

1 **Pharmacological hallmarks of allosteric at the M4 muscarinic receptor**
2 **elucidated through structure and dynamics**
3

4 **Ziva Vuckovic^{1,7}, Jinan Wang^{2,7}, Vi Pham^{1,7}, Jesse I. Mobbs^{1,3,7}, Matthew J. Belousoff^{1,3},**
5 **Apurba Bhattacharai², Wessel A.C. Burger^{1,3}, Geoff Thompson¹, Mahmuda Yeasmin¹, Katie**
6 **Leach^{1,3}, Emma T. van der Westhuizen¹, Elham Khajehali¹, Yi-Lynn Liang¹, Alisa Glukhova^{1,3},**
7 **Denise Wootten^{1,3}, Craig W. Lindsley⁴, Andrew B. Tobin⁵, Patrick M. Sexton^{1,3}, Radostin**
8 **Danev⁶, Celine Valant^{1*}, Yinglong Miao^{2*}, Arthur Christopoulos^{1,3*}, and David M. Thal^{1,3*}**

9
10 ¹Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University,
11 Parkville, VIC 3052, Australia;

12 ²Center for Computational Biology and Department of Molecular Biosciences, University of
13 Kansas, Lawrence, KS 66045, USA;

14 ³ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of
15 Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia;

16 ⁴Department of Pharmacology, Warren Center for Neuroscience Drug Discovery and
17 Department of Chemistry, Warren Center for Neuroscience Drug Discovery, Vanderbilt
18 University, Nashville, Tennessee 37232, USA;

19 ⁵The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology,
20 College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ,
21 United Kingdom;

22 ⁶Graduate School of Medicine, University of Tokyo, N415, 7-3-1 Hongo, Bunkyo-ku, 113-0033
23 Tokyo, Japan

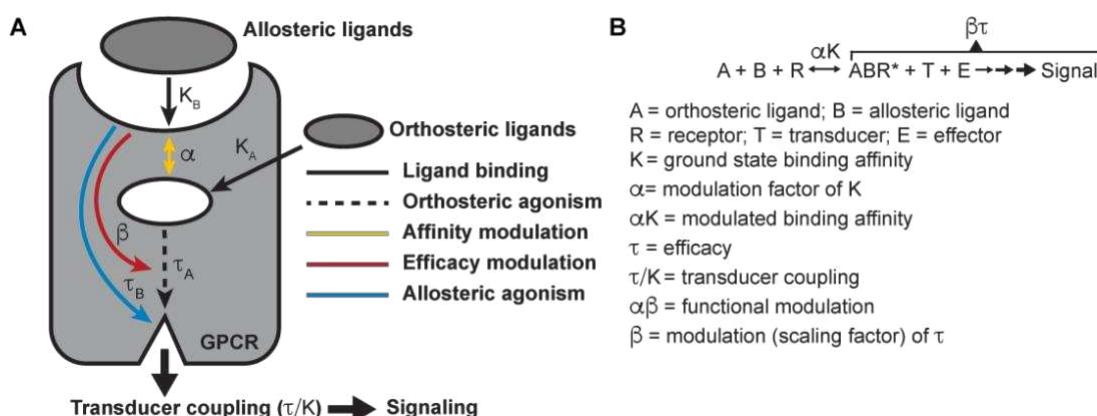
24 ⁷Authors contributed equally

25
26 *Correspondence: celine.valant@monash.edu (C.V.), miao@ku.edu (Y.M.),
27 arthur.christopoulos@monash.edu (A.C.), david.thal@monash.edu (D.M.T.)

28

29

30 **Abstract**


31 Allosteric modulation of G protein-coupled receptors (GPCRs) is a major paradigm in drug
32 discovery. Despite decades of research, a molecular level understanding of the general
33 principals that govern the myriad pharmacological effects exerted by GPCR allosteric
34 modulators remains limited. The M₄ muscarinic acetylcholine receptor (M₄ mAChR) is a well-
35 validated and clinically relevant allosteric drug target for several major psychiatric and
36 cognitive disorders. Here, we present high-resolution cryo-electron microscopy structures of
37 the M₄ mAChR bound to a cognate G_{i1} protein and the high affinity agonist, iperoxo, in the
38 absence and presence of two different positive allosteric modulators, LY2033298 or
39 VU0467154. We have also determined the structure of the M₄ mAChR-G_{i1} complex bound to
40 its endogenous agonist, acetylcholine (ACh). Structural comparisons, together with molecular
41 dynamics, mutagenesis, and pharmacological validations, have provided in-depth insights
42 into the role of structure and dynamics in orthosteric and allosteric ligand binding, global
43 mechanisms of receptor activation, cooperativity, probe-dependence, and species variability;
44 all key hallmarks underpinning contemporary GPCR drug discovery.

45

46

47 **Introduction**

48 Over the past 40 years, there have been major advances to the analytical methods that allow
49 for the quantitative determination of the pharmacological parameters that characterise G
50 protein-coupled receptor (GPCR) signaling and allosteric modulation (Figure 1A,B). These
51 analytical methods are based on the operational model of agonism (Black and Leff, 1983) and
52 have been extended or modified to account for allosteric modulation (Leach et al., 2007),
53 biased agonism (Kenakin, 2012), and even biased allosteric modulation (Slosky et al., 2021).
54 Collectively, these models and subsequent key parameters (Figure 1B) are used to guide
55 allosteric drug screening, selectivity, efficacy and ultimately, clinical utility, and provide the
56 foundation for modern GPCR drug discovery (Wootton et al., 2013). Yet, a systematic
57 understanding of how these pharmacological parameters relate to the molecular structure
58 and dynamics of GPCRs remains elusive.

59 **Figure 1. Pharmacological characterization of the PAMs, LY298 and VU154, with ACh and**
60 **Ipx.** (A) Schematic of the pharmacological parameters that define effects of orthosteric and
61 allosteric ligands on a GPCR. (B) A simplified schematic diagram of the Black-Leff operational
62 model to quantify agonism, allosteric, and agonist bias with pharmacological parameters
63 defined (Black and Leff, 1983).

64

65 The muscarinic acetylcholine receptors (mAChRs) are an important family of five Class A
66 GPCRs that have long served as model systems for understanding GPCR allostery (Conn et al.,
67 2009). The mAChRs have been notoriously difficult to exploit therapeutically and selectively
68 due to high sequence conservation within their orthosteric binding domains (Burger et al.,
69 2018). However, the discovery of highly selective positive allosteric modulators (PAMs) for
70 some mAChR subtypes has paved the way for novel approaches to exploit these high value

71 drug targets (Chan et al., 2008; Gentry et al., 2014; Marlo et al., 2009). X-ray crystallography
72 and cryo-electron microscopy (cryo-EM) have been used to determine inactive state
73 structures for all five mAChR subtypes (Haga et al., 2012; Kruse et al., 2012; Thal et al., 2016;
74 Vuckovic et al., 2019) and active state structures of the M₁ and M₂ mAChRs (Maeda et al.,
75 2019). For the M₂ mAChR this includes structures co-bound with the high-affinity agonist
76 iperoxo (Ipx) and the PAM LY2119620 in complex with a G protein mimetic nanobody (Kruse
77 et al., 2013) and the transducers G_o (Maeda et al., 2019) and β-arrestin1 (Staus et al., 2020).
78 These M₂ mAChR structures were foundational to validating the canonical mAChR allosteric
79 site but are limited to only one agonist (iperoxo) and one PAM (LY2119620) and do not
80 account for the vast pharmacological properties of ligands targeting mAChRs. A recent
81 nuclear magnetic resonance (NMR) study at the M₂ mAChR revealed differences in the
82 conformational landscape of the M₂ mAChR when bound to different agonists, but no clear
83 link was established between the properties of the ligands and the conformational states of
84 the receptor (Xu et al., 2019).

85

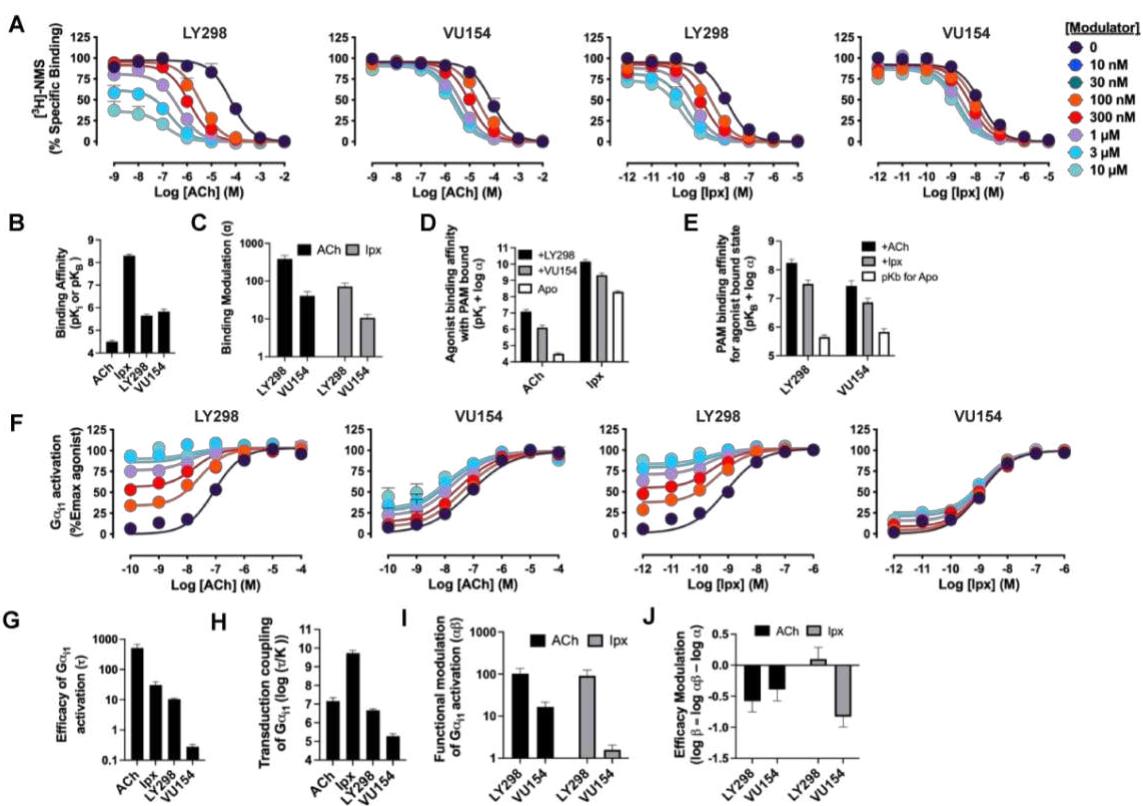
86 The M₄ mAChR subtype is of major therapeutic interest due to its expression in regions of the
87 brain that are rich in dopamine and dopamine receptors, where it regulates dopaminergic
88 neurons involved in cognition, psychosis, and addiction (Bymaster et al., 2003; Dencker et al.,
89 2011; Foster et al., 2016; Tzavara et al., 2004). Importantly, these findings have been
90 supported by studies utilizing novel PAMs that are highly selective for the M₄ mAChR (Bubser
91 et al., 2014; Chan et al., 2008; Leach et al., 2010; Suratman et al., 2011). Among these,
92 LY2033298 (LY298) was the first reported highly selective PAM of the M₄ mAChR and
93 displayed antipsychotic efficacy in a preclinical animal model of schizophrenia (Chan et al.,
94 2008). Despite LY298 being one of the best characterized M₄ mAChR PAMs, its therapeutic
95 potential has been limited by numerous factors including its chemical scaffold, which has
96 been difficult to optimize with respect to its molecular allosteric parameters (Figure 1) and
97 variability of response between species (Suratman et al., 2011; Wood et al., 2017a). In the
98 search for better chemical scaffolds, the PAM, VU0467154 (VU154), was subsequently
99 discovered. VU154 showed robust efficacy in preclinical rodent models, however, it also
100 exhibited species selectivity that prevented its clinical translation (Bubser et al., 2014).
101 Collectively, LY298 and VU154 are exemplar tool molecules that highlight the promises and

102 the challenges in understanding and optimising allosteric GPCR drug activity for translational
103 and clinical applications.

104

105 Herein, by examining the pharmacology of the PAMs LY298 and VU154 with the agonists ACh
106 and Ipx across radioligand binding assays and two different signaling assays and analysing
107 these results with modern analytical methods, we determined the key parameters that
108 describe signaling and allostery for these ligands. To investigate a structural basis for these
109 pharmacological parameters, we used cryo-electron microscopy (cryo-EM) to determine
110 high-resolution structures of the M₄ mAChR in complex with a cognate G_{i1} heterotrimer and
111 ACh and Ipx. We also determined structures of receptor complexes with Ipx co-bound with
112 the PAMs LY298 or VU154. Moreover, because protein allostery is a dynamic process
113 ([Changeux and Christopoulos, 2016](#)), we performed all-atom simulations using the Gaussian
114 accelerated molecular dynamics (GaMD) enhanced sampling method ([Draper-Joyce et al.,](#)
115 [2021; Miao et al., 2015; Wang et al., 2021a](#)) on the M₄ mAChR using the cryo-EM structures.
116 The structures and GaMD simulations, in combination with detailed molecular pharmacology
117 and receptor mutagenesis experiments, provide fundamental insights into the molecular
118 mechanisms underpinning the hallmarks of GPCR allostery. To further validate these findings,
119 we investigated the differences in the selectivity of VU154 between the human and mouse
120 receptors and established a structural basis for species selectivity. Collectively, these results
121 will enable future GPCR drug discovery research and potentially lead to the development of
122 next generation M₄ mAChR PAMs.

123


124 **Results**

125

126 **Pharmacological characterisation of M₄ mAChR PAMs with ACh and Ipx**

127 *Hallmarks of ligand binding.* We first used radioligand binding assays ([Figure 2A](#)) to determine
128 the *ground state binding affinities* of ACh and Ipx (K_A) for the orthosteric site and of LY298
129 and VU154 (K_B) for the allosteric site of the unoccupied human M₄ mAChR ([Figure 2B](#)), along
130 with the degree of *binding cooperativity* (α) between the agonists and PAMs when the two
131 are co-bound ([Figure 2C](#)). Analysis of these experiments revealed that LY298 and VU154 have
132 very similar binding affinities for the allosteric site with values (expressed as negative
133 logarithms; pK_B) of 5.65 ± 0.07 and 5.83 ± 0.12, respectively ([Figure 2B](#)), in accordance with

134 previous studies (Bubser et al., 2014; Leach et al., 2011). Both PAMs potentiated the ground
 135 state binding affinity of ACh and Ipx (Figure 2D,E), with the effect being greatest between
 136 LY298 and ACh (approx. 400-fold increase in binding affinity). Comparatively, the positive
 137 cooperativity between VU154 and ACh was only 40-fold. When Ipx was used as the agonist,
 138 the binding affinity modulation mediated by both PAMs was more modest, characterized by
 139 an approximate 72-fold potentiation for the combination of Ipx and LY298, and 10-fold
 140 potentiation for the combination of Ipx and VU154. These results indicate *probe-dependent*
 141 effects (Valant et al., 2012) with respect to the ability of either PAM to modulate the affinity
 142 of each agonist (Figure 2D,E). It is important to note that binding modulation is *reciprocal* and
 143 the affinities of LY298 and VU154 were also increased in the agonist bound state (Figure 2E).
 144 This results in LY298 having a 5-fold higher binding affinity than VU154 when agonists are
 145 bound (Table S1).

146
 147 **Figure 2. Pharmacological characterization of the PAMs, LY298 and VU154, with ACh and**
 148 **Ipx. (A)** Concentration response curves of interactions between the orthosteric and allosteric
 149 ligands at the human M₄ mAChR in [³H]-N-methylscopolamine ([³H]-NMS) binding assays.(B-
 150 E) Quantification of data from (A) to calculate (B) equilibrium binding affinities (pK_i and pK_B),
 151 (C) the degree of binding modulation (α) between the agonists and PAMs, and the modified

152 affinities (**D**) αK_A and (**E**) αK_B . (**F**) Concentration response curves of interactions between the
153 orthosteric and allosteric ligands at the human M₄ mAChR with an area under the curve
154 analysis of G α_{i1} activation using the TruPath assay. (**G-J**) Quantification of data from (**A,F**) to
155 calculate (**G**) the signaling efficacy (τ_A and τ_B) and (**H**) the transduction coupling
156 coefficients ($\log(\tau/K)$) of each ligand, (**I**) the functional cooperativity ($\alpha\beta$) between ligands,
157 and (**J**) the efficacy modulation (β) between ligands. All data are mean \pm SEM of 3 or more
158 independent experiments performed in duplicate or triplicate with the pharmacological
159 parameters determined from a global fit of the data. The error in (**D,E,J**) was propagated using
160 the square root of the sum of the squares. See **Table S1**.

161

162 *Hallmarks of GPCR function.* We subsequently used the BRET-based TruPath assay ([Olsen et](#)
163 [al., 2020](#)), as a proximal measure of G protein activation with G α_{i1} (**Figure 2F**). We also used
164 a more amplified downstream signalling assay, extracellular signal-regulated kinases 1/2
165 phosphorylation (pERK1/2), that is also dependent on G ι activation (**Figure S1A**), to measure
166 the cell-based activity of each PAM with each agonist. These signalling assays allowed us to
167 determine the *efficacy* of the agonists (τ_A) and the PAMs (τ_B) (**Figure 2G, Figure S1B**).
168 Importantly, efficacy (τ), as defined from the Black-Leff operational model of agonism ([Black](#)
169 [and Leff, 1983](#)), is determined by receptor density (B_{max}), the ability of an agonist to promote
170 an active receptor conformation, and the ability of a cellular system to generate a response
171 (**Figure 1B**). Notably, in both signalling assays, the rank order of efficacy was ACh > Ipx > LY298
172 > VU154. We subsequently calculated the *transducer coupling coefficient* (τ/K) (**Figure 1B**;
173 **Figure 2H; S1C**), a parameter often used to quantify agonist bias. The transducer coupling
174 coefficient accounts for the ground state binding affinity of the agonist (K), either orthosteric
175 or allosteric, and characterises the agonism of a specific pathway defined as the interaction
176 between an agonist, receptor, and transducer, which indirectly interacts with effector and
177 signalling proteins ([Kenakin et al., 2012](#)). Accordingly, in both assays, the rank order of
178 transducer coupling was Ipx >> ACh \sim LY298 > VU154 due to Ipx having a higher ground state
179 binding affinity for the receptor. Overall, these results indicate that although ACh is a more
180 efficacious agonist than Ipx it has lower transducer coupling coefficient. In contrast, LY298
181 has both better efficacy and transducer coupling than VU154 (**Table S1**).

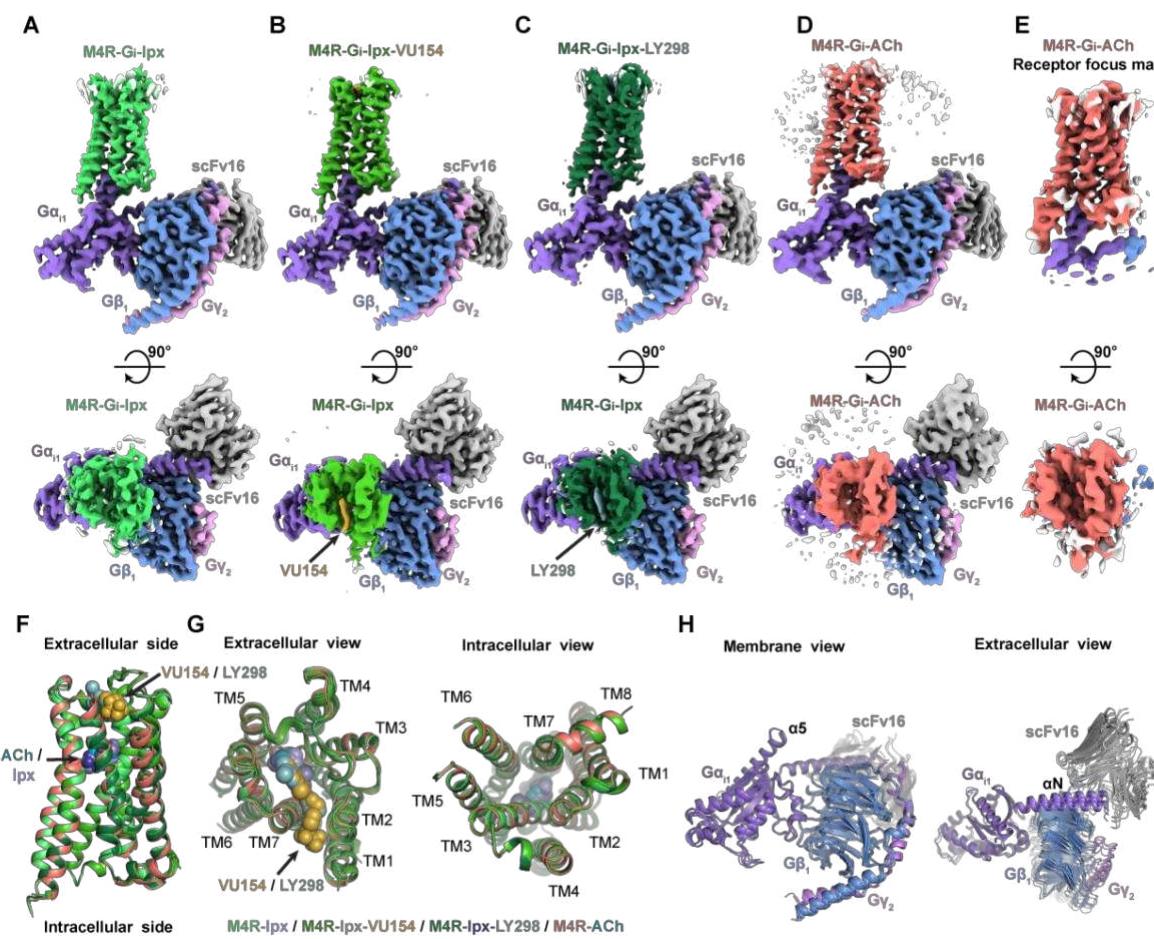
182

183 The signaling assays and use of an operational model of allosterism also allowed for the
184 determination of the *functional cooperativity* ($\alpha\beta$) exerted by the PAMs (**Figure 2I; S1D**),
185 which is a composite parameter accounting for both binding (α) and efficacy (β) modulation.
186 Notably, VU154 displayed lower positive functional cooperativity with ACh than LY298.
187 Strikingly, VU154 had negligible functional modulation with Ipx in contrast to the
188 cooperativity observed with ACh in the TruPath assay. The 10-fold difference in $\alpha\beta$ values for
189 VU154 between ACh and Ipx highlights the dependence of the orthosteric probe used in the
190 assay (i.e. *probe dependence*); on this basis, VU154 would be classified as a NAL (not a PAM)
191 with Ipx in the TruPath assay (**Table S1**).
192

193 The degree of *efficacy modulation* (β) that the PAMs have on the agonists can be calculated
194 directly by subtracting the binding modulation (α) from the functional modulation ($\alpha\beta$)
195 (**Figure 2J; S1E**). A caveat of this analysis is that errors for β are higher due the error being
196 propagated between experiments. Ideally, the degree of efficacy modulation would be
197 determined in an experimental system where the maximal efficacy of system is not reached
198 by the agonists alone ([Berizzi et al., 2016](#)). Nevertheless, our analysis shows the PAMs LY298
199 and VU154 appear to have a slight negative to neutral effect on agonist efficacy in the G_{i1}
200 Trupath and pERK1/2 assays (**Table S1**), suggesting that the predominant allosteric effect
201 exerted by these PAMs is mediated through binding modulation.
202

203 Collectively, our extensive analysis on the pharmacology of LY298 and VU154 with ACh and
204 Ipx offers detailed insight into the key differences between these ligands across a range of
205 pharmacological properties: ligand binding, probe dependence, efficacy, agonist-receptor-
206 transducer interactions, and allosteric modulation (**Figure 1, Table S1**). We hypothesised that
207 structures of the human M_4 mAChR in complex with different agonists and PAMs combined
208 with molecular dynamic simulations could provide high resolution molecular insights into the
209 different pharmacological profiles of these ligands.
210

211 **Determination of M_4R-G_{i1} complex structures**


212 Similar to the approach used in prior determination of active-state structures of the M_1 and
213 M_2 mAChRs ([Maeda et al., 2019](#)), we used a human M_4 mAChR construct that lacked residues

214 242 to 387 of the third intracellular loop to improve receptor expression and purification, and
215 made complexes of the receptor with G_{i1} protein and either the endogenous agonist, ACh, or
216 Ipx. Due to the higher affinity of Ipx compared to ACh (Schrage et al., 2013), we utilised Ipx to
217 form additional M_4R-G_{i1} complexes with or without the co-addition of either LY298 or VU154.
218 In all instances, complex formation was initiated by combining purified M_4 mAChR
219 immobilized on anti-FLAG resin with detergent solubilized G_{i1} membranes, a single-chain
220 variable fragment (scFv16) that binds G_i and $G\beta$, and the addition of apyrase to remove
221 guanosine 5'-diphosphate (Maeda et al., 2018). For this study, we used a G_{i1} heterotrimer
222 composed of a dominant negative form of human $G\alpha_{i1}$, and human $G\beta_1$ and $G\gamma_2$. (Liang et al.,
223 2018a). Vitrified samples of each complex were imaged using conventional cryo-TEM on a
224 Titan Krios microscope (Danev et al., 2021).

225
226 The structures of ACh-, Ipx-, LY298-Ipx-, and VU154-Ipx-bound M_4R-G_{i1} complexes were
227 determined to resolutions of 2.8, 2.8, 2.4, and 2.5 Å, respectively (Figure 3A-E, S2, Table S2).
228 For the ACh-bound M_4R-G_{i1} complex, an additional focus refinement yielded an improved
229 map of the receptor and binding site (2.75 Å) for modelling (Figure 3E). The electron
230 microscopy (EM) density maps for all complexes were sufficient for confident placement of
231 backbone and sidechains for most of the receptor, G_{i1} , and scFv16, and the bound ligands
232 with exception of the alkyne bond of Ipx (Figure S3). Notably, in the Ipx-bound structures, EM
233 density for the alkyne bond of Ipx was missing (Figure S3F), matching previous cryo-EM Ipx-
234 bound mAChR structures (Maeda et al., 2019). As such, it is difficult to place the alkyne bond
235 of Ipx into one preferred pose, largely because of rotational freedom on the carbon between
236 the alkyne bond and the rotatable trimethyl ammonium ion. This is highlighted by the
237 different poses of the alkyne bond across the different Ipx-bound mAChR structures and is
238 consistent with the reported docking of Ipx in the M_2 mAChR structure (Figure S3F) (Maeda
239 et al., 2019).

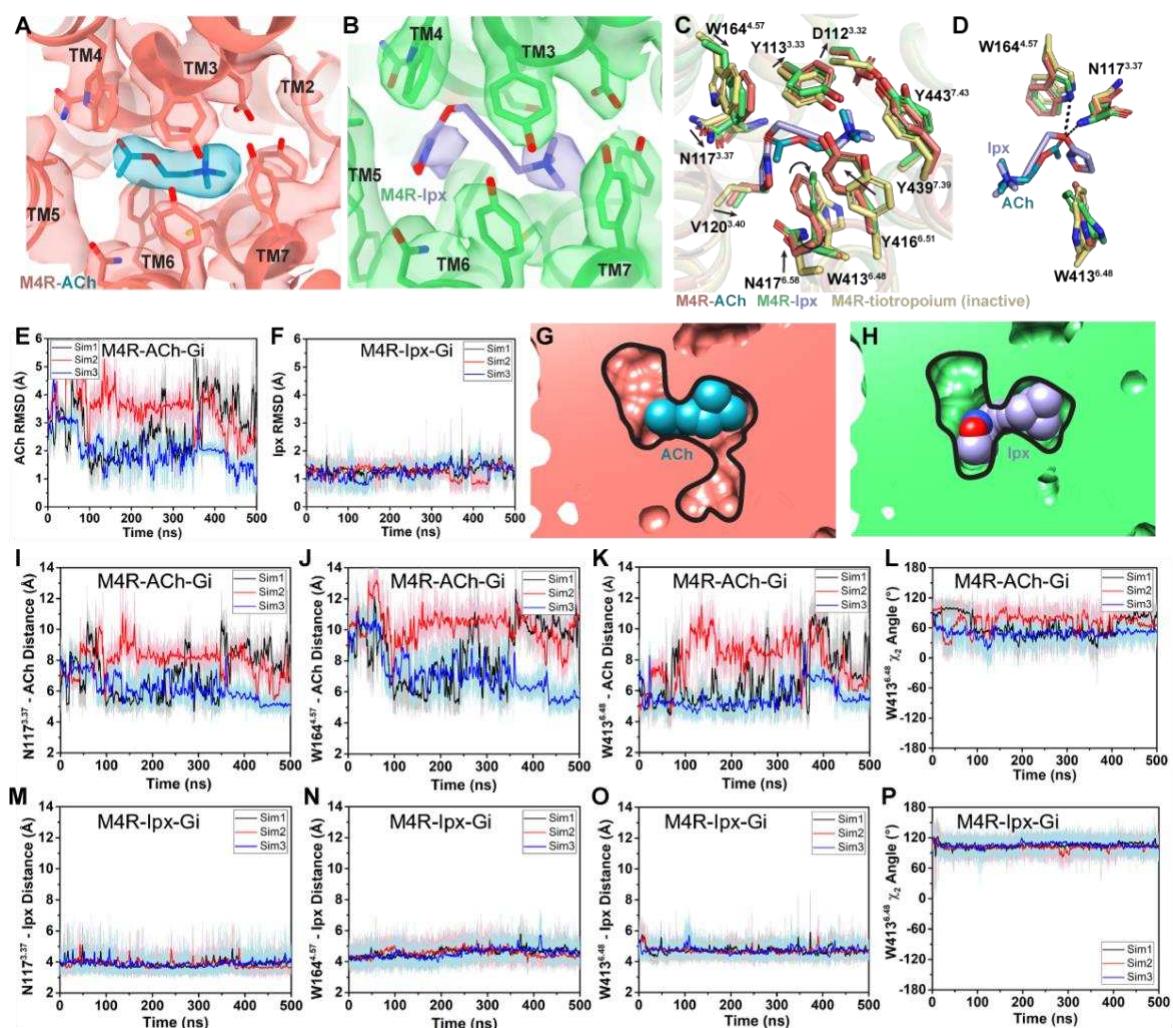
240
241 In all four structures, EM density beyond the top of transmembrane helix 1 (TM1) and the
242 third intracellular loop (ICL3) of the receptor was poorly observed and not modelled. Similarly,
243 the EM density of the α -helical domain of $G\alpha_{i1}$ was poor and not modelled. These regions are
244 highly dynamic and typically not modelled in many class A GPCR-G protein complex

245 structures. Apart from these regions, most amino acid side chains were well resolved in the
246 final EM density maps (Figure S3).

247
248 **Figure 3. Cryo-EM structures of the M₄R-G_{i1}-scFv16 complexes. (A-E)** Cryo-EM maps of (A)
249 Ipx-bound, (B) VU154-Ipx-bound, (C) LY298-Ipx bound, and (D,E) ACh-bound M₄R-G_{i1}-scFv16
250 complexes with views from the membrane and the extracellular surface. (F,G) Comparison of
251 the receptor models with bound ligands and views from the (G) extracellular and intracellular
252 surface of the receptors. (H) Comparison of the positions of G_{αi1}G_{β1}G_{γ2}-scFv16 with views
253 from the membrane and extracellular surface.

254
255 **Structure and dynamics of agonist binding**
256 Recently, cryo-EM structures of M₄R-G_{i1} complexes bound to ipx, ipx and the PAM LY2119620,
257 and an allosteric agonist c110, were determined (Wang et al., 2022). Surprisingly, comparison
258 of the M₄R-G_{i1} complex structures reveal larger differences in the position of key orthosteric
259 and allosteric site residues than the M₁R-G₁₁ and M₂R-G_{0A} complex structures (Figure S4-5).
260 Unfortunately, the quality of density in the EM maps around the orthosteric and allosteric

261 sites of these M₄R-G_{i1} structures (Wang et al., 2022) was poor resulting in several key residues
262 being mismodelled in each site (Figure S5). Therefore, differences between the M₄R-G_{i1}
263 structures are highly likely to not be due to genuine differences, and as such we compared to
264 the M₁R-G₁₁ and M₂R-G_{oA} complex structures in this study (Maeda et al., 2019).


265

266 Overall, our M₄R-G_{i1} complex structures are similar in architecture to that of other activated
267 class A GPCRs including the M₁R-G₁₁ and M₂R-G_{oA} complexes (Figure S4). Superposition of the
268 M₄R-G_{i1} complexes revealed nearly identical structures with root mean square deviations
269 (RMSD) of 0.4–0.5 Å for the full complexes and 0.3–0.4 Å for the receptors alone (Figure 3F).
270 The largest differences occur around the extracellular surface of the receptors (Figure 3G)
271 along with slight displacements in the position of the α N helix of G α_{i1} and G β_1 , G γ_2 , and scFv16
272 with respect to the receptor (Figure 3H). The EM density of side chains surrounding the ACh
273 and Ipx binding sites (Figure 4A-B) was well resolved providing the opportunity to understand
274 structural determinants of orthosteric agonist binding. The orthosteric site of the M₄ mAChR,
275 in common with the other mAChR subtypes, is buried within the TM bundle in an aromatic
276 cage that is composed of four tyrosine residues, two tryptophan residues, one phenylalanine
277 residue, and seven other polar and nonpolar residues (Figure 4C). Notably, all 14 of these
278 residues are absolutely conserved across all five mAChR subtypes, underscoring the difficulty
279 in developing highly subtype-selective orthosteric agonists (Burger et al., 2018). Both ACh and
280 Ipx have a positively charged trimethyl ammonium ion that makes cation- π interactions with
281 Y113^{3.33}, Y416^{6.51}, Y439^{7.39}, and Y443^{7.43} (Figure 4C) (superscript refers to the Ballesteros and
282 Weinstein scheme for conserved class A GPCR residues) (Ballesteros and Weinstein, 1995).
283 Likewise, both ACh and Ipx have a polar oxygen atom that can form a hydrogen bond to the
284 indole nitrogen of W164^{4.57} with the oxygen of Ipx also being in position to interact with the
285 backbone of N117^{3.37} (Figure 4D). Mutation of any of these contact residues reduces the
286 affinity of ACh, validating their importance for agonist binding (Leach et al., 2011; Thal et al.,
287 2016). The largest chemical difference between ACh and Ipx is the bulkier heterocyclic
288 isoazoline group of Ipx that makes a π - π interaction with the conserved residue W413^{6.48}
289 (Figure 4D). The residue W413^{6.48} is part of the CWxP motif, also known as the rotamer toggle
290 switch, a residue that typically undergoes a change in rotamer between the inactive and
291 active states of class A GPCRs (Shi et al., 2002).

292

293 To investigate the structural dynamics of the M₄ mAChR, we performed three independent
294 500 ns GaMD simulations on the ACh- and Ipx-bound M₄R-G_{i1} cryo-EM structures (**Table S3**).
295 GaMD simulations revealed that ACh undergoes higher fluctuations in the orthosteric site
296 than Ipx (**Figure 4E,F**). Similarly, the interactions of N117^{3.37}, W164^{4.57}, and W413^{6.48} with Ipx
297 were more stable than those with ACh (**Figure 4I-P**). In the ACh-bound structure, W413^{6.48}
298 was in a conformation that more closely resembled the inactive-state tiotropium-bound
299 structure (**Figure 4C,D**). GaMD simulations also showed that W413^{6.48} sampled a larger
300 conformational space in the ACh-bound structure than in the Ipx-bound structure (**Figure**
301 **4L,P**). The predominate χ_2 angle of W413^{6.48} was approximately 60° and 105° in the ACh-bound
302 and Ipx-bound simulations, respectively, corresponding to the cryo-EM conformations.
303

304 Located above ACh and Ipx is a tyrosine lid formed by three residues (Y113^{3.33}, Y416^{6.51}, and
305 Y439^{7.39}) that separates the orthosteric binding-site from an extracellular vestibule (ECV) at
306 the top of the receptor and the bulk solvent (**Figure 4C**). In the inactive conformation, the
307 tyrosine lid is partially open due to Y416^{6.51} rotating away from the binding pocket to
308 accommodate the binding of bulkier inverse agonists such as tiotropium. In contrast, mAChR
309 agonists are typically smaller in size than antagonists and inverse agonists, and this is reflected
310 in a contraction of the size of the orthosteric binding pocket from 115 Å³ when bound to
311 tiotropium to 77 and 63 Å³ when bound to ACh and Ipx, respectively (**Figure 4G,H**) (Tian et
312 al., 2018). Together, the smaller binding pocket of Ipx and more stable binding interactions
313 with nearby residues that include W413^{6.48} likely explain why Ipx has greater than 1,000-fold
314 higher binding affinity than ACh.

315

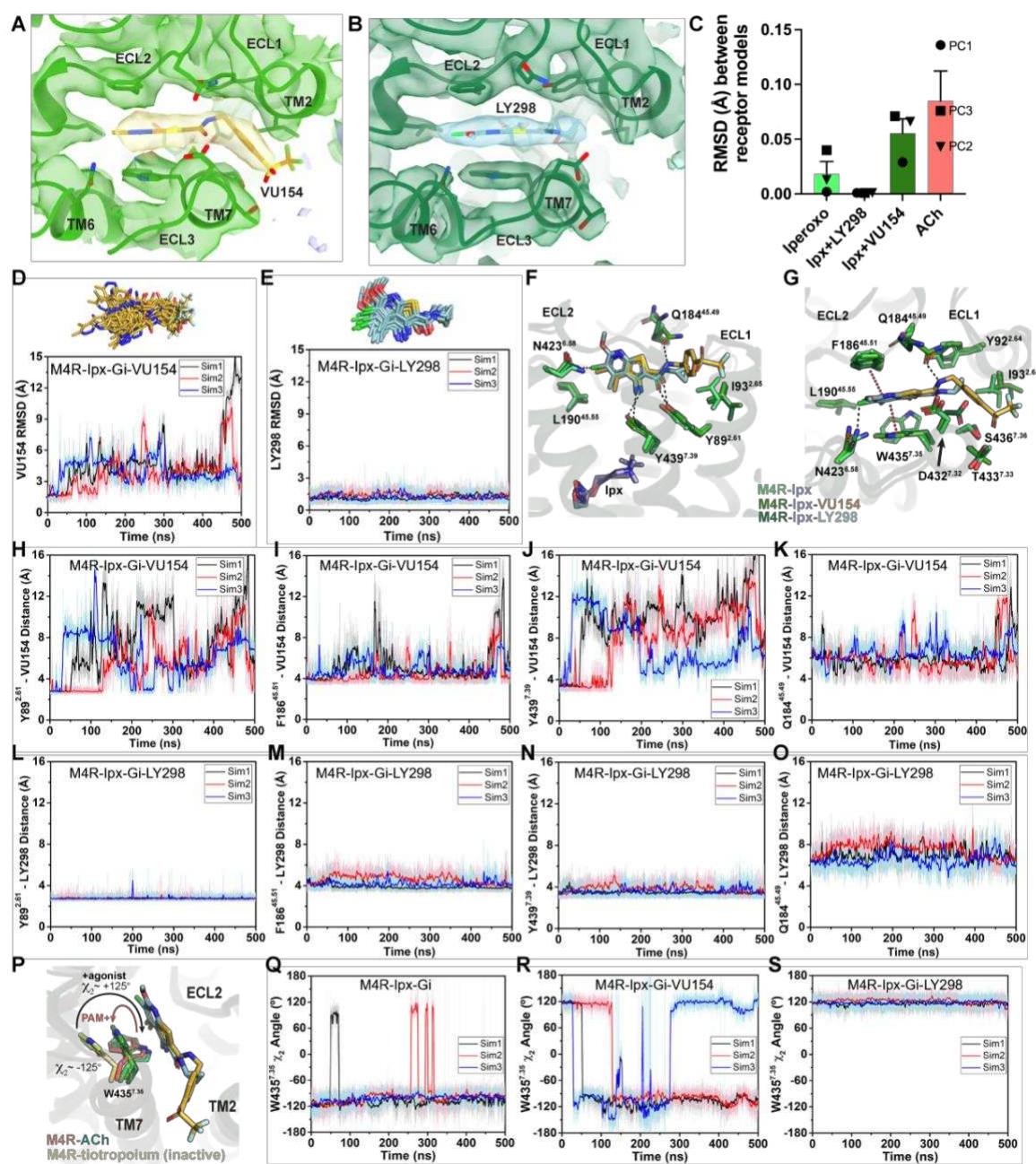
316 **Figure 4. Interactions of ACh and Ipx with the receptor.** (A,B) Cryo-EM density of the (A) ACh-
 317 and (B) Ipx-bound structures. (C,D) Interactions at the orthosteric binding site comparing the
 318 active state ACh- and Ipx-bound structures with the inactive state tiotropium bound structure
 319 (PDB: 5DSG). Arrows denote relative movement of residues between the inactive and active
 320 states. (D) Detailed interactions of ACh and Ipx. Hydrogen bonds are shown as black dashed
 321 lines. (E-F, I-P) Time courses from GaMD simulations of the ACh- and Ipx- bound M₄R-G_{i1} cryo-
 322 EM structures, each performed with 3 separate replicates. Individual replicate simulations are
 323 illustrated with different colours. The heading of each plot refers to the specific model used
 324 in the simulations. RMSDs of (E) ACh and (F) Ipx from simulations of the cryo-EM structures.
 325 (G,H) Cross-sections through the ACh- and Ipx-bound structures denoting the relative size of
 326 the binding pockets outlined in black. (I-P) The distances of interactions between ACh and Ipx
 327 with residues (I, M) N117^{3.37}, (J,N) W164^{4.67}, and (K,O) W413^{6.48}, and (L,P) the χ_2 angle of
 328 W413^{6.48}. See **Table S3**.

329 **Structure and dynamics of PAM binding and allosteric modulation of agonist affinity**

330 The M₄R-G_{i1} structures of LY298 and VU154 co-bound with Ipx are very similar to the Ipx- and
331 ACh-bound structures, as well as to prior structures of the M₂ mAChR bound to Ipx and the
332 PAM, LY2119620 (**Figure S4**) ([Kruse et al., 2013](#); [Maeda et al., 2019](#)). Both LY298 and VU154
333 bind directly above the orthosteric site in the ECV that is composed of a floor delineated by
334 the tyrosine lid, and ‘walls’ formed by residues from TM2, TM6, TM7, ECL2, and ECL3 (**Figure**
335 **5A,B**). The EM density surrounding the PAM binding site and the ECV of the M₄ mAChR were
336 clearly resolved with one exception; in the VU154-bound structure the EM density begins to
337 weaken around the trifluoromethylsulfonyl moiety (**Figure 5A**). This was likely due to the
338 moiety’s ability to freely rotate (similarly to the alkyne bond of Ipx in the orthosteric site) and
339 a lack of strong interactions with the receptor.

340

341 Given the overall similarities revealed by our four cryo-EM structures, we examined if there
342 were further differences in the dynamics between the PAM-bound structures by performing
343 a 3D multivariate analysis (3DVA) of the principal components of motion within the Ipx-,
344 LY298-Ipx, VU154-Ipx, and ACh-bound M₄R-G_{i1} cryo-EM data sets using Cryosparc ([Punjani](#)
345 [and Fleet, 2021](#)); a similar analysis performed previously on cryo-EM structures of class A and
346 class B GPCRs provided important insights into the allosteric motions of extracellular domains
347 and receptor interactions with G proteins ([Josephs et al., 2021](#); [Liang et al., 2020](#); [Mobbs et](#)
348 [al., 2021](#); [Zhang et al., 2020](#)).


349

350 In the 3DVA of the Ipx-bound complex, the M4 receptor appeared less flexible than the
351 receptor in the ACh-bound complex (**Supplemental Videos 1-2**) consistent with Ipx having a
352 higher binding affinity and more stable pose during the GaMD simulations (**Figure 4E,F**). The
353 LY298-Ipx-bound complex appeared similar to the Ipx-bound complex with LY298 being
354 bound in the ECV (**Supplemental Video 3**). In contrast, the 3DVA of the VU154 structure had
355 more dynamic movements in the allosteric pocket that could reflect partial binding of VU154
356 (**Supplemental Video 4**). This observation was in line with our findings that VU154 had lower
357 binding cooperativity (**Figure 2C**) and functional cooperativity with agonists than LY298
358 (**Figure 2I; S1D**). To quantify the differences from the 3DVA, we rigid body fitted and refined
359 the respective M₄R-G_{i1} models into the first and last frames of the EM maps from each
360 principal component of the 3DVA and then calculated the RMSD between the receptor

361 models from the first and last frames (**Figure 5C**). In agreement with our prior
362 observations, the VU154-Ipx-bound and ACh-bound complexes had greater RMSDs with
363 values of 0.06 and 0.09 Å respectively. Comparatively, the Ipx-bound and LY298-Ipx-bound
364 complexes had lower RMSD values of 0.02 and 0.001 Å, respectively. The results of the 3DVA
365 do not represent *bona fide* measures of receptor dynamics, rather they are suggestive of
366 there being differences between the collected data sets that led to the structures. To support
367 these findings, we compared the GaMD simulations of all four cryo-EM structures (**Table S3**).
368 Notably, VU154 underwent considerably higher fluctuations than LY298 with RMSDs ranging
369 from 1.5–15 Å for VU154 and 0.8–2.1 Å for LY298 relative to the cryo-EM structures (**Figure**
370 **5D,E**). Therefore, the GaMD simulations corroborate our 3DVA results and suggests that
371 complexes bound to agonists with high affinity or co-bound with agonists and PAMs with high
372 positive cooperativity will exhibit lower dynamic fluctuations.

373
374 To investigate why the binding of LY298 was more stable than VU154, we examined the ligand
375 interactions with the receptor. There are three key binding interactions that are shared
376 between both PAMs and the M₄ mAChR: 1) a three-way π-stacking interaction between
377 F186^{45,51} (ECL2 residues have been numbered 45.X denoting their position between TM4 and
378 TM5 with X.50 being a conserved cysteine residue), the aromatic core of the PAMs, and
379 W435^{7,35}; 2) a hydrogen bond between Y439^{7,39} of the tyrosine lid and the primary amine of
380 the PAMs; and 3) a hydrogen bond between Y89^{2,61} and the carbonyl oxygen of the PAMs
381 (**Figure 5F,G**). While these interactions are conserved for both PAMs in the consensus cryo-
382 EM maps, during GaMD simulations these interactions were more stable with LY298 than
383 VU154 (**Figure 5H-O**). The importance of these interactions was validated pharmacologically
384 (**Figure S6; Table S4**), whereby mutation of any of these residues completely abolished the

385 binding affinity modulation mediated by LY298 and VU154 at the M₄ mAChR with both Ipx
386 and ACh as agonists.

387 **Figure 5 Binding and dynamics of LY293 and VU154. (A,B)** Cryo-EM density of the (A) VU154-
388 and (B) LY298-binding sites. **(C)** The root-mean square deviations (RMSD) between receptor
389 models of the respective cryo-EM structures that were refined into the first and last frames
390 of the EM maps from each principal component (PC1-PC3) of the 3D variability analysis.
391 Values shown are mean \pm SEM. **(D,E)** Top representative binding conformations of (D) VU154
392 al(E) LY298 obtained from structural clustering with frame populations $\geq 1\%$ and time courses
393 of the RMSDs of each PAM relative to the cryo-EM structures. **(F,G)** Binding interactions of

394 VU154 and LY298 with views from the **(F)** membrane and **(G)** extracellular surface. **(H-O)**
395 Time-courses from three 500 ns GaMD simulations using the **(H-K)** VU154- and **(L-O)** LY298-
396 Ipx-bound cryo-EM structures. Distances between the interactions of VU154 and LY298 with
397 residues **(H, L)** Y89^{7.39}, **(I,M)** F186^{45.51}, Y439^{7.39}, and Q184^{45.49}. **(P)** Position and χ_2 angle of
398 W435^{7.35} in the tiotropium-, ACh-, Ipx-, VU154-Ipx-, and LY298-Ipx bound structures. **(Q-S)**
399 Time courses of the W435^{7.35} χ_2 angle obtained from GaMD simulations in the **(Q)** I-, **(R)**
400 VU154-Ipx-, and **(S)** LY298-Ipx-bound cryo-EM structures. See **Table S3**.

401
402 A potential fourth interaction was observed with residue Q184^{45.49} and the amide nitrogen of
403 the PAMs; however, the GaMD simulations suggest that this interaction is relatively weak
404 (**Figure 5K,O**), consistent with the fact that mutation of Q184^{45.49} to alanine had no effect on
405 the binding modulation of LY298 or VU154 (**Figure S6; Table S4**). In addition, each PAM has
406 at least one unique binding interaction with the receptor (**Figure 5F,G**). For LY298, this is an
407 interaction between the fluorine atom and N423^{6.58} that appeared to be stable during
408 simulation and, when mutated to alanine reduced the binding modulation of LY298 (**Figure**
409 **S7A**) ([Thal et al., 2016](#)). For VU154, two additional hydrogen bonding interactions were
410 formed with Y92^{2.64} and T433^{7.33} (**Figure 5G**), although these interactions were fluctuating
411 during GaMD simulations (**Figure S7B,C**). Finally, W435^{7.35} is a key residue in the ECV that
412 changes from a planar rotamer in the agonist-bound structures to a vertical rotamer that π
413 stacks against the PAMs (**Figure 5P**). In GaMD simulations of the Ipx-bound structure,
414 W435^{7.35} is predominantly in a planar conformation that corresponds to its conformation in
415 the cryo-EM structure (**Figure 5P,Q**). In contrast, the binding of LY298 stabilizes W435^{7.35} into
416 a vertical position (**Figure 5P,S**). However, in the VU154-bound receptor, W435^{7.35} appears to
417 alternate between the planar and vertical positions, consistent with VU154 having a less
418 stable binding pose (**Figure 5R**). These results indicate that the binding of LY298 is more stable
419 than VU154 due to LY298 being able to form stable binding interactions with key residues in
420 the ECV. This provides a likely explanation for why LY298 was able to exert greater positive
421 binding cooperativity on orthosteric agonists than VU154.

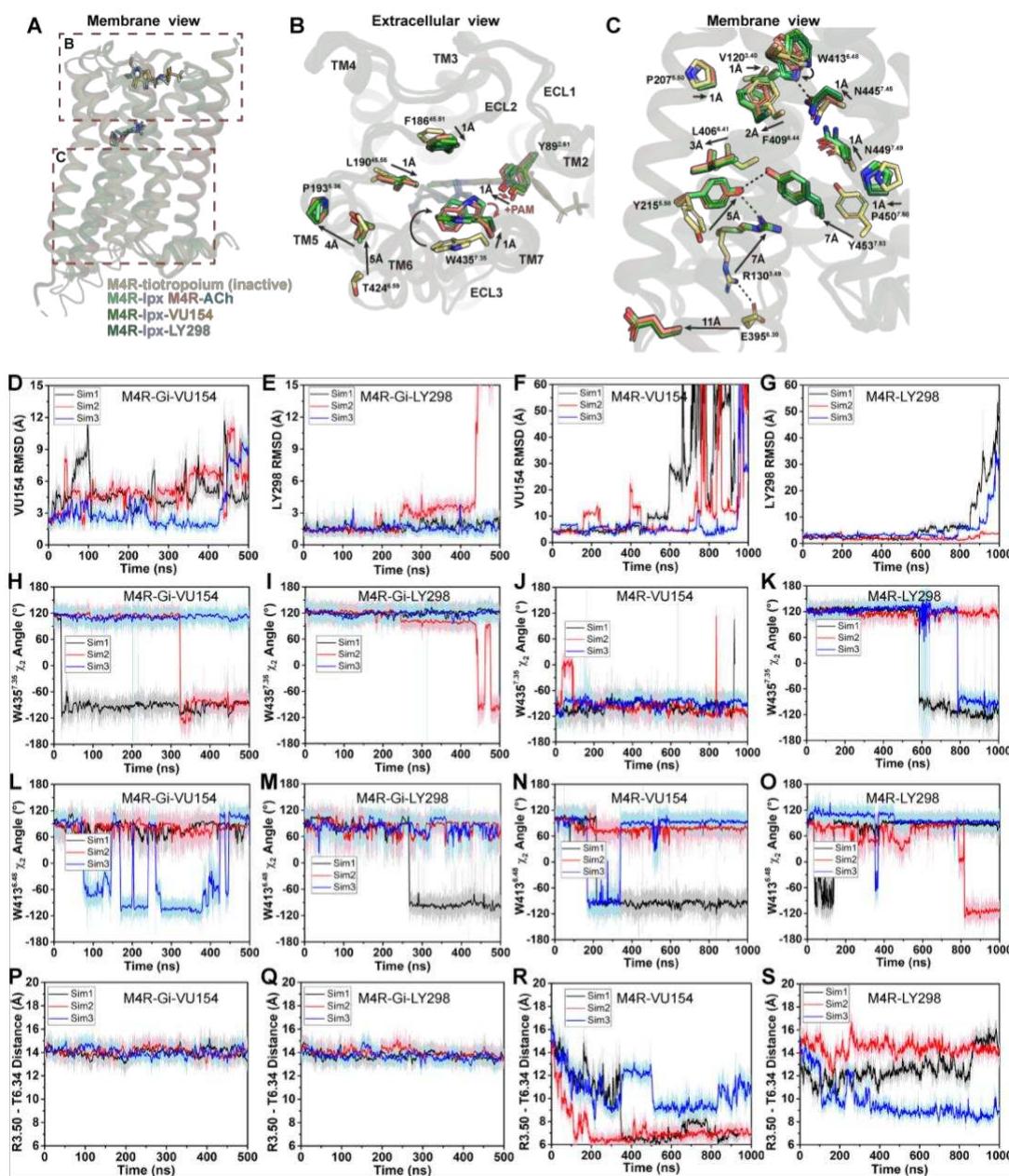
422

423 **A molecular mechanism of probe dependence**

424 As highlighted above, PAMs, LY298 and VU154, displayed stronger allosteric binding
425 modulation with ACh than Ipx, an example of probe dependence (**Figure 2, S1D**). These

426 findings are in accord with previous studies where we identified probe dependence in the
427 actions of LY298 when tested against other orthosteric agonists (Chan et al., 2008; Suratman
428 et al., 2011). To investigate a mechanism for probe dependence at the M₄ mAChR, we
429 performed GaMD simulations with LY298 and VU154 co-bound with ACh, by replacing Ipx
430 with ACh in the corresponding cryo-EM structures (Table S3 and Figure S7). In the absence of
431 PAM, ACh was more dynamic than Ipx with root-mean-square fluctuations (RMSF) of 2.13 Å
432 versus 0.88 Å, reflective of the fact Ipx binds with higher affinity than ACh (Figure S7L). In the
433 presence of LY298 or VU154 the dynamics of ACh binding was decreased, with RMSFs reduced
434 to 1.23 Å and 1.82 Å, respectively, and with LY298 having the greatest effect (Figure S7L). This
435 is in line with LY298 having more cooperativity with ACh than VU154 (Figure 2C). In
436 comparison to ACh, there was a modest increase in the dynamics of Ipx with the addition of
437 LY298 or VU154, likely reflecting the fact Ipx binding to the receptor was already stable (Figure
438 S7D-F). These results provide a plausible mechanism for probe dependence, at least with
439 regards to differences in the magnitude of the allosteric effect depending on the ligand
440 bound. Namely, PAMs manifest higher cooperativity when interacting with agonists, such as
441 ACh, that are inherently less stable on their own when bound to the receptor, in contrast to
442 more stable ligands such as Ipx.

443


444 **Structural and dynamic insights into orthosteric and allosteric agonism**

445 In addition to the ability to allosterically modulate the function of orthosteric ligands, it has
446 become increasingly appreciated that allosteric ligands may display variable degrees of direct
447 agonism in their own right, over and above any allosteric modulatory effects (Changeux and
448 Christopoulos, 2016). Prior studies have established that the activation process of GPCRs
449 involves conformational changes that extend from the extracellular domains through to the
450 intracellular surface (Nygaard et al., 2009). Comparison of the active state ACh-, Ipx-, LY298-
451 Ipx-, and VU154-Ipx-bound M₄R-G_{i1} structures to the inactive state tiotropium-bound M₄
452 mAChR structure (Protein Data Bank accession 5DSG) (Thal et al., 2016) thus affords an
453 opportunity to gain new insights into the activation process mediated by multiple orthosteric
454 agonists in the presence and absence of two different PAMs that display high (LY298) and low
455 (VU154) degrees of direct allosteric agonism (Figure 1F, 6A-C).

456

457 As previously discussed, agonist binding decreases the size of the orthosteric binding site
458 (**Figure 4G,H**). The primary driver of this decrease was the tyrosine lid residue Y416^{6.51}, which
459 underwent a large rotation towards Y113^{3.33} creating a hydrogen bond that seals off the
460 tyrosine lid (**Figure 4C**). The closure of the tyrosine lid was further reinforced by a change in
461 the rotamer of W435^{7.35} to a planar position that sits parallel to the tyrosine lid allowing for a
462 π - π interaction with Y416^{6.51} and a positioning of the indole nitrogen of W435^{7.35} to
463 potentially form a hydrogen bond with the hydroxyl of Y89^{2.61} (**Figure 6B**). The contraction of
464 the orthosteric pocket by the inward movement of Y416^{6.51} also led to a contraction of the
465 ECV with a 5 Å inward movement of the top of TM6 and ECL3. As a consequence, the top of
466 TM5 was displaced outward by 4 Å forming a new interface between TM5 and TM6 that was
467 stabilized by a hydrogen bond between T424^{6.59} and the backbone nitrogen of P193^{5.36} along
468 with aromatic interactions between F197^{5.40} and F425^{6.60} (**Figure 6B**). These interactions were
469 specific to the active state structures and appear to be conserved as they were also present
470 in the M₁ and M₂ mAChR active state structures (Maeda et al., 2019). In addition to the
471 movements of TM5 and TM6, there was a smaller 1 Å inward movement of ECL2 (**Figure 6B**).
472 The binding of LY298 and VU154 had minimal impact on the conformation of most ECL
473 residues, implying that the reorganisation of residues in the ECV by orthosteric agonists
474 contributes to the increased affinity of the PAMs (**Figure 2E**). There was a slight further inward
475 shift of ECL2 towards the PAMs to facilitate the 3-way π -stacking interaction with F186^{45.51}
476 and W435^{7.35}. In addition, in the PAM-bound structures, Y89^{2.61} rotated away from its position
477 in the ACh- and Ipx-bound structures either due to a loss of an interaction with W435^{7.35} or
478 to form a better hydrogen bond with the carbonyl oxygen of the PAMs (**Figure 6B**).
479
480 Below the orthosteric binding site are several signaling motifs that are important for the
481 activation of class A GPCRs, including the PIF motif (Rasmussen et al., 2011; Wacker et al.,
482 2013), the Na⁺ binding site (Liu et al., 2012b; White et al., 2018), the NPxxY motif (Fritze et al.,
483 2003), and the DRY motif (**Figure 6C**) (Ballesteros et al., 2001). The conformations of these
484 activation motifs were very similar across all four active-state M₄ mAChR structures and were
485 consistent with the position of these motifs across other active-state class A GPCR structures
486 (Zhou et al., 2019). Collectively, all of the described activation motifs facilitate an 11 Å
487 outward movement of TM6 that typifies GPCR activation and creation of the G protein binding
488 site. In comparison to the ECV residues (**Figure 6B**), beyond the rotamer toggle switch residue

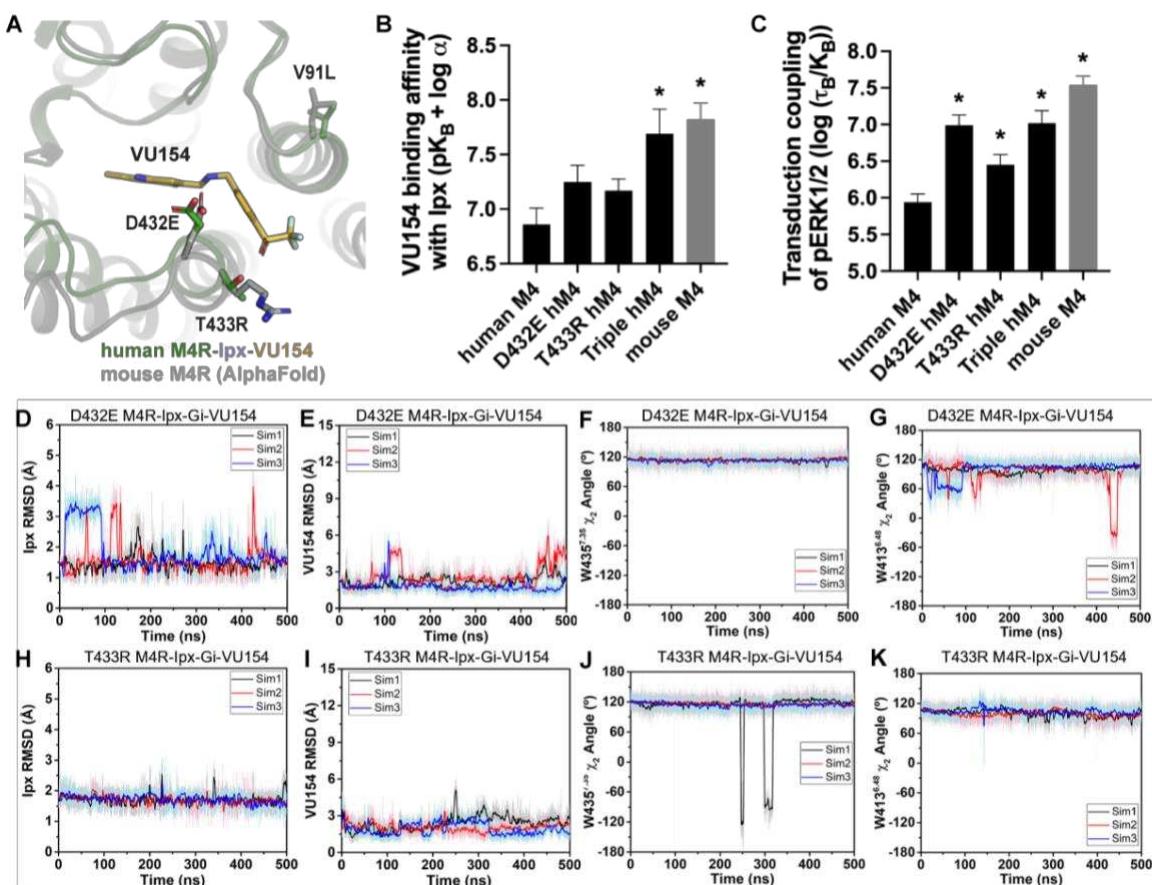
489 W413^{6,48}, there are no discernible differences between the agonist and PAM-agonist-bound
 490 structures, suggesting a shared activation mechanism for residues below W413^{6,48} (Figure 6C).

491
 492 **Figure 6. Structural and dynamic insights into orthosteric and allosteric agonism. (A)**
 493 Cartoon of the receptor models indicating regions of interest for panels (B-C) shown within
 494 the red boxes. **(B)** View of the tiotropium-bound, agonist-bound, and PAM-agonist-bound
 495 conformations from the extracellular surface. **(C)** Membrane view of residues and activation
 496 motifs involved in signalling. **(D-S)** Time courses of **(D-G)** the PAMs RMSDs, **(H-K)** the W435^{7,35}
 497 χ_2 angle, **(L-O)** the W413^{6,48} χ_2 angle, and **(P-S)** the TM3-TM6 distance measured by distance

498 between R130^{3,50} and T399^{6,34} obtained from GaMD simulations of the M₄R-G_{i1}-VU154, M₄R-
499 G_{i1}-LY298, M₄R-VU154, and M₄R-LY298 systems, respectively. See **Table S3**.

500
501 As indicated above, LY298 also displays robust allosteric agonism in comparison to VU154
502 (**Figure 2G,H**). To probe whether the allosteric agonism of LY298 could be related to its ability
503 to better stabilize the M₄ mAChR in an active conformation in comparison to VU154, we
504 performed additional GaMD simulations on the LY298-Ipx- and VU154-Ipx-bound M₄R-G_{i1}
505 structures with the agonist Ipx removed (3x 500 ns) and with both Ipx and the G protein
506 removed (3x 1,000 ns) (**Figure 6, Table S3**). In GaMD simulations, LY298 underwent lower
507 RMSD fluctuations than VU154 before dissociating from the receptor (**Figure 6D-G**). Similarly,
508 the conformations of W435^{7,35} and W413^{6,48} were better stabilized in the LY298-Ipx-bound
509 systems, indicating that LY298 more strongly promotes an active receptor conformation
510 (**Figure 6H-K**). In the presence of the G protein, both PAMs stabilised an active conformation
511 of the receptor based on the distances between TM3 and TM6 (**Figure 6P,Q**). Upon removal
512 of the G protein, the VU154-bound M₄ mAChR quickly transitioned towards the inactive
513 conformation, while the LY298-bound M₄ mAChR was more resistant to deactivation in the
514 GaMD simulations (**Figure 6R,S**). This observation supports LY298 having greater efficacy than
515 VU154 (**Figure 2G**) as it better stabilizes the active conformation of the M₄ mAChR. Overall,
516 the GaMD simulations show that in the absence of agonist alone, or agonist and G protein,
517 LY298 better stabilizes activation motifs from the top of the receptor (W435^{7,35}) all the way
518 down to the intracellular G protein binding pocket (DRY-TM6) providing mechanistic insights
519 into the function of LY298 as a stronger PAM-agonist than VU154.

520
521 **A molecular basis of species selectivity**
522 One of the main advantages of allosteric modulators is the ability to selectively target highly
523 conserved proteins. The mAChRs are prime example where allosteric modulators have been
524 designed to selectively target specific subtypes. To date the only PAM-bound mAChR
525 structures are ones with LY2119620, a PAM that has activity at both the M₂ and M₄ mAChRs.
526 Similarly, LY298 has activity at the M₂ mAChR. However, the allosteric properties of VU154
527 are differentially affected by the species of the receptor ([Wood et al., 2017a, 2017b](#)). At the
528 human M₄ mAChR, LY298 displays robust binding modulation, functional modulation, and
529 allosteric agonism, while VU154 has comparatively weaker allosteric properties (**Figure 1**,


530 **Table S1**). Conversely, at the mouse M₄ mAChR, VU154 has a high degree of positive binding
531 modulation, functional modulation, and allosteric agonism that is comparable to LY298 at the
532 human M₄ mAChR (**Figure S7, Table S1**). Therefore, we aimed to determine if our prior
533 findings could be used to explain the selectivity of VU154 between the human and mouse
534 receptors.

535

536 The amino acid sequences of the human and mouse M₄ mAChRs are highly conserved, with
537 most of the differences occurring between the long third intracellular loop and the N- and C-
538 termini. As shown in **Figure 7A**, only three residues differ between the human and mouse M₄
539 mAChR with respect to the transmembrane domain. Specifically, residue V91 (L in mouse) at
540 the top of TM2 points into the lipid bilayer, and D432 and T433 (E and R in mouse), which are
541 located at the top of TM7 and form part of the allosteric binding site near VU154.

542

543 Previous work suggested that residues D432 and T433 were important for differences in the
544 species selectivity of LY298 ([Chan et al., 2008](#)). As such, we examined two single D432E and
545 T433R mutants and a V91L/D432E/T433R triple mutant of the human receptor, along with
546 the mouse M₄ mAChR in radioligand binding and pERK1/2 experiments using Ipx and both
547 PAMs (**Figure S8, Table S1**). For LY298, there were no statistically significant differences in
548 binding or function between species and across the mutants that were more than 3-fold in
549 effect. In contrast, VU154 had a 10-fold higher binding affinity for the Ipx-bound mouse M₄
550 mAChR (compare **Figure 2EG** with **Figure 7B**). The affinity of VU154 increased by 2.5-fold at
551 the D432E and T433R mutants and the triple mutant matched the affinity of the mouse
552 receptor (**Figure 7B**). In functional assays, similar results were observed for VU154 with Ipx at
553 the mouse M₄ mAChR, with significant increases in the efficacy (τ_B – corrected for receptor
554 expression), transduction coefficients (τ_B/K_B), and the functional modulation ($\alpha\beta$) (**Figure 7B,**
555 **S8, Table S1**). Relative to the WT M₄ mAChR, the efficacy, transduction coefficients, and
556 functional modulation of VU154 increased for all of the mutants (**Figure S8**), however, none
557 of the values fully matched the mouse receptor. Nevertheless, these results indicate that
558 V91L, D432E, and T433R play a key role in mediating the species selectivity of VU154.

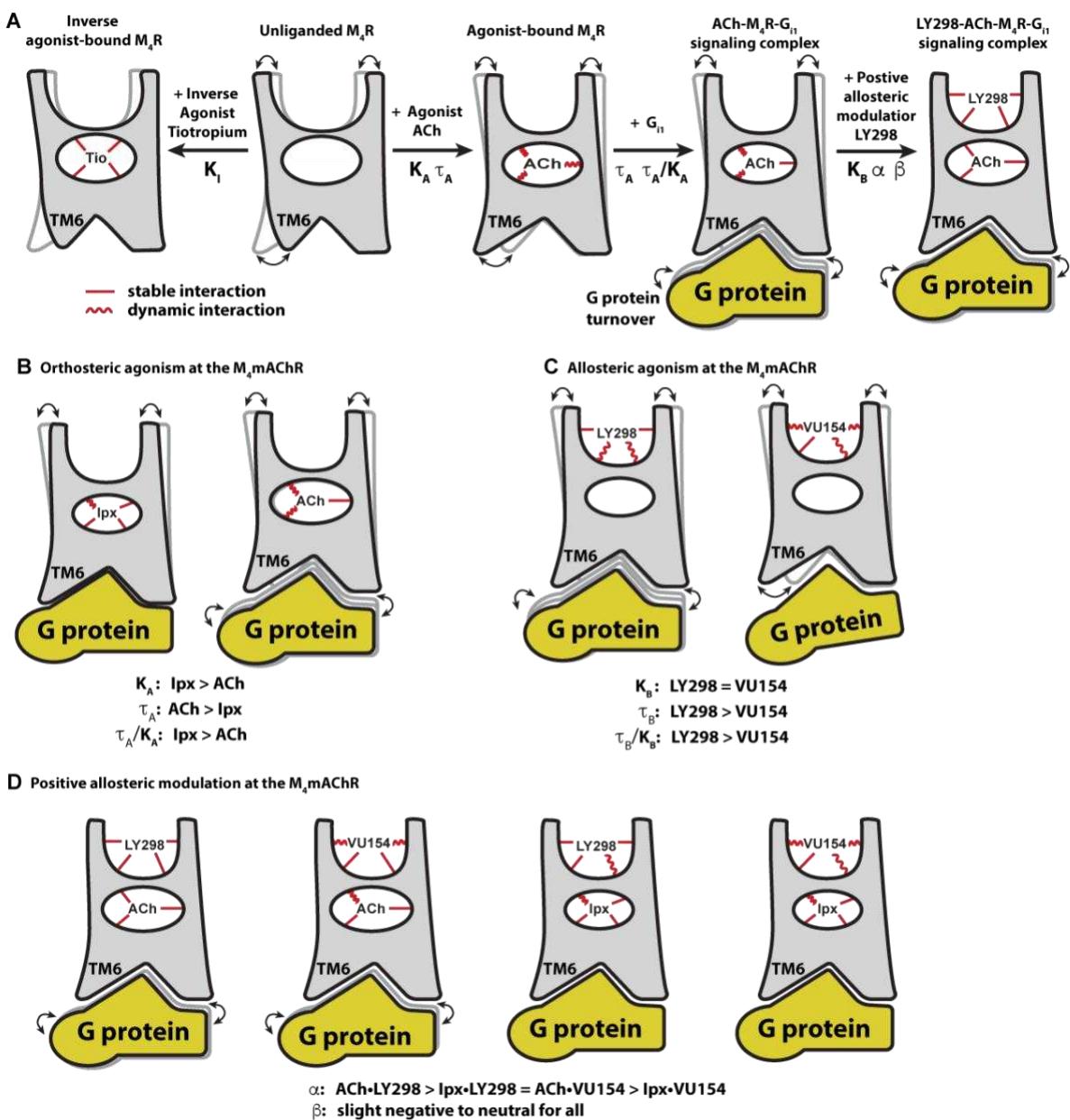
559

560 **Figure 7. A molecular mechanism for the species selectivity for VU154.** (A) Comparison of
561 the cryo-EM structure of the human M4 mAChR bound to Ipx-VU154 with the AlphaFold
562 model of the mouse M4 mAChR (Jumper et al., 2021; Varadi et al., 2022). The three residues
563 that differ between species and within the core 7TM bundle from the human receptor (V91,
564 D432, and T433) are shown as sticks along with the corresponding residues from the mouse
565 receptor. (B) The binding affinity of VU154 for the Ipx-bound conformation ($pK_{B-Ipx} = pK_B + \alpha$)
566 determined from [³H]-NMS binding experiments. Values calculated with data from Figure S8A
567 with propagated error. (C) Transduction coupling coefficients ($\log (\tau/K)$) of pERK1/2 signaling
568 from data from Figure S8A,E). (D-K) Time courses of obtained from GaMD simulations of the
569 (D-G) D432E and (H-K) T433R mutant M4R-Ipx-Gi₁-VU154 systems with (D,H) Ipx RMSDs, (E,I),
570 VU154 RMSDs, (F,J) W435^{7.35} χ_2 angle, and (G,K) W413^{6.48} χ_2 angle. See Table S4 and Figure
571 S8. (B,C) Data shown are mean \pm SEM from 3 or more experiments performed in duplicate
572 with the pharmacological parameters determined from a global fit of the data. *Indicates
573 statistical significance ($p < 0.05$) relative to WT as determined by a one-way ANOVA with a
574 Dunnett's post-hoc test.

575

576 Our prior findings suggest the robust allosteric activity of LY298 at the human M₄ mAChR was
577 due to stable interactions with the receptor (**Figure 5**). As a proof-of-principle, we questioned
578 if GaMD simulations would produce a stable binding mode for VU154 with D432E and T433R
579 mutations to the VU154-Ipx-bound M₄R-G_{i1} cryo-EM structure that was similar to our
580 previously observed stable binding pose of LY298 (**Figure 5, Table S3**). Excitingly, both the
581 D432E and T433R mutants resulted in a dynamic profile of VU154 that matched our GaMD
582 simulations of LY298 from the LY298-Ipx-bound M₄R-G_{i1} cryo-EM structure, including
583 stabilized VU154 binding, constrained χ_2 rotamer conformations of W435^{7.35} and W413^{6.48},
584 and stable binding interactions with Y89^{2.61}, Y439^{7.39}, Q184^{45.49}, and F186^{45.51} (**Figure 7D-K, S8, Supplemental Video 9,10**). Collectively, these findings reiterate the importance of
585 receptor dynamics in the determination of allosteric modulator selectivity, as even subtle
586 differences in amino acid residues between species may result in profound changes in overall
587 stability of the same PAM-agonist-receptor complex.

589


590 Discussion

591 Major advances have been made in recent years in the appreciation of the role of GPCR
592 allosterity and its relevance to modern drug discovery ([Changeux and Christopoulos, 2016](#);
593 [Wootten et al., 2013](#)). Despite an increase in the number of reported high-resolution GPCR
594 structures bound to allosteric ligands ([Thal et al., 2018](#)), there remains a paucity of molecular-
595 level details about the interplay between the complex chemical and pharmacological
596 parameters that define allosterity at GPCRs. By combining detailed pharmacology studies,
597 multiple high-resolution cryo-EM structures of the M₄ mAChR bound to two distinctly
598 pharmacologically different agonists and PAMs, and GaMD simulations, we have now
599 provided exquisite in-depth insights into the relationship between both structure and
600 dynamics that govern multiple facets of GPCR allosterity (**Figure 8A**).

601

602 Comparison of the ACh- and Ipx-bound M₄ mAChR structures revealed that Ipx bound in a
603 smaller binding pocket (**Figure 4G,H**), and GaMD simulations showed that Ipx formed more
604 stable interactions with the receptor (**Figure 4I-P**). These observations likely explained why
605 Ipx exhibited greater than 1,000-fold higher binding affinity than ACh (**Figure 2B**), being
606 consistent with studies of other agonists at the β_1 -adrenoceptor and the M₁ mAChR ([Brown](#)
607 [et al., 2021; Warne et al., 2019](#)) (**Figure 8B**). The observation that ACh was a more efficacious

608 agonist than Ipx (**Figure 2G**) yet bound with lower affinity and less stable interactions than Ipx
609 was paradoxical. Kenakin and Onaran previously opined on the paradox between ligand
610 binding affinity and efficacy ([Kenakin and Onaran, 2002](#)), and showed via simulations that, in
611 general, there was a negative correlation between binding affinity and efficacy. One
612 interpretation of these results was that the ACh-bound M₄ mAChR more readily sampled
613 receptor conformations that engaged with the transducers ([Manglik et al., 2015](#)). Similarly,
614 the ACh-bound M₄ mAChR may also have faster G protein turnover than Ipx due to Ipx-M₄R-
615 Gi1 forming a more stable ternary complex ([Furness et al., 2016](#)) (**Figure 8B**). In fact, the later
616 point was supported by Ipx having a greater transducer coupling coefficient than ACh (**Figure**
617 **2H**) and suggests that structures of GPCRs in a ternary complex (agonist-receptor-transducer)
618 are better represented by their transducer coupling coefficients than the efficacy of the
619 agonist with respect to the transducer mediated signalling pathway(s). Given that transducer
620 coupling coefficients were used to calculate ligand bias, one might expect structures of GPCR
621 ternary complexes to capture conformations associated with ligand bias. Indeed, structures
622 of GPCRs bound to biased ligands have now been reported for many GPCRs ([Liang et al.,](#)
623 [2018b](#); [Masureel et al., 2018](#); [McCorvy et al., 2018](#); [Wacker et al., 2013](#); [Warne et al., 2012](#);
624 [Wingler et al., 2019](#)). Currently, however, there is no generalizable structural basis that
625 explains ligand bias ([Seyedabadi et al., 2022](#)) as the conformational differences are likely to
626 be more subtle and dynamic, and therefore require the combination of techniques like NMR
627 spectroscopy, single molecule FRET, and MD simulations to fully resolve ([Cao et al., 2021](#);
628 [Cong et al., 2021](#); [Gregorio et al., 2017](#); [Huang et al., 2021](#); [Katayama et al., 2021](#); [Liu et al.,](#)
629 [2012a](#); [Solt et al., 2017](#); [Sušac et al., 2018](#); [Ye et al., 2016](#)).
630

631

632 **Figure 8. Conformational dynamics of the allosteric at M_4 mAChR signalling complexes. (A)**
633 A schematic cartoon illustrating the conformational states of the ligands and the M_4 mAChR
634 when bound to different types of ligands and transducer, along with the resulting dynamic
635 profiles. Pharmacological parameters related to each conformational change are shown.
636 Stable ligand-receptor interactions are denoted by a straight line and less-stable (more
637 dynamic) interactions are denoted by a wavy line. (B) Ipx bound the M_4 mAChR with a higher
638 affinity and more stability than ACh but had lower efficacy. ACh being more loosely bound
639 and coupled to G protein may facilitate more G protein turnover accounting for its higher
640 efficacy. (C) LY298 and VU154 bound to the M_4 mAChR with similar affinity for the ground of
641 the receptor, but LY298 was found to bind more stably. LY298 had a higher efficacy than

642 VU154, suggesting that allosteric agonism at the M₄ mAChR is mediated by stabilization of
643 the ECV.(D) The PAMs LY298 and VU154 display robust binding modulation at the M₄ mAChR
644 with LY298 having a stronger allosteric effect. Both PAMs displayed stronger binding
645 modulation with the agonist ACh versus Ipx, an example of probe dependence. Both PAMs
646 also displayed a slight negative to neutral effect on the efficacy of the agonists, suggesting
647 that their mechanism of action is largely through binding.

648

649 This study highlighted that two PAMs with distinctly different pharmacological profiles (Figure
650 1) may bind to and stabilize receptor conformations that were very similar when viewed as
651 static structures (Figure 5). In contrast, the 3DVA analysis from our cryo-EM structures
652 suggested differences in the dynamics of the cryo-EM structures that were explored further
653 in GaMD simulations (Figure 5C, Supplementary Videos 1-4) and revealed that LY298 had a
654 more stable binding pose and interactions with the receptor than VU154 in the PAM-agonist-
655 receptor-transducer bound conformation. These observations were consistent with LY298
656 having greater positive binding cooperativity than VU154 (Figure 2E) and suggested that
657 GaMD simulations of PAMs bound to the M₄ mAChR could be an extremely valuable tool for
658 future drug discovery and optimization (Bhattarai and Miao, 2018).

659

660 Pharmacological analysis revealed that LY298 is a better PAM-agonist than VU154 with
661 respect to efficacy (Figure 2G) and transduction coefficients (Figure 2H) in the G_{i1} Trupath and
662 pERK1/2 signalling assays. GaMD simulations of the PAM-receptor-transducer and PAM-
663 receptor bound complexes, again showed that LY298 more stably interacted with the
664 receptor (Figure 5) and in the absence of G protein better stabilized the duration of the active
665 conformation of the receptor (Figure 6). These findings were not contradictory to our above
666 findings that ACh was more efficacious than Ipx despite having weaker interactions with the
667 receptor, because when the ground state affinity of the ligands was accounted for in the
668 transduction coupling coefficients the rank order of agonism was Ipx >> ACh ~ LY298 > VU154
669 (Figure 2B). Furthermore, these results were in accordance with the observations of Kenakin
670 and Onaran that ligands with the same binding affinity can also have differing efficacies (and
671 vice-versa). In addition, the mechanism of agonism for allosteric ligands that bind to the ECV
672 may differ (Xu et al., 2021). Prior work by DeVree *et al.* established that allosteric coupling of
673 G proteins to the unliganded active receptor conformation promoted closure of the ECV

674 region (DeVree et al., 2016). This allosteric coupling is reciprocal and stabilizing the ECV region
675 by PAMs likely leads to increased efficacy (Figure 8C).

676

677 The PAMs LY298 and VU154 also displayed stronger allosteric effects with ACh than with Ipx,
678 an observation known as probe dependence (Figure 2C-E). Probe dependence can have
679 substantial implications on how allosteric ligands are detected, validated, and their potential
680 therapeutic utility (Kenakin, 2005). Examples of probe dependence are not limited to studies
681 on mAChRs and have been observed across multiple receptor families (Christopoulos, 2014;
682 Gentry et al., 2015; Pani et al., 2021; Slosky et al., 2020; Wang et al., 2021b). GaMD
683 simulations comparing the PAMs co-bound to either Ipx or ACh showed that the PAMs had a
684 stabilizing effect on ACh, whereas the stability of Ipx was slightly reduced by the PAMs likely
685 because the binding of Ipx was already stable. This is a sensible explanation from
686 thermodynamic principles. Another explanation invokes the two-state receptor model
687 (Canals et al., 2011), which stipulates that the degree of positive modulation for PAMs
688 increases with an increase in the efficacy of the agonists. The pharmacology data support this
689 model, as ACh was more efficacious than Ipx and was better modulated by both PAMs (Figure
690 8D). These results again highlight the apparent paradox between ligands being more stably
691 bound to the receptor but also having lower efficacy. Supporting both observations is the fact
692 that the positive functional modulation ($\alpha\beta$) of LY298 and VU154 in G_{i1} signalling assays is
693 driven by positive binding modulation (α), as the efficacy modulation (β) of the PAMs was
694 negative to neutral (Figure 2J, S1E). These observations were consistent with recent studies
695 that suggest the conformational dynamics between agonist and receptor were important for
696 functional signalling (Bumbak et al., 2020; Cary et al., 2022; Deganutti et al., 2022; O'Connor
697 et al., 2015).

698

699 The findings presented here provide new insight into the allosteric signalling and allosteric
700 modulation of GPCRs by combining the analytical analysis of multiple pharmacology assays
701 along with cryo-EM structures and GaMD simulations. Overall, these results provide a
702 framework for future mechanistic studies, and ultimately, aid in the discovery, design, and
703 optimization of allosteric drugs as novel therapeutic candidates for clinical progression.

704

705

706 **Acknowledgments**

707 This work was supported by a Wellcome Trust Collaborative Award (201529/Z/16/Z; P.M.S.,
708 A.B.T., A.C.), the National Health and Medical Research Council of Australia (1055134,
709 1150083, and 1138448), the Australian Research Council (DE170100152, DP190102950, and
710 IC200100052), and the National Institutes of Health (GM132572). P.M.S. is a Senior Principal
711 Research Fellow (1154434), D.W. a Senior Research Fellow (1155302), D.M.T. an Early Career
712 Research Fellow (1196951), and K.L. a Future Fellow (160100075). R.D. was supported by
713 Takeda Science Foundation 2019 Medical Research Grant and Japan Science and Technology
714 Agency PRESTO (18069571). This work was partially supported by the Monash University
715 Ramaciotti Centre for cryo-electron microscopy and the Monash University MASSIVE high-
716 performance computing facility and supercomputing resources with the XSEDE allocation
717 award TG-MCB180049 and NERSC project M2874. We thank John Tesmer for discussion and
718 the suggestion of calculating DAQ scores.

719

720 **Author Contributions**

721 D.M.T, A.C., P.M.S., and A.B.T. designed the overall research; Z.V. and D.M.T designed,
722 expressed, and purified protein samples; Yi-L.L. and A.G. performed negative-stain EM; R.D.
723 performed sample vitrification and cryo-EM imaging; M.J.B, R.D., J.M., and D.M.T processed
724 the EM data; J.M., Z.V., and D.M.T. generated and analysed atomic models; J.W, A.B, and Y.M
725 designed, performed, analysed GaMD simulations, and contributed to writing. V.P., V.N., K.L.,
726 W.A.C.B, E.T.W., E.K., G.T., and M.Y., generated DNA constructs and performed pharmacology
727 experiments. D.M.T, C.V., V.P., and K.L. analysed pharmacology data. C.W.L. provided
728 VU0467154. D.W., P.M.S, A.B.T., Y.M., A.C., and D.M.T provided supervision. D.M.T. and A.C.
729 wrote the manuscript with contributions and input from all authors.

730

731 **Competing Interests**

732 P.M.S, D.W., and A.C. are shareholders of Septurna Inc.

733 **Data and materials availability**

734 All data generated or analysed during this study are included in the manuscript. Structural
735 data has been deposited in the Protein Data Bank (PDB) and Electron Microscopy Data Bank
736 (EMDB) under the following codes:

737 1) M4R-G_{i1}-Ipx PDB: 7TRK EMD-26099

738 2) M4R-G_{i1}-Ipx-LY298 PDB: 7TRP EMD-26100

739 3) M4R-G_{i1}-Ipx-VU154 PDB: 7TRQ EMD-26101

740 4) M4R-G_{i1}-ACh PDB: 7TRS EMD-26102

741 **References**

742 Ballesteros, J.A., and Weinstein, H. (1995). [19] Integrated methods for the construction of
743 three-dimensional models and computational probing of structure-function relations in G
744 protein-coupled receptors. In *Methods in Neurosciences*, S.C. Sealfon, ed. (Academic Press),
745 pp. 366–428.

746 Ballesteros, J.A., Jensen, A.D., Liapakis, G., Rasmussen, S.G., Shi, L., Gether, U., and Javitch,
747 J.A. (2001). Activation of the beta 2-adrenergic receptor involves disruption of an ionic lock
748 between the cytoplasmic ends of transmembrane segments 3 and 6. *J Biol Chem* **276**,
749 29171–29177. <https://doi.org/10.1074/jbc.M103747200>.

750 Berizzi, A.E., Gentry, P.R., Rueda, P., Den Hoedt, S., Sexton, P.M., Langmead, C.J., and
751 Christopoulos, A. (2016). Molecular Mechanisms of Action of M5 Muscarinic Acetylcholine
752 Receptor Allosteric Modulators. *Mol Pharmacol* **90**, 427–436.
753 <https://doi.org/10.1124/mol.116.104182>.

754 Berman, H., Henrick, K., and Nakamura, H. (2003). Announcing the worldwide Protein Data
755 Bank. *Nat Struct Biol* **10**, 980. <https://doi.org/10.1038/nsb1203-980>.

756 Bhattarai, A., and Miao, Y. (2018). Gaussian accelerated molecular dynamics for elucidation
757 of drug pathways. *Expert Opin Drug Discov* **13**, 1055–1065.
758 <https://doi.org/10.1080/17460441.2018.1538207>.

759 Black, J.W., and Leff, P. (1983). Operational models of pharmacological agonism. *Proc R Soc
760 Lond B Biol Sci* **220**, 141–162. <https://doi.org/10.1098/rspb.1983.0093>.

761 Brown, A.J.H., Bradley, S.J., Marshall, F.H., Brown, G.A., Bennett, K.A., Brown, J., Cansfield,
762 J.E., Cross, D.M., de Graaf, C., Hudson, B.D., et al. (2021). From structure to clinic: Design of
763 a muscarinic M1 receptor agonist with potential to treatment of Alzheimer's disease. *Cell*
764 **184**, 5886-5901.e22. <https://doi.org/10.1016/j.cell.2021.11.001>.

765 Bubser, M., Bridges, T.M., Dencker, D., Gould, R.W., Grannan, M., Noetzel, M.J., Lamsal, A.,
766 Niswender, C.M., Daniels, J.S., Poslusney, M.S., et al. (2014). Selective activation of M4
767 muscarinic acetylcholine receptors reverses MK-801-induced behavioral impairments and
768 enhances associative learning in rodents. *ACS Chem Neurosci* **5**, 920–942.
769 <https://doi.org/10.1021/cn500128b>.

770 Bumbak, F., Thomas, T., Noonan-Williams, B.J., Vaid, T.M., Yan, F., Whitehead, A.R., Bruell,
771 S., Kocan, M., Tan, X., Johnson, M.A., et al. (2020). Conformational Changes in Tyrosine 11 of
772 Neurotensin Are Required to Activate the Neurotensin Receptor 1. *ACS Pharmacol Transl Sci*
773 **3**, 690–705. <https://doi.org/10.1021/acsptsci.0c00026>.

774 Burger, W.A.C., Sexton, P.M., Christopoulos, A., and Thal, D.M. (2018). Toward an
775 understanding of the structural basis of allosteric in muscarinic acetylcholine receptors. *J
776 Gen Physiol* **150**, 1360–1372. <https://doi.org/10.1085/jgp.201711979>.

777 Bymaster, F.P., Carter, P.A., Yamada, M., Gomeza, J., Wess, J., Hamilton, S.E., Nathanson,
778 N.M., McKinzie, D.L., and Felder, C.C. (2003). Role of specific muscarinic receptor subtypes

779 in cholinergic parasympathomimetic responses, in vivo phosphoinositide hydrolysis, and
780 pilocarpine-induced seizure activity. *Eur J Neurosci* 17, 1403–1410.
781 <https://doi.org/10.1046/j.1460-9568.2003.02588.x>.

782 Canals, M., Sexton, P.M., and Christopoulos, A. (2011). Allostery in GPCRs: “MWC” revisited.
783 *Trends Biochem Sci* 36, 663–672. <https://doi.org/10.1016/j.tibs.2011.08.005>.

784 Cao, A.-M., Quast, R.B., Fatemi, F., Rondard, P., Pin, J.-P., and Margeat, E. (2021). Allosteric
785 modulators enhance agonist efficacy by increasing the residence time of a GPCR in the
786 active state. *Nat Commun* 12, 5426. <https://doi.org/10.1038/s41467-021-25620-5>.

787 Cary, B.P., Deganutti, G., Zhao, P., Truong, T.T., Piper, S.J., Liu, X., Belousoff, M.J., Danev, R.,
788 Sexton, P.M., Wootten, D., et al. (2022). Structural and functional diversity among agonist-
789 bound states of the GLP-1 receptor. *Nat Chem Biol* 18, 256–263.
790 <https://doi.org/10.1038/s41589-021-00945-w>.

791 Casañal, A., Lohkamp, B., and Emsley, P. (2020). Current developments in Coot for
792 macromolecular model building of Electron Cryo-microscopy and Crystallographic Data.
793 *Protein Sci* 29, 1069–1078. <https://doi.org/10.1002/pro.3791>.

794 Chan, W.Y., McKinzie, D.L., Bose, S., Mitchell, S.N., Witkin, J.M., Thompson, R.C.,
795 Christopoulos, A., Lazareno, S., Birdsall, N.J.M., Bymaster, F.P., et al. (2008). Allosteric
796 modulation of the muscarinic M4 receptor as an approach to treating schizophrenia. *Proc
797 Natl Acad Sci U S A* 105, 10978–10983. <https://doi.org/10.1073/pnas.0800567105>.

798 Changeux, J.-P., and Christopoulos, A. (2016). Allosteric Modulation as a Unifying
799 Mechanism for Receptor Function and Regulation. *Cell* 166, 1084–1102.
800 <https://doi.org/10.1016/j.cell.2016.08.015>.

801 Christopoulos, A. (2014). Advances in G protein-coupled receptor allostery: from function to
802 structure. *Mol Pharmacol* 86, 463–478. <https://doi.org/10.1124/mol.114.094342>.

803 Christopoulos, A., and Kenakin, T. (2002). G Protein-Coupled Receptor Allosterism and
804 Complexing. *Pharmacol Rev* 54, 323–374. <https://doi.org/10.1124/pr.54.2.323>.

805 Cong, X., Maurel, D., Déméné, H., Vasiliauskaité-Brooks, I., Hagelberger, J., Peysson, F.,
806 Saint-Paul, J., Golebiowski, J., Granier, S., and Sounier, R. (2021). Molecular insights into the
807 biased signaling mechanism of the μ -opioid receptor. *Molecular Cell* S1097276521006110.
808 <https://doi.org/10.1016/j.molcel.2021.07.033>.

809 Conn, P.J., Jones, C.K., and Lindsley, C.W. (2009). Subtype-selective allosteric modulators of
810 muscarinic receptors for the treatment of CNS disorders. *Trends Pharmacol Sci* 30, 148–155.
811 <https://doi.org/10.1016/j.tips.2008.12.002>.

812 Croll, T.I. (2018). ISOLDE: a physically realistic environment for model building into low-
813 resolution electron-density maps. *Acta Crystallogr D Struct Biol* 74, 519–530.
814 <https://doi.org/10.1107/S2059798318002425>.

815 Danev, R., Belousoff, M., Liang, Y.-L., Zhang, X., Eisenstein, F., Wootten, D., and Sexton, P.M.
816 (2021). Routine sub-2.5 Å cryo-EM structure determination of GPCRs. *Nat Commun* **12**,
817 4333. <https://doi.org/10.1038/s41467-021-24650-3>.

818 Darden, T., York, D., and Pedersen, L. (1993). Particle mesh Ewald: An $N \cdot \log(N)$ method for
819 Ewald sums in large systems. *J. Chem. Phys.* **98**, 10089–10092.
820 <https://doi.org/10.1063/1.464397>.

821 Deganutti, G., Liang, Y.-L., Zhang, X., Khoshouei, M., Clydesdale, L., Belousoff, M.J.,
822 Venugopal, H., Truong, T.T., Glukhova, A., Keller, A.N., et al. (2022). Dynamics of GLP-1R
823 peptide agonist engagement are correlated with kinetics of G protein activation. *Nat*
824 *Commun* **13**, 92. <https://doi.org/10.1038/s41467-021-27760-0>.

825 Dencker, D., Wörtwein, G., Weikop, P., Jeon, J., Thomsen, M., Sager, T.N., Mørk, A.,
826 Woldbye, D.P.D., Wess, J., and Fink-Jensen, A. (2011). Involvement of a subpopulation of
827 neuronal M4 muscarinic acetylcholine receptors in the antipsychotic-like effects of the
828 M1/M4 preferring muscarinic receptor agonist xanomeline. *J Neurosci* **31**, 5905–5908.
829 <https://doi.org/10.1523/JNEUROSCI.0370-11.2011>.

830 DeVree, B.T., Mahoney, J.P., Vélez-Ruiz, G.A., Rasmussen, S.G.F., Kuszak, A.J., Edwald, E.,
831 Fung, J.-J., Manglik, A., Masureel, M., Du, Y., et al. (2016). Allosteric coupling from G protein
832 to the agonist-binding pocket in GPCRs. *Nature* **535**, 182–186.
833 <https://doi.org/10.1038/nature18324>.

834 Draper-Joyce, C.J., Bhola, R., Wang, J., Bhattarai, A., Nguyen, A.T.N., Cowie-Kent, I.,
835 O'Sullivan, K., Chia, L.Y., Venugopal, H., Valant, C., et al. (2021). Positive allosteric
836 mechanisms of adenosine A1 receptor-mediated analgesia. *Nature*
837 <https://doi.org/10.1038/s41586-021-03897-2>.

838 Dror, R.O., Arlow, D.H., Maragakis, P., Mildorf, T.J., Pan, A.C., Xu, H., Borhani, D.W., and
839 Shaw, D.E. (2011). Activation mechanism of the β 2-adrenergic receptor. *Proc Natl Acad Sci U*
840 *S A* **108**, 18684–18689. <https://doi.org/10.1073/pnas.1110499108>.

841 Dror, R.O., Mildorf, T.J., Hilger, D., Manglik, A., Borhani, D.W., Arlow, D.H., Philippse, A.,
842 Villanueva, N., Yang, Z., Lerch, M.T., et al. (2015). SIGNAL TRANSDUCTION. Structural basis
843 for nucleotide exchange in heterotrimeric G proteins. *Science* **348**, 1361–1365.
844 <https://doi.org/10.1126/science.aaa5264>.

845 Ehlert, F.J. (1988). Estimation of the affinities of allosteric ligands using radioligand binding
846 and pharmacological null methods. *Mol Pharmacol* **33**, 187–194. .

847 Foster, D.J., Wilson, J.M., Remke, D.H., Mahmood, M.S., Uddin, M.J., Wess, J., Patel, S.,
848 Marnett, L.J., Niswender, C.M., Jones, C.K., et al. (2016). Antipsychotic-like Effects of M4
849 Positive Allosteric Modulators Are Mediated by CB2 Receptor-Dependent Inhibition of
850 Dopamine Release. *Neuron* **91**, 1244–1252. <https://doi.org/10.1016/j.neuron.2016.08.017>.

851 Fritze, O., Filipek, S., Kuksa, V., Palczewski, K., Hofmann, K.P., and Ernst, O.P. (2003). Role of
852 the conserved NPxxY(x)5,6F motif in the rhodopsin ground state and during activation. *Proc*
853 *Natl Acad Sci U S A* **100**, 2290–2295. <https://doi.org/10.1073/pnas.0435715100>.

854 Furness, S.G.B., Liang, Y.-L., Nowell, C.J., Halls, M.L., Wookey, P.J., Dal Maso, E., Inoue, A.,
855 Christopoulos, A., Wootten, D., and Sexton, P.M. (2016). Ligand-Dependent Modulation of G
856 Protein Conformation Alters Drug Efficacy. *Cell* **167**, 739-749.e11.
857 <https://doi.org/10.1016/j.cell.2016.09.021>.

858 Gentry, P.R., Kokubo, M., Bridges, T.M., Noetzel, M.J., Cho, H.P., Lamsal, A., Smith, E., Chase,
859 P., Hodder, P.S., Niswender, C.M., et al. (2014). Development of a highly potent, novel M5
860 positive allosteric modulator (PAM) demonstrating CNS exposure: 1-((1H-indazol-5-
861 yl)sulfoneyl)-N-ethyl-N-(2-(trifluoromethyl)benzyl)piperidine-4-carboxamide (ML380). *J Med
862 Chem* **57**, 7804-7810. <https://doi.org/10.1021/jm500995y>.

863 Gentry, P.R., Sexton, P.M., and Christopoulos, A. (2015). Novel Allosteric Modulators of G
864 Protein-coupled Receptors. *J Biol Chem* **290**, 19478-19488.
865 <https://doi.org/10.1074/jbc.R115.662759>.

866 Gregorio, G.G., Masureel, M., Hilger, D., Terry, D.S., Juette, M., Zhao, H., Zhou, Z., Perez-
867 Aguilar, J.M., Hauge, M., Mathiasen, S., et al. (2017). Single-molecule analysis of ligand
868 efficacy in β 2AR-G-protein activation. *Nature* **547**, 68-73.
869 <https://doi.org/10.1038/nature22354>.

870 Haga, K., Kruse, A.C., Asada, H., Yurugi-Kobayashi, T., Shiroishi, M., Zhang, C., Weis, W.I.,
871 Okada, T., Kobilka, B.K., Haga, T., et al. (2012). Structure of the human M2 muscarinic
872 acetylcholine receptor bound to an antagonist. *Nature* **482**, 547-551.
873 <https://doi.org/10.1038/nature10753>.

874 Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., de Groot, B.L., Grubmüller, H., and
875 MacKerell, A.D. (2017). CHARMM36m: an improved force field for folded and intrinsically
876 disordered proteins. *Nat Methods* **14**, 71-73. <https://doi.org/10.1038/nmeth.4067>.

877 Huang, S.K., Pandey, A., Tran, D.P., Villanueva, N.L., Kitao, A., Sunahara, R.K., Sljoka, A., and
878 Prosser, R.S. (2021). Delineating the conformational landscape of the adenosine A2A
879 receptor during G protein coupling. *Cell* **184**, 1884-1894.e14.
880 <https://doi.org/10.1016/j.cell.2021.02.041>.

881 Humphrey, W., Dalke, A., and Schulten, K. (1996). VMD: visual molecular dynamics. *J Mol
882 Graph* **14**, 33-38, 27-28. [https://doi.org/10.1016/0263-7855\(96\)00018-5](https://doi.org/10.1016/0263-7855(96)00018-5).

883 Josephs, T.M., Belousoff, M.J., Liang, Y.-L., Piper, S.J., Cao, J., Garama, D.J., Leach, K.,
884 Gregory, K.J., Christopoulos, A., Hay, D.L., et al. (2021). Structure and dynamics of the CGRP
885 receptor in apo and peptide-bound forms. *Science* **372**, eabf7258.
886 <https://doi.org/10.1126/science.abf7258>.

887 Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool,
888 K., Bates, R., Žídek, A., Potapenko, A., et al. (2021). Highly accurate protein structure
889 prediction with AlphaFold. *Nature* **596**, 583-589. [https://doi.org/10.1038/s41586-021-03819-2](https://doi.org/10.1038/s41586-021-
890 03819-2).

891 Katayama, K., Suzuki, K., Suno, R., Kise, R., Tsujimoto, H., Iwata, S., Inoue, A., Kobayashi, T.,
892 and Kandori, H. (2021). Vibrational spectroscopy analysis of ligand efficacy in human M2

893 muscarinic acetylcholine receptor (M2R). *Commun Biol* 4, 1321.
894 <https://doi.org/10.1038/s42003-021-02836-1>.

895 Kenakin, T. (2005). New concepts in drug discovery: collateral efficacy and permissive
896 antagonism. *Nat Rev Drug Discov* 4, 919–927. <https://doi.org/10.1038/nrd1875>.

897 Kenakin, T.P. (2012). Biased signalling and allosteric machines: new vistas and challenges for
898 drug discovery. *Br J Pharmacol* 165, 1659–1669. <https://doi.org/10.1111/j.1476-5381.2011.01749.x>.

900 Kenakin, T., and Onaran, O. (2002). The ligand paradox between affinity and efficacy: can
901 you be there and not make a difference? *Trends Pharmacol Sci* 23, 275–280.
902 [https://doi.org/10.1016/s0165-6147\(02\)02036-9](https://doi.org/10.1016/s0165-6147(02)02036-9).

903 Kenakin, T.P., Watson, C., Muniz-Medina, V., Christopoulos, A., and Novick, S. (2012). A
904 simple method for quantifying functional selectivity and agonist bias. *ACS Chem Neurosci* 3,
905 193–203. <https://doi.org/10.1021/cn200111m>.

906 Klauda, J.B., Venable, R.M., Freites, J.A., O'Connor, J.W., Tobias, D.J., Mondragon-Ramirez,
907 C., Vorobyov, I., MacKerell, A.D., and Pastor, R.W. (2010). Update of the CHARMM all-atom
908 additive force field for lipids: validation on six lipid types. *J Phys Chem B* 114, 7830–7843.
909 <https://doi.org/10.1021/jp101759q>.

910 Kruse, A.C., Hu, J., Pan, A.C., Arlow, D.H., Rosenbaum, D.M., Rosemond, E., Green, H.F., Liu,
911 T., Chae, P.S., Dror, R.O., et al. (2012). Structure and dynamics of the M3 muscarinic
912 acetylcholine receptor. *Nature* 482, 552–556. <https://doi.org/10.1038/nature10867>.

913 Kruse, A.C., Ring, A.M., Manglik, A., Hu, J., Hu, K., Eitel, K., Hübner, H., Pardon, E., Valant, C.,
914 Sexton, P.M., et al. (2013). Activation and allosteric modulation of a muscarinic
915 acetylcholine receptor. *Nature* 504, 101–106. <https://doi.org/10.1038/nature12735>.

916 Kumar, A., Yoluk, O., and MacKerell, A.D. (2020). FFParam: Standalone package for
917 CHARMM additive and Drude polarizable force field parametrization of small molecules. *J
918 Comput Chem* 41, 958–970. <https://doi.org/10.1002/jcc.26138>.

919 Leach, K., Sexton, P.M., and Christopoulos, A. (2007). Allosteric GPCR modulators: taking
920 advantage of permissive receptor pharmacology. *Trends Pharmacol Sci* 28, 382–389.
921 <https://doi.org/10.1016/j.tips.2007.06.004>.

922 Leach, K., Loiacono, R.E., Felder, C.C., McKinzie, D.L., Mogg, A., Shaw, D.B., Sexton, P.M., and
923 Christopoulos, A. (2010). Molecular mechanisms of action and in vivo validation of an M4
924 muscarinic acetylcholine receptor allosteric modulator with potential antipsychotic
925 properties. *Neuropsychopharmacology* 35, 855–869.
926 <https://doi.org/10.1038/npp.2009.194>.

927 Leach, K., Davey, A.E., Felder, C.C., Sexton, P.M., and Christopoulos, A. (2011). The role of
928 transmembrane domain 3 in the actions of orthosteric, allosteric, and atypical agonists of
929 the M4 muscarinic acetylcholine receptor. *Mol Pharmacol* 79, 855–865.
930 <https://doi.org/10.1124/mol.111.070938>.

931 Liang, Y.-L., Zhao, P., Draper-Joyce, C., Baltos, J.-A., Glukhova, A., Truong, T.T., May, L.T.,
932 Christopoulos, A., Wootten, D., Sexton, P.M., et al. (2018a). Dominant Negative G Proteins
933 Enhance Formation and Purification of Agonist-GPCR-G Protein Complexes for Structure
934 Determination. *ACS Pharmacol Transl Sci* 1, 12–20.
935 <https://doi.org/10.1021/acsptsci.8b00017>.

936 Liang, Y.-L., Khoshouei, M., Glukhova, A., Furness, S.G.B., Zhao, P., Clydesdale, L., Koole, C.,
937 Truong, T.T., Thal, D.M., Lei, S., et al. (2018b). Phase-plate cryo-EM structure of a biased
938 agonist-bound human GLP-1 receptor-Gs complex. *Nature* 555, 121–125.
939 <https://doi.org/10.1038/nature25773>.

940 Liang, Y.-L., Belousoff, M.J., Fletcher, M.M., Zhang, X., Khoshouei, M., Deganutti, G., Koole, C.,
941 Furness, S.G.B., Miller, L.J., Hay, D.L., et al. (2020). Structure and Dynamics of
942 Adrenomedullin Receptors AM1 and AM2 Reveal Key Mechanisms in the Control of
943 Receptor Phenotype by Receptor Activity-Modifying Proteins. *ACS Pharmacol Transl Sci* 3,
944 263–284. <https://doi.org/10.1021/acsptsci.9b00080>.

945 Liebschner, D., Afonine, P.V., Baker, M.L., Bunkóczki, G., Chen, V.B., Croll, T.I., Hintze, B.,
946 Hung, L.W., Jain, S., McCoy, A.J., et al. (2019). Macromolecular structure determination
947 using X-rays, neutrons and electrons: recent developments in Phenix. *Acta Crystallogr D
948 Struct Biol* 75, 861–877. <https://doi.org/10.1107/S2059798319011471>.

949 Liu, J.J., Horst, R., Katritch, V., Stevens, R.C., and Wüthrich, K. (2012a). Biased signaling
950 pathways in β 2-adrenergic receptor characterized by 19F-NMR. *Science* 335, 1106–1110.
951 <https://doi.org/10.1126/science.1215802>.

952 Liu, W., Chun, E., Thompson, A.A., Chubukov, P., Xu, F., Katritch, V., Han, G.W., Roth, C.B.,
953 Heitman, L.H., IJzerman, A.P., et al. (2012b). Structural Basis for Allosteric Regulation of
954 GPCRs by Sodium Ions. *Science* 337, 232–236. <https://doi.org/10.1126/science.1219218>.

955 Maeda, S., Koehl, A., Matile, H., Hu, H., Hilger, D., Schertler, G.F.X., Manglik, A., Skiniotis, G.,
956 Dawson, R.J.P., and Kobilka, B.K. (2018). Development of an antibody fragment that
957 stabilizes GPCR/G-protein complexes. *Nat Commun* 9, 3712.
958 <https://doi.org/10.1038/s41467-018-06002-w>.

959 Maeda, S., Qu, Q., Robertson, M.J., Skiniotis, G., and Kobilka, B.K. (2019). Structures of the
960 M1 and M2 muscarinic acetylcholine receptor/G-protein complexes. *Science* 364, 552–557.
961 <https://doi.org/10.1126/science.aaw5188>.

962 Manglik, A., Kim, T.H., Masureel, M., Altenbach, C., Yang, Z., Hilger, D., Lerch, M.T., Kobilka,
963 T.S., Thian, F.S., Hubbell, W.L., et al. (2015). Structural Insights into the Dynamic Process of
964 β 2-Adrenergic Receptor Signaling. *Cell* 161, 1101–1111.
965 <https://doi.org/10.1016/j.cell.2015.04.043>.

966 Marlo, J.E., Niswender, C.M., Days, E.L., Bridges, T.M., Xiang, Y., Rodriguez, A.L., Shirey, J.K.,
967 Brady, A.E., Nalywajko, T., Luo, Q., et al. (2009). Discovery and Characterization of Novel
968 Allosteric Potentiators of M1 Muscarinic Receptors Reveals Multiple Modes of Activity. *Mol
969 Pharmacol* 75, 577–588. <https://doi.org/10.1124/mol.108.052886>.

970 Masureel, M., Zou, Y., Picard, L.-P., van der Westhuizen, E., Mahoney, J.P., Rodrigues,
971 J.P.G.L.M., Mildorf, T.J., Dror, R.O., Shaw, D.E., Bouvier, M., et al. (2018). Structural insights
972 into binding specificity, efficacy and bias of a β 2AR partial agonist. *Nat Chem Biol* 14, 1059–
973 1066. <https://doi.org/10.1038/s41589-018-0145-x>.

974 McCorry, J.D., Wacker, D., Wang, S., Agegnehu, B., Liu, J., Lansu, K., Tribo, A.R., Olsen, R.H.J.,
975 Che, T., Jin, J., et al. (2018). Structural determinants of 5-HT2B receptor activation and
976 biased agonism. *Nat Struct Mol Biol* 25, 787–796. <https://doi.org/10.1038/s41594-018-0116-7>.

978 Miao, Y., and McCammon, J.A. (2016). Graded activation and free energy landscapes of a
979 muscarinic G-protein-coupled receptor. *Proc Natl Acad Sci U S A* 113, 12162–12167.
980 <https://doi.org/10.1073/pnas.1614538113>.

981 Miao, Y., and McCammon, J.A. (2017). Gaussian Accelerated Molecular Dynamics: Theory,
982 Implementation, and Applications. *Annu Rep Comput Chem* 13, 231–278.
983 <https://doi.org/10.1016/bs.arcc.2017.06.005>.

984 Miao, Y., and McCammon, J.A. (2018). Mechanism of the G-protein mimetic nanobody
985 binding to a muscarinic G-protein-coupled receptor. *Proc Natl Acad Sci U S A* 115, 3036–
986 3041. <https://doi.org/10.1073/pnas.1800756115>.

987 Miao, Y., Sinko, W., Pierce, L., Bucher, D., Walker, R.C., and McCammon, J.A. (2014).
988 Improved Reweighting of Accelerated Molecular Dynamics Simulations for Free Energy
989 Calculation. *J Chem Theory Comput* 10, 2677–2689. <https://doi.org/10.1021/ct500090q>.

990 Miao, Y., Feher, V.A., and McCammon, J.A. (2015). Gaussian Accelerated Molecular
991 Dynamics: Unconstrained Enhanced Sampling and Free Energy Calculation. *J. Chem. Theory*
992 *Comput.* 11, 3584–3595. <https://doi.org/10.1021/acs.jctc.5b00436>.

993 Mobbs, J.I., Belousoff, M.J., Harikumar, K.G., Piper, S.J., Xu, X., Furness, S.G.B., Venugopal,
994 H., Christopoulos, A., Danev, R., Wootten, D., et al. (2021). Structures of the human
995 cholecystokinin 1 (CCK1) receptor bound to Gs and Gq mimetic proteins provide insight into
996 mechanisms of G protein selectivity. *PLoS Biol* 19, e3001295.
997 <https://doi.org/10.1371/journal.pbio.3001295>.

998 Nawaratne, V., Leach, K., Felder, C.C., Sexton, P.M., and Christopoulos, A. (2010). Structural
999 determinants of allosteric agonism and modulation at the M4 muscarinic acetylcholine
1000 receptor: identification of ligand-specific and global activation mechanisms. *J Biol Chem* 285,
1001 19012–19021. <https://doi.org/10.1074/jbc.M110.125096>.

1002 Nygaard, R., Frimurer, T.M., Holst, B., Rosenkilde, M.M., and Schwartz, T.W. (2009). Ligand
1003 binding and micro-switches in 7TM receptor structures. *Trends Pharmacol Sci* 30, 249–259.
1004 <https://doi.org/10.1016/j.tips.2009.02.006>.

1005 O'Connor, C., White, K.L., Doncescu, N., Didenko, T., Roth, B.L., Czaplicki, G., Stevens, R.C.,
1006 Wüthrich, K., and Milon, A. (2015). NMR structure and dynamics of the agonist dynorphin
1007 peptide bound to the human kappa opioid receptor. *Proc Natl Acad Sci U S A* 112, 11852–
1008 11857. <https://doi.org/10.1073/pnas.1510117112>.

1009 Olsen, R.H.J., DiBerto, J.F., English, J.G., Glaudin, A.M., Krumm, B.E., Slocum, S.T., Che, T.,
1010 Gavin, A.C., McCory, J.D., Roth, B.L., et al. (2020). TRUPATH, an open-source biosensor
1011 platform for interrogating the GPCR transducerome. *Nat Chem Biol* *16*, 841–849.
1012 <https://doi.org/10.1038/s41589-020-0535-8>.

1013 Pani, B., Ahn, S., Rambarat, P.K., Vege, S., Kahsai, A.W., Liu, A., Valan, B.N., Staus, D.P.,
1014 Costa, T., and Lefkowitz, R.J. (2021). Unique Positive Cooperativity Between the β -Arrestin-
1015 Biased β -Blocker Carvedilol and a Small Molecule Positive Allosteric Modulator of the $\beta 2$ -
1016 Adrenergic Receptor. *Mol Pharmacol* *100*, 513–525.
1017 <https://doi.org/10.1124/molpharm.121.000363>.

1018 Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and
1019 Ferrin, T.E. (2004). UCSF Chimera--a visualization system for exploratory research and
1020 analysis. *J Comput Chem* *25*, 1605–1612. <https://doi.org/10.1002/jcc.20084>.

1021 Pettersen, E.F., Goddard, T.D., Huang, C.C., Meng, E.C., Couch, G.S., Croll, T.I., Morris, J.H.,
1022 and Ferrin, T.E. (2021). UCSF ChimeraX: Structure visualization for researchers, educators,
1023 and developers. *Protein Sci* *30*, 70–82. <https://doi.org/10.1002/pro.3943>.

1024 Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel,
1025 R.D., Kalé, L., and Schulter, K. (2005). Scalable molecular dynamics with NAMD. *J Comput*
1026 *Chem* *26*, 1781–1802. <https://doi.org/10.1002/jcc.20289>.

1027 Punjani, A., and Fleet, D.J. (2021). 3D variability analysis: Resolving continuous flexibility and
1028 discrete heterogeneity from single particle cryo-EM. *J Struct Biol* *213*, 107702.
1029 <https://doi.org/10.1016/j.jsb.2021.107702>.

1030 Qi, X., Liu, H., Thompson, B., McDonald, J., Zhang, C., and Li, X. (2019). Cryo-EM structure of
1031 oxysterol-bound human Smoothened coupled to a heterotrimeric Gi. *Nature* *571*, 279–283.
1032 <https://doi.org/10.1038/s41586-019-1286-0>.

1033 Rasmussen, S.G.F., Choi, H.-J., Fung, J.J., Pardon, E., Casarosa, P., Chae, P.S., DeVree, B.T.,
1034 Rosenbaum, D.M., Thian, F.S., Kobilka, T.S., et al. (2011). Structure of a nanobody-stabilized
1035 active state of the $\beta 2$ adrenoceptor. *Nature* *469*, 175–180.
1036 <https://doi.org/10.1038/nature09648>.

1037 Roe, D.R., and Cheatham, T.E. (2013). PTraj and CPPtraj: Software for Processing and
1038 Analysis of Molecular Dynamics Trajectory Data. *J Chem Theory Comput* *9*, 3084–3095.
1039 <https://doi.org/10.1021/ct400341p>.

1040 Ryckaert, J.-P., Ciccotti, G., and Berendsen, H.J.C. (1977). Numerical integration of the
1041 cartesian equations of motion of a system with constraints: molecular dynamics of n-
1042 alkanes. *Journal of Computational Physics* *23*, 327–341. [https://doi.org/10.1016/0021-9991\(77\)90098-5](https://doi.org/10.1016/0021-9991(77)90098-5).

1044 Schrage, R., Seemann, W.K., Klöckner, J., Dallanoce, C., Racké, K., Kostenis, E., De Amici, M.,
1045 Holzgrabe, U., and Mohr, K. (2013). Agonists with supraphysiological efficacy at the
1046 muscarinic M2 ACh receptor. *Br J Pharmacol* *169*, 357–370.
1047 <https://doi.org/10.1111/bph.12003>.

1048 Seyedabadi, M., Gharghabi, M., Gurevich, E.V., and Gurevich, V.V. (2022). Structural basis of
1049 GPCR coupling to distinct signal transducers: implications for biased signaling. *Trends
1050 Biochem Sci* 47, 570–581. <https://doi.org/10.1016/j.tibs.2022.03.009>.

1051 Shi, L., Liapakis, G., Xu, R., Guarnieri, F., Ballesteros, J.A., and Javitch, J.A. (2002). Beta2
1052 adrenergic receptor activation. Modulation of the proline kink in transmembrane 6 by a
1053 rotamer toggle switch. *J Biol Chem* 277, 40989–40996.
1054 <https://doi.org/10.1074/jbc.M206801200>.

1055 Slosky, L.M., Bai, Y., Toth, K., Ray, C., Rochelle, L.K., Badea, A., Chandrasekhar, R., Pogorelov,
1056 V.M., Abraham, D.M., Atluri, N., et al. (2020). β -Arrestin-Biased Allosteric Modulator of
1057 NTSR1 Selectively Attenuates Addictive Behaviors. *Cell* 181, 1364–1379.e14.
1058 <https://doi.org/10.1016/j.cell.2020.04.053>.

1059 Slosky, L.M., Caron, M.G., and Barak, L.S. (2021). Biased Allosteric Modulators: New
1060 Frontiers in GPCR Drug Discovery. *Trends in Pharmacological Sciences* 42, 283–299.
1061 <https://doi.org/10.1016/j.tips.2020.12.005>.

1062 Solt, A.S., Bostock, M.J., Shrestha, B., Kumar, P., Warne, T., Tate, C.G., and Nietlispach, D.
1063 (2017). Insight into partial agonism by observing multiple equilibria for ligand-bound and Gs-
1064 mimetic nanobody-bound β 1-adrenergic receptor. *Nat Commun* 8, 1795.
1065 <https://doi.org/10.1038/s41467-017-02008-y>.

1066 Staus, D.P., Hu, H., Robertson, M.J., Kleinhenz, A.L.W., Wingler, L.M., Capel, W.D., Latorraca,
1067 N.R., Lefkowitz, R.J., and Skiniotis, G. (2020). Structure of the M2 muscarinic receptor- β -
1068 arrestin complex in a lipid nanodisc. *Nature* 579, 297–302. <https://doi.org/10.1038/s41586-020-1954-0>.

1070 Suratman, S., Leach, K., Sexton, P., Felder, C., Loiacono, R., and Christopoulos, A. (2011).
1071 Impact of species variability and “probe-dependence” on the detection and in vivo
1072 validation of allosteric modulation at the M4 muscarinic acetylcholine receptor. *Br J
1073 Pharmacol* 162, 1659–1670. <https://doi.org/10.1111/j.1476-5381.2010.01184.x>.

1074 Sušac, L., Eddy, M.T., Didenko, T., Stevens, R.C., and Wüthrich, K. (2018). A2A adenosine
1075 receptor functional states characterized by 19F-NMR. *Proc Natl Acad Sci U S A* 115, 12733–
1076 12738. <https://doi.org/10.1073/pnas.1813649115>.

1077 Terashi, G., Wang, X., Maddhuri Venkata Subramaniya, S.R., Tesmer, J.J.G., and Kihara, D.
1078 (2022). Residue-wise local quality estimation for protein models from cryo-EM maps. *Nat
1079 Methods* 19, 1116–1125. <https://doi.org/10.1038/s41592-022-01574-4>.

1080 Thal, D.M., Sun, B., Feng, D., Nawaratne, V., Leach, K., Felder, C.C., Bures, M.G., Evans, D.A.,
1081 Weis, W.I., Bachhawat, P., et al. (2016). Crystal structures of the M1 and M4 muscarinic
1082 acetylcholine receptors. *Nature* 531, 335–340. <https://doi.org/10.1038/nature17188>.

1083 Thal, D.M., Glukhova, A., Sexton, P.M., and Christopoulos, A. (2018). Structural insights into
1084 G-protein-coupled receptor allostery. *Nature* 559, 45–53. <https://doi.org/10.1038/s41586-018-0259-z>.

1086 Tian, W., Chen, C., Lei, X., Zhao, J., and Liang, J. (2018). CASTp 3.0: computed atlas of surface
1087 topography of proteins. *Nucleic Acids Res* **46**, W363–W367.
1088 <https://doi.org/10.1093/nar/gky473>.

1089 Tzavara, E.T., Bymaster, F.P., Davis, R.J., Wade, M.R., Perry, K.W., Wess, J., McKinzie, D.L.,
1090 Felder, C., and Nomikos, G.G. (2004). M4 muscarinic receptors regulate the dynamics of
1091 cholinergic and dopaminergic neurotransmission: relevance to the pathophysiology and
1092 treatment of related CNS pathologies. *FASEB J* **18**, 1410–1412.
1093 <https://doi.org/10.1096/fj.04-1575fje>.

1094 Valant, C., Felder, C.C., Sexton, P.M., and Christopoulos, A. (2012). Probe dependence in the
1095 allosteric modulation of a G protein-coupled receptor: implications for detection and
1096 validation of allosteric ligand effects. *Mol Pharmacol* **81**, 41–52.
1097 <https://doi.org/10.1124/mol.111.074872>.

1098 Vanommeslaeghe, K., and MacKerell, A.D. (2012). Automation of the CHARMM General
1099 Force Field (CGenFF) I: bond perception and atom typing. *J Chem Inf Model* **52**, 3144–3154.
1100 <https://doi.org/10.1021/ci300363c>.

1101 Vanommeslaeghe, K., and MacKerell, A.D. (2015). CHARMM additive and polarizable force
1102 fields for biophysics and computer-aided drug design. *Biochim Biophys Acta* **1850**, 861–871.
1103 <https://doi.org/10.1016/j.bbagen.2014.08.004>.

1104 Vanommeslaeghe, K., Raman, E.P., and MacKerell, A.D. (2012). Automation of the CHARMM
1105 General Force Field (CGenFF) II: assignment of bonded parameters and partial atomic
1106 charges. *J Chem Inf Model* **52**, 3155–3168. <https://doi.org/10.1021/ci3003649>.

1107 Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe,
1108 O., Wood, G., Laydon, A., et al. (2022). AlphaFold Protein Structure Database: massively
1109 expanding the structural coverage of protein-sequence space with high-accuracy models.
1110 *Nucleic Acids Res* **50**, D439–D444. <https://doi.org/10.1093/nar/gkab1061>.

1111 Vuckovic, Z., Gentry, P.R., Berizzi, A.E., Hirata, K., Varghese, S., Thompson, G., van der
1112 Westhuizen, E.T., Burger, W.A.C., Rahmani, R., Valant, C., et al. (2019). Crystal structure of
1113 the M5 muscarinic acetylcholine receptor. *Proc Natl Acad Sci U S A* **116**, 26001–26007.
1114 <https://doi.org/10.1073/pnas.1914446116>.

1115 Wacker, D., Wang, C., Katritch, V., Han, G.W., Huang, X.-P., Vardy, E., McCorry, J.D., Jiang, Y.,
1116 Chu, M., Siu, F.Y., et al. (2013). Structural features for functional selectivity at serotonin
1117 receptors. *Science* **340**, 615–619. <https://doi.org/10.1126/science.1232808>.

1118 Wagner, T., Merino, F., Stabrin, M., Moriya, T., Antoni, C., Apelbaum, A., Hagel, P., Sitsel, O.,
1119 Raisch, T., Prumbaum, D., et al. (2019). SPHIRE-crYOLO is a fast and accurate fully
1120 automated particle picker for cryo-EM. *Commun Biol* **2**, 218.
1121 <https://doi.org/10.1038/s42003-019-0437-z>.

1122 Wang, J., Arantes, P.R., Bhattarai, A., Hsu, R.V., Pawnikar, S., Huang, Y.-M.M., Palermo, G.,
1123 and Miao, Y. (2021a). Gaussian accelerated molecular dynamics (GaMD): principles and

1124 applications. Wiley Interdiscip Rev Comput Mol Sci 11, e1521.
1125 <https://doi.org/10.1002/wcms.1521>.

1126 Wang, J., Pani, B., Gokhan, I., Xiong, X., Kahsai, A.W., Jiang, H., Ahn, S., Lefkowitz, R.J., and
1127 Rockman, H.A. (2021b). β -Arrestin-Biased Allosteric Modulator Potentiates Carvedilol-
1128 Stimulated β Adrenergic Receptor Cardioprotection. Mol Pharmacol 100, 568–579.
1129 <https://doi.org/10.1124/molpharm.121.000359>.

1130 Wang, J., Wu, M., Chen, Z., Wu, L., Wang, T., Cao, D., Wang, H., Liu, S., Xu, Y., Li, F., et al.
1131 (2022). The unconventional activation of the muscarinic acetylcholine receptor M4R by
1132 diverse ligands. Nat Commun 13, 2855. <https://doi.org/10.1038/s41467-022-30595-y>.

1133 Warne, T., Edwards, P.C., Leslie, A.G.W., and Tate, C.G. (2012). Crystal structures of a
1134 stabilized $\beta 1$ -adrenoceptor bound to the biased agonists bucindolol and carvedilol.
1135 Structure 20, 841–849. <https://doi.org/10.1016/j.str.2012.03.014>.

1136 Warne, T., Edwards, P.C., Doré, A.S., Leslie, A.G.W., and Tate, C.G. (2019). Molecular basis
1137 for high-affinity agonist binding in GPCRs. Science 364, 775–778.
1138 <https://doi.org/10.1126/science.aau5595>.

1139 White, K.L., Eddy, M.T., Gao, Z.-G., Han, G.W., Lian, T., Deary, A., Patel, N., Jacobson, K.A.,
1140 Katritch, V., and Stevens, R.C. (2018). Structural Connection between Activation Microswitch
1141 and Allosteric Sodium Site in GPCR Signaling. Structure 26, 259–269.e5.
1142 <https://doi.org/10.1016/j.str.2017.12.013>.

1143 Williams, C.J., Headd, J.J., Moriarty, N.W., Prisant, M.G., Videau, L.L., Deis, L.N., Verma, V.,
1144 Keedy, D.A., Hintze, B.J., Chen, V.B., et al. (2018). MolProbity: More and better reference
1145 data for improved all-atom structure validation. Protein Sci 27, 293–315.
1146 <https://doi.org/10.1002/pro.3330>.

1147 Wingler, L.M., Elgeti, M., Hilger, D., Latorraca, N.R., Lerch, M.T., Staus, D.P., Dror, R.O.,
1148 Kobilka, B.K., Hubbell, W.L., and Lefkowitz, R.J. (2019). Angiotensin Analogs with Divergent
1149 Bias Stabilize Distinct Receptor Conformations. Cell 176, 468–478.e11.
1150 <https://doi.org/10.1016/j.cell.2018.12.005>.

1151 Wood, M.R., Noetzel, M.J., Poslusney, M.S., Melancon, B.J., Tarr, J.C., Lamsal, A., Chang, S.,
1152 Luscombe, V.B., Weiner, R.L., Cho, H.P., et al. (2017a). Challenges in the development of an
1153 M4 PAM in vivo tool compound: The discovery of VU0467154 and unexpected DMPK
1154 profiles of close analogs. Bioorg Med Chem Lett 27, 171–175.
1155 <https://doi.org/10.1016/j.bmcl.2016.11.086>.

1156 Wood, M.R., Noetzel, M.J., Melancon, B.J., Poslusney, M.S., Nance, K.D., Hurtado, M.A.,
1157 Luscombe, V.B., Weiner, R.L., Rodriguez, A.L., Lamsal, A., et al. (2017b). Discovery of
1158 VU0467485/AZ13713945: An M4 PAM Evaluated as a Preclinical Candidate for the
1159 Treatment of Schizophrenia. ACS Med Chem Lett 8, 233–238.
1160 <https://doi.org/10.1021/acsmedchemlett.6b00461>.

1161 Wootten, D., Christopoulos, A., and Sexton, P.M. (2013). Emerging paradigms in GPCR
1162 allostery: implications for drug discovery. *Nat Rev Drug Discov* 12, 630–644.
1163 <https://doi.org/10.1038/nrd4052>.

1164 Xu, J., Hu, Y., Kaindl, J., Risel, P., Hübner, H., Maeda, S., Niu, X., Li, H., Gmeiner, P., Jin, C., et
1165 al. (2019). Conformational Complexity and Dynamics in a Muscarinic Receptor Revealed by
1166 NMR Spectroscopy. *Mol Cell* 75, 53–65.e7. <https://doi.org/10.1016/j.molcel.2019.04.028>.

1167 Xu, J., Hübner, H., Hu, Y., Niu, X., Gmeiner, P., Jin, C., and Kobilka, B. (2021). An allosteric
1168 ligand stabilizes distinct conformations in the M2 muscarinic acetylcholine receptor.
1169 2021.02.14.431178. <https://doi.org/10.1101/2021.02.14.431178>.

1170 Ye, L., Van Eps, N., Zimmer, M., Ernst, O.P., and Prosser, R.S. (2016). Activation of the A2A
1171 adenosine G-protein-coupled receptor by conformational selection. *Nature* 533, 265–268.
1172 <https://doi.org/10.1038/nature17668>.

1173 Zhang, K. (2016). Gctf: Real-time CTF determination and correction. *J Struct Biol* 193, 1–12.
1174 <https://doi.org/10.1016/j.jsb.2015.11.003>.

1175 Zhang, X., Belousoff, M.J., Zhao, P., Kooistra, A.J., Truong, T.T., Ang, S.Y., Underwood, C.R.,
1176 Egebjerg, T., Šenel, P., Stewart, G.D., et al. (2020). Differential GLP-1R Binding and Activation
1177 by Peptide and Non-peptide Agonists. *Molecular Cell* 80, 485–500.e7.
1178 <https://doi.org/10.1016/j.molcel.2020.09.020>.

1179 Zheng, S.Q., Palovcak, E., Armache, J.-P., Verba, K.A., Cheng, Y., and Agard, D.A. (2017).
1180 MotionCor2 - anisotropic correction of beam-induced motion for improved cryo-electron
1181 microscopy. *Nat Methods* 14, 331–332. <https://doi.org/10.1038/nmeth.4193>.

1182 Zhou, Q., Yang, D., Wu, M., Guo, Y., Guo, W., Zhong, L., Cai, X., Dai, A., Jang, W.,
1183 Shakhnovich, E.I., et al. (2019). Common activation mechanism of class A GPCRs. *eLife* 8,
1184 e50279. <https://doi.org/10.7554/eLife.50279>.

1185 Zivanov, J., Nakane, T., Forsberg, B.O., Kimanius, D., Hagen, W.J., Lindahl, E., and Scheres,
1186 S.H. (2018). New tools for automated high-resolution cryo-EM structure determination in
1187 RELION-3. *eLife* 7, e42166. <https://doi.org/10.7554/eLife.42166>.

1188

1189

1190 Materials and Methods

1191

1192 Key Resources Table

Reagent type (species) or resource	Designation	Source or reference	Additional information
antibody	anti-FLAG M1 (mouse IgG2a)	Gift from Prof. Brian Kobilka (PMID 17962520)	Antibody used for purification of FLAG-tagged M4 mAChR.
strain, strain background (<i>E. coli</i>)	DH5 α	New England Biolabs	
strain, strain background (<i>E. coli</i>)	DH10bac	Thermo-Fisher Scientific	
cell line (<i>Spodoptera frugiperda</i>)	Sf9	Expression Systems	
cell line (<i>Trichoplusia ni</i>)	Tni	Expression Systems	
cell line (Chinese hamster ovary)	Flp-In CHO human M4 mAChR WT	PMID: 26958838	
cell line (Chinese hamster ovary)	CHO K1 mouse M4 mAChR WT	PMID: 21198541	
cell line (Chinese hamster ovary)	Flp-In CHO human M4 mAChR D432E	This study	pEF5-FRT-V5-DEST plasmid
cell line (Chinese hamster ovary)	Flp-In CHO human M4 mAChR T433R	This study	pEF5-FRT-V5-DEST plasmid
cell line (Chinese hamster ovary)	Flp-In CHO human M4 mAChR V91L, D432E, T433R	This study	pEF5-FRT-V5-DEST plasmid
cell line (Chinese hamster ovary)	Flp-In CHO human M4 mAChR Y89A	PMID: 26958838	
cell line (Chinese hamster ovary)	Flp-In CHO human M4 mAChR Q184A	PMID: 26958838	
cell line (Chinese hamster ovary)	Flp-In CHO human M4 mAChR F186A	PMID: 20406819	
cell line (Chinese hamster ovary)	Flp-In CHO human M4 mAChR W435A	PMID: 26958838	
cell line (Chinese hamster ovary)	Flp-In CHO human M4 mAChR W439A	PMID: 20406819	
cell line (<i>Homo sapiens</i>)	HEK293A	Thermo-Fisher Scientific	
recombinant DNA reagent	human FLAG-M4 Δ i3-His	This study	pVL1392 vector
recombinant DNA reagent	human G α i1 dominant negative mutant	PMID: 32193322	pFastBac vector
recombinant DNA reagent	human G β 1 γ 2	Gift from Prof. Brian Kobilka (PMID 24256733)	pVL1392 vector
recombinant DNA reagent	scFv16	PMID: 30213947	pFastBac vector
recombinant DNA reagent	pcDNA5/FRT/TO-GAlphai1-RLuc8	Gift from Prof. Bryan Roth (PMID 32367019)	TRUPATH assay
recombinant DNA reagent	pcDNA3.1-Beta3	Gift from Prof. Bryan Roth (PMID 32367019)	TRUPATH assay
recombinant DNA reagent	pcDNA3.1-GGamma9-GFP2	Gift from Prof. Bryan Roth (PMID 32367019)	TRUPATH assay
chemical compound, drug	Acetylcholine	Sigma-Aldrich	
chemical compound, drug	Iperoxo	Sigma-Aldrich	
chemical compound, drug	LY2033298	Sigma-Aldrich	
chemical compound, drug	VU0467154	Gift from Prof. Craig Lindsley (PMID 25137629)	PMID 25137629
chemical compound, drug	Prolume Purple	Nanolight Technology	

chemical compound, drug	[3H]-NMS	PerkinElmer	
chemical compound, drug	Polyethylenimine (PEI)	Sigma-Aldrich	
chemical compound, drug	Atropine	Sigma-Aldrich	
commercial assay or kit	AlphaScreen® SureFire® p-ERK 1/2 (Thr202/Tyr204) Assay Kits	PerkinElmer	
software, algorithm	Prism 8.0	GraphPad	
software, algorithm	Pymol	Schrödinger	
software, algorithm	GaMD	PMID: 26300708	
software, algorithm	AMBER20	https://ambermd.org	
software, algorithm	CPPTRAJ	PMID: 26300708	
software, algorithm	PyReweighting	PMID: 25061441	
software, algorithm	Phenix suite	PMID: 20124702	
software, algorithm	Coot	PMID: 31730249	
software, algorithm	Chimera	PMID: 15264254	
software, algorithm	Chimera X	PMID: 32881101	
software, algorithm	cryoSPARC	PMID: 28165473	
software, algorithm	Relion 3.1	PMID: 30412051	
software, algorithm	Motioncor2	PMID: 28250466	
software, algorithm	GCTF	PMID: 26592709	
software, algorithm	crYOLO	PMID: 31240256	
software, algorithm	ISOLDE	PMID: 29872003	
software, algorithm	Molprobity	PMID: 29067766	
software, algorithm	DAQ Score	PMID: 35953671	

1193

1194 **Bacterial strains**

1195 DH5 α (New England Biolabs) and DH10bac () *E. coli* cells were grown in LB at 37°C.

1196

1197 **Insect cell culture**

1198 Tni and Sf9 cells (Expression Systems) were maintained in ESF-921 media (Expression
1199 Systems) at 27°C.

1200

1201 **Mammalian cell culture**

1202 Flp-In Chinese hamster ovary (CHO) (Thermo-Fisher Scientific) cells stably expressing human
1203 M₄ mAChR or mutant constructs were maintained in Dulbecco's modified Eagle's medium
1204 (DMEM, Invitrogen) containing 5% fetal bovine serum (FBS; ThermoTrace) and 0.6 μ g/ml of

1205 Hygromycin (Roche) in a humidified incubator (37°C, 5% CO₂, 95% O₂). HEK293A cells were
1206 grown in DMEM supplemented with 5% FBS at 37°C in 5% CO₂.

1207

1208 **Radioligand binding assays**

1209 Flp-In CHO cells stably expressing M₄ mAChR constructs were seeded at 10,000 cells/well in
1210 96-well white clear bottom isoplates (Greiner Bio-one) and allowed to adhere overnight at
1211 37°C, 5% CO₂, and 95% O₂. Saturation binding assay was performed to quantify the receptor
1212 expression and equilibrium dissociation constant of the radioligand [³H]-NMS (PerkinElmer,
1213 specific activity 80 Ci/mmol). Briefly, plates were washed once with phosphate-buffered
1214 saline (PBS) and incubated overnight at room temperature (RT) with 0.01-10 nM [³H]-NMS in
1215 Hanks's balanced salt solution (HBSS)/10 mM HEPES (pH 7.4) in a final volume of 100 µl. For
1216 binding interaction assays, cells were incubated overnight at RT with a specific concentration
1217 of [³H]-NMS (pK_D determined at each receptor in saturation binding) and various
1218 concentrations of ACh or iperoxo (Ipx) in the absence or presence of increasing
1219 concentrations of each allosteric modulator. In all cases, nonspecific binding was determined
1220 by the coaddition of 10 µM atropine (Sigma). The following day, the assays were terminated
1221 by washing the plates twice with ice-cold 0.9% NaCl to remove the unbound radioligand. Cells
1222 were solubilised in 100 µl per well of Ultima Gold (PerkinElmer), and radioactivity was
1223 measured with a MicroBeta plate reader (PerkinElmer).

1224

1225 **G protein activation assay**

1226 Upon 60-80% confluence, HEK293A cells were transfected transiently using polyethylenimine
1227 (PEI, Polysciences) and 10 ng per well of each of pcDNA3.1-hM4 mAChR (WT or mutant),
1228 pcDNA5/FRT/TO-Gα_{i1}-RLuc8, pcDNA3.1-β₃, and pcDNA3.1-Gγ₉-GFP2 at a ratio of 1:1:1:1 ratio
1229 with 40 ng of total DNA per well. Cells were plated at 30,000 cells per well into 96-well Greiner
1230 CELLSTAR white-walled plates (Sigma Aldrich). 48 hrs later, cells were washed with 200 µL
1231 phosphate buffer saline (PBS) and replaced with 70 µL of 1x HBSS with 10 mM HEPES. Cells
1232 were incubated for 30 min at 37°C before addition of 10 µL of 1.3 µM Prolume Purple
1233 coelenterazine (Nanolight technology). Cells were further incubated for 10 min at 37°C before
1234 BRET measurements were performed on a PHERAstar plate reader (BMG Labtech) using
1235 410/80-nm and 515/30-nm filters. Baseline measurements were taken for 8 min before
1236 addition of drugs or vehicle to give a final assay volume of 100 µL and further reading for 30

1237 min. BRET signal was calculated as the ratio of 515/30-nm emission over 410/80-nm emission.
1238 The ratio was vehicle corrected using the initial 8 min of baseline measurements and then
1239 baseline corrected again using the vehicle-treated wells. Data were normalized using the
1240 maximum agonist response to allow for grouping of results using an area under the curve
1241 analysis in Prism. Data were analysed at timepoints of 4, 10, and 30 min yielding similar
1242 results.

1243

1244 **Phospho-ERK1/2 assay**

1245 The level of phosphorylated extracellular signal-regulated protein kinase 1/2 (pERK1/2) was
1246 detected using the AlphaScreen™ SureFire Kit (PerkinElmer Life and Analytical Sciences).
1247 Briefly, FlpIn CHO cells stably expressing the receptor were seeded into transparent 96-well
1248 plates at a density of 20,000 cells/well and grown overnight at 37°C, 5% CO₂. Cells were
1249 washed with PBS and incubated in serum-free DMEM at 37°C for 4 hr to allow FBS-stimulated
1250 pERK1/2 levels to subside. Cells were stimulated with increasing concentrations of ACh or Ipx
1251 in the absence or presence of increasing concentrations of the allosteric modulator at 37°C
1252 for 5 min (the time required to maximally promote ERK phosphorylation for each ligand at
1253 each M₄ mAChR construct in the initial time-course study; data not shown). For all
1254 experiments, stimulation with 10% (v/v) FBS for 5 min was used as a positive control. The
1255 reaction was terminated by the removal of media and lysis of cells with 50 µl of the SureFire
1256 lysis buffer (TGR Biosciences). Plates were then agitated for 5 min and 5 µl of the cell lysate
1257 was transferred to a white 384-well ProxiPlate (Greiner Bio-one) followed by the addition of
1258 5 µl of the detection buffer (a mixture of activation buffer: reaction buffer: acceptor beads:
1259 donor beads at a ratio of 50:200:1:1). Plates were incubated in the dark for 1 hr at 37°C
1260 followed by measurement of fluorescence using an Envision plate reader (PerkinElmer) with
1261 standard AlphaScreen™ settings. Data were normalised to the maximal response mediated
1262 by 10 µM ACh, Ipx or 10% FBS.

1263

1264 **Purification of scFv16**

1265 Tni insect cells were infected with scFv16 baculovirus at a density of 4 million cells per mL and
1266 harvested at 60 hrs post infection by centrifugation for 10 min at 10,000xg. The supernatant
1267 was pH balanced to pH 7.5 by the addition of Tris pH 7.5, and 5 mM CaCl₂ was added to

1268 quench any chelating agents, then left to stir for 1.5 hrs at RT. The supernatant was then
1269 centrifuged at 30,000xg for 15 min to remove any precipitates. 5 mL of EDTA resistant Ni resin
1270 (Cytivia) was added and incubated for 2 hrs at 4°C while stirring. Resin was collected in a glass
1271 column and washed with 20 column volumes (CVs) of high salt buffer (20 mM HEPES pH 7.5,
1272 500 mM NaCl, 20 mM imidazole) followed by 20 CVs of low salt buffer (20 mM HEPES pH 7.5,
1273 100 mM NaCl, 20 mM Imidazole). Protein was then eluted using 8 CV of elution buffer (20
1274 mM HEPES pH 7.5, 100 mM NaCl, 250 mM imidazole) until no more protein was detected
1275 using Bradford reagent (Bio-Rad Laboratories). Protein was concentrated using a 10-kDa
1276 Amicon filter device (Millipore) and aliquoted into 1 mg aliquots for further use.

1277

1278 **Expression and purification of M₄R-G_{α1}-scFv16 complexes**

1279 The human M₄ mAChR with residues 242 to 387 of the third intracellular loop removed and
1280 the N-terminal glycosylation sites (N3, N9, N13) mutated to D was expressed in Sf9 insect
1281 cells, and human DNG_{α1} and His6-tagged human G_{β1γ2} were co-expressed in Tni insect cells.
1282 Cell cultures were grown to a density of 4 million cell per ml for Sf9 cells and 3.6 million per
1283 ml for Tni cells and then infected with either M₄ mAChR baculovirus or both G_{α1} and G_{β1γ2}
1284 baculovirus, at a ratio of 1:1. M₄ mAChR expression was supplemented with 10 mM atropine.
1285 Cultures were grown at 27°C and harvested by centrifugation 60-72 hr (48 h for Hi5 cells) post
1286 infection. Cells were frozen and stored at -80°C for later use. 1-2 L of the frozen cells were
1287 used for each purification.

1288

1289 Cells expressing M₄ mAChR were thawed at RT and then dounced in the solubilization buffer
1290 containing: 20 mM HEPES pH 7.5, 10% glycerol, 750 mM NaCl, 5 mM MgCl₂, 5 mM CaCl₂, 0.5%
1291 LMNG, 0.02% CHS, 10 μM atropine and cOmplete protease inhibitor cocktail (Roche) until
1292 homogenous. The receptor was solubilized for 2 hrs at 4°C while stirring. The insoluble
1293 material was removed by centrifugation at 30,000xg for 30 min followed by filtering the
1294 supernatant and batch-binding immobilization to M1 anti-flag affinity resin, previously
1295 equilibrated with high salt buffer, for 1 hr at RT. The resin with immobilized receptor was then
1296 washed using a peristaltic pump for 30 min at 2 ml/min with high salt buffer: 20 mM HEPES
1297 pH 7.5, 750 mM NaCl, 5 mM MgCl₂, 5 mM CaCl₂, 0.5% lauryl maltose neopentyl glycol (LMNG,
1298 Anatrace), 0.02% cholesterol hemisuccinate (CHS, Anatrace) followed by low salt buffer: 20
1299 mM HEPES pH 7.5, 100 mM NaCl, 5 mM MgCl₂, 5 mM CaCl₂, 0.5% LMNG, 0.02% CHS and an

1300 agonist (5 μ M Ipx, 1 μ M Ipx with 10 μ M VU154, or 100 μ M ACh). While the receptor was
1301 immobilised on anti-FLAG resin, the DNG α_{i1} cell pellet was thawed, dounced, and solubilised
1302 in the solubilisation buffer containing: 20 mM HEPES pH 7.5, 100 mM NaCl, 5 mM MgCl₂, 5
1303 mM CaCl₂, 0.5% LMNG, 0.02% CHS, apyrase (5 units), and cOmplete Protease Inhibitor
1304 Cocktail. DNG α_{i1} was solubilized for 2 hrs at 4°C followed by the centrifugation at 30,000xg
1305 for 30 min to remove the insoluble material. Supernatant was filtered through a glass fibre
1306 filter (Millipore) and then added to the receptor bound to anti-Flag resin. Apyrase (5 units),
1307 scFv16, and agonist (either 1 μ M Ipx, 1 μ M Ipx with 10 μ M VU154, or 100 μ M ACh) were
1308 added and incubated for 1 hr at RT with gentle mixing. The anti-FLAG resin was then loaded
1309 onto a glass column and washed with approximately 20 CVs of washing buffer: 20 mM HEPES
1310 pH 7.4, 100 mM NaCl, 5 mM MgCl₂, 5 mM CaCl₂, 0.01% LMNG, 0.001% CHS, agonist (1 μ M
1311 Ipx, 1 μ M Ipx with 10 μ M VU154, or 100 μ M ACh). Complex was eluted with size-exclusion
1312 chromatography (SEC) buffer: 20 mM HEPES pH 7.5, 100 mM NaCl, 5 mM MgCl₂, 0.01% LMNG,
1313 0.001% CHS and agonist (1 μ M Ipx, or 1 μ M Ipx with 10 μ M VU154, or 100 μ M ACh) with the
1314 addition of 10 mM EGTA and 0.1 mg/mL FLAG peptide. After the elution an additional 1-2 mg
1315 of scFv16 was added, and shortly incubated on ice before concentrating using a 100-kDa
1316 Amicon filter to a final volume of 500 μ L. The sample was filtered using a 0.22 μ m filter
1317 followed by SEC using a Superdex 200 increase 10/300 column (Cytivia) using SEC buffer. For
1318 the ACh- and VU154-Ipx-bound samples, the fractions containing protein were concentrated
1319 again and re-run over SEC using a buffer with half the amount of detergent in order to remove
1320 empty micelles. Samples were concentrated and flash frozen using liquid nitrogen. In case of
1321 the LY298-Ipx-bound sample, the sample was purified with 1 μ M Ipx only. After SEC, the
1322 sample was then split in half, where one half was incubated with approximately 1.6 μ M LY298
1323 at 4°C overnight, and then concentrated and flash frozen in liquid nitrogen.

1324

1325 **EM sample preparation and data acquisition**

1326 Samples (3 μ L) were applied to glow-discharged Quantifoil R1.2/1.3 Cu/Rh 200 mesh grids
1327 (Quantifoil) (M4R-G α_{i1} -Ipx and M4R-G α_{i1} -Ipx-LY298) or UltrAuFoil R1.2/1.3 Au 300 mesh grids
1328 (Quantifoil) (M4R-G α_{i1} -Ipx-VU154 and M4R-G α_{i1} -Ach) and were vitrified on a Vitrobot Mark IV
1329 (Thermo Fisher Scientific) set to 4°C and 100 % humidity and 10 s blot time. Data were
1330 collected on a Titan Krios G3i 300 kV electron microscope (Thermo Fisher Scientific) equipped
1331 with GIF Quantum energy filter and K3 detector (Gatan). Data acquisition was performed in

1332 EFTEM NanoProbe mode with a 50 μ M C2 aperture at an indicated magnification of $\times 105,000$
1333 with zero-loss slit width of 25 eV. The data were collected automatically with homemade
1334 scripts for SerialEM performing a 9-hole beam-image shift acquisition scheme with one
1335 exposure in the centre of each hole. Experimental parameters specific to each collected data
1336 set is listed in **Table S2**.

1337

1338 **Image processing**

1339 Specific details for the processing of each cryo-EM data set are shown in **Figure S1**. Image
1340 frames for each movie were motion corrected using MotionCor2 (Zheng et al., 2017) and
1341 contrast transfer function (CTF)-estimated using GCTF (Zhang, 2016). Particles were picked
1342 from corrected micrographs using crYOLO (Wagner et al., 2019) or RELION-3.1 software
1343 (Zivanov et al., 2018) followed by reference-free 2D and 3D classifications. Particles within
1344 bad classes were removed and remaining particles subjected to further analysis. Resulting
1345 particles were subjected to Bayesian polishing, CTF refinement, 3D auto-refinement in
1346 RELION, followed by another round of 3D classification and 3D refinement that yielded the
1347 final maps (Zivanov et al., 2018). Local resolution was determined from RELION using half-
1348 reconstructions as input maps. Due to the high degree of conformational flexibility between
1349 the receptor and G protein, a further local refinement was performed in cryoSPARC for the
1350 ACh-bound M₄R-complex. A receptor focused map was generated (2.75 \AA) which was used to
1351 generate a PDB model of the ACh-bound M₄R.

1352

1353 **Model building and refinement**

1354 An initial M₄R template model was generated from our prior modelling studies of the M₄
1355 mAChR that was based on an active state M₂ mAChR structure (PBD: 4MQT) (Kruse et al.,
1356 2013). An initial model for dominant negative G α_{i1} G β_1 G γ_2 was from a structure in complex
1357 with Smoothend (PDB: 6OT0) (Qi et al., 2019) and scFv16 from the X-ray crystal structure in
1358 complex with heterotrimeric G protein (PDB: 6CRK) (Maeda et al., 2018). Models were fit into
1359 EM maps using UCSF Chimera (Pettersen et al., 2004), and then rigid-body-fit using PHENIX
1360 (Liebschner et al., 2019), followed by iterative rounds of model rebuilding in Coot (Casañal et
1361 al., 2020) and ISOLDE (Croll, 2018), and real-space refinement in PHENIX. Restraints for all
1362 ligands were generated from the GRADE server, <https://grade.globalphasing.org>. Model
1363 validation was performed with Molprobity (Williams et al., 2018) and the wwPDB validation

1364 server (Berman et al., 2003). Figures were generated using UCSF Chimera (Pettersen et al.,
1365 2004), Chimera X (Pettersen et al., 2021), and PyMOL (Schrödinger).

1366

1367 **Cryo-EM 3D variability analysis**

1368 3D variability analysis (3DVAR) was performed to access and visualize the dynamics within the
1369 cryo-EM datasets of the M₄ mAChR complexes, as previously described using cryoSPARC
1370 (Punjani and Fleet, 2021). The polished particle stacks were imported into cryoSPARC,
1371 followed by 2D classification and 3D refinement using the respective low pass filtered RELION
1372 consensus maps as an initial model. 3DVA was analysed in three components with 20 volume
1373 frames of data per component of motion. Output files were visualized using UCSF Chimera
1374 (Pettersen et al., 2004).

1375

1376 **Gaussian accelerated molecular dynamics (GaMD).** GaMD enhances the conformational
1377 sampling of biomolecules by adding a harmonic boost potential to reduce the system energy
1378 barriers (Miao et al., 2015). When the system potential $V(\vec{r})$ is lower than a reference energy
1379 E, the modified potential $V^*(\vec{r})$ of the system is calculated as:

1380
$$V^*(\vec{r}) = V(\vec{r}) + \Delta V(\vec{r})$$

1381
$$\Delta V(\vec{r}) = \begin{cases} \frac{1}{2}k(E - V(\vec{r}))^2, & V(\vec{r}) < E \\ 0, & V(\vec{r}) \geq E, \end{cases} \quad (1)$$

1382 Where k is the harmonic force constant. The two adjustable parameters E and k are
1383 automatically determined on three enhanced sampling principles. First, for any two arbitrary
1384 potential values $v_1(\vec{r})$ and $v_2(\vec{r})$ found on the original energy surface, if $V_1(\vec{r}) < V_2(\vec{r})$, ΔV
1385 should be a monotonic function that does not change the relative order of the biased
1386 potential values; i.e., $V_1^*(\vec{r}) < V_2^*(\vec{r})$. Second, if $V_1(\vec{r}) < V_2(\vec{r})$, the potential difference
1387 observed on the smoothed energy surface should be smaller than that of the original; i.e.,
1388 $V_2^*(\vec{r}) - V_1^*(\vec{r}) < V_2(\vec{r}) - V_1(\vec{r})$. By combining the first two criteria and plugging in the formula
1389 of $V^*(\vec{r})$ and ΔV , we obtain

1390
$$V_{max} \leq E \leq V_{min} + \frac{1}{k}, \quad (2)$$

1391 Where V_{min} and V_{max} are the system minimum and maximum potential energies. To ensure
1392 that Eq. 2 is valid, k has to satisfy: $k \leq 1/(V_{max} - V_{min})$. Let us define: $k = k_0 \cdot$
1393 $1/(V_{max} - V_{min})$, then $0 < k_0 \leq 1$. Third, the standard deviation (SD) of ΔV needs to be

1394 small enough (i.e. narrow distribution) to ensure accurate reweighting using cumulant
1395 expansion to the second order: $\sigma_{\Delta V} = k(E - V_{avg})\sigma_V \leq \sigma_0$, where V_{avg} and σ_V are the
1396 average and SD of ΔV with σ_0 as a user-specified upper limit (e.g., $10k_B T$) for accurate
1397 reweighting. When E is set to the lower bound $E = V_{max}$ according to Eq. 2, k_0 can be
1398 calculated as

1399
$$k_0 = \min(1.0, k'_0) = \min\left(1.0, \frac{\sigma_0}{\sigma_V} \cdot \frac{V_{max} - V_{min}}{V_{max} - V_{avg}}\right), \quad (3)$$

1400 Alternatively, when the threshold energy E is set to its upper bound $E = V_{min} + 1/k$, k_0 is set
1401 to:

1402
$$k_0 = k''_0 \equiv \left(1 - \frac{\sigma_0}{\sigma_V}\right) \cdot \frac{V_{max} - V_{min}}{V_{avg} - V_{min}}, \quad (4)$$

1403 If k''_0 is calculated between 0 and 1. Otherwise, k_0 is calculated using Eq. 3.

1404

1405 **Energetic Reweighting of GaMD Simulations.** For energetic reweighting of GaMD simulations
1406 to calculate potential of mean force (PMF), the probability distribution along a reaction
1407 coordinate is written as $p^*(A)$. Given the boost potential $\Delta V(r)$ of each frame, $p^*(A)$ can be
1408 reweighted to recover the canonical ensemble distribution $p(A)$, as:

1409
$$p(A_j) = p^*(A_j) \frac{\langle e^{\beta \Delta V(r)} \rangle_j}{\sum_{i=1}^M \langle p^*(A_i) e^{\beta \Delta V(r)} \rangle_i}, \quad j = 1, \dots, M, \quad (5)$$

1410 where M is the number of bins, $\beta = k_B T$ and $\langle e^{\beta \Delta V(r)} \rangle_j$ is the ensemble-averaged Boltzmann
1411 factor of $\Delta V(r)$ for simulation frames found in the j^{th} bin. The ensemble-averaged reweighting
1412 factor can be approximated using cumulant expansion:

1413
$$\langle e^{\beta \Delta V(r)} \rangle = \exp \left\{ \sum_{k=1}^{\infty} \frac{\beta^k}{k!} C_k \right\}, \quad (6)$$

1414 where the first two cumulants are given by:

1415
$$C_1 = \langle \Delta V \rangle, \quad (7)$$

$$C_2 = \langle \Delta V^2 \rangle - \langle \Delta V \rangle^2 = \sigma_V^2.$$

1416 The boost potential obtained from GaMD simulations usually follows near-Gaussian
1417 distribution (Miao and McCammon, 2017). Cumulant expansion to the second order thus
1418 provides a good approximation for computing the reweighting factor (Miao et al., 2014,
1419 2015). The reweighted free energy $F(A) = -k_B T \ln p(A)$ is calculated as:

1420
$$F(A) = F^*(A) - \sum_{k=1}^2 \frac{\beta^k}{k!} C_k + F_c, \quad (8)$$

1421 where $F^*(A) = -k_B T \ln p^*(A)$ is the modified free energy obtained from GaMD simulation
1422 and F_c is a constant.

1423

1424 **System Setup.** The M₄R-ACh-G_{i1}, M₄R-Ipx-G_{i1}, M₄R-Ipx-G_{i1}-VU154 and M₄R-Ipx-G_{i1}-LY298 cryo-
1425 EM structures were used for setting up simulation systems. The scFv16 in the cryo-EM
1426 structures was omitted in all simulations. The initial structures of single mutant D432E and
1427 T433R mutant of M₄R-Ipx-G_{i1}-VU154 were obtained by mutating the corresponding residues
1428 in the M₄R-Ipx-G_{i1}-VU154 cryo-EM structure. The initial structures of M₄R-ACh-G_{i1}-VU154 and
1429 M₄R-ACh-G_{i1}-LY298 were obtained from M₄R-Ipx-G_{i1}-VU154 and M₄R-Ipx-G_{i1}-LY298 cryo-EM
1430 structures by replacing Ipx with ACh through alignment of receptors to the M₄R-ACh-G_{i1} cryo-
1431 EM structure. The initial structures of M₄R-G_{i1}-VU154 and M₄R-G_{i1}-LY298 were obtained by
1432 removing the corresponding Ipx agonist from the M₄R-Ipx-G_{i1}-VU154 and M₄R-Ipx-G_{i1}-LY298
1433 cryo-EM structures. The initial structures of M₄R-VU154 and M₄R-LY298 were obtained by
1434 removing the corresponding Ipx agonist and G_{i1} protein from the M₄R-Ipx-G_{i1}-VU154 and M₄R-
1435 Ipx-G_{i1}-LY298 cryo-EM structures. According to previous findings, intracellular loop (ICL) 3 is
1436 highly flexible and removal of ICL3 does not appear to affect GPCR function (Dror et al., 2011,
1437 2015). The ICL3 was thus omitted as in the current GaMD simulations. Similar as previous
1438 study, helical domains of the G_{i1} protein missing in the cryo-EM structures were not included
1439 in the simulation models. This was based on earlier simulation of the β₂AR-G_s complex, which
1440 showed that the helical domain fluctuated substantially (Dror et al., 2015). All chain termini
1441 were capped with neutral groups (acetyl and methylamide). All the disulphide bonds in the
1442 complexes (i.e., Cys^{108_{3.25}}-Cys^{185_{45x50}} and Cys^{426_{ECL3}}-Cys^{429_{ECL3}} in the M₄R) that were
1443 resolved in the cryo-EM structures were maintained in the simulations. Using the *psfgen*
1444 plugin in VMD (Humphrey et al., 1996), missing atoms in protein residues were added and all
1445 protein residues were set to the standard CHARMM protonation states at neutral pH. For
1446 each of the complex systems, the receptor was inserted into a palmitoyl-oleoyl-phosphatidyl-
1447 choline (POPC) bilayer with all overlapping lipid molecules removed using the membrane
1448 plugin in VMD. The system charges were then neutralized at 0.15M NaCl using the *solvate*
1449 plugin in VMD (Humphrey et al., 1996). The simulation systems were summarized in **Table S3**.

1450

1451 **Simulation Protocol.** The CHARMM36M parameter set (Huang et al., 2017; Klauda et al.,
1452 2010; Vanommeslaeghe and MacKerell, 2015) was used for the M₄ mAChRs, G_{i1} proteins, and

1453 POPC lipids. Force field parameters of agonists ACh and Ipx, PAMs LY298 and VU154 were
1454 obtained from the CHARMM ParamChem web server ([Vanommeslaeghe and MacKerell, 2012; Vanommeslaeghe et al., 2012](#)). Force field parameters with high penalty were
1455 optimized with FFParm ([Kumar et al., 2020](#)). GaMD simulations of these systems followed a
1456 similar protocol used in previous studies of GPCRs ([Draper-Joyce et al., 2021; Miao and](#)
1457 [McCammon, 2016, 2018](#)). For each of the complex systems, initial energy minimization,
1458 thermalization, and 20ns cMD equilibration were performed using NAMD2.12 ([Phillips et al.,](#)
1459 [2005](#)). A cutoff distance of 12 Å was used for the van der Waals and short-range electrostatic
1460 interactions and the long-range electrostatic interactions were computed with the particle-
1461 mesh Ewald summation method ([Darden et al., 1993](#)). A 2-fs integration time step was used
1462 for all MD simulations and a multiple-time-stepping algorithm was used with bonded and
1463 short-range non-bonded interactions computed every time step and long-range electrostatic
1464 interactions every two-time steps. The SHAKE algorithm ([Ryckaert et al., 1977](#)) was applied to
1465 all hydrogen-containing bonds. The NAMD simulation started with equilibration of the lipid
1466 tails. With all other atoms fixed, the lipid tails were energy minimized for 1,000 steps using
1467 the conjugate gradient algorithm and melted with a constant number, volume, and
1468 temperature (NVT) run for 0.5 ns at 310 K. The twelve systems were further equilibrated using
1469 a constant number, pressure, and temperature (NPT) run at 1 atm and 310 K for 10 ns with 5
1470 kcal/(mol· Å²) harmonic position restraints applied to the protein and ligand atoms. Final
1471 equilibration of each system was performed using a NPT run at 1 atm pressure and 310 K for
1472 0.5 ns with all atoms unrestrained. After energy minimization and system equilibration,
1473 conventional MD simulations were performed on each system for 20 ns at 1 atm pressure and
1474 310 K with a constant ratio constraint applied on the lipid bilayer in the X-Y plane.
1475

1476
1477 With the NAMD output structure, along with the system topology and CHARMM36M force
1478 field files, the *ParmEd* tool in the AMBER package was used to convert the simulation files
1479 into the AMBER format. The GaMD module implemented in the GPU version of AMBER20
1480 (Case et al. 2020) was then applied to perform the GaMD simulation. GaMD simulations of
1481 systems with G_{i1} protein (M₄R-ACh-G_{i1}, M₄R-Ipx-G_{i1}, M₄R-Ipx-G_{i1}-VU154, M₄R-Ipx-G_{i1}-LY298,
1482 M₄R-ACh-G_{i1}-VU154, M₄R-ACh-G_{i1}-LY298, single mutant D432E and T433R mutants of M₄R-
1483 Ipx-G_{i1}-VU154) included a 8-ns short cMD simulation used to collect the potential statistics
1484 for calculating GaMD acceleration parameters, a 48-ns equilibration after adding the boost

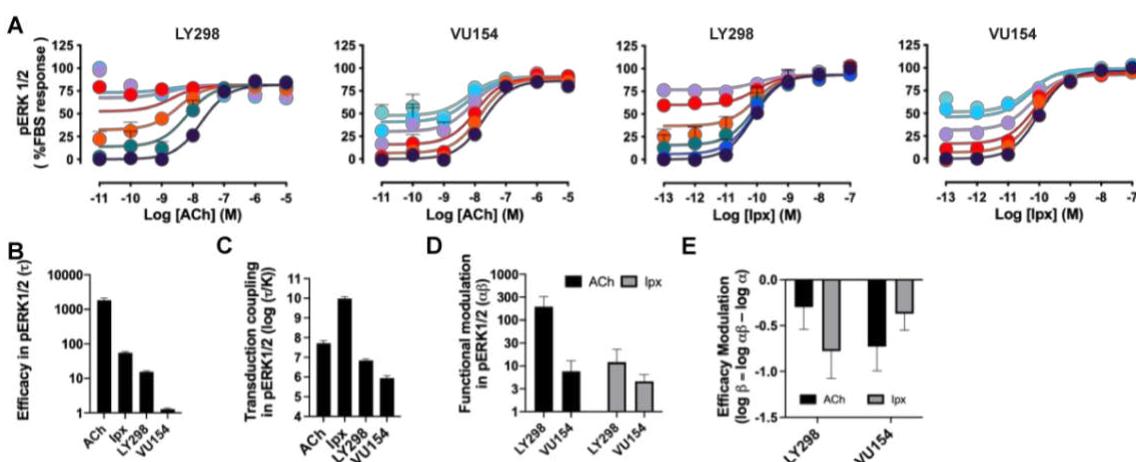
1485 potential, and finally three independent 500-ns GaMD production simulations with
1486 randomized initial atomic velocities. The average and SD of the system potential energies
1487 were calculated every 800,000 steps (1.6 ns). GaMD simulations of M₄R-VU154 and M₄R-
1488 LY298 included a 2.4-ns short cMD simulation used to collect the potential statistics for
1489 calculating GaMD acceleration parameters, a 48-ns equilibration after adding the boost
1490 potential, and finally three independent 1000-ns GaMD production simulations with
1491 randomized initial atomic velocities. The average and SD of the system potential energies
1492 were calculated every 240,000 steps (0.48 ns). All GaMD simulations were run at the “dual-
1493 boost” level by setting the reference energy to the lower bound. One boost potential is
1494 applied to the dihedral energetic term and the other to the total potential energetic term.
1495 The upper limit of the boost potential SD, σ_0 was set to 6.0 kcal/mol for both the dihedral and
1496 the total potential energetic terms. Similar temperature and pressure parameters were used
1497 as in the NAMD simulations.

1498

1499 **Simulation Analysis.** CPPTRAJ ([Roe and Cheatham, 2013](#)) and VMD ([Humphrey et al., 1996](#))
1500 were used to analyze the GaMD simulations. The root-mean square deviations (RMSDs) of
1501 the agonist ACh and Ipx, PAM VU154 and LY298 relative to the simulation starting structures,
1502 the interactions between receptor and agonists/PAMs, distances between the receptor TM3
1503 and TM6 intracellular ends were selected as reaction coordinates. Particularly, distances were
1504 calculated between the C α atoms of residues Arg^{3.50} and Thr^{6.30}, N atom of residue N117^{3.37}
1505 and carbon atom (C5) in the acetyl group of ACh or oxygen atom (O09) in the ether bond of
1506 Ipx, NE1 atom of residue W164^{4.67} and carbon atom (C5) in the acetyl group of ACh or oxygen
1507 atom (O09) in the ether bond of Ipx, indole ring of residue W413^{6.48} and acetyl group of ACh
1508 or heterocyclic isoazoline group of Ipx, OH atom of residue Y89^{2.61} and oxygen atom in the
1509 amide group of VU154/LY298, benzene ring of residue F186^{45.51} and aromatic core of the
1510 PAMs VU154/LY298, OH atom of residue Y439^{7.39} and nitrogen atoms in the amine group of
1511 the PAMs VU154/LY298, CD atom of residue Q184^{45.49} and nitrogen atom in the amide group
1512 of VU154/LY298, CG atom of residue N423^{6.58} and chlorine atom in PAM LY298, OH atom of
1513 residue Y92^{2.64} and nitrogen atom in the amide group of VU154, OG1 atom of residue T433^{7.33}
1514 and sulfur atom in the trifluoromethylsulfonyl group of VU154. In addition, the χ_2 angle of
1515 residue W413^{6.48} and W435^{7.35} were calculated. Time courses of these reaction coordinates
1516 obtained from the GaMD simulation were plotted in **Figures 4,5,6,7, S4, and S7**. The

1517 PyReweighting (Miao et al., 2014) toolkit was applied to reweight GaMD simulations to
1518 recover the original free energy or potential of mean force (PMF) profiles of the simulation
1519 systems. PMF profiles were computed using the combined trajectories from all the three
1520 independent 500 ns GaMD simulations for each system. A bin size of 1.0 Å was used for RMSD.
1521 The cutoff was set to 500 frames for 2D PMF calculations. The 2D PMF profiles were obtained
1522 for wildtype M₄R-Ipx-G_{i1}-LY298, M₄R-Ipx-G_{i1}-VU154, and the D432E and T433R single mutants
1523 of the M₄R-Ipx-G_{i1}-VU154 system regarding the RMSDs of the agonist Ipx and the RMSDs of
1524 the PAMs relative to the cryo-EM conformation (Fig S7).

1525

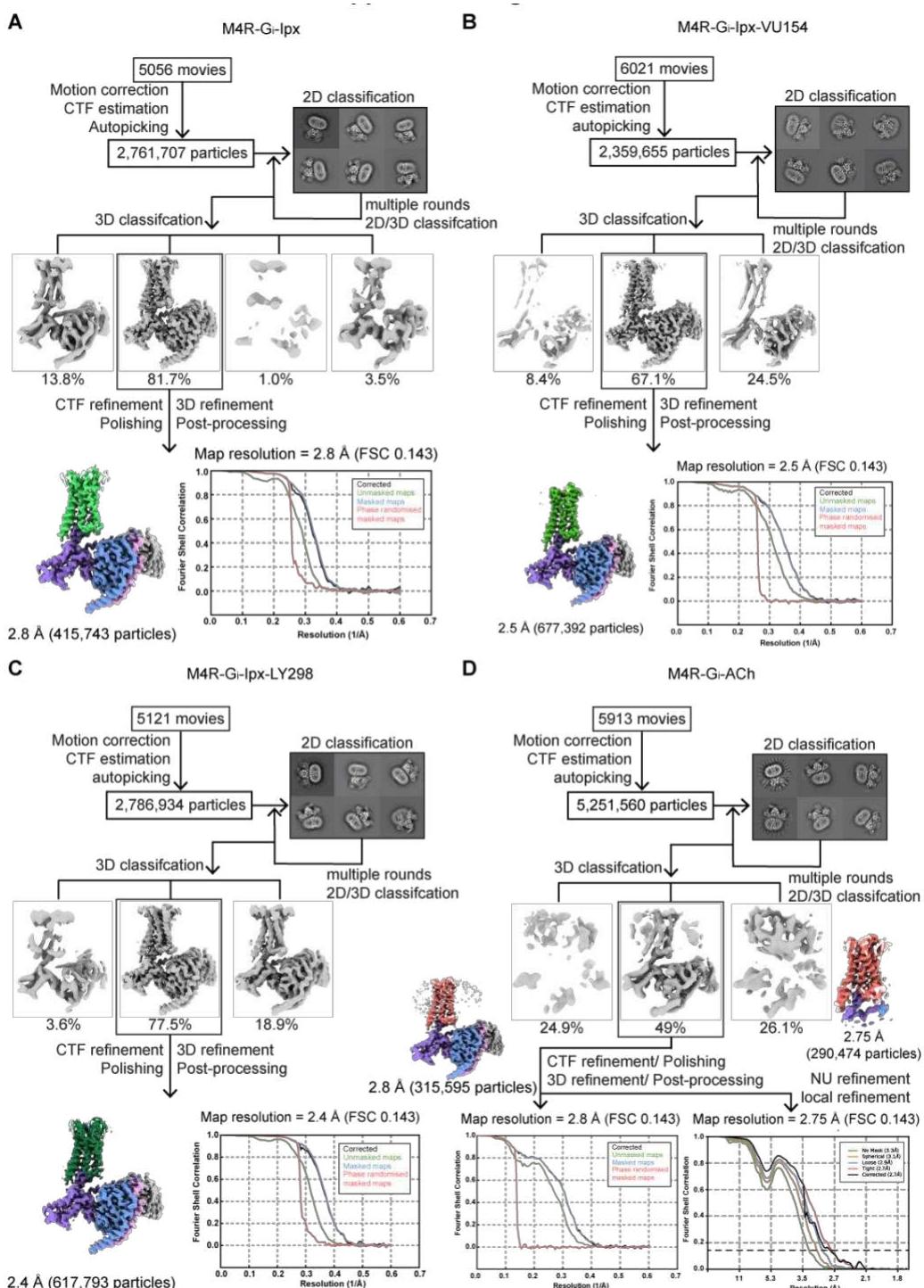

1526 Data analysis

1527 All pharmacological data was fit using GraphPad Prism 9.2.0. Saturation binding experiments
1528 to determine B_{max} and pK_d values were determined as previously described (Leach et al., 2011;
1529 Nawaratne et al., 2010; Thal et al., 2016). Detailed equations and analysis details can be found
1530 in Appendix 1. Interaction inhibition binding curves between [³H]-NMS, agonists (ACh or Ipx),
1531 and PAMs (LY298 or VU154) were analysed using the allosteric ternary complex model to
1532 calculate binding affinity values for each ligand (pK_A – for ACh/Ipx and pK_B for LY298/VU154)
1533 and the degree of binding modulation between agonist and PAM ($\log \alpha$) (Christopoulos and
1534 Kenakin, 2002). The pK_B values for LY298 and VU154 were determined from global fits of the
1535 ACh and Ipx curves to generate one pK_B value per ligand (Ehlert, 1988; Leach et al., 2011;
1536 Nawaratne et al., 2010; Thal et al., 2016). All pERK1/2 and TruPath assays were analyzed using
1537 the operational model allosterism and agonism to determine values of orthosteric (τ_A) or
1538 allosteric efficacy (τ_B) and the functional modulation ($\log \alpha\beta$) between the agonists and PAMs
1539 (Leach et al., 2011; Nawaratne et al., 2010). Binding affinities of the agonists and the PAMs
1540 were fixed to values determined from equilibrium binding assays. The τ_B values for LY298 and
1541 VU154 were determined from global fits of the ACh and Ipx curves (when possible) to
1542 generate one value per ligand. For comparison between WT human M₄ mAChR and other M₄
1543 mAChR constructs the $\log \tau$ values were corrected (denoted $\log \tau_C$) by normalizing to B_{max}
1544 values from saturation binding experiments (Leach et al., 2011; Nawaratne et al., 2010; Thal
1545 et al., 2016). All affinity, potency, and cooperativity values were estimated as logarithms, and
1546 statistical analysis between WT and mutant M₄ mAChR were determined by one-way ANOVA
1547 using a Dunnett's post-hoc test with a value of $P < 0.05$ considered as significant in this study.

1548

1549

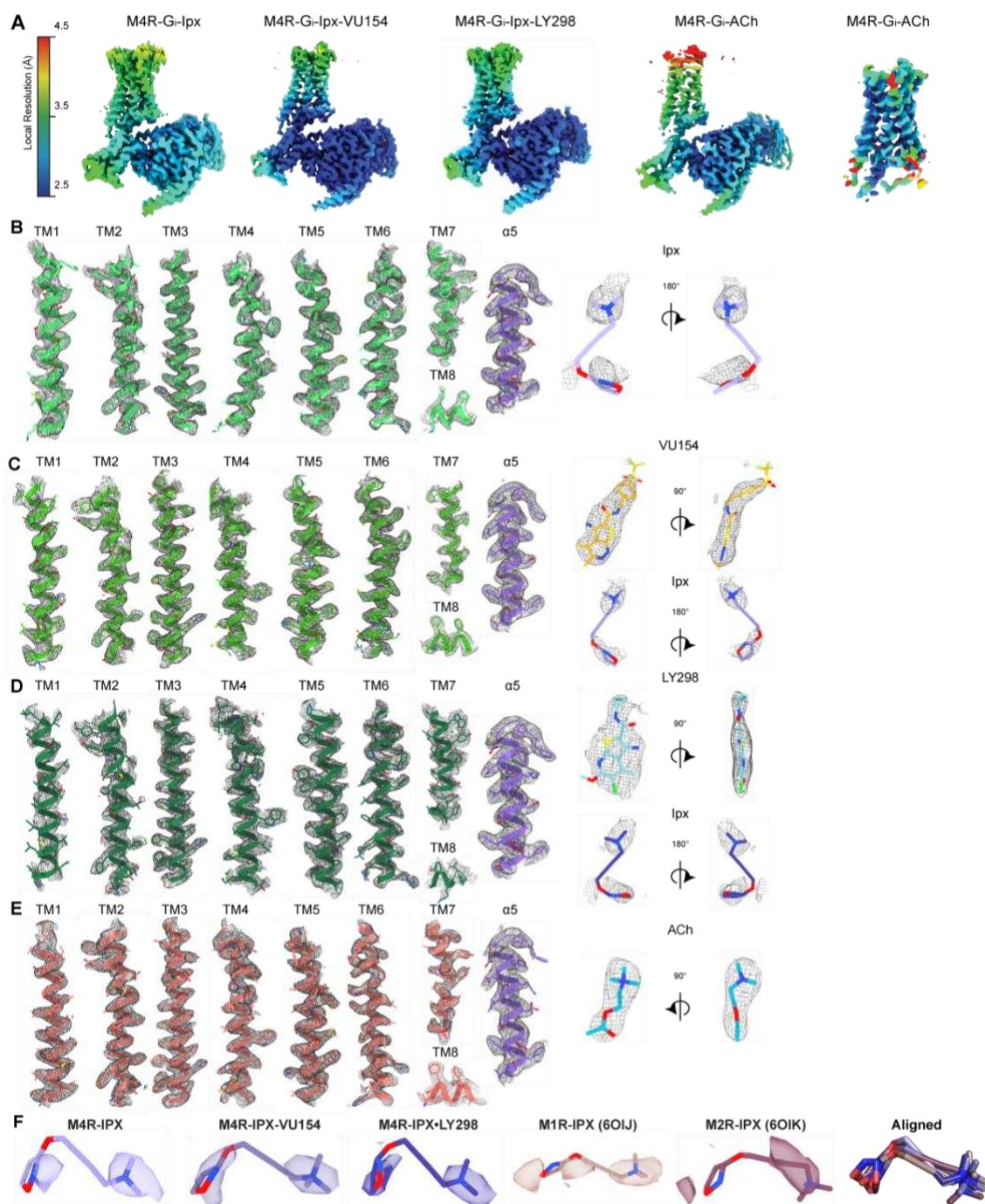
1550 **Supplemental Figures**



1551

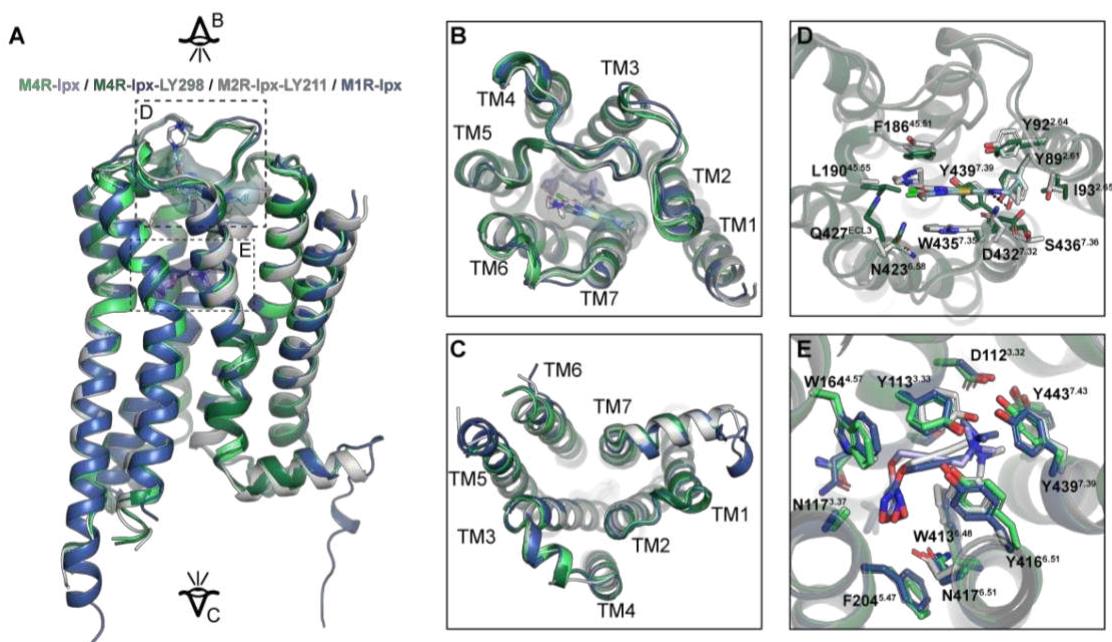
1552 **Figure S1. Pharmacological characterization of the PAMs, LY298 and VU154, with ACh and**
1553 **Ipx in pERK1/2 signaling assays, Related to Figure 2. (A)** Concentration response curves of
1554 interactions between the orthosteric and allosteric ligands at the human M₄ mAChR in the
1555 pERK1/2 signaling assay. **(B-E)** Quantification of data from **(A)** and **(Figure 2A)** to calculate **(B)**
1556 the signaling efficacy (τ_A and τ_B) and **(C)** the transduction coupling coefficients ($\log (\tau/K)$) of
1557 each ligand, **(D)** the functional cooperativity ($\alpha\beta$) between ligands, and **(E)** the efficacy
1558 modulation (β) between ligands. All data are mean \pm SEM of 3 or more independent
1559 experiments performed in duplicate or triplicate with the pharmacological parameters
1560 determined from a global fit of the data. The error in **(E)** was propagated using the square
1561 root of the sum of the squares. See **Table S1**.

1562


1563

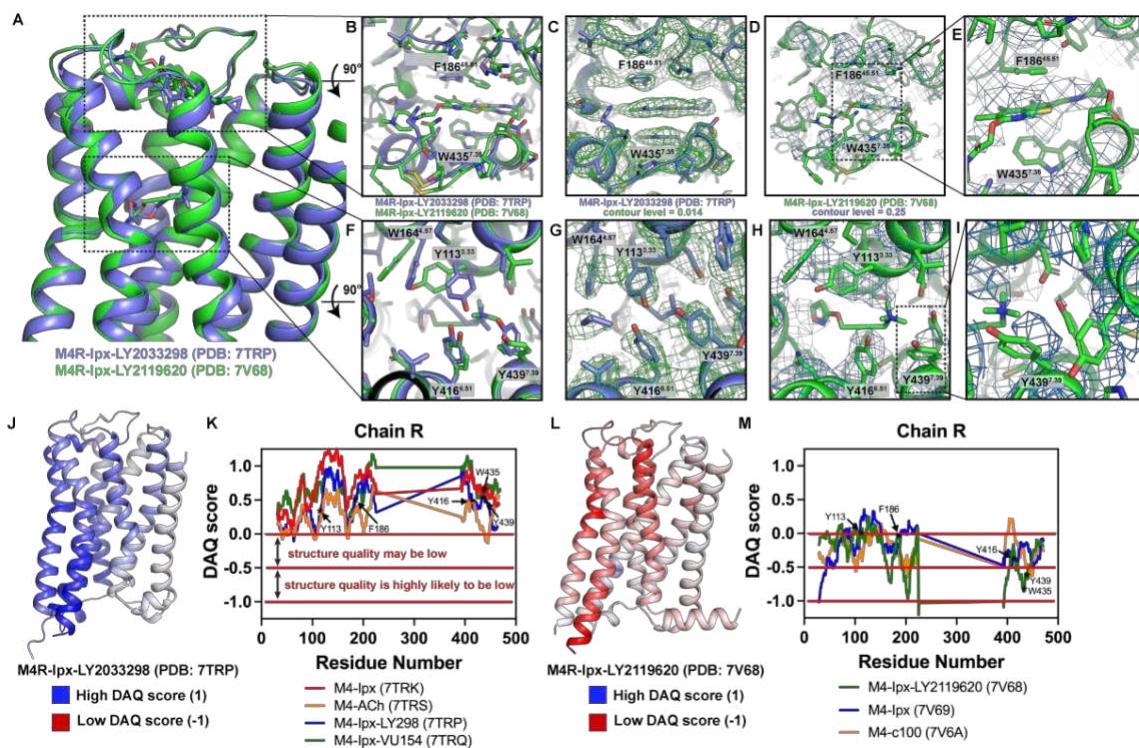
1564

1565 **Figure S2. Cryo-EM data processing and analysis, Related to Figure 3. (A-D)** Flow chart of
1566 cryo-EM data processing of the (A) Ipx-, (B) VU154-Ipx-, (C) LY298-Ipx-, and (D) ACh-bound M4
1567 mAChR complexes with G_{i1}-scFv16 including particle selections, 2D and 3D classifications, EM
1568 density map, and the Fourier shell correlation (FSC) curves.


1569

1570

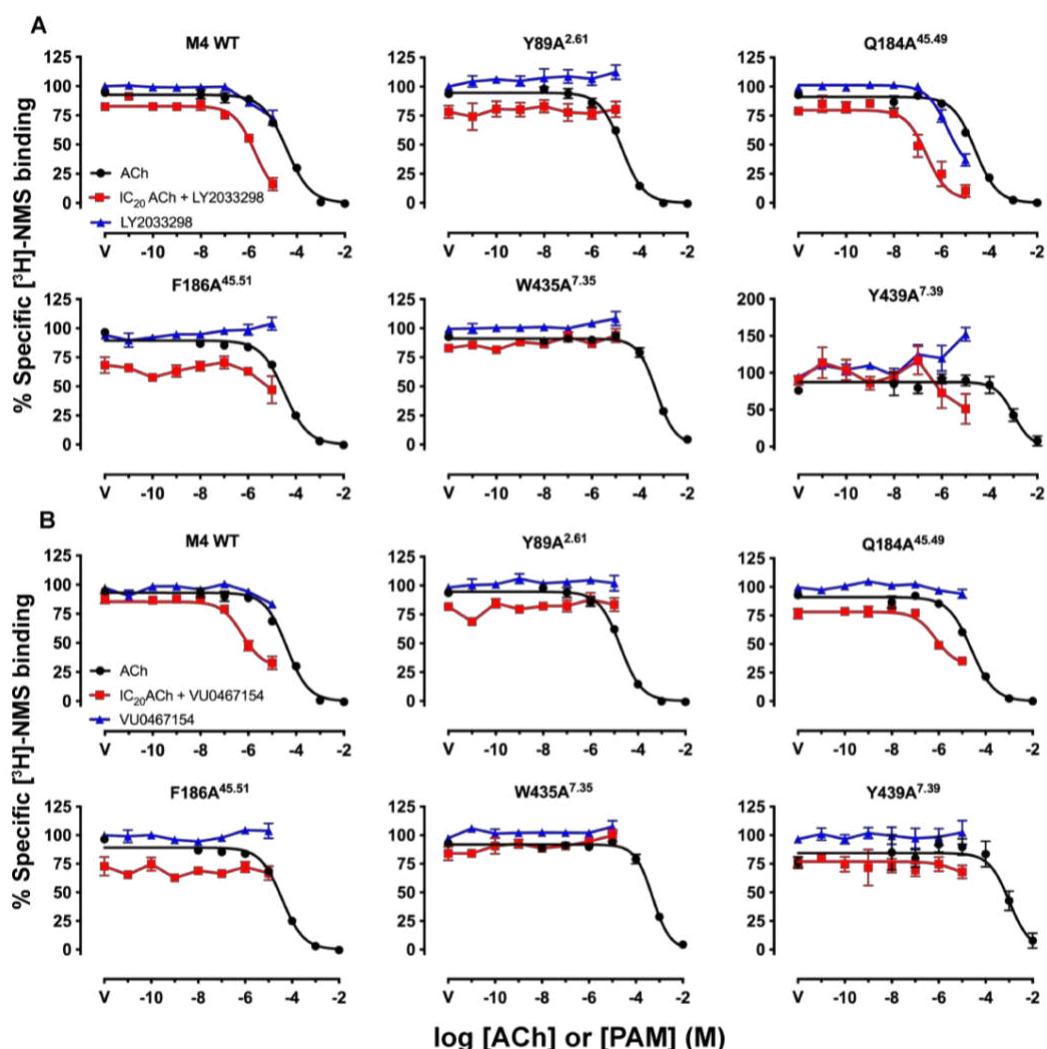
1571 **Figure S3. Cryo-EM density maps, Related to Figures 3–4. (A)** EM maps coloured by local
1572 resolution. **(B–E)** Representative EM density and modelling for the 7 transmembrane (TM)
1573 helices, the C-terminus of $G\alpha_{i1}$, and ligands for the **(B)** Ipx-, **(C)** VU154-Ipx-, **(D)** LY298-Ipx-, and
1574 **(E)** ACh-bound M₄ mAChR complexes. **(F)** Comparison of the EM-density of Ipx from other
1575 mAChR structures with included Protein Data Bank (PDB) accession codes.


1576

1577

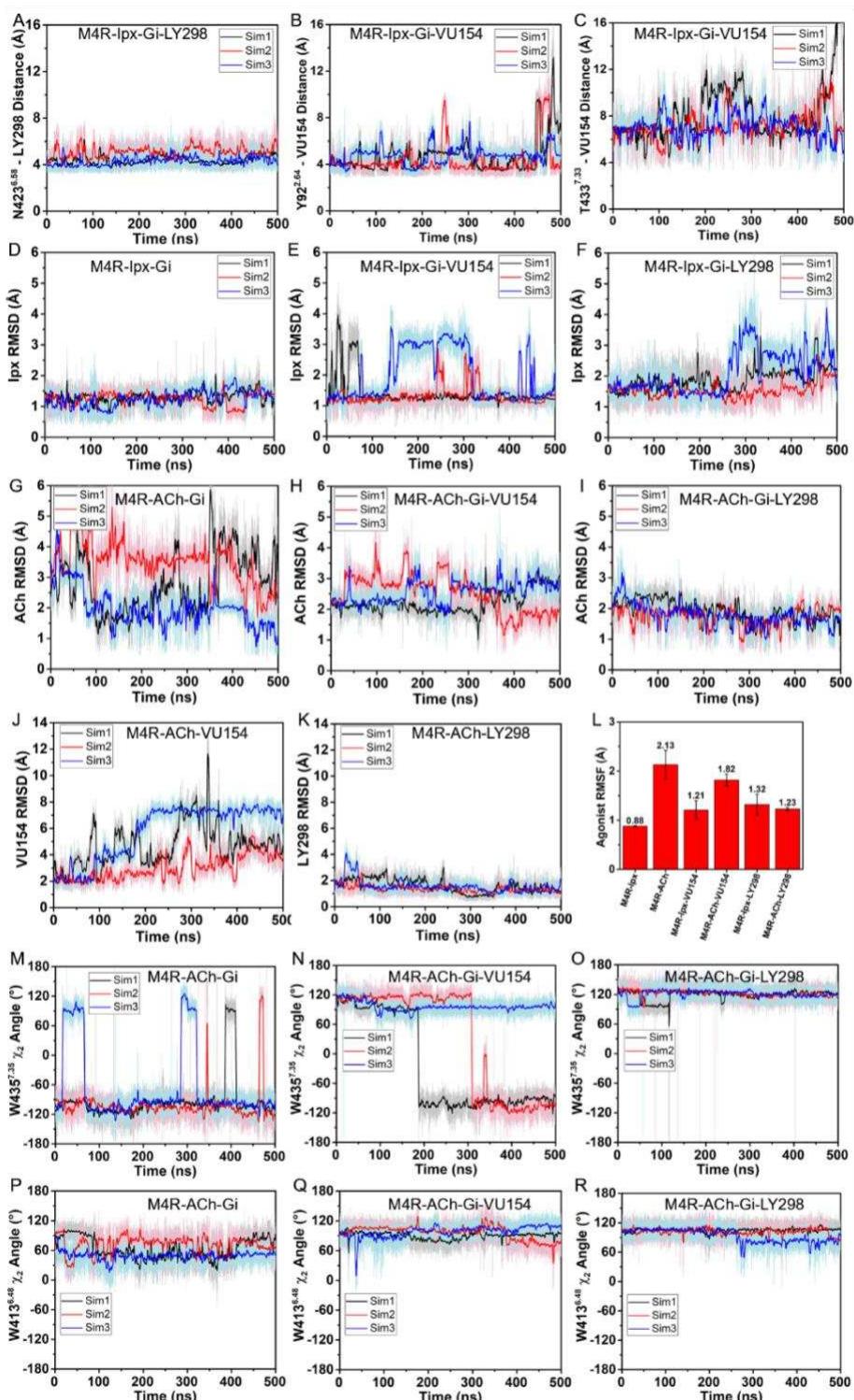
1578 **Figure S4. Comparison of active state mAChR structures.** (A) Comparison of the Ipx- and
1579 LY298-Ipx-bound M₄ mAChR structures to the prior structures of Ipx-bound M₁ mAChR and
1580 LY2119620-Ipx-bound M₂ mAChR cryo-EM structures. Protein Data Bank (PDB) accession
1581 codes for the M₁ mAChR (PDB: 6OIJ) and the M₂ mAChR (PDB: 6OIK). (B,C) Views from the (B)
1582 extracellular and (C) intracellular surfaces. (D) Comparison of the binding pose of LY2119620
1583 at the M₂ mAChR and LY2033298 at the M₄ mAChR. (E) Comparison of the Ipx binding site
1584 residues.

1585


1586

1587 **Figure S5. Comparison of active state M₄ mAChR structures. (A)** Comparison of LY298-Ipx
1588 bound M₄ mAChR structure (PDB: 7TRP, coloured blue) to the LY2119620-Ipx bound M₄
1589 mAChR structure (PDB: 7V68, coloured green) (Wang et al., 2022). **(B-E)** View of the allosteric
1590 binding site from the top of the receptor. **(B)** Comparison of key allosteric residues F186^{45,51}
1591 and W435^{7,35} showing different positions of the residues between M₄ mAChR structures. **(C)**
1592 Overlay of the EM map (EMD-26100, coloured green) onto the LY298-Ipx bound M₄ mAChR
1593 structure contoured at 0.014 in Pymol. **(D-E)** Overlay of the EM map (EMD-31738, coloured
1594 blue) onto the LY2119620-Ipx bound M₄ mAChR structure contoured at 0.25 in Pymol with a
1595 close-up of the allosteric residues in **(E)** showing a lack of clear density and mismodelled
1596 residues. **(F-I)** View of the orthosteric binding site from the top of the receptor. **(F)**
1597 Comparison of key orthosteric binding site residues. **(G)** Related to **(C)** with view from
1598 orthosteric site. **(H-I)** Related to **(D)** with view from orthosteric site with a close-up **(I)** of
1599 orthosteric residues that are mismodelled or lacking clear density. **(J-M)** DAQ-score provides
1600 an estimation of the local quality of protein models from cryo-EM maps on a per residue basis.
1601 DAQ-scores were determined from the DAQ web server using the recommended default
1602 settings (Terashi et al., 2022). **(J,L)** DAQ scores from the analysis of (J) the LY298-Ipx-M₄R-G_{i1}
1603 complex and (L) the LY2119620-Ipx-M₄R-G_{i1} complex mapped onto the cartoon of the
1604 receptor chain and colour coded by score. A DAQ-score that is positive (coloured blue at

1605 values of 1) indicates a correct assignment. A DAQ-score near 0 (colored white) indicates a
1606 position in the map that lacks a distinct density pattern for the assigned amino acid. DAQ-
1607 scores less than 0 (colored red at -1) indicate a position that could be misassigned or poorly
1608 fit. (K) DAQ scores for all four M₄ mAChR structures reported in this manuscript with DAQ
1609 scores of each C_α atom plotted for each residue. Key orthosteric and allosteric residues are
1610 denoted by asterisks. Nearly every residue has a value above 0. (M) Similar to K, but for all
1611 three M₄ mAChR structures reported in (Wang et al., 2022). Very few residues have a score
1612 above 0, indicating potential issues with the model and maps.

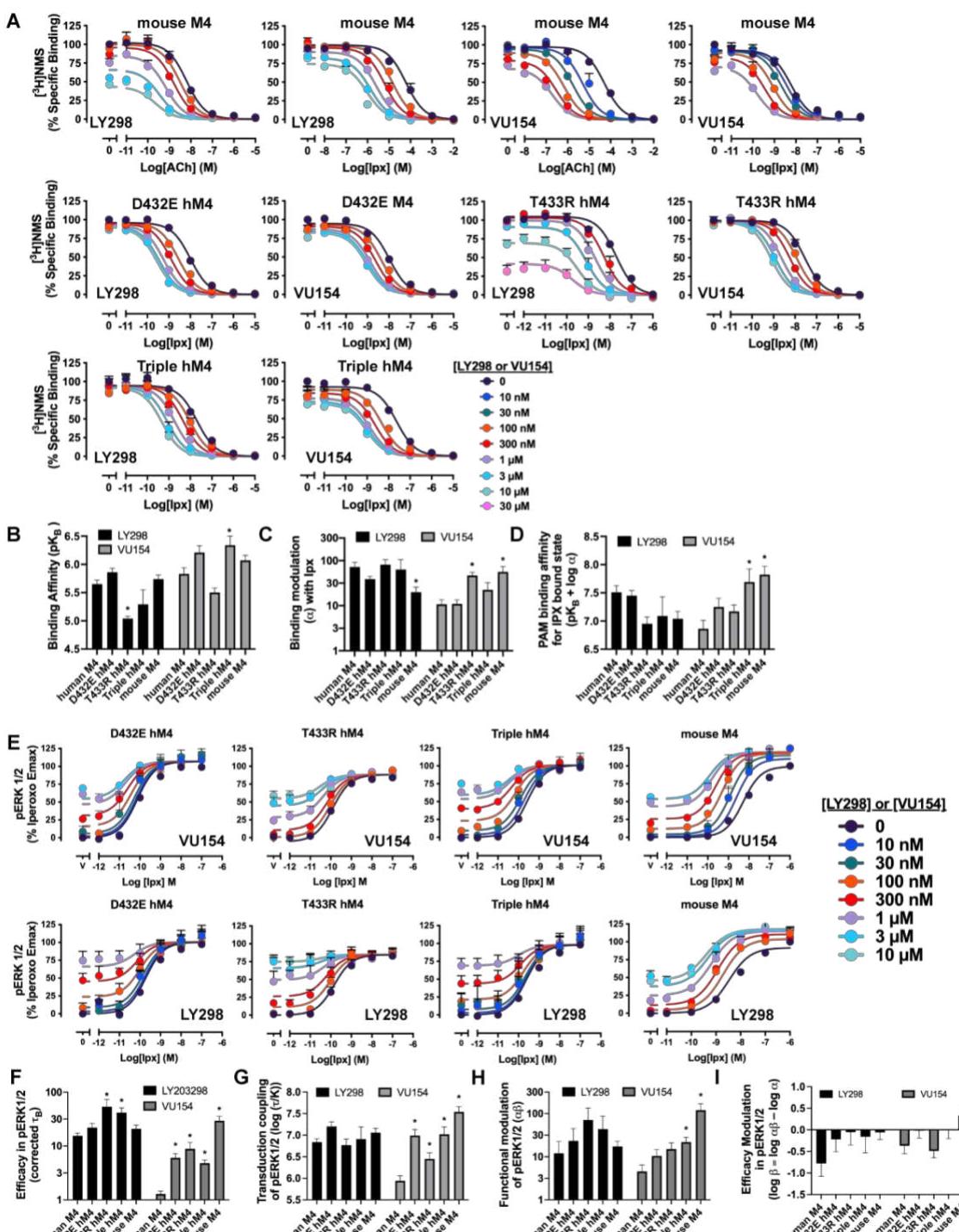

1613

1614

1615 **Figure S6. Key residues for the binding of LY298 and VU154 at the human M4 mAChR,**
1616 **Related to Figure 4. (A,B)** Competition binding with a fixed concentration of $^{[3]}\text{H}$ -NMS and
1617 increasing concentrations of ACh (black circles), **(A)** LY298 or **(B)** VU154 (blue circles), and
1618 LY298 or VU154 in the presence of an IC_{20} concentration of ACh (red squares). Curves drawn
1619 through the points represent a global fit of an extended ternary complex model. Data points
1620 represent the mean \pm SEM of 3 or more independent experiments performed in duplicate.
1621 Similar data were observed for competition binding with Ipx instead of ACh. See **Table S4**.

1622

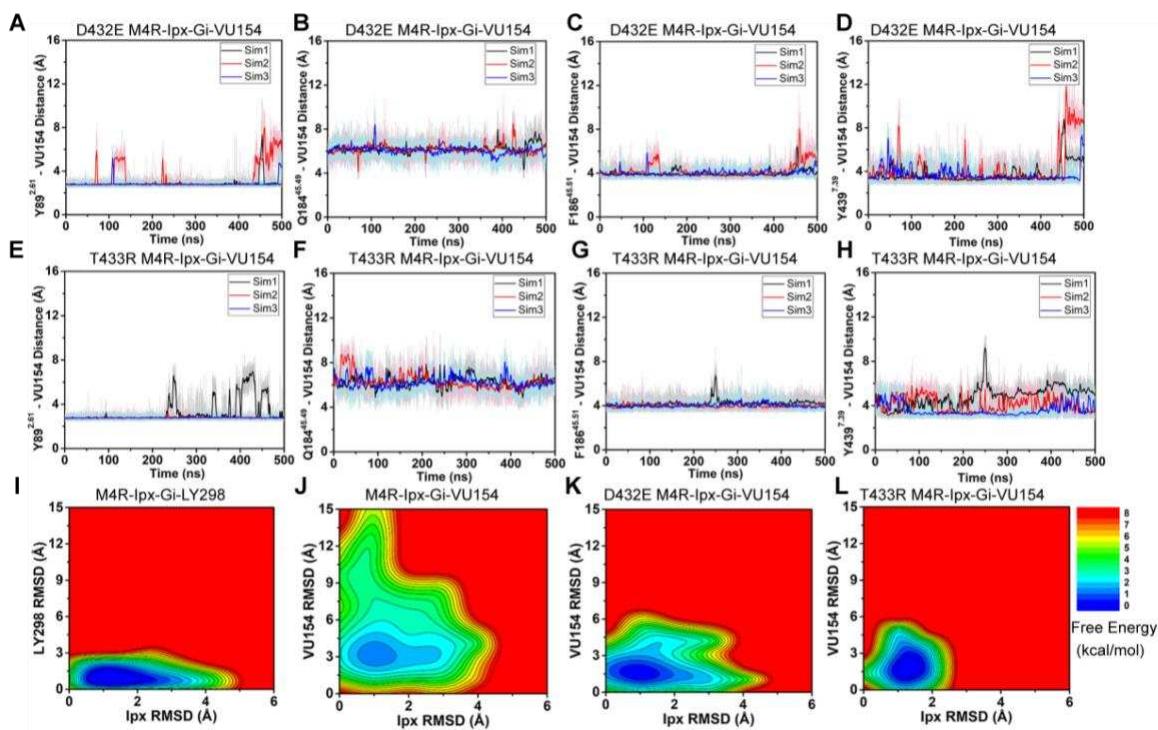
1623


1624 **Figure S7. GaMD Simulations, Related to Figures 4–6 (A–R)** Time courses from GaMD
 1625 simulations, each performed with 3 separate replicates. Individual replicate simulations are
 1626 illustrated with different colours. The heading of each plot refers to the specific model used
 1627 in the simulations. See **Table S2**. **(A)** Distance between N423⁶⁸ and the fluorine atom of
 1628 LY298 from GAMD simulations of the LY298-Ipx-M4R-Gi₁ structure. **(B,C)** Distance between

1629 (B) Y92^{2.64} and (C) T433^{7.33} to VU154 from GAMD simulations of the VU154-Ipx-M4R-G_{i1}
1630 structure. (D-F) RMSDs of Ipx from simulations of the cryo-EM structures. (G-I) RMSDs of ACh
1631 from simulations of the (G) cryo-EM structure or (H,I) PAM docked models. (J,K) RMSDs of
1632 VU154 and LY298 from the ACh-bound M4 mAChR simulations. (L) Bar graph of the root mean
1633 fluctuations of the agonists Ipx or ACh across the GaMD simulations of the M₄-G_{i1} complexes
1634 with or without the PAMs. Values shown are mean \pm SEM, n=3. (M-R) Time course of the ACh-
1635 bound M₄-G_{i1} simulations illustrating variances in the (M-O) W435^{7.35} χ_2 angle and (P-R) the
1636 W413^{6.48} χ_2 angle.

1637

1638


1639

1640 **Figure S8. Concentration response curves, Related to Figure 7. (A)** Concentration response
 1641 curves the orthosteric and allosteric ligands in $[^3\text{H}]$ -NMS binding assays at the mouse M₄
 1642 mAChR, D432E, T433R, and the V91L, D432E, T433R triple mutant of the human M₄ mAChR.
 1643 **(B-D)** Quantification of data from **(A)** to calculate **(B)** equilibrium binding affinities (pK_B) of the
 1644 PAMs, **(C)** the degree of binding modulation (α) between Ipx and PAMs, and the modified
 1645 affinities **(D)** αK_B . See **Table S4**. **(E)** Concentration response curves of an interaction between

1646 ACh and LY298 in pERK1/2 at the mouse M₄ mAChR, D432E, T433R, and the V91L, D432E,
1647 T433R triple mutant of the human M₄ mAChR. **(F-I)** Quantification of data from **(A,E)** to
1648 calculate **(F)** the signaling efficacy (τ_A and τ_B) and **(G)** the transduction coupling coefficients
1649 ($\log(\tau/K)$) of each ligand, **(H)** the functional cooperativity ($\alpha\beta$) between ligands, and **(I)** the
1650 efficacy modulation (β) between ligands. All data are mean \pm SEM of 3 or more independent
1651 experiments performed in duplicate or triplicate with the pharmacological parameters
1652 determined from a global fit of the data. The error in **(D,I)** was propagated using the square
1653 root of the sum of the squares. *Indicates statistical significance ($p < 0.05$) relative to WT as
1654 determined by a one-way ANOVA with a Dunnett's post-hoc test. See **Table S1**.

1655

1656

1657 **Figure S9. GaMD Simulations of D432E and T433R human M4 mAChR mutants, Related to**

1658 **Figure 7. (A-H)** Time courses obtained from GaMD simulations of the (E-H) D432E and (I-L)

1659 T433R mutant M₄R-Ipx-G_{i1}-VU154 systems with (A,E) Y89^{2.61} – VU154 distance, (B,F) Q184^{45.49}

1660 – VU154 distance, (C,G) F186^{45.51} – VU154 distance, and (D,H) Y439^{7.39} – VU154 distance.

1661 (I-L) 2D free energy profile of the RMSDs of LY298 and VU154 with Ipx. See **Table S3**.

1662

1663

Table S1. Pharmacological parameters from radioligand binding and functional experiments.

[³ H]-NMS saturation binding on stable M ₄ mAChR CHO cells						
Constructs	Sites per cell ^a			pK _D ^b		
Human WT M ₄ mAChR	598,111 ± 43,067 (7)			9.76 ± 0.05 (7)		
Mouse WT M ₄ mAChR	21,027 ± 2,188 (3)			9.76 ± 0.05 (3)		
Human D432E M ₄ mAChR	126,377 ± 10,066 (3)			9.60 ± 0.07 (3)		
Human T433R M ₄ mAChR	157,442 ± 36,658 (6)			9.64 ± 0.09 (6)		
Human V91L, D432E, T433R M ₄ mAChR	205,771 ± 20,975 (4)			9.58 ± 0.08 (4)		
[³ H]-NMS interaction binding assays between ACh or Ipx and LY298 or VU154 on stable M ₄ mAChR constructs in Flp-In CHO cells						
Constructs	PAM	pK _i ACh ^c	pK _i Ipx ^c	pK _B PAM ^c	log α _{ACh} ^d	log α _{Ipx} ^d
Human WT M ₄ mAChR	LY298	4.50 ± 0.06 (4)	8.30 ± 0.06 (4)	5.65 ± 0.07 (8) ^e	2.59 ± 0.10 (4)	1.86 ± 0.10 (4)
	VU154	4.40 ± 0.09 (4)	8.19 ± 0.06 (8)	5.83 ± 0.11 (12) ^e	1.61 ± 0.13 (4)	1.03 ± 0.10 (8)
Mouse WT M ₄ mAChR	LY298	4.52 ± 0.07 (4)	8.55 ± 0.06 (4)	5.74 ± 0.07 (8) ^e	1.78 ± 0.10 (4)	1.30 ± 0.11 (4)*
	VU154	4.59 ± 0.06 (4)	8.57 ± 0.06 (3)	6.07 ± 0.09 (7) ^e	2.43 ± 0.10 (4)	1.75 ± 0.12 (3)*
Human D432E M ₄ mAChR	LY298	N.T.	8.28 ± 0.04 (5)	5.86 ± 0.07 (5)	N.T.	1.59 ± 0.06 (5)
	VU154	N.T.	8.27 ± 0.06 (6)	6.21 ± 0.12 (6)	N.T.	1.04 ± 0.09 (6)
Human T433R M ₄ mAChR	LY298	N.T.	8.05 ± 0.08 (5)	5.04 ± 0.04 (5)*	N.T.	1.91 ± 0.11 (5)
	VU154	N.T.	7.88 ± 0.04 (5)	5.50 ± 0.08 (5)	N.T.	1.67 ± 0.07 (5)*
Human V91L, D432E, T433R M ₄ mAChR	LY298	N.T.	7.95 ± 0.10 (4)	5.29 ± 0.26 (4)	N.T.	1.80 ± 0.22 (4)
	VU154	N.T.	7.89 ± 0.12 (4)	6.34 ± 0.16 (4)*	N.T.	1.35 ± 0.16 (4)
Gα _{i1} activation (TruPath) interaction assays between ACh or Ipx and LY298 or VU154 on transiently expressed M ₄ mAChR constructs in HEK293A cells						
Constructs	PAM	log τ ACh ^f	log τ Ipx ^f	pK _B PAM ^c	log τ PAM ^f	log αβ _{ACh} ^g
Human WT M ₄ mAChR	LY298	2.71 ± 0.14 (4)	1.49 ± 0.12 (4)	= 5.65	1.02 ± 0.03 (8) ^e	2.01 ± 0.14 (4)
	VU154	= 5.83	-0.55 ± 0.08 (8) ^e	-	1.22 ± 0.13 (4)	0.20 ± 0.13 (4)
pERK1/2 interaction assays between ACh or Ipx and LY298 or VU154 on stable M ₄ mAChR constructs in Flp-In CHO cells						
Constructs	PAM	log τ ACh ^f	log τ Ipx ^f	pK _B PAM ^c	log τ _C PAM ^h	log αβ _{ACh} ^g
Human WT M ₄ mAChR	LY298	3.27 ± 0.06 (8) ^e	1.74 ± 0.03 (16) ^e	= 5.65	1.19 ± 0.05 (12) ⁱ	2.29 ± 0.22 (4)
	VU154	= 5.83	0.11 ± 0.05 (12) ⁱ	-	0.88 ± 0.23 (4)	0.66 ± 0.15 (8)
Mouse WT M ₄ mAChR	LY298	N.T.	N.D.	= 5.74	1.32 ± 0.07 (5)	N.T.
	VU154	N.T.	N.D.	= 6.07	1.47 ± 0.08 (5)*	N.T.
Human D432E M ₄ mAChR	LY298	N.T.	N.D.	= 5.86	1.34 ± 0.08 (5)	N.T.
	VU154	N.T.	N.D.	= 6.21	0.78 ± 0.08 (5)*	N.T.
Human T433R M ₄ mAChR	LY298	N.T.	N.D.	= 5.04	1.73 ± 0.13 (5)*	N.T.
	VU154	N.T.	N.D.	= 5.50	0.95 ± 0.12 (5)*	N.T.
Human V91L, D432E, T433R M ₄ mAChR	LY298	N.T.	N.D.	= 5.29	1.62 ± 0.09 (5)*	N.T.
	VU154	N.T.	N.D.	= 6.34	0.68 ± 0.06 (5)*	N.T.
						1.34 ± 0.11 (5)*

1664 Values represent the mean ± s.e.m. with the number of independent experiments shown in parenthesis. N.T. = not tested.N.D.=
1665 Not determined.

1666 ^a Number of [³H]-NMS binding sites per cell

1667 ^b Negative logarithm of the radioligand equilibrium dissociation constant

1668 ^c Negative logarithm of the orthosteric (pK_i) or allosteric (pK_B) equilibrium dissociation constant

1669 ^d Logarithm of the binding cooperativity factor between the agonist (ACh or Ipx) and the PAM (LY298 or VU154)

1670 ^e Parameter was determined in a shared global analysis between agonists.

1671 ^f Logarithm of the operational efficacy parameter determined using the Operational Model of Agonism.

1672 ^g Logarithm of the functional cooperativity factor between the agonist (ACh or Ipx) and the PAM (LY298 or VU154)

1673 ^h log τ_C = logarithm of the operational efficacy parameter corrected for receptor expression (methods in Appendix 1)

1674 * Values from pK_B PAM, log α_{Ipx}, log τ_C PAM, and log αβ_{Ipx} that are significantly different from human WT M₄ mAChR (p < 0.05)
1675 calculated by a one-way ANOVA with a Dunnett's post-hoc test.

1676

1677

1678

Table S2. Cryo-EM data collection, refinement, and validation statistics

	M4R-G _{i1} -Ipx	M4R-G _{i1} -Ipx-LY298	M4R-G _{i1} -Ipx-VU154	M4R-G _{i1} -ACh
Data Collection & Refinement				
EMD code	26099	26100	26101	26102
Micrographs	5056	5121	6021	5913
Electron Dose (e ⁻ /Å ²)	66	66	59.5	53.6
Voltage (kV)	300	300	300	300
Pixel size (Å)	0.83	0.83	0.83	0.83
Spot Size				
Exposure time	4	4	3	5
Movie frames	76	76	75	71
K3 CDS mode	No	No	No	Yes
Defocus range (μm)	0.5-1.5	0.5-1.5	0.5-1.5	0.5-1.5
Symmetry imposed	C1	C1	C1	C1
Particles (final map)	415,743	617,793	677,392	315,595
Resolution @0.143 FSC (Å)	2.8	2.4	2.5	2.8
Refinement				
CC _{map-model}	0.87	0.87	0.88	0.82
Map sharpening B factor (Å ²)	-80.9	-60.8	-46.6	-85.1
Model Quality				
PDB code	7TRK	7TRP	7TRQ	7TRS
R.M.S. deviations				
Bond length (Å)	0.004	0.004	0.005	0.006
Bond angles (°)	0.849	0.811	0.826	0.773
Ramachandran				
Favoured (%)	98.38	99.14	98.02	98.10
Outliers (%)	0	0	0	0
Rotamer outliers (%)	0.11	0.21	0	0
C-beta deviations (%)	0	0	0	0
Clashscore	2.69	2.62	2.26	4.08
MolProbity score	1.06	1.05	1.00	1.19

1679
1680

1681

Table S3: GaMD simulations of the M₄ mAChR

System	Method
M4-G _{i1} -Ipx (cryo-EM structure)	GaMD (3 x 500 ns)
M4-G _{i1} -Ipx-VU154 (cryo-EM structure)	GaMD (3 x 500 ns)
M4-G _{i1} -Ipx-LY298 (cryo-EM structure)	GaMD (3 x 500 ns)
M4-G _{i1} -ACh (cryo-EM structure)	GaMD (3 x 500 ns)
M4-D432E-G _{i1} -Ipx-VU154	GaMD (3 x 500 ns)
M4-T433R-G _{i1} -Ipx-VU154	GaMD (3 x 500 ns)
M4-G _{i1} -ACh-VU154	GaMD (3 x 500 ns)
M4-G _{i1} -ACh-LY298	GaMD (3 x 500 ns)
M4-G _{i1} -VU154	GaMD (3 x 500 ns)
M4-G _{i1} -LY298	GaMD (3 x 500 ns)
M4-VU154	GaMD (3 x 1,000 ns)
M4-LY298	GaMD (3 x 1,000 ns)

1682

1683

1684

Table S4. Pharmacological parameters of LY298 and VU154 at key M₄ mAChR mutants.

[³ H]-NMS saturation binding on stable M ₄ mAChR Flp-In CHO cells							
Constructs	Sites per cell ^a			pK _D ^b			
Human WT M ₄ mAChR (from Table S1)	598,111 ± 43,067 (7)				9.76 ± 0.05 (7)		
Y89A ^{2.61}	32,674 ± 4,174 (4)				9.88 ± 0.06 (4)		
Q184A ^{45.49}	88,728 ± 3,056 (3)				9.99 ± 0.06 (3)		
F186A ^{45.51}	36,907 ± 4,170 (4)				9.75 ± 0.16 (4)		
W435A ^{7.35}	34,861 ± 3,510 (3)				9.81 ± 0.22 (3)		
Y439A ^{7.39}	42,690 ± 4,547 (3)				8.31 ± 0.14 (3)		
[³ H]-NMS interaction binding assays between ACh or Ipx and LY298 or VU154 on stable M ₄ mAChR constructs in Flp-In CHO cells							
Constructs	PAM	pK _i ACh ^c	pK _i Ipx ^c	pK _B PAM ^c	log α _{ACh} ^d	log α _{Ipx} ^d	log α _{NMS} ^e
Human WT M ₄	LY298	5.09 ± 0.07 (7)	8.54 ± 0.04 (11)	=5.65	1.57 ± 0.11	1.71 ± 0.09	= 0
	VU154	5.06 ± 0.05 (7)	8.54 ± 0.03 (11)	=5.83	1.44 ± 0.07	1.11 ± 0.06	= 0
Y89A ^{2.61}	LY298	5.25 ± 0.05 (6)	8.48 ± 0.05 (6)	N.D.	N.D.	N.D.	N.D.
	VU154	5.27 ± 0.05 (6)	8.47 ± 0.05 (6)	N.D.	N.D.	N.D.	N.D.
Q184A ^{45.49}	LY298	5.24 ± 0.06 (6)	8.74 ± 0.04 (10)	6.23 ± 0.06	1.28 ± 0.13	1.27 ± 0.11	-1.10 ± 0.07
	VU154	5.28 ± 0.05 (6)	8.69 ± 0.04 (10)	5.87 ± 0.17	1.07 ± 0.09	0.81 ± 0.07	= 0
F186A ^{45.51}	LY298	4.91 ± 0.05 (6)	8.12 ± 0.05 (8)	N.D.	N.D.	N.D.	N.D.
	VU154	4.91 ± 0.05 (6)	8.12 ± 0.05 (8)	N.D.	N.D.	N.D.	N.D.
W435 ^{7.35}	LY298	3.79 ± 0.07 (7)	6.88 ± 0.07 (7)	N.D.	N.D.	N.D.	N.D.
	VU154	3.79 ± 0.07 (7)	6.88 ± 0.07 (7)	N.D.	N.D.	N.D.	N.D.
Y439A ^{7.39}	LY298	3.23 ± 0.22 (8)	5.36 ± 0.25 (8)	N.D.	N.D.	N.D.	N.D.
	VU154	3.23 ± 0.22 (8)	5.36 ± 0.25 (8)	N.D.	N.D.	N.D.	N.D.

1685 Values represent the mean ± s.e.m. with the number of independent experiments shown in parenthesis. N.D. = Not determined.

1686 ^a Number of [³H]-NMS binding sites per cell

1687 ^b Negative logarithm of the radioligand equilibrium dissociation constant

1688 ^c Negative logarithm of the orthosteric (pK_i) or allosteric (pK_B) equilibrium dissociation constant. pK_i values for ACh and Ipx are

1689 shared at each M₄ mAChR construct. pK_B values for the PAMs at Q184A are shared across the agonist data sets.

1690 ^d Logarithm of the binding cooperativity factor between the agonist (ACh or Ipx) and the PAM (LY298 or VU154)

1691 ^e Logarithm of the binding cooperativity factor between the [³H]-NMS and the PAM (LY298 or VU154)

1692

1693

1694 **Supplementary Video 1. 3D variability analysis of the Ipx-M₄R-G_{i1} cryo-EM structure**

1695 **Supplementary Video 2. 3D variability analysis of the ACh-M₄R- G_{i1} cryo-EM structure**

1696 **Supplementary Video 3. 3D variability analysis of the LY298-Ipx-M₄R- G_{i1} cryo-EM structure**

1697 **Supplementary Video 4. 3D variability analysis of the VU154-Ipx-M₄R- G_{i1} cryo-EM structure**

1698 **Supplementary Video 5. Movie from one Ipx-M₄R-G_{i1} GaMD simulation**

1699 **Supplementary Video 6. Movie from one LY298-Ipx-M₄R-G_{i1} GaMD simulation**

1700 **Supplementary Video 7. Movie from one VU154-Ipx-M₄R-G_{i1} GaMD simulation**

1701 **Supplementary Video 8. Movie from one ACh-M₄R-G_{i1} GaMD simulation**

1702 **Supplementary Video 9. Movie from one VU154-Ipx-M₄R(D432E)-G_{i1} GaMD simulation**

1703 **Supplementary Video 10. Movie from one VU154-Ipx-M₄R(T433R)-G_{i1} GaMD simulation**

1704