

1 **Exploitation of ATP-sensitive potassium ion (K_{ATP}) channels by HPV**
2 **promotes cervical cancer cell proliferation by contributing to**
3 **MAPK/AP-1 signalling**

4

5 James A. Scarth^{1,2}, Christopher W. Wasson^{1,2,†}, Molly R. Patterson^{1,2}, Debra Evans³, Diego
6 Barba-Moreno^{1,2}, Holli Carden^{1,2}, Adrian Whitehouse^{1,2}, Jamel Mankouri^{1,2}, Adel Samson³,
7 Ethan L. Morgan^{1,2,‡,¶}, Andrew Macdonald^{1,2,¶}

8

9 Affiliations:

10 ¹School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds,
11 Leeds, LS2 9JT, UK

12 ²Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK

13 ³Leeds Institute of Medical Research, St James's University Hospital, University of Leeds,
14 Leeds, LS9 7TF, UK

15

16 Current addresses:

17 [†]Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health,
18 University of Leeds, Leeds, LS2 9JT, UK

19 [#]Tumour Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and
20 Other Communication Disorders, National Institute of Health, Bethesda, MD 20892, USA

21

22 [¶]To whom correspondence should be addressed:

23 Ethan L. Morgan ethan.morgan@nih.gov

24 Andrew Macdonald a.macdonald@leeds.ac.uk; Tel: 44(0) 113 343 3053

25

26 Keywords: HPV, ion channel, K_{ATP}, MAPK, AP-1, cervical cancer

27 **Abstract**

28 Persistent infection with high-risk human papillomaviruses (HPVs) is the causal factor in
29 multiple human malignancies, including >99% of cervical cancers and a growing proportion of
30 oropharyngeal cancers. Prolonged expression of the viral oncoproteins E6 and E7 is
31 necessary for transformation to occur. Although some of the mechanisms by which these
32 oncoproteins contribute to carcinogenesis are well-characterised, a comprehensive
33 understanding of the signalling pathways manipulated by HPV is lacking. Here, we present
34 the first evidence to our knowledge that the targeting of a host ion channel by HPV can
35 contribute to cervical carcinogenesis. Through the use of pharmacological activators and
36 inhibitors of ATP-sensitive potassium ion (K_{ATP}) channels, we demonstrate that these channels
37 are active in HPV-positive cells and that this activity is required for HPV oncoprotein
38 expression. Further, expression of SUR1, which forms the regulatory subunit of the multimeric
39 channel complex, was found to be upregulated in both HPV+ cervical cancer cells and in
40 samples from patients with cervical disease, in a manner dependent on the E7 oncoprotein.
41 Importantly, knockdown of SUR1 expression or K_{ATP} channel inhibition significantly impeded
42 cell proliferation via induction of a G1 cell cycle phase arrest. This was confirmed both *in vitro*
43 and in *in vivo* tumourigenicity assays. Mechanistically, we propose that the pro-proliferative
44 effect of K_{ATP} channels is mediated via the activation of a MAPK/AP-1 signalling axis. A
45 complete characterisation of the role of K_{ATP} channels in HPV-associated cancer is now
46 warranted in order to determine whether the licensed and clinically available inhibitors of these
47 channels could constitute a potential novel therapy in the treatment of HPV-driven cervical
48 cancer.

49 Introduction

50 It has been estimated that high-risk human papillomaviruses (HPVs) are the causal factor in
51 over 5% of all human cancers, including >99.7% of cervical cancers and a growing number of
52 oropharyngeal cancers [1, 2]. HPV16 is responsible for the majority of these (around 55% of
53 cervical cancers and almost all HPV-positive (HPV+) head and neck cancers), whilst HPV18
54 is the cause of another 15% of cervical cancers [3]. As a result of this, cervical cancer is the
55 fourth most prevalent cancer in women and the most common cause of cancer-related death
56 in young women [1].

57 HPV-associated malignancies are the result of a persistent infection where the host immune
58 system fails to detect and clear the virus efficiently, although even in this situation
59 carcinogenesis may take several years to occur [1]. The most important factor required for
60 initiation and progression of cancer is the prolonged increased expression of the viral
61 oncoproteins E6 and E7, which results in the dysregulation of cell proliferation [4]. Some of
62 the mechanisms by which the oncoproteins achieve this have been widely-studied, including
63 the ability of HPV E7 to drive S phase re-entry via binding to and inducing the degradation of
64 pRb and the related pocket proteins p107 and p130 [5-7]. Concurrently, E6 targets p53 for
65 proteasomal degradation by recruiting the E3 ubiquitin ligase E6-associated protein (E6AP) in
66 order to block pro-apoptotic signalling [8]. Further, high-risk E6 proteins are also able to
67 increase telomerase activity and bind to and regulate PSD95/DLG/ZO-1 (PDZ) domain-
68 containing proteins in order to increase cell proliferation and survival [9, 10], whilst E7 has a
69 key role in mediating evasion of the host immune response [11, 12]. More recently, E6 has
70 been shown to modulate a multitude of host signalling pathways, including the JAK-STAT and
71 Hippo pathways, during transformation [13-18].

72 However, a comprehensive understanding of the host signalling networks modulated by HPV
73 during transformation is still lacking. Furthermore, no therapeutic targeting of HPV-associated
74 proteins in HPV-driven malignancies currently exists. Therefore, it is necessary to identify

75 novel HPV-host interactions and to establish whether they may constitute potential new
76 therapeutic targets. In particular, despite the availability of prophylactic vaccines, there are
77 currently no effective anti-viral drugs for use against HPV. Current therapeutics rely on the
78 widely used yet non-specific DNA-damaging agent cisplatin in combination with radiotherapy
79 [19, 20]. However, resistance to cisplatin, either intrinsic or acquired, is a significant problem
80 [21]. Although this issue can be somewhat alleviated through the use of combination therapy
81 involving cisplatin alongside paclitaxel, there is an urgent need to develop more targeted
82 therapies for the treatment of HPV-associated malignancies [22].

83 Ion channels may represent ideal candidates for these novel therapies given the abundance
84 of licensed and clinically available drugs targeting the complexes which could be repurposed
85 if demonstrated to be effective [23]. Indeed, the importance of ion channels in the regulation
86 of the cell cycle and cell proliferation has become increasingly recognised [24-28]. Cells
87 undergo a rapid hyperpolarisation during progression through the G1-S phase checkpoint,
88 which is then reversed during G2 [26]. It is thought that potassium ion (K⁺) channels are
89 particularly important for this, with a number of K⁺ efflux channels having been observed to be
90 increased in expression and activity during G1 [25, 26]. Of these, ATP-sensitive K⁺ (K_{ATP})
91 channels have been shown to be expressed highly in some cancers, and channel inhibition
92 can result in decreased proliferation [29-33].

93 K_{ATP} channels are hetero-octameric membrane complexes consisting of four pore-forming
94 Kir6.x subunits (either Kir6.1 or Kir6.2) surrounded by four regulatory sulfonylurea receptor
95 (SUR) subunits [34]. Multiple isoforms of the sulfonylurea receptor exist: SUR1 (encoded by
96 ABCC8), and SUR2A and SUR2B, which are produced via alternative splicing of the ABCC9
97 transcript [35]. K_{ATP} channels are expressed in multiple tissues, although the composition of
98 the channels can vary, which may account for subtle tissue-specific properties of the channels
99 [34].

100 In this study, we performed a pharmacological screen to identify potassium ion channels that
101 may play a role in HPV pathogenesis. We identified that, of the K⁺ channels investigated,
102 inhibition of K_{ATP} channels had a negative impact on HPV oncoprotein expression and cellular
103 transformation. By screening for the expression of K_{ATP} channel subunits, we identified that
104 the SUR1 subunit is expressed highly in HPV+ cervical cancer cells, and that this increased
105 SUR1 expression is driven by the E7 oncoprotein. Depletion of K_{ATP} channel activity, either by
106 siRNA-mediated knockdown or pharmacological inhibition, significantly impeded proliferation
107 and cell cycle progression. Further, we propose that this pro-proliferative effect is mediated
108 via the activation of a mitogen-activated protein kinase (MAPK)/activator protein-1 (AP-1)
109 signalling axis. We hope that the targeting of K_{ATP} channels may prove to be beneficial in the
110 treatment of HPV-associated neoplasia.

111 **Results**

112 **K_{ATP} channels are important for HPV gene expression in cervical cancer cells**

113 **and primary human keratinocytes**

114 Ion channels are emerging as crucial regulators of cell signalling pathways and cell cycle
115 progression [24-27]. In particular, K⁺ channels have been shown to be active or expressed
116 highly in a variety of cancer cell lines [36, 37]. Furthermore, a growing number of viruses have
117 been shown to be capable of modulating the activity of host ion channels [38]. To determine
118 whether HPV requires the activity of K⁺ channels either during its life cycle or during
119 transformation, we performed a pharmacological screen using several broadly acting K⁺
120 channel modulators. We first assessed the impact of K⁺ channel inhibition on the expression
121 of the viral oncoprotein E7, which is essential for the survival and proliferation of cervical
122 cancer cells both *in vitro* and *in vivo* [39-41]. Treatment of either HPV18+ cervical cancer cells
123 (HeLa) or primary human keratinocytes containing the HPV18 genome with
124 tetraethylammonium (TEA), quinine or quinidine at pharmacologically relevant concentrations
125 resulted in a decrease in E7 oncoprotein expression (**Fig 1A**), indicating that HPV does indeed
126 require the activity of K⁺ channels. Addition of potassium chloride (KCl) to increase the
127 extracellular K⁺ concentration and thus collapse the plasma membrane potential had the same
128 effect on oncoprotein expression, but addition of sodium chloride (NaCl) had no impact,
129 indicating that alteration of osmolarity alone does not impact upon HPV gene expression (**Fig**
130 **1A**).

131 In order to identify whether a particular class of K⁺ channels was required for HPV gene
132 expression, a further screen was performed using more specific K⁺ channel inhibitors.
133 Treatment with inhibitors of voltage-gated K⁺ channels (4-aminopyridine (4-AP) or
134 margatoxin), two-pore-domain K⁺ channels (ruthenium red (RR) or bupivacaine hydrochloride
135 (BupHCl)) or calcium-activated K⁺ channels (apamin) had no impact on E7 protein levels (**Fig**

136 **1B**). However, treatment with glibenclamide, a clinically available inhibitor of K_{ATP} channels
137 which acts via binding to the regulatory SUR subunits [42], resulted in a marked decrease in
138 E7 expression in HPV18 containing primary keratinocytes (**Fig 1B**).

139 Next, electrophysiological analysis was performed in HeLa cells to confirm that active K_{ATP}
140 channels were present. A clear outward K⁺ current was observed, which was significantly
141 increased upon application of the K_{ATP} channel activator diazoxide (**Fig 1C**). This was entirely
142 reversed after addition of the channel inhibitor glibenclamide, whilst glibenclamide treatment
143 alone was able to reduce basal K⁺ currents. Together, this confirms that active K_{ATP} channels
144 are present in cervical cancer cells.

145 To further investigate the repressive effects of glibenclamide on the HPV oncoproteins,
146 expression levels were assayed after treatment of both HPV16+ and HPV18+ cervical cancer
147 cells with the inhibitor at a range of concentrations. A significant decrease in expression of
148 both E6 and E7 was observed at both the mRNA level (**Fig 1D**) and the protein level (**Fig 1E**)
149 at concentrations as low as 10 µM. To ensure that the effect of glibenclamide treatment on
150 viral oncoprotein expression was due to the inhibition of K_{ATP} channel activity, we first analysed
151 the membrane potential of cells using the fluorescent dye Bis-(1,3-Dibutylbarbituric Acid)
152 Trimethine Oxonol (DiBAC₄(3)) [43, 44]. The ability of the dye to enter cells is proportional to
153 the degree to which the plasma membrane is depolarised (**Fig 1F**). Therefore, the dose-
154 dependent increase in fluorescence observed following glibenclamide treatment indicates an
155 increasing level of depolarisation, consistent with a reduction in K_{ATP} channel opening (**Fig**
156 **1G**). Significantly, treatment of cells with tolbutamide, a member of the same class of
157 sulfonylurea drugs as glibenclamide, also resulted in a dose-dependent decrease in
158 oncoprotein expression with a corresponding increase in DiBAC₄(3) fluorescence (**S1A-C**
159 **Fig**).

160 In line with our inhibitor data, treatment of HPV+ cervical cancer cells with the K_{ATP} channel
161 activator diazoxide resulted in a dose-dependent increase in HPV oncoprotein expression (**Fig**

162 **1H).** As before, analysis of DiBAC₄(3) fluorescence was performed to assess the impact of
163 diazoxide treatment on the plasma membrane potential. A decrease in fluorescence,
164 particularly apparent at the highest concentration of 50 μ M, was observed after application of
165 diazoxide, indicating increasing levels of hyperpolarisation (**Fig 1I**). Finally, treatment of HPV+
166 cervical cancer cells with either glibenclamide or tolbutamide abolished the diazoxide-induced
167 increase in HPV oncoprotein expression (**Fig 1J**). Taken together, these data demonstrate
168 that K_{ATP} channel activity is important in the regulation of HPV gene expression.

169 **HPV upregulates the SUR1 subunit of K_{ATP} channels**

170 Given the importance of K_{ATP} channel activity for HPV oncoprotein expression, we
171 hypothesised that HPV may upregulate expression of channel subunits. Notably, the
172 expression of K_{ATP} channel subunits displays significant tissue-specific variability, so it was
173 important to gain an understanding of which isoforms are expressed in cervical tissue [45].
174 We therefore screened for the expression of all K_{ATP} channel subunits in a panel of cervical
175 cancer cell lines by RT-qPCR. K_{ATP} channels are hetero-octameric complexes consisting of
176 four pore-forming Kir6.x subunits (either Kir6.1 or Kir6.2) surrounded by four regulatory SURx
177 subunits (either SUR1, SUR2A or SUR2B) [34]. We found no significant difference in the
178 expression of Kir6.1 (*KCNJ8*), whilst Kir6.2 (*KCNJ11*) expression was higher in HPV-negative
179 (HPV-) C33A cells, as well as three of the four HPV+ cervical cancer cell lines, when compared
180 with normal human keratinocytes (NHKs) (**Fig 2A**). Expression of SUR2A (*ABCC9A*) could
181 not be detected in any of the cell lines, and SUR2B (*ABCC9B*) was not significantly increased
182 in any of the HPV+ cell lines relative to NHKs. However, expression of the SUR1 (*ABCC8*)
183 subunit was significantly higher in all four of the HPV+ cancer cell lines examined, with no
184 increase detected in HPV- C33A cells. We therefore focussed on the SUR1 subunit for the
185 purposes of this study.

186 To further investigate the increased SUR1 expression potentially induced by HPV, we
187 analysed cell lines containing episomal HPV18 generated from primary foreskin keratinocytes.

188 Transcript levels of *ABCC8* (SUR1) were significantly increased by approximately 10 fold
189 relative to the NHK control (**Fig 2B**). Additionally, sections of organotypic raft cultures of NHKs
190 and HPV18-containing keratinocytes, which recapitulate all stages of the HPV life cycle [46],
191 were analysed for SUR1 protein levels by immunofluorescence microscopy. This
192 demonstrated a marked increase in SUR1 protein expression in the suprabasal layers of
193 HPV18+ rafts in comparison to NHK raft cultures, consistent across both donors (**Fig 2C**).
194 Next, SUR1 expression was analysed in cervical liquid-based cytology samples from a cohort
195 of HPV16+ patients representing the progression of cervical disease development (CIN 1 –
196 CIN 3). We observed an increase in *ABCC8* (SUR1) mRNA levels relative to HPV- normal
197 cervical tissue which correlated with disease progression, with the highest expression
198 observed in CIN 3 samples (**Fig 2D**). Indeed, immunofluorescence microscopy analysis of
199 human cervical sections classified as LSIL (CIN 1), LSIL with foci of HSIL (CIN 1/2) and HSIL
200 (CIN 3), confirmed that SUR1 protein levels increase with cervical disease progression (**Fig**
201 **2E**).
202 Furthermore, SUR1 protein levels were analysed using the HPV16+ W12 *in vitro* model
203 system [13, 47]. At low passage numbers, these cells display an LSIL phenotype in raft culture,
204 but long-term passaging results in a phenotype more closely mirroring that of HSIL and
205 squamous cell carcinoma. Raft cultures were generated from NHKs and a W12 clone
206 representing a HSIL phenotype and stained for SUR1 protein levels. High levels of SUR1
207 staining were observed in the HSIL raft compared to the NHK control (**Fig 2F**), thus confirming
208 that SUR1 expression increases with cervical disease progression. In order to analyse SUR1
209 protein levels in cervical cancer tissue, we performed immunohistochemistry using an array of
210 normal cervix and cervical cancer tissue sections. Significantly higher SUR1 expression was
211 observed in the cancer tissue sections, as indicated by an increase in H-score (**Fig 2G**).
212 Finally, to confirm our above observations, we mined an available microarray database
213 containing data from primary cervical disease and tumour samples. This revealed a significant

214 increase in *ABCC8* (SUR1) expression in the CIN 3 and cervical squamous cell carcinoma
215 (CSCC) samples (**Fig 2H**). Taken together, these data indicate that SUR1 expression is
216 increased in HPV-containing keratinocytes and, importantly, in HPV-associated cervical
217 disease.

218 **Depletion of SUR1 reduces HPV gene expression in cervical cancer cells**

219 After identifying that the SUR1 subunit of K_{ATP} channels was highly expressed during HPV+
220 cervical disease, we investigated the effects of suppressing SUR1 expression. Knockdown of
221 SUR1 using a pool of specific siRNAs was performed in both HPV16+ (SiHa) and HPV18+
222 (HeLa) cervical cancer cells (**Fig 3A**). Furthermore, monoclonal HeLa cell lines stably
223 expressing one of two SUR1-specific shRNAs were also generated (**Fig 3B**). To ascertain the
224 effect of SUR1 depletion on the plasma membrane potential, DiBAC₄(3) fluorescence was
225 used. We observed a ~2 fold increase in fluorescence after siRNA treatment, indicating a
226 significant depolarisation characteristic of a reduction in K_{ATP} channel activity (**Fig 3C**). We
227 were unable to analyse the impact of stable suppression of SUR1 on the plasma membrane
228 potential due to the presence of a ZsGreen selectable marker.

229 Subsequently, the effect of SUR1 depletion on HPV gene expression was analysed. siRNA-
230 mediated knockdown of SUR1 resulted in a significant decrease in HPV oncoprotein
231 expression, measured both at the transcript and protein level (**Fig 3D and 3F**). The same
232 impact on HPV gene expression was also observed following stable knockdown of SUR1,
233 when compared to cells expressing a non-targeting shRNA (shNTC) (**Fig 3E and 3G**). To
234 confirm that the effect of SUR1 depletion on HPV gene expression was due to a direct loss of
235 transcription from the viral upstream regulatory region (URR), luciferase reporters containing
236 the HPV16 and HPV18 URRs were used. We observed a significant decrease in relative
237 luciferase activity after SUR1 knockdown with both URR reporter plasmids, confirming a direct
238 loss of HPV early promoter activity (**Fig 3H**).

239 In contrast to this, transfection of a pool of SUR2-specific siRNAs had no impact on HPV
240 oncoprotein expression in either HPV16+ or HPV18+ cervical cancer cells, in line with our data
241 showing that HPV does not induce an increase in expression of the SUR2 subunit of K_{ATP}
242 channels (**S2A-2D Fig**). We did however observe a small depolarisation of the plasma
243 membrane, indicated by an increase in DiBAC₄(3) fluorescence (**S2B Fig**), suggesting that a
244 small minority of K_{ATP} channels in HPV+ cervical cancer cells may be composed of the SUR2
245 subunit.

246 Finally, in order to confirm that the effects on HPV gene expression observed were K_{ATP}
247 channel-dependent, rather than a potential channel-independent function of SUR1, Kir6.2
248 levels were also depleted using a pool of specific siRNAs (**S3A Fig**). The ~2 fold and ~1.5 fold
249 increases in DiBAC₄(3) fluorescence resulting from Kir6.2 knockdown observed in HeLa and
250 SiHa cells respectively were broadly in line with the changes observed following SUR1
251 knockdown (**S3B Fig**). Knockdown of Kir6.2 resulted in a significant reduction in both mRNA
252 and protein levels of E6 and E7 to a similar extent to that detected following SUR1 knockdown
253 (**S3C and 3D Fig**), thus confirming that the impacts of SUR1 depletion were indeed channel-
254 dependent. Taken together, these data confirm that K_{ATP} channel expression in cervical cancer
255 cells is important for HPV oncoprotein expression.

256 **The E7 oncoprotein is responsible for the increased SUR1 expression in HPV+
257 cervical cancer cells**

258 We next explored the mechanism behind the observed HPV-induced increases in SUR1
259 expression. Given that the E6 and E7 oncoproteins are key drivers of transformation, we
260 hypothesised that they may be responsible for the heightened SUR1 levels [2]. To investigate
261 this, expression of both the E6 and E7 oncoproteins was repressed using siRNA in HPV+
262 cervical cancer cell lines. We saw a >70% decrease in ABCC8 (SUR1) mRNA levels after
263 knockdown of oncoprotein expression (**Fig 4A**). A decrease in ABCC8 mRNA expression
264 could also be observed after silencing of E6 and E7 in HPV18+ primary keratinocytes (**Fig**

265 **4B**), indicating that oncoprotein expression is necessary to induce SUR1 expression. In order
266 to gain an understanding of which oncoprotein drives this, the E6 and E7 oncoproteins of
267 HPV18 were overexpressed in turn and in combination in HPV- C33A cells. HPV18 E6 did not
268 result in any change in *ABCC8* mRNA levels, whereas in contrast, expression of E7 led to a
269 ~2.5 fold increase in *ABCC8* expression (**Fig 4C**). Co-expression of E6 alongside E7 did not
270 cause a further increase in *ABCC8* mRNA levels, indicating that the E7 oncoprotein is the
271 major driver of SUR1 expression. Similar effects on *ABCC8* mRNA levels were observed when
272 this was performed in NHKs (**Fig 4D**). Further, C33A cell lines stably expressing HA-tagged
273 HPV18 oncoproteins were generated as previously described [18]. A significant upregulation
274 of *ABCC8* expression was only observed in the HA-E7 expressing cells, consistent with our
275 transient overexpression data (**Fig 4E**).

276 To confirm that the observed changes in SUR1 expression led to an impact on K_{ATP} channel
277 activity, the plasma membrane potential of cells was assayed after overexpression of HPV18
278 E7 in HPV- cervical cancer cells. A significant reduction in DiBAC₄(3) fluorescence, indicative
279 of membrane hyperpolarisation, was detected (**Fig 4F and 4G**). This decrease was abolished
280 both by treatment with glibenclamide and by siRNA-mediated knockdown of SUR1,
281 suggesting that the hyperpolarisation was due to an E7-dependent increase in K_{ATP} channel
282 activity. Additionally, silencing of HPV E7 expression resulted in a ~2 fold increase in
283 DiBAC₄(3) fluorescence (**Fig 4H**), consistent with a reduction in K_{ATP} channel opening. These
284 data indicate that the E7 oncoprotein, rather than E6, is the major factor regulating HPV-
285 induced increases in SUR1 expression.

286 **K_{ATP} channels drive proliferation in HPV+ cervical cancer cells**

287 Given the effects of K_{ATP} channel activity on HPV gene expression, it was hypothesised that
288 modulation of channel activity may too impact upon the proliferation of HPV+ cervical cancer
289 cells. Treatment of both HPV16+ SiHa cells and HPV18+ HeLa cells with glibenclamide to
290 inhibit K_{ATP} channel activity resulted in a significant decrease in cell proliferation (**Fig 5A**),

291 anchorage-dependent (**Fig 5B**) and anchorage-independent colony formation (**Fig 5C**). In
292 contrast, treatment of HPV- C33A cells with glibenclamide had minimal impact on proliferation
293 or colony-forming ability (**Fig 5A-C**).

294 To eliminate the possibility of off-target effects of glibenclamide, a pool of SUR1-specific
295 siRNAs was used to confirm the impact of reduced K_{ATP} channel activity on HPV+ cervical
296 cancer cell proliferation. Both HPV16+ and HPV18+ cells demonstrated a reduced
297 proliferation rate (**Fig 5D**) and colony-forming ability (**Fig 5E and 5F**) after depletion of SUR1
298 levels. Further, stable suppression of SUR1 levels via the expression of specific shRNAs
299 resulted in a similar or greater impact on proliferation, and the anchorage-dependent and
300 anchorage-independent colony-forming ability of HPV18+ cervical cancer cells (**S4A-C Fig**).
301 In contrast, depletion of the alternative K_{ATP} channel regulatory subunit SUR2 had a minimal
302 impact on the proliferation and colony-forming ability of both HPV+ cervical cancer cell lines
303 analysed (**S2E-G Fig**). This is consistent with our data showing a lack of an effect on HPV
304 oncprotein expression after silencing of SUR2.

305 Finally, to confirm that the reduction in proliferation observed after either glibenclamide
306 treatment or suppression of SUR1 expression was a result of decreased K_{ATP} channel activity,
307 we analysed the growth of HPV+ cervical cancer cells following siRNA depletion of the pore-
308 forming Kir6.2 subunit. This resulted in a decrease in proliferation and colony formation in both
309 HPV16+ and HPV18+ cervical cancer cells, concordant with that observed following SUR1
310 depletion (**S3E-G Fig**). Collectively, these data demonstrate that K_{ATP} channels are important
311 drivers of proliferation in HPV+ cervical cancer cells.

312 **K_{ATP} channel overexpression is sufficient to stimulate proliferation in the
313 absence of HPV**

314 Given the emerging evidence indicating that K_{ATP} channel activation can promote proliferation,
315 and that heightened channel expression has been demonstrated in some other cancer types

316 [29-33], we hypothesised that overexpression of K_{ATP} channel subunits alone (i.e. in the
317 absence of HPV) may be sufficient to increase proliferation of cervical cancer cells. The
318 individual subunits were therefore overexpressed alone and in combination in HPV- C33A
319 cervical cancer cells. Expression of Kir6.2 alone had no impact on the proliferation or colony
320 forming ability of the cells (**Fig 6A-C**). Whilst SUR1 overexpression did result in a small
321 increase in anchorage-dependent and anchorage-independent colony formation, a
322 significantly greater increase was observed when both subunits were overexpressed in
323 combination (**Fig 6A-C**). Together, these data indicate that K_{ATP} channel activity is pro-
324 proliferative, and that the reduction in cell growth observed herein following channel inhibition
325 or knockdown is likely not solely due to a loss of HPV oncoprotein expression.

326 **K_{ATP} channel activity regulates progression through the G1/S phase transition**

327 To further evaluate the impact of reduced K_{ATP} channel activity on cell proliferation, we
328 assessed the cell cycle distribution of HPV+ cervical cancer cells using flow cytometry after
329 blockade of K_{ATP} channel activity. We felt this to be particularly pertinent as K_{ATP} channel
330 inhibition has been shown to result in a G1 phase arrest in glioma and breast cancer cell
331 lines [30, 31]. In line with this, a significant increase in the proportion of cells in G1 phase
332 was observed after both pharmacological inhibition of channel activity and siRNA-mediated
333 SUR1 silencing in both HPV16+ and HPV18+ cervical cancer cells (**Fig 7A and 7B**). As
334 cyclins are key regulators of cell cycle progression, we also analysed their expression after
335 glibenclamide treatment or suppression of SUR1 levels. We detected significant decreases
336 in expression at both the mRNA and protein level of cyclin D1 (CCND1) and cyclin E1
337 (CCNE1), both of which regulate progression through G1 and the transition into S phase
338 (**Fig 7C-F**). This was consistent across both cell lines and treatments. In contrast, we
339 observed only minimal changes in cyclin A2 (CCNA2) levels and no effect on cyclin B1
340 (CCNB1) expression at the mRNA level (**Fig 7C and 7D**), with similar observations at the

341 protein level (**Fig 7E and 7F**). Together, these data suggest that K_{ATP} channels drive
342 proliferation by regulating the G1/S phase transition.

343 **K_{ATP} channels are not required for the survival of cervical cancer cells**

344 We also wanted to investigate the impact of channel inhibition on the survival of HPV+ cervical
345 cancer cells. Increased levels of apoptosis have been reported in some cancer types after
346 K_{ATP} channel blockade [29, 31, 32]. However, we failed to detect any increase in the cleavage
347 of either poly(ADP) ribose polymerase (PARP) or caspase 3, both key indicators of the
348 induction of apoptosis (**S5A Fig**). Further, we also failed to observe an increase in either early
349 or late apoptosis via Annexin V staining of exposed phosphatidylserine on the plasma
350 membrane (**S5B Fig**), thus confirming that K_{ATP} channel inhibition alone does not impact upon
351 the survival of HPV+ cervical cancer cells.

352 **K_{ATP} channels contribute towards the activation of MAPK/AP-1 signalling**

353 We next wanted to gain an understanding into the mechanism by which K_{ATP} channels promote
354 proliferation in HPV+ cervical cancer cells. MAPK signalling is known to be a crucial driver of
355 cell proliferation [48], and K_{ATP} channel opening can lead to activation of the MAP kinase
356 ERK1/2 [49, 50], so we therefore analysed ERK1/2 phosphorylation levels following
357 stimulation of HPV+ cervical cells with diazoxide. This revealed a significant increase in
358 ERK1/2 phosphorylation post-stimulation, which was reversed following the addition of the
359 MEK1/2 inhibitor U0126 (**Fig 8A**). Additionally, an increase in HPV18 E7 protein levels was
360 observed, consistent with prior experiments; this was also reduced with U0126 treatment.
361 Interestingly, an increase in both the phosphorylation and total protein expression of the AP-
362 1 family member cJun was observed. AP-1 transcription factors are composed of dimers of
363 proteins belonging to the Jun, Fos, Maf and ATF sub-families, and can regulate a wide variety
364 of cellular processes, including proliferation, survival and differentiation [51]. This indicates
365 that cJun/AP-1 could be a downstream target of ERK1/2 following K_{ATP} channel stimulation.

366 To confirm these observations, overexpression of both K_{ATP} channel subunits in combination
367 was performed. This similarly resulted in increased ERK1/2 phosphorylation, increases in both
368 cJun phosphorylation and total protein levels, as well as enhanced E7 expression (**Fig 8B**).
369 As before, these increases were reversed, in part, by the addition of U0126. To confirm that
370 the changes in expression and phosphorylation of cJun corresponded to alterations in AP-1
371 activity, we employed a luciferase reporter construct containing three tandem AP-1 binding
372 sites [52, 53]. K_{ATP} channel overexpression led to a ~4 fold increase in relative AP-1 activity,
373 which was significantly reduced in the presence of U0126 (**Fig 8C**).
374 Following this, we performed assays to answer the question of whether the pro-proliferative
375 effects of K_{ATP} channels are mediated by this MAPK/AP-1 signalling axis. We observed an
376 increase in the proliferation and colony-forming ability of HeLa cells following overexpression
377 of K_{ATP} channel subunits, which was reversed through MEK1/2 inhibition (**Fig 8D and 8E**).
378 Next, we investigated the impact of reducing K_{ATP} channel activity on AP-1 activity. Concordant
379 with earlier data, a ~30% reduction in AP-1 activity was observed in HeLa cells following either
380 glibenclamide treatment or transfection of SUR1-specific siRNA, as measured using a
381 luciferase reporter assay (**Fig 8F and 8G**). To investigate whether modulation of K_{ATP} channel
382 activity affected recruitment of cJun/AP-1 to the HPV URR, we performed ChIP-qPCR analysis
383 using primers spanning the two AP-1 binding sites within the HPV18 URR, one in the enhancer
384 region and one in the promoter [53]. This revealed that SUR1 knockdown reduced cJun
385 recruitment to both binding sites within the viral URR, highlighting the critical role K_{ATP} channels
386 may have in regulating oncoprotein expression (**Fig 8H**).
387 To further confirm our observations, we employed a dominant-negative JunD construct
388 (Δ JunD): this encodes a truncated form of JunD which is able to dimerise with other AP-1
389 family members, yet lacks a transcriptional activation domain. Previous studies in our lab have
390 validated that Δ JunD expression almost completely abolishes AP-1 activity [53]. Transfection

391 of this construct resulted in a decrease in diazoxide-induced HPV oncoprotein expression (**Fig**
392 **8I**).

393 Finally, we examined whether the reintroduction of active cJun would be able to rescue the
394 proliferation defect of HeLa cells transfected with SUR1-specific siRNA. This revealed a
395 significant increase in both proliferation and colony-forming ability following expression of a
396 constitutively-active form of cJun, in which the two key phosphorylatable residues S63 and
397 S73 are mutated to aspartic acid to mimic phosphorylation (S63/73D) (**Fig 8J and 8K**) [54-
398 56]. The rescue was incomplete however, illustrating that cJun/AP-1 is likely one of multiple
399 targets downstream of K_{ATP} channel-induced ERK1/2 signalling. Taken together, these data
400 indicate that K_{ATP} channel activity activates MAPK and AP-1 signalling to drive proliferation
401 and oncoprotein expression.

402 **K_{ATP} channels drive proliferation *in vivo***

403 To confirm our *in vitro* observations, we performed tumourigenicity experiments using SCID
404 mice. Animals were subcutaneously injected with HeLa cells stably expressing either a non-
405 targetting shRNA or a SUR1-specific shRNA. Tumour development was monitored,
406 revealing rapid growth in the HeLa shNTC control group, as expected (**Fig 9A**). However, a
407 significant delay in the growth of tumours in all mice injected with SUR1 knockdown cells
408 compared to the shNTC controls was observed (**Fig 9A**). To quantify this delay in growth,
409 the period of time between injection of tumours and growth to a set volume (250 mm³) was
410 calculated. This revealed that the SUR1-depleted tumours took an additional 11 days on
411 average to reach an equivalent size (**Fig 9B**). Further, animals bearing SUR1-depleted
412 tumours displayed significantly prolonged survival, with one mouse remaining alive at the
413 conclusion of the study (**Fig 9C**). Together, these data demonstrate that K_{ATP} channels drive
414 the growth of HPV+ cervical cancer cell xenografts.

415

416 Discussion

417 It is vital to identify virus-host interactions that are critical for HPV-mediated transformation as,
418 despite the availability of prophylactic vaccines, there are currently no effective anti-viral
419 treatments for HPV-associated disease. Here, we identify a novel host factor, the ATP-
420 sensitive potassium ion (K_{ATP}) channel, as a crucial driver of cell proliferation in HPV+ cervical
421 cancer (**Fig 10**). Inhibition of K_{ATP} channels, through either siRNA-mediated knockdown of
422 individual subunits or pharmacological blockade using licenced inhibitors, significantly
423 impedes proliferation and cell cycle progression. HPV is able to promote K_{ATP} channel activity
424 via E7-mediated upregulation of the SUR1 subunit; this is observed in both cervical disease
425 and cervical cancer tissue, as well as *in vitro* primary cell culture models of the HPV life cycle.
426 As such, we believe that the clinically available inhibitors of K_{ATP} channels could constitute a
427 potential novel therapy for HPV-associated malignancies.

428 A growing number of viruses have been shown to modulate or require the activity of host ion
429 channels [38]. Indeed, several viruses encode their own ion channels, termed ‘viroporins’,
430 including the HPV E5 protein [57-59]. Together, this underlines the importance of regulating
431 host ion channel homeostasis during infection. Until recently however, much research in this
432 field had focussed on RNA viruses, but recent work in our laboratories have highlighted roles
433 for host chloride, potassium and calcium ion channels during BK polyomavirus (BKP_V),
434 Merkel cell polyomavirus (MCP_V) and Kaposi’s sarcoma-associated herpesvirus (KSH_V)
435 infection [60-62]. Importantly, this study is the first to our knowledge to explicitly demonstrate
436 modulation of ion channel activity by HPV, and that this can contribute to host cell
437 transformation. Although a previous study indicated that K_{ATP} channels are expressed in
438 cervical cancer, no attempt was made to attribute this to HPV-mediated upregulation and the
439 K_{ATP} channels found to be present were in fact comprised of Kir6.2 and the alternative
440 regulatory subunit SUR2 [33]. Here, we found no evidence for expression of the SUR2A
441 isoform, and SUR2B expression was not significantly increased in any of the HPV+ cell lines

442 examined. Further, our functional analyses demonstrated that SUR2B has no impact on the
443 proliferation of HPV+ cervical cancer cells.

444 More widely, few reports exist of a dependence on host K_{ATP} channel activity for viral
445 replication. One study identified that inhibition of K_{ATP} channels via glibenclamide treatment
446 precludes HIV cell entry but, in contrast, cardiac K_{ATP} channel activity was found to be
447 detrimental to Flock House virus (FHV) infection of *Drosophila* [63, 64]. Significantly however,
448 no evidence exists to suggest that either of these viruses actively modulate the gating and/or
449 expression of these channels, as we have demonstrated for HPV here.

450 In order to confirm that the effects on HPV oncoprotein expression and proliferation observed
451 during this study following SUR1 knockdown were due to decreased K_{ATP} channel activity,
452 silencing of the pore-forming Kir6.2 subunit was also performed. We felt this pertinent as a
453 recent studies concluded that the oncogenic activities of SUR1 in non-small cell lung
454 carcinoma (NSCLC) are independent of K_{ATP} channel activity [65, 66], and SUR1 is reported
455 to have a supplementary role in regulating the activity of an ATP-sensitive, non-selective ion
456 channel in astrocytes [67]. However, we observed almost identical effects on cell proliferation
457 and HPV oncoprotein expression following Kir6.2 knockdown, leading us to conclude that
458 SUR1 does not act in a K_{ATP} channel-independent manner in cervical cancer. This is supported
459 by our overexpression data, in which a significant increase in the proliferative ability of HPV-
460 C33A cells was only observed when both channel subunits were transfected. This also fits
461 with the current assembly hypothesis for K_{ATP} channels, whereby neither subunit can be
462 trafficked beyond the endoplasmic reticulum unless fully assembled into hetero-octameric
463 channels [68-70].

464 We observed that inhibition of K_{ATP} channels, through either pharmacological means or SUR1
465 knockdown, resulted in an increase in the proportion of cells in G1 phase and, consistently, a
466 decrease in cyclin D1 and E1 expression. This is in line with prior reports in other cell types
467 [30, 31, 49]. Further, this fits with an increasing recognition of the importance of ion channels

468 in the regulation of the cell cycle and cell proliferation [24-26, 28]. It is thought that cells
469 undergo a rapid hyperpolarisation during progression through the G1-S phase checkpoint, for
470 which K⁺ efflux channels are particularly important [25, 26]. Our data indicates that, at least in
471 cervical cancer, K_{ATP} channels may contribute towards this hyperpolarisation event. Further,
472 several K⁺ channels demonstrate cell cycle-dependent variations in expression and/or activity
473 [71-74]; whether this is the case for K_{ATP} channels in HPV+ cancer cells warrants further
474 analysis.

475 Ion channels represent ideal candidates for novel cancer therapeutics given the abundance
476 of licensed and clinically available drugs targeting the complexes which could be repurposed
477 if demonstrated to be effective [23]. We therefore investigated whether K_{ATP} channel inhibition
478 had a cytotoxic effect on cervical cancer cells. Somewhat surprisingly, given the impact on
479 HPV oncoprotein expression, we did not observe any evidence for increased cell death
480 following glibenclamide treatment. This is in contrast to previous experiments in gastric cancer,
481 glioma and hepatocellular carcinoma cell lines [29, 31, 32], yet in agreement with observations
482 in breast cancer cells [30]. These differences may potentially reflect the cell type-specific roles
483 of K_{ATP} channels, or perhaps be a result of differing subunit compositions in the cell types
484 analysed. Following this, we performed *in vivo* tumourigenicity assays using cell lines stably
485 expressing SUR1-specific shRNAs. We observed significant delays to tumour growth with
486 cells displaying reduced SUR1 expression resulting in prolonged survival, thus providing
487 validation for our earlier *in vitro* work. Given the clear impact suppression of K_{ATP} channel
488 activity has on the growth of HPV+ cervical cancer cells, further work is now warranted to
489 confirm whether the licenced K_{ATP} channel inhibitors could be repurposed and used alongside
490 current therapies.

491 We revealed that the pro-proliferative effects of K_{ATP} channels are mediated via activation of
492 ERK1/2 and subsequently the AP-1 family member cJun. Previous reports have examined the
493 importance of these signalling pathways in HPV infection and cervical cancer [53, 75-79].

494 Indeed, a recent study elegantly showed a strong correlation between ERK1/2 activity and
495 cervical disease progression, and highlighted the importance of ERK1/2 and AP-1 signalling
496 for oncoprotein expression in both a life cycle model of HPV infection and using an
497 oropharyngeal squamous cell carcinoma cell line [79]. Interestingly, this study additionally
498 identified the AP-1 family members cFos and JunB as contributors towards oncogene
499 transcription, whilst our own analysis has revealed that both cJun and JunD are upregulated
500 in HPV18+ keratinocytes and cervical cancer cell lines [53, 79]. As AP-1 can be comprised of
501 Jun family homodimers or heterodimers with Fos, ATF or MAF family proteins, further studies
502 may be warranted to determine the most frequent makeup of AP-1 dimers in HPV+ cells [51].
503 In conclusion, we present evidence that host K_{ATP} channels play a crucial role in cervical
504 carcinogenesis. Upregulation of the SUR1 subunit by HPV E7 contributes towards increased
505 K_{ATP} channel activity, which in turn drives cell proliferation and progression through the G1/S
506 phase checkpoint via MAPK/AP-1 signalling. K_{ATP} channels also promote HPV E6/E7
507 expression, thus establishing a positive feedback network. A complete characterisation of the
508 role of K_{ATP} channels in HPV-associated disease is therefore now warranted in order to
509 determine whether the licensed and clinically available inhibitors of these channels could
510 constitute a potential novel therapy in the treatment of HPV-driven cancers.

511 **Materials and Methods**

512 **Cervical cancer cytology samples**

513 Cervical cytology samples were obtained from the Scottish HPV Archive
514 (<http://www.shine.mvm.ed.ac.uk/archive.shtml>), a biobank of over 20,000 samples designed
515 to facilitate HPV-associated research. The East of Scotland Research Ethics Service has
516 given generic approval to the Scottish HPV Archive as a Research Tissue Bank (REC Ref
517 11/AL/0174) for HPV related research on anonymised archive samples. Samples are available
518 for the present project though application to the Archive Steering Committee (HPV Archive
519 Application Ref 0034). RNA was extracted from the samples using TRIzol® Reagent
520 (ThermoFisher Scientific) and analysed as described.

521 **Plasmids and siRNA**

522 Expression vectors for ΔJunD, HA-tagged Kir6.2 and SUR1, and GFP-tagged HPV18 E6 and
523 E7 have been described previously [53, 80, 81]. The FLAG-tagged HPV18 E7 expression
524 vector was cloned from the above GFP-HPV18 E7 vector. Luciferase reporter constructs for
525 the HPV18 URR and the HPV16 URR were kind gifts from Prof Felix Hoppe-Seyler (German
526 Cancer Research Center (DKFZ)) and Dr Iain Morgan (Virginia Commonwealth University
527 (VCU)) respectively [76, 82]. The HA-tagged cJun S63/73D expression vector was kindly
528 provided by Dr Hans van Dam (Leiden University Medical Centre (LUMC)) [83]. The AP-1
529 luciferase reporter has been described previously [52].

530 For siRNA experiments, pools of four siRNAs specific to *ABCC8* (FlexiTube GeneSolution
531 GS6833), *ABCC9* (FlexiTube GeneSolution GS10060), and *KCNJ11* (FlexiTube
532 GeneSolution GS3767) were purchased from Qiagen. HPV16 E6 siRNA (sc-156008) and
533 HPV16 E7 siRNA (sc-270423) were purchased from Santa Cruz
534 Biotechnology (SCBT). HPV18 E6 siRNAs were purchased from Dharmacon (GE Healthcare)
535 and had the following sequences: 5'-CUAACACUGGGUUAUACAA-3' and 5'-

536 CTAACTAACACTGGGTTAT-3'. HPV18 E7 siRNA were as previously described and were a
537 kind gift from Prof Eric Blair (University of Leeds) [84, 85]. A final siRNA concentration of 25
538 nM was used in all cases.

539 **K⁺ channel modulators and small molecule inhibitors**

540 The K_{ATP} inhibitors glibenclamide and tolbutamide were purchased from Sigma and used at
541 final concentrations of 10 μM and 200 μM unless stated otherwise. The K⁺ channel blockers
542 tetraethylammonium (TEA), quinine, quinidine, 4-aminopyridine (4-AP), ruthenium red (RR),
543 apamin, bupivacaine hydrochloride (BupHCl) and margatoxin were purchased from Sigma
544 and used at the stated concentrations. The K_{ATP} channel activator diazoxide was purchased
545 from Cayman Chemical and used at 50 μM unless stated otherwise. The MEK1/2 inhibitor
546 U0126 (Calbiochem) was used at 20 μM. Staurosporine (Calbiochem) was used at a final
547 concentration of 1 μM.

548 **Cell culture**

549 HeLa (HPV18+ cervical epithelial adenocarcinoma cells), SW756 (HPV18+ cervical
550 squamous carcinoma cells), SiHa (HPV16+ cervical squamous carcinoma cells), CaSki
551 (HPV16+ cervical squamous carcinoma cells) and C33A (HPV- cervical squamous carcinoma)
552 cells obtained from the ATCC were grown in DMEM supplemented with 10% FBS
553 (ThermoFisher Scientific) and 50 U/mL penicillin/streptomycin (Lonza). HEK293TT cells were
554 kindly provided by Prof Greg Towers (University College London (UCL)) and grown as above.
555 Neonate foreskin tissues were obtained from local General Practice surgeries and foreskin
556 keratinocytes isolated under ethical approval no 06/Q1702/45. Cells were maintained in
557 serum-free medium (SFM; Gibco) supplemented with 25 μg/mL bovine pituitary extract
558 (Gibco) and 0.2 ng/mL recombinant EGF (Gibco). The transfection of primary NHKs to
559 generate HPV18+ keratinocytes was performed as described previously [86]. All cells were
560 cultured at 37 °C and 5% CO₂.

561 All cells were negative for mycoplasma during this investigation. Cell identity was confirmed
562 by STR profiling.

563 **Organotypic raft culture**

564 NHKs and HPV18+ keratinocytes were grown in organotypic raft cultures by seeding the
565 keratinocytes onto collagen beds containing J2-3T3 fibroblasts [86]. Once confluent, the
566 collagen beds were transferred onto metal grids and fed from below with FCS-containing E
567 media without EGF. The cells were allowed to stratify for 14 days before fixing with 4%
568 formaldehyde. The rafts were paraffin-embedded and 4 µm tissue sections prepared (Propath
569 UK Ltd.). For analysis of SUR1 expression, the formaldehyde-fixed raft sections were treated
570 with the sodium citrate method of antigen retrieval. Briefly, sections were boiled in 10 mM
571 sodium citrate with 0.05% Tween-20 for 10 minutes. Sections were incubated with a polyclonal
572 antibody against SUR1 (PA5-50836, ThermoFisher Scientific) and immune complexes
573 visualised using Alexa 488 and 594 secondary antibodies (Invitrogen). The nuclei were
574 counterstained with DAPI and mounted in Prolong Gold (Invitrogen).

575 **Transfection of cancer cell lines**

576 Transient transfections were performed using Lipofectamine 2000 (ThermoFisher Scientific).
577 A ratio of nucleic acid to Lipofectamine 2000 of 1:2 was used for both DNA and siRNA.
578 Transfections were performed overnight in OptiMEM I Reduced Serum Media (ThermoFisher
579 Scientific).

580 **Generation of stable cell lines**

581 HEK293TT cells were co-transfected with the packaging plasmids pCRV1-NLGP and pCMV-
582 VSV-G alongside either a pZIP-hEF1α-non-targeting shRNA construct or one of three pZIP-
583 hEF1α-SUR1 shRNA constructs (purchased from TransOMIC). At 48 hours post-transfection,
584 virus-containing media was harvested and passed through a 0.45 µm filter to remove cell
585 debris. To perform lentiviral transduction, culture media was removed from HeLa cells seeded

586 24 hours earlier and replaced with virus-containing media. Cells were incubated overnight
587 before removing virus and replacing with complete DMEM. At 48 hours post-transduction, cells
588 were passaged as appropriate and treated with 1 µg/mL puromycin in culture media for 48
589 hours to select for transduced cells. Fluorescence-associated cell sorting (FACS) was used to
590 partition individual surviving cells into wells of 96-well culture plates in order to generate
591 monoclonal cell lines.

592 HPV- C33A cells stably expressing HPV18 E6 or E7 were generated as previously described
593 [18].

594 **Western blot analysis**

595 Equal amounts of protein from cell lysates were resolved by molecular weight using 8-15%
596 SDS-polyacrylamide gels as appropriate. Separated proteins were transferred to Hybond™
597 nitrocellulose membranes (GE Healthcare) using a semi-dry method (Bio-Rad Trans-Blot®
598 Turbo™ Transfer System). Membranes were blocked in 5% skimmed milk powder in tris-
599 buffered saline-0.1% Tween 20 (TBS-T) for 1 hour at room temperature before probing with
600 antibodies specific for HPV16 E6 (GTX132686, GeneTex, Inc.), HPV16 E7 (ED17: sc-6981,
601 SCBT), HPV18 E6 (G-7: sc-365089, SCBT), HPV18 E7 (8E2: ab100953, abcam), HA (3724,
602 Cell Signalling Technology (CST)), cyclin A (B-8: sc-271682, SCBT), cyclin B1 (12231, CST),
603 cyclin D1 (ab134175, abcam), cyclin E1 (20808, CST), PARP (9542, CST), caspase-3 (9662,
604 CST), cleaved caspase-3 (D175) (9664, CST), phospho-ERK1/2 (T202/Y204) (9101, CST),
605 ERK1/2 (9102, CST), phospho-cJun (S73) (3270, CST), cJun (9165, CST), JunD (5000, CST)
606 and GAPDH (G-9: sc-365062, SCBT). Primary antibody incubations were performed overnight
607 at 4 °C. The appropriate HRP-conjugated secondary antibodies (Jackson ImmunoResearch)
608 were used at a 1:5000 dilution. Blots were visualised using ECL reagents and CL-Xposure™
609 film (ThermoFisher Scientific).

610 **RNA extraction and reverse transcription-quantitative PCR (RT-qPCR)**

611 Total RNA was extracted from cells using the E.Z.N.A.® Total RNA Kit I (Omega Bio-Tek)
612 following the provided protocol for RNA extraction from cultured cells. The concentration of
613 eluted RNA was determined using a NanoDrop™ One spectrophotometer (ThermoFisher
614 Scientific). RT-qPCR was performed using the GoTaq® 1-Step RT-qPCR System (Promega)
615 with an input of 50 ng RNA. Reactions were performed using a CFX Connect Real-Time PCR
616 Detection System (BioRad) with the following cycling conditions: reverse transcription for 10
617 min at 50 °C; reverse transcriptase inactivation/polymerase activation for 5 min at 95 °C
618 followed by 40 cycles of denaturation (95 °C for 10 sec) and combined annealing and
619 extension (60 °C for 30 sec). Data was analysed using the $\Delta\Delta Ct$ method [87]. The primers
620 used in this study are detailed in S1 Table; *U6* expression was used for normalisation.

621 **Tissue microarray and immunohistochemistry**

622 A cervical cancer tissue microarray (TMA) containing 39 cases of cervical cancer and 9 cases
623 of normal cervical tissue (in duplicate) was purchased from GeneTex, Inc. (GTX21468). Slides
624 were deparaffinised in xylene, rehydrated in a graded series of ethanol solutions and subjected
625 to antigen retrieval in citric acid. Slides were blocked in normal serum and incubated in primary
626 antibody (SUR1 (75-267, Antibodies Inc.)) overnight at 4 °C. Slides were then processed using
627 the VECTASTAIN® Universal Quick HRP Kit (PK-7800; Vector Laboratories) as per the
628 manufacturer's instructions. Immunostaining was visualised using 3,3'-diaminobenzidine
629 (Vector® DAB (SK-4100; Vector Laboratories)). Images were taken using an EVOS® FL Auto
630 Imaging System (ThermoFisher Scientific) at 20x magnification. SUR1 quantification was
631 automated using ImageJ with the IHC Profiler plug-in [88, 89]. Histology scores (H-score) were
632 calculated based on the percentage of positively stained tumour cells and the staining intensity
633 grade. The staining intensities were classified into the following four categories: 0, no staining;
634 1, low positive staining; 2, positive staining; 3, strong positive staining. H-score was calculated
635 by the following formula: (3 x percentage of strong positive tissue) + (2 x percentage of positive
636 tissue) + (percentage of low positive tissue), giving a range of 0 to 300.

637 **Patch clamping**

638 HeLa cells were seeded on coverslips in 12-well culture plates at 10-20% confluence to
639 prevent cell-cell contact. Following attachment, cells were treated with DMSO, 10 μ M
640 glibenclamide, 50 μ M diazoxide, or with both channel modulators in combination for 16 hours.
641 Following treatment, patch pipettes (2–4 M Ω) were filled with pipette solution (5 mM HEPES-
642 KOH pH 7.2, 140 mM KCl, 1.2 mM MgCl₂, 1 mM CaCl₂, 10 mM EGTA, 1 mM MgATP, 0.5 mM
643 NaUDP) and culture media removed from cells and replaced with external solution (5 mM
644 HEPES-KOH pH 7.4, 140 mM KCl, 2.6 mM CaCl₂, 1.2 mM MgCl₂). Whole cell patch clamp
645 recordings were performed using an Axopatch 200B amplifier/Digidata 1200 interface
646 controlled by Clampex 9.0 software (Molecular Devices). A series of depolarising steps, from
647 –100 to +60 mV in 10 mV increments for 100 ms each, was applied to cells and the K⁺ current
648 measured. Analysis was performed using the data analysis package Clampfit 9.0 (Molecular
649 Devices).

650 **Chromatin immunoprecipitation (ChIP)**

651 After treatment as required, cells were processed for ChIP as previously described [81]. cJun
652 was immunoprecipitated using a ChIP grade anti-cJun antibody (9165, CST) and each of the
653 samples were also pulled down with an IgG isotype control to confirm antibody specificity.
654 Pierce™ Protein A/G Magnetic Beads (ThermoFisher Scientific) were used to isolate antibody-
655 chromatin complexes. Immunoprecipitated chromatin was then processed for quantitative
656 PCR (qPCR) using primers covering the AP-1 binding sites within the HPV18 URR (sequences
657 available upon request). Fold enrichment was calculated by comparing to the IgG isotype
658 control.

659 **Luciferase reporter assays**

660 Cells were transfected with plasmids expressing the appropriate firefly luciferase reporter (250
661 ng). 25 ng of a *Renilla* luciferase reporter construct (pRLTK) was used as an internal control

662 for transfection efficiency. Samples were lysed in passive lysis buffer (Promega) and activity
663 measured using a dual-luciferase reporter assay system (Promega). All assays were
664 performed in triplicate, and each experiment was repeated a minimum of three times.

665 **Proliferation assays**

666 For cell growth assays, cells were detached by trypsinisation after treatment as necessary and
667 reseeded at equal densities in 12-well plates. Cells were subsequently harvested every 24
668 hours and manually counted using a haemocytometer.

669 For colony formation assays, cells were detached by trypsinisation after treatment as required
670 and reseeded at 500 cells/well in six-well plates. Once visible colonies were noted, culture
671 media was aspirated and cells fixed and stained in crystal violet staining solution (1% crystal
672 violet, 25% methanol) for 15 min at room temperature. Plates were washed thoroughly with
673 water to remove excess crystal violet and colonies counted manually.

674 For soft agar assays, 60 mm cell culture plates were coated with a layer of complete DMEM
675 containing 0.5% agarose. Simultaneously, cells were detached by trypsinisation after
676 treatment as required and resuspended at 1000 cells/mL in complete DMEM containing 0.35%
677 agarose and added to the bottom layer of agarose. Once set, plates were covered with culture
678 media and incubated for 14-21 days until visible colonies were observed. Colonies were
679 counted manually.

680 **Cell cycle analysis**

681 Cells were harvested and fixed overnight in 70% ethanol at -20°C. Ethanol was removed by
682 centrifugation at 500 x g for 5 min and cells washed twice in PBS containing 0.5% BSA. Cells
683 were resuspended in 500 µL 0.5% BSA/PBS, treated with 1.25 µL RNase A/T1 mix
684 (ThermoFisher Scientific) and stained with 8 µL 1 mg/mL propidium iodide solution (Sigma)
685 for 30 min at room temperature in the dark. Analysis was performed using a CytoFLEX S flow
686 cytometer (Beckman Coulter).

687 **DiBAC assay**

688 After treatment as necessary, the membrane potential-sensitive dye DiBAC₄(3) (Bis-(1,3-
689 Dibutylbarbituric Acid) Trimethine Oxonol; ThermoFisher Scientific) was added directly to
690 culture media at a final concentration of 200 nM. Cells were incubated in the presence of the
691 dye for 20 min at 37°C in the dark. Cells were harvested by scraping and washed twice in
692 PBS. Cells were resuspended in 500 µL PBS for flow cytometry analysis. Analysis was
693 performed using a CytoFLEX S flow cytometer (Beckman Coulter).

694 **Annexin V assay**

695 Annexin V apoptosis assays were performed using the TACS® Annexin V-FITC Kit (Bio-
696 Techne Ltd.). After treatment as required, cells were harvested by aspirating and retaining
697 culture media (to collect detached apoptotic cells) with the remaining cells detached by
698 trypsinisation. The retained media and trypsin cell suspension was combined and centrifuged
699 at 500 x g for 5 min to pellet cells before washing once in PBS and pelleting again. Cells were
700 incubated in 100 µL Annexin V reagent (10 µL 10X binding buffer, 10 µL propidium iodide, 1
701 µL Annexin V-FITC (diluted 1:25), 79 µL ddH₂O) for 15 min at room temperature protected
702 from light. 400 µL of 1X binding buffer was then added before analysing using a CytoFLEX S
703 flow cytometer (Beckman Coulter). Annexin V-FITC positive cells were designated as early
704 apoptotic, whilst dual Annexin V-FITC/PI positive cells were designated as late apoptotic. Cells
705 negative for both Annexin V and PI staining were considered to be healthy.

706 ***In vivo* tumourigenicity study**

707 Female 6-8 week old SCID mice were purchased from Charles River Laboratories. All
708 animal work was carried out under project license PP1816772. HeLa cells stably expressing
709 either a non-targeting shRNA or a SUR1-specific shRNA were harvested, pelleted and
710 resuspended in sterile PBS. Five mice were used per experimental group, with each injected
711 subcutaneously with 5 x 10⁵ cells in 50 µL PBS. Once palpable tumours had formed (~10

712 days), measurements for both groups were taken thrice weekly. After tumours reached 10
713 mm in either dimension, mice were monitored daily. Mice were sacrificed once tumours
714 reached 15 mm in any dimension. No toxicity, including significant weight loss, was seen in
715 any of the mice. Tumour volume was calculated with the formula $V = 0.5 \times L \times W^2$.

716 **Microarray analysis**

717 For microarray analysis, a dataset consisting of 24 normal, 14 CIN1 lesions, 22 CIN2 lesions,
718 40 CIN3 lesions, and 28 cancer specimens was utilised. Microarray data was obtained from
719 GEO database accession number GSE63514 [90].

720 **Statistical analysis**

721 All experiments were performed a minimum of three times, unless stated otherwise. Data was
722 analysed using a two-tailed, unpaired Student's t-test performed using GraphPad PRISM 9.2.0
723 software, unless stated otherwise. Kaplan-Meier survival data was analysed using the log-
724 rank (Mantel-Cox) test.

725 **Acknowledgements**

726 We are grateful to Prof Felix Hoppe-Seyler (DKFZ), Dr Iain Morgan (VCU), Prof Eric Blair
727 (University of Leeds), Dr Hans van Dam (LUMC) and Prof Greg Towers (UCL) for provision of
728 reagents. We thank the Scottish HPV Investigators Network (SHINE), Prof Sheila Graham
729 (University of Glasgow), Dr David Millan (University of Glasgow) and Prof Nick Coleman
730 (University of Cambridge) for providing HPV positive patient samples.

731 **Funding information**

732 Work in the Macdonald lab is supported by Medical Research Council (MRC) funding (MR/
733 K012665 and MR/S001697/1). JAS is funded by a Faculty of Biological Sciences, University
734 of Leeds Scholarship. MRP is funded by a Biotechnology and Biological Sciences Research
735 Council (BBSRC) studentship (BB/M011151/1). ELM was supported by the Wellcome Trust
736 (1052221/Z/14/Z and 204825/Z/16/Z). HC was funded by a Rosetrees Trust PhD studentship
737 awarded to AW (M662). AS is funded by CRUK (C50189/A29039). The funders had no role in
738 study design, data collection and analysis, decision to publish, or preparation of the
739 manuscript.

740 741 **Author Contributions**

742 Conceptualisation (JAS, CWW, JM, ELM, AM); Formal analysis (JAS, CWW, MRP, HC, ELM);
743 Funding acquisition (AW, AS, ELM, AM); Investigation (JAS, CWW, MRP, DE, HC, ELM);
744 Project administration (AW, AS, AM); Resources (DBM); Supervision (AW, AS, AM); Writing
745 – original draft (JAS); Writing – review & editing (all authors)

746 **Figure Legends**

747 **Fig 1. K_{ATP} channels are important for HPV gene expression.**

748 **A)** Representative western blots for E7 expression in HeLa cells and primary human
749 keratinocytes containing HPV18 episomes treated with DMSO, a broadly acting K⁺ channel
750 inhibitor (25 mM tetraethylammonium (TEA), 100 µM quinine, 100 µM quinidine or 70 mM KCl)
751 or 70 mM NaCl. GAPDH served as a loading control. **B)** Representative western blots for E7
752 expression in HPV18+ primary keratinocytes treated with DMSO, 25 mM TEA or one of a
753 panel of class-specific K⁺ channel inhibitors (2 mM 4-aminopyridine (4-AP), 50 µM ruthenium
754 red (RR), 10 nM apamin, 20 µM bupivacaine hydrochloride (BupHCl), 10 nM margatoxin or 50
755 µM glibenclamide). GAPDH served as a loading control. **C)** Mean current density-voltage
756 relationships for K⁺ currents in HeLa cells treated with DMSO, diazoxide (50 µM),
757 glibenclamide (10 µM), or both diazoxide and glibenclamide (n = 5 for all treatments). **D)**
758 Expression levels of *E6* and *E7* mRNA in HeLa and SiHa cells treated with glibenclamide (10
759 µM) measured by RT-qPCR. Samples were normalised against *U6* mRNA levels. **E)**
760 Representative western blots of *E6* and *E7* expression in HeLa and SiHa cells treated with
761 increasing doses of glibenclamide. GAPDH served as a loading control. **F)** Schematic
762 illustrating the plasma membrane permeability of DiBAC₄(3). Figure created using
763 BioRENDER.com. **G)** Mean DiBAC₄(3) fluorescence levels in HeLa and SiHa cells treated
764 with increasing dose of glibenclamide. Samples were normalised to DMSO controls. **H)**
765 Representative western blots of *E6* and *E7* expression in HeLa and SiHa cells serum starved
766 for 24h (to reduce basal *E6/E7* expression) prior to treatment with increasing doses of
767 diazoxide. GAPDH served as a loading control. **I)** Mean DiBAC₄(3) fluorescence levels in HeLa
768 and SiHa cells treated with increasing dose of diazoxide. Samples were normalised to DMSO
769 control. **J)** Representative western blots of *E6* and *E7* expression in HeLa and SiHa cells
770 treated with diazoxide (50 µM) alone or in combination with glibenclamide (10 µM) or
771 tolbutamide (200 µM). Bars represent means ± standard deviation (SD) of a minimum of three

772 biological replicates with individual data points displayed where possible. Ns not significant,
773 *P<0.05, **P<0.01, ***P<0.001 (Student's t-test).

774

775 **Fig 2. HPV enhances expression of the SUR1 subunit of K_{ATP} channels.**

776 **A)** mRNA expression levels of K_{ATP} channel subunits in HPV- normal human keratinocytes
777 (NHK) and a panel of five cervical cancer cell lines – one HPV- (C33A), two HPV16+ (SiHa
778 and CaSki), and two HPV18+ (SW756 and HeLa) detected by RT-qPCR. Samples were
779 normalised against *U6* mRNA levels. Data is displayed relative to NHK controls. **B)** ABCC8
780 mRNA expression in NHKs and keratinocytes containing episomal HPV18 genomes detected
781 by RT-qPCR. Samples were normalised against *U6* mRNA levels. **C)** Representative
782 immunofluorescence analysis of sections from organotypic raft cultures of NHK and HPV18+
783 keratinocytes detecting SUR1 levels. Nuclei were visualised with DAPI and the white dotted
784 line indicates the basal layer. Two donor cell lines were used to exclude donor-specific effects.
785 Images were acquired with identical exposure times. Scale bar, 40 μ m. **D)** ABCC8 mRNA
786 expression in a panel of cervical cytology samples representing normal cervical tissue (N) and
787 cervical disease of increasing severity (CIN 1 - 3) detected by RT-qPCR (n = 5 from each
788 grade). Samples were normalised against *U6* mRNA levels. **E)** Representative
789 immunofluorescence analysis of tissue sections from cervical lesions of increasing CIN grade.
790 Sections were stained for SUR1 levels (green) and nuclei were visualised with DAPI (blue).
791 Images were acquired with identical exposure times and the white dotted line indicates the
792 basal layer. Scale bar, 40 μ m. **F)** Representative immunofluorescence analysis of sections
793 from organotypic raft cultures of NHK and a W12 cell line presenting with HSIL morphology
794 detecting SUR1 levels (red). Nuclei were visualised with DAPI (blue) and the white dotted line
795 indicates the basal layer. Images were acquired with identical exposure times. Scale bar, 40
796 μ m. **G)** Representative immunohistochemistry analysis and scatter dot plots of quantification
797 of normal cervical (n = 9) and cervical cancer (n = 39) tissue sections stained for SUR1 protein.

798 Scale bar, 50 μ m. **H)** Scatter dot plot of expression data acquired from the GSE63514 dataset.
799 Arbitrary values for ABCC8 mRNA expression in normal cervix (n = 24), CIN1 lesions (n = 14),
800 CIN2 lesions (n = 22), CIN3 lesions (n = 40) and cervical cancer (n = 28) samples were plotted.
801 Bars represent means \pm SD of a minimum of three biological replicates with individual data
802 points displayed where possible. Ns not significant, *P<0.05, **P<0.01, ***P<0.001,
803 ****P<0.0001 (Student's t-test).

804

805 **Fig 3. Depletion of SUR1 reduces HPV gene expression in cervical cancer cells.**

806 **A-B)** Relative expression of ABCC8 mRNA in **A)** HeLa and SiHa cells transfected with a pool
807 of SUR1-specific siRNA and **B)** two monoclonal HeLa cell lines stably expressing SUR1-
808 specific shRNAs measured by RT-qPCR. Samples were normalised against *U6* mRNA levels.
809 **C)** Relative mean DiBAC₄(3) fluorescence levels in HeLa and SiHa cells transfected with
810 SUR1 siRNA. Samples were normalised to scramble controls. **D-E)** Relative expression of *E6*
811 and *E7* mRNA in **D)** HeLa and SiHa cells transfected with SUR1 siRNA and **E)** HeLa cell lines
812 stably expressing SUR1-specific shRNAs measured by RT-qPCR. Samples were normalised
813 against *U6* mRNA levels. **F-G)** Representative western blots of *E6* and *E7* expression in **F)**
814 HeLa and SiHa cells transfected with SUR1 siRNA and **G)** HeLa cell lines stably expressing
815 either a non-targeting (shNTC) or a SUR1-specific shRNA. GAPDH served as a loading
816 control. **H)** Relative firefly luminescence in HeLa and SiHa cells co-transfected with SUR1
817 siRNA and either a HPV18 or HPV16 URR reporter plasmid respectively. Luminescence
818 values were normalised against *Renilla* luciferase activity and data is displayed relative to
819 scramble controls. Bar graphs represent means \pm SD of a minimum of three biological
820 replicates with individual data points displayed. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001
821 (Student's t-test).

822

823 **Fig 4. The E7 oncoprotein is responsible for the increase in SUR1 expression.**

824 **A-B)** Relative ABCC8 mRNA expression measured by RT-qPCR in **(A)** HeLa and SiHa cells
825 and **(B)** HPV18+ primary keratinocytes co-transfected with E6- and E7-specific siRNA.
826 Samples were normalised against *U6* mRNA levels. Successful knockdown was confirmed by
827 analysing *E6* and *E7* mRNA levels. **C-D)** Expression levels of ABCC8 mRNA measured by
828 RT-qPCR in **(C)** C33A cells and **(D)** NHKs transfected with GFP-tagged HPV18 oncoproteins.
829 Samples were normalised against *U6* mRNA levels and data is presented relative to the GFP-
830 transfected control. Successful transfection was confirmed by immunofluorescence analysis
831 (not shown). **E)** Relative expression of ABCC8 mRNA in C33A cells stably-expressing HA-
832 tagged HPV18 oncoproteins measured by RT-qPCR. Samples were normalised against *U6*
833 mRNA levels. Expression of oncoproteins was confirmed by western blot. **F)** Mean DiBAC₄(3)
834 fluorescence levels in C33A cells after transfection of FLAG-tagged HPV18 E7 and treatment
835 with either DMSO or glibenclamide (10 μ M). Samples were normalised to the pcDNA3-
836 transfected control. **G)** Mean DiBAC₄(3) fluorescence levels in C33A cells after co-transfection
837 of FLAG-tagged HPV18 E7 and SUR1-specific siRNA. Samples were normalised to the
838 pcDNA3/scramble-transfected control. **H)** Mean DiBAC₄(3) fluorescence levels in HeLa and
839 SiHa cells after transfection of HPV E7-specific siRNA. Samples were normalised to the
840 scramble control. Bars represent means \pm SD of a minimum of three biological replicates with
841 individual data points displayed. *Ns* not significant, *P<0.05, **P<0.01, ***P<0.001,
842 ****P<0.0001 (Student's t-test).

843

844 **Fig 5. K_{ATP} channels drive proliferation in cervical cancer cells.**

845 **A-C)** Growth curve analysis **(A)**, colony formation assay (to measure anchorage-dependent
846 growth) **(B)** and soft agar assay (to measure anchorage-independent growth) **(C)** of HeLa,
847 SiHa and C33A cells after treatment with DMSO or glibenclamide (10 μ M) for 24 hours. **D-F)**
848 Growth curve analysis **(D)**, colony formation assay **(E)** and soft agar assay **(F)** of HeLa and

849 SiHa cells after transfection of SUR1-specific siRNA. Data shown is means \pm SD of a minimum
850 of three biological replicates with individual data points displayed where appropriate. Ns not
851 significant, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 (Student's t-test).

852

853 **Fig 6. K_{ATP} channel overexpression is sufficient to stimulate proliferation in the absence**
854 **of HPV.**

855 Growth curve analysis (**A**), colony formation assay (**B**) and soft agar assay (**C**) of C33A cells
856 transfected with plasmids expressing HA-tagged Kir6.2 and/or SUR1. Data shown is means \pm
857 SD of three biological replicates with individual data points displayed where appropriate. Ns
858 not significant, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 (Student's t-test).

859

860 **Fig 7. K_{ATP} channel activity regulates progression through the G1/S phase transition.**

861 **A-B)** Flow cytometry analysis of cell cycle phase distribution of HeLa and SiHa cells after (**A**)
862 treatment with either DMSO or glibenclamide (25 μ M) for 48 hours and (**B**) transfection of
863 SUR1-specific siRNA. **C-D)** mRNA expression levels of cyclins in HeLa and SiHa cells after
864 (**C**) treatment with either DMSO or glibenclamide (10 μ M) for 24 hours or (**D**) transfection of
865 SUR1-specific siRNA measured by RT-qPCR. Samples were normalised against *U6* mRNA
866 levels and data is displayed relative to the appropriate control. **E-F)** Representative western
867 blots of cyclin proteins in HeLa and SiHa cells after (**E**) treatment with either DMSO or
868 glibenclamide (10 μ M) for 24 hours or (**F**) transfection of SUR1-specific siRNA. GAPDH served
869 as a loading control. Bars represent means \pm SD of a minimum of three biological replicates
870 with individual data points displayed. Ns not significant, *P<0.05, **P<0.01, ***P<0.001
871 (Student's t-test).

872

873 **Fig 8. K_{ATP} channels drive proliferation by contributing towards the activation of**
874 **MAPK/AP-1 signalling.**

875 **A-B)** Representative western blots of phospho-ERK1/2, ERK1/2, phospho-cJun, cJun and E7
876 in HeLa cells either **A)** serum starved for 24 hours prior to treatment with diazoxide (50 μ M),
877 with and without the MEK1/2 inhibitor U0126 (20 μ M), for 24 hours or **B)** transfected with
878 plasmids expressing HA-tagged Kir6.2 and SUR1, with and without U0126 treatment (20 μ M).
879 * denotes the presence of a non-specific band. GAPDH served as a loading control. **C)**
880 Relative firefly luminescence in HeLa cells co-transfected with plasmids expressing HA-
881 tagged Kir6.2 and SUR1 and an AP-1-driven reporter construct. Cells were also treated with
882 DMSO or the MEK1/2 inhibitor U0126 (20 μ M) for 24 hours. Luminescence values were
883 normalised against *Renilla* luciferase activity. **D-E)** Growth curve analysis (**D**) and colony
884 formation assay (**E**) of HeLa cells after co-transfection with plasmids expressing HA-tagged
885 Kir6.2 and SUR1 and treatment with DMSO or U0126 (20 μ M) for 24 hours. **F-G)** Relative
886 firefly luminescence in HeLa cells transfected with an AP-1-driven reporter plasmid and either
887 **F)** treated with glibenclamide (10 μ M) or **G)** transfected with SUR1-specific siRNA.
888 Luminescence values were normalised against *Renilla* luciferase activity and data is displayed
889 relative to the appropriate control. **H)** ChIP-qPCR analysis of cJun binding to the HPV18 URR
890 in HeLa cells transfected with SUR1-specific siRNA. Chromatin was prepared from HeLa cells
891 and cJun immunoprecipitated using an anti-cJun antibody, followed by qPCR using primers
892 specific to AP-1 binding sites in the HPV18 URR. cJun binding is presented as a fold increase
893 over IgG binding (n = 2). **I)** Representative western blots for JunD, E6 and E7 expression in
894 HeLa cells treated with diazoxide (50 μ M), with and without transfection of a plasmid
895 expressing Δ JunD. Cells were serum-starved for 24 hours prior to treatment. GAPDH served
896 as a loading control. **J-K)** Growth curve analysis (**J**) and colony formation assay (**K**) of HeLa
897 cells after co-transfection with SUR1-specific siRNA and a plasmid expressing a constitutively-
898 active form of cJun (S63/73D). Bars represent means \pm SD of a minimum of three biological

Scarth et al.

HPV exploits K_{ATP} channels in cervical cancer

899 replicates (unless stated otherwise) with individual data points displayed where appropriate.

900 Δ s not significant, * $P<0.05$, ** $P<0.01$, *** $P<0.001$ (Student's t-test).

901

902 **Fig 9. K_{ATP} channels drive proliferation in an *in vivo* mouse model.**

903 **A)** Tumour growth curves for mice implanted with HeLa cells stably expressing either a non-
904 targetting (shNTC) or an SUR1-specific shRNA (shSUR1 A). Tumour volume was calculated
905 using the formula $V=0.5*L^*W^2$. Both individual curves for each replicate (left) and curves
906 representing mean values \pm SD of five mice per group (right) are displayed. **B)** Tumour growth
907 delay, calculated as the period of time between injection of tumours and growth to a set volume
908 (250 mm^3). Bars represent means \pm SD of five biological replicates with individual data points
909 displayed. * $P<0.05$ (Student's t-test). **C)** Kaplan-Meier survival curve of mice bearing shNTC
910 and shSUR1 A tumours. # indicates that one mice remained alive at the conclusion of the
911 study. ** $P<0.01$ (log-rank (Mantel-Cox) test).

912

913 **Fig 10. Schematic demonstrating E7-mediated upregulation of K_{ATP} channel expression**
914 **and activity.** HPV E7 upregulates expression of *ABCC8*, the gene encoding SUR1 which
915 constitutes the regulatory subunit of K_{ATP} channels. Increased K_{ATP} channel activity contributes
916 towards the activation of MAPK and AP-1 signalling. This, in turn, drives transcription from the
917 viral URR and changes in host gene expression which together stimulate proliferation. Figure
918 created using BioRENDER.com.

919

920 **S1 Fig. K_{ATP} channels are important for HPV gene expression in cervical cancer cells.**

921 **A)** Expression levels of *E6* and *E7* mRNA in HeLa cells treated with tolbutamide ($200\text{ }\mu\text{M}$)
922 measured by RT-qPCR. Samples were normalised against *U6* mRNA levels. **B)**
923 Representative western blots of *E6* and *E7* expression in HeLa cells treated with increasing

Scarth et al.

HPV exploits K_{ATP} channels in cervical cancer

924 doses of tolbutamide. GAPDH served as a loading control. **C**) Mean DiBAC₄(3) fluorescence
925 levels in HeLa cells treated with increasing dose of tolbutamide. Samples were normalised to
926 DMSO control. Data represent means \pm SD of a minimum of three biological replicates.
927 *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 (Student's t-test).

928

929 **S2 Fig. Depletion of SUR2 has no impact on HPV gene expression or proliferation in**
930 **cervical cancer cells.**

931 **A**) Relative expression of *ABCC9B* mRNA in HeLa and SiHa cells transfected with a pool of
932 SUR2-specific siRNA measured by RT-qPCR. Samples were normalised against *U6* mRNA
933 levels. **B**) Relative mean DiBAC₄(3) fluorescence levels in HeLa and SiHa cells transfected
934 with SUR2 siRNA. **C**) Relative expression of *E6* and *E7* mRNA in HeLa and SiHa cells
935 transfected with SUR2 siRNA measured by RT-qPCR. Samples were normalised against *U6*
936 mRNA levels. **D**) Representative western blots of E6 and E7 expression in HeLa and SiHa
937 cells transfected with SUR2 siRNA. GAPDH served as a loading control. **E-G)** Growth curve
938 analysis (**E**), colony formation assay (**F**) and soft agar assay (**G**) of HeLa and SiHa cells after
939 transfection of SUR2-specific siRNA. Data represent means \pm SD of a minimum of three
940 biological replicates with individual data points displayed. *Ns* not significant, *P<0.05,
941 **P<0.01, ***P<0.001 (Student's t-test).

942

943 **S3 Fig. Depletion of Kir6.2 reduces HPV gene expression and proliferation in cervical**
944 **cancer cells.**

945 **A**) Relative expression of *KCNJ11* mRNA in HeLa and SiHa cells transfected with a pool of
946 Kir6.2-specific siRNA measured by RT-qPCR. Samples were normalised against *U6* mRNA
947 levels. **B**) Relative mean DiBAC₄(3) fluorescence levels in HeLa and SiHa cells transfected
948 with Kir6.2 siRNA. **C**) Relative expression of *E6* and *E7* mRNA in HeLa and SiHa cells

Scarth et al.

HPV exploits K_{ATP} channels in cervical cancer

949 transfected with Kir6.2 siRNA measured by RT-qPCR. Samples were normalised against U6
950 mRNA levels. **D)** Representative western blots of E6 and E7 expression in HeLa and SiHa
951 cells transfected with Kir6.2 siRNA. GAPDH served as a loading control. **E-G)** Growth curve
952 analysis (**E**), colony formation assay (**F**) and soft agar assay (**G**) of HeLa and SiHa cells after
953 transfection of Kir6.2-specific siRNA. Data shown is means \pm SD of three biological replicates
954 with individual data points displayed where appropriate. *P<0.05, **P<0.01, ***P<0.001,
955 ****P<0.0001 (Student's t-test).

956

957 **S4 Fig. Stable suppression of SUR1 expression decreases the proliferation of cervical**
958 **cancer cells.**

959 Growth curve analysis (**A**), colony formation assay (**B**) and soft agar assay (**C**) of monoclonal
960 HeLa cell lines stably expressing either a non-targeting (shNTC) or a SUR1-specific shRNA.
961 Data shown is means \pm SD of three biological replicates with individual data points displayed
962 where appropriate. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 (Student's t-test).

963

964 **S5 Fig. K_{ATP} channel inhibition does not impact upon the survival of cervical cancer**
965 **cells.**

966 **A)** Representative western blots of PARP and caspase 3 cleavage in HeLa and SiHa cells
967 treated with DMSO or glibenclamide (10 μ M) for the indicated durations. Staurosporine
968 treatment (STS, 1 μ M for 6 hours) served as a positive control for apoptosis induction. GAPDH
969 served as a loading control. **B)** Flow cytometry analysis of Annexin V assay using HeLa and
970 SiHa cells treated with DMSO or glibenclamide (10 μ M) for the indicated durations. Bars
971 represent means \pm SD of three biological replicates. Ns not significant (Student's t-test).

972

973 **S1 Table. List of primers used for RT-qPCR in this study.**

974 **References**

975 1. Graham SV. The human papillomavirus replication cycle, and its links to cancer
976 progression: a comprehensive review. *Clin Sci (Lond)*. 2017;131(17):2201-21. doi:
977 10.1042/cs20160786.

978 2. Scarth JA, Patterson MR, Morgan EL, Macdonald A. The human papillomavirus
979 oncoproteins: a review of the host pathways targeted on the road to transformation. *J Gen*
980 *Virol*. 2021;102(3). doi: 10.1099/jgv.0.001540.

981 3. Stanley M. Pathology and epidemiology of HPV infection in females. *Gynecol Oncol*.
982 2010;117(2 Suppl):S5-10. doi: 10.1016/j.ygyno.2010.01.024.

983 4. Moody CA, Laimins LA. Human papillomavirus oncoproteins: pathways to
984 transformation. *Nat Rev Cancer*. 2010;10(8):550-60. doi: 10.1038/nrc2886.

985 5. Munger K, Werness BA, Dyson N, Phelps WC, Harlow E, Howley PM. Complex
986 formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor
987 gene product. *EMBO J*. 1989;8(13):4099-105. doi.

988 6. Dyson N, Howley PM, Munger K, Harlow E. The human papilloma virus-16 E7
989 oncoprotein is able to bind to the retinoblastoma gene product. *Science*.
990 1989;243(4893):934-7. doi: 10.1126/science.2537532.

991 7. Boyer SN, Wazer DE, Band V. E7 protein of human papilloma virus-16 induces
992 degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. *Cancer*
993 *Res*. 1996;56(20):4620-4. doi.

994 8. Scheffner M, Huibregtse JM, Vierstra RD, Howley PM. The HPV-16 E6 and E6-AP
995 complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. *Cell*.
996 1993;75(3):495-505. doi: 10.1016/0092-8674(93)90384-3.

997 9. Gewin L, Myers H, Kiyono T, Galloway DA. Identification of a novel telomerase
998 repressor that interacts with the human papillomavirus type-16 E6/E6-AP complex. *Genes*
999 *Dev*. 2004;18(18):2269-82. doi: 10.1101/gad.1214704.

1000 10. Ganti K, Broniarczyk J, Manoubi W, Massimi P, Mittal S, Pim D, Szalmas A, Thatte J,
1001 Thomas M, Tomaic V, Banks L. The Human Papillomavirus E6 PDZ Binding Motif: From Life
1002 Cycle to Malignancy. *Viruses*. 2015;7(7):3530-51. doi: 10.3390/v7072785.

1003 11. Richards KH, Doble R, Wasson CW, Haider M, Blair GE, Wittmann M, Macdonald A.
1004 Human papillomavirus E7 oncoprotein increases production of the anti-inflammatory
1005 interleukin-18 binding protein in keratinocytes. *J Virol*. 2014;88(8):4173-9. doi:
1006 10.1128/JVI.02546-13.

1007 12. Westrich JA, Warren CJ, Pyeon D. Evasion of host immune defenses by human
1008 papillomavirus. *Virus Res*. 2017;231:21-33. doi: 10.1016/j.virusres.2016.11.023.

1009 13. Morgan EL, Wasson CW, Hanson L, Kealy D, Pentland I, McGuire V, Scarpini C,
1010 Coleman N, Arthur JSC, Parish JL, Roberts S, Macdonald A. STAT3 activation by E6 is
1011 essential for the differentiation-dependent HPV18 life cycle. *PLoS Pathog*.
1012 2018;14(4):e1006975. doi: 10.1371/journal.ppat.1006975.

1013 14. Morgan EL, Macdonald A. Autocrine STAT3 activation in HPV positive cervical
1014 cancer through a virus-driven Rac1-NFκB-IL-6 signalling axis. *PLoS Pathog*.
1015 2019;15(6):e1007835. doi: 10.1371/journal.ppat.1007835.

1016 15. Morgan EL, Macdonald A. JAK2 Inhibition Impairs Proliferation and Sensitises
1017 Cervical Cancer Cells to Cisplatin-Induced Cell Death. *Cancers (Basel)*. 2019;11(12). doi:
1018 10.3390/cancers11121934.

1019 16. Morgan EL, Macdonald A. Manipulation of JAK/STAT Signalling by High-Risk HPVs:
1020 Potential Therapeutic Targets for HPV-Associated Malignancies. *Viruses*. 2020;12(9). doi:
1021 10.3390/v12090977.

1022 17. He C, Mao D, Hua G, Lv X, Chen X, Angeletti PC, Dong J, Remmenga SW,
1023 Rodabaugh KJ, Zhou J, Lambert PF, Yang P, Davis JS, Wang C. The Hippo/YAP pathway
1024 interacts with EGFR signaling and HPV oncoproteins to regulate cervical cancer
1025 progression. *EMBO Mol Med*. 2015;7(11):1426-49. doi: 10.15252/emmm.201404976.

1026 18. Morgan EL, Patterson MR, Ryder EL, Lee SY, Wasson CW, Harper KL, Li Y, Griffin
1027 S, Blair GE, Whitehouse A, Macdonald A. MicroRNA-18a targeting of the STK4/MST1
1028 tumour suppressor is necessary for transformation in HPV positive cervical cancer. PLoS
1029 Pathog. 2020;16(6):e1008624. doi: 10.1371/journal.ppat.1008624.

1030 19. Rose PG, Bundy BN, Watkins EB, Thigpen JT, Deppe G, Maiman MA, Clarke-
1031 Pearson DL, Insalaco S. Concurrent cisplatin-based radiotherapy and chemotherapy for
1032 locally advanced cervical cancer. N Engl J Med. 1999;340(15):1144-53. doi:
1033 10.1056/NEJM199904153401502.

1034 20. Ryu SY, Lee WM, Kim K, Park SI, Kim BJ, Kim MH, Choi SC, Cho CK, Nam BH, Lee
1035 ED. Randomized clinical trial of weekly vs. triweekly cisplatin-based chemotherapy
1036 concurrent with radiotherapy in the treatment of locally advanced cervical cancer. Int J
1037 Radiat Oncol Biol Phys. 2011;81(4):e577-81. doi: 10.1016/j.ijrobp.2011.05.002.

1038 21. Zhu H, Luo H, Zhang W, Shen Z, Hu X, Zhu X. Molecular mechanisms of cisplatin
1039 resistance in cervical cancer. Drug Des Devel Ther. 2016;10:1885-95. doi:
1040 10.2147/DDDT.S106412.

1041 22. Moore DH, Blessing JA, McQuellon RP, Thaler HT, Celli D, Benda J, Miller DS, Olt
1042 G, King S, Boggess JF, Rocereto TF. Phase III study of cisplatin with or without paclitaxel in
1043 stage IVB, recurrent, or persistent squamous cell carcinoma of the cervix: a gynecologic
1044 oncology group study. J Clin Oncol. 2004;22(15):3113-9. doi: 10.1200/JCO.2004.04.170.

1045 23. Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS, Bologa CG, Karlsson A, Al-
1046 Lazikani B, Hersey A, Oprea TI, Overington JP. A comprehensive map of molecular drug
1047 targets. Nat Rev Drug Discov. 2017;16(1):19-34. doi: 10.1038/nrd.2016.230.

1048 24. Lang F, Foller M, Lang KS, Lang PA, Ritter M, Gulbins E, Vereninov A, Huber SM.
1049 Ion channels in cell proliferation and apoptotic cell death. J Membr Biol. 2005;205(3):147-57.
1050 doi: 10.1007/s00232-005-0780-5.

1051 25. Blackiston DJ, McLaughlin KA, Levin M. Bioelectric controls of cell proliferation: ion
1052 channels, membrane voltage and the cell cycle. *Cell Cycle*. 2009;8(21):3527-36. doi:
1053 10.4161/cc.8.21.9888.

1054 26. Urrego D, Tomczak AP, Zahed F, Stuhmer W, Pardo LA. Potassium channels in cell
1055 cycle and cell proliferation. *Philos Trans R Soc Lond B Biol Sci*. 2014;369(1638):20130094.
1056 doi: 10.1098/rstb.2013.0094.

1057 27. Prevarskaya N, Skryma R, Shuba Y. Ion Channels in Cancer: Are Cancer Hallmarks
1058 Oncochannelopathies? *Physiol Rev*. 2018;98(2):559-621. doi: 10.1152/physrev.00044.2016.

1059 28. Rosendo-Pineda MJ, Moreno CM, Vaca L. Role of ion channels during cell division.
1060 *Cell Calcium*. 2020;91:102258. doi: 10.1016/j.ceca.2020.102258.

1061 29. Qian X, Li J, Ding J, Wang Z, Duan L, Hu G. Glibenclamide exerts an antitumor
1062 activity through reactive oxygen species-c-jun NH₂-terminal kinase pathway in human
1063 gastric cancer cell line MGC-803. *Biochem Pharmacol*. 2008;76(12):1705-15. doi:
1064 10.1016/j.bcp.2008.09.009.

1065 30. Nunez M, Medina V, Cricco G, Croci M, Cocca C, Rivera E, Bergoc R, Martin G.
1066 Glibenclamide inhibits cell growth by inducing G0/G1 arrest in the human breast cancer cell
1067 line MDA-MB-231. *BMC Pharmacol Toxicol*. 2013;14:6. doi: 10.1186/2050-6511-14-6.

1068 31. Ru Q, Tian X, Wu YX, Wu RH, Pi MS, Li CY. Voltage-gated and ATP-sensitive K⁺
1069 channels are associated with cell proliferation and tumorigenesis of human glioma. *Oncol
1070 Rep*. 2014;31(2):842-8. doi: 10.3892/or.2013.2875.

1071 32. Yan B, Peng Z, Xing X, Du C. Glibenclamide induces apoptosis by activating reactive
1072 oxygen species dependent JNK pathway in hepatocellular carcinoma cells. *Biosci Rep*.
1073 2017;37(5). doi: 10.1042/bsr20170685.

1074 33. Vazquez-Sanchez AY, Hinojosa LM, Parraguirre-Martinez S, Gonzalez A, Morales F,
1075 Montalvo G, Vera E, Hernandez-Gallegos E, Camacho J. Expression of KATP channels in
1076 human cervical cancer: Potential tools for diagnosis and therapy. *Oncol Lett*.
1077 2018;15(5):6302-8. doi: 10.3892/ol.2018.8165.

1078 34. Seino S, Miki T. Physiological and pathophysiological roles of ATP-sensitive K+
1079 channels. *Prog Biophys Mol Biol.* 2003;81(2):133-76. doi: 10.1016/s0079-6107(02)00053-6.

1080 35. Isomoto S, Kondo C, Yamada M, Matsumoto S, Higashiguchi O, Horio Y, Matsuzawa
1081 Y, Kurachi Y. A novel sulfonylurea receptor forms with BIR (Kir6.2) a smooth muscle type
1082 ATP-sensitive K+ channel. *J Biol Chem.* 1996;271(40):24321-4. doi:
1083 10.1074/jbc.271.40.24321.

1084 36. Teisseire A, Palko-Labuz A, Sroda-Pomianek K, Michalak K. Voltage-Gated
1085 Potassium Channel Kv1.3 as a Target in Therapy of Cancer. *Front Oncol.* 2019;9:933. doi:
1086 10.3389/fonc.2019.00933.

1087 37. Huang X, Jan LY. Targeting potassium channels in cancer. *J Cell Biol.*
1088 2014;206(2):151-62. doi: 10.1083/jcb.201404136.

1089 38. Hover S, Foster B, Barr JN, Mankouri J. Viral dependence on cellular ion channels -
1090 an emerging anti-viral target? *J Gen Virol.* 2017;98(3):345-51. doi: 10.1099/jgv.0.000712.

1091 39. DeFilippis RA, Goodwin EC, Wu L, DiMaio D. Endogenous human papillomavirus E6
1092 and E7 proteins differentially regulate proliferation, senescence, and apoptosis in HeLa
1093 cervical carcinoma cells. *J Virol.* 2003;77(2):1551-63. doi: 10.1128/jvi.77.2.1551-1563.2003.

1094 40. Jabbar SF, Abrams L, Glick A, Lambert PF. Persistence of high-grade cervical
1095 dysplasia and cervical cancer requires the continuous expression of the human
1096 papillomavirus type 16 E7 oncogene. *Cancer Res.* 2009;69(10):4407-14. doi: 10.1158/0008-
1097 5472.CAN-09-0023.

1098 41. Jabbar SF, Park S, Schweizer J, Berard-Bergery M, Pitot HC, Lee D, Lambert PF.
1099 Cervical cancers require the continuous expression of the human papillomavirus type 16 E7
1100 oncprotein even in the presence of the viral E6 oncprotein. *Cancer Res.*
1101 2012;72(16):4008-16. doi: 10.1158/0008-5472.CAN-11-3085.

1102 42. Mikhailov MV, Mikhailova EA, Ashcroft SJ. Molecular structure of the glibenclamide
1103 binding site of the beta-cell K(ATP) channel. *FEBS Lett.* 2001;499(1-2):154-60. doi:
1104 10.1016/s0014-5793(01)02538-8.

1105 43. Brauner T, Hulser DF, Strasser RJ. Comparative measurements of membrane
1106 potentials with microelectrodes and voltage-sensitive dyes. *Biochim Biophys Acta*.
1107 1984;771(2):208-16. doi: 10.1016/0005-2736(84)90535-2.

1108 44. Epps DE, Wolfe ML, Groppi V. Characterization of the steady-state and dynamic
1109 fluorescence properties of the potential-sensitive dye bis-(1,3-dibutylbarbituric
1110 acid)trimethine oxonol (Dibac4(3)) in model systems and cells. *Chem Phys Lipids*.
1111 1994;69(2):137-50. doi.

1112 45. Tinker A, Aziz Q, Li Y, Specterman M. ATP-Sensitive Potassium Channels and Their
1113 Physiological and Pathophysiological Roles. *Compr Physiol*. 2018;8(4):1463-511. doi:
1114 10.1002/cphy.c170048
1115 10.1002/cphy.c170048.

1116 46. Knight GL, Pugh AG, Yates E, Bell I, Wilson R, Moody CA, Laimins LA, Roberts S. A
1117 cyclin-binding motif in human papillomavirus type 18 (HPV18) E1^E4 is necessary for
1118 association with CDK-cyclin complexes and G2/M cell cycle arrest of keratinocytes, but is
1119 not required for differentiation-dependent viral genome amplification or L1 capsid protein
1120 expression. *Virology*. 2011;412(1):196-210. doi: 10.1016/j.virol.2011.01.007.

1121 47. Jeon S, Lambert PF. Integration of human papillomavirus type 16 DNA into the
1122 human genome leads to increased stability of E6 and E7 mRNAs: implications for cervical
1123 carcinogenesis. *Proc Natl Acad Sci U S A*. 1995;92(5):1654-8. doi: 10.1073/pnas.92.5.1654.

1124 48. Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in
1125 mammalian cells. *Cell Res*. 2002;12(1):9-18. doi: 10.1038/sj.cr.7290105.

1126 49. Huang L, Li B, Li W, Guo H, Zou F. ATP-sensitive potassium channels control glioma
1127 cells proliferation by regulating ERK activity. *Carcinogenesis*. 2009;30(5):737-44. doi:
1128 10.1093/carcin/bgp034.

1129 50. Huang L, Li B, Tang S, Guo H, Li W, Huang X, Yan W, Zou F. Mitochondrial KATP
1130 Channels Control Glioma Radioresistance by Regulating ROS-Induced ERK Activation. Mol
1131 Neurobiol. 2015;52(1):626-37. doi: 10.1007/s12035-014-8888-1.

1132 51. Shaulian E, Karin M. AP-1 as a regulator of cell life and death. Nat Cell Biol.
1133 2002;4(5):E131-6. doi: 10.1038/ncb0502-e131.

1134 52. Macdonald A, Mazaleyrat S, McCormick C, Street A, Burgoyne NJ, Jackson RM,
1135 Cazeaux V, Shelton H, Saksela K, Harris M. Further studies on hepatitis C virus NS5A-SH3
1136 domain interactions: identification of residues critical for binding and implications for viral
1137 RNA replication and modulation of cell signalling. J Gen Virol. 2005;86(Pt 4):1035-44. doi:
1138 10.1099/vir.0.80734-0.

1139 53. Morgan EL, Scarth JA, Patterson MR, Wasson CW, Hemingway GC, Barba-Moreno
1140 D, Macdonald A. E6-mediated activation of JNK drives EGFR signalling to promote
1141 proliferation and viral oncoprotein expression in cervical cancer. Cell Death Differ.
1142 2021;28(5):1669-87. doi: 10.1038/s41418-020-00693-9.

1143 54. Papavassiliou AG, Treier M, Bohmann D. Intramolecular signal transduction in c-Jun.
1144 EMBO J. 1995;14(9):2014-9. doi: 10.1002/j.1460-2075.1995.tb07193.x.

1145 55. Treier M, Bohmann D, Mlodzik M. JUN cooperates with the ETS domain protein
1146 pointed to induce photoreceptor R7 fate in the Drosophila eye. Cell. 1995;83(5):753-60. doi:
1147 10.1016/0092-8674(95)90188-4.

1148 56. Musti AM, Treier M, Bohmann D. Reduced ubiquitin-dependent degradation of c-Jun
1149 after phosphorylation by MAP kinases. Science. 1997;275(5298):400-2. doi:
1150 10.1126/science.275.5298.400.

1151 57. Wetherill LF, Holmes KK, Verow M, Muller M, Howell G, Harris M, Fishwick C,
1152 Stonehouse N, Foster R, Blair GE, Griffin S, Macdonald A. High-risk human papillomavirus
1153 E5 oncoprotein displays channel-forming activity sensitive to small-molecule inhibitors. J
1154 Virol. 2012;86(9):5341-51. doi: 10.1128/jvi.06243-11.

1155 58. Wetherill LF, Wasson CW, Swinscoe G, Kealy D, Foster R, Griffin S, Macdonald A.

1156 Alkyl-imino sugars inhibit the pro-oncogenic ion channel function of human papillomavirus

1157 (HPV) E5. *Antiviral Res.* 2018;158:113-21. doi: 10.1016/j.antiviral.2018.08.005.

1158 59. Royle J, Dobson SJ, Muller M, Macdonald A. Emerging Roles of Viroporins Encoded

1159 by DNA Viruses: Novel Targets for Antivirals? *Viruses.* 2015;7(10):5375-87. doi:

1160 10.3390/v7102880.

1161 60. Panou MM, Antoni M, Morgan EL, Loundras EA, Wasson CW, Welberry-Smith M,

1162 Mankouri J, Macdonald A. Glibenclamide inhibits BK polyomavirus infection in kidney cells

1163 through CFTR blockade. *Antiviral Res.* 2020;178:104778. doi:

1164 10.1016/j.antiviral.2020.104778.

1165 61. Carden H, Dallas ML, Hughes DJ, Lippiat JD, Mankouri J, Whitehouse A. Kv1.3

1166 induced hyperpolarisation and Cav3.2-mediated calcium entry are required for efficient

1167 Kaposi's sarcoma-associated herpesvirus lytic replication. *bioRxiv.* 2021. doi:

1168 10.1101/2021.09.10.459757.

1169 62. Dobson SJ, Mankouri J, Whitehouse A. Identification of potassium and calcium

1170 channel inhibitors as modulators of polyomavirus endosomal trafficking. *Antiviral Res.*

1171 2020;179:104819. doi: 10.1016/j.antiviral.2020.104819.

1172 63. Dubey RC, Mishra N, Gaur R. G protein-coupled and ATP-sensitive inwardly

1173 rectifying potassium ion channels are essential for HIV entry. *Sci Rep.* 2019;9(1):4113. doi:

1174 10.1038/s41598-019-40968-x.

1175 64. Eleftherianos I, Won S, Chtarbanova S, Squiban B, Ocorr K, Bodmer R, Beutler B,

1176 Hoffmann JA, Imler JL. ATP-sensitive potassium channel (K(ATP))-dependent regulation of

1177 cardiotropic viral infections. *Proc Natl Acad Sci U S A.* 2011;108(29):12024-9. doi:

1178 10.1073/pnas.1108926108.

1179 65. Xu K, Sun G, Li M, Chen H, Zhang Z, Qian X, Li P, Xu L, Huang W, Wang X.

1180 Glibenclamide Targets Sulfonylurea Receptor 1 to Inhibit p70S6K Activity and Upregulate

1181 KLF4 Expression to Suppress Non-Small Cell Lung Carcinoma. *Mol Cancer Ther.*
1182 2019;18(11):2085-96. doi: 10.1158/1535-7163.MCT-18-1181.

1183 66. Chen H, Zhao L, Meng Y, Qian X, Fan Y, Zhang Q, Wang C, Lin F, Chen B, Xu L,
1184 Huang W, Chen J, Wang X. Sulfonylurea receptor 1-expressing cancer cells induce cancer-
1185 associated fibroblasts to promote non-small cell lung cancer progression. *Cancer Lett.*
1186 2022;536:215611. doi: 10.1016/j.canlet.2022.215611.

1187 67. Chen M, Dong Y, Simard JM. Functional coupling between sulfonylurea receptor type
1188 1 and a nonselective cation channel in reactive astrocytes from adult rat brain. *J Neurosci.*
1189 2003;23(24):8568-77. doi.

1190 68. Zerangue N, Schwappach B, Jan YN, Jan LY. A new ER trafficking signal regulates
1191 the subunit stoichiometry of plasma membrane K(ATP) channels. *Neuron.* 1999;22(3):537-
1192 48. doi.

1193 69. Yuan H, Michelsen K, Schwappach B. 14-3-3 dimers probe the assembly status of
1194 multimeric membrane proteins. *Curr Biol.* 2003;13(8):638-46. doi: 10.1016/s0960-
1195 9822(03)00208-2.

1196 70. Heusser K, Yuan H, Neagoe I, Tarasov AI, Ashcroft FM, Schwappach B. Scavenging
1197 of 14-3-3 proteins reveals their involvement in the cell-surface transport of ATP-sensitive K⁺
1198 channels. *J Cell Sci.* 2006;119(Pt 20):4353-63. doi: 10.1242/jcs.03196.

1199 71. Takahashi A, Yamaguchi H, Miyamoto H. Change in K⁺ current of HeLa cells with
1200 progression of the cell cycle studied by patch-clamp technique. *Am J Physiol.* 1993;265(2 Pt
1201 1):C328-36. doi: 10.1152/ajpcell.1993.265.2.C328.

1202 72. Arcangeli A, Bianchi L, Becchetti A, Faravelli L, Coronello M, Mini E, Olivotto M,
1203 Wanke E. A novel inward-rectifying K⁺ current with a cell-cycle dependence governs the
1204 resting potential of mammalian neuroblastoma cells. *J Physiol.* 1995;489 (Pt 2):455-71. doi:
1205 10.1113/jphysiol.1995.sp021065.

1206 73. Pardo LA, Bruggemann A, Camacho J, Stuhmer W. Cell cycle-related changes in the
1207 conducting properties of r-eag K⁺ channels. *J Cell Biol.* 1998;143(3):767-75. doi:
1208 10.1083/jcb.143.3.767.

1209 74. Ouadid-Ahidouch H, Roudbaraki M, Delcourt P, Ahidouch A, Joury N, Prevarskaya
1210 N. Functional and molecular identification of intermediate-conductance Ca(2+)-activated
1211 K(+) channels in breast cancer cells: association with cell cycle progression. *Am J Physiol
1212 Cell Physiol.* 2004;287(1):C125-34. doi: 10.1152/ajpcell.00488.2003.

1213 75. Cripe TP, Alderborn A, Anderson RD, Parkkinen S, Bergman P, Haugen TH,
1214 Pettersson U, Turek LP. Transcriptional activation of the human papillomavirus-16 P97
1215 promoter by an 88-nucleotide enhancer containing distinct cell-dependent and AP-1-
1216 responsive modules. *New Biol.* 1990;2(5):450-63. doi:
1217 76. Butz K, Hoppe-Seyler F. Transcriptional control of human papillomavirus (HPV)
1218 oncogene expression: composition of the HPV type 18 upstream regulatory region. *J Virol.*
1219 1993;67(11):6476-86. doi:
1220 77. Kyo S, Klumpp DJ, Inoue M, Kanaya T, Laimins LA. Expression of AP1 during
1221 cellular differentiation determines human papillomavirus E6/E7 expression in stratified
1222 epithelial cells. *J Gen Virol.* 1997;78 (Pt 2):401-11. doi: 10.1099/0022-1317-78-2-401
1223 10.1099/0022-1317-78-2-401.
1224 78. Wasson CW, Morgan EL, Muller M, Ross RL, Hartley M, Roberts S, Macdonald A.
1225 Human papillomavirus type 18 E5 oncogene supports cell cycle progression and impairs
1226 epithelial differentiation by modulating growth factor receptor signalling during the virus life
1227 cycle. *Oncotarget.* 2017;8(61):103581-600. doi: 10.18632/oncotarget.21658.
1228 79. Luna AJ, Sterk RT, Griego-Fisher AM, Chung JY, Berggren KL, Bondu V, Barraza-
1229 Flores P, Cowan AT, Gan GN, Yilmaz E, Cho H, Kim JH, Hewitt SM, Bauman JE, Ozbun
1230 MA. MEK/ERK signaling is a critical regulator of high-risk human papillomavirus oncogene

1231 expression revealing therapeutic targets for HPV-induced tumors. *PLoS Pathog.*
1232 2021;17(1):e1009216. doi: 10.1371/journal.ppat.1009216.

1233 80. Mankouri J, Taneja TK, Smith AJ, Ponnambalam S, Sivaprasadarao A. Kir6.2
1234 mutations causing neonatal diabetes prevent endocytosis of ATP-sensitive potassium
1235 channels. *EMBO J.* 2006;25(17):4142-51. doi: 10.1038/sj.emboj.7601275.

1236 81. Morgan EL, Patterson MR, Barba-Moreno D, Scarth JA, Wilson A, Macdonald A. The
1237 deubiquitinase (DUB) USP13 promotes Mcl-1 stabilisation in cervical cancer. *Oncogene.*
1238 2021;40(11):2112-29. doi: 10.1038/s41388-021-01679-8.

1239 82. Bristol ML, James CD, Wang X, Fontan CT, Morgan IM. Estrogen Attenuates the
1240 Growth of Human Papillomavirus-Positive Epithelial Cells. *mSphere.* 2020;5(2). doi:
1241 10.1128/mSphere.00049-20.

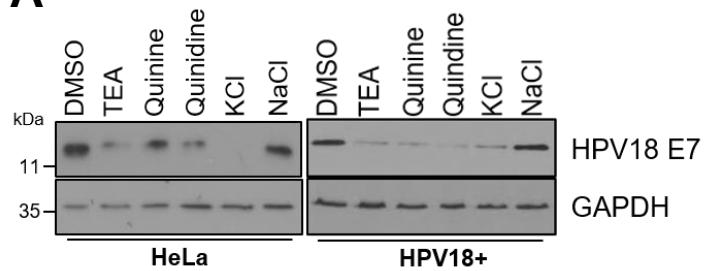
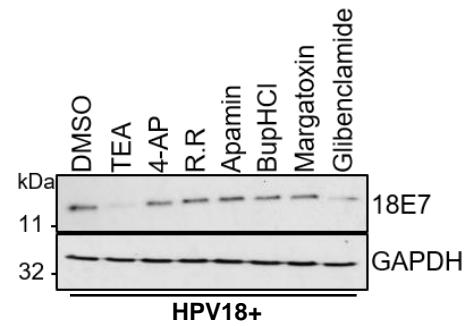
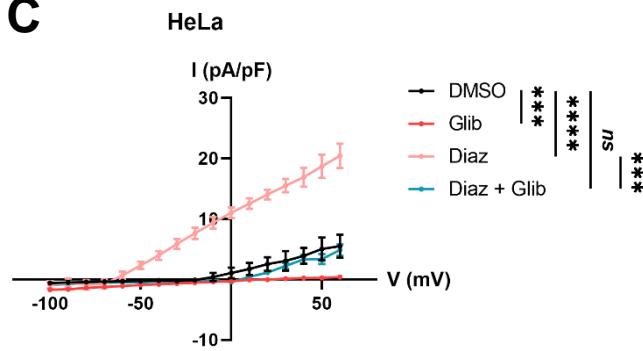
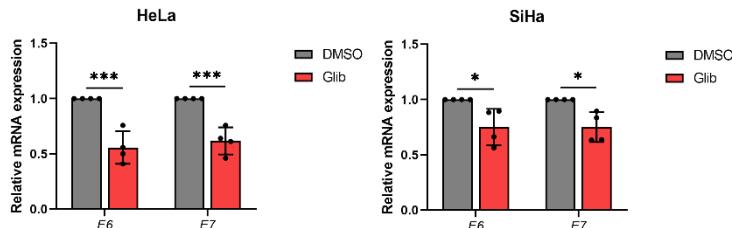
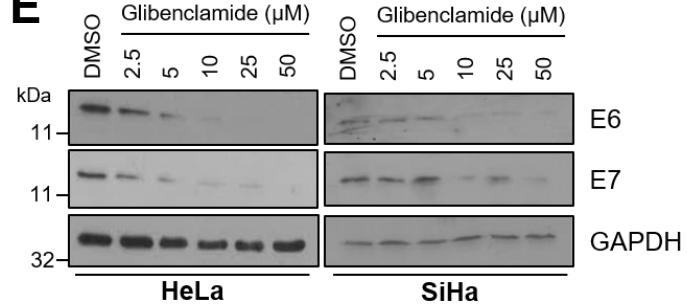
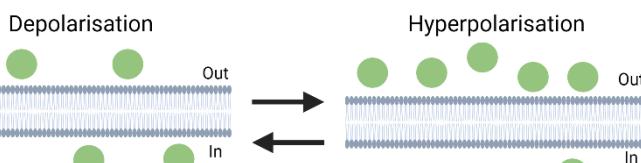
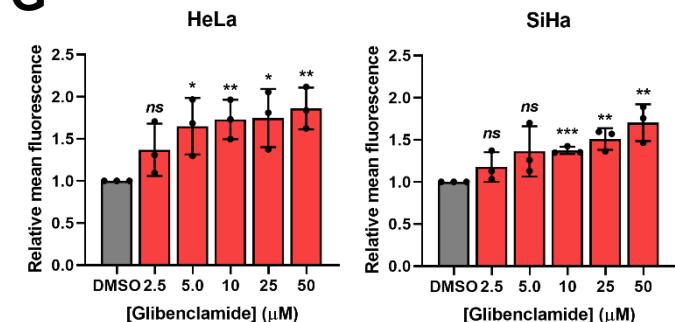
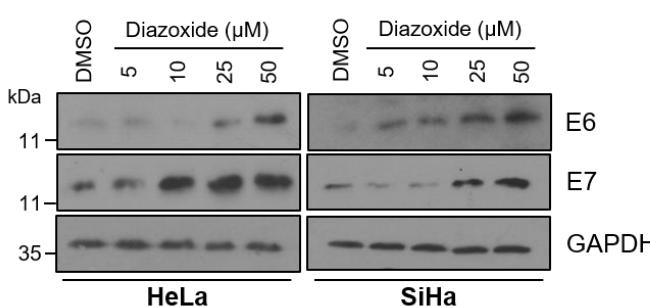
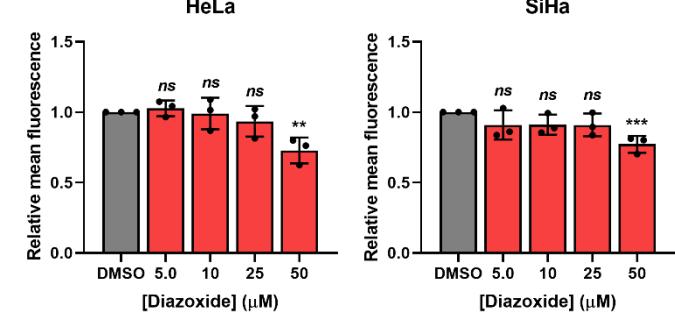
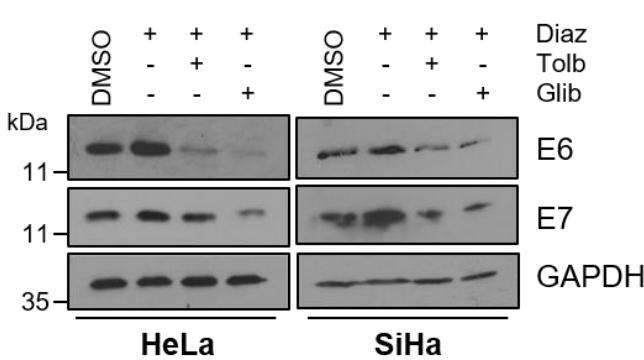
1242 83. Sundqvist A, Voytyuk O, Hamdi M, Popeijus HE, van der Burgt CB, Janssen J,
1243 Martens JWM, Moustakas A, Heldin CH, Ten Dijke P, van Dam H. JNK-Dependent cJun
1244 Phosphorylation Mitigates TGFbeta- and EGF-Induced Pre-Malignant Breast Cancer Cell
1245 Invasion by Suppressing AP-1-Mediated Transcriptional Responses. *Cells.* 2019;8(12). doi:
1246 10.3390/cells8121481.

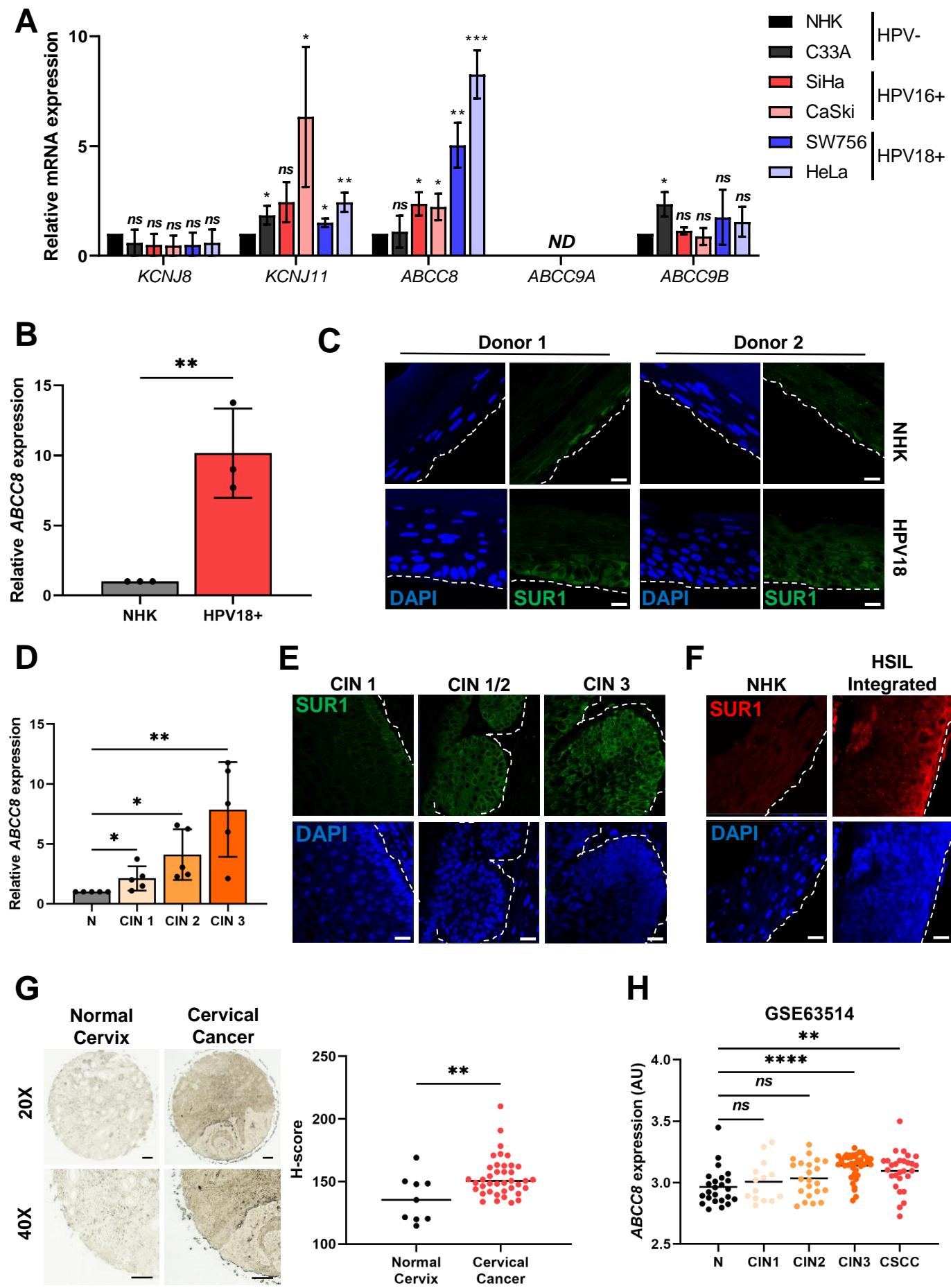
1247 84. Jiang M, Milner J. Selective silencing of viral gene expression in HPV-positive human
1248 cervical carcinoma cells treated with siRNA, a primer of RNA interference. *Oncogene.*
1249 2002;21(39):6041-8. doi: 10.1038/sj.onc.1205878.

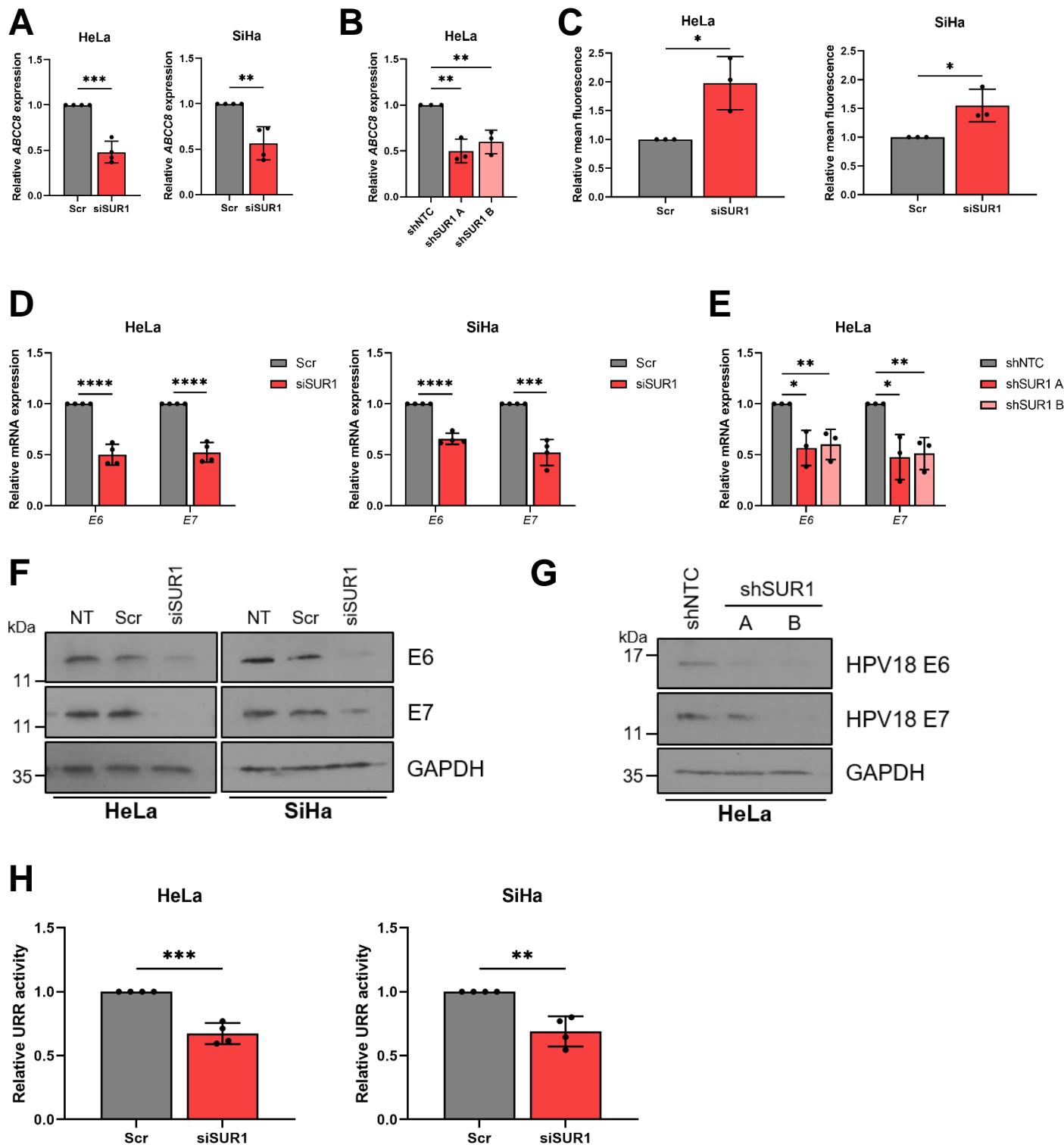
1250 85. Hall AH, Alexander KA. RNA interference of human papillomavirus type 18 E6 and
1251 E7 induces senescence in HeLa cells. *J Virol.* 2003;77(10):6066-9. doi:
1252 10.1128/jvi.77.10.6066-6069.2003.

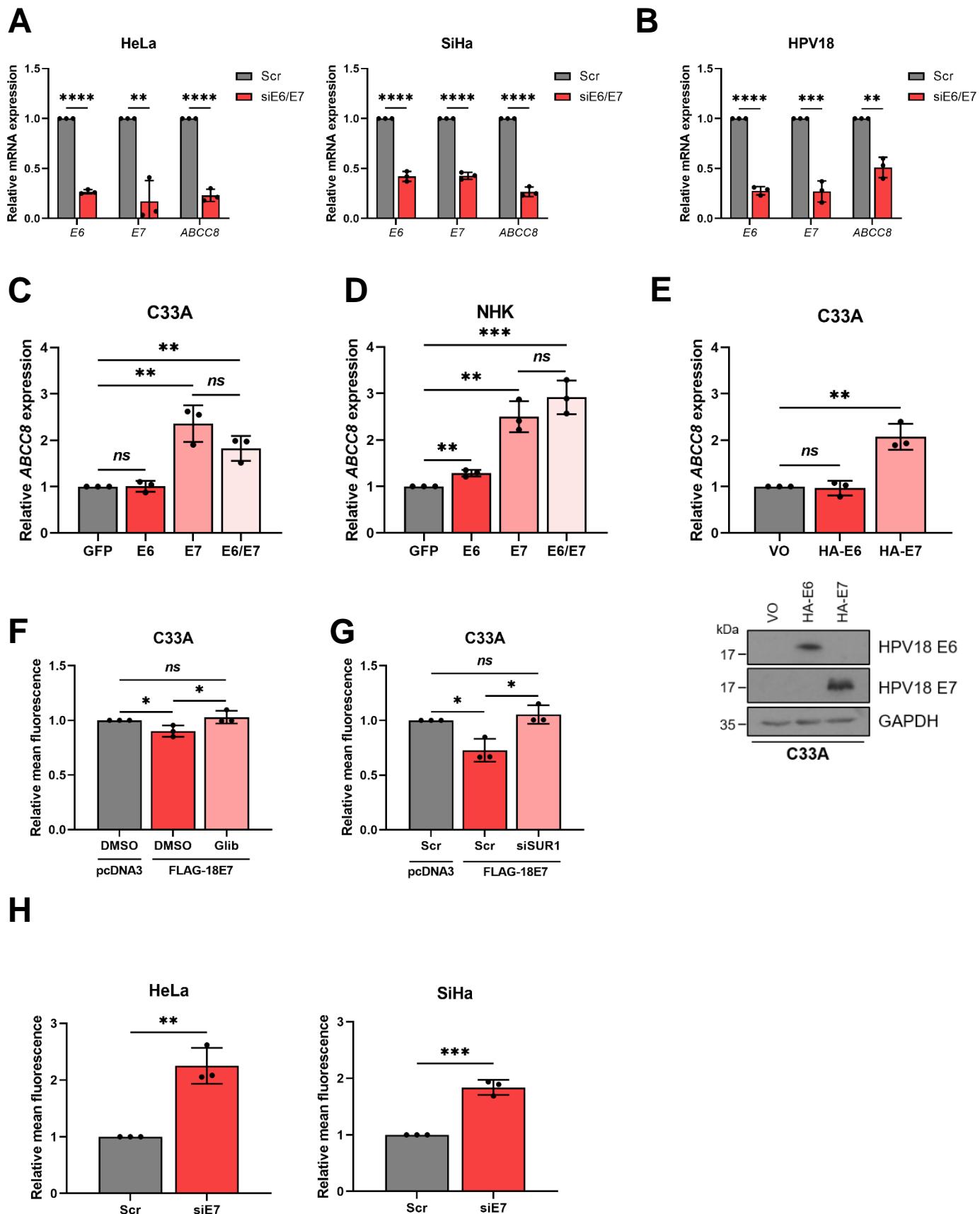
1253 86. Wilson R, Ryan GB, Knight GL, Laimins LA, Roberts S. The full-length E1E4 protein
1254 of human papillomavirus type 18 modulates differentiation-dependent viral DNA amplification
1255 and late gene expression. *Virology.* 2007;362(2):453-60. doi: 10.1016/j.virol.2007.01.005.

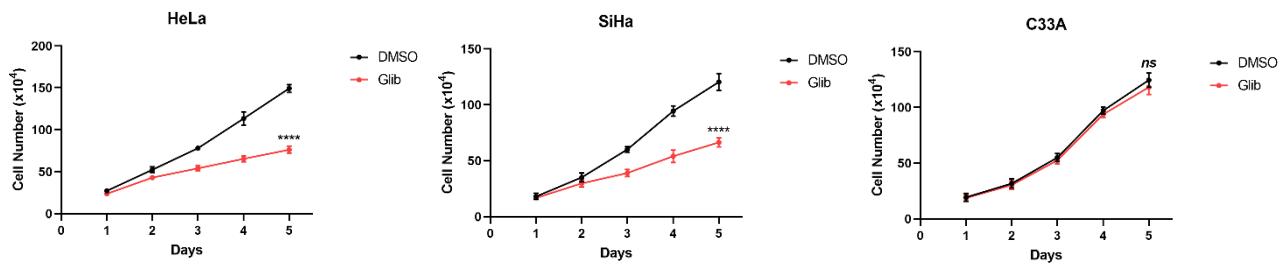
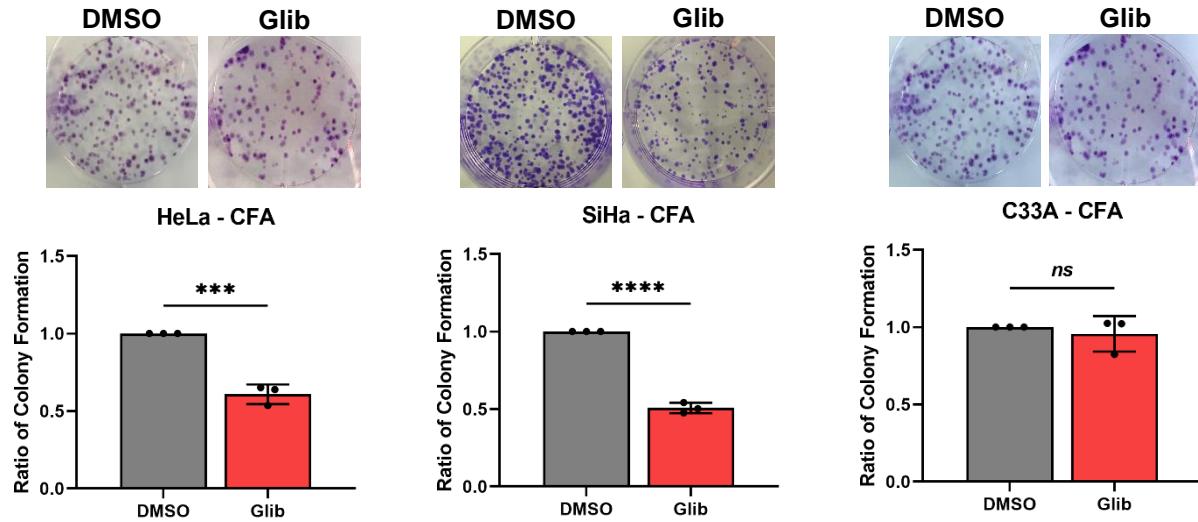
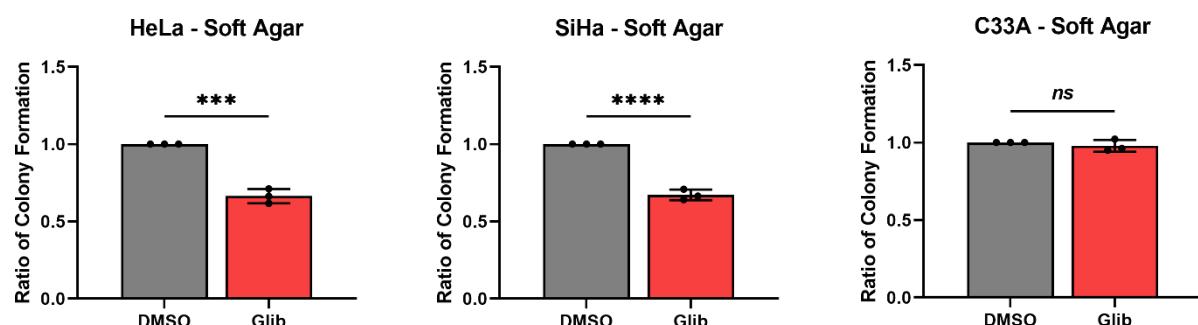
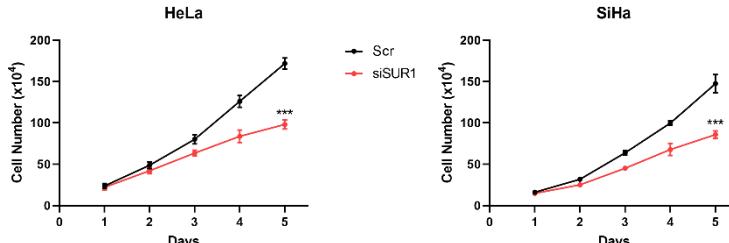
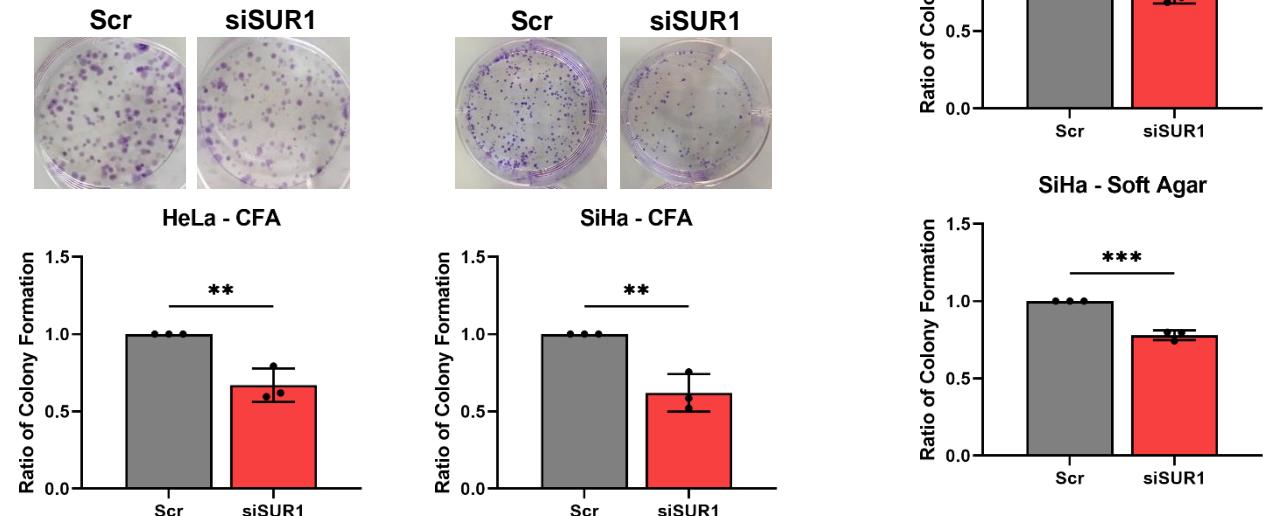
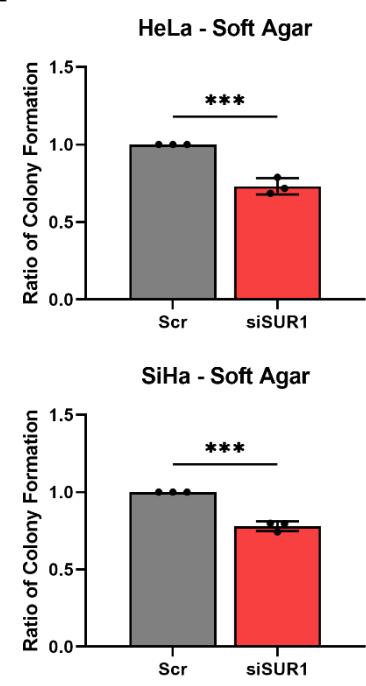
1256 87. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time
1257 quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods*. 2001;25(4):402-8. doi:
1258 10.1006/meth.2001.1262.











1259 88. Varghese F, Bukhari AB, Malhotra R, De A. IHC Profiler: an open source plugin for
1260 the quantitative evaluation and automated scoring of immunohistochemistry images of
1261 human tissue samples. *PLoS One*. 2014;9(5):e96801. doi: 10.1371/journal.pone.0096801.


1262 89. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image
1263 analysis. *Nat Methods*. 2012;9(7):671-5. doi: 10.1038/nmeth.2089.


1264 90. den Boon JA, Pyeon D, Wang SS, Horswill M, Schiffman M, Sherman M, Zuna RE,
1265 Wang Z, Hewitt SM, Pearson R, Schott M, Chung L, He Q, Lambert P, Walker J, Newton
1266 MA, Wentzensen N, Ahlquist P. Molecular transitions from papillomavirus infection to
1267 cervical precancer and cancer: Role of stromal estrogen receptor signaling. *Proc Natl Acad
1268 Sci U S A*. 2015;112(25):E3255-64. doi: 10.1073/pnas.1509322112.


1269







Figure 1

A

B

C

D

E

F

G

H

I

J

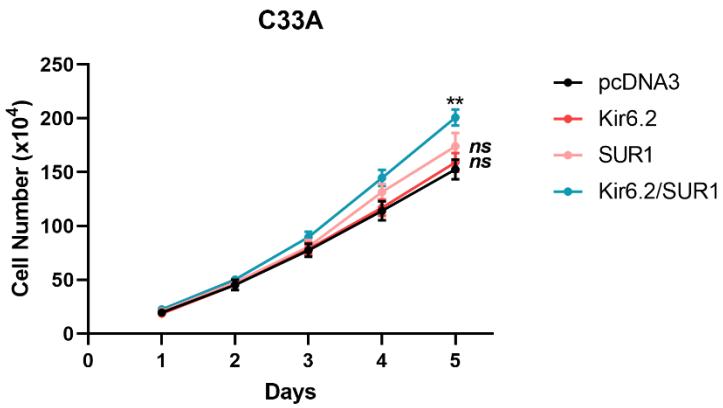
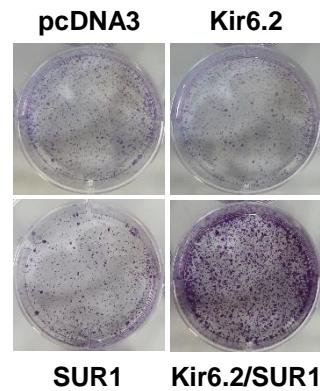
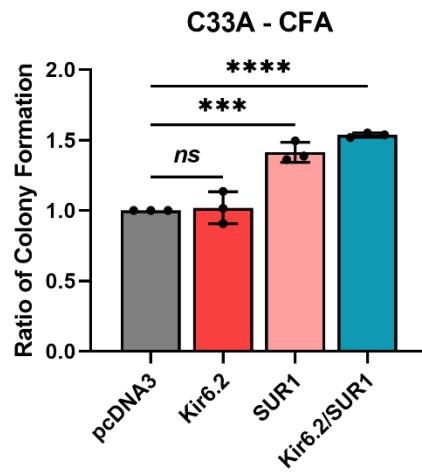
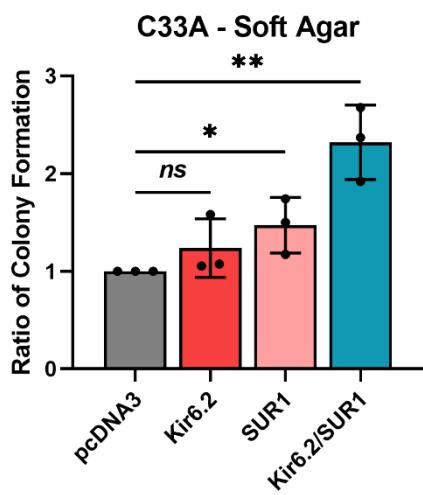




Figure 2

Figure 3

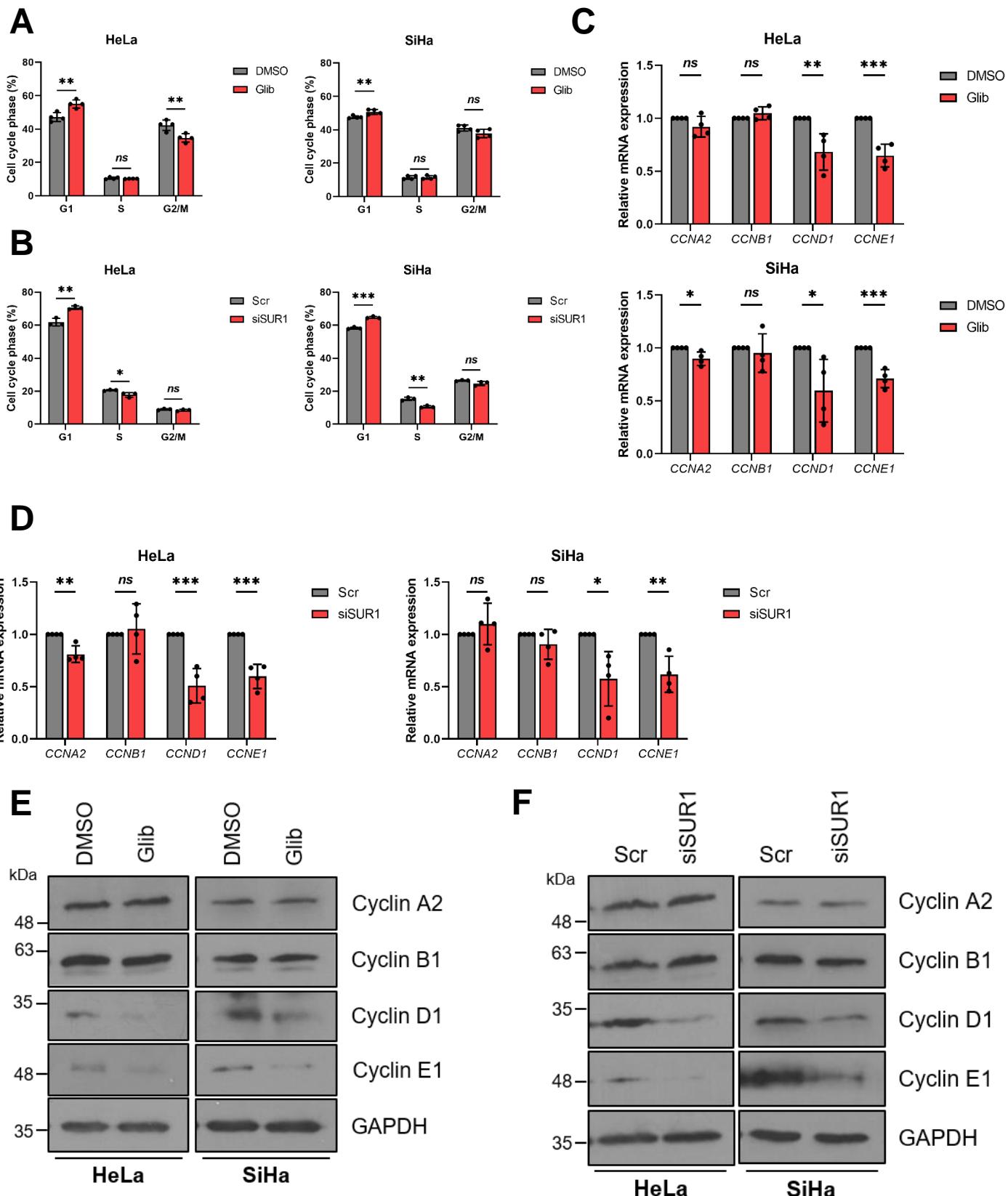

Figure 4

Figure 5**A****B****C****D****E****F**

Figure 6

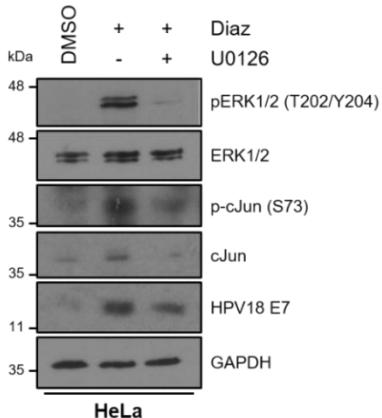

A**B****C**

Figure 7

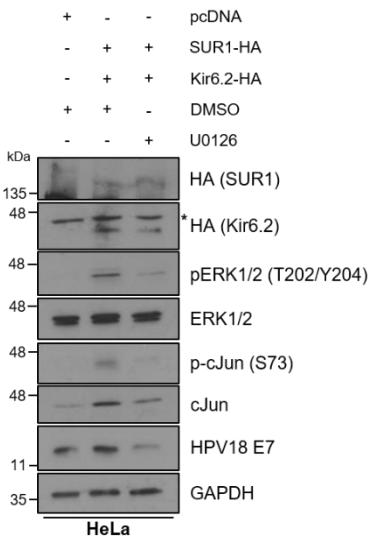
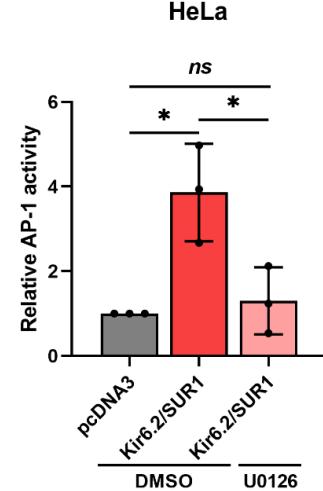
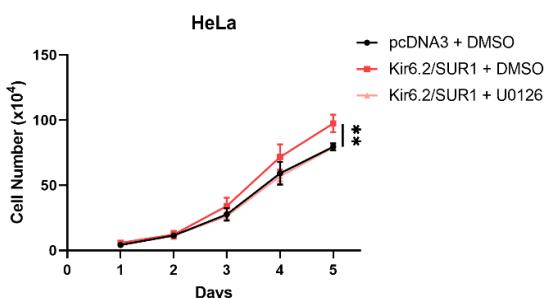
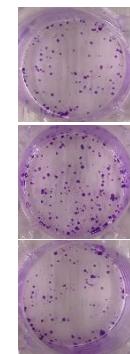
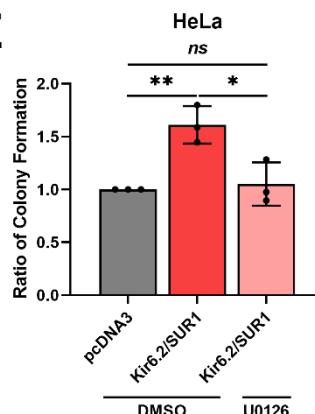
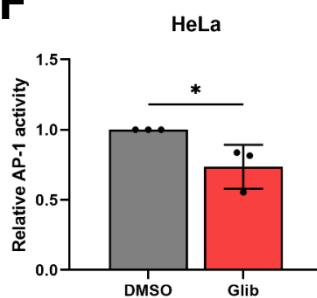


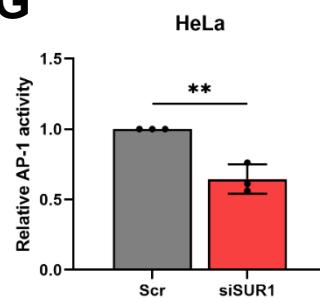
Figure 8

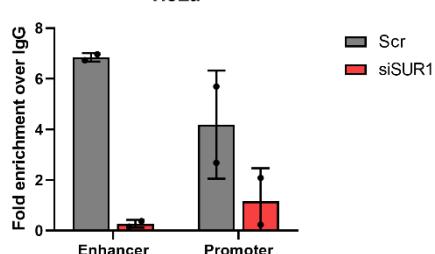

A

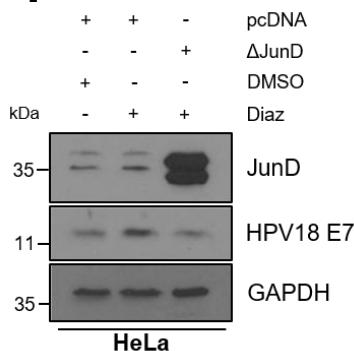

B

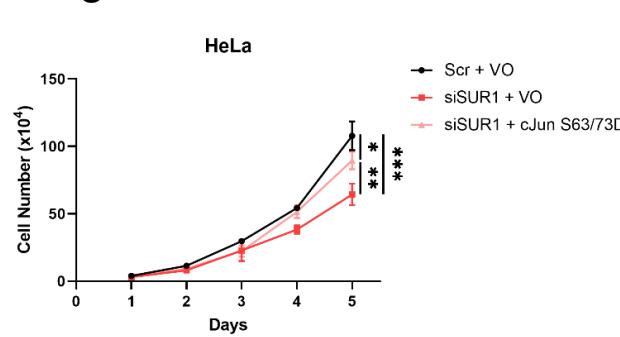


C

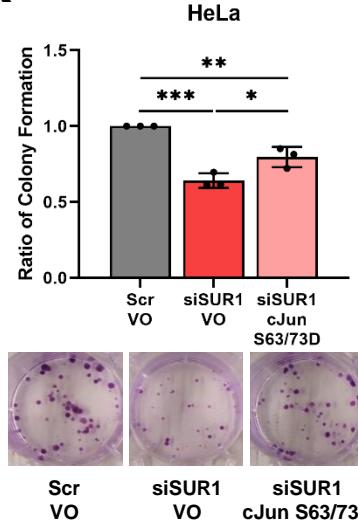

D

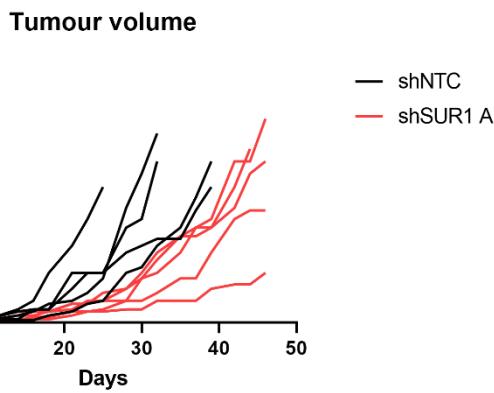
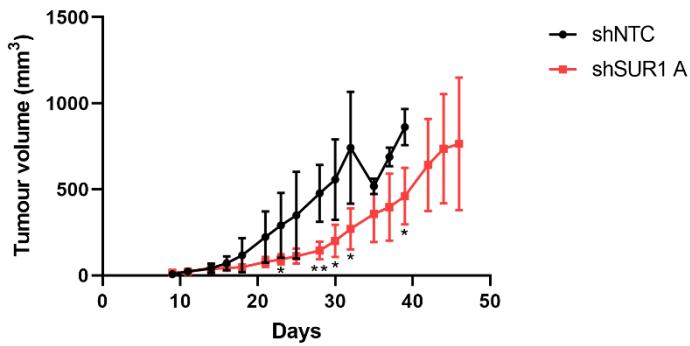
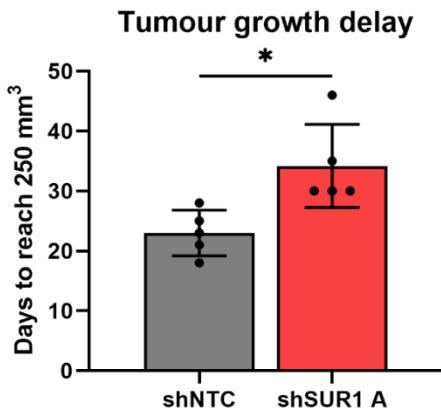
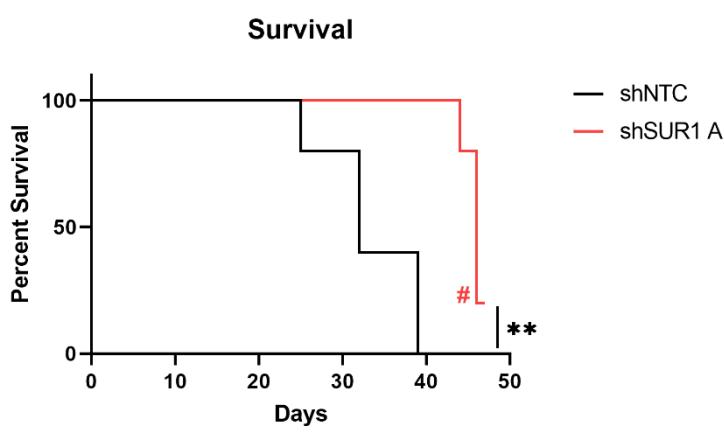

E

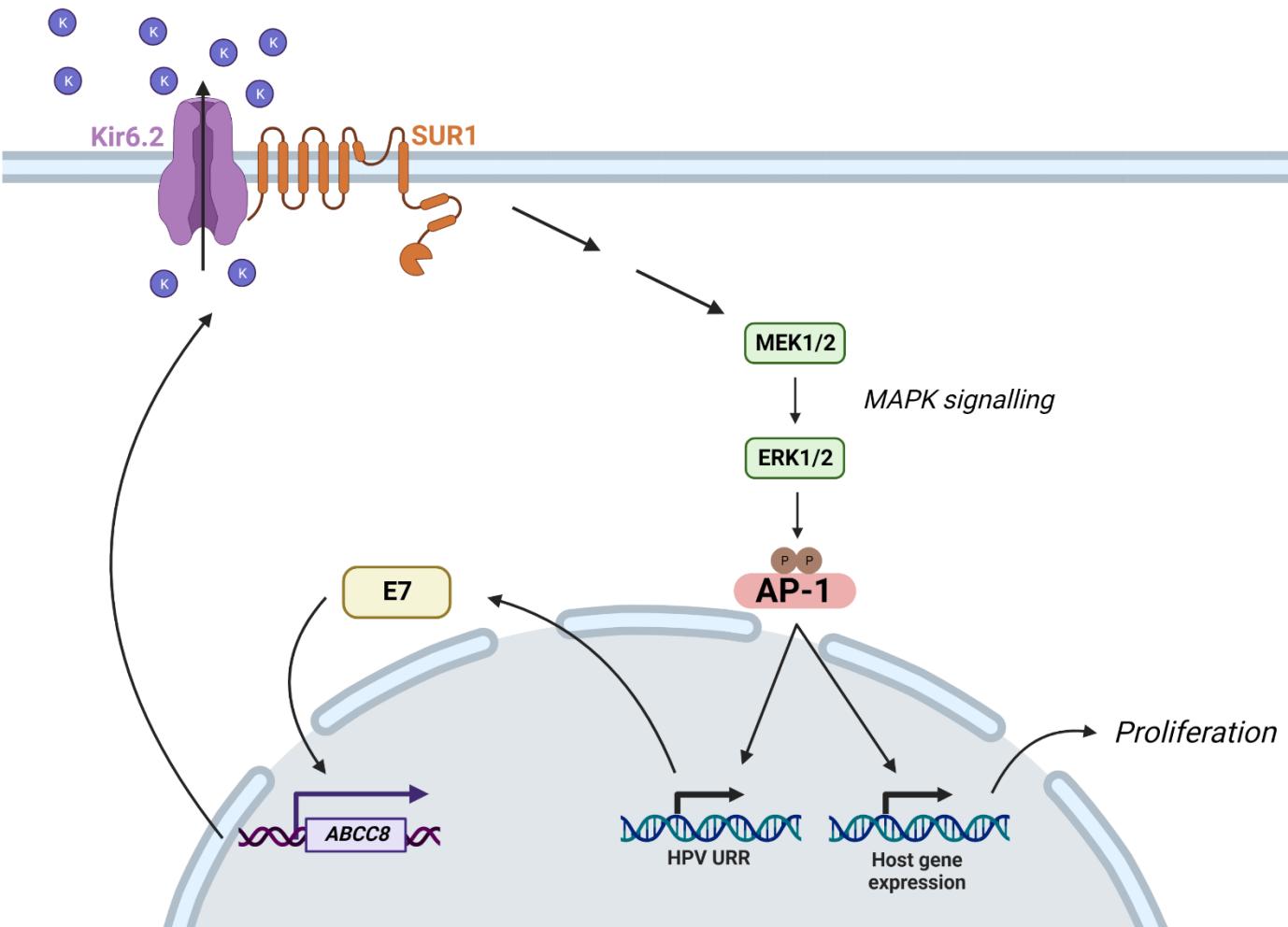

F

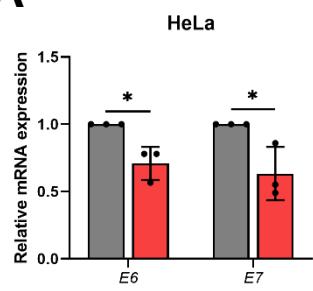
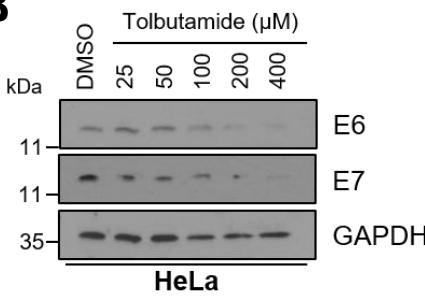
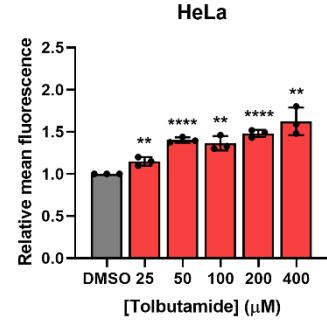

G


H


I

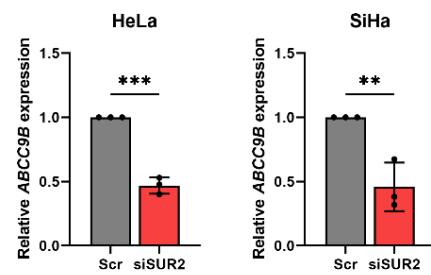




J


K

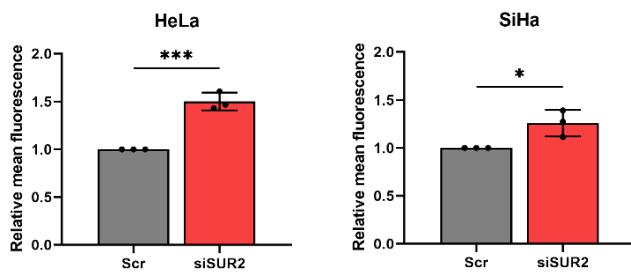



Figure 9

A**Tumour volume****B****C**

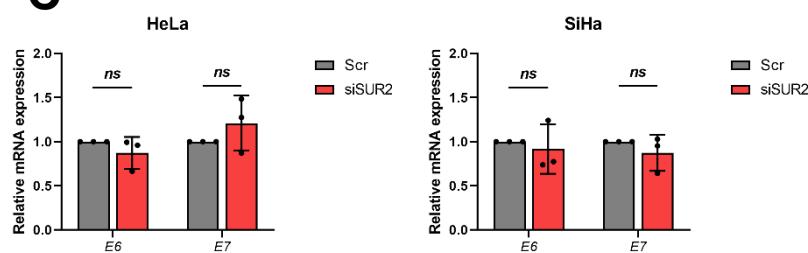
Figure 10

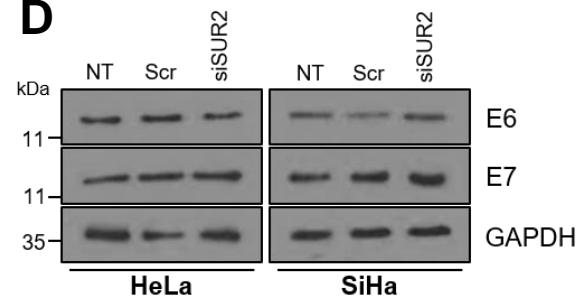


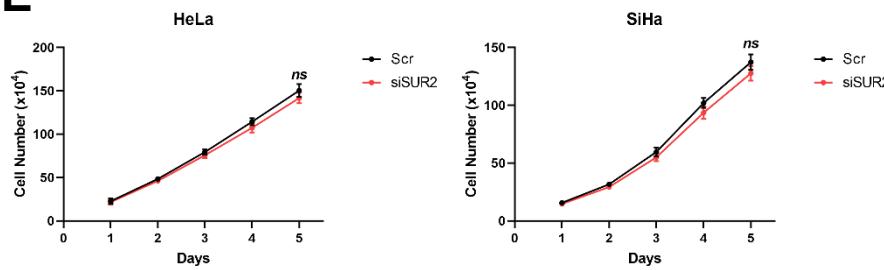
Supplementary Figure 1

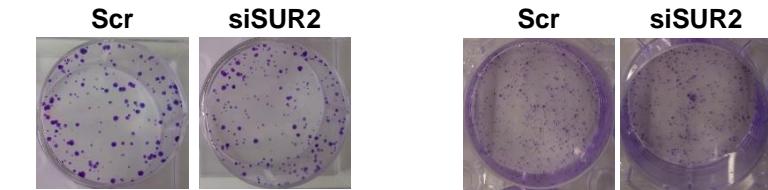

A**B****C**

Supplementary Figure 2


A

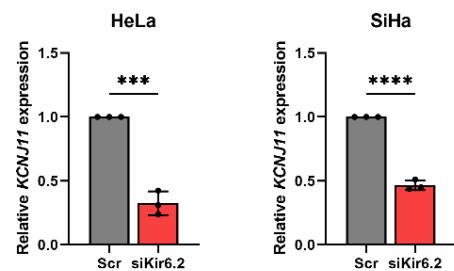

B


C

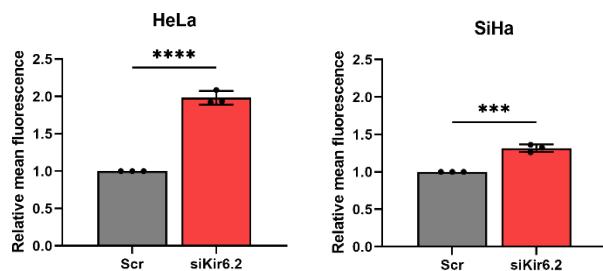

D

E

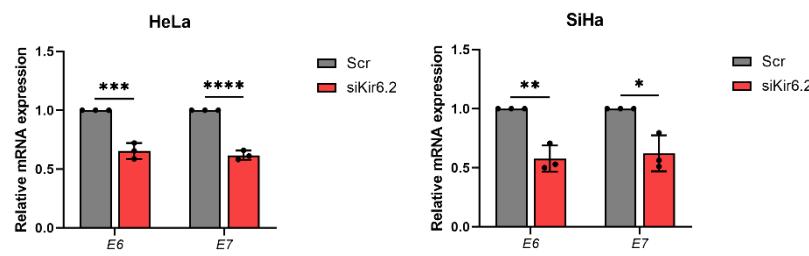
F

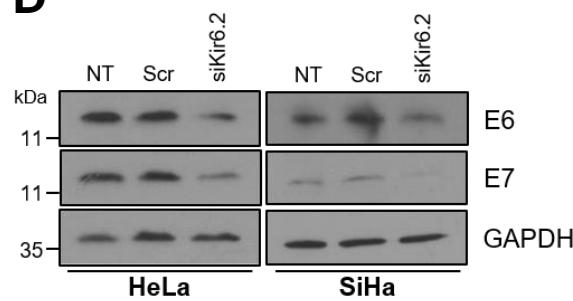


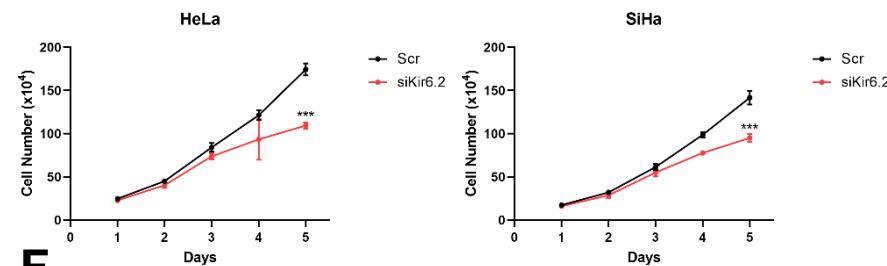
G

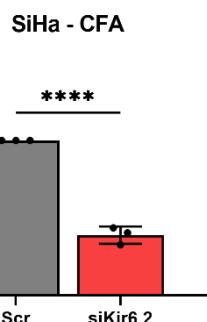
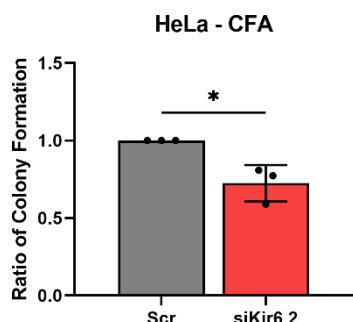
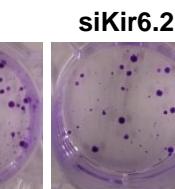
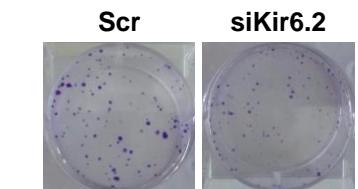


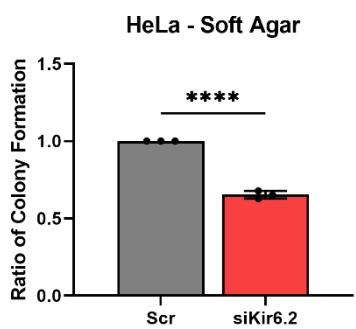
Supplementary Figure 3

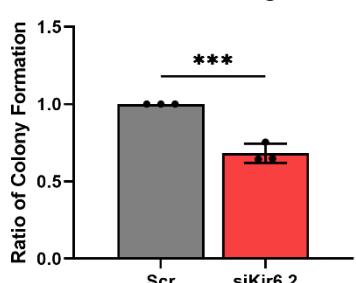

A

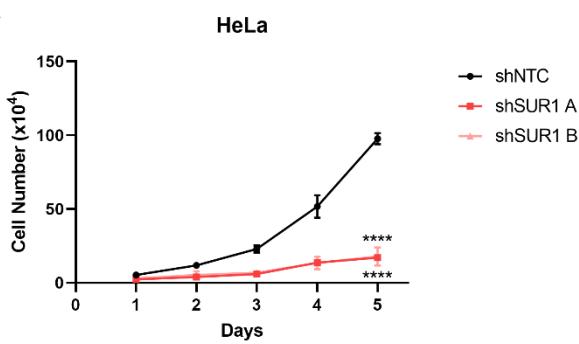
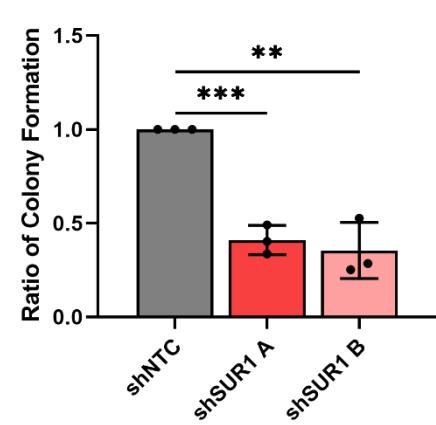
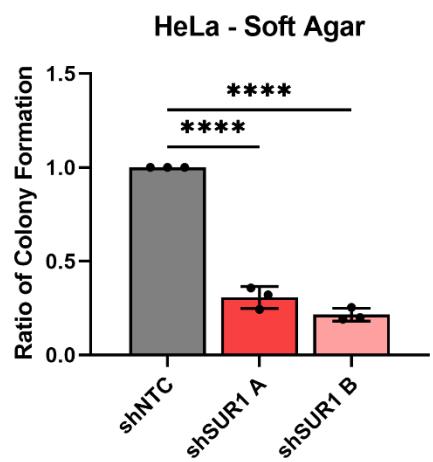

B

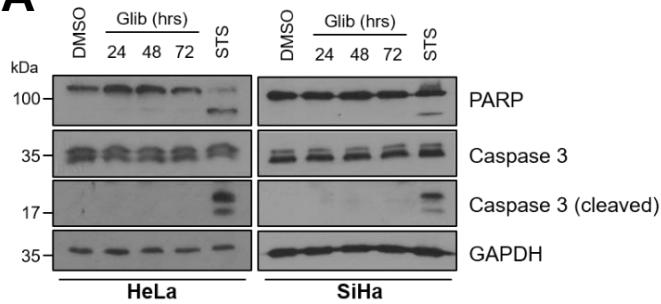
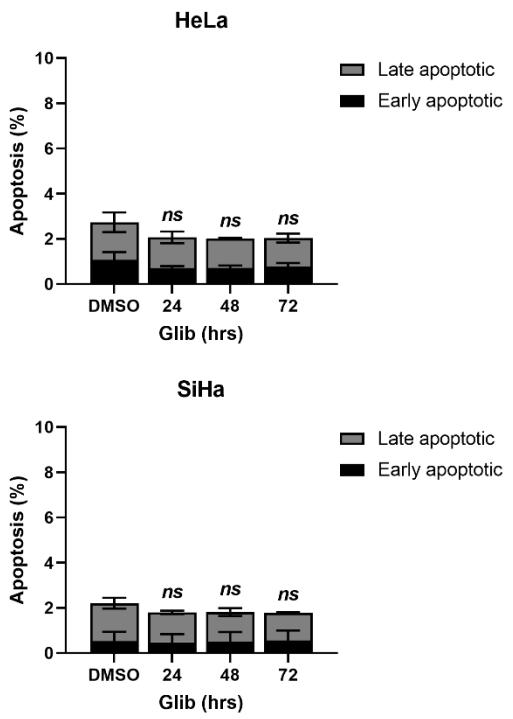

C





D


E


F




G



HeLa - Soft Agar

Supplementary Figure 4

A**B****C**

Supplementary Figure 5

A**B**

Supplementary Table 1

Transcript	Forward primer (5'-3')	Reverse primer (5'-3')
HPV16 <i>E6</i>	CTGCAATGTTTCAGGACCCAC	GTTGTTGCAGCTCTGTGCAT
HPV16 <i>E7</i>	ATTAATGACAGCTCAGAGGA	GCTTTGTACGCACAACCGAAGC
HPV18 <i>E6</i>	TGGCGCGCTTGAGGA	TGTTCAGTTCCGTGCACAGATC
HPV18 <i>E7</i>	GACCTAAGGCAACATTGCA	GCTCGTGACATAGAAGGTC
KCNJ8	CTGGCTGCTTCGCTATC	AGAATCAAAACCGTGATGGC
KCNJ11	CCAAGAAAGGCAACTGCAACG	ATGCTTGCTGAAGATGAGGGT
ABCC8	GGTGACCGAATCCCACCATC	CAGGGCAATTAGCAGCTTGG
ABCC9A	CTGGCTTCTTCAGAATGGT	AAATACCCCTCAGAAAAGACTAAAAC
ABCC9B	TGTGATGAAGCGAGGAAATA	TGACACTTCCATTCTGAGAGA
GFP	ACGTAAACGCCACAAGTTC	AAGTCGTGCTGCTTCATGTG
CCNA2	TGGAAAGCAAACAGTAAACAGCC	GGGCATCTTCACGCTCTATT
CCNB1	AAGAGCTTAAACTTGGTCTGGG	CTTGTAAGTCCTGATTACCATG
CCND1	CCGCTGCCATGAACCTACCT	ACGAAGGTCTGCGCGTGT
CCNE1	GCCAGCCTGGACAATAATG	CTTGCACGTTGAGTTGGGT
U6	CTCGCTCGGCAGCACA	AACGCTTCACGAATTGCGT