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Abstract

Motivation: Recent advances in deep learning model development have enabled more accurate
prediction of drug response in cancer. However, the black-box nature of these models still
remains a hurdle in their adoption for precision cancer medicine. Recent efforts have focused on
making these models interpretable by incorporating signaling pathway information in model
architecture. While these models improve interpretability, it is unclear whether this higher
interpretability comes at the cost of less accurate predictions, or a prediction improvement can
also be obtained. Results: In this study, we comprehensively and systematically assessed four
state-of-the-art interpretable models developed for drug response prediction to answer this
guestion using three pathway collections. Our results showed that models that explicitly
incorporate pathway information in the form of a latent layer perform worse compared to
models that incorporate this information implicitly. Moreover, in most evaluation setups the best
performance is achieved using a simple black-box model. In addition, replacing the signaling
pathways with randomly generated pathways shows a comparable performance for the majority
of these interpretable models. Our results suggest that new interpretable models are necessary
to improve the drug response prediction performance. In addition, the current study provides
different baseline models and evaluation setups necessary for such new models to demonstrate
their superior prediction performance. Availability and Implementation: Implementation of all

methods are provided in https://github.com/Emad-COMBINE-lab/InterpretableAl for DRP.

Generated uniform datasets are in https://zenodo.org/record/7101665#.YzS79HbMKUK.

Contact: amin.emad@mcgill.ca

Supplementary Information: Online-only supplementary data is available at the journal's website.
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Introduction

Machine learning models have found various applications in medicine, including drug
repositioning (Jarada, et al., 2020), drug discovery (Vamathevan, et al., 2019), gene prioritization
(Emad, et al., 2017; Zhang, et al., 2021), and drug response prediction (Adam, et al., 2020;
Ballester, et al., 2022; Costello, et al., 2014; Huang, et al., 2020). Models for drug response
prediction (DRP) are typically trained using various data modalities such as molecular ‘omics’
profiles of samples (e.g., cancer cell lines or tumors), drug representations, and network
information (Adam, et al., 2020; Ballester, et al., 2022; Guvenc Paltun, et al., 2021). In recent
years, various models have been proposed using deep learning (DL) for drug response prediction
(Baptista, et al., 2021; Chen and Zhang, 2022; El Khili, et al., 2022; Hostallero, et al., 2022;
Hostallero, et al., 2021). In spite of their success in their perspective tasks, most DL models are
considered as “black-boxes” with inner operations that are difficult to interpret. This
characteristic of DL models is undesirable for applications in the biomedical field, as identifying
the set of biological features that contribute to the model prediction outputs and understanding
the relationship between these features are crucial when conducting further experimental
studies to validate these computational findings. To address these challenges, the concept of
interpretable artificial intelligence (Azodi, et al., 2020; Barredo Arrieta, et al., 2020; Malioutov, et
al., 2017) has been introduced to create models that can achieve both high performance and

interpretability.

In the context of DRP, model interpretability can be achieved in two ways: 1) using post-hoc

analysis to determine feature attributions and identify important features without explicitly
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incorporating prior knowledge in model architecture, and 2) integrating prior knowledge (e.g.,
signaling pathways) to add meaningful structure to the model, which can then be interpreted (for
example using post-hoc feature importance methods). While we and others have successfully
used the former strategy in DRP (Hostallero, et al., 2022; Hostallero, et al., 2021) and other
applications (Caruana, et al., 2015; Che, et al., 2016), the latter strategy can potentially allow the
interpretability to go one step further to provide systems biology insights regarding the
mechanisms involved in response to drug treatments. Incorporating prior information such as
biological pathway and subsystem information allows the model embeddings to reflect
subsystem activities and state changes, which can then be computationally or experimentally
investigated to reveal different biological mechanisms that confer specific drug sensitivities
(Kuenzi, et al., 2020). In fact, post-hoc feature importance analysis can be incorporated in these
models to identify not only important input features, but also embeddings that reflect crucial

subsystems for cellular response to a particular drug.

The models that incorporate pathway information have generated valuable insights regarding
drugs’ mechanisms of action and gene-pathway relationships, some of which have been validated
experimentally (Kuenzi, et al., 2020). However, there have been conflicting reports on their ability
in providing accurate drug response predictions (Deng, et al., 2020; Jin and Nam, 2021; Kuenzi,
et al.,, 2020; Snow, et al.,, 2021; Tang and Gottlieb, 2021; Zhang, et al., 2021). Ideally,
interpretability should not come at the expense of prediction performance, since a lower
prediction performance of interpretable models may reflect that the black-box models are better

capable at extracting patterns of the data and incorporating informative signals that are not being
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utilized by the more interpretable models. For example, consider a hypothetical model that is
completely interpretable, but generates random drug response predictions that do not reflect
the measured drug responses of samples. No matter how interpretable this model may be, the
insights obtained from it is not going to reflect the biological and chemical mechanisms involved

in drug response.

Recognizing the intertwined relationship between interpretability and performance, the majority
of recent models that incorporate pathway information for better interpretability have also
sought and reported an improved prediction performance (Deng, et al., 2020; Jin and Nam, 2021;
Snow, et al., 2021; Tang and Gottlieb, 2021; Zhang, et al., 2021). On the other hand, some studies
have reported comparable or slightly worse model performance after incorporating pathway
information (Kuenzi, et al., 2020). However, it is rather difficult to gauge the (potential)
contribution of pathway information in DRP performance from the original studies, due to
differences between data used in each study, their evaluation setup, and in many cases a lack of
appropriate baseline models to act as control. To investigate these inconsistent findings in state-
of-the-art models, we conducted a study that comprehensively evaluates the effect of pathway
incorporation on performance of DRP models and aims to answer five main questions:

1. Does the inclusion of biological pathway information improve model performance when

evaluated strictly and comprehensively?
2. Which type of pathway incorporation strategy is best capable of improving the

performance?
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88 3. Areinterpretable models better suited for prediction of response of unseen cell lines or
89 unseen drugs?

90 4. Can the performance of the interpretable models be attributed to biological information
91 present in the pathway datasets, or a similar improvement can be also achieved through
92 the use of randomly generated pathways, reflecting a technical (instead of a biological)
93 origin for the performance?

94 5. What pathway database is most helpful in improving model performance?

95

96 Toanswer the proposed questions, we performed 189 experiments evaluating 21 computational
97 models with three pathway collections (Kanehisa and Goto, 2000), (Schaefer, et al., 2009),
98 (Fabregat, et al., 2017) and under three data splitting strategies. The models included four state-
99  of-the-art interpretable DL architectures that incorporate pathway information (Deng, et al.,
100  2020; Jin and Nam, 2021; Tang and Gottlieb, 2021; Zhang, et al., 2021) (henceforth pathway-
101  based models) and four variants of them, as well as thirteen baseline models that can evaluate
102  the performance of these models from different angles (discussed in Methods). We selected
103  these interpretable models since they use similar type of information for cancer cell lines (CCLs)
104  and drugs and utilize gene-pathway membership in their architectures, allowing us to compare
105 them fairly and comprehensively. Moreover, they represent two categories of strategies to
106  incorporate pathway information in DL architectures: methods that use a pathway layer
107  connecting genes to pathway nodes (explicit models) such as PathDNN (Deng, et al., 2020) and
108  ConsDeepSignaling (CDS) (Zhang, et al., 2021), and those that do not directly use a pathway layer

109  (implicit models) such as HiDRA (Jin and Nam, 2021), and PathDSP (Tang and Gottlieb, 2021).
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110

111 Our baseline models included a traditional machine learning model (random forests), a black-box
112 fully connected neural network with a similar architecture to those of the interpretable models,
113 as well as “naive” predictors and “random-pathway” predictors, two important baselines that
114  have been largely overlooked in previous studies. The naive predictor uses the average drug
115  response of samples in the training set and reports that for each testing sample. This baseline is
116  particularly important in controlling for inflation of prediction performance due to distinct range
117  of log IC50 (natural log of the half maximal inhibitory concentration, a drug sensitivity measure)
118  of different drugs. In other words, it is possible to obtain a good approximation of drug response
119 by simply knowing the identity of the drug, resulting in artificially inflated performance metrics.
120 Each random-pathway predictor exactly matches the architecture and pipeline of an
121  interpretable model, but randomly assigns genes to pathways, while preserving the size of each
122 pathway. These baselines allow us to determine whether potential performance improvement
123  of aninterpretable model is truly due to the added value of the biological information, or instead
124  is a technical artifact of modifying the model architecture.

125

126 Our analysis showed that overall, incorporating pathway information does not lead to improved
127  prediction performance, confirming the observations reported by Kuenzi et al. (Kuenzi, et al.,
128  2020) for their proposed model. In particular, in many cases a simple black-box multilayer
129  perceptron (MLP) achieves the best performance. Moreover, even in instances that performance
130 improvement compared to an MLP or a naive predictor was observed, a similar performance was

131 achieved using randomly generated pathways. This suggests that such improvements should not
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132  be attributed to the biological information carried by pathway collections and is likely a technical
133 artifact. We also observed that the strategy used to include pathway information in the models
134  has a significant influence on the performance, and explicit models seem to perform worse
135 compared to implicit models. Finally, Reactome pathways seemed to provide slightly better
136  predictions compared to other pathway collections.

137

138  Methods

139  Data preprocessing and uniform dataset formation

140 To form uniform datasets for our analyses, we first evaluated different data modalities and
141  datasets used by each of the pathway-based models (Supplementary Table S1). In these studies,
142  gene expression (GEx), somatic mutation (Mut), and copy number variation (CNV) of samples
143  were used, while for drugs their targets (T) or their Morgan fingerprints (FP) capturing their
144  chemical structure were used. In order to maintain fairness and consistency of model
145  performance comparisons, for each choice of pathway collection we compiled a uniform dataset
146  that was used by all models evaluated in this study (three uniform datasets in total). These

147  datasets are freely available in https://zenodo.org/record/7101665#.YzS79HbMKUK.

148

149  We collected GEx, Mut, CNV, and drug sensitivity data (in the form of log IC50) of 959 cancer cell
150 lines (CCLs) from Genomics of Drug Sensitivity in Cancer (GDSC) (Yang, et al., 2013) database. We
151  obtained drug target information from STITCH (Szklarczyk, et al., 2016) and drug structural data
152  from PubChem (Kim, et al., 2021). Protein-protein interactions (PPI) that were used by one of the

153  models were obtained from the STRING database (Szklarczyk, et al., 2019) (only experimental
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154  PPIs were used). Finally, gene-pathway membership information was obtained from KEGG (Kyoto
155  Encyclopedia of Genes and Genomes) (Kanehisa and Goto, 2000), PID (Pathway Interaction
156  Database) (Schaefer, et al., 2009), and Reactome (Fabregat, et al., 2017). Supplementary Table
157  S2 outlines the data used in this study and their sources. We obtained drug response data in the
158  form of log IC50 values and removed duplicate drugs that came from different experimental
159  batches. In such cases, we kept the drug whose response was measured across a larger number
160  of CCLs. We collected drug InChl (International Chemical Identifier) strings (Heller, et al., 2015)
161  from PubChem and used the RDKit (Landrum, 2006) software to generate 512-bit Morgan
162  fingerprints for these drugs. We obtained drug target data from the STITCH database, where we
163  only kept drug targets with confidence score larger than 800 (out of 1000) and coming from the

164  “experimental” and “database” channels.

165

166  Table 1: Summary of pathway-specific uniform datasets.
Pathway Num. | Num. | Num. Unique | Num. (Drug, CCL) | Num. Num. Unique
Database CCLs Drugs | Drug Targets | Pairs Pathways | Genes
KEGG 959 162 446 118,896 332 5511
PID 959 153 321 112,781 196 2078
Reactome | 959 177 493 128,324 1608 7831

167

168 We performed log2(FPKM+1) normalization on the GEx data and removed genes whose
169  expression showed low variability across different CCLs (standard deviation < 0.1). We also
170  removed genes for which there were no somatic mutations, CNV, pathway information, drug
171  target data, and STRING Experimental PPl information. This formed our common gene set (Figure
172 1A and 1B). In parallel, drug targets that were not present in the common gene set above or in

173  the PPl network were excluded. Only drugs that had both log IC50 measurements and drug
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targets were kept in the final uniform datasets (Figure 1C and 1D). The PPI network was involved
in the data preprocessing step as PathDSP (Tang and Gottlieb, 2021) incorporated it to perform
pathway enrichment analysis. Since we needed the uniform datasets to be usable by all models,

we included this step in the pre-processing procedure.

A Drug Response B Expression
\ Number of Common Genes
\\\\ Expression Numgzrl_sz:s';mo" Somatic Mutation = 5511 (KEGG)
\\\ (©) 2078 (PID)
Somatic Mutation - CNV 7831 (Reactome)

CCL- % Pathway Data
Oriented

Data
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D 1
Filtered Drug Number of Common Drugs
= 162 (KEGG
Only keep targets found ReSponss 153 ((PlD) )
@ in STRING Experimental

177 (Reactome)

- and common gene ~
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Figure 1: Construction of pathway-specific uniform datasets and data splitting approaches. (A)
cancer cell lines (CCLs) with available data for drug response, gene expression, somatic mutation,
and copy number variation (CNV) were selected. (B) Genes shared between different sources of
data were identified. Genes that were not present in any pathway were removed. (C) Drug target
genes that were not found in the common gene set obtained from Step B and the STRING
Experimental protein-protein interaction (PPI) network were removed. (D) Drugs and small
molecules that had measured log IC50 values and drug target information were selected. E)
Model input data was split into five folds, with the training, validation, and test set ratio of 3: 1:
1. Folds in the leave-pairs-out (LPO) validation scheme are formed by randomly selecting
mutually exclusive (CCL, drug) pairs, whereas in leave-cell-lines-out (LCO) and leave-drugs-out
(LDO) validation schemes, mutually exclusive cell lines and drugs are randomly selected,
respectively.
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Figure 1 illustrates the process of constructing the pathway-specific uniform datasets. Since each
source of pathway collection contained different number of genes, the final dataset for each
collection was slightly different. Table 1 summarizes the number of CCLs, drugs, genes, and
pathways for each pathway collection in the uniform dataset, while Supplementary Table S3

provides details about CCLs and drugs.

Model evaluation and data split

We split our data randomly into five disjoint folds, where the training, validation, and test ratio
was 3: 1: 1. The validation set was used for hyperparameter tuning and the test set was used for
final model evaluation. The details of hyperparameter tuning, model training, and final
architectures are provided in Supplementary File S2. We adopted three data splitting methods
(validation schemes) to generate these folds: leave-pairs-out (LPO), leave-cell-lines-out (LCO),
and leave-drugs-out (LDO), as depicted in Figure 1E. These three strategists were adopted to
comprehensively assess the models for different drug response prediction tasks (for unseen (CCL,
drug) pairs, unseen CCLs, and unseen drugs, respectively), and to determine in which one of these
tasks (if any) pathway incorporation improves model prediction performance. To ensure fairness,

same folds were used for all models.

We evaluated the performance of each model using two main performance measures:
Spearman’s correlation coefficient (SCC) and root mean squared error (RMSE), but various other
measures are also reported in supplementary tables. First, for a fixed CCL, the predicted values

across all drugs of the test set were compared with the measured log IC50 values to calculate a
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CCL-specific performance measure (SCC or RMSE). Then, the mean and standard deviation of the

performance measure was calculated across all CCLs.

Overview of interpretable models and their variants

To study the effect of incorporating pathway information on drug response prediction, we
selected four pathway-based state-of-the-art models: PathDNN (Deng, et al., 2020),
ConsDeepSignaling (CDS) (Zhang, et al., 2021), HiDRA (Jin and Nam, 2021), and PathDSP (Tang
and Gottlieb, 2021). We selected these models since 1) they use similar types of information for
CCLs and drugs and utilize gene-pathway membership in their architectures (instead of other
types of prior information such as hierarchical relationships of gene ontologies), 2) they all
showed improved drug response prediction performance in their original studies compared to
their black-box counterparts, and 3) they represent two important categories of implicit and
explicit models (as discussed earlier). While other important models also exist (e.g., DrugCell
(Kuenzi, et al., 2020)), they did not satisfy the conditions above. For example, DrugCell (unlike
the models above) uses the hierarchical structure of gene ontologies and pathways, making it
rather difficult to compare against the models above in a fair manner, since it takes advantage of
more detailed information. Moreover, the original study of DrugCell showed that while including
prior information improved interpretability of their model, it did not improve the performance
of drug response prediction compared to its black-box counterpart. Due to the reasons above,

we decided to exclude it from this analysis.
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Figure 2: An overview of pathway-based models considered in this study. A) PathDNN uses cancer
cell line (CCL) gene expression profiles as CCL features and drug target information as drug
features. The input features (genes) are connected to the pathway nodes through gene-pathway
membership. The pathway layer is followed by a set of fully connected layers. B)
ConsDeepSignaling (CDS) takes gene expression profile and copy number variation as CCL
features and drug target information as drug features. Each node in the gene layer represents a
gene and is connected to its corresponding input features in the input layer (through connection
matrix Mxg). Connections between the gene and pathway layer are defined by gene-pathway
membership (binary connection matrix Mgp). A set of fully connected layers follow the pathway
layer. C) HiDRA has a hierarchical network architecture. It uses gene expression profiles as CCL
features. Drug target information and structural data can be both used as drug features. The
pathway information is incorporated using an attention module, where a small neural network
is dedicated to each pathway. Pathway activation scores are calculated by the gene-level network
and are concatenated with drug feature embeddings learned by the drug encoding network to
generate the final input to the drug response prediction network. D) In PathDSP, drug target,
gene expression, somatic mutation, and copy number variation data are processed using
pathway enrichment analysis to from matrices of enrichment scores, which act as input features
to the model, which is a set of fully connected layers.
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Models with an explicit pathway layer (e.g., PathDNN and CDS) typically define a gene and a
pathway layer with connections between these layers reflecting gene-pathway membership
(Figure 2A-2B). The input layer of this category of models contains drug and cell line features at
gene level. As a result, only drug gene targets can be used with these models and Morgan
Fingerprint (and other structural data) is not usable without altering the model architecture. The
pathway layer is then connected to a group of fully connected layers to predict drug response for
a given sample. The inclusion of the pathway layer allows identification of important pathways

for a particular drug treatment or cancer type through post-hoc feature importance analysis.

Models that implicitly incorporate pathway information take various forms. For example, HiDRA
(Jin and Nam, 2021) uses a gene-level and pathway-level attention module to calculate pathway
importance scores, where a small-scale neural network is dedicated to each pathway by only
using features associated with the member genes of that specific pathway as inputs (Figure 2C).
Onthe other hand, PathDSP uses a classic fully connected feedforward architecture, but the input
features are pathway-enrichment scores rather than gene-level features (Figure 2D). See
Supplementary Files S1 and S2 for details regarding models’ architectures and their training

procedure.

Each of the pathway-based models used different data modalities in their original study
(Supplementary Table S1). We tested all models using the three pathway collections discussed
earlier. For implicit models, we tried both drug targets (T) and Morgan fingerprints (FP); however,

for explicit models, only drug targets could be used due to their requirements that the drug
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features must be at gene level. For CCL features, we used all data modalities used by the original

study. However, since gene expression data was used by all models (alone or in combination with

other omics data, Supplementary Table S1), we also implemented model variants that only

utilized GEx data. This ensured that one architecture is not given an unfair advantage due to

access to a larger number of modalities. Table 2 provides a summary of all variations of the

models considered in this study.

Table 2: List of evaluated models. A = universal baseline, ¢ = model-specific random pathway
baseline, * = original pathway-based model, B = model variant, GEx = gene expression, CNV =
copy number variation, Mut = somatic mutation, T = drug target data, FP = Morgan fingerprint

(drug structural data)

Model Name Model Variant Name Cell Line Features | Drug
Features
Five-Layer MLP MLP (GEx, FP) A GEx FP
MLP (GEx, T) A GEx T
Naive Predictor Naive Predictor A N/A N/A
Random Forests RF (GEx, FP) A GEx FP
RF (GEx, T) A GEx T
PathDNN (Deng, et al., 2020) | PathDNN (GEx, T) * GEx T
PathDNN_rand (GEx, T) ¢ GEXx T
CDS (Zhang, et al., 2021) CDS (GEx, CNV, T)%* GEx, CNV T
CDS_rand (GEx, CNV, T) ¢ GEx, CNV T
CDS (GEx, T) GEx T
CDS_rand (GEx, T) ¢ GEx T
HiDRA (Jin and Nam, 2021) | HiDRA (GEx, FP) * GEx FP
HIiDRA_rand (GEx, FP) ¢ GEx FP
HiDRA (GEx, T) B GEx T
HiDRA_rand (GEx, T) ¢ GEXx T
PathDSP (Tang and Gottlieb, | PathDSP (GEx, CNV, MuT, FP, T) % GEx, CNV, Mut FP, T
2021) PathDSP_rand (GEx, CNV, MuT, FP, T) ¢ | GEx, CNV, Mut FP, T
PathDSP (GEx, FP) B GEx FP
PathDSP_rand (GEx, FP) ¢ GEXx FP
PathDSP (GEx, T) B GEx T
PathDSP_rand (GEx, T) ¢ GEXx T
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Baseline Models

We used four types of baseline models to benchmark the pathway-based models and their
variants. First, we used a multilayer perceptron (MLP) with five layers as a universal baseline for
all models. This MLP represents a black-box feedforward neural network that is often used for
benchmarking of other deep learning architectures (including the pathway-based models). Since
all pathway-based models had a variant trained with GEx data, along with drug targets (or
Morgan fingerprints), we trained two MLP models, MLP (GEx, FP) and MLP (GEx, T), representing

the data input options above (Table 2).

The second type of baseline used in our study was a predictor that simply calculates the average
drug sensitivity measure of samples in the training set and reports their average for all samples
in the test set (henceforth referred as naive predictor). More specifically, the naive predictor does
not use any CCL or drug features, but instead simply relies on the identity of the CCL or the drug
(depending on the data splitting strategy). As shown in Supplementary Figure S1, in the LCO setup
and for a (CCL, drug) pair in the test set, the naive predictor reports the average response of all
CCLsin the training set to that drug. As a result, all CCLs in the test set will have the same response
value for a drug (i.e., only the drug identity determines the response). On the other hand, in the
LDO setup and for a (CCL, drug) pair, the average response of the CCL to all drugs in the training
set is reported as the prediction (i.e., only the identity of the CCL determines the response). In
the case of LPO, the averaging is done across all drugs and all CCLs corresponding to a (CCL, drug)

in the test set. The naive predictors reveal the performance of a model that does not learn the
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relationship between the input features and output drug response and can control for inflation

in the performance metrics.

The third type of baselines correspond to model-specific baselines that have the exact same
architecture of a pathway-based model (with all their input data), but instead of gene-pathway
membership information from pathway databases use randomly generated pathways. This type
of baseline model (shown with a suffix of “_rand” in Table 2) allows us to determine if the
(potential) performance improvement of a pathway-based model is due to the added value of
biological information, or instead is a technical artifact. Let a pathway collection (e.g., KEGG)
contain m pathways P;, i = 1, 2, ..., m, each with N; genes. Then, arandomly generated pathway
collection was produced by randomly assigning N; genes to pathway P;. We evaluated the
performance of each pathway-based model with multiple randomly generated pathway
collections to determine the mean, standard deviation and histogram of the performance metrics

of these random pathway baselines.

Finally, the fourth type of baselines correspond to traditional machine learning algorithms,
namely random forests (RF). We trained two variations of RF, one with (GEx, T) as input and one

with (GEx, FP) as input.

Cross-dataset analysis by predicting drug responses in CTRPv2 using models trained on GDSC
In addition to the analysis performed using GDSC, we also assessed the generalizability of the

deep learning models by performing a cross-dataset analysis. Following the guidelines in a
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previous study (Sharifi-Noghabi, et al., 2021), we trained the models using area under the dose
response curves (AUC) from GDSC dataset to predict AUC of drugs in CTRPv2 (Rees, et al., 2016).
For drugs in CTRPv2 dataset, we used their gene expression profile from the cancer cell line
encyclopedia (CCLE) (Barretina, et al., 2012). All models were trained using Reactome pathway
collection, gene expression and drug targets. Since in this dataset, the gene expressions were
guantified using transcript per million (TPM), we also used TPM values for the training set (GDSC).
Only common genes between GDSC and CCLE were included. The rest of the preprocessing steps

were as described earlier in the manuscript.

Results

Models that incorporate KEGG pathway information implicitly outperformed explicit models
Since KEGG was the most commonly used pathway collection in the original studies
(Supplementary Table S1), we used the uniform dataset that we formed for this collection to
comprehensively evaluate all models. We first focused on GEx data to represent CCLs since all
models used GEx modality in their original studies. We also used drug targets to represent
compounds since all models could take advantage of this data modality (Morgan fingerprints are
not compatible with PathDNN and CDS). Table 3 shows SCC and RMSE values for LCO, LDO, and
LPO data splitting strategies (see Supplementary Table S4 for other performance measures and

Supplementary Table S5 for statistical tests comparing these models).

PathDSP (GEx, T) outperformed all models in LCO and LPO data splitting schemes, while its

performance was close to MLP (GEx, T) baseline in the LDO scheme. Compared to the naive
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predictor, PathDSP (GEx, T) had a better performance in all evaluations, where the highest
difference was observed under the LPO validation scheme with 37% lower average RMSE. Overall,
the implicit models (HIiDRA and PathDSP) outperformed the universal baselines (MLP and naive
predictor) for the majority of evaluations, while the explicit models (PathDNN and CDS) did not

outperform them in a considerable number of evaluations (Table 3 and Supplementary Table S4).

Table 3: Performance of pathway-based models using KEGG collection, with gene expression
(GEx) and drug targets (T) as inputs. The mean and standard deviations (std) are calculated across
cancer cell lines (CCLs). The best performing model is bold-faced, while worst performing model
is underlined. Models are ranked by their leave-cell-lines-out (LCO) RMSE. The following symbols
are used in this table: A = universal baseline, * = original pathway-based model, B = model
variant, I = higher value indicates better performance, . = lower value indicates better
performance. * The leave-drugs-out (LDO) Spearman’s correlation coefficient (SCC) cannot be
calculated for the naive predictor since in this case it outputs the same value for all CCLs. For
performance of these models based on Pearson correlation coefficient, R-squared, mean squared
error (MSE), and concordance index, see Supplementary Table S4. Supplementary Figure S2
provides visualization of these values in the form of bar plots.

LCO LDO LPO
Model Name SCC | RMSEL | SCCA | RMSEL | SCCA | RMSE L
(4std) (+std) (4std) (+std) (4std) (+std)
0.882 1.283 0.380 2.648 0.876 1.103
|
PathDSP (GEx, T) (£0.045) | (£0.230) | (+0.146) | (£0.287) | (£0.074) | (%0.256)
RF (GEX.T) & 0.867 1.329 0.342 2.955 0.824 1.349
‘ (+0.042) | (#0.205) | (#¥0.175) | (+0.474) | (+0.096) | (+0.301)
0.864 1.368 0.356 3.110 0.863 1.174
. i 3.110
HIDRA (GEx, T) (+0.048) | (+0.253) | (¥0.156) | (+0.400) | (+0.078) | (+0.260)
0.871 1.373 2.826 0.855 1.742
. . A
Naive Predictor & |\ 045) | (x0.292) | N (£0.274) | (£0.087) | (+0.280)
0.858 1.420 0.382 2.686 0.845 1.294
MLP(GEXT)A | (10.042) | (£0.231) | (0.160) | (£0.366) | (£0.086) | (£0.286)
0.857 1.494 0.342 3.054 0.851 1.245
* —_— =
PathONN (GEX, T)X 1 16 044) | (20.292) | (£0.179) | (£0.485) | (£0.083) | (£0.273)
0.789 1.603 0.345 2.724 0.769 1.508
. .
CDS (GEx, T) (£0.098) | (+0.254) | (£0.156) | (£0.317) | (+0.106) | (0.304)
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Next, we assessed the improvement provided by each deep learning method compared to the
corresponding naive predictor (Figure 3A). With regards to RMSE, all these models provided
improvement for the majority of CCLs in the LPO framework, which is expected since the
prediction task in LPO is significantly easier than LCO and LDO. However, in LDO and LCO, many
models could not provide a lower RMSE compared to the naive predictor. The improvement was
even less in terms of SCC (Figure 3A). However, PathDSP outperformed the naive predictor for

the majority of CCLs in all data splitting setups in terms of RMSE and SCC.

Next, we sought to directly compare the performance of explicit models against implicit models.
For this purpose, we calculated the average performance of the two implicit (PathDSP (GEx, T),
HiDRA (GEx T)) and the two explicit (PathDNN (GEx, T), CDS (GEx, T)) models for each CCL, and
used a two-sided Wilcoxon signed rank test to assess if one strategy outperforms the other
(Figure 3B). Based on SCC, the implicit strategy significantly outperformed the explicit strategy
that utilizes a pathway layer, for all three data splitting strategies. A similar pattern was observed
using RMSE, but for LDO strategy the difference was not statistically significant. These results
further confirm the observation that utilizing an explicit pathway layer does not seem to perform
well in prediction of drug response. Supplementary Figure S4 also shows similar scatter plots in
which the cancer types of cell lines are depicted, which does not suggest a cancer type-specific

pattern.
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Figure 3: Performance of deep learning models in different data splitting setups. A) The
improvement of each model versus naive predictor. Box plots show the distribution of
performance improvement for cancer cell lines (CCLs). Each box shows the range between 25
and 75™ percentiles, while whiskers show the range of the improvement (excluding outliers). See
Supplementary Figure S3 in which the performance improvement of each datapoint (CCL) is also
depicted. Spearman’s correlation coefficient (SCC) for naive predictor cannot be calculated in
leave-drugs-out (LDO). B-C) Performance of implicit pathway models versus explicit models that
use a pathway layer. Each circle represents a CCL. The color of each circle represents the density
of circles in its vicinity, where yellow indicates higher density and blue indicates lower density. P-
values are calculated using a two-sided Wilcoxon signed-rank test. The average performance of
explicit models (PathDNN and CDS) is shown on the x-axis, while the performance of implicit
models (PathDSP and HiDRA) is shown on the y-axis. Panel B shows the performance in terms of
SCC, while panel C shows it in terms of RMSE. See Supplementary Figure S4 in which the cancer
types of CCLs are also depicted.
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Morgan fingerprints of compounds were more informative than drug targets for predicting
response of unseen cell lines

Since three of the considered deep learning models (MLP, HiDRA, and PathDSP) can utilize both
drug targets (T) and Morgan fingerprints (FP) to represent drugs, we sought to determine which
compound representation is most informative for drug response prediction. As can be seen in
Figure 4, in all three models, using FP to represent compounds in most cases was superior in
terms of SCC in predicting unseen CCLs (LCO) or in predicting unseen CCL-drug pairs (LPO) (Two-
sided Wilcoxon signed-rank P<0.05, except for PathDSP LCO). On the other hand, in all three
models drug targets were more informative in predicting the response of unseen drugs (LDO).
However, one should note that none of the three models performed very well in the LDO data
splitting setup and more informative compound representations (e.g., transcriptomic changes in
response to compounds (El Khili, et al., 2022) or DL models that directly learn compound
representations (Zagidullin, et al.,, 2021)) may be necessary for such an application to allow

generalization to new compounds.

It is worth noting that although PathDSP (GEx, T) and HiDRA (GEx, T) both outperformed the MLP
(GEx, T) baseline in LCO and LPO evaluation, MLP (GEx, FP) baseline outperformed all other
models, independent of which CCL or drug representations they used in both LCO and LPO
(Supplementary Table S4). This is an important observation that shows that a simple MLP
baseline, when used with appropriate inputs could achieve comparable or better results

compared to various interpretable models. This observation is concordant with the observation
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in (Kuenzi, et al., 2020), where the authors found that the interpretable version of their model
resulted in comparable performance to the matched black-box model. Interestingly, RF (GEx, FP)
provided the best performance in terms of SCC and RMSE in LCO, showing that sometimes
traditional machine learning methods can achieve similar or better results compared to deep

learning methods, an observation also made in (Chen and Zhang, 2022).

Integrating multiple data modalities improves performance of PathDSP and CDS

Among pathway-based methods that we considered in this study, two of them (CDS and PathDSP)
used multiple data modalities in their original study (Supplementary Table S1). Table 4 compares
the performance of these methods when data modalities chosen by the original study were used
as inputs against their performance when only GEx was used (see Supplementary Table S6 for
comparison of these models using two-sided Wilcoxon signed rank tests). The original PathDSP
model uses GEx, somatic mutation, and CNV as CCL features, as well as Morgan fingerprints and
drug targets as compound features, which for clarity we denote as PathDSP (GEx, CNV, MuT, FP,
T). PathDSP (GEx, CNV, MuT, FP, T) outperformed both PathDSP (GEx, T) and PathDSP (GEx, FP)
in 5 out of 6 evaluations (all except RMSE in LCO, Table 4). The original CDS model uses GEx and
CNV as CCL features and drug targets as compound features, which for clarity we denote as CDS
(GEx, CNV, T). The original CDS (GEx, CNV, T) model also outperforms CDS (GEx, T) in all
evaluations except for LCO approach. Overall, these results suggest that using multiple data
modalities can improve the performance of each model. However, it is important to remind that
MLP (GEx, FP) outperformed all models (including the multi-modality versions of PathDSP and

CDS) in LCO and LPO evaluations (Supplementary Table S4).
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Figure 4: Performance of three models when using drug targets or Morgan fingerprints (FP) to
represent drugs in terms of Spearman’s correlation coefficient (SCC). Each circle represents a
cancer cell line (CCL). The color of each circle represents the density of circles in its vicinity, where
yellow indicates higher density and blue indicates lower density. P-values are calculated using a
two-sided Wilcoxon signed-rank test. For all models, the mean SCC when using FP was higher in
leave-pairs-out (LPO) and leave-cell-lines-out (LCO), and lower in leave-drugs-out (LDO)
compared to when using drug targets (T). A) Performance of MLP (GEx, T) versus MLP (GEx, FP).
B) Performance of HiDRA (GEx, T) versus HiDRA (GEx, FP). C) Performance of PathDSP (GEx, T)
versus PathDSP (GEx, FP). Only models that could utilize both FP and T to represent drugs were
used for this analysis.
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Table 4: Performance of CDS and PathDSP using KEGG collection, with different input choices.
The mean and standard deviations (std) are calculated across cancer cell lines (CCLs). For each
method, the input choice that performs best is bold-faced. Since CDS can only use drug targets
to represent compounds, the only considered baseline for it is CDS (GEx, T). The following
symbols are used in this table: * = original pathway-based model, ® = model variant, I = higher

value indicates better performance, |
Supplementary Figure S5 provides visualization of these values in the form of bar plots.

lower value indicates better performance.

Lco LDO LPO
Model Name SCCPD | RMSEL | SCCAP | RMSEL | ScCt | RMSE
(#std) | (sstd) | (std) | (#std) | (#std) | (2std)
PathDSP (GEx, CNV, | 0.883 | 1308 | 0470 | 2.477 | 0.893 | 1.020
Mut, FP,T) * | (£0.044) | (£0.276) | (+0.130) | (£0.286) | (£0.068) | (+0.239)
0832 | 1.283 | 0380 | 2648 | 0876 | 1.103
|
PathDSP (GEX, T) B | 15 045) | (£0.230) | (£0.146) | (£0.287) | (£0.074) | (£0.256)
0832 | 1297 | 0139 | 2944 | 0887 | 1.051
|
PathDSP (GEx, FP) B |1 5.043) | (20.227) | (£0.146) | (£0.327) | (£0.068) | (£0.243)
0777 | 1625 | 0378 | 2606 | 0776 | 1.478
*
CDS (GBx, CNV, T) * |10 049) | (£0.189) | (£0.164) | (20.320) | (£0.083) | (£0.287)
0789 | 1.603 | 0345 | 2724 | 0769 | 1.508
|
CDS (GEx, T) (£0.098) | (+0.254) | (£0.156) | (0.317) | (+0.106) | (0.304)

Randomly generated pathways provide comparable results to biological pathway collections
for prediction of drug response in unseen cell lines

Next, we sought to determine whether the performance of pathway-based models can be
attributed to the biological information in the pathways, or if randomly generated pathways can
also result in a similar performance. For this purpose, we randomly assigned genes to pseudo-
pathways while matching the size of the pathways in the KEGG collection. Figure 5A shows the
percentage of improvement in the form of a heat map, where we compared the original pathway-
based models (PathDNN, CDS, HiDRA, PathDSP) and their model variants with their

corresponding random pathway baselines. Figure 5B and Supplementary Figures S6-S10 show
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the distribution of SCC and RMSE of different models for each randomly generated pathway

collection in different validation schemes.

As can be seen in Figure 5, in the LCO and LPO evaluations, biological pathways provided almost
no improvement compared to their randomly generated counterparts (percentage of
improvement between -2% and 2%) for PathDSP, PathDNN, and HiDRA. CDS was the only
exception for which an improvement of up to 15% was obtained using biological pathways
(specifically for the original CDS (GEx, CNV, T) model). While it is difficult to conclusively
determine why CDS benefits from biological pathways, our conjecture is that this is due to its
unique architecture combined with the use of CNV input data. Moreover, it is important to note
that despite this improvement, CDS (GEx, CNV, T) and CDS (GEx, T) had much worse performance

compared to the other models (Figure 5B and Table 3).

In the LDO evaluation, the two models that used Morgan fingerprints to represent compounds,
PathDSP (GEx, FP) and HiDRA (GEx, FP) did not perform better with biological pathways compared
to randomly generated pathways. On the other hand, the majority of models that used drug
targets experienced an improvement compared to randomly generated pathways. We
investigated this behavior further by inspecting the number of drug targets in KEGG pathways
and the randomly generated pathways (Supplementary Figure S11). Comparing the number of
targets in each KEGG pathway with the randomly generated pathways of the same size showed
that in the majority of pathways (230 out of 332 pathways, approximately 70%), the number of

drug targets in the KEGG pathways were larger. Since drug targets are integrated with pathway
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information to obtain drug embeddings, this difference in the number of drug targets results in
less informative and less distinguishable drug embeddings in the case of randomly generated
pathways. For example, in PathDNN where drug targets are represented as binary features, the
random pathway nodes are connected to many zero-valued drug features. Such nodes do not
participate much in capturing the similarities or differences of drugs, leading to embeddings that
are not as informative as their biological pathway counterparts in capturing patterns of similarity
and dissimilarity of drugs. This observation is also in line with a recent study that showed better
predictions could be obtained for compounds with diverse target classes (Kuenzi, et al., 2020).
The issue mentioned above is particularly important in the case of LDO, since unlike LCO and LPO
where all drugs in the test set have been seen by the model during training, the model must learn
drug similarity/dissimilarity patterns in order to make predictions for new drugs not observed
during training. This results in a deterioration of performance in random-pathway models

(parituclarly in LDO) compared to their biological counterparts observed in Figure 5.
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Figure 5: Performance of pathway-based models using KEGG or randomly generated pathways.
1) Percentage of improvement (or deterioration) of different models when using KEGG compared
to their mean performance when using randomly generated pathways. B) The histograms show
the distribution of mean Spearman’s correlation coefficient (SCC) of random pathway baselines
using the leave-cell-lines-out (LCO) validation scheme. Vertical dashed red lines show SCC of the
model when using KEGG pathways. Twenty random pathway baselines were constructed for each
model, except for PathDSP models. Since PathDSP requires 1000 permutation tests for each type
of input data, only three random pathway baselines were constructed due to its extremely high
computational requirement.
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Effect of pathway collection choice on drug response prediction

We next sought to investigate which pathway collection is more suitable for the drug response
prediction task. For this purpose, we compared the performance of each pathway-based model
(in their original architecture and using original input features) using each of these collections
(see Supplementary Tables S7 and S8 for the performance of all models and their variants using
PID and Reactome). To ensure a fair comparison, we only included (drug, CCL) pairs in the test
sets that were shared among all three uniform datasets. We used the LCO data splitting approach,
since the overlap among the test samples of the three uniform datasets was largest in this

strategy (21525 pairs versus 3277 in LDO and 851 in LPO).

Table 5: Performance of pathway-based models using different pathway collections. Models with
input data used in their original studies are used in this table. More specifically, the models
correspond to PathDNN (GEx, T), CDS (GEx, CNV, T), HiDRA (GEx, FP), and PathDSP (GEx, CNV,
MuT, FP, T). Mean and standard deviation are calculated across cell lines using the leave-cell-
lines-out (LCO) evaluation. Supplementary Figure S12 provides visualization of these values in the
form of bar plots and Supplementary Table S9 provides comparison of these models using
Wilcoxon signed rank tests.

PathDNN CDS HiDRA PathDSP
Pathway
Collection SCC RMSE SCC RMSE SCC RMSE SCC RMSE
(%std) (std) (xstd) (std) (%std) (%std) (%std) (xstd)
0. 86 1.35 0.76 1.63 0.88 1.26 0.87 1.29
Reactome
(x0.04) | (%0.24) | (+0.05) | (+0.24) | (+0.05) (x0.25) | (+0.05) | (+0.25)
PID 0.85 1.42 0.78 1.63 0.88 1.28 0.88 1.29
(+x0.05) | (+0.26) | (+0.06) | (x0.27) | (+0.05) (x0.29) | (+0.05) | (+0.25)
KEGG 0.85 1.49 0.77 1.61 0.87 1.29 0.88 1.30
(x0.05) | (%0.29) | (+0.05) | (+x0.20) | (+0.05) (+x0.26) | (+0.05) | (+0.28)

Table 5 and Supplementary Figure S12 show the mean and standard deviation of SCC and RMSE

of each model using all three pathway collections. Overall, we observed that the performance of
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most models did not vary drastically based on the choice of pathway collection. However,
Reactome pathway provided slightly better results for the majority of the methods, being the top
performing option for 3 (out of 4 methods) based on RMSE. We hypothesized that this is due to
the larger number of pathway annotations included in this database for our use-case (1608
pathways in Reactome compared to 332 in KEGG and 196 in PID), resulting in a more

comprehensive representation of the input data.
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Figure 6: Performance of PathDNN (GEx, T) with downsampled Reactome pathways. The y-axis
shows the mean (Avg.) and standard deviation (SD) of Spearman’s correlation coefficient (SCC)
and the x-axis shows the number of pathways removed from the Reactome collection.

To test whether the large number of pathways in Reactome can explain its better performance,
we randomly downsampled the pathways in this collection. Figure 6 shows the SCC for PathDNN
(GEx, T) using different number of pathways removed (x-axis). We focused on PathDNN (GEx, T),
since it achieved its best performance when using Reactome pathway collection (compared to

PID or KEGG). For each value on the x-axis, downsampling was performed ten times and the

results were used to calculate the mean and standard deviation in the LCO setup (Supplementary
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Table S10 provides details of each run). This figure shows that indeed, the number of pathways
in the Reactome collection plays a major role in its performance: as more pathways are removed,
the performance of PathDNN (GEx, T) deteriorates, with the lowest mean SCC value obtained
when only 196 (equal to the number of pathways in PID) have remained. This signifies that the
comprehensiveness of Reactome has enabled PathDNN to achieve better results. Interestingly,
the performance of this model with PID or KEGG was much better compared to the downsampled
version of Reactome with the same number of pathways (Table 5 and Figure 6). We attribute this
to the increasing probability of removing an important pathway during random downsampling of

Reactome, as well as the quality of the curated pathways in KEGG and PID.

Cross-dataset performance of pathway-based models

In addition to the analysis performed using GDSC reported earlier, we also assessed the
generalizability of the deep learning models to predict response of drugs in CTRPv2 (Rees, et al.,
2016). For this purpose, we trained the models on GDSC using drug AUC values and assessed their
performance on the prediction of AUC of drugs in CTRPv2. For consistency, all models were
trained using gene expression and drug targets. Supplementary Table S11 shows the results in
various data splitting and evaluation setups. Similar to our previous analyses on GDSC, in LCO and
LPO setup, implicit models performed better compared to explicit models and also outperformed
MLP. However, in the LDO setup MLP baseline achieved the best performance. The performance
of all models on CTRPv2 deteriorated compared to their performance on GDSC, highlighting the

challenging nature of this task.
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Discussion

Recently, several deep learning methods have been proposed to enable a higher interpretability
of drug response prediction and to improve the prediction performance. In this study, we set out
to investigate four methods that try to achieve these goals by incorporating pathway information
under various validation schemes and answer five important questions discussed earlier. The
models were tested to predict drug response for unseen (CCL, drug) pairs, unseen CCLs, and
unseen drugs. We compared these methods against four types of baseline models, two of which

were usually overlooked in previous studies.

First, we observed that models that incorporate a dedicated explicit pathway layer and connect
gene nodes in a previous layer to pathways based on pathway membership perform worse
compared to models that implicitly (e.g., using attention mechanisms or pathway enrichment
scores) incorporate pathway information. In fact, in many occasions explicit models’
performance was inferior to a black-box simple MLP model with similar input. This suggests that
direct encoding of gene-pathway membership is not an effective strategy to incorporate pathway
information. The overly sparse connections between the gene and pathway layer may be the
cause for the unsatisfactory performance of these methods (due to a reduction in their capacity),
supported by the observation that their MLP counterparts (with fully connected layers) achieved
a better performance. Another limitation of explicit models is that they can only utilize gene-level
drug representations, limiting usable drug features to drug targets. Our analysis using methods
that could utilize both drug targets and Morgan fingerprints showed the latter to be superior in

prediction of response for unseen CCLs or unseen pairs. However, recent studies have suggested
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that alternative drug representations such as transcriptomic changes in response to compounds
(EI' Khili, et al., 2022) or DL-based fingerprints (Zagidullin, et al., 2021) may improve performance

of drug response predictors.

Our analyses also showed that while implicit models generally performed better in predicting
unseen CCLs and unseen pairs, a comparable performance can be achieved when instead of
biological pathways, randomly generated pathways are used. Moreover, in these validation
setups a black-box MLP that used Morgan fingerprints for drug representation outperformed all
pathway-based models. Put together, these results suggest that to make the models
interpretable, these approaches inevitably make assumptions that cannot fully capture the
nuances of drugs’ mechanisms of action in cancer cell lines, resulting in comparable or worse

performance compared to black-box models.

Our analyses also allowed us to assess the difficulty of drug response prediction in different
setups. While at first glance, Table 3 may suggest that predicting response of unseen drugs are
much more challenging than unseen CCLs, a more appropriate comparison can be made using
Figure 3A, where the models’ performance improvement under each validation setup was
compared against a naive predictor. This figure shows that predicting response of unseen pairs
is much easier compared to prediction for unseen CCLs and unseen drugs. This is not surprising,
since this is a transductive setup and drugs and CCLs in the test set are present in the training set
(but not together). This setup is useful for imputation of missing drug response values but cannot

be used to predict response to new CCLs or new drugs. On the other hand, predicting response
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of unseen drugs and unseen CCLs are much more difficult and most models cannot provide a
better prediction for the majority of CCLs in these two setups (Figure 3A). Moreover, the
performance of all models deteriorated when used to predict the drug response in a different

dataset (CTRPv2), revealing the challenging nature of this task.

The contrast between conclusions one may draw from Table 3 and Figure 3A (discussed above)
demonstrates the potential for obtaining inflated performance measures in the LCO framework,
in which for a given CCL in the test set, the log IC50 value of different drugs are to be predicted.
Supplementary Figure S13 shows the distributions of log IC50 values for each drug (across CCLs,
panel A) and each CCL (across drugs, panel B) in our dataset. While these values vary across both
drugs and CCLs, the identity of a drug plays a bigger role in determining its log IC50 value
compared to the identity of the CCL to which it was administered (i.e., log IC50 values are more
drug-specific than CCL-specific). Supplementary Figure S13C better clarifies this point by
depicting the histogram of false discovery rates (FDRs) obtained from comparing the local
distribution of log IC50 values per drug (purple) or per CCL (green) and the global distribution of
the log IC50 values using Mann-Whitney U tests. Although for the majority of drugs (93%) drug-
specific log IC50 values (across all CCLs, but for a specific drug) are significantly different (FDR <
0.05) from the global log IC50 values (across all drugs and CCLs), that is true for only 43% of CCLs.
This implies that by simply knowing the identity of a drug, a model can rank different drugs based
on their log IC50 values for an unseen CCL rather well. To overcome this issue and avoid reporting
unrealistically inflated metrics, one should focus on improvement compared to a naive predictor

(an approach that we adopted in this study), or should normalize log IC50 values of each drug
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across CCLs to make them comparable to each other (an approach that we adopted in (Hostallero,

et al., 2022)).

We also compared the performance of different models using three pathway collections, PID,
KEGG, and Reactome. Even though there was not a major difference in the performance of
models when substituting one collection for the other, Reactome collection resulted in slightly
better performance. This seems to be due to the larger number of pathways in this collection
compared to the other two. However, since randomly generated pathway collections also
provided comparable performance based on the models considered in this study, it is not
possible to draw a conclusive determination regarding which pathway collection may be more

useful for the drug response prediction task.

This study focused on evaluating the effect of incorporating pathway information from the
perspective of model performance and we did not evaluate these models based on their level of
interpretability. A study that focuses on interpretability aspect of these models would be very
insightful and complementary to the current study. For example, one can take a closer look at
the feature attributions of these pathway-based models using explainers such as DeepLIFT (Deep
Learning Important FeaTures) (Shrikumar, et al., 2017), CXPlain (Schwab and Karlen, 2019), and
SHAP (Shapley Additive exPlanations) (Lundberg and Lee, 2017) to estimate feature importance
and identify genes or other biological features that have substantial influence on the model
predictions. Such analysis can be done for all pathway-based models to check if the most

important/predictive sub-networks or the top contributing genes extracted from each model
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have any overlap. If such overlap exists between the pathway-based models, further studies can
be done by validating the findings with existing literature or conducting experiments under a lab
setting. Analysis on model interpretability will complement the insights obtained from model
performance evaluation and together provide a more holistic view for the effect of pathway

incorporation on drug response prediction.

In conclusion, we believe that while interpretability is a very crucial aim in precision medicine,
new models are necessary to enable a higher degree of interpretability while at the same time
improve the drug response prediction performance. In addition, it is not sufficient for these
models to show a better performance compared to their black-box counterparts, and they need
to also evaluate their models against randomly generated pathways (with similar pathway sizes

to the original collection) and naive predictors to control for different types of biases.

Data and Code Availability: Input data for the evaluated models is provided at

https://zenodo.org/record/7101665#.Y2zS79HbMKUK. The implementation of the models are

available at https://github.com/Emad-COMBINE-lab/InterpretableAl for DRP.
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