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Abstract 

Background: Obsessive-Compulsive Disorder (OCD) is a mental health condition causing 

significant decline in the quality of life of sufferers and the limited knowledge on the 

pathophysiology hinders successful treatment. The aim of the current study was to examine 

electroencephalographic (EEG) findings of OCD to broaden our understanding of the disease.  

Methods: Resting-state eyes-closed EEG data was recorded from 25 individuals with OCD 

and 27 healthy controls (HC). The 1/f arrhythmic activity was removed prior to computing 

oscillatory powers of all frequency bands (delta, theta, alpha, beta, gamma). Cluster-based 

permutation was used for between-group statistical analyses, and comparisons were 

performed for the 1/f slope and intercept parameters. Functional connectivity (FC) was 

measured using coherence and debiased weighted phase lag index (d-wPLI), and statistically 

analysed using the Network Based Statistic method.  

Results: Compared to HC, the OCD group showed increased oscillatory power in the delta 

and theta bands in the fronto-temporal and parietal brain regions. However, there were no 

significant between-group findings in other bands or 1/f parameters. The coherence measure 

showed significantly reduced FC in the delta band in OCD compared to HC but the d-wPLI 

analysis showed no significant differences.  

Conclusions: OCD is associated with raised oscillatory power in slow frequency bands in the 

fronto-temporal brain regions, which agrees with the previous literature and therefore is a 

potential biomarker. Although delta coherence was found to be lower in OCD, due to 

inconsistencies found between measures and the previous literature, further research is 

required to ascertain definitive conclusions.  

 

Keywords: Cluster-Based Permutation; Electroencephalography; Functional Connectivity; 

Obsessive-Compulsive Disorder; Power Spectral Analysis; 1/f non-oscillatory activity 
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1. INTRODUCTION 

 
Obsessive-compulsive disorder (OCD) is a mental health disorder characterized by 

unwanted and intrusive thoughts (obsessions), often leading to compulsions such as repetitive 

behaviors, mental acts, or rigidly applied rituals [1]. With a lifetime prevalence of 1-3%, OCD 

has been classified as a mental health condition causing significant reduction in the quality of 

life of sufferers [2]. First-line treatments for OCD, including Selective Serotonin Reuptake 

Inhibitors (SSRIs) and cognitive behavioral therapy are found to have poor success rates [3]. 

This inadequacy has motivated investigators to study the underlying pathophysiology of OCD 

in the hope of identifying better suited therapeutic approaches. 

Resting-state electroencephalographic (EEG) studies have shown that individuals with 

OCD show significant differences in brain electrical activity compared to healthy controls (HC) 

[4]. Although differences in the power of neural oscillations within all frequency bands have 

been reported in the previous literature, reports of delta, theta and alpha differences are the 

most common. Several studies have noted increased resting fronto-temporal delta [5, 6] and 

theta [7, 8] power in OCD groups compared to HC. However, there are inconsistencies 

between the studies examining alpha activity, with reports of both power increases [9, 10] and 

decreases [11, 12].  

Identification and analysis of brain oscillatory activity involves transforming the EEG 

data to frequency or time-frequency domain. Power in the frequency spectrum reflects both 

oscillatory activity and irregular, asynchronous, aperiodic firing of neurons or assemblies of 

neurons and exhibits a 1/f-like power spectrum, where power (amplitude) decreases as a 

function of frequency [13]. When measuring oscillatory power, it is imperative to correct for 

this non-oscillatory activity to avoid confounding estimates of power, obscuring differences in 

oscillatory activity between bands, and creating false differences where none exist. Therefore, 

detecting the rhythmicity of brain oscillations needs to be an additional consideration when 

interpreting measures of oscillatory power. Additionally, it is important to perform between-

group analyses of the 1/f slope and intercept parameters as these may better represent the 
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neural activity at lower frequencies and may also be functionally and behaviorally relevant 

[14].  

Functional connectivity (FC) refers to various measures of how neural activity of one 

brain region relates to activity in another [15]. Several studies have reported altered 

connectivity in OCD when compared to HC. Many of these studies have reported decreased 

connectivity in alpha and beta frequency bands [16-20], while one study reported decreased 

global field synchronization of frontal EEG in the delta band [21]. Furthermore, it has been 

hypothesized that the pathophysiology of OCD may be attributed to defective structure and 

function of the frontal-striatal-thalamic (FST) circuit, resulting in poor FC between these 

regions [22]. However, the substantial heterogeneity between data collection parameters, 

EEG pre-processing methods and the utilized connectivity measures makes it difficult to 

interpret these results.  

A principal aim of the current study was to investigate the differences in EEG power 

spectra in all frequency bands between OCD and HC groups. The primary hypothesis was 

that individuals with OCD would show increased oscillatory power in delta and theta frequency 

bands. Additionally, exploratory hypotheses were that there would be between-group 

differences in functional connectivity and 1/f parameters. Although several previous studies 

have investigated power spectral differences between OCD and HC groups, this is the first to 

account for the 1/f non-oscillatory activity and to use a cluster-based permutation method to 

account for multiple comparisons. Furthermore, this is the first study to compare and report 

findings of 1/f parameters between OCD and HC groups. The FC analysis was performed in 

adherence to a recently published checklist [23] designed to standardize connectivity analyses 

and to our knowledge, this is the first OCD FC study to conform to these standards.  

2. METHODS 

2.1. Participants 

Male and female participants aged between 18 and 65 years were recruited through 

internet and poster advertisements and doctor referrals from the state of Victoria, Australia. 
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The required sample size was calculated using Cochran9s formula (supplemental materials 

S1) [24].The clinical trial was conducted as per the latest version of the Guidelines for Good 

Clinical Practice [25]. Following verbal and written explanation of the nature of all involved 

procedures, informed written consent was obtained from each participant. All participants were 

reimbursed for their participation in the trial. The study received ethics approval from Monash 

Health Human Research Ethics Committee and was registered on the Australian New Zealand 

Clinical Trials Registry (ANZCTR).  

The OCD group comprised individuals diagnosed with OCD according to the 

International Classification of Diseases 3 10th revision [World Health 26] or DSM-IV/V 

[American Psychiatric 27]. Symptom severity was assessed utilizing the Yale-Brown 

Obsessive Compulsive Scale (YBOCS) [28]. Additionally, the Beck Anxiety Inventory (BAI) 

[29] was used to assess the level of anxiety and the Quick Inventory for Depressive Symptoms 

3 Self Report (QIDS-SR) [30] was used to assess the level of concurrent depression. 

Exclusion criteria for the OCD group included scoring <17 on the YBOCS, presence of an 

unstable medical/neurological disorder and being diagnosed with another mental health 

condition other than depression and anxiety. Participants were included regardless of their 

medication status but were required to be on a stable dose for at least 6 weeks prior to the 

study. Clinical data obtained from the patient group included age of OCD onset, illness 

duration, medication history, presence of comorbidities (depression and anxiety) and symptom 

severity.  

Healthy control data was obtained from individuals who have never been diagnosed 

with a mental health or neurological disorder. Other exclusion criteria for the HC group 

included currently being on psychoactive medication and previous concussion or head injury 

with loss of consciousness for more than 10 minutes. 

2.2. EEG Recording  

EEG recording took place in a laboratory with constant levels of lighting and 

background noise from air conditioning. The participants were seated upright on a padded, 

comfortable chair and requested to close their eyes, try to stay awake and relaxed during the 
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recording period. Prior to recording, participants were provided with an explanation of the 

procedure and its safety along with instructions to minimize muscle and eye movements that 

may affect the recording. All participants underwent 3 minutes of EEG recording at rest with 

eyes closed.  

The EEG data was collected using the actiCHamp amplifier (Brain Products GmbH, 

Munich, Germany) with the BrainVision software (version 1.21.0303) and 64 Ag/AgCl 

electrodes embedded within an EasyCap (Herrsching, Germany) based on the international 

10-20 system. Out of these, 63 electrodes were used (supplemental materials S2) and CPz 

was excluded due to being the reference electrode. All recordings were made at a sampling 

rate of 1000 Hz with the ground placed at AFz. A transparent electro-gel was injected onto the 

scalp to reduce impedance, which was kept below 5 kW. No online band-pass or notch filtering 

was applied during the recording.  

2.3. EEG Pre-processing 

Raw, continuous EEG data was pre-processed using the RELAX pipeline [31] 

implemented within MATLAB [32], which utilizes functions from EEGLAB [33] and fieldtrip [34]. 

This pipeline initially applied a 4th order acausal Butterworth bandpass filter from 1 to 80 Hz 

and a second order acausal Butterworth notch filter from 47 to 53 Hz. Following this step, 

several measures were taken to identify and reject bad electrodes. The initial removal of noisy 

electrodes occurred through the <findNoisyChannels= function of the PREP EEG pre-

processing pipeline [35]. Thereafter, electrodes were marked for rejection based on 1) extreme 

outlying amplitudes [36]; 2) extremely improbable voltage distributions; 3) extreme drift; 4) 

extreme kurtosis; and 5) muscle activity [37]. Overall, the rejection of a maximum of 20% of 

electrodes was accepted. If more than 20% were marked for removal, electrodes were ranked 

based on the number of epochs showing extreme artifacts and only the worst 20% were 

removed. The same measures were applied subsequently to mark extreme periods to be 

excluded from further analysis. The resultant data was then subjected to three sequential 

multiple Wiener filter (MWF) cleaning steps [38] to address the following artifacts: 1) Muscle 
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activity: low-power log-frequency slopes of more than -0.59 were classified as epochs affected 

by muscle activity; 2) Blink artifacts: following bandpass filtering using a fourth order 

Butterworth filter from 1 to 25 Hz, pre-specified blink affected electrodes were selected and 

voltages were averaged within 1 s epochs. Blinks were flagged at time points where the 

averaged voltage exceeded the upper quartile plus thrice the inter quartile range of the 

distribution of all voltages in these pre-specified electrodes. The 800ms period surrounding 

each blink flag was marked as artifacts for further cleaning; 3) Horizontal eye movements and 

drift: Periods of selected lateral electrodes affected by horizontal eye movement showing 

voltages greater than twice the median absolute deviation (MAD) from the median of their 

overall amplitude, with a similar opposite voltage movement in the electrode on the opposite 

side of the head were classified as horizontal eye movements [39]. Epochs with an amplitude 

greater than 10 times MAD from the median of all electrodes were considered to be affected 

by drift [40] and marked as artifacts for further analysis. The resultant data was average re-

referenced using the PREP method [35] before performing Independent Component Analysis 

(ICA) using fastICA [41]. Artifactual components were detected using ICLabel [42] and only 

these components were cleaned with wavelet enhanced ICA (wICA) [43]. Continuous data 

was then reconstructed back into the scalp space and previously rejected electrodes were 

spherically interpolated to obtain a full set of electrodes for each participant.  

2.4. Detection of Better Oscillations with eBOSC 

Following the initial pre-processing, data was further processed using an extended 

version (eBOSC) [44] of the Better OSCillation (BOSC) method [45]. This method was 

designed to detect the arhythmic, non-oscillatory portion of the EEG signal (1/f activity). In 

BOSC, duration (DT) and power (PT) thresholds are calculated by modelling the known 

background power spectrum. Thus, at a given frequency, BOSC detects increases in power 

above PT of a specific minimum duration DT, thereby removing non-repeating rises in spectral 

amplitude. In eBOSC, rhythm detection benchmarks are derived using simulations to further 

characterize rhythmicity. During the eBOSC process, 1s of data from bilateral edges were 

zero-padded to avoid edge artifacts and continuous data was segmented into 4s epochs with 
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no overlap. The output of eBOSC includes the results of the time-frequency analysis as well 

as the specific time points of rhythmic episodes and this information was utilized in spectral 

analysis methods. Furthermore, the slope and intercept of the 1/f spectrum were also analyzed 

to identify any differences between HC and OCD groups.  

2.5. Power Spectral Analysis 

For spectral analysis, frequency bands were defined as: delta (0.5-4 Hz), theta (4-8 

Hz), alpha (8-12 Hz), beta (12-30 Hz) and gamma (30-45 Hz). The wavelet time-frequency 

transformation table and the detected rhythmic episodes were obtained from the eBOSC 

output, and the power of each band was computed after removing the background 1/f activity. 

The output of periods showing oscillatory activity within each frequency band was separately 

time averaged for OCD and HC groups and cluster-based permutation was applied to the 

resultant data. The fieldtrip function <ft_prepare_neighbours= was used to find channel 

neighbors for spatial clustering using triangulation [34]. At least 2 neighboring electrodes were 

required to show significance to be included in a significant cluster. A family-wise error rate 

(FWER) was estimated by sampling and permuting the null distribution using the Monte Carlo 

method. A two-tailed independent sample t-test was used to evaluate the between-group 

differences. The cluster alpha (critical value used for thresholding the sample-specific t-

statistics) was set at 0.05 and the number of permutations was set at 50000. Hypothesis 

testing was performed for delta, theta, and alpha bands, while beta and gamma bands were 

analyzed as exploratory analyses. The results of all primary hypothesis-driven analyses were 

controlled for experiment-wise multiple comparisons using a false discovery rate (FDR). 

2.6. Functional Connectivity Analysis 

FC analysis was performed adhering to a recently published EEG connectivity 

checklist that was developed to standardize FC studies while ensuring optimal connectivity 

assessment [23]. The debiased estimator of the weighted phase lag index (d-wPLI) and the 

coherence connectivity measures were separately used to compute the connectivity matrices 

based on the multi-taper Fourier spectral estimate. Both connectivity measures provide a 
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value between 0 and 1 for each electrode pair, where higher values indicate higher 

connectivity. 

Statistical analysis was performed using the Network-Based Statistic (NBS) which 

uses non-parametric permutation testing and controls for FWER using mass univariate testing 

at each connection [46]. The number of iterations performed for permutation testing was 10000 

and the primary threshold was set at �! = 0.05. If a significant network was identified, the 

primary threshold was adjusted based on the recommendations of the NBS manual [46]; a 

range of thresholds were experimented where liberal thresholds (e.g., �! = 0.05) produced 

topologically extended results and conservative thresholds (e.g., �! = 0.001) produced strong, 

topologically focal results. The identified networks were visualized using the BrainNet Viewer 

[47]. 

As suggested in the checklist, continuous EEG data was segmented into 6s epochs, 

but the number of epochs was limited to the <50 category due to the short total duration of 

recording (the only non-optimal study parameter for d-wPLI). Re-referencing was performed 

with robust common average reference and all types of artefacts were addressed through the 

RELAX pre-processing pipeline. When our methods were applied to the checklist, a total score 

of 5 and 4.5 were achieved for d-wPLI and coherence measures (supplemental table 1), 

indicating high and moderate study quality, respectively.  

2.7. Regression Analysis Between Symptom Severity and Oscillatory 

Power/Connectivity 

A within-group linear regression was performed between the YBOCS and oscillatory 

power of each frequency band at each channel. A regression was also performed for each 

channel pair in any networks identified through the FC analysis. Bonferroni correction was 

used to account for multiple comparisons. These analyses provide information of any 

associations between the oscillatory power/connectivity measures and the OCD symptom 

severity.  
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3. RESULTS 

3.1. Demographic and Clinical Data 

The study sample comprised 25 OCD and 27 HC participants. The Demographic 

characteristics and clinical data are summarized in Table 1. No significant differences were 

observed between OCD and HC participants in any demographic variables.  

 

Table 1 

Demographic and Clinical Characteristics of Participants 

 

 

 

 

 

 

 

3.2. Power Spectral Analysis  

Three clusters were identified through cluster-based permutation; two for the delta 

band (Cluster 1: �	 = 	0.0065, cluster statistic = 84.81 ± 0.0007; Cluster 2: �	 = 	0.046, cluster 

Variable 
OCD (n = 25) HC (n = 27) Test statistic (�-

val) Mean SD n Mean SD n 

Demographic Characteristics 
Gender (M/F) 

  
12/13 

  
9/18 �2 = 1.14, � = 0.29 

Age (years) 36.24 13.06 25 31.22 10.66 27 � = 1.52, � = 0.13 
Handedness (R/L) 

  
21/4 

  
26/1 �2 = 2.22, � = 0.14 

Marital status (S/M) 
  

20/5 
  

21/6 �2 = 0.04, � = 0.85 

Clinical Characteristics 
Age at onset (years) 24.64 9.90 25 

   
 

Duration of illness (years) 11.60 9.98 25 
   

 
YBOCS (total) 28.00 3.82 25 

   
 

YBOCS - obsessions 13.88 1.81 25     
YBOCS - compulsions 14.12 2.39 25     
BAI 17.04 8.92 24a 

   
 

QIDS-SR 10.17 4.94 24a 
   

 

Note. OCD 3 Obsessive Compulsive Disorder, HC 3 Healthy Control, SD 3 Standard Deviation, 

M 3 Male, F 3 Female, R 3 Right, L 3 Left, S 3 Single, M 3 Married, YBOCS 3 Yale-Brown 

Obsessive Compulsive Scale, BAI 3 Beck Anxiety Inventory, QIDS-SR 3 Quick Inventory of 

Depressive Symptoms-Self Report 

a BAI and QIDS-SR scores for one participant were unavailable due to a data collection issue. 
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statistic = 26.38 ± 0.002) and one for theta (�	 = 	0.041, cluster statistic = 44.46 ± 0.002). The 

topographical plots indicated that the OCD group had significantly higher power than HC in 

these frequency bands, in the regions highlighted by the clusters (Figure 1). Delta clusters 

were concentrated around the left fronto-temporal and the right parietal regions and the theta 

cluster was found at the left fronto-temporal and parietal regions. Upon controlling for multiple 

comparisons using FDR, only the first delta cluster was found to be significantly different (�	 =

	0.0357). No significant clusters were found between OCD and HC groups in the alpha (�	 =

	0.14, cluster statistic = 14.6 ± 0.003), beta and gamma bands.  

There were no significant differences between the OCD and HC groups for the 

intercept and slope parameters of the 1/f spectrum in any of the channels (supplemental figure 

1).  

Figure 1  

Topographical Plots Illustrating Spectral Power Differences Between OCD and HC 
Groups Using the Cluster-Based Permutation Method  

 
 

Note. A) OCD groups showed significantly higher delta band power than HC in two 
significant clusters. Cluster 1 in the left fronto-temporal, parietal region (AF7, F5, F7, 
FC1, FC3, FC5, C1, C3, C5, T7, TP7, TP9, FT7, CP1, CP3, CP5, P1, P3, P5, P7), 
and Cluster 2 in the right parietal region (C2, C4, C6, CP2, CP4, CP6, P2, P4, P6, 
TP8. B) OCD groups showed significantly higher theta band power than HC in one 
cluster in the right fronto-temporal and parietal regions (F3, F5, FT7, FC1, FC3, FC5, 
TP7, TP9, P3, P5, P7, C3, CP3, CP5) C) No significant difference in band power was 
noted in the alpha band.  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 4, 2022. ; https://doi.org/10.1101/2022.10.03.510571doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.03.510571
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

3.3. Functional Connectivity 

One significant network in the delta band was identified using the coherence measure 

(Figure 2). Following the adjustment of the primary threshold to the conservative value of �! =

0.0038, 21 nodes and 26 edges remained in the network (�	 = 	0.049, network statistic = 3.13), 

indicating that the connectivity was significantly lower in the OCD group. Supplemental table 

2 shows the unique connections identified within this network and the corresponding regions 

of interest. It is evident that multiple differences between groups in the strength of connections 

exist between the bilateral frontocentral and frontal electrode groups. No statistically 

significant differences in functional connectivity were identified between OCD and HC groups 

with the d-wPLI method. No other frequency bands had networks that were found to be 

significantly different between OCD and HC groups.  

Figure 2  

Network-Based Analysis of Functional Connectivity in OCD with Coherence 
Connectivity Measure.  

 
 

Note. A) Output of the BrainNet Viewer illustrating the identified connectivity network 
in the delta band. The nodes and weighted links indicate brain areas and the 
magnitude of the reduction in connectivity in the OCD group when compared to HC. 
B) Depiction of the connectome in three different views C) Connectivity matrix 
indicating the pairs of electrodes included in the identified network  
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3.4. Regression Analysis 

Statistically significant associations were absent between the YBOCS and oscillatory 

power in all frequency bands following Bonferroni correction within the regression analysis. 

Furthermore, although a negative trend was identified between YBOCS and coherence 

connectivity (slope = -0.009, �	 = 	0.057), the values were not statistically significant 

(supplemental figure 2).  

4. DISCUSSION 

EEG power spectral and functional connectivity findings in OCD populations have 

largely been inconsistent across previous studies. Therefore, we investigated spectral power 

changes between OCD and HC groups. Our study attempted to address these inconsistencies 

by adhering to better methodology involving a comprehensive EEG pre-processing pipeline 

and controlling for 1/f, non-oscillatory activity. Furthermore, the current study analyzed the 

parameters of the 1/f slope for the first time in an OCD sample. We also performed an 

exploratory analysis of network-based functional connectivity changes in OCD.  

Power spectral findings of the current study showed that the OCD group had 

significantly higher power in the delta and theta bands in comparison to HC in several clusters 

of electrodes. The delta clusters were concentrated around the left and right fronto-temporal 

and parietal regions, while the theta cluster was in the left fronto-temporal region. These 

findings agree with several previous studies that reported increased delta and theta powers in 

these same regions in OCD [5-8, 11, 12, 19, 48-52]. However, two studies reported deficits in 

delta [53] and theta [54] power in OCD when compared to HC.  

OCD is known to be associated with significant reductions in cerebral blood flow (CBF) 

in the fronto-temporal brain regions [55]. Insufficient rates of CBF, leading to poor cortical grey 

matter oxygen uptake, has been found to be correlated with increased slow EEG frequencies 

[56]. Additionally, as postulated by Michel et al., the increase in the power of slow frequency 

oscillations in the frontal regions could be due to over-activation of frontal slow wave 
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generators causing excessive delta and theta powers [57]. Therefore, frontal slow wave 

generators being activated due to low frontal CBF may explain the raised slow wave oscillatory 

power in OCD. Furthermore, the presence of excessive frontal slow wave activity has also 

been reported in other mental health conditions including social phobia [58], depression [59] 

and schizophrenia [60]. Additionally, increased frontal delta activity has been reported in 

individuals with Alzheimer9s disease and mild cognitive impairment [61]. As depression is a 

common comorbidity of OCD [62], this finding may be an indicator of underlying depression, 

rather than OCD.  

Although several previous studies reported increased [9, 10, 48, 52, 53] and decreased 

[11, 12, 50, 54, 63-65] alpha power in OCD groups when compared to HC, the current analysis 

did not find any differences in the alpha band. It has been reported that individuals with OCD 

who respond to SSRIs showed excess alpha power, while non-responders showed excess 

theta power [53]. The OCD sample recruited in this study comprised largely of non-responders 

to SSRIs, which might explain this finding.  

There is limited literature available relating to EEG connectivity in OCD. The present 

study reported no differences in connectivity using the d-wPLI measure and significantly 

decreased functional connectivity using coherence, in a network comprising frontocentral, 

temporal and parietal nodes in the delta band. However, these results must be interpreted 

cautiously as coherence may find strong spuriously increased connectivity due to its 

vulnerability to volume conduction [66]. One previous study reported a similar observation, 

where global field synchronization in the delta band was found to be lower in OCD in 

comparison to HC [21]. Similarly, a resting-state magnetoencephalography (MEG) study 

reported decreased connectivity in the delta and theta bands in the OCD group when 

compared to HC [67]. Alterations of functional nature in OCD, such as neurotransmitter 

dysfunctions [68] and structural grey matter deformities [69] may explain the decreased 

connectivity findings of OCD. Literature suggests that synchronous brain oscillations in slow 

frequencies are crucial for cognitive and motivational processes of attention, memory, 

perception, planning and decision-making [70-72], all of which are known to be impaired in 
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individuals with OCD. Therefore, impaired functional connectivity in the slow frequency bands 

may underpin the clinical symptoms of OCD.  

The current study reported no significant differences in the 1/f parameters (slope and 

intercept) between OCD and HC groups, which potentially indicates that OCD is a condition 

that exhibits altered oscillatory power, but not alterations to 1/f parameters. Several previous 

studies have reported 1/f parameter changes in bipolar disorder [73], attention deficit 

hyperactive disorder [74] and age-related variations [75]. It has been reported that the 1/f slope 

and offset parameters are functionally relevant to excitation/inhibition balance [76] as well as 

neural firing strength/rate [77]. The lack of similar findings in our study may be due to OCD 

being a condition in which these are unaffected.  

4.1. Limitations and Future Directions 

The current study has several limitations. While the total sample size was sufficient to 

identify group-level differences as per the sample size calculation (supplementary S1), 

inclusion of additional participants would have increased the statistical power and therefore 

enabled sub-group comparisons to examine potential mediating effects of demographic or 

clinical variables which may influence EEG. For instance, controlling for mediating effects of 

medication status may be useful as the recruited OCD participants were not drug naïve, and 

were on different classes of medications which may influence EEG activity.  

The resting EEG data was collected over a total duration of 3 minutes, which resulted 

in a smaller number of epochs than is optimal for connectivity analysis [23]. However, the 

extent of the influence of epoch number is not established, and the other parameters of our 

study met the optimal recommendations for connectivity analysis. A principal limitation of the 

d-wPLI method is its relative insensitivity to true connectivity findings when the coherency 

phase lies close to 0 or 180, phases at which coherence performs better at identifying true 

connectivity changes. However, coherence may produce false connectivity results due to its 

vulnerability to volume conduction [66]. Therefore, the findings of the current study should be 

interpreted cautiously. Furthermore, EEG connectivity studies for OCD are scarce in the 
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literature and therefore, further connectivity analyses of OCD that adhere to the checklist and 

recommendations [23] are essential. 

The regression analysis of the current study did not show a significant association 

between increasing symptom severity and reduced connectivity in the delta band. However, a 

negative trend was identified and the inadequate power may be due to the sample size 

insufficiency [78]. 

The current study is the first to incorporate the eBOSC pipeline in the EEG processing 

to account for 1/f non-oscillatory activity in an OCD study. Future EEG studies of OCD should 

also use a similar method in their analyses to validate these results. Due to the poor efficacy 

and the resultant non-adherence to medications, treating OCD with alternative novel 

modalities such as non-invasive brain stimulation is becoming popular [79]. The findings of 

the current study and other power spectral/connectivity studies may be used to determine 

parameters for future brain stimulation studies.  

4.2. Conclusions 

OCD is a mental health condition causing significant disability and the poor 

understanding of its pathophysiology has made it difficult to establish a definitive treatment. 

This study aimed to further the current knowledge of the disease by performing EEG power 

spectral and functional connectivity analyses. Our findings suggest that OCD is associated 

with raised oscillatory power in the delta and theta frequency ranges in fronto-temporal 

regions, while no differences were noted in the alpha band. The connectivity findings with the 

d-wPLI measure showed no differences between groups while a significantly reduced 

functional connectivity was found in the delta band using the coherence measure. These 

findings encourage future research to further explore oscillatory power and connectivity 

measures as potential biomarkers for OCD. 
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