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Abstract

Shared lineage has diverse effects on patterns of neuronal connectivity. In mammalian cortex,
excitatory sister neurons assemble into shared microcircuits, whereas throughout the Drosophila
nervous system, Notch-differentiated sister neurons diverge into distinct circuits. Notch-
differentiated sister neurons have been observed in vertebrate spinal cord and cerebellum, but
whether they integrate into shared or distinct circuits remains unknown. Here we evaluate the
connectivity between sister V2a/b neurons in the zebrafish spinal cord. Using anin vivo labeling
approach, we identified pairs of sister V2a/b neurons born from individual Vsx1+ progenitors
and observed that they have similar axonal trajectories and proximal somata. However, paired
whole-cell eectrophysiology and optogenetics revealed that sister V2alb neurons receive input
from distinct presynaptic sources, do not communicate with each other, and connect to largely
distinct targets. These results resemble the divergent connectivity in Drosophila and represent the

first evidence of Notch-differentiated circuit integration in a vertebrate system.

Introduction

How does shared lineage affect neuronal circuitry? Neurons arising from common progenitors
are more likely to exhibit stereotypic patterns of connectivity, in two models from vertebrate and
invertebrate systems. In mouse cortex, clonally related excitatory sister neurons preferentially
form connections within a shared microcircuit (Xu et al., 2014; Yu et al., 2009). In contrast,

h°N and Notch®™ hemilineages

clonally related sister neuronsin Drosophilaform distinct Notc
which innervate distinct targets and often express different neurotransmitters (Artavanis-
Tsakonaset al., 1999; Endo et al., 2007; Harris et al., 2015; Lacin et al., 2019; Lacin & Truman,

2016; Mark et al., 2021; Pinto-Teixeira & Desplan, 2014; Skeath & Doe, 1998).
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Notch-differentiated clonally related sister neurons have been observed in the vertebrate spinal
cord and cerebellum (Kimuraet a., 2008; Peng et al., 2007; Zhang et a., 2021), but it remains
unknown whether these clonally related neurons integrate into shared circuits. In ventral spinal
cord, motor neurons and interneurons develop from five progenitor domains (p0, p1, p2, pMN,
p3) (Goulding, 2009; Goulding & Lamar, 2000; Jessell, 2000). Progenitorsin the p2 domain
transiently express the transcription factor Vsx1 (Kimuraet al., 2008; Passini et al., 1998). Each
p2 progenitor makes a final paired division into an excitatory V2a (Notch®™) and an inhibitory
V2b (Notch®™) neuron, via Notch-mediated lateral inhibition (Del Barrio et al., 2007; Kimura et

al., 2008; Okigawa et a., 2014; Peng et al., 2007).

Although both V2a and V2b neurons project axons ipsilaterally and caudally, these neuron
classes differ in other aspects. V2a interneurons express vax2 (referred to as chx10 in this paper
for clarity) and provide glutamatergic drive onto motor populations (Kimura et al., 2006),
whereas V 2b interneurons express gata3 and provide glycinergic and GABAergic inhibition onto
motor populations (Andrzejczuk et al., 2018; Callahan et al., 2019). V2b neurons also support
flexor/extensor alternation through reciprocal inhibition in limb circuits (Britz et al., 2015; Zhang
et a., 2014). Given their shared origin but divergent cdlular identities, it remains unknown

whether these VV2a/lb sister neurons integrate into shared or distinct functional spinal circuits.

We investigated whether V2alb sister neuronsin zebrafish spinal cord preferentially integrate in
shared circuits, as with clonally related cortical neurons, or distinct circuits, as with Notch-

differentiated hemilineages in Drosophila. Using a sparse labeling approach, we directly
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observed and identified individual pairs of sister V2a/b neurons arising from a single progenitor.
Our morphological and el ectrophysiological analyses reveal that although sister VV2a/lb neurons
share anatomical characteristics, these sister neurons diverge into separate circuits, with largely
distinct presynaptic and postsynaptic partners. To the best of our knowledge, thisisthe first
assessment of circuit integration of Notch-differentiated clonally related neuronsin vertebrate

models.

Results

Micro-injection of vsx1 plasmid allows for clonal pair tracking in vivo

In both zebrafish and mice, vsx1+ progenitors give rise to two distinct daughter populations, V2a
and V2b neurons (Kimura et al., 2008; Peng et a., 2007). Using transgenic zebrafish, individual
vsx1+ progenitors have been shown to undergo a final paired division into one VV2a (Notch®™)
and one VV2b neuron (Notch®) (Fig. 1A) (Kimuraet al., 2008). We aimed to devel op a protocol
to label and identify individual clonal pairs resulting from thisdivision in vivo. To label
individual pairs, we micro-injected titrated amounts of a bacteria artificial chromosome (BAC)
construct, vsx1: GFP, into fertilized zebrafish embryos at the single-cell stage (Fig. 1B). At the
21-somite stage, larval zebrafish were screened for vsx1 GFP+ progenitors and then imaged
every 5 minutes to capture the progenitor divison (Fig. 1C). Progenitors become el ongated

before dividing into two distinct cells.

When the fish become free swimming at 4 days post fertilization (dpf), vsx1 GFP+ pairs were
assessed for co-expression of known V2a/b transcription factors (chx10/gata3) to verify their

neuronal identities, using transgenic fish Tg(chx10:1ox-dsRed-lox: GFP) (Kimura et al., 2006) or
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Tg(gata3:lox-dsRed-lox: GFP) (Callahan et al., 2019) (Fig. 1D). For simplicity, these fish lines
will be referred to as chx10:Red and gata3: Red. We assayed these in separate experiments due
to overlap in fluorescence from reporter lines. Fig. 1D presents example images of vsx1 GFP+
pairsin which one of the two neuronsin the pair expresses the appropriate marker: a clonal pair
(green) where one neuron co-expresses the V2a marker Chx10 (left), and a different clonal pair
in which one neuron co-expresses the V2b marker Gata3 (middle). Based on previous work, we
expected that every vsx1 GFP+ pair would consist of one VV2a and one V2b neuron (Kimura et
al., 2008). However, among clonal pairs imaged in the chx10: Red background, only 61/92
(66.3%) of vsx1 GFP+ pairsincluded one identified V2a neuron (Fig. 1E). In contrast, in the
gata3: Red background, 35/38 (92.1%) of vsx1 GFP+ pairsincluded oneidentified VV2b neuron
(Fig. 1E). Rardly, both vsx1 GFP+ neuronsin a pair expressed both Chx10 or Gata3 markers
(<10%). However, in 25% of vsx1 GFP+ pairsin chx10:Red fish, neither neuron expressed the

V2amarker.

A possible explanation for the lower rate of VV2a marker expression could be under-labeling in
the fluorescent reporter line. Alternatively, thereis at least one additional population of neurons
to emerge from the V2 domain. In zebrafish, the V2s population is glycinergic and expresses
Sox1a (Gerber et al., 2019). V2s neurons resemble V2¢ neurons in mice in that they both express
Soxlaand arise after V2a/lb devel opment; however, V2c neurons are GABAergic whileV2s
neurons are purely glycinergic (Gerber et al., 2019; Panayi et al., 2010). Using the
Tg(soxla:dmrt3a-gata2a: EFP(ka705)) reporter line, here referred to as sox1:GFP, (Gerber et a.,
2019), we assayed the presence of sox1+/vsx1+ neurons by injecting a vsx1:mCherry BAC in

embryos at the single-cell stage. In 16/65 (24.6%) of vsx1 mCherry+ pairs, one of the two sister
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neurons co-labeled with soxla (Fig. 1D, right), and in 49/65 (75.4%) of vsx1 mCherry+ pairs,
neither neuron co-labeled with soxla (Fig. 1E). These results suggest that not all vsx1+
progenitors differentiate into V2a/b pairs. Instead, approximately 75% of vsx1 progenitors divide
into V2a/b pairs while the remainder divide into V2b/s pairs. We did not see any vsx1+ triplets
or singletsin co-label experiments (0/195), suggesting that vsx1 progenitors only undergo a
single, terminal division. Based on these results, we conclude that our stochastic labeling
approach successfully labeled clonally related V2 neurons, but required a chx10 co-label to

properly identify vsx1 pairs as V2a/b neuronsin vivo.

Sster V2a/b neurons remain proximal to each other

Immediately after progenitor division around 1 dpf, sister V2a/b neurons are located in close
proximity to each other (Kimuraet al., 2008), but they have not been followed out to 3-5 dpf
when the spinal circuit transitions from spontaneous coiling during embryonic stages to the beat-
and-glide locomotion at the larval stage. To assess somatic relationships between sister V2
neurons at larval stages, we measured inter-soma distance from the center of one vsx1+ sister
neuron to the other (Fig. 2A, red arrow). When compared to the distribution of non-sister
neurons (inter-soma distance between GFP-Red pairs, Fig. 2A, white arrows), sister V2 neurons
were often the closest neighbors (Fig. 2B). Sister vsx1+ neurons remained in close proximity to
each other throughout embryonic and larval development. Beginning at 24 hpf, we embedded
embryos in low melting point agarose, imaged, and then re-imaged at 48 hpf. At 24 hpf, sister
neuron centers were ~7 um apart, or effectively adjacent. By 48 hpf, thisinter-soma distance
increased dightly to ~9 um (Fig. 2C). In a separate set of experiments, we tracked vsx1+ sister
neurons from 48 — 96 hpf by embedding fish for imaging at 48 hpf, freeing from agarose after

imaging, and re-embedding at 96 hpf. The distance between somata increased slightly, but still
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remained relatively short (Fig. 2C). Because V2a/b somataare ~10 um in size (Callahan et al.,
2019; Kimura et al., 2006; Menelaou et al., 2014), our data suggest that sister V2 neurons usually
remain adjacent. Lastly, restricting our analysis to sister V2a/b neurons using chx10: Red fish, we
found that VV2b neurons were typically positioned more dorsally than their sister V2a
counterparts (Fig. 2D), consistent with previous work showing inhibitory populations are located
more dorsally than excitatory neuronsin spinal cord (Kimura et al., 2006; McLean et a., 2007).
Altogether, our data demonstrate that sister V2a/b neurons develop and remain close to each
other during larval stages. As aresult, in subsequent experiments we inferred that sparsely

labeled vsx1 GFP+ neurons located close to each other at 3-4 dpf represented sister pairs.

Though V2a axons are consistently longer, sister VV2a/b axonstravel along similar trajectories
As V2alb neurons both project descending, ipsilateral axons, we next assessed whether the axons
of clonaly-related V2a/b neurons exhibited any consistent morphological characteristics. Vsx1
GFP+ pairs were labeled in chx10: Red fish using a vax1:GFP plasmid and later imaged on a
confocal microscope. V2a/b axons were reconstructed (Fig. 3A), and the descending axon length
of each clonal V2a/b neuron was measured. Sister V2a neurons exhibited axons that were on
average 61% longer than their V2b counterparts (Fig. 3B), consistent with work showing that
Notch expression attenuates axon growth (Mark et al., 2021; Mizoguchi et al., 2020). There was
no relationship between the length of the axons and their location along the rostral-caudal axis of
the fish (Fig. 3B). To measure axon proximity, the shortest distance between the V2b and V2a
axon was calculated along each point of the V2b neuron, beginning at the axon hillock (Fig. 3C,
inset). The fraction of those inter-axon distances within 5 um was calculated for each pair.

Indeed, clonally related V2a/b neurons send axons along a similar trgjectory, with a median of
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37.1% of the V2b axon length within 5 um of the V2a axon (Fig. 3C). Because the axons follow
similar paths, these results suggest a possibility for sister V2a/b neurons to contact shared

synaptic targets.

Sster VV2a/b neurons receive input from distinct synaptic circuits

Work in hippocampus has shown that sister neurons are more likely to receive synaptic input
from shared presynaptic partners than non-sister neurons (Xu et al., 2014). In contrast, sister
neurons from the Delta/lNotch hemilineages in fruit fly are positioned in different clusters,
although whether they receive shared input is not known (Harris et al., 2015). To evaluate
whether sister V2a/b neurons receive input from shared or distinct presynaptic partnersin vivo,
we performed paired whole-cell electrophysiology in voltage clamp from clonally related pairs
of V2alb neuronsidentified as above (Fig. 4A, B) (Bagnall & McLean, 2014). Both sister
neurons were held at -80 mV, the chloride reversal potential, to isolate excitatory postsynaptic
currents (EPSCs), while a bright-field stimulus was used to dicit fictive swim (Fig. 4C). The
timing of EPSCs arriving in each neuron of the pair was asynchronous, as exemplified by an
overlay of several hundred EPSCs from either aVV2a/b and the associated EPSC-triggered
averagein its sister neuron (Fig. 4D, E). A summary of the amplitudes of detected EPSCs and
associated EPSC-triggered averages for this example neuron is shown in Fig. 4F. Across
recordings from 13 clonally related pairsin vivo, we consistently saw little to no synchronous

synaptic input (Fig. 4G).

Lastly, we wanted to compare whether this asynchrony in EPSC input was present in non-sister

V 2alb neurons from the same segment. Using the same analysis, it appeared that non-sister


https://doi.org/10.1101/2022.09.26.509532
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.26.509532; this version posted September 27, 2022. The copyright holder for this preprint

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

V 2alb neurons from the same spinal segment receive input from distinct synaptic sources as well
(Fig. 4H). The asynchronous timing of these inputs suggests that they cannot be arriving from a
shared presynaptic source, but rather, different presynaptic sources which fire at different times
(Bagnall & McLean, 2014). Altogether, these data show that not only sister VV2a/b neurons, but
any V2a-VV2b pair, clonal or non-clonal, from the same segment receives input from distinct

presynaptic sources during light-evoked locomotion at slow to medium locomotor speeds.

Sster VV2a/b neurons do not form synaptic connections with each other

Clonal pair analysisin cortex has shown that sister neurons preferentially form synapses onto
each other (Yu et al., 2009; Zhang et al., 2017). To identify whether sister V2a/b neurons form
synaptic connections with each other, paired in vivo whole-cell recordings were performed in
chx10:Red fish as described above (Fig. 5A). Spiking was elicited by depolarizing current steps
in elther the VV2a or the V2b neuron while the other neuron was held in voltage clamp to measure
synaptic responses (Vg of =80 mV in V2b neurons to measure EPSCs, Vg 0f 0 MV in'V2a
neurons to measure IPSCs). In both cases, there were no detectable evoked currents, showing
that sister VV2a/b neurons do not connect with each other (Fig. 5C). Similarly, non-clonally
related V 2a/b neurons exhibited no interconnectivity (Fig. 5D). Therefore, V2a/b neuronsin the
same segment do not form direct synapses with each other. Any connectivity among V2aand

V2b neurons likely occurs between neurons in different segments (Sengupta & Bagnall, 2022).

Sster V2a/b neurons provide asymmetric input onto downstream neuronsin spinal cord
Research in cortex has shown that clonally related inhibitory interneurons form synaptic

connections with shared downstream targets (Zhang et al., 2017), although this claim is disputed
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195 (Mayer et d., 2016). Given the proximity of sister V2a/b axons (Fig. 3), it was plausible that they
196  share common downstream targets. To address this question, we micro-injected avsx1:Gal4

197 BAC and a UAS CoChR2-tdTomato plasmid (Antinucci et a., 2020; Schild & Glauser, 2015) in
198  embryos at the single-cell stage to drive stochastic expression of this channelrhodopsin variant in
199  vsx1 sister neurons (Fig. 6A) for selective optical stimulation of sister neurons. We validated that
200 theoptical stimuli effectively elicited spiking in CoChR2-tdTomato+ vsx1 sister neurons by

201 performing cell-attached recordings while providing a 10 ms light pulse (Fig. 6B). All CoChR2-
202  tdTomato+ vsx1 neurons fired action potentials in response to optical stimulation (Fig. 6C, n =
203 13 neuronsfrom 12 fish). Spiking was dlicited in both VV2a and V2b CoChR2-tdTomato+

204  neurons (Fig. 6D). Similar experiments were performed on nearby CochR2-tdTomato(-) neurons
205  toensurethat optical stimuli evoked spiking only in neurons expressing CoChR2-tdTomato. All
206 CoChR2-tdTomato(-) neurons remained inactive during the light stimulus (Fig. 6C, n =22

207  neurons from 18 fish). In CoChR2-tdTomato+ neurons, most light-evoked spikes were observed
208  throughout the duration of the stimulus, with some spiking following the stimulus window (Fig.
209 6 C, E). Thisprolonged activity ismost likely due to the long inactivation kinetics of the

210  CoChR2 variant (data not shown) (Antinucci et al., 2020). Altogether, our optogenetic approach
211 isafeasible method for ng downstream connectivity of sister V2a/b neurons.

212

213 Having validated our optogenetic approach, we proceeded to perform whole-cell patch clamp
214  recordings on known V2a/b neuron downstream spinal targets (i.e. motor neurons, V1, V2a, V2b
215  neurons) which were located 1-4 segments caudal to the V2a/b sister pair in voltage clamp mode
216  using acesium-based internal solution (Fig. 7A) (Bagnall & McLean, 2014; Callahan et al.,

217 2019; Kimuraet al., 2006; Menelaou & McLean, 2019). Because sister vsx1+ neurons are close
218  to each other, our optogenetic stimulus would activate both neurons simultaneously. However,

10
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by clamping the target neuron at different reversal potentials, we could isolate either evoked
EPSCs or inhibitory postsynaptic currents (IPSCs) (Fig. 7B-D). In most recorded neurons,
optical stimuli evoked neither EPSCs nor IPSCs, consistent with sparse connectivity in the spinal
cord (n=85/99; Fig. 7E, F). In six target neurons, we recorded evoked EPSCs (V haq -80mV) but
not IPSCs, demonstrating that the target neuron received synaptic input from the CoChR2-
labeled V2a neuron but not the V2b (Fig. 7B, E). In another six target neurons, we detected
evoked IPSCs (Vhog 0 mV) but no EPSCs, demonstrating that the target neuron received synaptic
input from the V2b but not the VV2a neuron (Fig. 7C, E). In a subset of experiments, NBQX/APV
or strychnine were used to block responses and confirm glutamatergic or glycinergic
connections, respectively (Fig. 7B, n=2; Fig 7C, n = 4). In two instances, a target neuron
received both evoked EPSCs and IPSCs, with the magnitude of IPSCs ~5-fold larger than the
magnitude of the EPSCs, suggesting an asymmetric connection from sister V2a/b neurons (Fig.

7E).

In ten neurons, we detected a slow depolarizing current when target neurons were held at -80 mV
(Fig. 7D, F gray), but not at 0 mV. This evoked current had a lower amplitude and longer rise
time than fast evoked EPSCs (Fig. 7G). This slow excitatory current may be caused by a weak
di-synaptic electrical connection (Menelaou & McLean, 2019), but we were not able to eliminate
it with gap junction blockers (carbenoxylone and 18-B-glycyrrhetinic acid). We summarize the
identities of target neurons receiving synaptic input from sister V2a/b neuronsin Table 1. Target
neurons were evenly divided between motor neurons (early and late born), and excitatory and
inhibitory interneurons. Overall, these results demonstrate that clonally-related V 2a/b neurons do

not preferentially form synaptic connections with shared targets.

11
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Discussion

In this study, we showed that clonally related V2alb neurons exhibit ssimilar morphol ogical
characteristics, but form synapses with and receive information from largely distinct neuronal
partners. Through our use of plasmid injections and time lapse imaging, we definitively
identified individual pairs of clonally related V2a/b neurons born from a single vsx1+ progenitor
cell invivo (Fig. 7H). Additionally, some vsx1+ progenitors appear to divide into VV2b/s pairs.
Within V2alb pairs, we saw that sister neuron somata remain in close proximity to each other
and send their axons along similar trgjectories. However, our electrophysiological data showed
that these sister neuronsintegrate into distinct circuits. Clonally related V 2a/b neurons do not
communicate with each other, do not receive input from similar sources, and infrequently
connect to the same downstream target. This connectivity pattern resembles circuitry seen in
Drosophila Notch-differentiated hemilineages (Fig. 71). Our results represent the first evidence
of Notch-differentiated circuit integration in a vertebrate system, and may reflect a means of cell-

type and circuit diversification in earlier evolved neural structures.

Notch determines cellular identity of vsx1+ sister neurons

Notch isan important regulator in V2a/b differentiation, and during vsx1+ progenitor division,
differences in Notch expression result in the onset of VV2a (Notch®™) or VV2b (Notch®")
programming (Batista et al., 2008; Debrulle et al., 2020; Kimura et al., 2008; Mizoguchi et al.,
2020; Okigawa et al., 2014). However, it remains unknown whether Notch playsarolein sister
V 2a/b development beyond initiating cellular identity or if it functions as an intermediary step

before other molecular factors determine cellular morphology post-mitotically (Kozak et al.,

12
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2020; Mizoguchi et al., 2020). Our morphological analysis showed differencesin V2a/b axon
lengths and dorso-ventral position (Fig. 2, 3). Further experiments are needed to evaluate
whether these differences are aresult of Notch signaling or intrinsic to post-mitotic cellular

identity.

Similarly, the recently discovered V2s population relies on Notch signaling for its devel opment
with Notch KO mutants showing a decrease in soxla+ neurons (Gerber et al., 2019). We
speculate that some vsx1+ progenitors give rise to some V2b/s sister pairsin addition to the
previously described V2a/b pairs. Our experiments in reporter lines (Fig 1) showed that ~75% of
vsx1l GFP+ progenitors divided into V2alb sister neurons, whereas ~25% resulted in V 2b/s
neuron pairs. V2s neurons arise later than the initial wave of V2alb pairs (Gerber et al., 2019).
Because Notch has been shown to exhibit different effects on cellular identity during early and
late development, we suggest that delayed Notch activity causes some later born vsx1+ sister
neurons to adopt a V' 2b/s identity which are both Notch®™™ (Jacobs et al., 2022). Similarly, only
early cerebellar progenitors appear to undergo Notch differentiation into distinct cell types, the
Purkinje and granule cells (Zhang et a., 2021). Notch overexpression experiments could have
biased differentiation in favor of V2b/s pairs earlier in development, accounting for theincrease
in V2b and decrease in VV2a numbers (Mizoguchi et al., 2020). However, these experiments have
not looked at changes to V2s numbers, so selective evaluation of later born V2 progenitorsis
needed to identify whether VV2b/s clonal pairs exist and if so whether they are temporally delayed

relative to VV2alb pairs.

Notch-differentiation devel opment influences circuit formation
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Lineage pathfinding and innervation differences in Drosophila are well documented, and Notch-
differentiated sister neuronsin these organisms develop different axon trgjectories, presumably
connecting to different downstream targets (Harris et al., 2015; Truman et a., 2010). Similarly,
our data show that vsx1+ sister neuronsin spinal cord have similar descending trajectories albeit
different axon lengths (Fig. 3). Analysis of Notch-differentiated lineages in vertebrate
cerebellum has shown that Notch mediates cerebellar progenitor differentiation into excitatory
and inhibitory cerebellar cell types (Zhang et al., 2021), but it is not yet known whether the
resulting neurons integrate into shared or distinct circuits. Our results are consistent with a
framework in which the progeny of Notch-differentiated divisions preferentially integrate into
distinct networks in both invertebrates and vertebrates. In contrast with cortical lineages, the
divergent cellular identities of sister V2a/b neurons appear to determine that they participatein
distinct circuits. We speculate that earlier evolved neural structures rely on Notch-differentiated
divisons as ameansto diversify neuronal populations during devel opment. The presence of
Notch-differentiated sister neurons in both cerebellum and spinal cord could represent an
efficient mechanism to generate diverse cell types early in development, in contrast to cortical
reliance on dedicated streams of excitatory and inhibitory neural progenitors (Goulding, 2009;
Leto et al., 2016; Maet a., 2018). Thiswould alow for the devel opment of several neuronal

cell-types, each governed by their own intrinsic molecular cues.

Shared vsx1+ progenitor birthdates do not lead to shared integration
Developmental timing allows for proper integration of neuronsinto functional speed dependent
locomotor circuits. In zebrafish, motor neurons and interneurons born during similar

devel opmental windows are active and recruited at similar speeds (McLean et al., 2007; McLean
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& Fetcho, 2009). These speed dependent microcircuits emerge in larvae and persist into
adulthood (Ampatzis et al., 2014). By definition, vsx1+ sister neurons share a birthdate,
suggesting that both neurons are likely recruited at similar speeds and therefore might integrate
into shared microcircuits. However, our work shows that vsx1 sister neurons neither synapse
onto each other, receive similar inputs, nor frequently target the same neurons. One possible
explanation isthat sister V2a/b divergence in cellular identity may cause integration into
different hemilineage temporal cohorts, similar to Drosophila, which then determine their
neuronal connectivity (Mark et al., 2021). Additionally, V2b neurons, whose recruitment patterns
have not yet been described, may participate in different behaviors than V2a neurons. This
separation of pathways driving excitatory and inhibitory neurons would allow for independent
activation (accelerator) or inactivation (brake) of movement (Callahan et al., 2019; EKI6f-
Ljunggren et al., 2012). It is worth noting that we measured synaptic inputs during fictive
locomotion induced by bright-field stimuli, and that the possibility remains sister vsx1 neurons

do receive similar inputs under different behavioral paradigms, such asturns or escapes.

Lastly, the sister vsx1 neurons infrequently connected to the same downstream targets (Fig. 7).
Because we saw two examples of targets receiving input from both the V2aand VV2b neuron of a
clonal pair, it isunclear whether sister neurons are explicitly discouraged from sharing
downstream targets, or whether it is ssmply random. In either case, the observed connectivity
divergence might function to coordinate antagonistic components during locomotion. Spinal V1
interneurons target different populations of neurons along the rostral-caudal length of the spinal
cord (Sengupta et al., 2021). Even if non-clonally-related VV2a and V 2b neurons generally form

synaptic contacts onto the same populations, such as motor neurons, they may exhibit different
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connectivity patternsin the longitudinal axis, preventing clonally-related pairs from sharing
downstream targets. Mapping the rostrocaudal connectivity of V2a and V2b populations would

address this hypothesis.
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Experimental model and subject details

All fish used for experiments were at larval stage from 1-6 days post fertilization (dpf), before
the onset of sexual maturation. All experiments and procedures were approved by the Animal
Studies Committee at Washington University and adhere to NIH guidelines.

Adult zebrafish (Danio rerio) were maintained at 28.5°C with a 14:10 light:dark cyclein the
Washington University Zebrafish Facility up to one year following standard care procedures.
Larval zebrafish used for experiments were kept in Petri dishes in system water or housed with

system water flow.

To target V2aand V2b neurons, the Tg(chx10:1oxP-dsRed-loxP: GFP) (Kimura, 2006) (ZDB-
ALT-061204-4) and Tg(gata3:loxP-dsRed-loxP: GFP) (Callahan et al., 2019) (ZDB-ALT-
190724-4) lines were used. We visualized V 2s neurons in Tg(soxla: dmrt3a-gata2a: EFP(ka705))

(Gerber et dl., 2019), a gift from Dr. Uwe Strahle.

Sochastic single cell labeling by microinjections

Tg(chx10:1oxP-dsRed-loxP: GFP) and Tg(gata3:|oxP-dsRed-loxP: GFP) were injected with a
vsx1: GFP bacterial artificial chromosome (BAC) at afinal concentration of 5 ng/pL (a gift from
Dr. Shin-ichi Higashijima). Tg(soxla:dmrt3a-gata2a: EFP(ka705)) were injected with a
vax1l:mCherry BAC at 15 ng/uL (generated by VectorBuilder, Inc.). To label clonal pairs with an
optogenetic activator, wild-type embryos were injected with avsx1: Gal4 BAC and

UAS CoChR2-tdTomato plasmid (Addgene Catalog #: 124233) at 20 ng/uL and 25 ng/pL,

respectively. The embryos were transferred to system water to develop. Embryos were screened
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between 1-4 dpf for sparse expression of Red/GFP fluorophores and selected for confocal

imaging and electrophysiology.

Confocal imaging

18-24 hour post fertilization (hpf) larvae were anesthetized in 0.02% M S-222 and embedded in
low-melting point agarose (0.7%) in a 10 mm FuoroDish (WPI). Spinal segments with sparsely
labeled progenitors were imaged with atime-lapse approach, consisting of one Z-stack every 5
min, under a spinning disk confocal microscope (Crest X-Light V2; laser line 470 nm; upright
Scientifica microscope; 40X objective; imaged with Photometrics BSI Prime camera). After
progenitor division, larvae were kept in the FluoroDish inside of an incubator and reimaged at a
higher-resolution at 2 dpf with alaser confocal (Olympus FV1200, 488 nm laser, XLUMPlanF -

20x W/0.95 NA water immersion objective).

Larvae imaged beginning at 2 dpf were anesthetized in 0.02% M S-222 and embedded in low
melting point agarose (1.5%) in a 10 mm FuoroDish (WPI). Images were acquired on an
Olympus FV 1200 Confocal microscope equipped with XLUM PlanF-20x W/0.95 NA water
immersion objective. A transmitted light image was obtained along with laser scanning
fluorescent images to identify spinal segments. Sequential scanning used for multi-wavelength
images. Fish were unembedded from the agarose and placed separately in labeled Petri dishes
and later reimaged at 4 dpf as described above. In some cases, fish were only imaged at 4 dpf
using the embedding methods described above. Transcription factor co-expression was

quantified manually.
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Image analysis

Confocal images were analyzed using Imaris (9.8, Bitplane) and Image] (1.53q, FIJI) (Schindelin
et a., 2012). For axon tracing, stitched projection images were made with the Pairwise stitching
(Preibisch et al., 2009) ImageJ plugin. The overlap of the fused image was smoothed with linear
blending and was registered based on the fill channel or the average of all channels. Three-
dimensional (3D) images were reconstructed and analyzed using Imaris. Axon length
measurements of each reconstructed neuron were obtained using the Filament function to trace
over the 3D rendering. Axon length includes only the descending branches of the neuron, starting
at the axon hillock. 3D axon coordinates of descending projections were exported from Imaris,
and separation of axon distances was calculated as the shortest distance between sister V2b to
sister V2a axons using custom Matlab scripts (available upon request). Muscle segment number
was counted under differential interference contrast (DIC). Inter-soma distances were measured
in three dimensions using the Points function in Imaris. Each point was placed at the center of
each soma. Normalized dorso-vental soma position was calculated by measuring the height of
the soma from the notochord and dividing by the total height of the spinal cord, with O asthe

ventral-most point.

Electrophysiological Recordings

Cell-attached recordings were targeted to stochastically labeled WT fish with vsx1:Gal4 BAC
and UAS CoChR2-tdTomato plasmid to calibrate firing of vsx1: Gal4; UAS. CoChR2-tdTomato
vsx1+ pairs. Whole-cell patch-clamp recordings were performed in Tg(chx10:1oxP-dsRed-
loxP:GFP) injected with vsx1: GFP and Tg(chx10: GFP;gata3:1oxP-dsRed-loxP: GFP) larvae at

4-6 dpf for paired clonal V2a/b and non-clonal V2al/b recordings, respectively. Additional,
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426  whole-cell patch-clamp recordings were performed in stochastically labeled WT fish with

427 vsx1:Gal4 BAC and UAS.CoChR2-tdTomato in downstream targets. Larvae were immobilized
428  with 0.1% a-bungarotoxin and fixed to a Sylgard lined Petri dish with custom-sharpened

429  tungsten pins. Each larva was then transferred to a microscope (Scientifica SliceScope Pro)

430 equipped with infrared differential interface contrast optics, epifluorescence, and immersion
431 objectives (Olympus: 40X, 0.8 NA). One muscle segment overlaying the spinal cord was

432  removed (segments 7-17) using a blunt end glass el ectrode and suction (Wen & Brehm, 2010).
433  Thebath solution consisted of (in mM): 134 NaCl, 2.9 KClI, 1.2 MgCl,, 10 HEPES, 10 glucose,
434 2.1 CaCl,. Osmolarity was adjusted to ~295 mOsm and pH to 7.5.

435

436  Patch pipettes (5-15 MQ) were filled with internal solution for voltage and current clamp and
437  cel-attached composed of (in mM): 125 K gluconate, 2 MgCl,, 4 KCI, 10 HEPES, 10 EGTA,
438  and 4 Na,ATP). Whole-cell optogenetic and some paired recordings were performed using

439  internal solution composed of (in mM): 122 cesium methanesulfonate, one tetraehtylammonium-
440 Cl, 3MgCly, 1 QX-314 Cl, 10 HEPES, 10 EGTA, and 4 Na,ATP. Additionally, Alexa Fluor 647
441  hydrazide 0.05-0.1 mM or sulforhodamine (0.02%) was included to visualize morphology of
442  recorded cells post hoc. Osmolarity was adjusted to ~285 mOsm and KOH or CsOH,

443  respectively was used to bring the pH to 7.5. Patch recordings were made in whole-cell

444  configuration using a Multiclamp 700B, filtered at 10 kHz (current clamp) or 2 kHz (voltage
445  clamp). All recordings were digitized at 100 kHz with a Digidata 1440 (Molecular Devices) and
446  acquired with pClamp 10 (Molecular Devices). The following drugs were bath applied where
447  noted: strychnine (10 uM), NBQX (10 uM), APV (100 uM), 18-beta-glycyrrhetinic acid (150

448  pM), and carbenoxolone disodium salt (500 uM).
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During paired electrophysiology recordings, fictive swimming sometimes occurred
spontaneously and in other instances was dlicited by white light illlumination of the animal. In
optogenetic experiments examining channelrhodopsin firing and V2a/b targeting, light
stimulation was provided with high intensity epifluorescent illumination (Cool LED pE-300),
10% intensity with a 40X (0.8 NA) water immersion objective for 10 ms. The objective was

positioned over a single spinal segment prior to stimulus delivery.

Electrophysiology data were imported in Igor Pro 6.37 (Wavemetrics) using NeuroMatic
(Rothman & Silver, 2018). The detection algorithm was based on the event detection instantiated
in the SpAcAn environment for Igor Pro (Rousseau et al., 2012) and as previously described
(Bagnall & McLean, 2014). All events detected were additionally screened manually to exclude
spurious noise artifacts. EPSCs were analyzed using custom written codesin Igor and

MATLAB.

Satistics

Statistical tests were performed using MATLAB (R2018a, MathWorks). Due to the non-normal
distribution of physiological results, we used nonparametric statistics and tests for
representations and comparisons. Details of statistical tests, p values, used, and sample sizes are

described in the corresponding figure legends.
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470

471 Figure 1. Sparse vsx1+ progenitor labeling allowsfor clonal pair tracking in vivo

472 (A) Schematic of vsx1 GFP+ progenitor undergoing afinal paired division into sister V2a/b
473 neurons.

474 (B) Schematic of fertilized embryo injection and screening for vsx1 GFP+ progenitors at the
475 21-somite stage.

476 (C) Time-lapse single-plane confocal images taken every 5 min as a vsxl GFP+ progenitor
477 dividesinto two sister neurons, imaged at 24 hours post fertilization (hpf).

478 (D) Confocal imaging of vsx1+ sister neuron pairs in the spinal cord of 4 dpf larvae. Left,

479 vsx1 GFP+ sister pair in achx10:Red larva. One sister neuron is co-labeled (white, V2a)
480 while the other isapresumed V2b. Middle, vsx1 GFP+ sister pair in agata3:Red larva
481 showing an identified V2b with a presumed V2a or V2s. Right, vsx1 mCherry+ sister pair
482 in asox1:GFP larva, showing an identified V2swith a presumed V2b. Colors switched
483 for label and image consistency.

484 (E) Bar graph displaying the fraction of vsx1 GFP+ pairsin chx10:Red (n = 92), gata3:Red (n
485 = 38), and sox1:GFP (n = 65) larvae in which either 0/2 sister neurons were co-labeled
486 with the reporter (black), 1/2 sister neurons were co-labeled (green), or 2/2 sister neurons
487 were co-labeled (gray).

488
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490 Figure 2. Sister V2a/b neuronsremain proximal to each other.
491 (A) Maximum intensity projection (50 planes, 50 um) of chx10: Red with a single vsx1 GFP+
492 clonal pair,. The inter-soma distance between the GFP-only sister neuron to the GFP/Red
493 co-labeled VV2aneuron (red arrow) is smaller than the distance between non-sister
494 neurons (white arrows).
495 (B) For each clonal pair in either the Chx10 reporter line (n = 27) or the Gata3 reporter line (n
496 = 24), the 3D distance between the two sister neurons (GFP-GFP, red) and the median 3D
497 distance between one sister neuron and its non-sister neurons in the same segment (GFP-
498 Red). Black dot indicates median and lines show 5" — 95" percentiles.
499 (C) Paired line plot of inter-soma distances of individual vsx1 GFP+ sister pairsfirst imaged
500 at 24 hpf and later reimaged at 48 hpf (left) (n = 14) or first imaged at 48 hpf and later
501 reimaged at 96 hpf (right) (n = 66). Red values indicate median distances at each time
502 point.
503 (D) Scatterplot of normalized dorsal (1)-ventral (0) soma position for each of 27 sister V2alb
504 neurons. Dashed line indicates unity. Typically, the VV2b neuron was located more
505 dorsally than the VV2a neuron. Black dot indicates the median V2a/b pair position. **
506 Wilcoxon signed rank test, p = 5.2 x 10, paired t-test, n = 27 pairs.
507
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509 Figure 3. Sister V2a/b neuronsproject along smilar trajectories, although V2aneuronsare
510 consstently longer.

511 (A) Confocal image of chx10:Red larva exhibiting a single vsx1 GFP+ clonal pair with long
512 axons in close proximity to each other. Stitched maximum intensity projection over 74 z-
513 planes (74 um).

514 (B) Scatter plot of sister V2a axon length vs. sister V2b axon length (n = 27) for V2alb pairs.
515 Heat map depicts the muscle segment number where each clonal pair was located. Black
516 line depicts Pearson correlation, r = 0.32, p = 0.10. V2a axons were invariably longer
517 than sister V2b axons, as seen by each pair’ s position relative to the unity line (dashed
518 gray). *** Wilcoxon signed rank test, p = 1.9 x 10”, paired t-test n = 27 pairs.

519 (C) Histogram of clonal pairs showing the fraction of V2b axon that iswithin 5 um of V2a
520 axon. Inset schematic depicts how the distances were measured.

521
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524 (A) Schematic of larval zebrafish whole-cell paired recording (sister V2ain red and sister

525 V2bin blue).

526 (B) Two sister neurons labeled with vsx1:GFP (left), filled with dye during whole-cell

527 recording (right). One neuron co-labels with VV2a marker chx10: Red (middie). Red arrow
528 and blue arrow indicate sister V2a and presumed sister V2b, respectively.

529 (C) Example traces during swim of vsx1 GFP+ sister neurons from V2a/b pair in voltage

530 clamp configuration. Asterisks denote detected EPSC events.

531 (D) Overlaid detected EPSC events recorded from sister V2a neuron (top) and simultaneously
532 recorded signal in the sister VV2b neuron (bottom). Most detected EPSCs in the V2ado
533 not occur synchronously with EPSCsin the V2b neuron.

534 (E) Overlaid detected EPSCs in V2b neuron (top) and simultaneously recorded signal in

535 sister VV2aneuron (bottom), also showing very few synchronous EPSCs. Colored traces
536 represent averages of individual tracesin gray.

537 (F) Datafrom one example sister V2a/b pair showing the EPSC amplitude of detected events
538 and the amplitude of the simultaneoudy recorded signal in the other neuron (Trig). Boxes
539 depict medians, 25™ and 75" percentiles. Whiskers denote 10" and 90™ percentiles. Open
540 circles depict EPSC values above and below the 10™ and 90" percentiles. ***, Wilcoxon
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541 signed rank test, (V2a—V2b simul.) p = 1.8 x 10%%; (V2b—V2asimul.) p= 6.7 x 10
542 paired t-test.

543 (G) Summary data from all sister V2a/b pairs of recorded EPSC amplitudes and the EPSC-
544 triggered simultaneously recorded signal in the other neuron. ***, Wilcoxon signed rank
545 test, (V2a—V2bsimul.) p=1.6x 10 (V2b—V2asimul.) p= 2.6 x 10° paired t-test, n
546 = 13 pairsfrom 13 fish.

547 (H)Asin (F), for non-sister VV2a/b paired recordings from the same spinal segment. ***,

548 Wilcoxon signed rank test, (V2a—V2b smul.) p= 1.6 x 10°; (V2b—V2asmul.) p= 1.3
549 x 10 paired t-test, n = 13 pairs from 13 fish.

550
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Figure 5. V2a/b sister neurons do not synapse with each other

(A) Schematic of larval zebrafish whole-cell paired recording

(B) Simultaneous current clamp and voltage clamp recording of sister V2a/b neurons. Current
step-evoked spiking in sister VV2a neuron and simultaneous voltage clamp recording in
V2b (left). Current step-evoked spiking in sister V2b neuron and simultaneous voltage
clamp recording in V2a (right). No synaptic responses are seen in either case.

(C) Bar graph showing the number of clonal V2a/b interconnected pairs detected (n = 10
pairs from 10 fish).

(D) Bar graph showing the number of V2a/b interconnected pairs detected for non-sister pairs
(n=7 pairsfrom 7 fish).
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563
564  Figure 6. Optical stimulation elicits spiking in stochastically labeled vsx1 sister neurons

565  expressing CoChR2

566 (A) Maximum intensity projection (79 planes, 79 um) of WT larvawith asingle

567 vsx1:Gal4;UAS.CoChR2-tdTomato+ clonal pair.

568 (B) Schematic of cell-attached recording of vsx1:Gal4;UAS.CoChR2-tdTomato+ neurons
569 using optical stimulation.

570 (C) Cdll-attached example trace of CoChR2+ V2a neuron during optical stimulation (top,
571 green) (n = 13 from 12 fish). Cell-attached example trace of nearby CoChR2- neuron

572 during optical stimulation (bottom, black) (n = 22 from 18 fish). Both example traces are
573 aligned to the start of the 10 msoptica stimulus (light blue).

574 (D) Averaged detected spike events recorded from an example CoChR2+ sister V2a neuron
575 (top, red), CoChR2+ sister V2b neuron (middle, blue), and absence of response in nearby
576 CoChR2- neuron (bottom, black).

577 (E) Histogram showing the number of spikes relative to the optical stimulus. Blue bar

578 indicates the duration of the optical stimulus.

579
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Figure 7. Sister V2a/b neurons provide asymmetric input onto downstream neuronsin
spinal cord

(A) Schematic of whole-cell recording of downstream neuronal targets of
vsx1:Gal4;UAS:CoChR2-tdTomato+ neurons using optical stimulation.

(B) Example voltage clamp traces from atarget neuron held at Vg -80 mV or 0 mV during
optical stimulation of the upstream sister neuron pair. Optical stimulation evoked EPSCs
onto the target neuron (top) but not IPSCs (middle), indicating connectivity from the V2a
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but not the VV2b. Bottom, application of glutamatergic antagonists blocks the evoked
EPSCs.

(C)Asin (B) for another target neuron, this one showing evoked IPSCs but not EPSCs.
IPSCs were abolished by application of strychnine (bottom).

(D) Example voltage clamp traces from a target neuron held at Vpgq -80 mV or O mV. Trace
showing a small, slow evoked EPSCs without any fast component. These are presumably
dueto indirect (polysynaptic) electrical connectivity from the optogenetically activated
V2a neuron.

(E) Mean evoked amplitude of optogenetically-evoked EPSCs and IPSCs in each target
neuron. 10/12 synaptically connected targets received only EPSCs or IPSCs, while 2/12
neurons received both EPSCs and IPSCs.

(F) Bar graph depicting the number of EPSC only (n = 6), IPSC only (n = 6), both
EPSC/IPSC (n = 2), and no responses (n = 75) (black) or only slow presumed
polysynaptic (gray) (n = 10) detected across all target neurons recorded.

(G) Scatterplot showing the distinction between mean evoked amplitude and 20-80% rise
time for fast and slow evoked EPSC responses.

(H) Schematic depicting the two presumed types of vsxl GFP+ sister pairs observed.

() Summary of circuit integration pattern observed among sister V2a/b pairs.
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