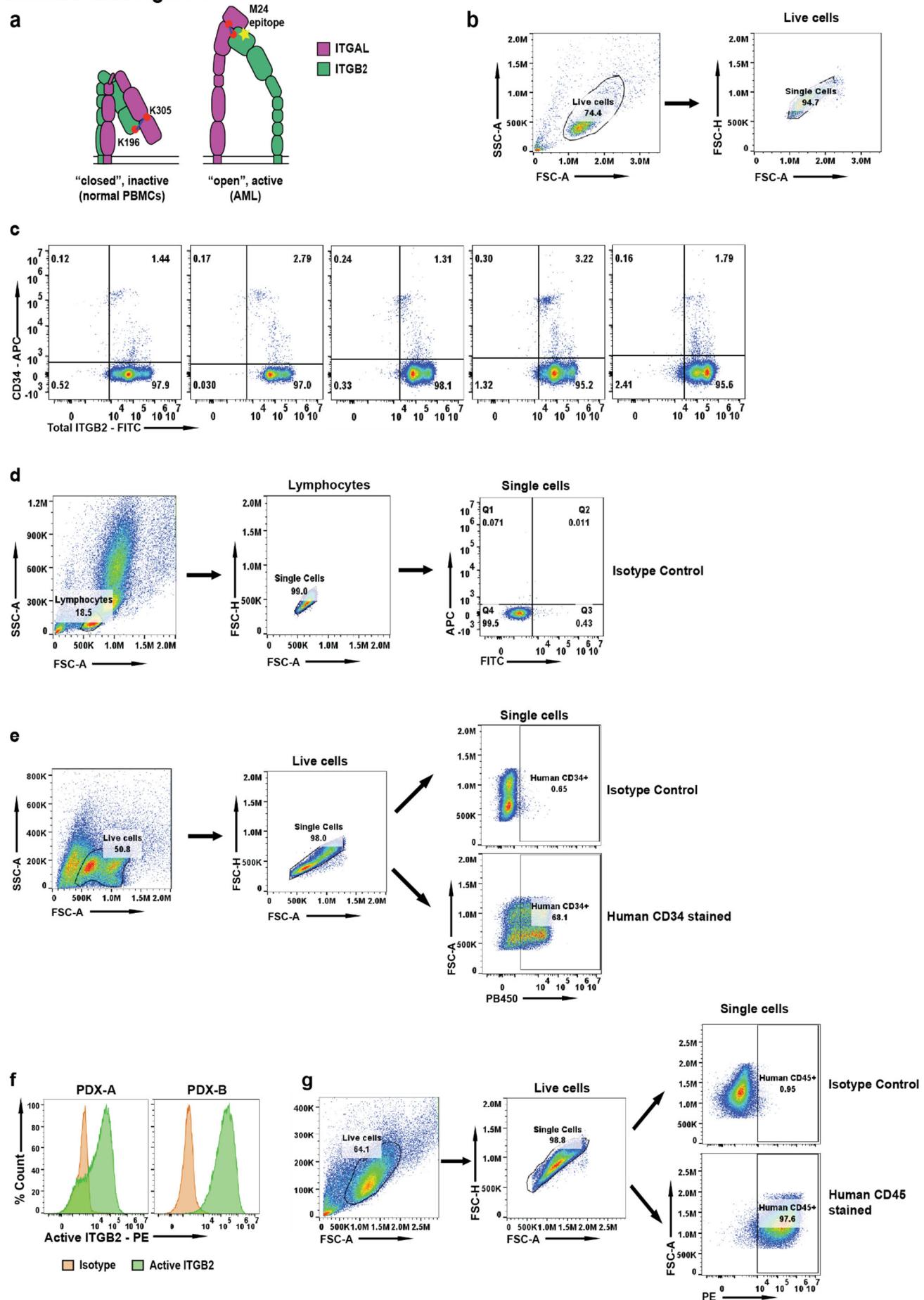
8 **Supplementary Table 1. Binding affinities (K_D) of phage-display generated antibody clones against recombinant**
9 **ITGB2 heterodimers.** Obtained from biolayer interferometry; values based on curve fits as in Octet Systems software, as
10 in Fig. 3c.

11


Antibody ID	BLI K_D (M)		
	ITGAL-B2	ITGAM-B2	ITGAX-B2
7060	2.16E-09	2.01E-09	1.51E-09
7062	2.91E-09	3.20E-09	1.46E-09
7063	1.02E-08	1.14E-08	3.96E-09
7065	1.56E-09	2.15E-09	2.03E-09
7341	4.07E-09	2.75E-09	2.80E-09

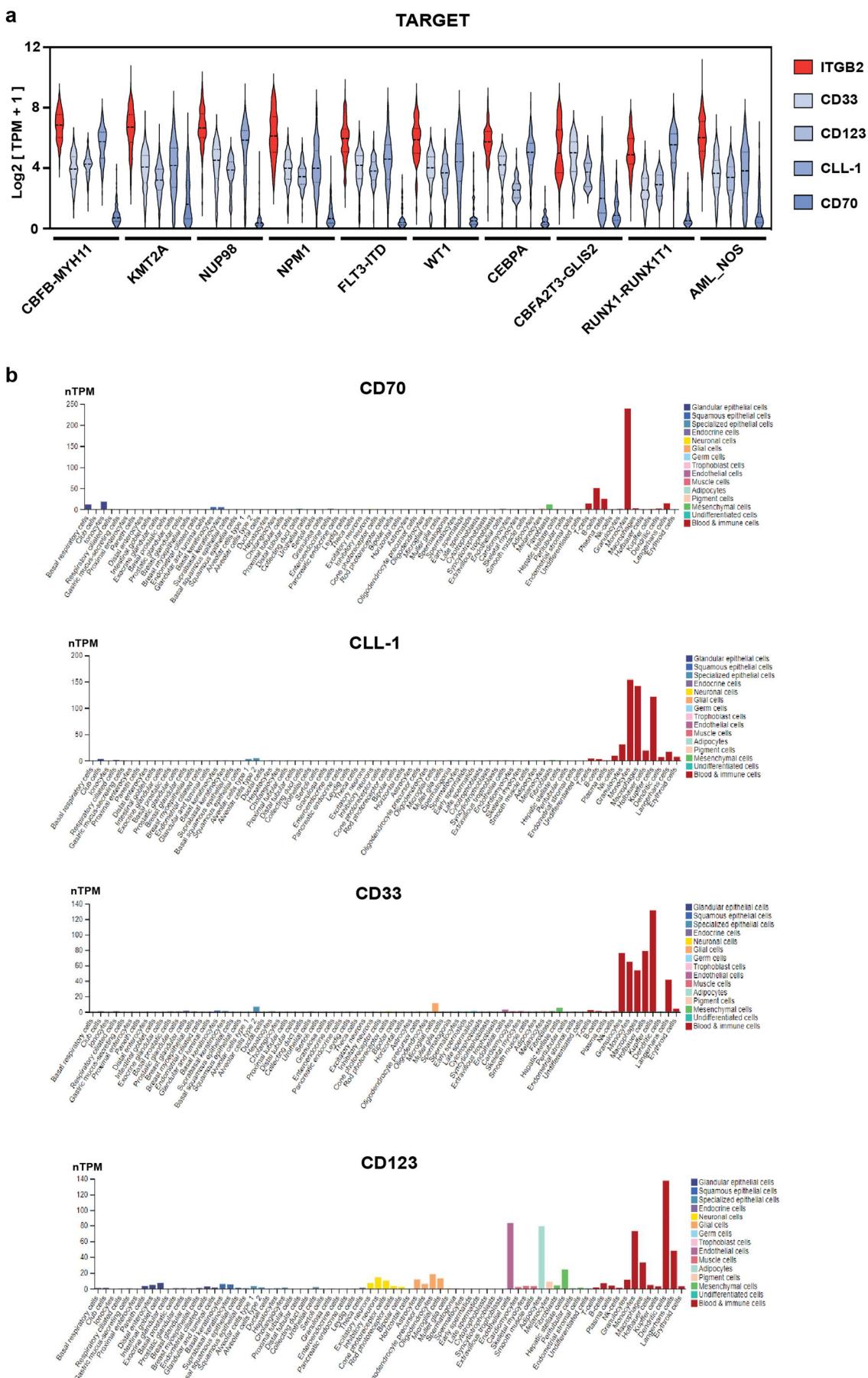
Extended Data Figure 1

1 **Extended Data Figure 1. Ving and XL-MS SEC.** **a.** Schematic workflow describing the working principle of Ving. **b.**
2 Representative SEC trace of peptides obtained from DSSO cross-linked samples. **c.** Representative SEC trace of peptides
3 obtained from PhoX cross-linked samples. For both strategy (DSSO and PhoX), samples were processed in 4 separate
4 batches and every time SEC trace pattern were similar. XL peptides refers to cross-linked peptides.

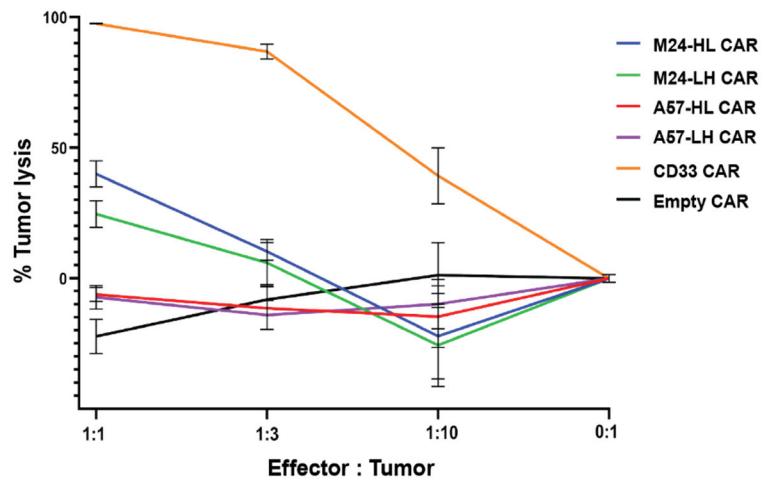

Extended Data Figure 2

1 **Extended Data Figure 2. Representative MS spectra demonstrating the MS³ based strategy of XL-MS.** Representative
2 MS spectra demonstrating the MS³ based strategy of XL-MS. The Cross-linked peptides with 811.57 m/z gets selected for
3 MS2 where the cross-linker gets cleaved in collision cell generating two separate peptides – 606.26 m/z and 942.45 m/z.
4 These two high abundant peptides are then selected for MS³ where they undergoes full fragmentation for peptide
5 identification; where we also note the respective modification on Lysine residues resulting from the cross-linker.

6

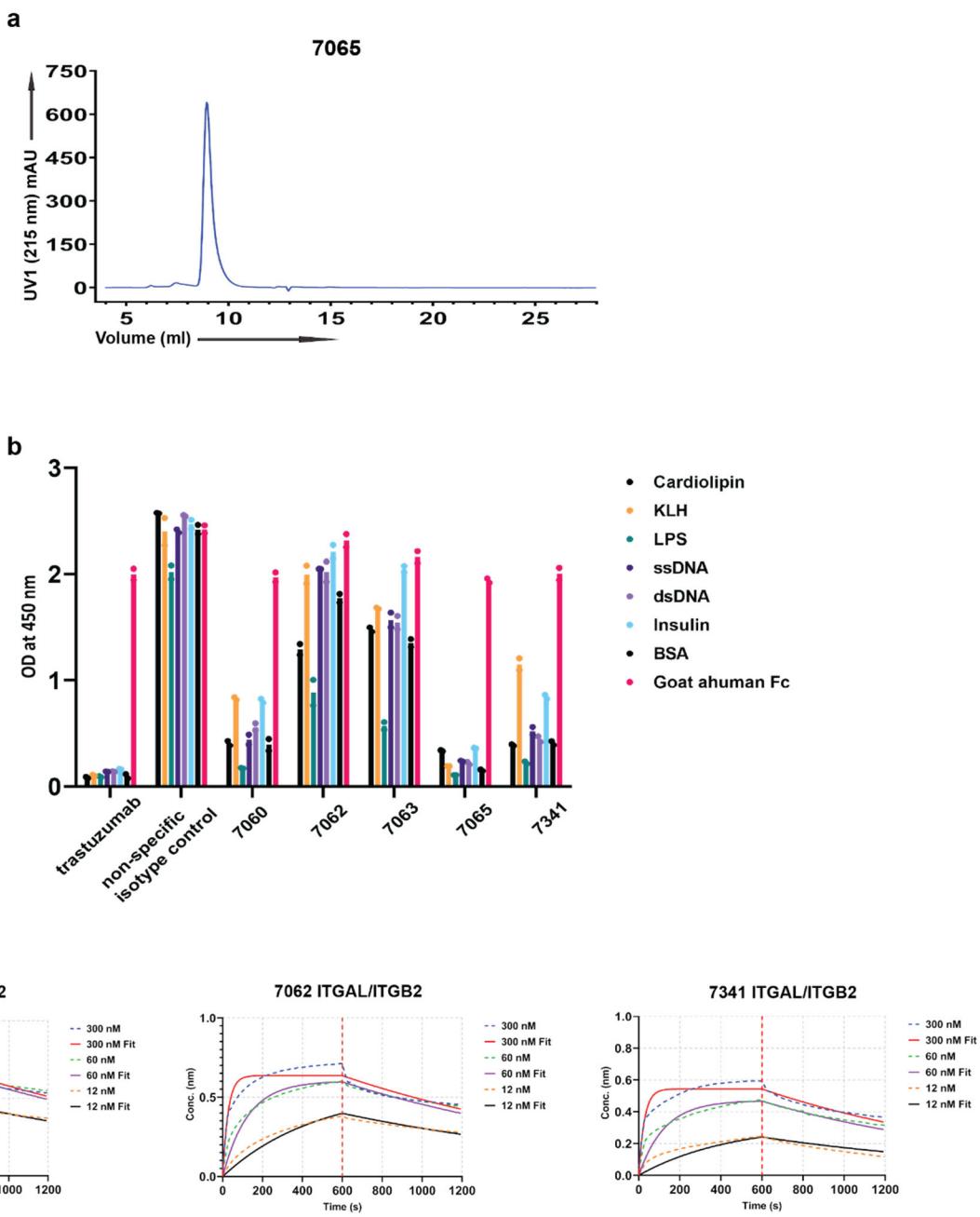

Extended Data Figure 3

1 **Extended Data Figure 3. Discerning active integrin- β 2 expression.** **a.** Cartoon diagram showing proposed inactive and
2 active conformations of ITGB2. **b.** Flow cytometry gating strategy for (Fig 2b, Fig 3d, Fig 4d). **c.** Flow cytometry plot showing
3 presence of total Integrin- β 2 on CD34+ HSPCs from GM-CSF mobilized peripheral blood. Cells were gated on singlet cells
4 for analysis. Deidentified patient samples were used for this analysis ($n = 5$, independent donors). Representative of 1-2
5 independent experiments. **d.** Flow cytometry gating strategy for (c) and (Fig. 2c). **e.** Flow cytometry gating strategy for (Fig.
6 2d). **f.** Flow cytometry analysis showing expression of active ITGB2 in PDX models of AML (PDX-A and PDX-B). The y-axis
7 represents percent count normalized to mode. Cells were gated on human CD45+ population cells for analysis.
8 Representative plot from $n = 2$ separate PDX models of AML. **g.** Flow cytometry gating strategy for (f).

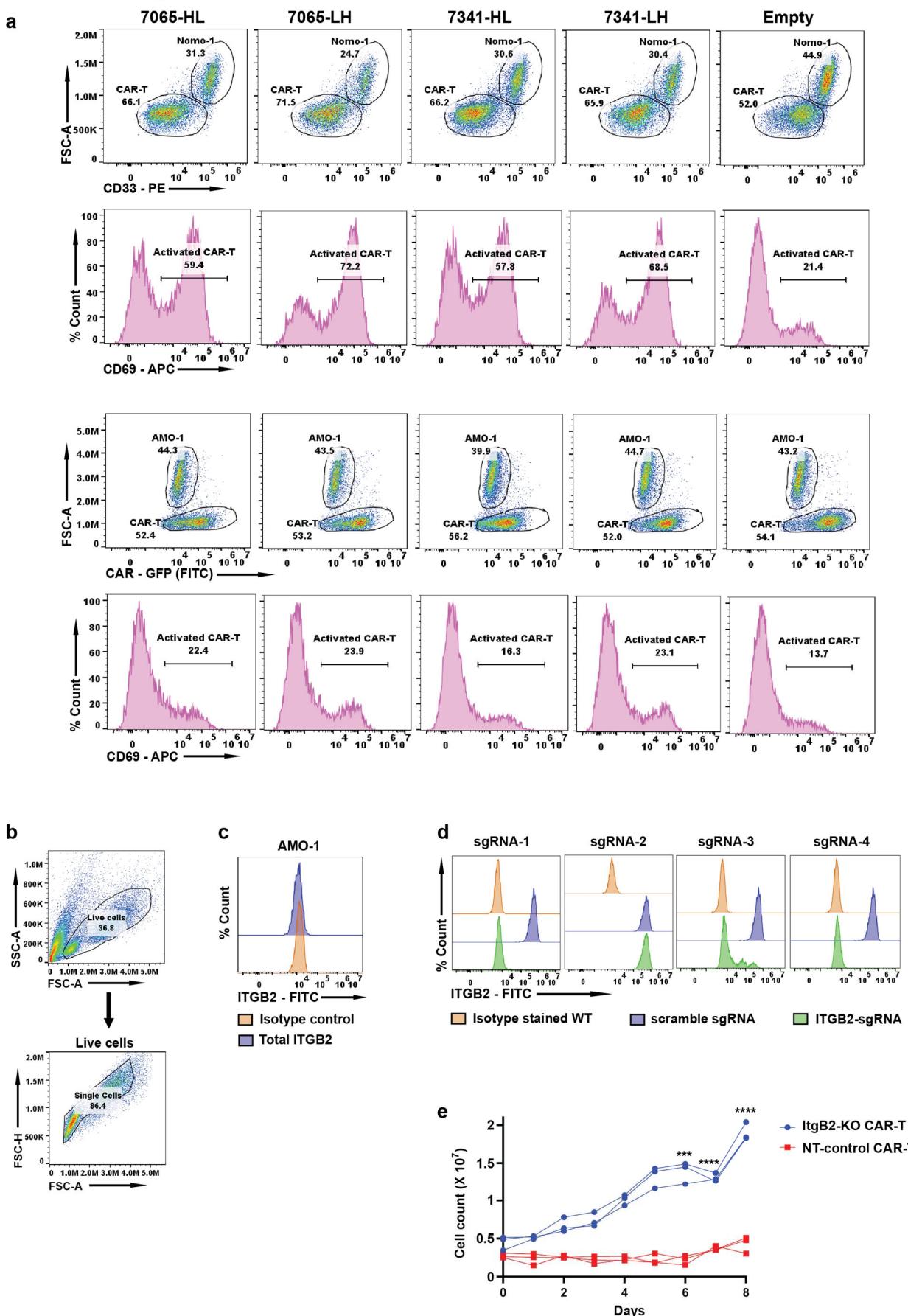

9

Extended Data Figure 4

1 **Extended Data Figure 4. *ITGB2* transcript expression.** **a.** AML subtype specific expression analysis of *ITGB2* and other
2 notable AML targets of patient samples from TARGET database. **b.** Single cell sequencing data showing expression of
3 notable AML target across normal human tissues and immune cells (adapted from Human Protein Atlas⁴²).
4

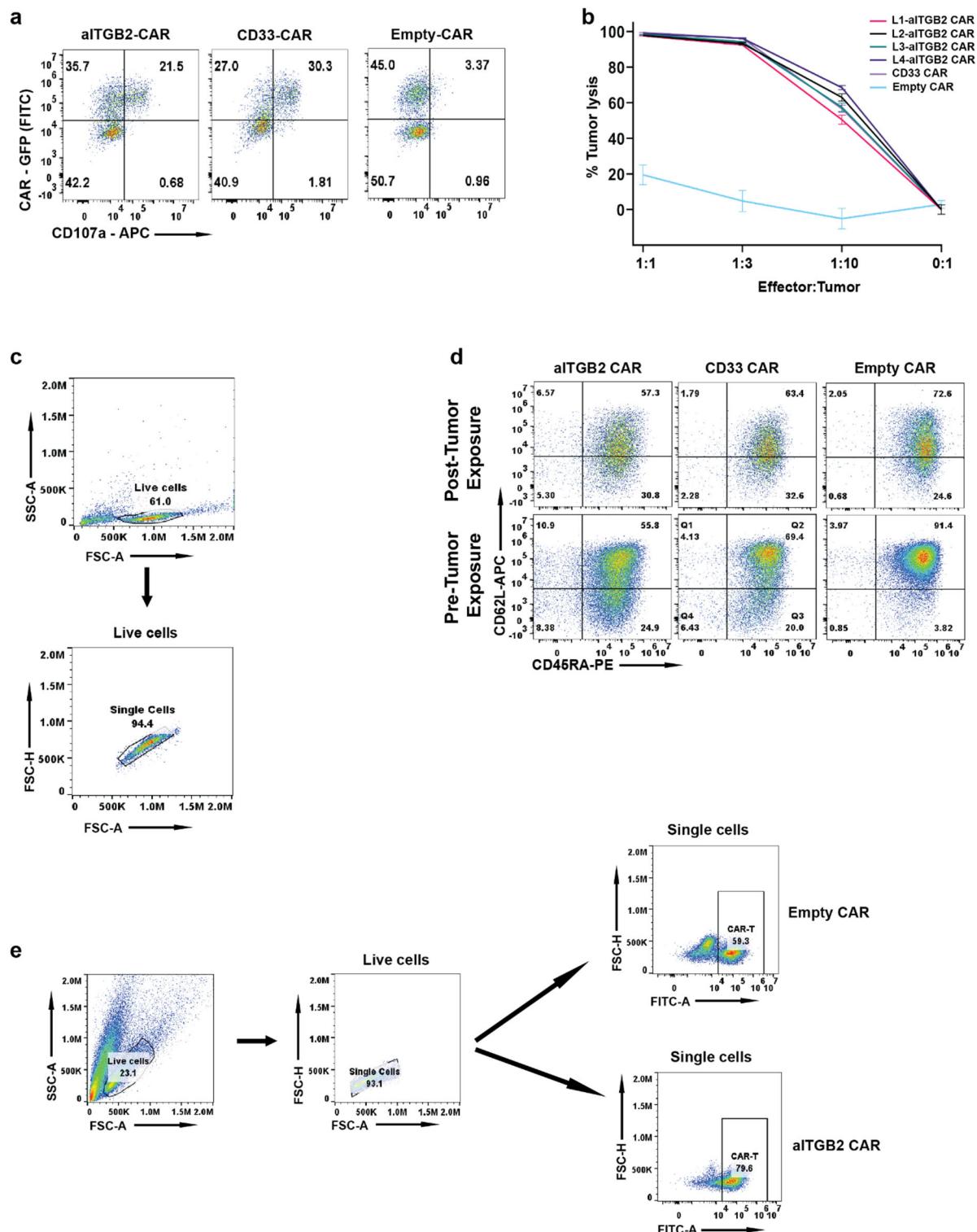

Extended Data Figure 5

1 **Extended Data Figure 5. Initial anti-active integrin- β 2 CAR-T designs.** Luciferase based cytotoxicity analysis of M24
2 and A57 antibody derived CAR-T cells against AML cell line Nomo-1. The experiment was performed with 3 technical
3 replicates in 2 independent experiments. The luciferase signals of the cytotoxicity assays were normalized against
4 untransduced CAR-T of their respective E:T ratios. All the statistical data in this figure are represented as mean \pm SEM.


5

Extended Data Figure 6

1 **Extended Data Figure 6. Characterizing recombinant antibodies to integrin- β 2.** **a.** Representative SEC trace of the
2 antibody 7065 showing distinct peak, for quality check. **b.** Non-specific ELISA panel showing specificity profiles of the
3 antibodies obtained from phage display selection. Experiment performed with $n = 2$ technical replicates. **c.** Representative
4 BLI plots showing binding affinities (K_D) of the antibodies against ITGB2 with their alpha partners. Each experiment was
5 performed with $n = 3$ different concentrations of antibody.

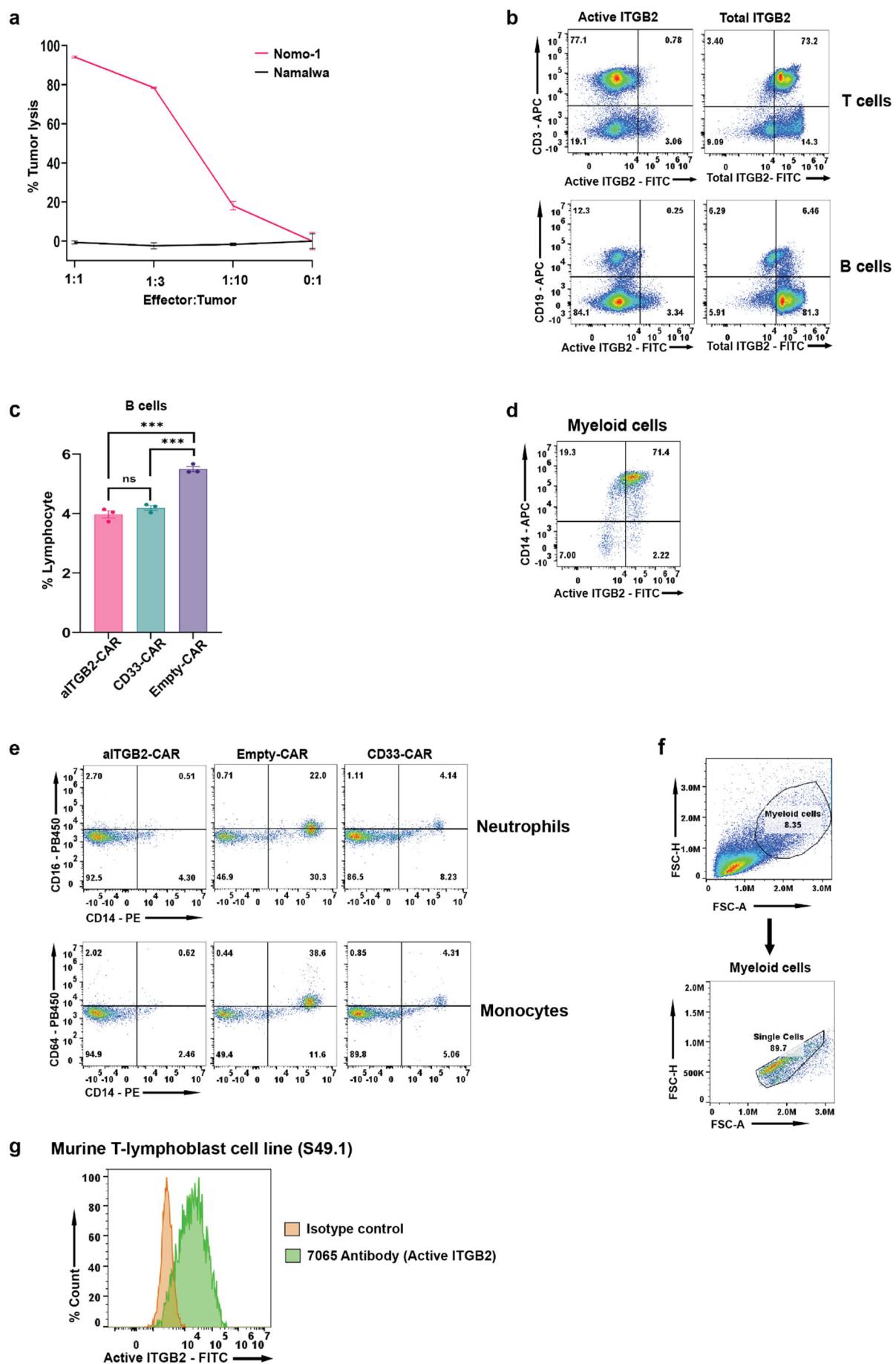

Extended Data Figure 7

1 **Extended Data Figure 7. Evaluation of aITGB2 CAR-T designs incorporating recombinant antibodies. a.** Flow
2 cytometry screen for cytotoxicity and activation status of aITGB2 CAR-T designs vs. AML cell line Nomo1 ($n = 1$ for each
3 design). Similarly, as a demonstration of specificity, cytotoxicity and activation status was also checked against AMO-1
4 (multiple myeloma cell line that does not express integrin- $\beta 2$). Cells were gated on single cells for analysis. **b.** Flow cytometry
5 gating strategy for (a). **c.** Flow cytometry analysis showing absence of ITGB2 in AMO-1 ($n = 1$). Cells were gated on single
6 cells for analysis. Flow cytometry gating strategy similar to shown in (Extended Data Fig.3b). **d.** Flow cytometry analysis
7 showing knockout efficiency of the various sgRNA used for knocking out ITGB2 in primary T cells. ($n = 1$ for each sgRNA).
8 Cells were gated on single cells for analysis. Flow cytometry gating strategy similar to shown in (Extended Data Fig.3b). **e.**
9 Plot showing proliferation of aITGB2-CAR-T cells, “with ITGB2 knockout” vs “Non-Targeting (NT) – control”. Scrambled
10 sgRNA was used for NT-control. $n=3$ technical replicates. $p<0.005$ by two-tailed t-test at points noted.

11

Extended Data Figure 8

1 **Extended Data Figure 8. Additional aITGB2 evaluation.** **a.** Degranulation assay of aITGB2 and anti-CD33 CAR-T against
2 Nomo1 based on CD107a staining. CAR positivity denoted by GFP tag on CAR construct. E:T ratio was 1:1 and 6 hours
3 incubation time ($n = 1$). Cells were gated on single cells for analysis. Flow cytometry gating strategy similar to shown in
4 (Extended Data Fig. 7b). **b.** Luciferase assay-based cytotoxicity analysis showing efficacy of 7065 based aITGB2 CAR-T
5 with 1X - 4X Gly4Ser (L1-L4) linker between heavy and light chain. $n = 3$ technical replicates; representative plot from 3
6 independent experiments. The luciferase signals of the cytotoxicity assays were normalized against untransduced CAR-T
7 of their respective E:T ratios. **c.** Flow cytometry gating strategy for (Fig. 5d) **d.** Memory marker (CD45RA and CD62L)
8 analysis of aITGB2 CAR-T and its comparison with CD33 CAR-T post tumor exposure at E:T ratio of 1:1 for overnight
9 incubation. Upper right quadrant indicates naïve-like phenotype ($n = 1$). Cells were gated on single cells for analysis. **e.**
10 Flow cytometry gating strategy for (d). All the statistical data in this figure are represented as mean \pm SEM.

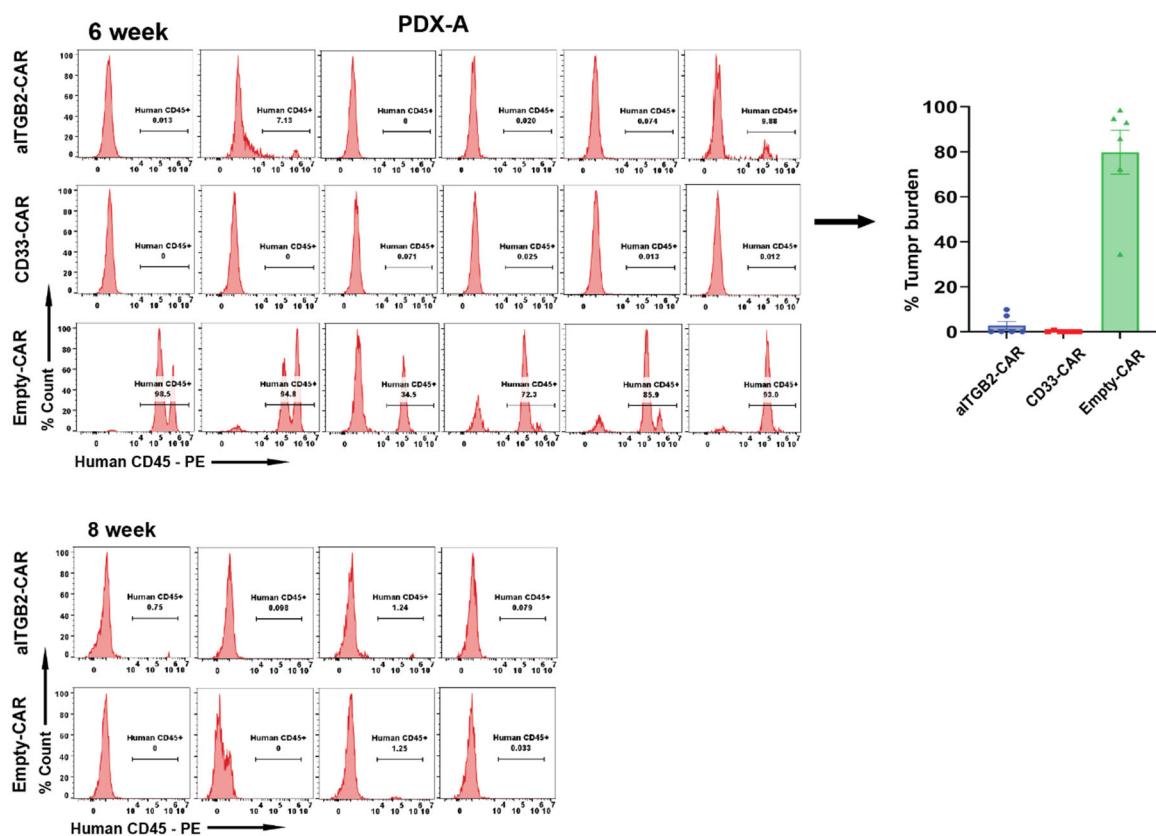

11

12

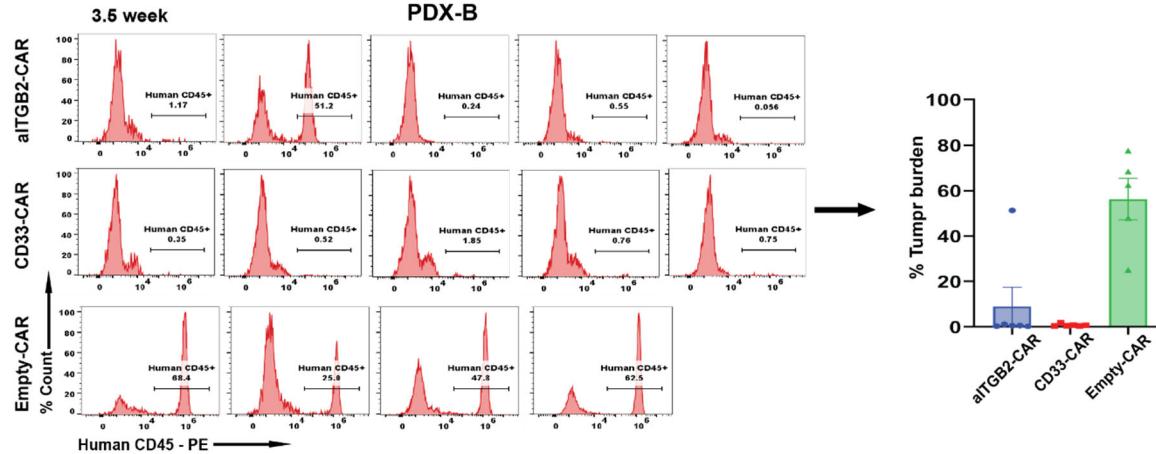
13

14

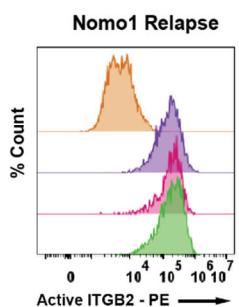
Extended Data Figure 9

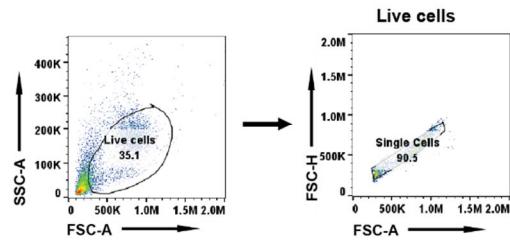


1 **Extended Data Figure 9. Determining specificity of aITGB2 CAR-T.** **a.** Luciferase assay-based cytotoxicity analysis
2 showing no activity of aITGB2 CAR-T vs. Namalwa (B-ALL) line which does not harbor active ITGB2 although it does have
3 total form of ITGB2 (see Fig. 2b). Nomo-1 as the positive control ($n = 3$ technical replicates). The luciferase signals of the
4 cytotoxicity assays were normalized against untransduced CAR-T of their respective E:T ratios. All the statistical data in this
5 figure are represented as mean \pm SEM. **b.** Representative flow cytometry analysis showing absence of active ITGB2 and
6 presence of total ITGB2 in T and B cells ($n = 3$ independent experiments). Cells were gated on single cells for analysis.
7 Flow cytometry gating strategy similar to shown in (Extended Data Fig. 3d.) **c.** Flow cytometry analysis showing non-specific
8 depletion of B cells with aITGB2 and anti-CD33 CAR-T ($n = 3$ technical replicates). Representative data from 3 independent
9 experiments. p -value by two-tailed t -test. **d.** Representative flow cytometry analysis showing presence of active ITGB2 in
10 myeloid cells ($n = 3$ independent experiments). Cells were gated on single cells for analysis. Flow cytometry gating strategy
11 similar to shown in (f). **e.** Flow cytometry analysis showing cytotoxicity of aITGB2-CAR against neutrophils and monocytes
12 in vitro ($n = 2$ PBMC donor). Cells were gated on single cells for analysis. **f.** Flow cytometry gating strategy for (d) and (e)
13 **g.** Representative flow cytometry analysis showing cross reactivity of 7065 antibody against the murine ITGB2 on S49.1
14 cell line ($n = 3$ independent experiments). The y-axis represents percent count normalized to mode. Cells were gated on
15 single cells for analysis. Flow cytometry gating strategy similar to shown in Extended Fig. 3b. All the statistical data in this
16 figure are represented as mean \pm SEM.


17

Extended Data Figure 10


a


b

c

d

1 **Extended Data Figure 10. aITGB2 efficacy in PDX models.** **a.** Flow cytometry analysis and bar graph of peripheral blood
2 draw showing tumor burden at 6 and 8 weeks post tumor injection of PDX-A. The y-axis represents percent count normalized
3 to mode. Cells were gated on single cells for analysis. Representative of data from $n = 4 - 6$ mice per arm dependent on
4 number of mice was alive until designated time point. **b.** Flow cytometry analysis and bar graph of peripheral blood draw
5 showing tumor burden at 3.5 weeks post tumor injection of PDX-B. The y-axis represents percent count normalized to mode.
6 Cells were gated on single cells for analysis. Representative of data from $n = 5 - 6$ mice per arm dependent on number of
7 mice was alive until designated time point. **c.** Flow cytometry analysis showing active ITGB2 density of tumor cells harvested
8 from relapse Nomo-1 mice model ($n = 1$ mouse per condition). The y-axis represents percent count normalized to mode.
9 Cells were gated on human CD45+ cells for analysis. Flow cytometry gating strategy similar to shown in (Extended Data
10 Fig. 3g). **d.** Flow cytometry gating strategy for (a) and (b). All the statistical data in this figure are represented as mean
11 \pm SEM.

12