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Abstract 1 

Motivation: Recent advances in deep learning model development have enabled more accurate 2 

prediction of drug response in cancer. However, the black-box nature of these models still 3 

remains a hurdle in their adoption for precision cancer medicine. Recent efforts have focused on 4 

making these models interpretable by incorporating signaling pathway information in model 5 

architecture. While these models improve interpretability, it is unclear whether this higher 6 

interpretability comes at the cost of less accurate predictions, or a prediction improvement can 7 

also be obtained. Results: In this study, we comprehensively and systematically assessed four 8 

state-of-the-art interpretable models developed for drug response prediction to answer this 9 

question using three pathway collections. Our results showed that models that explicitly 10 

incorporate pathway information in the form of a latent layer perform worse compared to 11 

models that incorporate this information implicitly. Moreover, in most evaluation setups the best 12 

performance is achieved using a simple black-box model. In addition, replacing the signaling 13 

pathways with randomly generated pathways shows a comparable performance for the majority 14 

of these interpretable models. Our results suggest that new interpretable models are necessary 15 

to improve the drug response prediction performance. In addition, the current study provides 16 

different baseline models and evaluation setups necessary for such new models to demonstrate 17 

their superior prediction performance. Availability and Implementation: Implementation of all 18 

methods are provided in https://github.com/Emad-COMBINE-lab/InterpretableAI_for_DRP. 19 

Generated uniform datasets are in https://zenodo.org/record/7101665#.YzS79HbMKUk. 20 

Contact: amin.emad@mcgill.ca 21 

Supplementary Information: Online-only supplementary data is available at the journal's website. 22 
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 3 

Introduction 23 

Machine learning models have found various applications in medicine, including drug 24 

repositioning (Jarada, et al., 2020), drug discovery (Vamathevan, et al., 2019), gene prioritization 25 

(Emad, et al., 2017; Zhang, et al., 2021), and drug response prediction (Adam, et al., 2020; 26 

Ballester, et al., 2022; Costello, et al., 2014; Huang, et al., 2020). Models for drug response 27 

prediction (DRP) are typically trained using various data modalities such as molecular 8omics9 28 

profiles of samples (e.g., cancer cell lines or tumors), drug representations, and network 29 

information (Adam, et al., 2020; Ballester, et al., 2022; Guvenc Paltun, et al., 2021). In recent 30 

years, various models have been proposed using deep learning (DL) for drug response prediction 31 

(Baptista, et al., 2021; Chen and Zhang, 2022; El Khili, et al., 2022; Hostallero, et al., 2022; 32 

Hostallero, et al., 2021). In spite of their success in their perspective tasks, most DL models are 33 

considered as <black-boxes= with inner operations that are difficult to interpret. This 34 

characteristic of DL models is undesirable for applications in the biomedical field, as identifying 35 

the set of biological features that contribute to the model prediction outputs and understanding 36 

the relationship between these features are crucial when conducting further experimental 37 

studies to validate these computational findings. To address these challenges, the concept of 38 

interpretable artificial intelligence (Azodi, et al., 2020; Barredo Arrieta, et al., 2020; Malioutov, et 39 

al., 2017) has been introduced to create models that can achieve both high performance and 40 

interpretability.  41 

 42 

In the context of DRP, model interpretability can be achieved in two ways: 1) using post-hoc 43 

analysis to determine feature attributions and identify important features without explicitly 44 
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incorporating prior knowledge in model architecture, and 2) integrating prior knowledge (e.g., 45 

signaling pathways) to add meaningful structure to the model, which can then be interpreted (for 46 

example using post-hoc feature importance methods). While we and others have successfully 47 

used the former strategy in DRP (Hostallero, et al., 2022; Hostallero, et al., 2021) and other 48 

applications (Caruana, et al., 2015; Che, et al., 2016), the latter strategy can potentially allow the 49 

interpretability to go one step further to provide systems biology insights regarding the 50 

mechanisms involved in response to drug treatments. Incorporating prior information such as 51 

biological pathway and subsystem information allows the model embeddings to reflect 52 

subsystem activities and state changes, which can then be computationally or experimentally 53 

investigated to reveal different biological mechanisms that confer specific drug sensitivities 54 

(Kuenzi, et al., 2020). In fact, post-hoc feature importance analysis can be incorporated in these 55 

models to identify not only important input features, but also embeddings that reflect crucial 56 

subsystems for cellular response to a particular drug. 57 

 58 

The models that incorporate pathway information have generated valuable insights regarding 59 

drugs9 mechanisms of action and gene-pathway relationships, some of which have been validated 60 

experimentally (Kuenzi, et al., 2020). However, there have been conflicting reports on their ability 61 

in providing accurate drug response predictions (Deng, et al., 2020; Jin and Nam, 2021; Kuenzi, 62 

et al., 2020; Snow, et al., 2021; Tang and Gottlieb, 2021; Zhang, et al., 2021). Ideally, 63 

interpretability should not come at the expense of prediction performance, since a lower 64 

prediction performance of interpretable models may reflect that the black-box models are better 65 

capable at extracting patterns of the data and incorporating informative signals that are not being 66 
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utilized by the more interpretable models. For example, consider a hypothetical model that is 67 

completely interpretable, but generates random drug response predictions that do not reflect 68 

the measured drug responses of samples. No matter how interpretable this model may be, the 69 

insights obtained from it is not going to reflect the biological and chemical mechanisms involved 70 

in drug response.   71 

 72 

Recognizing the intertwined relationship between interpretability and performance, the majority 73 

of recent models that incorporate pathway information for better interpretability have also 74 

sought and reported an improved prediction performance (Deng, et al., 2020; Jin and Nam, 2021; 75 

Snow, et al., 2021; Tang and Gottlieb, 2021; Zhang, et al., 2021). On the other hand, some studies 76 

have reported comparable or slightly worse model performance after incorporating pathway 77 

information (Kuenzi, et al., 2020). However, it is rather difficult to gauge the (potential) 78 

contribution of pathway information in DRP performance from the original studies, due to 79 

differences between data used in each study, their evaluation setup, and in many cases a lack of 80 

appropriate baseline models to act as control. To investigate these inconsistent findings in state-81 

of-the-art models, we conducted a study that comprehensively evaluates the effect of pathway 82 

incorporation on performance of DRP models and aims to answer five main questions: 83 

1. Does the inclusion of biological pathway information improve model performance when 84 

evaluated strictly and comprehensively? 85 

2. Which type of pathway incorporation strategy is best capable of improving the 86 

performance? 87 
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3. Are interpretable models better suited for prediction of response of unseen cell lines or 88 

unseen drugs? 89 

4. Can the performance of the interpretable models be attributed to biological information 90 

present in the pathway datasets, or a similar improvement can be also achieved through 91 

the use of randomly generated pathways, reflecting a technical (instead of a biological) 92 

origin for the performance? 93 

5. What pathway database is most helpful in improving model performance? 94 

 95 

To answer the proposed questions, we performed 189 experiments evaluating 21 computational 96 

models with three pathway collections (Kanehisa and Goto, 2000), (Schaefer, et al., 2009), 97 

(Fabregat, et al., 2017) and under three data splitting strategies. The models included four state-98 

of-the-art interpretable DL architectures that incorporate pathway information (Deng, et al., 99 

2020; Jin and Nam, 2021; Tang and Gottlieb, 2021; Zhang, et al., 2021) (henceforth pathway-100 

based models) and four variants of them, as well as thirteen baseline models that can evaluate 101 

the performance of these models from different angles (discussed in Methods). We selected 102 

these interpretable models since they use similar type of information for cancer cell lines (CCLs) 103 

and drugs and utilize gene-pathway membership in their architectures, allowing us to compare 104 

them fairly and comprehensively. Moreover, they represent two categories of strategies to 105 

incorporate pathway information in DL architectures: methods that use a pathway layer 106 

connecting genes to pathway nodes (explicit models) such as PathDNN (Deng, et al., 2020) and 107 

ConsDeepSignaling (CDS) (Zhang, et al., 2021), and those that do not directly use a pathway layer 108 

(implicit models) such as HiDRA (Jin and Nam, 2021), and PathDSP (Tang and Gottlieb, 2021).  109 
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 110 

Our baseline models included a traditional machine learning model (random forests), a black-box 111 

fully connected neural network with a similar architecture to those of the interpretable models, 112 

as well as <naive= predictors and <random-pathway= predictors, two important baselines that 113 

have been largely overlooked in previous studies. The naive predictor uses the average drug 114 

response of samples in the training set and reports that for each testing sample. This baseline is 115 

particularly important in controlling for inflation of prediction performance due to distinct range 116 

of log IC50 (natural log of the half maximal inhibitory concentration, a drug sensitivity measure) 117 

of different drugs. In other words, it is possible to obtain a good approximation of drug response 118 

by simply knowing the identity of the drug, resulting in artificially inflated performance metrics. 119 

Each random-pathway predictor exactly matches the architecture and pipeline of an 120 

interpretable model, but randomly assigns genes to pathways, while preserving the size of each 121 

pathway. These baselines allow us to determine whether potential performance improvement 122 

of an interpretable model is truly due to the added value of the biological information, or instead 123 

is a technical artifact of modifying the model architecture.  124 

 125 

Our analysis showed that overall, incorporating pathway information does not lead to improved 126 

prediction performance, confirming the observations reported by Kuenzi et al. (Kuenzi, et al., 127 

2020) for their proposed model. In particular, in many cases a simple black-box multilayer 128 

perceptron (MLP) achieves the best performance. Moreover, even in instances that performance 129 

improvement compared to an MLP or a naive predictor was observed, a similar performance was 130 

achieved using randomly generated pathways. This suggests that such improvements should not 131 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 26, 2023. ; https://doi.org/10.1101/2022.10.03.510614doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.03.510614
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

be attributed to the biological information carried by pathway collections and is likely a technical 132 

artifact. We also observed that the strategy used to include pathway information in the models 133 

has a significant influence on the performance, and explicit models seem to perform worse 134 

compared to implicit models. Finally, Reactome pathways seemed to provide slightly better 135 

predictions compared to other pathway collections. 136 

 137 

Methods 138 

Data preprocessing and uniform dataset formation 139 

To form uniform datasets for our analyses, we first evaluated different data modalities and 140 

datasets used by each of the pathway-based models (Supplementary Table S1). In these studies, 141 

gene expression (GEx), somatic mutation (Mut), and copy number variation (CNV) of samples 142 

were used, while for drugs their targets (T) or their Morgan fingerprints (FP) capturing their 143 

chemical structure were used. In order to maintain fairness and consistency of model 144 

performance comparisons, for each choice of pathway collection we compiled a uniform dataset 145 

that was used by all models evaluated in this study (three uniform datasets in total). These 146 

datasets are freely available in https://zenodo.org/record/7101665#.YzS79HbMKUk.  147 

 148 

We collected GEx, Mut, CNV, and drug sensitivity data (in the form of log IC50) of 959 cancer cell 149 

lines (CCLs) from Genomics of Drug Sensitivity in Cancer (GDSC) (Yang, et al., 2013) database. We 150 

obtained drug target information from STITCH (Szklarczyk, et al., 2016) and drug structural data 151 

from PubChem (Kim, et al., 2021). Protein-protein interactions (PPI) that were used by one of the 152 

models were obtained from the STRING database (Szklarczyk, et al., 2019) (only experimental 153 
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PPIs were used). Finally, gene-pathway membership information was obtained from KEGG (Kyoto 154 

Encyclopedia of Genes and Genomes) (Kanehisa and Goto, 2000), PID (Pathway Interaction 155 

Database) (Schaefer, et al., 2009), and Reactome (Fabregat, et al., 2017). Supplementary Table 156 

S2 outlines the data used in this study and their sources. We obtained drug response data in the 157 

form of log IC50 values and removed duplicate drugs that came from different experimental 158 

batches. In such cases, we kept the drug whose response was measured across a larger number 159 

of CCLs. We collected drug InChI (International Chemical Identifier) strings (Heller, et al., 2015) 160 

from PubChem and used the RDKit (Landrum, 2006) software to generate 512-bit Morgan 161 

fingerprints for these drugs. We obtained drug target data from the STITCH database, where we 162 

only kept drug targets with confidence score larger than 800 (out of 1000) and coming from the 163 

<experimental= and <database= channels. 164 

 165 

Table 1: Summary of pathway-specific uniform datasets. 166 

Pathway 

Database 

Num. 

CCLs 

Num. 

Drugs 

Num. Unique 

Drug Targets 

Num. (Drug, CCL) 

Pairs 

Num. 

Pathways 

Num. Unique 

Genes 

KEGG 959 162 446 118,896 332 5511 

PID 959 153 321 112,781 196 2078 

Reactome 959 177 493 128,324 1608 7831 

 167 

We performed log2(FPKM+1) normalization on the GEx data and removed genes whose 168 

expression showed low variability across different CCLs (standard deviation < 0.1). We also 169 

removed genes for which there were no somatic mutations, CNV, pathway information, drug 170 

target data, and STRING Experimental PPI information. This formed our common gene set (Figure 171 

1A and 1B). In parallel, drug targets that were not present in the common gene set above or in 172 

the PPI network were excluded. Only drugs that had both log IC50 measurements and drug 173 
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targets were kept in the final uniform datasets (Figure 1C and 1D). The PPI network was involved 174 

in the data preprocessing step as PathDSP (Tang and Gottlieb, 2021) incorporated it to perform 175 

pathway enrichment analysis. Since we needed the uniform datasets to be usable by all models, 176 

we included this step in the pre-processing procedure.  177 

 178 

Figure 1: Construction of pathway-specific uniform datasets and data splitting approaches. (A) 179 

cancer cell lines (CCLs) with available data for drug response, gene expression, somatic mutation, 180 

and copy number variation (CNV) were selected. (B) Genes shared between different sources of 181 

data were identified. Genes that were not present in any pathway were removed. (C) Drug target 182 

genes that were not found in the common gene set obtained from Step B and the STRING 183 

Experimental protein-protein interaction (PPI) network were removed. (D) Drugs and small 184 

molecules that had measured log IC50 values and drug target information were selected. E) 185 

Model input data was split into five folds, with the training, validation, and test set ratio of 3: 1: 186 

1. Folds in the leave-pairs-out (LPO) validation scheme are formed by randomly selecting 187 

mutually exclusive (CCL, drug) pairs, whereas in leave-cell-lines-out (LCO) and leave-drugs-out 188 

(LDO) validation schemes, mutually exclusive cell lines and drugs are randomly selected, 189 

respectively. 190 

 191 
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Figure 1 illustrates the process of constructing the pathway-specific uniform datasets. Since each 192 

source of pathway collection contained different number of genes, the final dataset for each 193 

collection was slightly different. Table 1 summarizes the number of CCLs, drugs, genes, and 194 

pathways for each pathway collection in the uniform dataset, while Supplementary Table S3 195 

provides details about CCLs and drugs.  196 

 197 

Model evaluation and data split 198 

We split our data randomly into five disjoint folds, where the training, validation, and test ratio 199 

was 3: 1: 1. The validation set was used for hyperparameter tuning and the test set was used for 200 

final model evaluation. The details of hyperparameter tuning, model training, and final 201 

architectures are provided in Supplementary File S2. We adopted three data splitting methods 202 

(validation schemes) to generate these folds: leave-pairs-out (LPO), leave-cell-lines-out (LCO), 203 

and leave-drugs-out (LDO), as depicted in Figure 1E. These three strategists were adopted to 204 

comprehensively assess the models for different drug response prediction tasks (for unseen (CCL, 205 

drug) pairs, unseen CCLs, and unseen drugs, respectively), and to determine in which one of these 206 

tasks (if any) pathway incorporation improves model prediction performance. To ensure fairness, 207 

same folds were used for all models. 208 

 209 

We evaluated the performance of each model using two main performance measures: 210 

Spearman9s correlation coefficient (SCC) and root mean squared error (RMSE), but various other 211 

measures are also reported in supplementary tables. First, for a fixed CCL, the predicted values 212 

across all drugs of the test set were compared with the measured log IC50 values to calculate a 213 
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CCL-specific performance measure (SCC or RMSE). Then, the mean and standard deviation of the 214 

performance measure was calculated across all CCLs.   215 

 216 

Overview of interpretable models and their variants 217 

To study the effect of incorporating pathway information on drug response prediction, we 218 

selected four pathway-based state-of-the-art models: PathDNN (Deng, et al., 2020), 219 

ConsDeepSignaling (CDS) (Zhang, et al., 2021), HiDRA (Jin and Nam, 2021), and PathDSP (Tang 220 

and Gottlieb, 2021). We selected these models since 1) they use similar types of information for 221 

CCLs and drugs and utilize gene-pathway membership in their architectures (instead of other 222 

types of prior information such as hierarchical relationships of gene ontologies), 2) they all 223 

showed improved drug response prediction performance in their original studies compared to 224 

their black-box counterparts, and 3) they represent two important categories of implicit and 225 

explicit models (as discussed earlier). While other important models also exist (e.g., DrugCell 226 

(Kuenzi, et al., 2020)), they did not satisfy the conditions above. For example, DrugCell (unlike 227 

the models above) uses the hierarchical structure of gene ontologies and pathways, making it 228 

rather difficult to compare against the models above in a fair manner, since it takes advantage of 229 

more detailed information. Moreover, the original study of DrugCell showed that while including 230 

prior information improved interpretability of their model, it did not improve the performance 231 

of drug response prediction compared to its black-box counterpart. Due to the reasons above, 232 

we decided to exclude it from this analysis.  233 

 234 
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 235 

Figure 2: An overview of pathway-based models considered in this study. A) PathDNN uses cancer 236 

cell line (CCL) gene expression profiles as CCL features and drug target information as drug 237 

features. The input features (genes) are connected to the pathway nodes through gene-pathway 238 

membership. The pathway layer is followed by a set of fully connected layers. B) 239 

ConsDeepSignaling (CDS) takes gene expression profile and copy number variation as CCL 240 

features and drug target information as drug features. Each node in the gene layer represents a 241 

gene and is connected to its corresponding input features in the input layer (through connection 242 

matrix MXG). Connections between the gene and pathway layer are defined by gene-pathway 243 

membership (binary connection matrix MGP). A set of fully connected layers follow the pathway 244 

layer. C) HiDRA has a hierarchical network architecture. It uses gene expression profiles as CCL 245 

features. Drug target information and structural data can be both used as drug features. The 246 

pathway information is incorporated using an attention module, where a small neural network 247 

is dedicated to each pathway. Pathway activation scores are calculated by the gene-level network 248 

and are concatenated with drug feature embeddings learned by the drug encoding network to 249 

generate the final input to the drug response prediction network. D) In PathDSP, drug target, 250 

gene expression, somatic mutation, and copy number variation data are processed using 251 

pathway enrichment analysis to from matrices of enrichment scores, which act as input features 252 

to the model, which is a set of fully connected layers. 253 
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Models with an explicit pathway layer (e.g., PathDNN and CDS) typically define a gene and a 255 

pathway layer with connections between these layers reflecting gene-pathway membership 256 

(Figure 2A-2B). The input layer of this category of models contains drug and cell line features at 257 

gene level. As a result, only drug gene targets can be used with these models and Morgan 258 

Fingerprint (and other structural data) is not usable without altering the model architecture. The 259 

pathway layer is then connected to a group of fully connected layers to predict drug response for 260 

a given sample. The inclusion of the pathway layer allows identification of important pathways 261 

for a particular drug treatment or cancer type through post-hoc feature importance analysis. 262 

 263 

Models that implicitly incorporate pathway information take various forms. For example, HiDRA 264 

(Jin and Nam, 2021) uses a gene-level and pathway-level attention module to calculate pathway 265 

importance scores, where a small-scale neural network is dedicated to each pathway by only 266 

using features associated with the member genes of that specific pathway as inputs (Figure 2C). 267 

On the other hand, PathDSP uses a classic fully connected feedforward architecture, but the input 268 

features are pathway-enrichment scores rather than gene-level features (Figure 2D). See 269 

Supplementary Files S1 and S2 for details regarding models9 architectures and their training 270 

procedure.  271 

 272 

Each of the pathway-based models used different data modalities in their original study 273 

(Supplementary Table S1). We tested all models using the three pathway collections discussed 274 

earlier. For implicit models, we tried both drug targets (T) and Morgan fingerprints (FP); however, 275 

for explicit models, only drug targets could be used due to their requirements that the drug 276 
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features must be at gene level. For CCL features, we used all data modalities used by the original 277 

study. However, since gene expression data was used by all models (alone or in combination with 278 

other omics data, Supplementary Table S1), we also implemented model variants that only 279 

utilized GEx data. This ensured that one architecture is not given an unfair advantage due to 280 

access to a larger number of modalities. Table 2 provides a summary of all variations of the 281 

models considered in this study.  282 

 283 

Table 2: List of evaluated models. · = universal baseline, f = model-specific random pathway 284 

baseline, « = original pathway-based model, n = model variant, GEx = gene expression, CNV = 285 

copy number variation, Mut = somatic mutation, T = drug target data, FP = Morgan fingerprint 286 

(drug structural data) 287 

Model Name Model Variant Name Cell Line Features Drug 

Features 

Five-Layer MLP MLP (GEx, FP) · GEx FP 

MLP (GEx, T) · GEx T 

Naive Predictor Naive Predictor · N/A N/A 

Random Forests RF (GEx, FP) · GEx FP 

RF (GEx, T) · GEx T 

PathDNN (Deng, et al., 2020) PathDNN (GEx, T) « GEx T 

PathDNN_rand (GEx, T) f GEx T 

CDS (Zhang, et al., 2021) CDS (GEx, CNV, T)« GEx, CNV T 

CDS_rand (GEx, CNV, T) f GEx, CNV T 

CDS (GEx, T) n GEx T 

CDS_rand (GEx, T) f GEx T 

HiDRA (Jin and Nam, 2021) HiDRA (GEx, FP) « GEx FP 

HiDRA_rand (GEx, FP) f GEx FP 

HiDRA (GEx, T) n GEx T 

HiDRA_rand (GEx, T) f GEx T 

PathDSP (Tang and Gottlieb, 

2021) 

PathDSP (GEx, CNV, MuT, FP, T) « GEx, CNV, Mut FP, T 

PathDSP_rand (GEx, CNV, MuT, FP, T) f GEx, CNV, Mut FP, T 

PathDSP (GEx, FP) n GEx FP 

PathDSP_rand (GEx, FP) f GEx FP 

PathDSP (GEx, T) n GEx T 

PathDSP_rand (GEx, T) f GEx T 

 288 
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Baseline Models 289 

We used four types of baseline models to benchmark the pathway-based models and their 290 

variants. First, we used a multilayer perceptron (MLP) with five layers as a universal baseline for 291 

all models. This MLP represents a black-box feedforward neural network that is often used for 292 

benchmarking of other deep learning architectures (including the pathway-based models). Since 293 

all pathway-based models had a variant trained with GEx data, along with drug targets (or 294 

Morgan fingerprints), we trained two MLP models, MLP (GEx, FP) and MLP (GEx, T), representing 295 

the data input options above (Table 2).  296 

 297 

The second type of baseline used in our study was a predictor that simply calculates the average 298 

drug sensitivity measure of samples in the training set and reports their average for all samples 299 

in the test set (henceforth referred as naive predictor). More specifically, the naive predictor does 300 

not use any CCL or drug features, but instead simply relies on the identity of the CCL or the drug 301 

(depending on the data splitting strategy). As shown in Supplementary Figure S1, in the LCO setup 302 

and for a (CCL, drug) pair in the test set, the naive predictor reports the average response of all 303 

CCLs in the training set to that drug. As a result, all CCLs in the test set will have the same response 304 

value for a drug (i.e., only the drug identity determines the response). On the other hand, in the 305 

LDO setup and for a (CCL, drug) pair, the average response of the CCL to all drugs in the training 306 

set is reported as the prediction (i.e., only the identity of the CCL determines the response). In 307 

the case of LPO, the averaging is done across all drugs and all CCLs corresponding to a (CCL, drug) 308 

in the test set. The naive predictors reveal the performance of a model that does not learn the 309 
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relationship between the input features and output drug response and can control for inflation 310 

in the performance metrics.  311 

 312 

The third type of baselines correspond to model-specific baselines that have the exact same 313 

architecture of a pathway-based model (with all their input data), but instead of gene-pathway 314 

membership information from pathway databases use randomly generated pathways. This type 315 

of baseline model (shown with a suffix of <_rand= in Table 2) allows us to determine if the 316 

(potential) performance improvement of a pathway-based model is due to the added value of 317 

biological information, or instead is a technical artifact. Let a pathway collection (e.g., KEGG) 318 

contain � pathways �! , � = 1, 2, & ,�, each with �!  genes. Then, a randomly generated pathway 319 

collection was produced by randomly assigning �!  genes to pathway �! . We evaluated the 320 

performance of each pathway-based model with multiple randomly generated pathway 321 

collections to determine the mean, standard deviation and histogram of the performance metrics 322 

of these random pathway baselines. 323 

 324 

Finally, the fourth type of baselines correspond to traditional machine learning algorithms, 325 

namely random forests (RF). We trained two variations of RF, one with (GEx, T) as input and one 326 

with (GEx, FP) as input.  327 

 328 

Cross-dataset analysis by predicting drug responses in CTRPv2 using models trained on GDSC 329 

In addition to the analysis performed using GDSC, we also assessed the generalizability of the 330 

deep learning models by performing a cross-dataset analysis. Following the guidelines in a 331 
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previous study (Sharifi-Noghabi, et al., 2021), we trained the models using area under the dose 332 

response curves (AUC) from GDSC dataset to predict AUC of drugs in CTRPv2 (Rees, et al., 2016). 333 

For drugs in CTRPv2 dataset, we used their gene expression profile from the cancer cell line 334 

encyclopedia (CCLE) (Barretina, et al., 2012). All models were trained using Reactome pathway 335 

collection, gene expression and drug targets. Since in this dataset, the gene expressions were 336 

quantified using transcript per million (TPM), we also used TPM values for the training set (GDSC). 337 

Only common genes between GDSC and CCLE were included. The rest of the preprocessing steps 338 

were as described earlier in the manuscript.  339 

 340 

Results 341 

Models that incorporate KEGG pathway information implicitly outperformed explicit models 342 

Since KEGG was the most commonly used pathway collection in the original studies 343 

(Supplementary Table S1), we used the uniform dataset that we formed for this collection to 344 

comprehensively evaluate all models. We first focused on GEx data to represent CCLs since all 345 

models used GEx modality in their original studies. We also used drug targets to represent 346 

compounds since all models could take advantage of this data modality (Morgan fingerprints are 347 

not compatible with PathDNN and CDS). Table 3 shows SCC and RMSE values for LCO, LDO, and 348 

LPO data splitting strategies (see Supplementary Table S4 for other performance measures and 349 

Supplementary Table S5 for statistical tests comparing these models).  350 

 351 

PathDSP (GEx, T) outperformed all models in LCO and LPO data splitting schemes, while its 352 

performance was close to MLP (GEx, T) baseline in the LDO scheme. Compared to the naive 353 
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predictor, PathDSP (GEx, T) had a better performance in all evaluations, where the highest 354 

difference was observed under the LPO validation scheme with 37% lower average RMSE. Overall, 355 

the implicit models (HiDRA and PathDSP) outperformed the universal baselines (MLP and naive 356 

predictor) for the majority of evaluations, while the explicit models (PathDNN and CDS) did not 357 

outperform them in a considerable number of evaluations (Table 3 and Supplementary Table S4).  358 

 359 

Table 3: Performance of pathway-based models using KEGG collection, with gene expression 360 

(GEx) and drug targets (T) as inputs. The mean and standard deviations (std) are calculated across 361 

cancer cell lines (CCLs). The best performing model is bold-faced, while worst performing model 362 

is underlined. Models are ranked by their leave-cell-lines-out (LCO) RMSE. The following symbols 363 

are used in this table: · = universal baseline, « = original pathway-based model, n = model 364 

variant, ± = higher value indicates better performance, ³ = lower value indicates better 365 

performance. 7 The leave-drugs-out (LDO) Spearman9s correlation coefficient (SCC) cannot be 366 

calculated for the naive predictor since in this case it outputs the same value for all CCLs. For 367 

performance of these models based on Pearson correlation coefficient, R-squared, mean squared 368 

error (MSE), and concordance index, see Supplementary Table S4. Supplementary Figure S2 369 

provides visualization of these values in the form of bar plots. 370 

Model Name 

LCO  LDO LPO 

SCC ± 
(±std) 

RMSE ³ 
(±std) 

SCC ± 
(±std) 

RMSE ³ 
(±std) 

SCC ± 
(±std) 

RMSE ³ 
(±std) 

PathDSP (GEx, T) n 
0.882 

(±0.045) 

1.283 

(±0.230) 

0.380 
(±0.146) 

2.648 

(±0.287) 
0.876 

(±0.074) 

1.103 

(±0.256) 

RF (GEx, T) · 
0.867 

(±0.042) 
1.329 

(±0.205) 
0.342 

(±0.175) 
2.955 

(±0.474) 
0.824 

(±0.096) 
1.349 

(±0.301) 

HiDRA (GEx, T) n 
0.864 

(±0.048) 
1.368 

(±0.253) 
0.356 

(±0.156) 
3.110 

(±0.400) 
0.863 

(±0.078) 
1.174 

(±0.260) 

Naive Predictor · 
0.871 

(±0.045) 
1.373 

(±0.292) 
NA * 

2.826 
(±0.274) 

0.855 
(±0.087) 

1.742 
(±0.280) 

MLP (GEx, T) · 
0.858 

(±0.042) 
1.420 

(±0.231) 
0.382 

(±0.160) 

2.686 
(±0.366) 

0.845 
(±0.086) 

1.294 
(±0.286) 

PathDNN (GEx, T)« 
0.857 

(±0.044) 
1.494 

(±0.292) 
0.342 

(±0.179) 
3.054 

(±0.485) 
0.851 

(±0.083) 
1.245 

(±0.273) 

CDS (GEx, T) n 
0.789 

(±0.098) 
1.603 

(±0.254) 
0.345 

(±0.156) 
2.724 

(±0.317) 
0.769 

(±0.106) 
1.508 

(±0.304) 
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Next, we assessed the improvement provided by each deep learning method compared to the 371 

corresponding naive predictor (Figure 3A). With regards to RMSE, all these models provided 372 

improvement for the majority of CCLs in the LPO framework, which is expected since the 373 

prediction task in LPO is significantly easier than LCO and LDO. However, in LDO and LCO, many 374 

models could not provide a lower RMSE compared to the naive predictor. The improvement was 375 

even less in terms of SCC (Figure 3A). However, PathDSP outperformed the naive predictor for 376 

the majority of CCLs in all data splitting setups in terms of RMSE and SCC.  377 

 378 

Next, we sought to directly compare the performance of explicit models against implicit models.  379 

For this purpose, we calculated the average performance of the two implicit (PathDSP (GEx, T), 380 

HiDRA (GEx T)) and the two explicit (PathDNN (GEx, T), CDS (GEx, T)) models for each CCL, and 381 

used a two-sided Wilcoxon signed rank test to assess if one strategy outperforms the other 382 

(Figure 3B). Based on SCC, the implicit strategy significantly outperformed the explicit strategy 383 

that utilizes a pathway layer, for all three data splitting strategies. A similar pattern was observed 384 

using RMSE, but for LDO strategy the difference was not statistically significant. These results 385 

further confirm the observation that utilizing an explicit pathway layer does not seem to perform 386 

well in prediction of drug response. Supplementary Figure S4 also shows similar scatter plots in 387 

which the cancer types of cell lines are depicted, which does not suggest a cancer type-specific 388 

pattern.  389 
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 390 
Figure 3: Performance of deep learning models in different data splitting setups. A) The 391 

improvement of each model versus naive predictor. Box plots show the distribution of 392 

performance improvement for cancer cell lines (CCLs). Each box shows the range between 25th 393 

and 75th percentiles, while whiskers show the range of the improvement (excluding outliers). See 394 

Supplementary Figure S3 in which the performance improvement of each datapoint (CCL) is also 395 

depicted. Spearman9s correlation coefficient (SCC) for naive predictor cannot be calculated in 396 

leave-drugs-out (LDO). B-C) Performance of implicit pathway models versus explicit models that 397 

use a pathway layer. Each circle represents a CCL. The color of each circle represents the density 398 

of circles in its vicinity, where yellow indicates higher density and blue indicates lower density. P-399 

values are calculated using a two-sided Wilcoxon signed-rank test. The average performance of 400 

explicit models (PathDNN and CDS) is shown on the x-axis, while the performance of implicit 401 

models (PathDSP and HiDRA) is shown on the y-axis. Panel B shows the performance in terms of 402 

SCC, while panel C shows it in terms of RMSE. See Supplementary Figure S4 in which the cancer 403 

types of CCLs are also depicted.  404 
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 405 

Morgan fingerprints of compounds were more informative than drug targets for predicting 406 

response of unseen cell lines 407 

Since three of the considered deep learning models (MLP, HiDRA, and PathDSP) can utilize both 408 

drug targets (T) and Morgan fingerprints (FP) to represent drugs, we sought to determine which 409 

compound representation is most informative for drug response prediction. As can be seen in 410 

Figure 4, in all three models, using FP to represent compounds in most cases was superior in 411 

terms of SCC in predicting unseen CCLs (LCO) or in predicting unseen CCL-drug pairs (LPO) (Two-412 

sided Wilcoxon signed-rank P<0.05, except for PathDSP LCO). On the other hand, in all three 413 

models drug targets were more informative in predicting the response of unseen drugs (LDO). 414 

However, one should note that none of the three models performed very well in the LDO data 415 

splitting setup and more informative compound representations (e.g., transcriptomic changes in 416 

response to compounds (El Khili, et al., 2022) or DL models that directly learn compound 417 

representations (Zagidullin, et al., 2021)) may be necessary for such an application to allow 418 

generalization to new compounds.   419 

 420 

It is worth noting that although PathDSP (GEx, T) and HiDRA (GEx, T) both outperformed the MLP 421 

(GEx, T) baseline in LCO and LPO evaluation, MLP (GEx, FP) baseline outperformed all other 422 

models, independent of which CCL or drug representations they used in both LCO and LPO 423 

(Supplementary Table S4). This is an important observation that shows that a simple MLP 424 

baseline, when used with appropriate inputs could achieve comparable or better results 425 

compared to various interpretable models. This observation is concordant with the observation 426 
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in (Kuenzi, et al., 2020), where the authors found that the interpretable version of their model 427 

resulted in comparable performance to the matched black-box model. Interestingly, RF (GEx, FP) 428 

provided the best performance in terms of SCC and RMSE in LCO, showing that sometimes 429 

traditional machine learning methods can achieve similar or better results compared to deep 430 

learning methods, an observation also made in (Chen and Zhang, 2022). 431 

 432 

Integrating multiple data modalities improves performance of PathDSP and CDS 433 

Among pathway-based methods that we considered in this study, two of them (CDS and PathDSP) 434 

used multiple data modalities in their original study (Supplementary Table S1). Table 4 compares 435 

the performance of these methods when data modalities chosen by the original study were used 436 

as inputs against their performance when only GEx was used (see Supplementary Table S6 for 437 

comparison of these models using two-sided Wilcoxon signed rank tests). The original PathDSP 438 

model uses GEx, somatic mutation, and CNV as CCL features, as well as Morgan fingerprints and 439 

drug targets as compound features, which for clarity we denote as PathDSP (GEx, CNV, MuT, FP, 440 

T). PathDSP (GEx, CNV, MuT, FP, T) outperformed both PathDSP (GEx, T) and PathDSP (GEx, FP) 441 

in 5 out of 6 evaluations (all except RMSE in LCO, Table 4). The original CDS model uses GEx and 442 

CNV as CCL features and drug targets as compound features, which for clarity we denote as CDS 443 

(GEx, CNV, T). The original CDS (GEx, CNV, T) model also outperforms CDS (GEx, T) in all 444 

evaluations except for LCO approach. Overall, these results suggest that using multiple data 445 

modalities can improve the performance of each model. However, it is important to remind that 446 

MLP (GEx, FP) outperformed all models (including the multi-modality versions of PathDSP and 447 

CDS) in LCO and LPO evaluations (Supplementary Table S4). 448 
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 449 

Figure 4: Performance of three models when using drug targets or Morgan fingerprints (FP) to 450 

represent drugs in terms of Spearman9s correlation coefficient (SCC). Each circle represents a 451 

cancer cell line (CCL). The color of each circle represents the density of circles in its vicinity, where 452 

yellow indicates higher density and blue indicates lower density. P-values are calculated using a 453 

two-sided Wilcoxon signed-rank test. For all models, the mean SCC when using FP was higher in 454 

leave-pairs-out (LPO) and leave-cell-lines-out (LCO), and lower in leave-drugs-out (LDO) 455 

compared to when using drug targets (T). A) Performance of MLP (GEx, T) versus MLP (GEx, FP). 456 

B) Performance of HiDRA (GEx, T) versus HiDRA (GEx, FP). C) Performance of PathDSP (GEx, T) 457 

versus PathDSP (GEx, FP). Only models that could utilize both FP and T to represent drugs were 458 

used for this analysis.  459 
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Table 4: Performance of CDS and PathDSP using KEGG collection, with different input choices. 460 

The mean and standard deviations (std) are calculated across cancer cell lines (CCLs). For each 461 

method, the input choice that performs best is bold-faced. Since CDS can only use drug targets 462 

to represent compounds, the only considered baseline for it is CDS (GEx, T). The following 463 

symbols are used in this table: « = original pathway-based model, n = model variant, ± = higher 464 

value indicates better performance, ³ = lower value indicates better performance. 465 

Supplementary Figure S5 provides visualization of these values in the form of bar plots. 466 

 467 

Model Name 

LCO  LDO LPO 

SCC ± 
(±std) 

RMSE ³ 
(±std) 

SCC ± 
(±std) 

RMSE ³ 
(±std) 

SCC ± 
(±std) 

RMSE ³ 
(±std) 

PathDSP (GEx, CNV, 
Mut, FP, T) « 

0.883 

(±0.044) 
1.308 

(±0.276) 
0.470 

(±0.130) 
2.477 

(±0.286) 
0.893 

(±0.068) 
1.020 

(±0.239) 

PathDSP (GEx, T) n 
0.882 

(±0.045) 
1.283 

(±0.230) 
0.380 

(±0.146) 
2.648 

(±0.287) 
0.876 

(±0.074) 
1.103 

(±0.256) 

PathDSP (GEx, FP) n 
0.882 

(±0.043) 
1.297 

(±0.227) 
0.139 

(±0.146) 
2.944 

(±0.327) 
0.887 

(±0.068) 
1.051 

(±0.243) 

CDS (GEx, CNV, T) « 
0.777 

(±0.049) 
1.625 

(±0.189) 
0.378 

(±0.164) 
2.606 

(±0.320) 
0.776 

(±0.083) 
1.478 

(±0.287) 

CDS (GEx, T) n 
0.789 

(±0.098) 
1.603 

(±0.254) 
0.345 

(±0.156) 
2.724 

(±0.317) 
0.769 

(±0.106) 
1.508 

(±0.304) 

 468 

Randomly generated pathways provide comparable results to biological pathway collections 469 

for prediction of drug response in unseen cell lines 470 

Next, we sought to determine whether the performance of pathway-based models can be 471 

attributed to the biological information in the pathways, or if randomly generated pathways can 472 

also result in a similar performance. For this purpose, we randomly assigned genes to pseudo-473 

pathways while matching the size of the pathways in the KEGG collection. Figure 5A shows the 474 

percentage of improvement in the form of a heat map, where we compared the original pathway-475 

based models (PathDNN, CDS, HiDRA, PathDSP) and their model variants with their 476 

corresponding random pathway baselines. Figure 5B and Supplementary Figures S6-S10 show 477 
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the distribution of SCC and RMSE of different models for each randomly generated pathway 478 

collection in different validation schemes.  479 

 480 

As can be seen in Figure 5, in the LCO and LPO evaluations, biological pathways provided almost 481 

no improvement compared to their randomly generated counterparts (percentage of 482 

improvement between -2% and 2%) for PathDSP, PathDNN, and HiDRA. CDS was the only 483 

exception for which an improvement of up to 15% was obtained using biological pathways 484 

(specifically for the original CDS (GEx, CNV, T) model). While it is difficult to conclusively 485 

determine why CDS benefits from biological pathways, our conjecture is that this is due to its 486 

unique architecture combined with the use of CNV input data. Moreover, it is important to note 487 

that despite this improvement, CDS (GEx, CNV, T) and CDS (GEx, T) had much worse performance 488 

compared to the other models (Figure 5B and Table 3).  489 

 490 

In the LDO evaluation, the two models that used Morgan fingerprints to represent compounds, 491 

PathDSP (GEx, FP) and HiDRA (GEx, FP) did not perform better with biological pathways compared 492 

to randomly generated pathways. On the other hand, the majority of models that used drug 493 

targets experienced an improvement compared to randomly generated pathways. We 494 

investigated this behavior further by inspecting the number of drug targets in KEGG pathways 495 

and the randomly generated pathways (Supplementary Figure S11). Comparing the number of 496 

targets in each KEGG pathway with the randomly generated pathways of the same size showed 497 

that in the majority of pathways (230 out of 332 pathways, approximately 70%), the number of 498 

drug targets in the KEGG pathways were larger. Since drug targets are integrated with pathway 499 
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information to obtain drug embeddings, this difference in the number of drug targets results in 500 

less informative and less distinguishable drug embeddings in the case of randomly generated 501 

pathways. For example, in PathDNN where drug targets are represented as binary features, the 502 

random pathway nodes are connected to many zero-valued drug features. Such nodes do not 503 

participate much in capturing the similarities or differences of drugs, leading to embeddings that 504 

are not as informative as their biological pathway counterparts in capturing patterns of similarity 505 

and dissimilarity of drugs. This observation is also in line with a recent study that showed better 506 

predictions could be obtained for compounds with diverse target classes (Kuenzi, et al., 2020). 507 

The issue mentioned above is particularly important in the case of LDO, since unlike LCO and LPO 508 

where all drugs in the test set have been seen by the model during training, the model must learn 509 

drug similarity/dissimilarity patterns in order to make predictions for new drugs not observed 510 

during training. This results in a deterioration of performance in random-pathway models 511 

(parituclarly in LDO) compared to their biological counterparts observed in Figure 5.  512 
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 513 

Figure 5: Performance of pathway-based models using KEGG or randomly generated pathways. 514 

1) Percentage of improvement (or deterioration) of different models when using KEGG compared 515 

to their mean performance when using randomly generated pathways. B) The histograms show 516 

the distribution of mean Spearman9s correlation coefficient (SCC) of random pathway baselines 517 

using the leave-cell-lines-out (LCO) validation scheme. Vertical dashed red lines show SCC of the 518 

model when using KEGG pathways. Twenty random pathway baselines were constructed for each 519 

model, except for PathDSP models. Since PathDSP requires 1000 permutation tests for each type 520 

of input data, only three random pathway baselines were constructed due to its extremely high 521 

computational requirement.522 
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Effect of pathway collection choice on drug response prediction 524 

We next sought to investigate which pathway collection is more suitable for the drug response 525 

prediction task. For this purpose, we compared the performance of each pathway-based model 526 

(in their original architecture and using original input features) using each of these collections 527 

(see Supplementary Tables S7 and S8 for the performance of all models and their variants using 528 

PID and Reactome). To ensure a fair comparison, we only included (drug, CCL) pairs in the test 529 

sets that were shared among all three uniform datasets. We used the LCO data splitting approach, 530 

since the overlap among the test samples of the three uniform datasets was largest in this 531 

strategy (21525 pairs versus 3277 in LDO and 851 in LPO).  532 

 533 

Table 5: Performance of pathway-based models using different pathway collections. Models with 534 

input data used in their original studies are used in this table. More specifically, the models 535 

correspond to PathDNN (GEx, T), CDS (GEx, CNV, T), HiDRA (GEx, FP), and PathDSP (GEx, CNV, 536 

MuT, FP, T). Mean and standard deviation are calculated across cell lines using the leave-cell-537 

lines-out (LCO) evaluation. Supplementary Figure S12 provides visualization of these values in the 538 

form of bar plots and Supplementary Table S9 provides comparison of these models using 539 

Wilcoxon signed rank tests.  540 

Pathway 

Collection 

PathDNN CDS HiDRA PathDSP 

SCC 
(±std) 

RMSE 
(±std) 

SCC 
(±std) 

RMSE 
(±std) 

SCC 
(±std) 

RMSE 
(±std) 

SCC 
(±std) 

RMSE 
(±std) 

Reactome 
0. 86 

(±0.04) 
1.35 

(±0.24) 
0.76 

(±0.05) 
1.63 

(±0.24) 
0.88 

(±0.05) 
1.26 

(±0.25) 
0.87 

(±0.05) 
1.29 

(±0.25) 

PID 
0.85 

(±0.05) 
1.42 

(±0.26) 
0.78 

(±0.06) 
1.63 

(±0.27) 
0.88 

(±0.05) 
1.28 

(±0.29) 
0.88 

(±0.05) 
1.29 

(±0.25) 

KEGG 
0.85 

(±0.05) 
1.49 

(±0.29) 
0.77 

(±0.05) 
1.61 

(±0.20) 
0.87 

(±0.05) 
1.29 

(±0.26) 
0.88 

(±0.05) 
1.30 

(±0.28) 

 541 

Table 5 and Supplementary Figure S12 show the mean and standard deviation of SCC and RMSE 542 

of each model using all three pathway collections. Overall, we observed that the performance of 543 
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most models did not vary drastically based on the choice of pathway collection. However, 544 

Reactome pathway provided slightly better results for the majority of the methods, being the top 545 

performing option for 3 (out of 4 methods) based on RMSE. We hypothesized that this is due to 546 

the larger number of pathway annotations included in this database for our use-case (1608 547 

pathways in Reactome compared to 332 in KEGG and 196 in PID), resulting in a more 548 

comprehensive representation of the input data.  549 

 550 

Figure 6: Performance of PathDNN (GEx, T) with downsampled Reactome pathways. The y-axis 551 

shows the mean (Avg.) and standard deviation (SD) of Spearman9s correlation coefficient (SCC) 552 

and the x-axis shows the number of pathways removed from the Reactome collection. 553 

 554 

To test whether the large number of pathways in Reactome can explain its better performance, 555 

we randomly downsampled the pathways in this collection. Figure 6 shows the SCC for PathDNN 556 

(GEx, T) using different number of pathways removed (x-axis). We focused on PathDNN (GEx, T), 557 

since it achieved its best performance when using Reactome pathway collection (compared to 558 

PID or KEGG). For each value on the x-axis, downsampling was performed ten times and the 559 

results were used to calculate the mean and standard deviation in the LCO setup (Supplementary 560 
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Table S10 provides details of each run). This figure shows that indeed, the number of pathways 561 

in the Reactome collection plays a major role in its performance: as more pathways are removed, 562 

the performance of PathDNN (GEx, T) deteriorates, with the lowest mean SCC value obtained 563 

when only 196 (equal to the number of pathways in PID) have remained. This signifies that the 564 

comprehensiveness of Reactome has enabled PathDNN to achieve better results. Interestingly, 565 

the performance of this model with PID or KEGG was much better compared to the downsampled 566 

version of Reactome with the same number of pathways (Table 5 and Figure 6). We attribute this 567 

to the increasing probability of removing an important pathway during random downsampling of 568 

Reactome, as well as the quality of the curated pathways in KEGG and PID.  569 

 570 

Cross-dataset performance of pathway-based models 571 

In addition to the analysis performed using GDSC reported earlier, we also assessed the 572 

generalizability of the deep learning models to predict response of drugs in CTRPv2 (Rees, et al., 573 

2016). For this purpose, we trained the models on GDSC using drug AUC values and assessed their 574 

performance on the prediction of AUC of drugs in CTRPv2. For consistency, all models were 575 

trained using gene expression and drug targets. Supplementary Table S11 shows the results in 576 

various data splitting and evaluation setups. Similar to our previous analyses on GDSC, in LCO and 577 

LPO setup, implicit models performed better compared to explicit models and also outperformed 578 

MLP. However, in the LDO setup MLP baseline achieved the best performance. The performance 579 

of all models on CTRPv2 deteriorated compared to their performance on GDSC, highlighting the 580 

challenging nature of this task.  581 

 582 
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Discussion 583 

Recently, several deep learning methods have been proposed to enable a higher interpretability 584 

of drug response prediction and to improve the prediction performance. In this study, we set out 585 

to investigate four methods that try to achieve these goals by incorporating pathway information 586 

under various validation schemes and answer five important questions discussed earlier. The 587 

models were tested to predict drug response for unseen (CCL, drug) pairs, unseen CCLs, and 588 

unseen drugs. We compared these methods against four types of baseline models, two of which 589 

were usually overlooked in previous studies.  590 

 591 

First, we observed that models that incorporate a dedicated explicit pathway layer and connect 592 

gene nodes in a previous layer to pathways based on pathway membership perform worse 593 

compared to models that implicitly (e.g., using attention mechanisms or pathway enrichment 594 

scores) incorporate pathway information. In fact, in many occasions explicit models9 595 

performance was inferior to a black-box simple MLP model with similar input. This suggests that 596 

direct encoding of gene-pathway membership is not an effective strategy to incorporate pathway 597 

information. The overly sparse connections between the gene and pathway layer may be the 598 

cause for the unsatisfactory performance of these methods (due to a reduction in their capacity), 599 

supported by the observation that their MLP counterparts (with fully connected layers) achieved 600 

a better performance. Another limitation of explicit models is that they can only utilize gene-level 601 

drug representations, limiting usable drug features to drug targets. Our analysis using methods 602 

that could utilize both drug targets and Morgan fingerprints showed the latter to be superior in 603 

prediction of response for unseen CCLs or unseen pairs. However, recent studies have suggested 604 
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that alternative drug representations such as transcriptomic changes in response to compounds 605 

(El Khili, et al., 2022) or DL-based fingerprints (Zagidullin, et al., 2021) may improve performance 606 

of drug response predictors.  607 

 608 

Our analyses also showed that while implicit models generally performed better in predicting 609 

unseen CCLs and unseen pairs, a comparable performance can be achieved when instead of 610 

biological pathways, randomly generated pathways are used. Moreover, in these validation 611 

setups a black-box MLP that used Morgan fingerprints for drug representation outperformed all 612 

pathway-based models. Put together, these results suggest that to make the models 613 

interpretable, these approaches inevitably make assumptions that cannot fully capture the 614 

nuances of drugs9 mechanisms of action in cancer cell lines, resulting in comparable or worse 615 

performance compared to black-box models. 616 

 617 

Our analyses also allowed us to assess the difficulty of drug response prediction in different 618 

setups. While at first glance, Table 3 may suggest that predicting response of unseen drugs are 619 

much more challenging than unseen CCLs, a more appropriate comparison can be made using 620 

Figure 3A, where the models9 performance improvement under each validation setup was 621 

compared against a naive predictor. This figure shows that predicting response of unseen pairs 622 

is much easier compared to prediction for unseen CCLs and unseen drugs. This is not surprising, 623 

since this is a transductive setup and drugs and CCLs in the test set are present in the training set 624 

(but not together). This setup is useful for imputation of missing drug response values but cannot 625 

be used to predict response to new CCLs or new drugs. On the other hand, predicting response 626 
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of unseen drugs and unseen CCLs are much more difficult and most models cannot provide a 627 

better prediction for the majority of CCLs in these two setups (Figure 3A). Moreover, the 628 

performance of all models deteriorated when used to predict the drug response in a different 629 

dataset (CTRPv2), revealing the challenging nature of this task.  630 

 631 

The contrast between conclusions one may draw from Table 3 and Figure 3A (discussed above) 632 

demonstrates the potential for obtaining inflated performance measures in the LCO framework, 633 

in which for a given CCL in the test set, the log IC50 value of different drugs are to be predicted. 634 

Supplementary Figure S13 shows the distributions of log IC50 values for each drug (across CCLs, 635 

panel A) and each CCL (across drugs, panel B) in our dataset. While these values vary across both 636 

drugs and CCLs, the identity of a drug plays a bigger role in determining its log IC50 value 637 

compared to the identity of the CCL to which it was administered (i.e., log IC50 values are more 638 

drug-specific than CCL-specific). Supplementary Figure S13C better clarifies this point by 639 

depicting the histogram of false discovery rates (FDRs) obtained from comparing the local 640 

distribution of log IC50 values per drug (purple) or per CCL (green) and the global distribution of 641 

the log IC50 values using Mann-Whitney U tests. Although for the majority of drugs (93%) drug-642 

specific log IC50 values (across all CCLs, but for a specific drug) are significantly different (FDR < 643 

0.05) from the global log IC50 values (across all drugs and CCLs), that is true for only 43% of CCLs. 644 

This implies that by simply knowing the identity of a drug, a model can rank different drugs based 645 

on their log IC50 values for an unseen CCL rather well. To overcome this issue and avoid reporting 646 

unrealistically inflated metrics, one should focus on improvement compared to a naive predictor 647 

(an approach that we adopted in this study), or should normalize log IC50 values of each drug 648 
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across CCLs to make them comparable to each other (an approach that we adopted in (Hostallero, 649 

et al., 2022)).  650 

 651 

We also compared the performance of different models using three pathway collections, PID, 652 

KEGG, and Reactome. Even though there was not a major difference in the performance of 653 

models when substituting one collection for the other, Reactome collection resulted in slightly 654 

better performance. This seems to be due to the larger number of pathways in this collection 655 

compared to the other two. However, since randomly generated pathway collections also 656 

provided comparable performance based on the models considered in this study, it is not 657 

possible to draw a conclusive determination regarding which pathway collection may be more 658 

useful for the drug response prediction task.  659 

 660 

This study focused on evaluating the effect of incorporating pathway information from the 661 

perspective of model performance and we did not evaluate these models based on their level of 662 

interpretability. A study that focuses on interpretability aspect of these models would be very 663 

insightful and complementary to the current study. For example, one can take a closer look at 664 

the feature attributions of these pathway-based models using explainers such as DeepLIFT (Deep 665 

Learning Important FeaTures) (Shrikumar, et al., 2017), CXPlain (Schwab and Karlen, 2019), and 666 

SHAP (Shapley Additive exPlanations) (Lundberg and Lee, 2017) to estimate feature importance 667 

and identify genes or other biological features that have substantial influence on the model 668 

predictions. Such analysis can be done for all pathway-based models to check if the most 669 

important/predictive sub-networks or the top contributing genes extracted from each model 670 
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have any overlap. If such overlap exists between the pathway-based models, further studies can 671 

be done by validating the findings with existing literature or conducting experiments under a lab 672 

setting. Analysis on model interpretability will complement the insights obtained from model 673 

performance evaluation and together provide a more holistic view for the effect of pathway 674 

incorporation on drug response prediction.  675 

 676 

In conclusion, we believe that while interpretability is a very crucial aim in precision medicine, 677 

new models are necessary to enable a higher degree of interpretability while at the same time 678 

improve the drug response prediction performance. In addition, it is not sufficient for these 679 

models to show a better performance compared to their black-box counterparts, and they need 680 

to also evaluate their models against randomly generated pathways (with similar pathway sizes 681 

to the original collection) and naive predictors to control for different types of biases.  682 

 683 

Data and Code Availability: Input data for the evaluated models is provided at 684 

https://zenodo.org/record/7101665#.YzS79HbMKUk. The implementation of the models are 685 

available at https://github.com/Emad-COMBINE-lab/InterpretableAI_for_DRP. 686 
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