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Abstract: Single cell transcriptomic studies have identified a conserved set of neocortical cell 

types from small post-mortem cohorts. We extend these efforts by assessing cell type variation 

across 75 adult individuals undergoing epilepsy and tumor surgeries. Nearly all nuclei map to 

one of 125 robust cell types identified in middle temporal gyrus, but with varied abundances and 

gene expression signatures across donors, particularly in deep layer glutamatergic neurons. A 

minority of variance is explainable by known factors including donor identity and small 

contributions from age, sex, ancestry, and disease state. Genomic variation was significantly 

associated with variable expression of 150-250 genes for most cell types. Thus, human 

individuals display a highly consistent cellular makeup, but with significant variation reflecting 

donor characteristics, disease condition, and genetic regulation. 

One-Sentence Summary: Inter-individual variation in human cortex is greatest for deep layer 

excitatory neurons and largely unexplainable by known factors. 
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Main Text: The human brain displays well-established inter-individual variability in regional 

activity, morphology, and connectivity (1), with neurotypical brains varying up to two-fold in 

size and showing a wide range of associated changes in brain shape (2). This variation 

necessitates the use of common coordinate frameworks where individual human brain maps are 

morphed to fit a representative average for direct comparisons across individuals (3). Such 

methods have shown that brain structure in humans relates to many demographic and behavior 

variables across a large cohort of young people (4), and that genetic variants impact the structure 

of subcortical areas (5). Furthermore, functional networks defined with resting-state functional 

magnetic resonance imaging (fMRI) associate with ion channel and synaptic gene networks in 

neurotypical adult donors (6), providing a link between functional and transcriptomic networks. 

Resting-state fMRI can also be tied to population variation of the underlying genome, where 

common genetic variants have been shown to influence intrinsic brain activity in a manner 

correlated with brain disorders such as schizophrenia and major depressive disorder (7), further 

extending the causal chain.  

Despite this extensive body of imaging data demonstrating inter-individual variability in 

human brains, we lack an understanding of population differences in cell type distributions and 

gene expression and how these differences are impacted by genetic, environmental, and 

demographic factors. Neuronal proportions are established during prenatal development and 

stable through adulthood and may contribute to behavioral variation, whereas non-neuronal 

proportions can change in response to the environment, such as microglial proliferation in 

response to inflammatory stress (8). Cellular gene expression profiles reflect the developmental 

origins, life history, and current activity of a cell. A previous study demonstrated stable gene 

expression patterning across brain regions in six human donors using microarray profiling of 

bulk tissue dissections (9), but the consistency or variability of such gene networks across cell 

types and larger human cohorts is unknown (10, 11).  

Single nucleus transcriptomics (snRNA-seq) provides a major advance over previous 

genomic assays by separating gene expression changes due to differences in expression levels 

from changes due to differences in cell type abundances across individuals (12–15). Previous 

snRNA-seq studies provide hints about anticipated variation in gene expression and cell type 

abundance. Studies of small cohorts (N=3-8) of young adult human brain donors show strong 

inter-individual concordance, as cells from different donors co-cluster by cell type without the 

need for data integration methods (16, 17). In contrast, high variation in cell type proportions and 

gene expression are seen in larger studies of Alzheimer’s disease and other neurodegenerative 

diseases, which can largely be explained by disease phenotypes (18–20). These results 

complement earlier microarray studies that demonstrate increased transcriptional heterogeneity 

in human brain with age and associated with many gene pathways (21). Furthermore, gene 

expression variation differs by cell type. In mouse, glutamatergic types show greater gene 

expression changes across cortical regions than GABAergic types, with unbiased clustering 

identifying distinct glutamatergic types in primary visual and anterior lateral motor cortices (22). 

Similarly, supragranular glutamatergic neurons are highly variable across several axes, including 
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cell type, cortical depth, donor, and species (16, 17, 23). However, the extent of such variation 

across many individuals is not clear.  

Heterogeneity in gene expression across individuals can arise as a function of biological 

factors such as age, sex, or ancestry, as well as the presence of genetic variants that modulate 

expression. Combined genotype and snRNA-seq data in even small cohorts permit investigation 

of the functional effects of disease-associated variants and identification of genes whose 

expression is under genetic control through expression quantitative trait locus (eQTL) analysis. 

Existing studies that perform eQTL analysis using bulk RNA-seq or snRNA-seq provide insights 

into brain-specific eQTLs (24, 25), some of which are associated with diseases like Alzheimer’s 

disease (20, 26, 27). However, the current resolution of cell type-specific eQTL analysis is 

limited to the broadest cell types and the extent to which genetic variants can modulate 

expression within finer cell type annotation remains unexplored. 

In short, additional work is needed to determine the degree of inter-individual variability 

in transcriptional programs in human brain and to assess how this variability relates to cell types 

and genotypic and phenotypic variables. Here we investigated variation in cortical cellular 

abundance and gene expression across 75 adult individuals, providing a detailed view at how cell 

type variation reflects donor characteristics, disease condition, and the underlying genomic 

landscape.  

 

Results 

High quality tissue from neurosurgical resections 

We collected overlying cortical tissue from 75 adult individuals undergoing neurosurgery for 

intractable epilepsy or removal of tumors (Table S1). Most tissue was from middle temporal 

gyrus (MTG) removed to gain access to underlying hippocampal tissues during epilepsy surgery, 

and all but four of the remaining tissue samples were derived from frontal cortex (FRO) (Fig. 

1a). Approximately two thirds of donors underwent epilepsy surgery, and these individuals were 

generally younger than those with tumors. Males represented just over half of the donors from 

each medical condition.  

Tissue was collected for droplet-based snRNA-seq and whole genome sequencing (WGS) 

from adjacent sections to those processed for patch-seq studies (23) following a published 

protocol (28) (Methods). We previously showed that resected tissue is largely neurotypical, with 

no obvious relationship between electrophysiology or morphology and pathology, sex, or age 

(23), or time in patch clamp solution (28). Histological assessments of neurodegeneration, 

gliosis, and tumor infiltration show minimal indicators of pathology (23). Finally, gene 

expression from neurosurgical and postmortem tissue has high fidelity, as nuclei from surgical 

tissues show relatively few gene expression changes as compared to postmortem tissues (17), 

and patch-seq cells can be mapped to reference transcriptomic classifications built using 
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predominantly postmortem nuclei with high confidence (23). 

 

Fig. 1. Study design and overall gene expression variation in neurosurgical cohort. (A) Summary of 

data types, individuals, demographics, and quality metrics in this study. (B) Schematic of quality control 

and cell type assignment for single nuclei collected in this study. (C) (top) Dendrogram of reference 

supertypes from this study (identical to the taxonomy from sea-ad.org). (bottom) Number of cells from 

this study mapped to each supertype. Most GABAergic types are rare, while some superficial IT and 

oligodendrocyte types are quite common. (D) Low dimensional (UMAP) representation of all cells from 

this study, color-coded by donor and labeled by subclass. Dotted lines separate broad cell classes, which 

are also labeled. The same UMAP representation is used in Fig 1B, 1D, and 2C. (E) (left) Number of 

genes with significantly higher distance between cells from different donors as compared to cells from the 

same donor (x-axis) for each subclass (y-axis). FDR<0.00494 was chosen such that no genes have 

significantly higher intra-donor cell distance. (right) Scatterplot showing median inter-donor (x-axis) vs. 

intra-donor (y-axis) distance for each gene expressed in at least one type (points). The top 15 most 

variable genes are shown, which include several sex chromosome and immune-response genes. 

 

Nuclei from all donors mapped to robust MTG reference taxonomy 

To assess cell type variation across individuals, it is critical to have a high-confidence reference 

taxonomy. Here we use a human MTG taxonomy created from ~150,000 nuclei collected from 

postmortem tissue of five neurotypical donors as part of the Seattle Alzheimer’s Disease Brain 

Cell Atlas (SEA-AD; sea-ad.org). These cell types are also used in SEA-AD and mapping to the 

same reference will allow future comparisons between cells from younger and aged donors. 125 

“supertypes” were defined as a set of fine-grained cell type annotations for single nucleus 

expression data that could be reliably predicted with an F1 score greater than 0.7 on held-out 

reference data (29) (Methods). 
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Nuclei from each donor underwent basic filtering on the number of genes detected (>500) 

and doublet scores (<0.3) and were then assigned to cell types iteratively by first mapping to cell 

“class” (e.g., glutamatergic neuron), followed by “subclass” (e.g., layer 2/3 intratelencephalic 

glutamatergic neuron [L2/3 IT]), and finally by supertype (e.g., L2/3 IT_6; Fig. 1b; Fig. S1, 

Methods). Next, to define high quality nuclei, we developed a novel algorithm for automated 

quality control that can be applied to snRNA-seq data from one or more libraries (QCR; 

Methods) and used this to flag nuclei for potential filtering. These flags were then used as a 

baseline for manual filtering of low-quality cells and doublets in an instance of CELLxGENE 

(30) that included these data and nuclei from the SEA-AD reference. For most individuals <15% 

of nuclei were excluded, with >50% of nuclei filtered in three cases, resulting in an average of 

4,597 (IQR: 3,344-5,396) nuclei collected per individual after controlling for RNA quality (Fig. 

1a). 

To address the relative sparsity of NeuN- nuclei in this reference and the known 

heterogeneity of non-neuronal cell types, we extended the set of non-neuronal supertypes by 

reclustering these nuclei alongside non-neuronal nuclei from the 75 individuals in this study, 

which resulted in an additional set of 6 Astrocyte, 1 Micro-PVM, 3 Oligodendrocyte, and 1 OPC 

transcriptionally distinct populations (Fig. S1). As with postmortem donors, most cell types were 

rare except for several neuronal (IT) and glial types (Fig. 1c). Due to the overall sparsity of 

supertypes as well as potential gene expression differences in glutamatergic types across brain 

regions (22, 31) we focus many of our comparisons on high fidelity subclass assignments. 

 

Glutamatergic neurons show highest inter-donor variability  

To gain an initial understanding of cell-to-cell variability we plotted a UMAP of the entire data 

set using the most variable genes without performing additional data integration and color-

coding by different metadata. Cells show nearly perfect separation by subclass, often dividing 

into distinct islands (Fig. 1b), indicating that cell types are highly consistent across donors at this 

level of resolution. Within each subclass, most supertypes also show visual separation indicating 

that these higher resolution cell type assignments are relatively robust across donors (Fig. S1). In 

contrast, inter-individual variability is highly dependent on cell type. Inhibitory neurons are well 

mixed by donors, whereas glutamatergic neurons and some non-neurons show spotting and 

banding by donor (Fig. 1d), indicating that at least some donors have gene expression profiles 

different from other donors for these cell types. Indeed, we find a small set of non-neuronal types 

with distinct transcriptional signatures that are comprised of nuclei from only two donors with 

tumors (Fig. 1d). Further examination of available histology showed evidence of infiltration of 

abnormal cells into donor tissue samples, suggesting that these transcriptionally distinct cells 

may reflect disease-related cell states. 

To examine which genes are most variable across individuals, we divided cells by 

subclass and compared the gene distance between pairs of nuclei from the same donor against 

pairs of nuclei collected from different donors to define “high variance genes”. Using an FDR 

threshold such that no genes showed larger within- than between-donor distance (FDR < 

0.00494), all glutamatergic subclasses had more high variance genes than all GABAergic and 
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most non-neuronal types (Fig. 1e). Specifically, glutamatergic types in layer 6 had the most 

high-variance genes (N >= 1149 for L6 IT Car3, L6 IT, L6 CT, L6b), although after scaling by 

the number of genes expressed, Microglia were the most diverse across individuals (Fig. S2a). In 

contrast, Vip, Sncg, and Pax6 GABAergic subclasses and non-neural types (VLMC and 

endothelial cells) had the fewest such genes (N<=289). Gene counts were not correlated with the 

number of cells per subclass (Fig. S2b), suggesting that this is a biological rather than a technical 

result. Many high variance genes have clear biological contexts (Fig. 1e; Fig. S2c-d). Sex genes, 

including genes on the Y chromosome (UTY, TTTY14) and XIST, a key regulator of X-

chromosome inactivation in females (32), are among the most highly variable genes across 

nearly all subclasses. Similarly variable across most subclasses were immediate early genes 

(FOS, JUN, JUND), the expression of which can change rapidly in response extracellular stimuli 

(33), and which we previously showed are upregulated in neurosurgical tissue relative to 

postmortem tissue (17). Finally, genes associated with the overall amount of nuclear RNA, 

including housekeeping genes (GAPDH, ACTB) and MALAT1, the most highly expressed and 

selective transcript in the nucleus (34) that also regulates synaptic density (35), show high 

variance across donors in most subclasses, suggesting that overall transcription may also vary by 

individual.  

Next, we performed gene ontology (GO) enrichment analysis separately for each subclass 

(Fig. S2e). Variable genes in glial types were significantly enriched for “glutamatergic synapse” 

genes (FDR<=1.1E-6 for oligodendrocytes, OPCs, and astrocytes), which capture known genes 

involved in neuron-glia and glia-glia signaling and which are also the most variable genes when 

comparing human to non-human primate (36). Inflammatory response genes were 

overrepresented among highly variable genes selectively in microglia (FDR = 3.9E-14), 

suggesting an increase in reactive microglia in a subset of individuals. These include marker 

genes CCL3, CCL4, CCL4L2, IL1B (Fig. S2d), which were among the most highly variable in 

this study (Fig. 1e). Histology available for a partially overlapping set of individuals found 

moderate IBA1 reactivity in a small but significant fraction of individuals (see Extended data 

Figure 1 from (23)), supporting this result. Few GO categories were enriched for neuronal 

subclasses (Fig. S2e), suggesting that the set of variable genes span many biological functions, 

perhaps not surprisingly given the many potential sources of inter-individual variation (e.g., 

brain region, sex, age, and medical condition). Together these results indicate significant and cell 

type-dependent inter-individual variability, whose origins we more carefully dissect below. 

 

Consistent but more variable metrics in neurosurgical than postmortem tissue 

Given differences in medical conditions, individual life experiences, and tissue collection 

protocols, we directly assessed changes in gene expression and cellular abundance between 

neurosurgical and postmortem tissue samples. To limit extraneous sources of variation in this 

analysis, we only considered 45 individuals undergoing epilepsy surgery in MTG and compared 

them to the three donors from the reference MTG taxonomy that had sampling of all cortical 

layers. The number of genes detected across tissue sources is highly correlated (Fig. S3a; 

R=0.99; p=3.3E-20), with a trend in neurosurgical cases toward higher gene detection in non-
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neuronal cells and lower gene detection in certain neuronal populations; however, variation in 

gene detection is approximately twice as high in neurosurgical cases. For neuronal types, most 

genes show consistent expression across tissue types. More variability is evident in non-neuronal 

types, where we find selective expression of a subset of genes in neurosurgical cases (Fig. S3b).  

Similarly, we find good agreement in the overall abundances of most cell types between tissue 

types (Fig. S3c). While we are underpowered to quantify differences in abundances, we do find 

relatively fewer Pvalb neurons in epilepsy cases than expected from the reference MTG data 

(Fig. S3d), which we follow up below by comparing epilepsy and tumor cases. However, 

variation in abundances is increased for nearly all cell types in neurosurgical cases compared to 

postmortem reference data (Fig. S3e). This increased variation might be due to differences in 

neurosurgical tissue dissections, as subclasses primarily located in the same layer tended to be 

strongly correlated (Fig. S3f). For example, L2/3 IT was correlated with superficial GABAergic 

types and L6 IT, L6b, and L6 CT types were strongly correlated. We also find anti-correlation 

between highly abundant types: astrocytes and oligodendrocytes were strongly anticorrelated and 

L2/3 IT was anticorrelated with other glutamatergic types. Overall, these results indicate 

consistent but more variable metrics in neurosurgical than postmortem tissue. While some of this 

variation can be explained technically, further analysis of population variation is needed. 

 

Population variation in cell type abundances  

Next, we employed a linear model to investigate if demographic metadata, brain region, or donor 

medical conditions could explain the variance seen in gene counts and cell type abundances per 

cell type. Variability in gene counts was not significantly associated with any variable for any 

cell type (Fig. S4). In contrast, medical condition and brain region accounted for some 

abundance changes (Fig. 2a-b). For example, L5 ET neurons had lower abundance in tumor 

cases (FDR<0.01) even after accounting for significant regional differences in L5 ET cell types 

(FRO<MTG, FDR<0.01). In line with comparisons to the MTG reference taxonomy, Pvalb 

interneurons were slightly reduced in abundance in epilepsy vs. tumor cases (nominal p < 0.05). 

While this result is not significant after accounting for other covariates, the trend is consistent 

with previous reports demonstrating reduced Pvalb+ interneurons in certain focal cortical 

dysplasias (37) and decreased abundance of and gene expression changes in certain Pvalb+ 

interneurons (and other neuron types) in epilepsy (38). Additionally, L4 IT neurons were more 

abundant in MTG (FDR<0.01), while L6b neurons were more abundant in FRO (FDR<0.05). 

These differences were not associated with medical condition and likely reflect differences in 

cytoarchitecture between cortical areas. Although cell type abundances did not significantly 

differ by sex, some non-neuronal types showed a trend towards sex differences. For example, 

oligodendrocytes were slightly increased in males versus females (Fig. S5a; uncorrected 

p=0.18), consistent with previous reports showing an androgen-dependent increase in 

oligodendrocytes in male rats (39–41). Only OPCs show significant association with age, 

decreasing approximately two-fold across from ages 20 to 70 (Fig. 2a; Fig. S5b), consistent with 

a similar decrease in generation of OPC daughter cells in mouse hippocampus between 6 and 24 

months (42). 
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Proper local and global brain network dynamics require a tight balance of excitation and 

inhibition (43), and loss of this balance can impact whole brain dynamics (44). Dysregulation of 

this balance is implicated in neurodevelopmental disorders, such as autism spectrum disorders, 

where an increased excitatory-inhibitory (E-I) ratio has been linked to memory, cognitive, and 

motor deficits and increased seizures (45–47). A breakdown of this E-I balance has been directly 

recorded in human during seizures (48), but whether such dynamics relate to differences in 

underlying cellular make-up isn’t currently known. To address this, we calculated the E-I ratio 

for each donor and applied the linear model described above (Fig. S5c). Consistent with previous 

work in primary motor cortex (16), the average E-I ratio in human was approximately 2, but the 

spread of E-I ratio is quite large across individuals (sd = 0.66), and this high variation was not 

associated with medical condition, sex, or brain region. These results do not confirm the 

hypothesis that E-I ratio is critical for network dynamics in this context. 

 
Fig. 2. Cell type-specific differences in abundance and random forest predictions across donors. (A) 

(top) Fraction of cells from each subclass collected from each donor, scaled to the total number of cells 

from each class (GABAergic neuron, glutamatergic neuron, non-neuron). For bar plots in all panels, 

points represent values from individual donors, with bars showing mean +/- standard error. (bottom) 

Significant associations between subclass abundances and the listed metadata when performing a linear 

model with covariates for medical condition, brain region, sex, age, and batch (-,*,# as indicated). (B) Bar 

plots showing abundances after dividing donors by medical condition and brain region for select 

subclasses with significant changes in at least one of these metrics. (C) Lower donor entropy in 

GABAergic interneurons than other types. UMAP as in Figure 1, color-coded to show donor entropy, 

which is a measure of the number of donors represented in nearby nuclei. (D) Random forest (RF) 
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predictability of cells differs by cell type and donor characteristics. Heatmap shows fraction of nuclei of a 

given subclass (x-axis) correctly assigned to a given donor (y-axis) using random forest classification 

with 75% training / 25% test strategy. Bar plots on the x- and y- axes show the median fraction of cells 

correctly classified by donor and subtype, respectively. Cell types and donors colored as indicated in the 

legend. Significant associations between classification accuracies and the listed metadata when 

performing the same linear model as in A are shown, additionally color-coded by direction of maximum 

accuracy. (E) Bar plots showing median random forest accuracies after dividing donors or cell types by 

listed metrics identify higher prediction accuracy in glutamatergic than other subclasses, and in females as 

compared with males. (F) High correlation between the number of high variance genes per subclass (y-

axis, Fig. 1E) and the mean RF predication accuracy. 

 

Cell type- and demographic-dependent donor signatures 

Many sources of variation can impact gene expression within a subclass including higher 

resolution cell types (e.g., supertype), cortical cell depth (23), experience-dependent 

transcriptomic states (34, 49), and disease state (20). To separate cell type from donor metrics, 

we calculated donor entropy, which measures the number of donors of origin for nuclei in a local 

neighborhood (Fig. 2c). Donor entropy is highly dependent on subclass, with nearly all 

GABAergic cells showing high donor entropy, and is also variable within subclass. For example, 

for most glutamatergic neurons and non-neurons, a subset of nuclei have high entropy while 

others have quite low entropy, consistent with visual inspection of Fig. 1d. Interestingly, OPCs 

and astrocytes with highly distinct transcriptomic signatures (low entropy island in Fig. 2c) were 

not technical artifacts and were dissected from two aged donors that had tumor resections and 

may represent reactive or pathological cells. To dissect the specifics of cell type and donor 

heterogeneity more carefully, we performed random forest (RF) classification (50) to predict 

donor of origin independently for nuclei in each subclass using the 2000 most highly variable 

genes. We find a wide range of RF prediction accuracies both by donor and by subclass (Fig. 2d; 

heatmap). Expression profiles of glutamatergic neurons are more predictive of donor overall than 

are profiles of most GABAergic and non-neuronal types (Fig. 2d-e). These results are robust to 

methodological details, as we find nearly the same results when predicting donor of origin using 

principal components (Fig. S6a). Similarly, RF predictability and the number of high variance 

genes show high concordance (Fig. 2f; p=7e-6), with both methods pointing to deep layer 

glutamatergic types as the most distinct types across this cohort. 

RF prediction extends our gene variation analysis by allowing us to pinpoint specific 

donors with distinct gene signatures and allows us to ask whether these donors exhibit specific 

metadata characteristics. Interestingly, females show higher RF predictability than males in more 

than half of all subclasses including nearly all glutamatergic types (Fig. 2d-e). This can be 

partially explained by differential expression of sex chromosome genes, which have some of the 

highest importance for many donors in many subclasses (Fig. S6b, 7), in addition to being some 

of the most highly variable genes and having more RF importance in females than in males (Fig. 

S6b-c). Tissue from FRO and MTG tend to have comparable donor signatures, with the notable 

exception of several deep layer glutamatergic neurons (Fig. 2d-e). This may be due to selection 

bias, as tissue collected from MTG is relatively restricted anatomically, unlike tissue collected 
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from spatially segregated regions of FRO, and glutamatergic neurons show larger gene 

expression differences across regions than GABAergic interneurons (22). In contrast to the 

abundance results, we do not see a difference in RF predictability by medical condition (Fig. 2d-

e). This is consistent with previous reports demonstrating that, while tumor cells show large and 

tumor-specific changes in genomic copy number variations and associated gene expression 

signatures, nearby normal brain cells are well-mixed across samples (51, 52). Overall, these 

results present a surprising sex difference and again point to layer 6 glutamatergic types as being 

highly distinct between individuals. 

 

 

 

Gene variation partitions into subclass and donor specific contributions 

We have shown that neuronal and non-neuronal types exhibit unique patterns of variation in gene 

expression associated with donor (Fig. 1d, Fig. 2c). However multiple biological factors 

including ancestry (53), sex, age (21), and disease state (20) also contribute to the total variation 

in the expression of individual genes. To reveal the contribution of these biological as well as 

technical factors on transcriptomic variation we fit a subclass-specific linear mixed model per 

gene, termed variation partitioning (54). This analysis enables us to partition the per-gene total 

variance into the contributions from biological and technical factors as well as modeling residual 

variation that cannot be explained by the previous factors. Since the variance contributions per-

gene sum to 1 it is straightforward to compare contributions across genes and subclasses.  

We find individual genes and sets of genes whose variation is associated with biological 

factors in a subclass-specific manner (Fig. 3a). The number and magnitude of donor and 

supertype-associated genes ranges widely across subclass (Fig. 3b). Specifically, glutamatergic 

neurons have higher donor-associated contributions to variation than GABAergic and non-

neuronal types which is in line with our quantification of donor entropy across neuronal classes 

(Fig. 2c). Within the glutamatergic types, we identified more donor-associated genes whose 

variation is explained more than 20% by donor within deeper layer neurons (n=1114) than L2/3 

IT types (n=102), again pointing to these cell types as varying the most across individuals. The 

increased donor-associated genes in these deep layer types explains the improved performance of 

RF prediction on the task of predicting donor (Fig. 2d). Interestingly, GABAergic neurons show 

an increase in supertype-associated genes combined with lower donor-associated genes as 

compared to glutamatergic neurons (Fig. 3b). This is consistent with an increased supertype 

prevalence in GABAergic subclasses (Fig. S8) and coupled with limited GABAergic donor 

entropy implies an invariance with respect to donor in the expression of marker genes for 

GABAergic supertypes. 
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Fig. 3. Variation partitioning explains differences in cell type-specific gene expression. (A) 

Interaction graph visualizing the estimated contribution of each covariate, purple node, to the variance in 

expression for each gene, green node, (covariate-gene edge) and the associated subclass, red node, (gene-
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subclass edge). The covariate-gene edge weight represents the precent variance explained for a gene by a 

covariate and the gene-subclass edge weight represents the non-residual contributions to variance 

explained for the gene. (B) Beeswarm plots showing for each subclass the amount of variation explained 

per-gene, represented by a point, by donor on the top row and supertype on the bottom row. (C) Violin 

plots showing the percentage of variation explained per-gene by each covariate for the Pvalb and L6b 

subclass. (D) Top genes whose variance can be associated with donor, supertype, ancestry and residuals 

for the Pvalb and L6b subclasses are shown in the paired boxplots. (E) Top ranked genes with respect to 

variance explained by donor across all subclasses are shown in the heatmap. Each row is a subclass, and 

each column is a gene which are colored based on rank determined from the percent variance explained 

by donor per-subclass. (F) Stratification of gene expression by donor for the top, median and 3rd quantile 

donor-associated genes colored by red, purple and blue, respectively. Donors are ordered by median 

expression for each gene. (G) Stratification of gene expression by supertype for the top, median and 3rd 

quantile donor-associated genes colored by red, purple and blue, respectively. Supertypes are ordered by 

median expression of each gene. 

Transcriptomic variation across donors can be defined by known factors such as ancestry, 

sex and disease state and unknown factors that correspond to untracked or unidentifiable 

differences between donors. We know that some of the most highly variable genes across donors 

irrespective of subclass should be sex-associated genes including genes on the X and Y 

chromosome (Table S2). The variation partitioning analysis assigned nearly 90% of variation in 

sex-associated genes including XIST, UTY and TTTY14 to the sex covariate as expected, 

especially XIST which is only expressed in females where it inactivates genes on one of the two 

X chromosomes (32) (Fig. 3c). Additionally, comparing the variation partitioning results across 

subclasses illustrates that variation between individuals is a major source of variation in gene 

expression, explaining >20% of variation in 52 genes expressed in Pvalb neurons and 336 genes 

expressed in L6b deep layer glutamatergic neurons (Fig. 3c). Of the top donor-associated genes 

we identified LRRC37A as being similarly highly variable in both Pvalb (51.6%) and L6b 

(63.1%) as well as genes including HIPK1 and GRB2 with donor-associated variability 

specifically in L6b neurons (Fig. 3c-f). With the exception of some pan-neuronal genes, the top 

donor-associated gene sets per subclass are largely distinct, likely due to the different gene 

programs which are active in each neuronal and non-neuronal types (Fig. 3e) (17, 55). However, 

many of the most variable donor-associated genes are conserved across subclasses and associate 

with common gene ontology (GO) terms including cell-cell adhesion (FDR < 1e-15) and 

synaptic assembly (FDR < 1e-10).  

Changes in gene expression variation with age have been associated with common 

pathways and disease development (56–58). Donors in this study varied in age from 18 years to 

83 years and enable us to explore subclass-specific age-related gene programs. Age-associated 

changes in gene expression were identified from variance partitioning analysis to be largely 

subclass-specific (n=76/88, > 2% variation explained) and are predominantly contained in cell 

adhesion (FDR < 4.9e-4) and membrane (FDR <1.1e2) gene ontology categories. ZBTB16 has 

been shown to vary significantly by age in studies of bulk-RNAseq in various tissues, including 

brain, from donors of comparable age ranges as this study(57). From our analysis we identified 

that age-associated variation in the expression of ZBTB16 is oligodendrocyte-specific and refines 

previous findings to a specific cell type. Genes that exhibited age-associated variation across 
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multiple subclasses included PTPRD which has been related to neurodegenerative disorders as 

well as roles in synapse maturation. Also, LINC-PINT had age-associated variation specific to 

excitatory subclasses and has been previously associated with various neurodegenerative 

diseases including Alzheimer’s disease (59).   

 

Variation partitioning analysis is a useful tool for dissecting the contributions of 

biological covariates on gene expression. Yet, residual-associated genes remained the largest 

gene set in our analysis indicating that biological and technical covariates were not sufficient to 

completely explain gene variation patterns (Fig.3c, Fig. S9). Investigating genes whose variance 

is primarily explained by the model residuals, we found increased subclass-specificity. Such 

subclass-specific residual associated genes include gene markers such as PVALB, SST, and 

SLC17A7, which exhibit limited variation across donors within the associated types. 

Glutamatergic neuron residual-associated gene sets showed increased conservation across the 

more abundant types and include genes such as ARID2 which is a known chromatin remodeling 

factor (60, 61). Less abundant subclasses including L5 ET (n=563) and Sst Chodl (n=301) were 

enriched in subclass-specific residual-associated genes indicating gene programs uniquely active 

in these types with unknown sources of variation (Fig. S9). As a whole, these results indicate 

that transcriptomic variation associated with biological factors like donor and supertype can be 

cell type dependent, while also identifying sets of residual-associated genes whose variation 

cannot be explained by donor demographic information alone. 

 

Cell type-specific cis-eQTLs effects on gene expression variation  

We next aimed to extend previous studies linking genetic variants to variation in gene expression 

(24–27, 62–64) by identifying cell type-specific eQTLs from the combined single cell RNA-seq 

and high-quality whole genome sequencing (Fig. S10) performed for each individual in our 

study. We performed a cis-eQTL analysis for each subclass restricted to SNPs within a 1 

megabase window surrounding gene transcription start sites (TSS) and adjusting for technical 

and inferred genotype covariates. Due to the limited number of donors, we restricted our analysis 

to SNPs associated with expression variation in previous bulk eQTL analysis (24, 25, 60). The 

number of significant cis-eQTLs (FDR < 0.05) varied widely across the subclasses with less 

abundant types including VLMC (n=637) and L6b (n=8,213) having relatively fewer cis-eQTLs 

than more abundant types such as L2/3 IT (n=79,631). Increases in cis-eQTLs for more abundant 

types indicates that sequencing more cells provides a better determination of variation within a 

subclass, up to a point. We find saturation in the number of detected eQTLs when at least 15,000 

cells were sequenced in a given subclass (Fig. 4a). We identified an average of 200 eGenes, 

genes that are associated with a significant cis-eQTL, for each of the neuronal and non-neuronal 

subclasses (Fig. 4b), indicating that many cis-eQTLs were in linkage disequilibrium. Of the 

significant cis-eQTLs we noticed an enrichment of variants that are upstream of the TSS or 

around the gene body as compared to non-significant eQTLs (Fig. 4c). Of note, the non-neuronal 

type VLMC shows more cis-eQTLs downstream of the TSS which could imply differences in 

chromatin interaction patterns compared to the neuronal types. 
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From the subclass-specific cis-eQTL analysis we next sought to understand the 

specificity of each cis-eQTL to gene expression variation for individual subclasses. Interestingly, 

we found cis-eQTLs which exhibited L6b and deep glutamatergic neuron specific control of 

gene expression variation including KDM1B (Fig. 4d). Additionally, genes including 

LRRC37A2, a paralog of and proximal to LRRC37A which we and others (65) previously 

identified as having donor-associated variation in expression, were identified as cis-eQTLs 

across neuronal cell types (Fig. 4e). This result indicates neuronal cell type-agnostic genetic 

control of LRRC37A2 which should recapitulate previous bulk RNA-seq eQTL studies. 

Together, these results show that genetic control of gene expression can extend to finer cell type 

resolutions than previously studied (25–27, 62–64) and may be increasingly relevant for diseases 

including neurodegenerative disorders that may selectively affect specific cell types (20). 

 
Fig. 4. Cell-type specific gene expression variation is associated with genetic effects: (A) Scatterplot 

showing the relationship between numbers of cis-eQTLs (FDR < 0.05) on the y-axis and number of nuclei 

on the x-axis for each subclass. (B) Barplots show the amount of eGenes (FDR < 0.05) identified for each 

subclass, grouped by glutamatergic, GABAergic and non-neuronal. (C) Enrichment of cis-eQTLs 

upstream of the transcription start site of the proximal gene for each subclass compared to the background 

of all non-significant eQTLs (far right). (D) Example of a cis-eQTL, FDR < 0.05 denoted by *, that is 

specific to L6b neurons. (E) Examples of cis-eQTLs, FDR < 0.05 denoted by *, with effects on neuronal 

gene expression. 

 

Discussion 

Here we present comprehensive transcriptomic and genomic profiling of cortical tissues from 75 

human brain donors comprising nearly 400,000 nuclei covering all major neocortical cell types. 

Our results reveal that, while the cortical cellular architecture is largely conserved across 

individuals, substantial variation in gene expression and cell type abundances are apparent 
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between individuals. Transcriptomic variation across donors is likely due to multiple competing 

factors. Underlying medical conditions in our donor cohort impact cellular abundance, with 

epilepsy cases showing decreased Pvalb interneurons, consistent with reports of fast-spiking 

interneurons loss in epilepsy (37, 38). Variation in cellular gene expression is also apparent 

across neocortical areas, consistent with previous studies in human (66) and mouse (22). 

Similarly, L4 IT glutamatergic interneurons are more abundant in MTG than FRO, likely 

reflecting differences in cortical thickness and cytoarchitecture between regions (67). While we 

do not find sex-specific differences in cellular abundance, females do have more distinct gene 

expression profiles than males across many cell types, in part because these genes have a greater 

average RF score in females than in males (Fig. S6c) indicating their higher predictability in 

distinguishing female donors. Cellular pathways also dysregulate with age, leading to increased 

transcriptional heterogeneity in older vs. younger adults (21) and high variation in cell type 

abundances (20).  

While we used largely nonpathological samples in the present study (23), tissue was 

nonetheless collected during neurosurgery; therefore, some variation is likely related to the 

circumstances of tissue collection rather than biological states. For example, immune response 

genes and markers for microglial states vary by donor, perhaps indicating differential responses 

to stress from surgeries (68) or underlying pathologies (69). Inconsistent tissue dissections could 

have major impacts on cell type abundances, as tissue shape or truncations might bias capture of 

cell types enriched in specific cortical layers, and the amount of white matter per section could 

impact abundance of oligodendrocytes. Such biases might explain the increased variability in 

this study relative to previous cell typing studies that made use of postmortem tissues, where the 

choice of dissection site is less constrained and more consistent between individuals (17). Future 

studies from postmortem cases with carefully controlled tissue sampling or in situ labeling of cell 

types using spatial transcriptomics methods could help to distinguish biological from technical 

variation. 

Human glutamatergic neurons have higher inter-individual gene expression variability 

and predictability than GABAergic interneurons; but surprisingly, this variability is most 

prominent in deep layer glutamatergic types. Previous work showed that supragranular 

glutamatergic neurons are highly variable across many axes, including cell type, cortical depth, 

donor, and species (16, 17, 23), and UMAPs of these cells typically look less well mixed than for 

other glutamatergic types (Fig. 1d). Therefore, our initial expectation was that these L2/3 IT 

neurons would have the highest variation. However, deep layer glutamatergic neurons develop 

earlier (70) and have longer and more extensive connections (71) than superficial projection 

neurons. This exposes deep layer excitatory neurons and their projections to a more diverse 

environmental factors for a longer time during development than other neuronal types, 

potentially leading to more distinctive gene expression patterns across individuals with different 

life experiences, sensory inputs, and talents. Such donor variation provides opportunities to 

examine the association between gene expression and cellular function; for example, variability 

in ion channel gene expression might be linked with electrophysiological properties of cells from 

the same donors (23).  
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Some of the genes with highest inter-individual variability across subclasses relate to 

demographic information (e.g., sex chromosome genes like XIST, UTY, and TTTY14), brain 

region, or supertype (e.g., CDH13 in Pvalb interneurons). However, a much higher fraction of 

variance can be explained by other donor-associated factors. This includes activity-dependent 

genes (e.g., immediate early genes like JUND, FOS, and JUN) and genes marking nuclear 

content (e.g., MALAT1). Furthermore, the great majority of variation in all cell types is found in 

the residual component, reflecting unmeasured donor characteristics or technical variables 

(Table S2). Genes with such unexplainable variance should be avoided when targeting specific 

cell types in situ using spatial transcriptomic methods based on dozens to hundreds of selected 

genes (72). Instead, genes with high significance for subclass or supertype and low significance 

for donor metrics are likely to be robust to donor selection.  

This study represents the most granular eQTL analysis to date where we identify genetic 

control of expression in subclass resolution cell types from adult human brains with coupled 

whole genome sequencing and single cell RNA-seq for 75 individuals. We report subclass-

specific eQTLs providing an opportunity to associate disease-risk genes and variants from 

GWAS (69) with preferential regulation of expression in individuals or sets of subclasses. 

Current eQTL studies have used coarser groupings of cells than in this study and found eQTLs 

specific to excitatory and GABAergic neurons (27) that we can further resolved into subclass-

level eQTLs to hone in more granular cell types targeted by variants associated with neurological 

disease. Furthermore, computational deconvolution (14, 15) of eQTL analyses performed on 

bulk tissue (26, 62, 73) to resolve cell type signals can be refined using (14, 15, 26) the subclass-

specific eQTLs reported in this study. 

Two overlapping genes on chromosome 17, LRRC37A and ARL17B, showed high inter-

individual variability selectively in neuronal but not glial types (Fig. 3E), and LRRC37A also 

contained many eQTLs for neuronal but not glial types (Fig. 4E). These genes are located at 

chromosome 17q21.31 alongside MAPT, which encodes tau protein, and are part of a common 

inversion polymorphism of approximately 900 kb that define the H2 haplotypes of MAPT (65). 

The H1 haplotype (no inversion) has been implicated in multiple neurodegenerative diseases 

through aggregation of hyperphosphorylated protein Tau in neuronal cell bodies (74, 75). 

LRRC37A shows lower expression in temporal and frontal cortex of individuals with H1 vs. H2 

haplotype in populations with European ancestry (61), suggesting a possible protective effect. In 

fact, a recent study on Parkinson’s disease linked protective sub-haplotypes of this locus with 

increased expression of LRRC37A in brain, although LRRC37A was primarily expressed in 

astrocytes in the substantia nigra (76). Although further work is needed to disentangle the effects 

of LRRC37A in neurons vs. astrocytes, and to see whether increased LRRC37A expression is 

likewise protective in other tauopathies, our results point to LRRC37A and ARL17B as 

important candidates for consideration in future studies of neurodegeneration.  

This study has several limitations that represent opportunities for improvement in future 

population studies. First, the cohort primarily includes donors of European ancestry, representing 

the cross-section of the population undergoing neurosurgery in the local geographic region. 

Second, sampling neurosurgical tissues permits comparison of different underlying medical 
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conditions between donors but introduces challenges in direct comparisons with similar studies 

using postmortem tissue and might result in biases due to tissue shape and sampling of variable 

cortical regions across donors. Third, the sample size is relatively small, although comparable 

results were found in a similar study in aging brain (27). Finally, the total number of cells 

collected per donor was relatively low (~4000 on average, collected from a single tissue section) 

limiting analyses possible for rare types. 

In summary, this study provides a genomic and transcriptomic overview of cortical cell 

type variation in adult human individuals, identifying a highly consistent cellular makeup but 

with significant variation reflecting donor characteristics, disease condition, and genetic 

regulation. 
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