

1 **Biomass generation and heterologous isoprenoid milking from**
2 **engineered microalgae grown in anaerobic membrane bioreactor**
3 **effluent**

4

5 Bárbara Bastos de Freitas^{1,2#}, Sebastian Overmans^{1#}, Julie Sanchez Medina², Pei-
6 Ying Hong^{1,2*}, Kyle J. Lauersen^{1*}

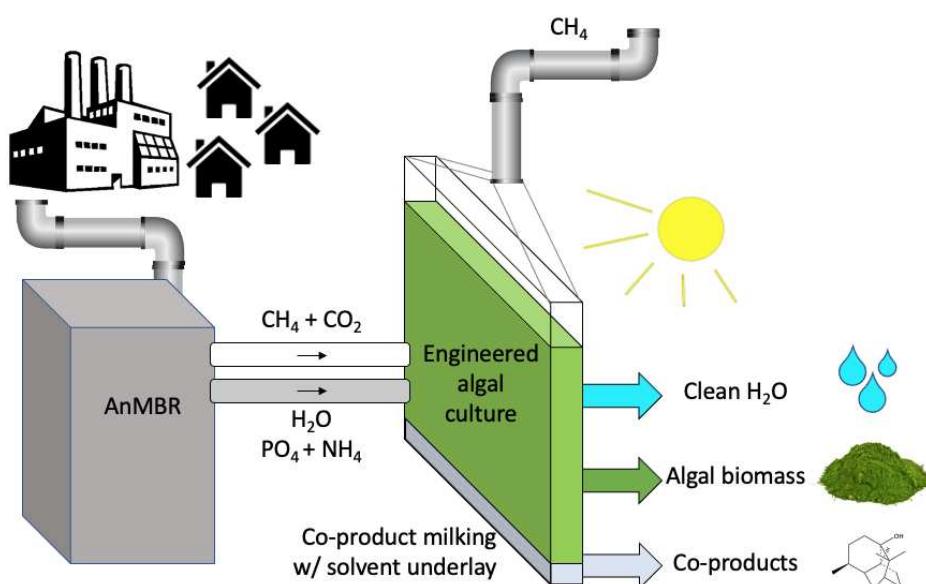
7

8 ¹ Bioengineering Program, Biological and Environmental Science and Engineering Division
9 (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900,
10 Kingdom of Saudi Arabia

11 ² Water Desalination and Reuse Center, Biological and Environmental Science and
12 Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST),
13 Thuwal 23955-6900, Kingdom of Saudi Arabia

14

15 [#] These authors contributed equally


16

17 * Corresponding authors:

18 peiyi.hong@kaust.edu.sa

19 kyle.lauersen@kaust.edu.sa

20

21 **1. Abstract**

22 Wastewater (WW) treatment in anaerobic membrane bioreactors (AnMBR) is
23 considered more sustainable than in their aerobic counterparts. However, outputs
24 from AnMBR are mixed methane and carbon dioxide gas streams as well as
25 ammonium- (N) and phosphate- (P) containing waters. Using AnMBR outputs as
26 inputs for photoautotrophic algal cultivation can strip the CO₂ and remove N and P
27 from effluent which feed algal biomass generation. Recent advances in algal
28 engineering have generated strains for concomitant high-value side product
29 generation in addition to biomass, although only shown in heavily domesticated, lab-
30 adapted strains. Here, investigated whether such a strain of *Chlamydomonas*
31 *reinhardtii* could be grown directly in AnMBR effluent with CO₂ at concentrations found
32 in its off-gas. The domesticated strain was found to proliferate over bacteria in the non-
33 sterile effluent, consume N and P to levels that meet general discharge or reuse limits,
34 and tolerate cultivation in modelled (extreme) outdoor environmental conditions
35 prevalent along the central Red Sea coast. High-value co-product milking was then
36 demonstrated, up to 837 µg L⁻¹ culture in 96 h, in addition to algal biomass production,
37 ~2.4 g CDW L⁻¹ in 96 h, directly in effluents. This is the first demonstration of a
38 combined bio-process that employs a heavily engineered algal strain to enhance the
39 product generation potentials from AnMBR effluent treatment. This study shows it is
40 possible to convert waste into value through use of engineered algae while also
41 improve wastewater treatment economics through co-product generation.

42

43 **Keywords:** *Chlamydomonas reinhardtii*, patchoulol, terpenoids, wastewater
44 treatment, CO₂ capture, anaerobic membrane bioreactor (AnMBR)

45 2. Introduction

46 Wastewater (WW) treatment strategies are an important part of human settlement
47 infrastructure and an ongoing challenge of scale owing to the increasing human
48 population (Cai et al., 2013; Liu and Hong, 2021). Conventional WW nutrient removal
49 methods, both aerobic and chemical treatments, require high energy consumption and
50 long process times while resulting in carbon emissions and excess sludge discharge
51 (Li et al., 2019). In contrast, anaerobic membrane bioreactors (AnMBRs) have lower
52 energy requirements while efficiently removing organic matter and suspended solids
53 (Serna-García et al., 2020a). AnMBR process efficiencies are achieved by the
54 combination of anaerobic microbial metabolism and high-surface area filtration
55 technologies (Viruela et al., 2016). AnMBR technology yields biogas (methane, CH₄)
56 as a co-product of wastewater treatment, however, with a high percentage of carbon
57 dioxide (CO₂) which can be scrubbed to enrich methane for improved combustion.
58 Ammonium and phosphate are also left in waters after AnMBR treatment, usually at
59 levels that prohibit direct discharge into the environment (Gao et al., 2021; Xiong et
60 al., 2018).

61 It has been proposed to couple AnMBRs with additional downstream cultivation of
62 algae in photobioreactors to polish AnMBR effluents. Microalgae consume gaseous
63 CO₂ as a carbon source; ammonium and phosphate as nitrogen (N) and phosphorous
64 (P) sources, respectively, by cellular processes driven by photosynthetic energy.
65 During anaerobic digestion of wastewaters, existing organic N and P are converted
66 into ammonium and inorganic phosphate, which algae are particularly adept at using
67 as macronutrients (Serna-García et al., 2020b). Algal biomass can be a source of
68 many valuable natural molecules, or itself be used as a feedstock for processes like
69 the production of biochar or emerging bio-materials (Rajput et al., 2022). Due to their
70 natural metabolic capacities, algae present promising biological systems for WW

71 treatment process enhancement; excess nutrient and CO₂ removal with concomitant
72 (valuable) biomass generation (Cai et al., 2013; Chaudry, 2021; Leite et al., 2019;
73 Viruela et al., 2016).
74 To increase the value and economics of algal bio-processes, engineering further
75 levels of product generation into algal biomass through synthetic biology and
76 metabolic engineering has been proposed. The model green microalga
77 *Chlamydomonas reinhardtii* has now been extensively used to benchmark
78 heterologous metabolite production from waste CO₂ streams (Lauersen, 2019). Many
79 examples of engineered co-product generation from *C. reinhardtii* have recently been
80 shown: heterologous production of sesquiterpenes (Lauersen et al., 2016; Wichmann
81 et al., 2018), diterpenes (Einhaus et al., 2022; Lauersen et al., 2018; Mehrshahi et al.,
82 2020), polyamines (Freudenberg et al., 2022) and modified carotenoid pigments
83 (Perozeni et al., 2020). Engineering efforts have been facilitated by the domestication
84 of this alga through several rounds of mutation and transformation (Neupert et al.,
85 2020, 2009) while advances in synthetic transgene design have enabled robust
86 expression of heterologous pathways in this alga (Baier et al., 2020, 2018). The value
87 of engineered algae is enhanced when the recombinant products can be harvested
88 separately from the algal biomass using solvent-culture two-phase systems in a
89 process called ‘microbial milking’ (Overmans et al., 2022; Overmans and Lauersen,
90 2022).
91 Highly domesticated and engineerable algae have only recently been reported, and
92 bioprocesses that leverage these new organisms in practice have yet to be developed.
93 Since these algae strains are adapted to laboratory conditions, they may not be as
94 robust as algal species currently used in wastewater treatment or unsterile cultivation
95 conditions. Here, we investigated the performance of highly domesticated *C.*
96 *reinhardtii* strains directly in AnMBR effluent. We show that an engineered strain can
97 simultaneously remove N and P from effluent, consume waste CO₂, and yield the

98 heterologous sesquiterpenoid patchoulol as co-product to biomass through metabolite
99 milking. Our findings show that in addition to the valuable production of reclaimed
100 water, co-products can be generated through engineered algae that can improve
101 waste-stream treatment economics.

102

103

104 **3. Materials and Methods**

105 **3.1. Effluent dilution experiments**

106 *Chlamydomonas reinhardtii* strain UVM4 was graciously provided by Prof. Dr. Ralph
107 Bock (Max Planck Institute of Molecular Physiology, Germany) under material transfer
108 agreement to King Abdullah University of Science and Technology (KAUST). This
109 strain is derived from several rounds of mutation of *C. reinhardtii* CC-4350 (Neupert et
110 al., 2009). UVM4 contains a mutation in Sir2-type histone deacetylase (SRTA) that
111 has been shown to improve transgene expression from the algal nuclear genome
112 (Neupert et al., 2020). A recently reported derivative strain, which produces patchoulool
113 was used in cultivations (Abdallah et al., 2022).

114 All algal cultures were maintained routinely on Tris acetate phosphate (TAP) or
115 phosphite (TAPhi, Abdallah et al., 2022) agar plates under $50 \mu\text{mol photons m}^{-2} \text{ s}^{-1}$
116 light intensity before being transferred into 45 mL medium in 125 mL Erlenmeyer flasks
117 with liquid medium and shaken at 120 rpm on a 12 h:12 h dark:light ($150 \mu\text{mol photons}$
118 $\text{m}^{-2} \text{ s}^{-1}$) cycle. Light spectra of different illumination set ups for all cultivations are
119 reported in Suppl. Data 1. After preculturing in shake flasks, 45 mL of cells were
120 centrifuged at $1000 \times g$ for 5 min and resuspended in 400 mL AnMBR effluent, allowed
121 to establish as culture for 3 days and then further diluted into effluent in 400 mL
122 photobioreactor flasks.

123 Cultivations were performed in Algem photobioreactors (Algenuity, UK) at four
124 different dilutions of raw AnMBR effluent (100%, 75%, 50%, and 25%) in double
125 distilled water in biological duplicates. The strain was grown at 25°C with a 7% CO_2
126 air mixture in 400 mL volumes, with a starting algal cell concentration of 3×10^5 cells
127 mL^{-1} , shaken at 100 rpm, and a 12 h:12 h dark:light cycle, with a gradual increase
128 from 0 to $325 \mu\text{mol photons m}^{-2} \text{ s}^{-1}$ for 144 h (Fig. 1a). A gas mix of 7% CO_2 in ambient
129 air was supplied periodically to cultures at 25 cc min^{-1} according to the pH control level

130 set on the reactor. Optical densities were measured by the photobioreactors in 10 min
131 intervals and subsequently converted to algae biomass (g L^{-1}) using a standard curve
132 made using dried biomass samples (Suppl. Data 2). The raw AnMBR effluent
133 contained approximately 20 mg L^{-1} ammonium ($\text{NH}_4^+ \text{-N}$) and 10 mg L^{-1} phosphate
134 ($\text{PO}_4^{3-} \text{-P}$), as measured by HACH kits (see section 2.5).

135

136 **3.2. Local weather condition simulations and algal culture performance**

137 We tested the feasibility of cultivating the domesticated UVM4 strain in raw AnMBR
138 effluent using outdoor light and temperature conditions of Thuwal, Saudi Arabia
139 (22.3046N, 39.1022E) by weather simulation in photobioreactors. The weather data
140 used for this experiment consisted of temperature and photosynthetically active
141 radiation (PAR) measurements (10 min intervals) recorded at the Coastal and Marine
142 Resources Core Lab (CMR) at KAUST between January and December 2014 (Suppl.
143 Data 3). Twelve 400 mL *C. reinhardtii* UVM4 cultures in raw AnMBR effluent with a
144 starting cell concentration of $3 \times 10^5 \text{ cells mL}^{-1}$ were grown in Algem photobioreactors
145 under different temperature and light conditions, simulating the months January–
146 December 2014. Cultures were shaken at 100 rpm for 96 h, with 7% CO_2 injections
147 supplied periodically for pH control, as described above. The optical densities were
148 measured in 10 min intervals and subsequently converted to algae biomass (g L^{-1}) as
149 above (see Suppl. Data 4).

150

151 **3.3. Waste stream capture and concomitant patchoulol production**

152 A previously engineered *C. reinhardtii* transformant line UPN22-2xPcPs, which
153 produces the heterologous terpenoid alcohol patchoulol, was used in this experiment
154 (Lauersen et al., 2016; Neupert et al., 2009). The algal culture was maintained on
155 TAPhi NO_3 agar plates, transferred into small volumes of the same liquid medium, and

156 subsequently grown in Erlenmeyer flasks under ~100 μmol photons $\text{m}^{-2} \text{s}^{-1}$ and 120
157 rpm shaking before bioreactor cultivation. The pre-culture was then harvested by
158 centrifugation at 1000 x g for 5 min, and the cells resuspended directly in AnMBR
159 effluent with a starting cell concentration of 5×10^5 cells mL^{-1} .
160 This experiment was performed in biological triplicate, whereby 3x6 2L Erlenmeyer
161 flasks were used to grow 400 mL cultures of the UPN22-2xPcPs strain in Algем
162 photobioreactors. Per experiment, six cultures were grown in reactors shaken at 100
163 rpm for 96 h, with CO_2 injections supplied periodically for pH control, as described
164 above. Each replicate was grown under one of six experimental conditions as
165 described below: constant light, 12 h:12 h light:dark, both at 25°C and 325 μmol
166 photons $\text{m}^{-2} \text{s}^{-1}$ as controls, and 4 different temperature and light conditions that each
167 represent one of the four seasons in Thuwal, Saudi Arabia. Local weather station data
168 were used to model 1 week from each of February (Winter), May (Spring), August
169 (Summer), and November (Autumn) from 2014 (Suppl. Data 2) in the reactors. To
170 capture patchoulol produced from the algal cells during growth, 20 mL of the
171 perfluorinated amine FC-3283 (Acros Organics, Geel, Belgium) was added to each
172 culture as an underlay, as recently described (Overmans and Lauersen, 2022).
173 Daily samples of 10 mL algae culture from each replicate flask were taken for
174 determination of bacterial- / algal-cell concentrations, biomass quantification, and
175 nutrient analysis (Suppl. Data 5), while 500 μL of FC-3283 was sampled daily from
176 each replicate bioreactor flask to quantify the accumulation of patchoulol product in
177 the underlay. FC-3283 samples were stored at -20°C until the end of the experiment
178 when all samples were together processed for GC-MS analysis.
179

180 **3.4. Culture growth measurements**

181 Algal culture growth was determined by measuring cell densities with an Invitrogen
182 Attune NxT flow cytometer (Thermo Fisher Scientific, UK) equipped with a Cytkick
183 microtiter plate autosampler unit. Prior to analysis, each biological replicate sample
184 was diluted 1:100 with 0.9% NaCl solution. Of each diluted sample, 250 μ L was
185 measured in technical duplicates (n=2) using a 96-well microtiter plate loaded into the
186 autosampler. Samples were mixed three times immediately before analysis, and the
187 first 25 μ L of sample was discarded to ensure a stable cell flow rate during
188 measurement. Data acquisition was stopped when 50 μ L from each well was
189 analyzed. All post-acquisition analyses and population clustering were performed
190 using Attune NxT Software v3.2.1 (Life Technologies, USA).

191 As raw effluent was used as a culture medium in unsterile conditions, we also
192 determined bacterial cell counts using the same flow cytometer: 80 μ L of each culture
193 sample was diluted in 720 μ L of 1 \times PBS, then stained with 8.08 μ L of 1X Invitrogen
194 SYBR Green nucleic acid stain (Thermo Fisher Scientific, Carlsbad, CA, USA) and
195 incubated for 10 min at 37 °C before measurement.

196 Algae biomass was measured by comparing it to a standard curve established using
197 *C. reinhardtii* UVM4 and 2xPcPs cultures to determine the corresponding dry weight.
198 These curves were obtained by measuring absorbance at 754 nm using a
199 spectrophotometer (Genesys 10S UV-VIS, Thermo Fisher Scientific, UK) and
200 correlating the relative optical density to dry biomass.

201

202 **3.5. Nutrient analysis**

203 To analyse N and P concentrations in culture medium at different time points, 10 mL
204 of each algae culture in wastewater was sampled daily, centrifuged at 4500 x g for 5
205 min at 20 °C, and the supernatants collected. Prior to analysis, all supernatants were

206 filtered with a 0.45 µm syringe filter to remove insoluble particles. Ammonium (NH₄⁺-
207 N) and phosphate (PO₄³⁻-P) concentrations were determined spectrophotometrically
208 with a DR 1900 spectrophotometer (Hach, Germany) after the samples were prepared
209 with AmVer High Range and TNT 844 analysis kits (Hach, Loveland, Colorado, USA),
210 respectively, following the manufacturer's protocols. Each nutrient concentration was
211 analysed in technical duplicates (n = 2).

212

213 **3.6. Gas chromatography**

214 The daily collected FC-3283 samples were analyzed using an Agilent 7890A gas
215 chromatograph (GC) that was equipped with a DB-5MS column (Agilent J&W, USA).
216 The instrument was attached to a 5975C mass spectrometer (MS) with a triple-axis
217 detector (Agilent Technologies, USA). We used a previously described GC oven
218 temperature protocol (Overmans and Lauersen, 2022). All GC-MS measurements
219 were performed in technical duplicates (n=2). Chromatograms were manually
220 reviewed for quality control before patchoulool GC peak areas were integrated using
221 MassHunter Workstation v. B.08.00 (Agilent Technologies, USA). A patchoulool
222 standard (18450, Cayman Chemical Company, USA) five-point calibration curve in the
223 range of 6.25–50 µg patchoulool mL⁻¹ in FC-3283 was used for product quantification
224 (see Suppl. Data 6).

225

226 **3.7. CO₂ capture calculations**

227 Theoretical CO₂ capture (g L⁻¹) was calculated using measured algal biomass (g)
228 values as shown in Eqn 1:

$$229 \text{CO}_2 \text{ (g) per g biomass} = 0.5 \text{ g} \times \frac{44.01 \text{ g/mol}}{12.01 \text{ g/mol}} = 1.83 \text{ g} \quad (1)$$

230 Where 0.5 g represents the previously reported approximate mass of carbon per
231 gram of biomass (Chisti, 2007), while 44.01 g/mol and 12.01 g/mol refer to the
232 molecular masses of CO₂ and carbon, respectively.

233

234 4. Results and Discussion

235 4.1. *C. reinhardtii* UVM4 cultivation in raw AnMBR effluent

236 *C. reinhardtii* UVM4 was cultivated in different dilutions of raw AnMBR effluent to
237 evaluate the growth of this strain in non-sterile conditions with the inherent N and P of
238 this liquid. AnMBR effluent contains ammonium and phosphate, the C:N and C:P ratios
239 are generally low and support autotrophic algal growth more than heterotrophic
240 bacterial growth. Cultures were sparged with clean 7% CO₂ to provide a carbon source
241 similar to what would come from an AnMBR reactor and to regulate culture pH. As
242 algae grow, they consume CO₂, which raises culture pH. CO₂ injection for pH control
243 in this way minimizes wasted CO₂ as it is only supplied as the algae consume it.

244 Other green algae like *Scenedesmus* sp. and *Chlorella* sp. have both been shown to
245 grow well in AnMBR effluent (Serna-García et al., 2020b). A recent *Chlamydomonas*
246 sp. isolate from WW has been shown to grow robustly in non-sterile WW conditions
247 and can outcompete bacterial contaminants (Klassen et al., 2020). However, few
248 studies have shown *C. reinhardtii* growth for WW post-treatment, fewer for effluent
249 from AnMBRs, and none to date have used a heavily domesticated and lab-adapted
250 genetically engineered strain. *C. reinhardtii* UVM4 has been derived from several
251 rounds of mutagenesis and transformation of the parent wild-type strain (Neupert et
252 al., 2009). Given that this strain lacks a cell wall, has been long-adapted to nutrient
253 surplus conditions, and may be outcompeted by other organisms, it was important to
254 determine its ability to grow directly in unsterile AnMBR effluent.

255 Mixed microalgae-bacteria photo-bioreactors are able to remove nutrients and CO₂
256 from AnMBR effluent (Xiong et al., 2018), and the growth of *C. reinhardtii* UVM4 on
257 either pure or diluted effluent was demonstrated here (Fig. 1b). The strain grew directly
258 in non-sterile effluent and completely consumed N and P as nutrients for its biomass
259 after 144 h cultivation (Fig. 1c). *C. reinhardtii* UVM4 was found to grow in all dilutions

260 of effluent in water, with only the 25% dilution exhibiting reduced growth behaviours
261 (Fig. 1b). The effluents used for this experiment initially contained 23–25 mg L⁻¹ of
262 ammonium (NH₄⁺-N) and 7–8 mg L⁻¹ of phosphate (PO₄³⁻-P). The raw effluent (100%)
263 and 50% dilution were suitable substrates for algal culture growth, with nutrient
264 removal occurring earlier in the 50% dilutions (Fig. 1c and e). Previous microalgae-
265 bacteria cultures have been shown to have excellent stability as the symbiosis of
266 microalgae and bacteria can even improve pollutant removal in wastewater (Liu and
267 Hong, 2021). Mixed cultures have also been shown to promote growth of other
268 *Chlamydomonas* spp. (Klassen et al., 2020). Here, the heavily domesticated *C.*
269 *reinhardtii* UVM4 was robust enough to be the dominant microorganism in the AnMBR
270 effluent under non-sterile conditions (Suppl. Fig. 1) and yield water which had nutrient
271 levels acceptable for discharge (Al-Jasser, 2011). This finding encouraged further
272 investigation into how an engineered alga could be used for post-treatment of AnMBR
273 effluent.

274

275 **4.2. *C. reinhardtii* growth under extreme climate with raw AnMBR effluent**

276 The ability of *C. reinhardtii* UVM4 to grow in raw AnMBR effluent in simulated weather
277 conditions (temperature and PAR) from the Saudi Arabian Red Sea shores was tested
278 (Fig. 2 a). The Saudi Arabian central Red Sea is characterized by an arid climate, with
279 daytime summer air temperatures of > 40°C(Almazroui et al., 2012; Alsarmi and
280 Washington, 2014). In addition, the urban population of Saudi Arabia is growing, and
281 effective wastewater treatment strategies are required that are compatible with the
282 local environmental conditions. Here, domesticated *C. reinhardtii* cultures grown
283 directly in AnMBR effluent were found to tolerate the local light and temperature
284 regime across the year, with slightly lower biomass generated under the winter
285 conditions (Fig. 2 b).

286 During most modelled months, the algal biomass of AnMBR effluent batch cultivation
287 was ~2g L⁻¹ by 96 hours (Fig. 2 b). The highest biomass production was observed in
288 the modelled month of June (2.26 g L⁻¹, 29–35°C, Fig. 2 a). During August, even higher
289 temperatures are observed at this locale (T: 31–37°C). Nevertheless, the UVM4 strain
290 grew well, reaching 2.12 g CDW L⁻¹ (Fig. 2 b). Bacterial contamination was present in
291 all conditions but did not cause algal culture crash, nor did bacteria outcompete the
292 culture during the investigation period (Suppl. Fig. 2).

293 Environmental modelling using local weather data in replicate bioreactors, as shown
294 here, will be a valuable tool for benchmarking strain performance for outdoor
295 cultivation in different locales. This is the first example of such modelling for an
296 engineered *C. reinhardtii* strain grown in WW, and complements previous efforts to
297 grow engineered algae and cyanobacteria in outdoor conditions (Wichmann et al.,
298 2021). Full-year modelling with each month provided valuable insight into how
299 processes may perform in the local context throughout the year. Conditions from
300 specific months were then chosen to represent seasonal changes to model outdoor
301 bio-process performance using a strain engineered to produce the heterologous
302 sesquiterpenoid patchoulol, and assess its product yields when grown directly in
303 AnMBR effluent.

304

305 **4.3. Specialty chemical co-production during effluent nutrient removal by an**
306 **engineered green alga**

307 UVM4 has previously been genetically and metabolically modified to produce the
308 heterologous plant sesquiterpenoid patchouli alcohol, “patchoulol” (Abdallah et al.,
309 2022; Lauersen et al., 2016). Heterologous terpenoid products can be collected during
310 cultivation of microbial cultures using a two-phase culture-solvent system (Beekwilder
311 et al., 2014; Lauersen, 2019; Overmans et al., 2022). The hydrophobic terpenoid
312 products accumulate in biocompatible solvents as the products are more favored to

313 partition into the solvents than into the cells or culture medium (Gruchattka and
314 Kayser, 2015). Recently, we have shown a novel approach to this continuous culture-
315 solvent interaction, or ‘milking’, by employing perfluorinated liquids that form a layer
316 underneath the aqueous culture medium, an ‘underlay’, due to their higher densities
317 (Overmans and Lauersen, 2022). These liquid fluorocarbons (FCs) are inert and
318 accumulate terpenoid products from microbial cultures efficiently. Unlike organic
319 solvent overlays, FCs can be effectively used in the Algem photobioreactors, due to
320 their high density and physical dynamics, to capture terpenoid products during algal
321 cultivation.

322 The engineered, patchoulol-producing *C. reinhardtii* was cultivated in representative
323 seasonal conditions (Spring, Summer, Autumn, Winter) as well as in two artificial
324 illumination conditions: continuous light and a 12 h:12 h light:dark cycle at constant
325 temperature (Fig. 3). Artificial conditions were used to compare controlled culture
326 conditions with ‘outdoor’ conditions that could be employed for algal-based AnMBR
327 effluent nutrient removal at large scales as in the case of municipal WW treatment.
328 The patchoulol-producing *C. reinhardtii* was found to grow well in AnMBR effluent,
329 generating 2.35, 2.18, and 2.43 g CDW L⁻¹ culture in May, August, and November
330 conditions, respectively, after 36–60 h of cultivation (Fig. 3b). Continuous light
331 generated 2.7 g CDW L⁻¹ after 60 h of cultivation, whereas in February and the 12
332 h:12 h light conditions, biomass reached a maximum of ~2.0 g CDW L⁻¹ after 80 h
333 (Fig. 3b).

334 Across all conditions, patchoulol production gradually increased over the 96 h
335 experimental period (Fig. 3g–h; Suppl. Fig 3). Continuous light yielded the highest
336 patchoulol production, with a maximum titer of 837 µg patchoulol L⁻¹ culture after 96
337 h (Fig. 3g). Under the 12 h:12 h light:dark illumination cycle, and the simulated
338 February, November and May conditions, patchoulol titers were relatively similar to
339 each other by the end of the experiment, with concentrations of 460, 542, 395 and 423

340 $\mu\text{g L}^{-1}$ culture. Under August conditions, patchoulol production was considerably lower
341 ($76 \mu\text{g L}^{-1}$ culture). Patchoulol production per cell, based on algal cell count
342 measurements (Fig. 3 f), showed a similar pattern to the volumetric yields. Cell-specific
343 patchoulol production was highest in the continuous light regime (188 fg cell^{-1}) and
344 negligible in the summer conditions (August: 20 fg cell^{-1}) (Fig. 3h). Moderate
345 production of patchoulol per-cell was observed under the 12 h:12 h light:dark
346 illumination (146 fg cell^{-1}), the simulated February (136 fg cell^{-1}), November (93 fg
347 cell^{-1}) and May (80 fg cell^{-1}) conditions. The latter finding suggests that patchoulol
348 production per cell gradually decreases with increasing cultivation temperature.

349

350 **4.4. Culture of engineered alga in unsterile effluent and biomass accumulation**

351 In this experiment, highly engineered algal biomass was also dominant in these
352 unsterile cultivations, despite the presence of contaminating bacteria (Suppl. Fig. 4).
353 Algal-bacterial consortia in wastewater treatment simultaneously degrade organic
354 carbon by heterotrophic bacteria and nutrients (N and P) by photoautotrophic algae.
355 In their interactions, the oxygen produced by algae sustains bacterial respiration that
356 contributes to nitrification and denitrification as well as organic matter removal. In
357 return, the CO_2 produced by bacteria enhances microalgae growth (Foladori et al.,
358 2018; Gou et al., 2020). Qu et al. (2020) reported that *Chlamydomonas* sp. QWY37
359 remediated swine wastewater and reduced the amount of total N by 96% and removed
360 100% of P. A newly isolated strain, named *Chlamydomonas* sp. YC, exhibits high
361 tolerance towards ammonium, and was used to treat the undiluted rare earth element
362 mining wastewater (Zhou et al., 2022). Here, the engineered *C. reinhardtii* patchoulol-
363 producing strain removed all ammonium and phosphate from the raw effluent by the
364 end of the cultivations (96 h), except for the $\text{NH}_4^+ \text{-N}$ content in the 12 h:12 h dark:light
365 cultures (Fig. 3 d–e, and Suppl. Fig. 5). It could be expected that some cell wall
366 proteins of the alga may be present at the end of cultivation, which would be removed

367 by any ultrafiltration steps used for biomass concentration. Under continuous light and
368 conditions simulating May and August, the same strain was able to take up all the
369 NH_4^+ -N after only 72 h and phosphates after 48 h (Fig 3 d–e). As pH was controlled
370 (7–7.1) across experimental conditions, NH_4^+ -N volatilization and PO_4^{3-} -P precipitation
371 were not issues here, unlike in previous studies (Gutzeit et al., 2005).
372 It was observed that algal biomass generation was highest in May and August
373 conditions after 24–48 h (Fig. 3 b), whereas the rate of biomass generation decreased
374 after the consumption of N and P sources (Fig 3 d–e). These findings point to potential
375 repetitive batch scheduling conditions, which could be used to cycle nutrient removal
376 with biomass generation.

377 One of the advantages of using microalgae to treat WW is their photosynthetic CO_2
378 fixation, which can also be used to assist the cleaning of CO_2 from CH_4 in AnMBR off-
379 gas (Ruiz-Martinez et al., 2012). A previous report also found that CO_2 from a lab-
380 scale AnMBR was completely consumed by algal culture, but only after 4 d of
381 operation (Xiong et al., 2018). Here, 7% CO_2 without CH_4 was provided as a carbon
382 source and pH control in order to see maximal growth of algae with the available N
383 and P of the effluent. Our cultivations yielded CDW of over 2 g L^{-1} by 48h in the
384 simulated August, May, November, and continuous culture conditions (Fig. 3b). For
385 May and continuous illumination conditions, rates of CO_2 to biomass (biofixation) were
386 ~ 2 and 1.88 g L^{-1} , respectively, in the 24 hours of the second day of cultivation
387 (Fig. 3c). The growth performance of the strain and biomass accumulation over 96
388 hours are equivalent to ~ 3.66 and 3.44 g CO_2 into biomass L^{-1} algal culture, for May
389 and August, respectively. The AnMBR used here generates $631.5 \text{ mg CO}_2 \text{ L}^{-1}$
390 effluent. It should then be possible for the engineered *C. reinhardtii* strain to capture
391 100% of the CO_2 generated in its off-gas using the N and P found in 1 L effluent in 24
392 hours of the logarithmic growth phase of these conditions. However, cultivation
393 periods longer than 24 hours would be required for complete N and P consumption as

394 this took 48-72 hours in the conditions tested here (Fig. 3 d,e). Therefore, AnMBR off-
395 gas storage and controlled feeding to algal cultures would need to be independently
396 controlled to maximize N and P removal from the effluent, while scrubbing CO₂ from
397 the gas mixture. These process factors would need to be considered in bio-process
398 design scheduling.

399 The high temperature and light conditions typical for the central Red Sea coast of
400 Saudi Arabia, seem to be favorable for rapid growth of the engineered *C. reinhardtii*
401 strain even in this effluent. The milking of a terpenoid co-product during nutrient
402 removal could be considered a highly promising way to increase the economics of lost
403 resources in WWs. Solvent milking can be cyclic, wherein the extraction of the
404 patchoulol from the solvent can be performed and the solvent returned to culture in
405 low OPEX bio-processes (Overmans et al., 2022). Here, we chose the
406 sesquiterpenoid patchoulol as an exemplary product of the engineered algae due to
407 the availability of strains. Different terpenoids produced by engineered algal could be
408 chosen based on market demands as many of these products have been shown and
409 engineering is ongoing (Lauersen, 2019). The market price of synthetic patchoulol
410 made by engineered yeast is ~\$1.2 USD g⁻¹ (Clearwood™ by Firmenich
411 <https://perfumersupplyhouse.com/product/clearwood-firmenich/>). Patchoulol
412 productivity from the engineered algae was up to 837 µg L⁻¹ algal culture in effluent
413 (96 h) and between 200-400 µg L⁻¹ culture d⁻¹ across biological replicates in the
414 highest growth phase of 24-48 h (Fig. 3g, Supp. Fig. 3). At these productivities,
415 \$1.2 USD could be generated for every 1,975 L (96 h batch) or 5,000-2,500 L d⁻¹ (high
416 growth-rate repetitive batch) of effluent.

417 Higher temperatures in August simulations resulted in drastically lower patchoulol co-
418 product yields, indicating unfavorable isoprenoid metabolism in these higher
419 temperatures despite high biomass production rates (Fig. 3). In other conditions with
420 lower temperatures, patchoulol production was higher although nutrient removal and

421 algal growth were slower. Therefore, a balance in process design will perhaps be
422 necessary wherein seasonal outdoor, lower energy input, processes are switched with
423 semi artificial cultivation conditions in summer conditions. These factors for co-product
424 generation will also need to be balanced with culture residence times to ensure
425 complete N and P removal, gas-stream CO₂ stripping and biomass separation.

426

427

428 **5. Conclusions**

429 We show here that a highly domesticated, lab-adapted and engineered green alga can
430 grow directly in unsterile AnMBR effluents and yield considerable biomass (2.7 g CDW
431 L⁻¹); even under extreme light and temperature conditions typical for the central Red
432 Sea coast of the Arabian Peninsula. Using a co-product milking strategy, we could
433 simultaneously generate clean water and algal biomass, and convert waste CO₂ into
434 a valuable co-product patchoulol, which was non-intrusively collected through
435 microbial milking. This process could readily be extended to other high-value
436 isoprenoids, secreted recombinant proteins, or volatile bulk chemical feedstocks
437 produced by engineered algae. The biomass itself is valuable, although engineering
438 alternative pigments could further enhance this. Alternatively, algal biomass generated
439 through post-treatment of AnMBR effluent could be used as a bulk vehicle for carbon
440 sequestration, and nutrient recovery strategies, such as biomass conversion to
441 biochar, hydrothermal liquefaction, conversion to asphalt, generation of phytostimulant
442 fertilizers, or direct use in bio-materials (plastics) production. The demonstration that
443 domesticated and engineerable algal strains can grow directly in AnMBR effluent and
444 yield high value side products drastically expands the range of possibilities to increase
445 the circular value of these systems. This can potentially be done by having municipal
446 wastewater go through AnMBR-based treatment, and the AnMBR effluent being fed
447 into a photobioreactor inoculated with the engineered algal strains to yield valuable
448 products and/or biomass.

449
450

451 **6. Author Contributions**

452 BF and SO were responsible for design and performed experiments and contributed
453 to writing the manuscript. JM operated the AnMBR and sourced the effluent. PYH and
454 KJL contributed to experimental design, project supervision, funding acquisition, and
455 manuscript writing.

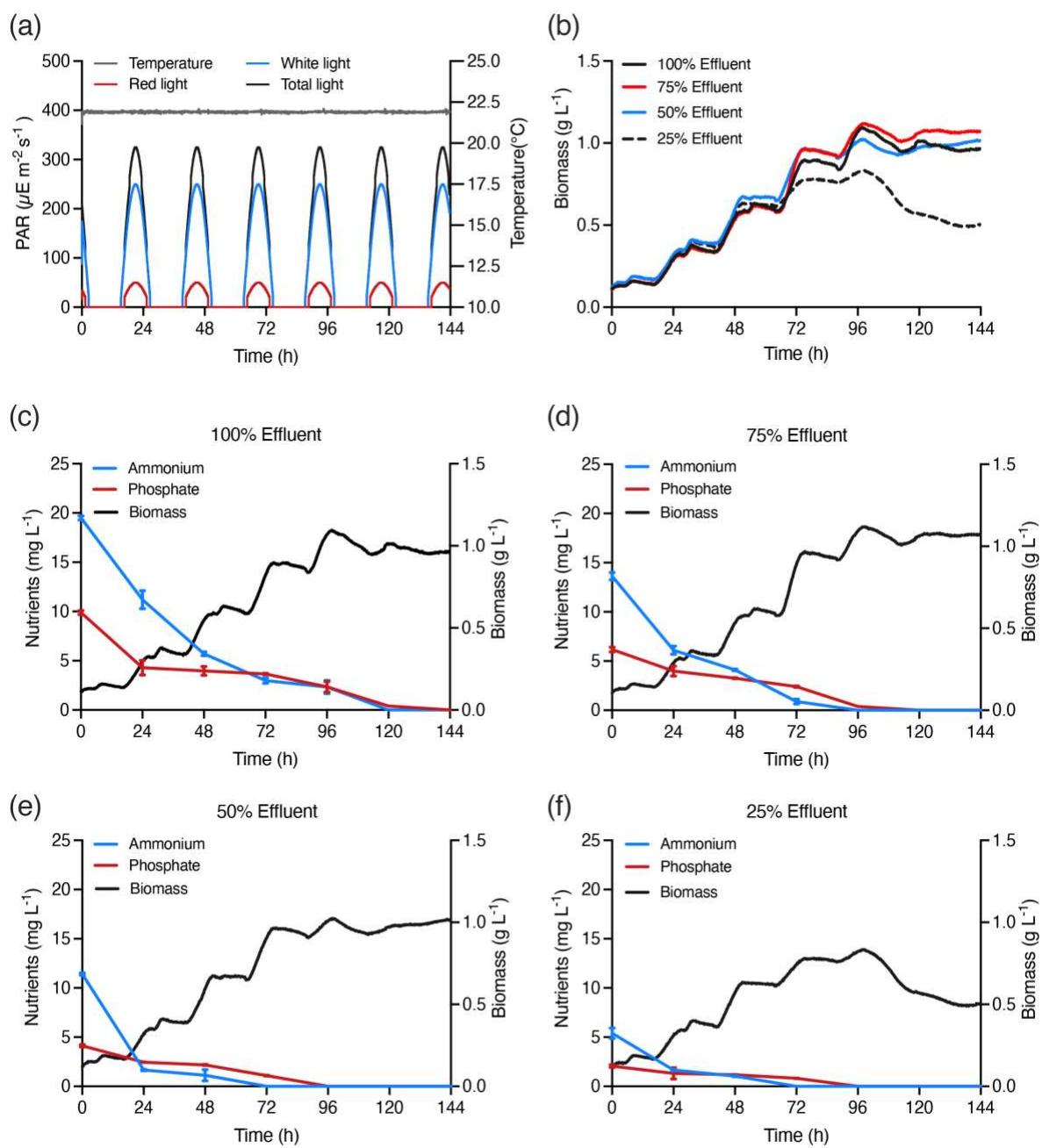
456

457 **7. Conflicts of interest**

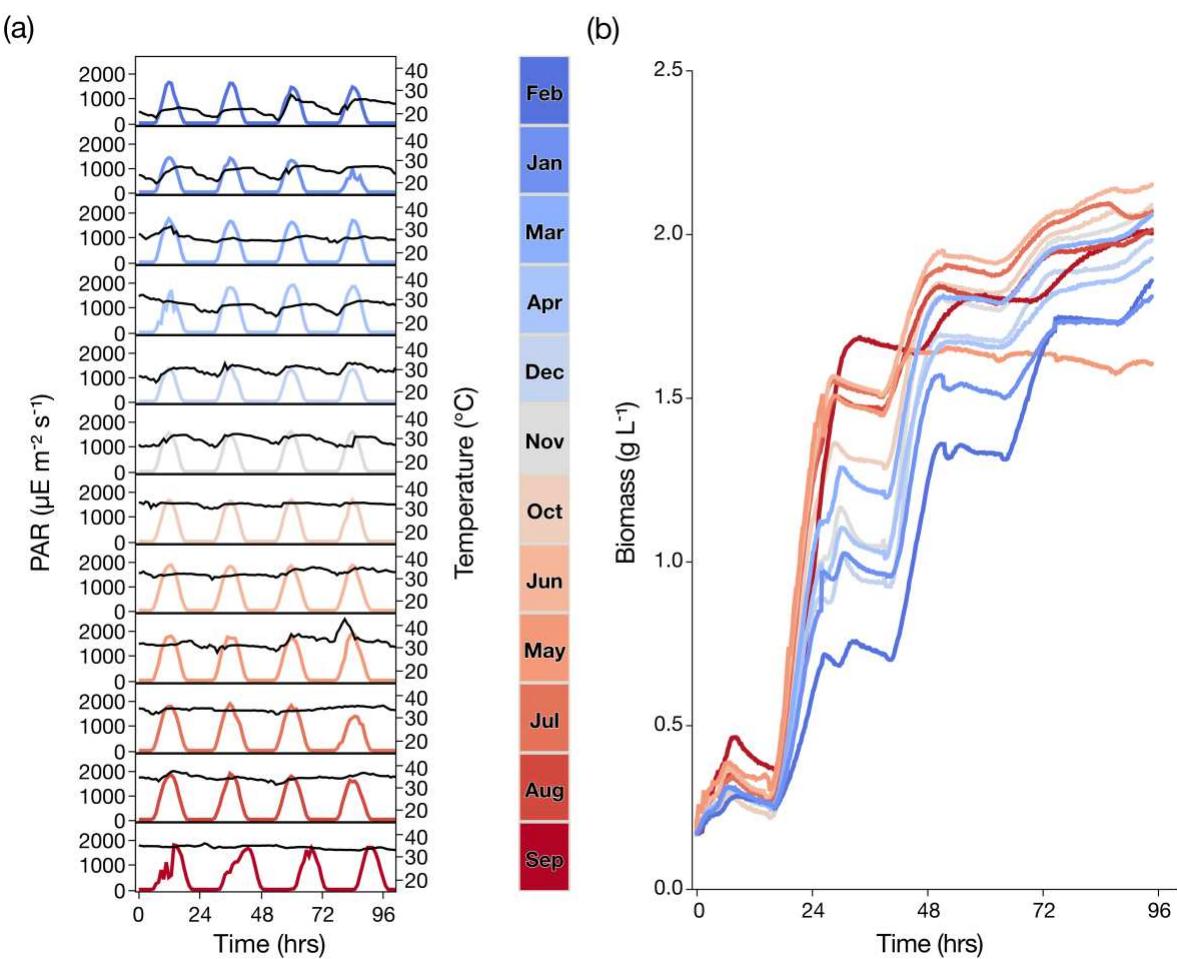
458 There are no conflicts to declare.

459

460 **8. Acknowledgements**

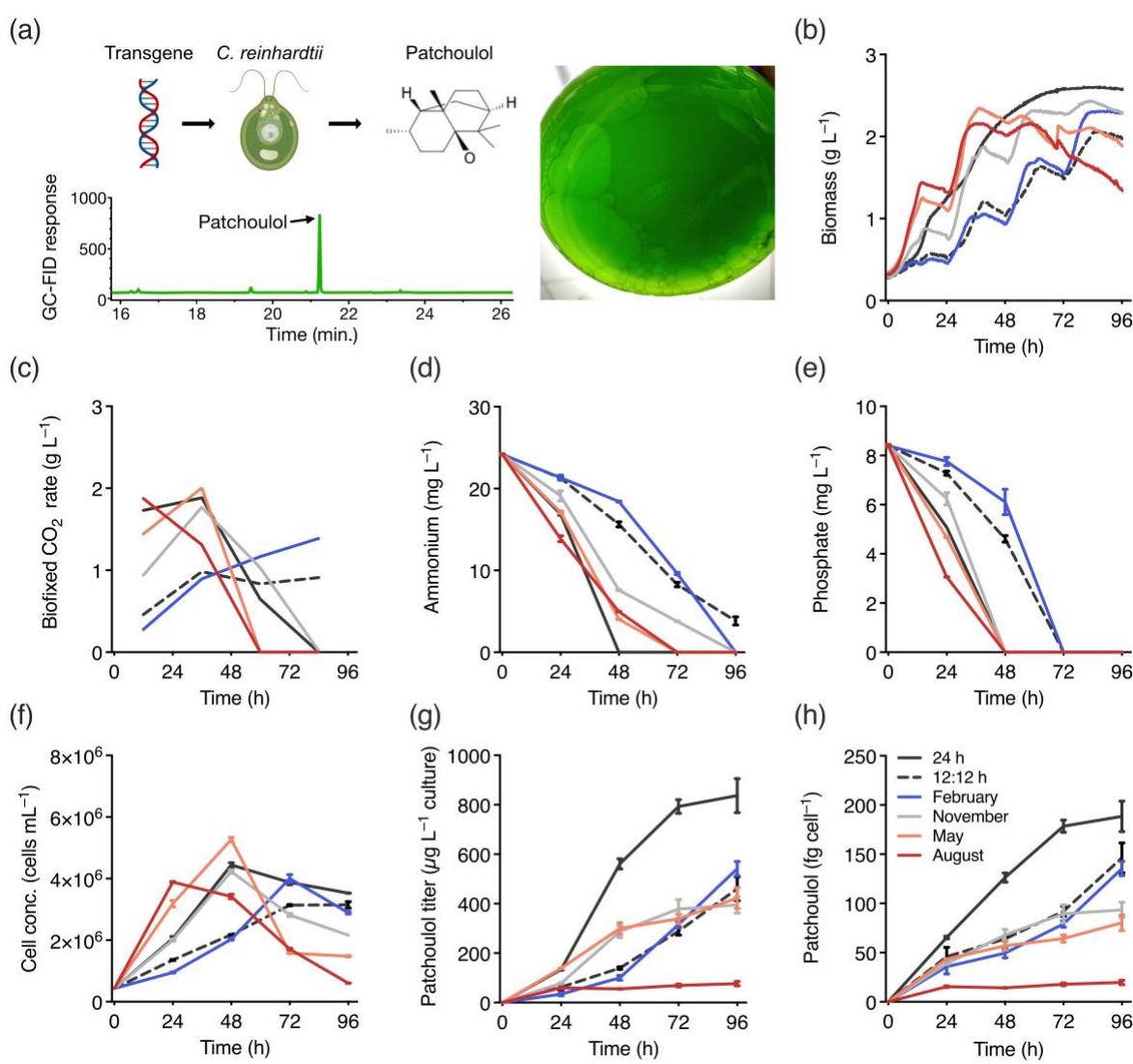

461 We would like to express special thanks to the Coastal and Marine Resources Core
462 Lab (CMR) at KAUST for providing the temperature and PAR data sets used in this
463 study.

464


465 **9. Funding**

466 The research reported in this publication was supported by the KAUST Impact
467 Acceleration Funds program (grant 4224) and KAUST baseline funding awarded to
468 PH and KL.

469 10. Figure Legends


470
471 **Figure 1.** (a) Temperature and light conditions and (b) biomass generated at different
472 effluent percentages during the effluent dilution experiment. Lower panels show
473 ammonium and phosphate concentrations over time when 100% effluent (c), 75%
474 effluent (d), 50% effluent (e) and 25% effluent (f) dilution were used as growth medium.
475

476

477 **Figure 2.** (a) Temperature and PAR profiles that were recorded in Thuwal, Saudi
478 Arabia between January and December 2014. Displayed are the first 96h of each
479 month, which were used for the local weather simulation experiment. The black lines
480 represent temperature, while the colored lines represent PAR. (b) Algal biomass
481 accumulated over 96 h under the different simulated local temperature-PAR conditions
482 shown in (a).

483

484

485 **Figure 3.** (a) Schematic of transgene insertion into *C. reinhardtii* which leads to
486 patchoulol production, a photo showing the FC-3283 underlay in a bioreactor flask,
487 and a representative GC-MS chromatogram of an FC-3283 sample containing
488 patchoulol (b) algal biomass (c) bio-fixed CO₂, calculated as the maximum biomass in
489 a 24 h interval * 1.83 (CO₂ : biomass ratio) (d, e) ammonium and phosphate
490 concentrations and (f) algal cell counts during 96 h of *C. reinhardtii* cultivation in
491 wastewater in six different environmental conditions. (g, h) Volumetric and cell-
492 dependent patchoulol production during cultivation. Values displayed in (d)–(h) are
493 means \pm SEM of two technical replicates (n=2).

494 11. References

495 Abdallah, M.N., Wellman, G.B., Overmans, S., Lauersen, K.J., 2022. Combinatorial
496 Engineering Enables Photoautotrophic Growth in High Cell Density Phosphate-
497 Buffered Media to Support Engineered *Chlamydomonas reinhardtii* Bio-
498 Production Concepts. *Front Microbiol* 13, 1–12.
499 <https://doi.org/10.3389/fmicb.2022.885840>

500 Al-Jasser, A.O., 2011. Saudi wastewater reuse standards for agricultural irrigation:
501 Riyadh treatment plants effluent compliance. *Journal of King Saud University -*
502 *Engineering Sciences* 23, 1–8. <https://doi.org/10.1016/j.jksues.2009.06.001>

503 Almazroui, M., Nazrul Islam, M., Athar, H., Jones, P.D., Rahman, M.A., 2012. Recent
504 climate change in the Arabian Peninsula: Annual rainfall and temperature
505 analysis of Saudi Arabia for 1978-2009. *International Journal of Climatology* 32,
506 953–966. <https://doi.org/10.1002/joc.3446>

507 Alsarmi, S.H., Washington, R., 2014. Changes in climate extremes in the Arabian
508 Peninsula: Analysis of daily data. *International Journal of Climatology* 34, 1329–
509 1345. <https://doi.org/10.1002/joc.3772>

510 Baier, T., Jacobebbinghaus, N., Einhaus, A., Lauersen, K.J., Kruse, O., 2020. Introns
511 mediate post-Transcriptional enhancement of nuclear gene expression in the
512 green microalga *Chlamydomonas reinhardtii*. *PLoS Genet* 16, 1–21.
513 <https://doi.org/10.1371/journal.pgen.1008944>

514 Baier, T., Wichmann, J., Kruse, O., Lauersen, K.J., 2018. Intron-containing algal
515 transgenes mediate efficient recombinant gene expression in the green
516 microalga *Chlamydomonas reinhardtii*. *Nucleic Acids Res* 46, 6909–6919.
517 <https://doi.org/10.1093/nar/gky532>

518 Beekwilder, J., van Houwelingen, A., Cankar, K., van Dijk, A.D.J., de Jong, R.M.,
519 Stoopen, G., Bouwmeester, H., Achkar, J., Sonke, T., Bosch, D., 2014.

520 Valencene synthase from the heartwood of Nootka cypress (*Callitropsis*
521 *nootkatensis*) for biotechnological production of valencene. *Plant Biotechnol J*
522 12, 174–182. <https://doi.org/10.1111/pbi.12124>

523 Cai, T., Park, S.Y., Li, Y., 2013. Nutrient recovery from wastewater streams by
524 microalgae: Status and prospects. *Renewable and Sustainable Energy Reviews*
525 19, 360–369. <https://doi.org/10.1016/j.rser.2012.11.030>

526 Chaudry, S., 2021. Integrating Microalgae Cultivation with Wastewater Treatment: a
527 Peek into Economics. *Appl Biochem Biotechnol* 193, 3395–3406.
528 <https://doi.org/10.1007/s12010-021-03612-x>

529 Chisti, Y., 2007. Biodiesel from microalgae. *Biotechnol Adv* 25, 294–306.
530 <https://doi.org/10.1016/j.biotechadv.2007.02.001>

531 Einhaus, A., Steube, J., Freudenberg, R.A., Barczyk, J., Baier, T., Kruse, O., 2022.
532 Engineering a powerful green cell factory for robust photoautotrophic diterpenoid
533 production. *Metab Eng* 73, 82–90. <https://doi.org/10.1016/j.ymben.2022.06.002>

534 Foladori, P., Petrini, S., Nessenzia, M., Andreottola, G., 2018. Enhanced nitrogen
535 removal and energy saving in a microalgal – bacterial consortium treating real
536 municipal wastewater. *Water Science & Technology* 78, 174–182.
537 <https://doi.org/10.2166/wst.2018.094>

538 Freudenberg, R.A., Wittemeier, L., Einhaus, A., Baier, T., Kruse, O., 2022. Advanced
539 pathway engineering for phototrophic putrescine production. *Plant Biotechnol J*
540 1–15. <https://doi.org/10.1111/pbi.13879>

541 Gao, F., Yang, Z.Y., Zhao, Q.L., Chen, D.Z., Li, C., Liu, M., Yang, J.S., Liu, J.Z., Ge,
542 Y.M., Chen, J.M., 2021. Mixotrophic cultivation of microalgae coupled with
543 anaerobic hydrolysis for sustainable treatment of municipal wastewater in a
544 hybrid system of anaerobic membrane bioreactor and membrane
545 photobioreactor. *Bioresour Technol* 337, 125457.
546 <https://doi.org/10.1016/j.biortech.2021.125457>

547 Gou, Y., Yang, J., Fang, F., Guo, J., Ma, H., Gou, Y., 2020. Feasibility of using a
548 novel algal-bacterial biofilm reactor for efficient domestic wastewater treatment
549 3330. <https://doi.org/10.1080/09593330.2018.1499812>

550 Gruchattka, E., Kayser, O., 2015. In vivo validation of in silico predicted metabolic
551 engineering strategies in yeast: Disruption of α -ketoglutarate dehydrogenase
552 and expression of ATP-citrate lyase for terpenoid production. PLoS One 10, 1–
553 25. <https://doi.org/10.1371/journal.pone.0144981>

554 Gutzeit, G., Lorch, D., Weber, A., Engels, M., Neis, U., 2005. Bioflocculent algal-
555 bacterial biomass improves low-cost wastewater treatment. Water Science and
556 Technology 52, 9–18. <https://doi.org/10.2166/wst.2005.0415>

557 Klassen, V., Blifernez-Klassen, O., Bax, J., Kruse, O., 2020. Wastewater-borne
558 microalga Chlamydomonas sp.: A robust chassis for efficient biomass and
559 biomethane production applying low-N cultivation strategy. Bioresour Technol.
560 <https://doi.org/10.1016/j.biortech.2020.123825>

561 Lauersen, K.J., 2019. Eukaryotic microalgae as hosts for light-driven heterologous
562 isoprenoid production. Planta 249, 155–180. <https://doi.org/10.1007/s00425-018-3048-x>

564 Lauersen, K.J., Baier, T., Wichmann, J., Wördenweber, R., Mussgnug, J.H., Hübner,
565 W., Huser, T., Kruse, O., 2016. Efficient phototrophic production of a high-value
566 sesquiterpenoid from the eukaryotic microalga Chlamydomonas reinhardtii.
567 Metab Eng. <https://doi.org/10.1016/j.jymben.2016.07.013>

568 Lauersen, K.J., Wichmann, J., Baier, T., Kampranis, S.C., Pateraki, I., Møller, B.L.,
569 Kruse, O., 2018. Phototrophic production of heterologous diterpenoids and a
570 hydroxy-functionalized derivative from Chlamydomonas reinhardtii. Metab Eng
571 49, 116–127. <https://doi.org/10.1016/j.jymben.2018.07.005>

572 Leite, L. de S., Hoffmann, M.T., Daniel, L.A., 2019. Microalgae cultivation for
573 municipal and piggery wastewater treatment in Brazil. *Journal of Water Process
574 Engineering*. <https://doi.org/10.1016/j.jwpe.2019.100821>

575 Li, K., Liu, Q., Fang, F., Luo, R., Lu, Q., Zhou, W., Huo, S., Cheng, P., Liu, J., Addy,
576 M., Chen, P., Chen, D., Ruan, R., 2019. Microalgae-based wastewater
577 treatment for nutrients recovery: A review. *Bioresour Technol*.
578 <https://doi.org/10.1016/j.biortech.2019.121934>

579 Liu, X. ya, Hong, Y., 2021. Microalgae-Based Wastewater Treatment and Recovery
580 with Biomass and Value-Added Products: a Brief Review. *Curr Pollut Rep* 7,
581 227–245. <https://doi.org/10.1007/s40726-021-00184-6>

582 Mehrshahi, P., Nguyen, G.T.D.T., Gorchs Rovira, A., Sayer, A., Llavero-Pasquina,
583 M., Lim Huei Sin, M., Medcalf, E.J., Mendoza-Ochoa, G.I., Scaife, M.A., Smith,
584 A.G., 2020. Development of Novel Riboswitches for Synthetic Biology in the
585 Green Alga Chlamydomonas. *ACS Synth Biol* 9, 1406–1417.
586 <https://doi.org/10.1021/acssynbio.0c00082>

587 Neupert, J., Gallaher, S.D., Lu, Y., Strenkert, D., Segal, N., Barahimipour, R., Fitz-
588 Gibbon, S.T., Schroda, M., Merchant, S.S., Bock, R., 2020. An epigenetic gene
589 silencing pathway selectively acting on transgenic DNA in the green alga
590 Chlamydomonas. *Nat Commun* 11. <https://doi.org/10.1038/s41467-020-19983-4>

591 Neupert, J., Karcher, D., Bock, R., 2009. Generation of Chlamydomonas strains that
592 efficiently express nuclear transgenes. *Plant Journal* 57, 1140–1150.
593 <https://doi.org/10.1111/j.1365-313X.2008.03746.x>

594 Overmans, S., Ignacz, G., Beke, A.K., Xu, J., Saikaly, P.E., Szekely, G., Lauersen,
595 K.J., 2022. Continuous extraction and concentration of secreted metabolites
596 from engineered microbes using membrane technology. *Green Chemistry* 24,
597 5479–5489. <https://doi.org/10.1039/d2gc00938b>

598 Overmans, S., Lauersen, K.J., 2022. Biocompatible fluorocarbon liquid underlays for
599 in situ extraction of isoprenoids from microbial cultures . RSC Adv 12, 16632–
600 16639. <https://doi.org/10.1039/d2ra01112c>

601 Perozeni, F., Cazzaniga, S., Baier, T., Zanoni, F., Zoccatelli, G., Lauersen, K.J.,
602 Wobbe, L., Ballottari, M., 2020. Turning a green alga red: engineering
603 astaxanthin biosynthesis by intragenic pseudogene revival in Chlamydomonas
604 reinhardtii. Plant Biotechnol J 18, 2053–2067. <https://doi.org/10.1111/pbi.13364>

605 Qu, W., Loke Show, P., Hasunuma, T., Ho, S.H., 2020. Optimizing real swine
606 wastewater treatment efficiency and carbohydrate productivity of newly
607 microalga Chlamydomonas sp. QWY37 used for cell-displayed bioethanol
608 production. Bioresour Technol 305, 123072.
609 <https://doi.org/10.1016/j.biortech.2020.123072>

610 Rajput, B.S., Hai, T.A.P., Gunawan, N.R., Tessman, M., Neelakantan, N., Scofield,
611 G.B., Brizuela, J., Samoylov, A.A., Modi, M., Shepherd, J., Patel, A., Pomeroy,
612 R.S., Pourahmady, N., Mayfield, S.P., Burkart, M.D., 2022. Renewable low
613 viscosity polyester-polyols for biodegradable thermoplastic polyurethanes. J
614 Appl Polym Sci 1–14. <https://doi.org/10.1002/app.53062>

615 Ruiz-Martinez, A., Martin Garcia, N., Romero, I., Seco, A., Ferrer, J., 2012.
616 Microalgae cultivation in wastewater: Nutrient removal from anaerobic
617 membrane bioreactor effluent. Bioresour Technol 126, 247–253.
618 <https://doi.org/10.1016/j.biortech.2012.09.022>

619 Serna-García, R., Mora-Sánchez, J.F., Sanchis-Perucho, P., Bouzas, A., Seco, A.,
620 2020a. Anaerobic membrane bioreactor (AnMBR) scale-up from laboratory to
621 pilot-scale for microalgae and primary sludge co-digestion: Biological and
622 filtration assessment. Bioresour Technol 316, 123930.
623 <https://doi.org/10.1016/j.biortech.2020.123930>

624 Serna-García, R., Zamorano-López, N., Seco, A., Bouzas, A., 2020b. Co-digestion
625 of harvested microalgae and primary sludge in a mesophilic anaerobic
626 membrane bioreactor (AnMBR): Methane potential and microbial diversity.
627 *Bioresour Technol* 298, 122521. <https://doi.org/10.1016/j.biortech.2019.122521>

628 Viruela, A., Murgui, M., Gómez-Gil, T., Durán, F., Robles, Á., Ruano, M.V., Ferrer, J.,
629 Seco, A., 2016. Water resource recovery by means of microalgae cultivation in
630 outdoor photobioreactors using the effluent from an anaerobic membrane
631 bioreactor fed with pre-treated sewage. *Bioresour Technol* 218, 447–454.
632 <https://doi.org/10.1016/j.biortech.2016.06.116>

633 Wichmann, J., Baier, T., Wentnagel, E., Lauersen, K.J., Kruse, O., 2018. Tailored
634 carbon partitioning for phototrophic production of (E)- α -bisabolene from the
635 green microalga *Chlamydomonas reinhardtii*. *Metab Eng* 45, 211–222.
636 <https://doi.org/10.1016/j.ymben.2017.12.010>

637 Wichmann, J., Lauersen, K.J., Biondi, N., Christensen, M., Guerra, T., Hellgardt, K.,
638 Kühner, S., Kuronen, M., Lindberg, P., Rösch, C., Yunus, I.S., Jones, P.,
639 Lindblad, P., Kruse, O., 2021. Engineering Biocatalytic Solar Fuel Production:
640 The PHOTOFUEL Consortium. *Trends Biotechnol* 39, 323–327.
641 <https://doi.org/10.1016/j.tibtech.2021.01.003>

642 Xiong, Y., Hozic, D., Goncalves, A.L., Simões, M., Hong, P.Y., 2018. Increasing
643 tetracycline concentrations on the performance and communities of mixed
644 microalgae-bacteria photo-bioreactors. *Algal Res* 29, 249–256.
645 <https://doi.org/10.1016/j.algal.2017.11.033>

646 Zhou, Y., He, Y., Zhou, Z., Xiao, X., Wang, M., Chen, B., 2022. A newly isolated
647 microalga *Chlamydomonas* sp. YC to efficiently remove ammonium nitrogen of
648 rare earth elements wastewater. *J Environ Manage* 316, 115284.
649 <https://doi.org/10.1016/j.jenvman.2022.115284>

650