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Abstract 

Predictive coding accounts of autism suggest that autistic perception is characterised by 

divergent precision weighting. The precise nature of this divergence, however, is debated. 

Here, we sought to disentangle competing predictive coding accounts of autism by testing them 

at a neural level. To this end, we used paediatric magnetoencephalography to record the 

auditory evoked fields of 10 young autistic children (M = 6.2 years, range = 4.23 8.6) and 63 

neurotypical children (M = 6.1 years, range = 3.03 9.8) as they listened to a roving auditory 

oddball paradigm. For each participant, we subtracted the evoked responses to the 8standard9 

from the 8deviant9 pure tones to calculate the mismatch field 8MMF9: an electrophysiological 

component that is widely interpreted as a neural signature of predictive coding. We found no 

significant differences between the two groups9 MMF amplitudes, p > .05. An exploratory 

analysis indicated larger MMF amplitudes in most of the autistic children compared to their 

average-age-matched neurotypical counterparts, p < .05. We interpret these findings as 

preliminary evidence in support of the 8inflexibly high prior and sensory precision9 account, 
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and against the 8inflexibly low prior-relative-to-sensory precision9 accounts of autistic 

perception. 
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Highlights 

• We used paediatric MEG to compare autistic and neurotypical MMFs amplitudes. 

• Exploratory case-cohort analyses revealed mostly larger MMFs in autistic cases. 

• Larger MMFs support the notion of precise, inflexible prediction errors in autism. 
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1. Introduction 

Autism is a lifelong, heritable and heterogeneous neurodevelopmental condition that 

shapes how a person experiences and interacts with their environment (Lord et al., 2020). 

According to the DSM-5, autism is characterised by differences in social interaction and 

communication (e.g., difficulties with social reciprocity, nonverbal communication, and 

social relationships), as well as so-called 8restricted, repetitive patterns of behaviour, or 

interests or activities9 (e.g., repetitive motor movements, or 8stimming9 behaviours, a strong 

desire for sameness, intense interests, and, most recently, differences in sensory perception; 

American Psychiatric Association, 2013).  

Whereas earlier 8coherence9 accounts of autism (Frith, 1989; Frith & Happé, 1994; 

Happé & Booth, 2008; Happé & Frith, 2006; Mottron et al., 2006; Mottron & Burrack, 2001) 

struggled to provide a comprehensive account of autistic differences4particularly with 

regards to hypo-sensitivities and 8restricted and repetitive behaviours9, more recent 

8predictive coding9 accounts (Brock, 2012; Friston et al., 2013; Lawson et al., 2014, 2017; 

Pellicano, 2013; Pellicano & Burr, 2012; van Boxtel & Lu, 2013; Van de Cruys et al., 2013, 

2014) hold promise in offering a unifying account of autistic differences across the social and 

non-social domains. Here we sought to disentangle competing predictive coding accounts of 

autism by testing them at a neural level, using paediatric magnetoencephalography (MEG) in 

conjunction with a roving auditory oddball paradigm. 

1.1. Predictive Coding Accounts of Autism 

Under predictive coding, the brain embodies an internal, probabilistic, generative 

model which represents the statistical structure of the physical world (Clark, 2015; Hohwy, 

2013; Rao & Ballard, 1999) and uses it to generate predictions about the most likely (hidden) 

physical causes of incoming sensory signals. The brain then tests its model in a hierarchical 

fashion, comparing its top-down prediction (generated in higher brain regions) against the 

bottom-up sensory signal (propagated up the system from lower brain regions that are closer 

to the sensory peripheries). The prediction and sensory signal can be represented as 

probability distributions and the difference between the distributions the prediction error 

(PE). PE represents the information the model failed to predict and which requires further 

processing at higher levels of the neural hierarchy. The central tenet of predictive coding 

theory is that the brain strives to reduce processing requirements by minimising PEs over 

time (Clark, 2013). 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.03.510718doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.03.510718
http://creativecommons.org/licenses/by-nc/4.0/


 4 

Divergent precision weighting has been proposed to account for unique autistic 

perception. Specifically, some predictive coding accounts of autism suggest that autistic 

perceptual and behavioural differences may be explained by a system that maintains either 

8inflexibly low prior precision9 (Pellicano, 2013; Pellicano & Burr, 2012) or, conversely, 

8inflexibly high sensory precision9 (Brock, 2012)4both of which would result in a perceptual 

experience that is less biased by prior knowledge and more biased towards incoming sensory 

signals.  

Alternatively, a third account has proposed 8inflexibly high prior and sensory 

precision9 in autistic people (Van de Cruys et al., 2013, 2014). In a stable environment, 

attempting to match a precise 8prior9 distribution to a precise and invariable 8sensory signal9 

would give rise to very low-precision PEs. Yet, in a volatile environment, attempting to 

match a precise 8prior9 distribution to a precise and variable 8sensory signal9 would give rise 

to high-precision PEs, motivating constant model updating and learning (hence, the name of 

the account: <High, Inflexible Precision of Prediction Errors in Autism=; HIPPEA).  

A fourth account has proposed 8inflexibly low prior and sensory precision9 (Lawson 

et al., 2017). It is difficult, however, to reconcile this account with the core characteristics of 

autism. For example, the suggestion that autistic adults are <less surprised than neurotypical 

adults when expectations are violated= (Lawson et al., 2017, p. 1293) is at odds with the 

evidence that autistic people often have difficulties coping with unpredictability of everyday 

life (Simmons et al., 2009). Furthermore, this account does not explain the occurrence of 

stimming or self-injurious behaviours in autistic people. 

1.2. Testing the Predictive Coding Accounts of Autism 

A popular approach for testing predictive coding is to use electrophysiological 

techniques (e.g., MEG or electroencephalography; EEG) to record participant9s brain 

responses as they listen to an auditory oddball paradigm (Friston, 2005; Heilbron & Chait, 

2017). These paradigms are comprised of auditory stimuli (e.g., pure tones or speech sounds) 

classed as either high-probability 8standards9 or lower-probability 8deviants9. In adults, 

averaged evoked responses to the 8standards9 and 8deviants9 typically diverge between 100 

and 250 ms following stimulus onset, with the 8deviant9 waveform showing a larger 

amplitude relative to the 8standard9 waveform (Näätänen et al., 2019). This divergence, which 

is conventionally presented in a 8deviant-minus-standard9 difference waveform, is the 

8mismatch negativity9 (MMN, EEG literature, or the 8mismatch field9 (MMF, MEG 

literature; hereafter, the MMN/F). The MMN/F is widely considered to be a neural index of 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.03.510718doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.03.510718
http://creativecommons.org/licenses/by-nc/4.0/


 5 

PE (Friston, 2005), thought to reflect a larger PE to the lower-probability 8deviants9 relative 

to the higher-probability 8standards9. This interpretation is based on evidence that the evoked 

response amplitude increases as an inverse function of stimulus probability (Denham & 

Winkler, 2020). 

We tested several competing hypotheses regarding how predictive brain function (as 

indexed by the MMF) might differ between autistic and neurotypical children. Under the 

inflexibly low prior-relative-to-sensory precision accounts (Brock, 2012; Pellicano & Burr, 

2012), autistic children9s brains may be relatively less proficient at extracting statistical 

regularities from the auditory sequence compared to their neurotypical counterparts. Thus, 

autistic children may form relatively less-precise predictions for the upcoming stimuli. This, 

in turn, would give rise to similar magnitudes of PE for the high-probability standards and 

lower-probability deviants, as indexed by a relatively attenuated MMF amplitude in autistic 

children.  

Conversely, under the HIPPEA account (Van de Cruys et al., 2014), the pseudo-

random deviant stimuli may elicit unduly precise PE signals, motivating the brain to update 

its model of the environment based on the unpredicted information. Thus, all subsequent 

repetitions of the 8deviants9 (which, through repetition, become 8standards9) would be 

precisely predicted, thereby eliciting minimal PE signals. Overall, autistic children9s brains 

may generate larger PE signals (i.e., evoked responses) to 8deviants9 relative to 8standards9, 

resulting in a relatively large MMF amplitude.  

Yet, existing MMN/F findings do not provide clear guidance as to which of these two 

hypotheses might be more likely. Perhaps the most robust evidence to date comes from a 

systematic review and meta-analysis (Schwartz et al., 2018), which reported that young 

autistic children had attenuated MMN/F amplitudes compared to their neurotypical 

counterparts. Furthermore, findings from a large number of individual studies are mixed, with 

evidence of autistic children showing MMN/F amplitudes that are smaller (Andersson et al., 

2013; Dunn et al., 2008; Jansson-Verkasalo et al., 2005; Ludlow et al., 2014; Seri et al., 1999; 

Yoshimura et al., 2017), larger (Ferri et al., 2003), or not significantly different from that of 

their neurotypical counterparts (Gomot et al., 2002, 2011; Lepistö et al., 2009; Roberts et al., 

2011; Weismuller et al., 2015). Still others have reported mixed within-study findings related 

to the type of stimulus employed and the selection of sensors analysed (Jansson-Verkasalo et 

al., 2003; Korpilahti et al., 2007; Kujala et al., 2010; Lepistö et al., 2005, 2006, 2008; Yu et 

al., 2015).  
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Finally, most previous MMN/F studies recruited autistic and neurotypical children 

aged six years and over, whereas those in the pre-school years (i.e., between the ages of three 

and five years; Centers for Disease Control and Prevention, 2021) have received far less 

empirical attention. Investigating the MMF amplitude in autistic and neurotypical pre-school 

children is of particular interest, as findings could indicate a divergence in predictive brain 

function at the stage of life in which most children receive an autism diagnosis (Gibbs et al., 

2019). 

1.3. The Current Study 

We sought to disentangle the competing predictive coding accounts of autism. For 

this purpose, we used paediatric MEG in conjunction with a 8roving9 auditory oddball 

paradigm and compared MMF amplitudes between autistic and neurotypical children, aged 

between three and eight years. Attenuated MMF amplitudes in autistic children, compared to 

their neurotypical counterparts, would be consistent with the 8inflexibly low prior-relative-to-

sensory precision9 accounts (Brock, 2012; Pellicano, 2013; Pellicano & Burr, 2012). 

Conversely, relatively larger MMF amplitudes in autistic children would be consistent with 

the 8HIPPEA9 account (Van de Cruys et al., 2013, 2014). 

2. Methods 

2.1. Ethical Approval 

All procedures were approved by the Macquarie University Human Research Ethics 

Committee (reference numbers: 5201300834 and 5201600188). Informed consent was 

obtained from participants9 caregivers and, where possible, from the children themselves. All 

participants received 40 AUD and a gift bag for their participation. Autistic participants 

received an additional 20 AUD to compensate for the extra time spent undergoing the ADOS-

2 assessment. 

2.2. Participants 

2.2.1. Autistic Children 

Twenty-one children (aged 3 to 8 years) who had an independent, clinical diagnosis of 

autism were recruited via advertisements posted on social media, and flyers distributed to 

local schools, autism-focused child-care centres, medical clinics, and autism service 

providers. Of the 21 recruited children, 11 were unable to complete the testing session due to: 

(i) a sensory aversion to some aspect of the testing environment (n = 10) 3 including the 

MEG cap (n = 6; Mage = 4.2 years, range: 3.0 3 7.8), the MEG dewar (n = 2; Mage = 5.8 
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years), the auditory oddball stimuli (n = 1; aged 3.4 years), and the digitiser pen (n = 1; aged 

5.0 years) 3 or (ii) having outgrown the child MEG system dewar (n = 1; aged 8.3 years; see 

Supplementary Table S1 for further details). 

The final sample therefore consisted of 10 autistic children (Mage = 6.2 years, range = 

4.238.6 years; see Table 1). All had normal, or corrected-to-normal, vision and had no history 

of epilepsy or brain injury, as reported by parents. We found no significant differences 

between the 8included9 and 8excluded9 autistic children with respect to age, ADOS-2 

Comparison Scores, or SCQ Lifetime scores (see Table 2). However, the mean age was lower 

for the excluded children, and the effect size was high. Furthermore, the two groups appeared 

to differ in their spoken language ability: nine of the 10 included children (90%) obtained the 

lowest rating for ADOS-2 assessment Item A1 (8Overall Level of Non-Echoed Spoken 

Language9), indicating more complex spoken language, compared to only four of the 11 

excluded children (36%). As such, it seems that the 8included' children were older and had 

more complex expressive language. 

2.2.2. Neurotypical Children 

The neurotypical children were recruited as part of a separate, two-phase study via 

both the Macquarie University 8Neuronauts9 child research participation database and an 

advertisement in the 8Sydney9s Child9 magazine. The two testing phases (which were 

separated by 20 months, on average) produced 32 and 31 high-quality datasets, respectively. 

Combining these samples resulted in 63 neurotypical datasets (Mage = 6.1 years, range = 3.03

9.8 years). These 63 neurotypical children served as comparisons to the autistic children. All 

neurotypical children had normal or corrected-to-normal vision and had no history of 

developmental disorders, epilepsy, brain injury or language or speech impairment, as reported 

by parents.

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.03.510718doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.03.510718
http://creativecommons.org/licenses/by-nc/4.0/


 8 

Table 1 

Demographic Details of the Autistic Children and their Average-Age-Matched Neurotypical Counterparts, and Latencies of Significant Case-

Cohort MMF Amplitude Differences 

Autistic children  Neurotypical average-age-

matched comparison group 

 Autistic-neurotypical 

comparison  

ID  ADOS-2  SCQ Sex Age  Average age N  Latencies (s) of sig. MMF 

amplitude diff. 

  CSS Module Item A1         Start End 

P1  9 1 Complex  19 F 4.2  4.2 17  N/A N/A 

P2  3 2 Complex  17 F 4.5  4.5 20  0.03 0.1 

P3  9 1 More than five 

single words 

 14 M 4.6  4.6 20  0.15 

0.23 

0.22 

0.33 

P4  4 2 Complex  25 F 4.8  4.8 24  N/A N/A 

P5  8 2 Complex  27 M 5.8  5.8 32  0.05 0.12 

P6  10 3 Complex  17 M 6.8  6.8 31  0.2 0.4 

P7  10 3 Complex  19 M 7.2  7.2 32  0.05 0.14 

P8  10 3 Complex  9 M 7.2  7.2 32  0.12 

0.32 

0.19 

0.39 

P9  10 3 Complex  11 M 8.0  8.0 13  0.2 0.31 

P10  10 3 Complex  24 M 8.6  8.6 10  0.0 

0.27 

0.08 

0.36 

Notes. P = Participant. ADOS-2 = Autism Diagnostic Observation Schedule 3 2nd edition (Lord et al., 2012); CSS = Calibrated Severity Score (Gotham et al., 2009), 

maximum = 10. Item A1 = Overall Level of Non-Echoed Spoken Language. SCQ = Social Communication Questionnaire (Rutter et al., 2003) score. Higher scores 

on the ADOS-2 and SCQ reflect greater autistic severity. 
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Table 2 

Descriptive Statistics and Group Differences for Age, ADOS-2, and SCQ Scores for the 

Included and Excluded Autistic Participants 

 n M SD Min Max t p Cohen9s d 

Age (years)      1.72 .102 0.75 

      Included 10 6.16 1.60 4.17 8.58    

      Excluded 11 4.86 1.86 3.00 8.25    

ADOS-2      1.41 .174 0.62 

      Included 10 8.30 2.63 3 10    

      Excluded 11 6.82 2.18 3 9    

SCQ      0.68 .946 0.03 

      Included 10 18.20 5.92 9 27    

      Excluded 9a 18.00 6.86 4 27    

Notes. ADOS-2 = Autism Diagnostic Observation Schedule 3 2nd edition (Lord et al., 2012) calibrated 

severity score (Gotham et al., 2009), maximum = 10. SCQ = Social Communication Questionnaire (Rutter 

et al., 2003) score. Higher scores on the ADOS-2 and SCQ reflect greater autistic severity. aTwo datasets 

were missing as some parents did not complete this form. 

  

2.3. Behavioural Assessments 

The Autism Diagnostic Observation Schedule 3 2nd edition (ADOS-2; Lord et al., 

2012) was used to assess current autistic features for the autistic participants only. The 

ADOS-2 is a 40-minute, standardised observational scale, designed to present opportunities 

for the evaluation of social, communicative, and repetitive behaviours. Raw algorithm scores 

were converted to standardised ADOS-2 calibrated severity scores (Gotham et al., 2009), as 

these scores are less affected by factors such as age, language, and cognitive ability. Severity 

scores range from 1 to 10 where higher scores reflect greater autistic severity. 

The Lifetime version of the Social Communication Questionnaire (SCQ; Rutter et al., 

2003) was completed by the parents of the autistic participants and used to index the degree 

of autistic features. The SCQ9s 40 items are derived from the well-validated Autism 

Diagnostic Interview (ADI; Le Couteur et al., 1989) with which it has good agreement 

(Corsello et al., 2007). Scores range from 0 to 39, where higher scores indicate greater social 

communication difficulties. Scores of 15 or more are considered indicative of clinically 

significant autistic features. 

2.4. Auditory Oddball Paradigm 

Electrophysiological responses were measured as participants listened to a passive 

8roving9 auditory oddball paradigm (Garrido et al., 2008; see Figure 1). Pure sinusoidal tones 

(duration: 70 ms, including a 5 ms rise and fall times; inter-stimulus interval: 500 ms; average 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.03.510718doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.03.510718
http://creativecommons.org/licenses/by-nc/4.0/


  

volume: 80 SPL) were presented in sequences consisting of 1 to 7 stimuli. Each sequence 

differed from the previous sequence in pitch (5003800 Hz in steps of 50 Hz). The length and 

pitch of the sequence varied pseudo-randomly. The first and the last tone in each sequence 

were defined as the 8deviant9 and 8standard9 stimuli, respectively. Evidently, the 8standards9 

and 8deviants9 in each sequence had identical physical properties, differing only in their order 

of presentation. The paradigm ran for 15 minutes. No instructions were required. The 

paradigm was programmed and presented in MATLAB (Mathworks, Natick, MA, USA) 

using Cogent 2000 version 1.32 (http://www.vislab.ucl.ac.uk/cogent.php). 

 

 

Figure 1. A schematic illustration of the roving auditory oddball paradigm (Garrido et al., 

2008). The first tone in each sequence is a 8deviant9 (black circles) and the final tone in each 

sequence is the 8standard9 (or the 8pre-deviant; the white circle prior to the black circle). 

 

2.5. MEG Acquisition 

The electrophysiological data were acquired using a whole-head, supine, paediatric 

MEG system (Model PQ1064R-N2m, KIT, Kanazawa, Japan), housed in a magnetically 

shielded room (MSR; Fujihara Co. Ltd., Tokyo, Japan). The MEG sensor array consisted of 

125 first-order axial gradiometers, each of which had a coil diameter of 15.5 mm and a 

baseline of 50 mm (for further details, see He et al., 2019). The dewar was designed to fit a 

maximum head circumference of 53.4 cm, accommodating the heads of more than 90% of 5-

year-old Caucasian children (Johnson et al., 2010). All data were acquired at a sampling rate 

of 1000 Hz and with an on-line bandpass filter of 0.033200 Hz. To maximise the likelihood 

of obtaining high-quality data, we followed a child-friendly MEG testing protocol (which is 

available as an open-access video article; see Rapaport et al., 2019).  

Before the MEG recording, participants were fitted with a polyester cap containing 

five head position indicator (HPI) 8marker9 coils. A digitiser pen (Polhemus Fastrak, 

Colchester, USA) was used to record the locations of the HPI coils, as well as three fiducial 

points (the nasion and bilateral pre-auricular points) and 300-500 points from the scalp and 
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face. For children who could not tolerate the Polhemus procedure, we instead used a contact-

free 3D iPad head scan (Seymour, 2019; https://bit.ly/3alPGvl). The iPad procedure involved 

the use of a 8Scanner3Structure SDK9 iPad application (Occipital, Inc., Boulder, CO) and a 

Structure Sensor accessory (Occipital Inc., Boulder, CO), which was mounted onto the iPad 

tablet camera lens.  

During the MEG recording, children listened to the auditory oddball paradigm whilst 

watching a silent video of their choice. The paradigm was presented via a 60*60cm speaker 

(Panphonics SSH sound shower, Panphonics), which was positioned centrally at the foot of 

the plinth. The video was projected onto the ceiling of the MSR above the dewar. 

Participants9 head position in relation to the MEG sensor array was continuously monitored 

using a real-time marker coil tracking system (Oyama et al., 2012). Children were 

accompanied by a researcher (and, most often, their caregiver) for the duration of the MEG 

recording. Following the MEG recording, autistic children completed the ADOS-2 and their 

parents the SCQ. The entire session ran for approximately 45 minutes for the neurotypical 

children and 90 minutes for the autistic children. 

2.6. Data Pre-processing 

The following steps were performed in MEG160 (Yokogawa Electric Corporation and 

Eagle Technology Corporation, Tokyo, Japan). Channels that were consistently saturated for 

more than 10% of the recording were excluded from the subsequent steps on an individual 

basis. Environmental noise4estimated based on recordings from three reference 

magnetometers4was suppressed using a Time-Shift Principal Component Analysis (TSPCA) 

algorithm (de Cheveigné & Simon, 2007; block width: 10,000 ms, 3 shifts). Data acquired 

with the real-time marker coil tracking system were used to correct for head motion artefacts 

(Knösche, 2002; realignment conditions: sphere mesh = 321, prune ratio = 0.05). 

Further pre-processing steps were performed in Matlab 2020a (MathWorths, Inc., 

Natick, MA, USA) using the Fieldtrip Toolbox v20200213 (Oostenveld et al., 2011). For 

each participant, the entire recording was high- and low-pass filtered at 0.1 and 40 Hz, 

respectively (using a onepass-zerophase firws filter with a Blackman window), and band-stop 

filtered to remove residual 50 Hz power-line contamination and its harmonics. Following 

visual inspection, segments of the recordings containing artefacts (e.g., SQUID jumps and 

jaw clenches) were removed. Channels that contained a large number of these visually-

identified artefacts and/or were saturated for more than 10% of the recording were 

interpolated to ensure that all participants had the same number of MEG channels 
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(Medvedovsky et al., 2007). An independent component analysis (ICA) was used to suppress 

eye blink artefacts. First, the raw recordings were high-pass filtered at 1Hz to improve the 

ICA performance (Winkler et al., 2015). Subsequently, up to two components with scalp 

distributions corresponding to eye blinks were removed from the 0.1 Hz, pre-processed data.  

The continuous data were epoched into segments of 500 ms (100 ms pre- and 400 ms 

post-stimulus onset). Standard epochs were defined as the final trial in a sequence that 

consisted of more than two trials. Deviant epochs were defined as the first trial in a sequence 

that immediately followed a sequence consisting of more than two trials. There was an 

average of 268 deviant and 268 standard epochs for each autistic participant, and 266 deviant 

and 268 standard epochs for each neurotypical participant. The first deviant epoch was 

excluded from further analysis. All 8standard9 and 8deviant9 epochs were averaged across, 

respectively, to compute 8standard9 and 8deviant9 event-related fields (ERFs). 8Standard9 and 

8deviant9 global field powers (GFPs) were calculated to quantify the amount of absolute 

activity at each time point across all of the sensors. Subtracting the 8standard GFP9 from the 

8deviant GFP9 produced an 8MMF1-GFP9 for each participant. 

2.7. Statistical Analyses 

The following statistical analyses were performed in MNE-Python (Gramfort et al., 

2013). We compared MMF amplitudes between the autistic and neurotypical groups using a 

non-parametric cluster-based permutation analysis with independent-samples t-tests (Maris & 

Oostenveld, 2007). This approach has been shown to adequately control the Type-I error rate 

for electrophysiological data. We clustered samples whose t-values fell below a threshold 

corresponding to an alpha level of 0.05 (on the basis of temporal proximity) and calculated 

cluster-level test statistics by taking the average of the t-values within each cluster. The data 

were then permuted 1,000 times, each time randomly shuffling the group labels and 

recomputing the t-values. We constructed a permutation distribution from these random 

 
1 Here the MMF was liberally defined as any significantly larger deviant-relative-to-standard waveform 

amplitude occurring within the 500 ms time window. This definition stands in contrast to the definition of the 

classic adult MMN/F, which emerges soon after the second 8N19 or 8M29 component (Hari & Puce, 2017, p. 

265; Näätänen et al., 2019a, p. 53) and is visible between 100 to 250 ms following stimulus onset (Näätänen et 
al., 2019b). Our reason for relying on this more liberal definition is that the latency of the peak mismatch effect 

changes across childhood (Näätänen et al., 2019a). As such, it would have been inappropriate to constrain our 

analysis to the classic adult MMN time window. It should be noted that earlier paediatric auditory oddball 

studies have likewise used liberally-defined time windows to extract MMN effects (e.g., 200-330 ms in 6- to 7-

year-olds, Lovio et al., 2009; 300-550 ms in 4- to 12-year-olds, Partanen et al., 2013; 150-400 ms in 5- to 7-

year-olds, Petermann et al., 2009; 100-300 ms in 9- to 13-year-olds, Putkinen et al., 2014; 100-320 ms in 4- to 

10-year-olds, Shafer et al., 2000). 
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partition t-values. Finally, the significance of each cluster determined by using a threshold 

Monte-Carlo p-value. 

We also conducted a series of exploratory case-cohort analyses using permutation 

tests. The following steps were performed separately for each of the 10 autistic children. 

First, we created an average-age-matched group of neurotypical children (whose ages were 

within 12 months of the autistic child), and subtracted the autistic child9s MMF from the 

MMF of each child in the neurotypical comparison group. We then used permutation one-

sample t-tests to determine whether the difference in MMF amplitudes between the autistic 

child and the neurotypical comparison group was significantly different from zero (Maris & 

Oostenveld, 2007). We selected all samples whose t-values fell below a threshold 

corresponding to an alpha level of 0.01 and clustered the selected samples based on their 

temporal proximity. We then calculated cluster-level test statistics by taking the sum of the t-

values within each cluster. Finally, the data were permuted 1,000 times, we constructed a 

permutation distribution and tested the significance of each cluster using a threshold Monte-

Carlo p-value. To visualise where each autistic child fell in relation to their neurotypical 

counterparts, we computed mean MMF amplitudes (by averaging the individual data over 

each of the significant time windows) and plotted the individual data for each case-cohort 

comparison. 

3. Results 

3.1.1. Group-Level Comparison 

Figure 2 shows the 8standard9 and 8deviant9 GFPs and Figure 3 shows the 8MMF-

GFPs9 for the autistic and neurotypical children, respectively. We found no significant 

differences between the two groups9 MMF amplitudes, p > .05.  
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Figure 2. Group-level global field power (GFP) amplitudes (Tesla) by time (ms) for the 

8standard9 (blue) and 8deviant9 (red) conditions. Top panel: autistic children (N = 10). Bottom 

panel: neurotypical children (N = 63). 

 

   

Figure 3. Group-level global field power (GFP) MMF amplitudes (Tesla) by time (ms) for 

autistic children (blue waveform; N = 10) and neurotypical children (red waveform; N = 63). 

 

3.1.2. Exploratory Case-Cohort Comparisons 

Figure 4 shows the exploratory case-cohort analyses, comparing each of the 10 

autistic children to a group of average-age-matched neurotypical children. The leftmost 

panels in Figure 4 show each of the autistic children9s 8MMF-GFP9 (red waveform) 

compared to that of their neurotypical counterparts9 (blue waveform). Consistent with the 
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hypothesis derived from the HIPPEA predictive coding account of autism, six of the 10 

autistic children (P2, P3, P5, P6, P8 and P9) showed significantly larger MMF amplitudes 

relative to their neurotypical counterparts, p < .05. The latencies of these significant clusters 

are summarised in Table 1 and shaded in red in Figure 4. Two of the autistic children, P1 and 

P4, likewise showed larger MMF amplitudes relative to neurotypical children, although these 

differences did not reach significance. Two other autistic children, P7 and P10, showed the 

opposite effect of larger standard-relative-to-deviant responses (i.e., 8reverse MMF9 

responses), p < .05. 
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Figure 4. Results of the 10 case-cohort comparisons. Panel A: Global field power (GFP) 

MMF amplitudes (Tesla) by time (ms) for each individual autistic child (red waveforms), and 

their respective neurotypical counterparts (blue waveform). The shaded red areas indicate 

clusters of significant differences between the autistic child and the neurotypical group,  

p <.01. Panels B and C: For each significant cluster, we plotted the mean MMF amplitude 

(across the significant time-window) of the autistic child (yellow dot in the Violin plot) 

against each of the neurotypical average-age-matched children (green dots). Note the 

different y-axis scales.  
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4. Discussion 

The aim of the current study was to evaluate several competing predictive coding 

accounts of autism. We hypothesised that attenuated MMF amplitudes in autistic children, 

compared to their neurotypical counterparts, would be consistent with the 8inflexibly low 

prior-relative-to-sensory precision9 accounts (Brock, 2012; Pellicano, 2013; Pellicano & 

Burr, 2012). Furthermore, we hypothesised that relatively larger MMF amplitudes in autistic 

children would be consistent with the 8HIPPEA9 account (Van de Cruys et al., 2013, 2014).  

Unexpectedly, our group-level analysis yielded no significant difference in the 

magnitude of the MMF amplitude between the autistic and neurotypical children. We suspect 

that this null result may be partly due to an age-related confound, as both the autistic and the 

neurotypical groups were characterised by a wide range of ages (4.238.6 years and 3.039.8 

years, respectively). Thus, any potential MMF amplitude differences between the autistic and 

neurotypical children may have been obscured by within-group maturational changes in the 

MMF waveform. This explanation may also account for the null results of several previous 

studies, which also compared MMN/F between groups of autistic and neurotypical children 

characterised by a wide range of ages (Gomot et al., 2002, 2011; Lepistö et al., 2009; Roberts 

et al., 2011; Weismuller et al., 2015). 

To address this concern, we conducted a series of exploratory case-cohort analyses, 

comparing the MMF amplitudes of each of the autistic children to that of their average-age-

matched neurotypical counterparts. Consistent with the hypothesis derived from the 

8HIPPEA9 account (Van de Cruys et al., 2013, 2014), six of the 10 autistic children showed 

significantly larger MMF amplitudes relative to their neurotypical counterparts (NB. an 

additional two autistic children, P1 and P4, likewise showed larger MMF amplitudes relative 

to neurotypical children, yet these differences did not reach significance). Under the HIPPEA 

account, the pseudo-random 8deviants9 may have elicited overly precise PE signals, thereby 

motivating the brain to update its Bayesian model based on the unpredicted information. 

Thus, all subsequent repetitions of the deviant (which, through their repetition, became 

8standards9) may have been precisely predicted, thereby eliciting relatively minimal PE 

signals. Overall, this may have given rise to the relatively larger PE (i.e., evoked response) 

signals to the 8deviants9 relative to the standards, resulting in relatively large MMF 

amplitudes in the autistic children. 

 Larger MMF amplitudes in autistic compared to neurotypical children is at odds with 

the results of a recent meta-analysis, which reported relatively attenuated MMN/F amplitudes 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.03.510718doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.03.510718
http://creativecommons.org/licenses/by-nc/4.0/


  

in young autistic children (Schwartz et al., 2018). However, the children included in the 

meta-analysis were older (age range: 6 3 15 years) than those included in the current study 

(age range: 4.238.6 years). When we instead examined the findings from amongst the large 

number of individual studies, the current findings fell within the broad spectrum of these 

previous reports of autistic children showing MMN/F amplitudes that were smaller 

(Andersson et al., 2013; Dunn et al., 2008; Jansson-Verkasalo et al., 2005; Ludlow et al., 

2014; Seri et al., 1999; Yoshimura et al., 2017), larger (Ferri et al., 2003), or not significantly 

different from that of their neurotypical counterparts (Gomot et al., 2002, 2011; Lepistö et al., 

2009; Roberts et al., 2011; Weismuller et al., 2015).  

The current findings were also at odds with the hypothesis derived from the account 

that autistic people have 8inflexibly low prior-relative-to-sensory precision9 (Brock, 2012; 

Pellicano, 2013; Pellicano & Burr, 2012). However, the notion that autistic people have 

overly precise (Van de Cruys et al., 2013, 2014)4rather than overly weak priors4is 

arguably more consistent with autistic traits. For example, the high prevalence of savant skills 

among autistic people (Howlin et al., 2009) is more easily accounted for by a system that 

predicts the world with heightened precision, rather than a system that has imprecise 

expectations about the world (Van de Cruys et al., 2013). Furthermore, autistic preference for 

sameness (APA, 2013) may be better accounted for a system that maintains a high learning 

rate in otherwise volatile environments (an experience which may be cognitively taxing and 

overwhelming), rather than a system that maintains broad priors that account for 

environmental volatility. 

This study has several limitations. The first of these relates to our small sample size. 

In general, it can be difficult to recruit autistic children for research participation due to 

challenges related to going to new places, working with new people, and breaking from 

familiar routines. Recruitment for the current study was made more challenging due to the 

2020321 COVID-19 lockdowns and restrictions. Furthermore, of the 21 autistic children who 

we were able to assess, 11 were excluded from the final analysis (see Supplementary Table 

S1), resulting in a total of 10 useable datasets (i.e., 48% of the original sample size). The 

most common reason for excluding participants was due to sensory aversions to the testing 

environment (especially having to wear the MEG cap, n = 7). Given our small sample size 

and the high percentage of participant exclusions (particularly of younger children with more 

severe language and sensory difficulties), we cannot be sure that the current findings are 

representative of the broader population of autistic children. 
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Second, although the current findings favour the HIPPEA account, it should be noted 

that not all the case-cohort comparisons were consistent with this account. Indeed, cases P7 

and P10 showed the opposite effect of larger standard-relative-to-deviant responses (i.e., 

8reverse MMF9 responses). Although P79s response fell within the neurotypical continuum 

(albeit at the extreme end of the spread), P109s response was placed as the most extreme 

response for both significant time windows. Unfortunately, these divergent responses are 

difficult to explain as they do not fit neatly with our theory-driven hypotheses, nor with 

previous findings. Such divergence has not been observed in previous studies as past analyses 

have been constrained to group-level comparisons. Nevertheless, divergent findings were not 

unexpected, given the significant heterogeneity across the autism spectrum (Jeste & 

Geschwind, 2014). Investigating whether such divergent electrophysiological responses can 

be linked with autistic traits could be a fruitful topic for future research. Unfortunately, the 

sample size in the current study was too small to conduct such an investigation. 

In conclusion, we found larger MMF amplitudes in most of the autistic children 

compared to their neurotypical average-age-matched counterparts. We interpret these 

findings as preliminary evidence in support of the 8inflexibly high prior and sensory 

precision9 account, and against the 8inflexibly low prior-relative-to-sensory precision9 

accounts of autism. However, given the exploratory nature of the case-cohort analyses, as 

well as the small sample of autistic children on which it was based, the results need both to be 

replicated and modelled on a trial-by-trial basis in future work if they are to be used in strong 

support of the HIPPEA account. 
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