

1 **The chromodomain proteins, Cbx1 and Cbx2 have distinct roles in the**
2 **regulation of heterochromatin and virulence in the fungal wheat pathogen,**
3 ***Zymoseptoria tritici*.**

4

5 Running Title: *Z. tritici* chromodomain proteins, Cbx1 and Cbx2.

6

7 Callum J. Fraser¹, Julian C. Rutherford¹, Jason J. Rudd² and Simon K. Whitehall¹

8

9 ¹Biosciences Institute, Faculty of Medical Sciences, Newcastle University

10 Newcastle upon Tyne NE2 4HH, United Kingdom

11

12 ²Biointeractions and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ,

13 United Kingdom

14

15 Correspondence:

16 Email: simon.whitehall@ncl.ac.uk

17 Tel +44(0)1912085989

18

19 **SUMMARY**

20 Heterochromatin is characterized by specific histone post-translational modifications
21 such as the di- and tri-methylation of histone H3 on lysine 9 (H3K9me2/3), which direct
22 the recruitment of 'reader' proteins to chromatin. In the fungal phytopathogen,
23 *Zymoseptoria tritici*, deletion of the H3K9 methyltransferase gene *kmt1*, results in a
24 global increase in the expression of transposable elements (TEs), genome instability
25 and loss of virulence. Here we have identified two *Z. tritici* chromodomain proteins,
26 Cbx1 and Cbx2, that recognise H3K9me modifications. Cbx1 is a Heterochromatin
27 Protein 1 homolog that binds H3K9me2/3 *in vitro* and associates with heterochromatic
28 loci *in vivo*. Transcriptomic analysis also indicates that Cbx1 and Kmt1 regulate
29 overlapping sets of protein-encoding genes. However, unlike $\Delta kmt1$ mutants, $\Delta cbx1$
30 strains do not exhibit a global increase in TE expression and have only a partial
31 reduction in virulence, suggesting the existence of additional H3K9me reader proteins.
32 Accordingly, we have identified a fungal-specific chromodomain protein, Cbx2, that
33 binds H3K9me3 *in vitro*. Strikingly, the growth defects of $\Delta cbx1 \Delta cbx2$ double mutants
34 closely resemble those of $\Delta kmt1$ consistent with Cbx1 and Cbx2 playing redundant
35 roles in gene silencing. Overall, the data suggest that key functions of H3K9me
36 modifications are mediated by a combination of Cbx1 and Cbx2.

37

38 **KEY WORDS**

39 *Zymoseptoria tritici*, heterochromatin, H3 lysine 9 methylation, chromodomain,
40 heterochromatin protein 1 (HP1).

41 **INTRODUCTION**

42 *Zymoseptoria tritici* is a fungal pathogen of wheat that is responsible for septoria tritici
43 blotch disease. The initial phase of infection (10-14 days) is characterised by
44 symptomless intercellular colonisation of the stomatal cavity and evasion from
45 detection through the secretion of chitin binding proteins and likely, factors that repress
46 and manipulate the wheat immune response (Goodwin *et al.*, 2011, Lee *et al.*, 2014,
47 Marshall *et al.*, 2011, Rudd, 2015, Steinberg, 2015, Canzio *et al.*, 2014, Kumar & Kono,
48 2020). The second stage of infection is marked by death of the plant cells lining the
49 stomatal cavity and a switch to a necrotrophic growth phase (Rudd, 2015, Steinberg,
50 2015). The increase in nutrient availability allows a rapid increase in growth followed
51 by the formation of pycnidia, the asexual fruiting bodies of *Z. tritici*, which appear as
52 melanised black dots on the leaf surface (Steinberg, 2015). Unsurprisingly, the switch
53 in lifestyle during the infection process is accompanied by a major reprogramming of
54 the transcriptome (Kellner *et al.*, 2014, Rudd *et al.*, 2015), but the mechanisms by
55 which this is achieved are poorly understood.

56 The colonization of plant tissue by fungal pathogens requires the expression of
57 specific effector genes (Uhse & Djamei, 2018). Effector genes are often lowly
58 expressed in axenic culture but are strongly upregulated during the infection process.
59 In a number of plant-associated fungi, putative effector genes are located in
60 heterochromatic regions of the genome that are often enriched with transposable
61 elements (TEs) and subject to transcriptional silencing (Soyer *et al.*, 2015).
62 Accordingly, the disruption of heterochromatin in the oil seed rape pathogen
63 *Leptosphaeria maculans* results in the de-repression of effector genes located in
64 repeat rich regions (Soyer *et al.*, 2014) and the expression of genes that allow *Epichloe*
65 *festucae* to form a mutualistic interaction with the grass species, *Lolium perenne* are

66 also regulated by heterochromatin (Chujo & Scott, 2014). These findings have led to
67 a model whereby reprogramming of heterochromatic regions of the genome regulates
68 effector gene expression programmes and facilitates plant colonization (Soyer *et al.*,
69 2015).

70 Heterochromatin is characterised by specific histone post translation
71 modifications (PTMs), notably di- and tri-methylation of histone H3 on lysine 9
72 (H3K9me2/3) and the tri-methylation of lysine 27 (H3K27me3) (Allshire & Madhani,
73 2018). H3K9me2/3 is considered to be a hallmark of constitutive heterochromatin
74 whereas H3K27me3 in metazoans is commonly associated with facultative
75 heterochromatin that is reversible in response to appropriate stimuli (Allshire &
76 Madhani, 2018). Genome-wide mapping of these modifications in *Z. tritici* has revealed
77 that H3K9me2 is predominantly associated with TEs (Schotanus *et al.*, 2015).
78 H3K27me3 is associated with TEs but is also enriched at telomeres and on the
79 conditionally dispensable accessory chromosomes (Schotanus *et al.*, 2015). Deletion
80 of the H3K27 methyltransferase gene, *kmt6* results in increased expression of genes
81 located on accessory chromosomes but has only a subtle impact on virulence in wheat
82 infection assays (Möller *et al.*, 2019). In contrast, deletion of *kmt1*, which encodes the
83 H3K9 methyltransferase, results in growth defects *in vitro* and severely compromises
84 virulence (Möller *et al.*, 2019). H3K9me2/3 also plays a key role in maintaining
85 genome stability. In $\Delta kmt1$ strains, loci that were previously occupied by H3K9me3
86 are invaded by H3K27me3 which is accompanied by an increased frequency of large
87 scale chromosomal rearrangements and accessory chromosome loss (Möller *et al.*,
88 2019).

89 Histone PTMs modulate chromatin function by directing the recruitment of non-
90 histone proteins 'reader' proteins. Recognition of H3K9me2/3 is commonly achieved

91 by members of the Heterochromatin Protein 1 (HP1) family that have a conserved
92 domain organisation comprised of an N-terminal chromodomain (CD), and a C-
93 terminal chromoshadow domain (CSD) separated by a flexible hinge region (Canzio
94 *et al.*, 2014, Kumar & Kono, 2020). The CD is responsible for the recognition of
95 H3K9me2/3 whereas the CSD mediates homodimerization and provides a hub for the
96 docking of interacting proteins (Bannister *et al.*, 2001, Cowieson *et al.*, 2000, Smothers
97 & Henikoff, 2000). An HP1 dimer is capable of bridging two nucleosomes (Machida *et*
98 *al.*, 2018) and it is proposed that CD-CD interactions drive the formation of oligomeric
99 structures which condense chromatin and provide a platform for the assembly of
100 additional heterochromatin components (Canzio *et al.*, 2014, Kumar & Kono, 2020).

101 Here we have identified and characterised the *Z. tritici* HP1 homolog, Cbx1. We
102 find that Cbx1 and the H3K9 methyltransferase, Kmt1 regulate the expression of highly
103 similar sets of protein encoding genes and that Cbx1 is enriched at H3K9me-marked
104 loci. However, the removal of Cbx1 does not result in the phenotypes that are
105 associated with loss of Kmt1, suggesting that *Z. tritici* has additional H3K9me-
106 effectors. Consistent with this hypothesis, we show that a fungal-specific CD protein,
107 Cbx2, binds to H3K9me3 *in vitro* and plays a role in the silencing of some Kmt1-
108 regulated genes. Furthermore, genetic analysis is consistent with a model whereby
109 key biological effects of H3K9me PTMs in *Z. tritici* are mediated by a combination of
110 Cbx1 and Cbx2.

111

112 **RESULTS**

113 **Cbx1 is a *Z. tritici* HP1 homolog that binds H3K9me2/3**

114 Methylation of histone H3 on lysine 9 is required for the genome stability and virulence
115 of *Z. tritici* (Möller *et al.*, 2019). Therefore, we sought to identify the ‘reader’ proteins
116 that recognise this histone modification. In many organisms, H3K9me2/3 marks are
117 bound by members of the HP1 family of Chromobox (Cbx) proteins. BLAST analyses
118 of the *Z. tritici* genome sequence revealed a hypothetical protein ZtRRes_04004,
119 (hereafter called Cbx1) with an N-terminal chromodomain (CD) and a C-terminal
120 chromoshadow domain (CSD) that share high similarity with HP1 proteins from other
121 fungi (Fig 1). The Cbx1 CD is flanked by an acidic N-terminal patch and basic C-
122 terminal hinge region which are also characteristics of HP1-type proteins (Hiragami-
123 Hamada & Nakayama, 2019).

124 While HP1 proteins typically exhibit specificity for H3K9me2/3, both
125 *Tetrahymena* Hhp1 and *Arabidopsis* TFL2/LHP1 recognise H3K27me3 (Turck *et al.*,
126 2007, Yale *et al.*, 2016). This prompted us to assess the binding specificity of Cbx1.
127 Full-length Cbx1 was expressed as a GST fusion protein in *E. coli* and purified by
128 affinity and size exclusion chromatography. The binding capacity of GST-Cbx1 was
129 then investigated using a pull-down assay with biotinylated histone H3 peptides. In
130 these assays GST-Cbx1 exhibited a clear preference for H3K9me2 and H3K9me3
131 modified peptides. No preference for the H3K27me3 or H3K4me3 peptides relative to
132 the unmodified H3 peptide control was observed (Fig 2A & B). These results indicate
133 that Cbx1 is an HP1 family member that binds to H3K9me2/3 modifications *in vitro*.

134 The subcellular localisation of Cbx1 was determined by constructing a strain
135 expressing a GFP-tagged fusion protein (*cbx1-GFP*) under the control of its own
136 promoter. Fluorescence microscopy of *cbx1-GFP* cells revealed a strong nuclear GFP

137 signal (Fig 2C). Next, chromatin immunoprecipitation (ChIP) assays were used to
138 investigate the ability of Cbx1 to associate with H3K9me-enriched regions of the
139 genome (Fig 2D). A strong enrichment of Cbx1-GFP was observed at a TE
140 (DTH_element 299 5_ZTIPO323) that is known to be associated with H3K9me
141 (Schotanus *et al.*, 2015). Furthermore, a similar enrichment of Cbx1-GFP was also
142 found at a H3K9me-marked subtelomeric region (Chromosome 1: 161011-175642).
143 Importantly, Cbx1-GFP enrichment was not detected at the euchromatic (H3K4me3-
144 associated) genes, *actin* (*Mycgr3G105948*) and *GAPDH* (*Mycgr3G99044*). Notably,
145 *GAPDH*, is located adjacent to an H3K9me-marked DNA transposon, suggesting that
146 the resolution of the assay was sufficient to distinguish between neighbouring
147 H3K9me-marked and non-marked genes. Taken together the data indicate that Cbx1
148 is an HP1 ortholog and is likely to function in the recognition of H3K9me2/3 in *Z. tritici*.

149

150 **Deletion of *cbx1* and *kmt1* results in distinct effects on growth *in vitro* and *in*
151 *planta*.**

152 The role of HP1 in the fitness of *Z. tritici* was investigated by generating *cbx1*
153 deletion strains. For comparison, we also constructed strains lacking the H3K9
154 methyltransferase gene, *kmt1* and confirmed the loss of H3K9me3 marks in these
155 mutants (Fig S1A). Initially, the *in vitro* growth and stress-sensitivity profiles of the
156 Δ *cbx1* and Δ *kmt1* mutants relative to the IPO323 reference strain were determined.
157 As previously reported, deletion of *kmt1* resulted in a slow growth phenotype (Möller
158 *et al.*, 2019) but surprisingly, the Δ *cbx1* strains showed no marked reduction in fitness
159 (Fig 3). Furthermore, although Δ *kmt1* strains were sensitive to osmotic stresses (NaCl,
160 sorbitol), oxidative stress (H₂O₂) and cell wall damaging agents (Calcofluor and Congo
161 Red) loss of *cbx1* did not result increase the sensitivity of *Z. tritici* to any of these

162 agents. However, we did note that $\Delta cbx1$ strains exhibited a slight increase in
163 sensitivity to hydroxyurea which results in reduced dNTP levels and replication stress.
164 Deletion of *cbx1* also resulted in increased levels of melanisation on PD agar (PDA)
165 at 25°C (Fig. 3).

166 Loss of Kmt1-mediated H3K9 methylation is associated with a severe reduction
167 in virulence (Möller *et al.*, 2019) and this was confirmed using our $\Delta kmt1$ strains (Fig
168 S1B). To determine if Cbx1 is required for the pathogenicity of *Z. tritici*, wheat infection
169 assays were carried out with the $\Delta cbx1$ strains. Disease symptoms presented in
170 leaves treated with both the reference (IPO323) and $\Delta cbx1$ strains, but the onset of
171 symptoms was delayed in the latter (Fig 4A). This was apparent at 14 days post
172 inoculation (dpi) where the areas of leaf covered by necrotic lesions were reduced in
173 the leaves treated with $\Delta cbx1$ mutants (Fig 4A). Furthermore, at 21 dpi, which typically
174 marks the endpoint of infection, $\Delta cbx1$ treated leaves had a reduction in the number
175 of visible pycnidia present on the leaf (Fig 4B & C). Therefore, removal of the HP1
176 homolog Cbx1 results in reduced virulence, but it does not abolish virulence as is the
177 case for the loss of Kmt1. As such the deletion of *cbx1* does not phenocopy the loss
178 of *kmt1* suggesting that H3K9me marks do not exclusively mediate their downstream
179 biological effects through the recruitment of Cbx1.

180

181 **Cbx1 and Kmt1 regulate the expression of overlapping sets of genes**

182 To further understand the relationship between Cbx1 and Kmt1, their impacts upon
183 the transcriptome were determined using RNA-seq analysis. RNA was analysed from
184 two biological replicates of two independent isolates of $\Delta cbx1$ and we also sequenced
185 RNA from two biological replicates of a $\Delta kmt1$ mutant and the reference IPO323 strain.
186 Principal component analysis revealed a clear grouping of samples from the $\Delta cbx1$

187 isolates and the biological replicates for all strains, indicative of low variation (Fig S2).
188 Next, hierarchical clustering was employed to provide an overview of the global
189 similarities between the transcriptomes of the sequenced strains. This revealed that
190 the transcript profiles of $\Delta cbx1$ and $\Delta kmt1$ mutants exhibit an overall similarity. Indeed,
191 the $\Delta cbx1$ mutant profiles were found to be more similar to the $\Delta kmt1$ strain than to
192 the reference strain (Fig 5A).

193 The transcriptomes of $\Delta cbx1$ and $\Delta kmt1$ mutant strains were further analysed
194 by identification of differentially expressed (DE) transcripts from protein coding genes
195 with DEseq2 ($p < 0.05$) (Love *et al.*, 2014). Global trends in gene expression were
196 visualised using MA plots ($\Delta cbx1$ vs IPO322 and $\Delta kmt1$ vs IPO323) (Fig 5B & C). As
197 expected based on previous analysis (Möller *et al.*, 2019), the majority of DE
198 transcripts in $\Delta kmt1$ were upregulated and the $\Delta cbx1$ DE transcripts also exhibited a
199 similar trend. Furthermore, for both strains the majority of down-regulated transcripts
200 showed a relatively modest (2-5 fold) decrease in abundance. In comparison, a greater
201 proportion of upregulated transcripts exhibited a more marked (5-10 fold) change in
202 levels. Therefore, like Kmt1, the HP1 protein Cbx1 plays an important role in gene
203 silencing in *Z. tritici*.

204 Genes that were differentially expressed in the $\Delta kmt1$ and $\Delta cbx1$ backgrounds
205 were filtered to select only those that exhibited at least a two-fold change in
206 expression. The total number of DE genes in this category in $\Delta cbx1$ and $\Delta kmt1$ was
207 1157 and 1291 respectively (Tables S1 and S2). Of these genes, 813 were
208 differentially expressed in both strains, an overlap which was found to be highly
209 significant (Fig 5D). The lists of DE genes were further filtered to distinguish between
210 up- and down-regulated genes. Significant overlaps between $\Delta cbx1$ and $\Delta kmt1$ gene
211 lists were observed in both categories (Fig 5E & F). Nonetheless, we did identify genes

212 that were differentially expressed in $\Delta cbx1$ but not $\Delta kmt1$ and vice versa (Table S3
213 and S4). The existence of these non-overlapping sets of DE genes may, at least in
214 part, explain the differences in the phenotypes associated with $\Delta cbx1$ and $\Delta kmt1$
215 mutants.

216 The similarity of the RNA-seq data from the $\Delta kmt1$ strain generated in this study
217 and the Zt09- $\Delta kmt1$ strain (Möller *et al.*, 2019) was also analysed. For this comparison
218 the more stringent cut-offs (4-fold change in expression, adjusted p value < 0.001)
219 employed by Moller *et al.* were used. Despite the potential for differences in strain
220 background and experimental variability, the overlap in DE genes was highly
221 significant and indicative of a high degree of similarity between the $\Delta kmt1$ mutant
222 analysed in this study and Zt09- $\Delta kmt1$ (Fig S3). To determine whether increased
223 stringency affected the relationship between $\Delta cbx1$ and $\Delta kmt1$ DE genes, the
224 comparison was repeated using the 4-fold change cut-off. This analysis also revealed
225 a highly significant overlap in the DE gene lists (p < 0.001; Fisher's test). Overall,
226 these findings indicate that Cbx1 and Kmt1 regulate the expression of similar, albeit
227 non identical, sets of protein-coding genes and are therefore consistent with Cbx1
228 playing a major role in the function of H3Kme2/3 marks in *Z. tritici*.

229

230 **Loss of Cbx1 does not result in a global increase in expression from accessory
231 chromosomes or TEs**

232 It has been demonstrated that deletion of *kmt1* results in a global increase in
233 transcripts derived from the heterochromatin- and TE-enriched accessory
234 chromosomes (Möller *et al.*, 2019). To determine whether this was also the case for
235 mutants lacking *cbx1*, normalised read counts were mapped from genes on accessory
236 chromosomes. As expected a significant increase in read counts from accessory

237 chromosomes was observed in the $\Delta kmt1$ mutant compared to IPO323 ($p < 0.014$;
238 ANOVA). In contrast no significant increase ($p < 0.29$; ANOVA) was observed in the
239 $\Delta cbx1$ background (Fig 6A). Therefore, loss of Cbx1 is not sufficient for a global
240 increase in expression from genes on accessory chromosomes.

241 The accessory chromosomes of *Z. tritici* are highly enriched in TEs and
242 previously it has been shown that expression from these elements is suppressed by
243 H3K9me2/3 (Möller *et al.*, 2019). We therefore determined the effect of Cbx1 on the
244 global level of transcripts derived from TEs. As previously observed (Möller *et al.*,
245 2019), a significant net increase in the expression of TEs was detected in $\Delta kmt1$ ($p <$
246 8.25e-09 ANOVA), however in contrast, no significant global increase the $\Delta cbx1$
247 mutant was detected (Fig 6B). Indeed, hierarchical clustering revealed that with
248 respect to the profile of TE expression, the $\Delta cbx1$ mutant is more similar to the
249 reference IPO323 strain than to the $\Delta kmt1$ mutant (Fig 6C). Therefore, although global
250 silencing of TEs in *Z. tritici* requires Kmt1, and by implication H3K9me2/3, it is not
251 dependent upon recognition of these histone modifications by the HP1 protein, Cbx1.

252

253 **Cbx1 regulates the expression of a significant proportion of TE-associated
254 genes**

255 An increased frequency of recombination is often observed around loci surrounding
256 TEs. Genetic instability around such loci in filamentous fungi has been proposed to
257 drive rapid evolution and aid niche adaptation (Dong *et al.*, 2015, Faino *et al.*, 2016,
258 Laurent *et al.*, 2018). Therefore, we analysed the expression of all genes within 2 kb
259 of a TE. In total 1505 genes were identified as 'TE-associated' of which 184 were
260 differentially expressed in $\Delta cbx1$ and 205 in $\Delta kmt1$, a highly significant enrichment in
261 both cases ($p < 4.35e-07$ and $p < 9.66e-08$ respectively). Furthermore, 114 TE-

262 associated genes were found to be commonly differentially expressed in $\Delta cbx1$ and
263 $\Delta kmt1$ ($p < 5.55\text{e-}65$) (Fig 6D). The expression profile of these genes was also found
264 to be highly similar between the $\Delta cbx1$ and $\Delta kmt1$ mutants and indeed all but 4 genes
265 exhibited similar expression patterns (Fig 6E). GO-term analysis of the differentially
266 expressed TE-associated genes revealed that 8 of the 114 were annotated as having
267 functions relating to secondary metabolism. However, the majority of these were
268 ‘orphan’ genes with no assigned GO terms. This is not unexpected given that TE-
269 associated and heterochromatic loci are known to be enriched with ‘orphan’ genes in
270 a variety of plant pathogenic fungi (Dong *et al.*, 2015).

271

272 **Protein encoding genes that are differentially expressed in $\Delta cbx1$ exhibit only a
273 weak correlation with H3K9me**

274 The removal of HP1 tends to result in the upregulation of genes that are associated
275 with H3K9me2/3-marked chromatin (Chujo & Scott, 2014, Reyes-Dominguez *et al.*,
276 2010, Soyer *et al.*, 2014). To investigate whether this is the case in *Z. tritici*, genes
277 that were partially (>1 bp) or completely associated with H3K9me were identified
278 through analysis of published ChIP-seq data (Schotanus *et al.*, 2015). The
279 relationship between H3K9me-associated genes and genes that are differentially
280 expressed in $\Delta cbx1$ was then determined. A total of 247 genes were found to be
281 partially associated with H3K9me (>1 bp) while only 112 were completely associated
282 with this modification. Of the partially H3K9me-associated genes only 31 were
283 differentially expressed in $\Delta cbx1$, an overlap which was just statistically significant (p
284 < 0.023) (Fig 7A). The overlap between the completely H3K9me-associated genes
285 and $\Delta cbx1$ DE genes was also modest (17 genes, $p < 0.016$) (Fig 7B). At first glance
286 this weak correlation is surprising, however it has previously been observed that

287 deletion of *kmt1* is not sufficient for the upregulation of the majority of H3K9me-
288 associated genes in *Z. tritici* (Möller *et al.*, 2019) and analysis of the $\Delta kmt1$ RNA-seq
289 data generated in this was consistent with these findings. Only a very modest overlap
290 was observed between $\Delta kmt1$ DE genes and genes that are fully associated with
291 H3K9me and no significant overlap was observed with partially associated genes (Fig
292 7C & D). Overall, only a very small number of protein coding genes are located in
293 H3K9me-marked chromatin in *Z. tritici* and under *in vitro* growth conditions, the
294 disruption of heterochromatin is insufficient to activate their expression.

295

296 **Cbx2, a fungal-specific CD protein that binds to H3K9me3.**

297 Comparison of the phenotypes of $\Delta kmt1$ and $\Delta cbx1$ mutants suggested that some of
298 the downstream effects of H3K9me2/3 histone modifications are likely to be mediated
299 independently of the HP1 homolog Cbx1. One explanation for this would be that *Z.*
300 *tritici* has additional H3K9me2/3 reader proteins. Therefore, we used BLAST analyses
301 to search for further proteins with the potential to bind H3K9me2/3 PTMs and identified
302 five hypothetical proteins with CD domains (as predicted by ExPASy Prosite and or
303 Pfam). None of these proteins contained a recognisable CSD, consistent with Cbx1
304 being the sole HP1 isoform in *Z. tritici*. Four of the hypothetical CD proteins were
305 eliminated from further analysis for one or more of the following reasons, (i) they
306 exhibited similarity to retroviral/retrotransposon integrases, (ii) the CD domain lacked
307 critical key aromatic methyl-lysine caging residues or (iii) they were encoded on an
308 accessory chromosome. The remaining hypothetical protein (Mycgr3G108849,
309 hereafter called Cbx2) was predicted to be 703 amino acids in length and have two
310 CD domains in the C-terminal region (Fig 8A and Fig S4). BLAST analyses revealed
311 that organisms that encode proteins with homology to Cbx2 extending beyond the CD

312 domains are limited to species in just a few fungal families (principally the
313 *Mycosphaerellaceae* and *Teratosphaeriaceae*) (Fig 8B and Fig S5). Therefore, unlike
314 the broadly conserved HP1 family member Cbx1, Cbx2 is a fungal-specific CD protein.

315 Sequence analysis revealed that both Cbx2 CDs possess the conserved
316 'aromatic cage' residues that facilitate methyl-lysine binding (Fig S4) and furthermore,
317 chromodomain 1 (CD1) was predicted to be acidic, a characteristic of HP1-type
318 H3K9me binding proteins (Hiragami-Hamada & Nakayama, 2019). Therefore, we
319 investigated the histone binding preferences of Cbx2. A region that encompassed both
320 CD domains (amino acids 503 to 703), was expressed as a GST fusion protein in *E.*
321 *coli* and purified. Pull-down assays indicated that this domain of Cbx2 binds to histone
322 H3 peptides that are methylated at lysine 9. However, Cbx2 exhibited a clear
323 preference for H3K9me3 relative to H3K9me2 and no specificity for any other tested
324 modification was observed (Fig 8C & D).

325 The histone peptide binding assays suggested that Cbx2 has the potential to
326 function as an effector of H3K9me3 PTMs and so Δ cbx2 strains were generated.
327 Comparison of the Δ cbx2 mutant with the IPO323 reference strain indicated that loss
328 of Cbx2 does not result in any detectable reduction in fitness or stress resistance (Fig
329 S6). Furthermore, wheat infection assays revealed that, unlike the Δ kmt1 and Δ cbx1
330 strains, Δ cbx2 strains exhibited no obvious reduction in virulence (Fig 9A and B).
331 Leaves treated with Δ cbx2 mutants developed disease symptoms at a very similar rate
332 to those treated with the reference IPO323 strain and there was no major difference
333 in the numbers of pycnidia at 21 dpi (Fig 9C). As such, loss of Cbx2 alone does not
334 obviously impact the growth of *Z. tritici* either *in vitro* or *in planta*. This is perhaps not
335 surprising, as when we analysed the expression of *cbx2* using our RNA seq data, we

336 found that this gene was expressed at similar levels to the H3K9 methyltransferase
337 *kmt1*, but at only ~2.9% of the level of *cbx1*.

338 We hypothesized that Cbx2 may co-operate with Cbx1 but that effects of *cbx2*
339 deletion may be masked when *cbx1* is present. As a test of this, a double deletion
340 mutant was constructed by inserting a *neo* resistance cassette into the *cbx1* locus in
341 the Δ *cbx2* background. Importantly, analysis of the fitness and stress sensitivity
342 profiles of these strains showed that the Δ *cbx1* Δ *cbx2* double mutant has *in vitro*
343 growth phenotypes that closely resemble those associated with Δ *kmt1*. Like the
344 Δ *kmt1* strains, Δ *cbx1* Δ *cbx2* double mutant strains had a slow growth phenotype and
345 were sensitive to osmotic stress (NaCl), oxidative stress (H₂O₂), cell wall damaging
346 agents (Calcofluor and Congo Red) and genotoxic agents (HU and Bleomycin) (Fig
347 10A). As such the deletion of *cbx1* and *cbx2* in combination mimics the loss of
348 H3K9me. These results are consistent with a model whereby key functions of H3K9me
349 PTMs are mediated by a combination of the HP1 homolog Cbx1 and the fungal-
350 specific chromodomain protein, Cbx2.

351 The phenotypes of the Δ *cbx1* Δ *cbx2* double mutant, suggested that Cbx1 and
352 Cbx2 may have redundant functions in gene silencing. We therefore analysed some
353 Kmt1-repressed genes whose expression is not de-repressed by deletion of *cbx1*
354 alone (Fig 5E and Table S4). RT-qPCR analysis showed that the expression of one
355 such Kmt1-repressed gene (*Mycgr3G103556*) was only marginally increased in the
356 Δ *cbx1* Δ *cbx2* double mutant (Fig 10B). In contrast, the deletion of both *cbx1* and *cbx2*
357 genes in combination resulted in an increase in expression of *Mycgr3G44980*
358 comparable to the Δ *kmt1* strain (Fig 10C). Therefore, Cbx1 and Cbx2 do function
359 redundantly to silence the expression of some Kmt1-regulated *Z. tritici* genes.

360

361 **DISCUSSION**

362 Heterochromatic H3K9me histone modifications, have a major impact upon the
363 chromosomal stability and virulence of *Z. tritici* (Möller *et al.*, 2019). Here we have
364 identified two chromodomain proteins, Cbx1 and Cbx2, which recognize these marks
365 and are implicated in mediating downstream biological events.

366 Cbx1 bears all the hallmarks of an HP1 ortholog, as it binds to H3K9me2/3 *in*
367 *vitro* and is enriched at heterochromatic loci. Furthermore, Cbx1 and the H3K9
368 methyltransferase, Kmt1, regulate the expression of overlapping sets of protein
369 encoding genes. Recognition of H3K9me2/3 modifications by HP1 proteins constitutes
370 a fundamentally conserved step in the formation and function of heterochromatin
371 (Kumar & Kono, 2020). This central role is illustrated by the finding that in some
372 species, such as fission yeast, the phenotypes associated with the loss of HP1
373 proteins and the respective histone H3K9 methyltransferase are highly similar (Allshire
374 *et al.*, 1995). Despite Cbx1 being the sole HP1 homolog in *Z. tritici*, Δ cbx1 strains have
375 *in vitro* and *in planta* growth defects that are less severe than Δ kmt1 mutants. These
376 findings are consistent with the data from other plant-associated fungi such as *E.*
377 *festucae*. While both HepA (HP1) and ClrD (H3K9 methyltransferase) are required for
378 the symbiotic mutualist interaction of *E. festucae* with the grass *Lolium perenne*,
379 Δ hepA mutants have only mild defects in axenic culture in comparison to strains
380 lacking Δ clrD (Chujo *et al.*, 2019). Also RNAi silencing of the HP1 and H3K9
381 methyltransferase homologs has different effects on the virulence of the oil seed rape
382 pathogen, *L. maculans* (Soyer *et al.*, 2014). It is possible that there are additional
383 H3K9me readers in these organisms.

384 The transcriptomic analysis revealed a highly significant overlap in the
385 differentially expressed genes in the Δ kmt1 and Δ cbx1 backgrounds. Nonetheless, a

386 set of genes was identified whose expression was dependent upon Cbx1, but
387 independent of Kmt1 (Table S3). This suggests that Cbx1 has functions that are
388 independent of H3K9me2/3. Consistent with this, H3K9me-independent roles for HP1
389 isoforms at telomeres and in DNA damage responses have been reported (Zeng *et*
390 *al.*, 2010). Furthermore, it is well recognised that individual HP1 proteins can be
391 functionally promiscuous and have variety of roles outside of heterochromatin,
392 including transcriptional activation (Zeng *et al.*, 2010).

393 Analysis of the genomic distribution of H3K9me marks in *Z. tritici* has
394 demonstrated that these modifications are predominantly associated with TE elements
395 (Möller *et al.*, 2019). Deletion of *kmt1* is associated with a global increase in the
396 abundance of transposon-derived transcripts (Möller *et al.*, 2019), a finding that was
397 confirmed in this study. Therefore, in *Z. tritici* as in other eukaryotes, heterochromatin
398 represents a key mechanism for suppressing the activity of repetitive elements.
399 Surprisingly, our findings suggest that Cbx1 is dispensable for the restriction of these
400 elements, at least at a global level and only a small number of TEs are differentially
401 expressed in the Δ *cbx1* strain. *Z. tritici* has up to eight accessory chromosomes that
402 are highly enriched with TEs and are proposed to provide a selective advantage under
403 some environmental conditions (Habig *et al.*, 2017). Loss of Kmt1 is associated with
404 a global activation of TEs, elevated loss of accessory chromosomes and wide scale
405 genome rearrangements. The genomic instability in Δ *kmt1* mutants is driven by the
406 redistribution of H3K27me3 modifications which invade regions previously occupied
407 by H3K9me2/3 (Möller *et al.*, 2019). That removal of Cbx1 does not result in a global
408 increase in transcripts derived from either TEs or accessory chromosomes, suggests
409 that HP1 function may not be necessary to prevent wide scale re-localization of
410 H3K27me3 modifications. While the loss of H3K9me2/3 severely impacts the ability of

411 *Z. tritici* to colonize wheat leaves, this does not seem to result from mitotic instability
412 as deletion of the H3K27 methyltransferase gene *kmt6* in the $\Delta kmt1$ background
413 suppresses the elevated level of accessory chromosome loss but does not rescue
414 virulence (Möller *et al.*, 2019).

415 The non-identical phenotypes of the $\Delta kmt1$ and $\Delta cbx1$ mutants suggested that
416 additional readers of H3K9me2/3 marks are present in *Z. tritici*. Consistent with this
417 prediction, we have identified Cbx2, a chromodomain protein that recognises
418 H3K9me3 *in vitro*. Unlike Cbx1, which is an HP1 family member and is thus broadly
419 conserved, Cbx2 homologs are restricted to some dothideomycete species suggesting
420 a specialised role in heterochromatin assembly and or maintenance. Also, preliminary
421 evidence suggests that Cbx2 is much less abundant than Cbx1. The *in vitro* binding
422 studies also indicated that the Cbx2 CD region had a preference for H3K9me3 relative
423 to H3K9me2. This is potentially important as analysis of these marks in *S. pombe* has
424 revealed that they demarcate functionally distinct types of heterochromatin that recruit
425 reader proteins with different efficiencies and have different transcriptional silencing
426 potential (Jih *et al.*, 2017).

427 Cbx2 has an unusual structure in that it contains two closely related
428 chromodomains (CD1 and CD2). So far the only characterised proteins that have a
429 double chromodomain structure are the CHD (chromo-ATPase/helicase-DNA-binding)
430 proteins that belong to the SWI/SNF superfamily of ATP-dependent chromatin
431 remodelling enzymes (Yap & Zhou, 2011). It should be noted that the CHD
432 chromodomains belong to a distinct clade that is not involved in the recognition of
433 heterochromatic marks (Yap & Zhou, 2011). The sequences of the Cbx2 CDs are
434 closely related suggesting they arose by duplication. In support of this, some species
435 (e.g. *Polychaeton citri*, *Ramularia collo-cygni* and *Acidomyces richmondensis*) have

436 Cbx2 homologs that have only a single CD (Fig 8B and Fig S5). It is not yet clear how
437 Cbx2 binds H3K9me3 but it is tempting to suggest that it is achieved via CD1. CD1 is
438 acidic and is flanked by acidic upstream and basic downstream regions,
439 characteristics of H3K9me-binding chromodomains (Hiragami-Hamada & Nakayama,
440 2019).

441 While our results suggest that both Cbx1 and Cbx2 are important in executing
442 the functions of H3K9me marks, it is possible that some aspects of their biological
443 function are independent of methyl-lysine reader proteins. Indeed, methylation of
444 lysine 9 may influence transcription or other aspects of chromatin function by
445 preventing the acetylation of this residue. It is also possible that Kmt1 may mediate
446 some functions through the methylation of non-histone targets as has been
447 documented for other SET domain histone methyltransferases (Carlson & Gozani,
448 2016).

449 Only a small number of protein encoding genes are located in H3K9me-marked
450 chromatin in *Z. tritici* and consistent with previous findings only a fraction of these
451 genes are differentially expressed in the $\Delta kmt1$ and $\Delta cbx1$ mutants. However, analysis
452 of DE genes in $\Delta kmt1$ has revealed a significant enrichment for genes located in the
453 vicinity of TEs and similar relationship was also observed for $\Delta cbx1$. These findings
454 suggest that the heterochromatin associated with TEs can shape the expression of
455 genes in the surrounding chromosomal loci. Indeed, the ability of TE insertions to
456 impact the expression of adjacent genes in *Z. tritici* has been demonstrated (Krishnan
457 *et al.*, 2018). It is also noteworthy that *Drosophila* HP1a binds to promoters
458 independently of H3K9me marks and it has been proposed that HP1a then makes
459 transient looping contacts with H3K9me target sites in surrounding regions (Figueiredo
460 *et al.*, 2012). This model may explain how H3K9me-marked TEs influence the

461 expression of nearby genes in *Z. tritici*. Furthermore, TEs have been implicated in the
462 organization of loops and other higher order chromosomal structures in a variety of
463 species including fission yeast, flies, plants and mammals (Cam *et al.*, 2008,
464 Choudhary *et al.*, 2020, Mamillapalli *et al.*, 2013, Sun *et al.*, 2020).

465 Analysis of the genomes of fungal phytopathogens has revealed that effector
466 genes tend to be associated with rapidly evolving regions of the genome that are
467 associated with repetitive elements (Dong *et al.*, 2015). These observations have led
468 to the suggestion that repetitive elements may organize the regions of genome into
469 functional compartments that drive adaptive evolution. Therefore, it is interesting that
470 the expression of a significant proportion of TE-associated genes is influenced by
471 Kmt1 and Cbx1. Furthermore, recent analysis indicates that genes that are highly
472 expressed at the switch of *Z. tritici* to necrotrophic growth during infection are amongst
473 those most upregulated in the absence of Kmt1 (Soyer *et al.*, 2019). Therefore, it will
474 be important to determine how Cbx proteins and the reprogramming of H3K9me-
475 dependent heterochromatin structures contribute to changes in transcriptional
476 programmes during plant infection.

477 **EXPERIMENTAL PROCEDURES**

478 **Strains, Media and Plasmids**

479 *Zymoseptoria tritici* strains were cultivated on YMS medium (0.4% [w/v] yeast extract,
480 0.4% [w/v] malt extract, 0.4% [w/v] sucrose) at 18°C in a shaking incubator at 200 rpm.
481 When solid medium was required Bacto agar was added at 2% [w/v]. Gene deletion
482 strains were constructed using *Agrobacterium tumefaciens*-mediated transformations
483 of IPO323 using plasmids derived from pCHYG as previously described (Motteram *et*
484 *al.*, 2009). Flanking regions (>1kb) of the targeted gene were PCR amplified and
485 introduced into pCHYG by Gibson assembly. Gene deletions of *kmt1*, *cbx1* and *cbx2*
486 were constructed by insertion of a hygromycin resistance cassette (*hph*) into the
487 desired locus. The *cbx1* *cbx2* double deletion mutant was constructed by inserting a
488 G418 resistance cassette (*neo*) into the *cbx1* locus in the *cbx2* deletion mutant.
489 Correct integration was confirmed by PCR genotyping. Plasmid pCGEN-YR-*cbx1GFP*
490 was constructed by introducing fragments consisting of the *cbx1* promoter, the *cbx1*
491 ORF fused to *EGFP* and 1 kb of terminator sequence from the β-tubulin gene into the
492 *BamHI* site of pC-G418-YR (Sidhu *et al.*, 2015) using recombinational cloning in
493 *Saccharomyces cerevisiae*. For the assessment of growth *in planta*, wheat infection
494 assays were performed as previously described (Keon *et al.*, 2007).

495

496 ***In vitro* sensitivity assays**

497 *Z. tritici* strains were cultured on YMS agar plates for 7 days at 18°C. Cells were then
498 harvested, washed once in sterile 1 x PBS and diluted to OD₆₀₀ of 1.0. Cells were
499 subjected to five-fold serial dilution and pinned onto the indicated YMS and PD agar
500 (Formedium) plates with a 48-pin tool (Sigma). UV irradiation was achieved using a

501 Stratalinker 2400 UV crosslinker (Stratagene). Plates were then incubated for 7 days
502 at 18°C unless otherwise indicated.

503

504 **GST fusion proteins**

505 Recombinant Cbx1 was expressed fused to an N-terminal Glutathione-S-Transferase
506 (GST) tag. The *cbx1* sequence (codon optimised for *E. coli*) was synthesized (Eurofins
507 Genomics), cloned into pGEX-6P-1 and transformed in *E. coli* (BL21). Transformants
508 were grown in 2L of LB at 37°C until an OD₆₀₀ of 0.5-0.6 was reached, IPTG was add
509 to a final concentration of 0.5 mM and the culture was incubated at 18°C for 16 hours.
510 The cells were harvested by centrifugation and the resulting pellet was resuspended
511 in 50 mL lysis buffer (50 mM Tris HCl [pH 8.0] 500 mM NaCl 1 mM PMSF), snap frozen
512 in liquid nitrogen and stored at -80. Thawed cell pellets were supplemented with an
513 additional 1 mM PMSF and lysed using a One Shot homogeniser (Constant Systems
514 Ltd) at 20 KPSI at 4°C and then centrifuged at 19 000 RPM in a JA-25.50 rotor
515 (Beckman Coulter) for 30 minutes at 4°C. The supernatant was incubated with 500
516 µL Pierce™ Glutathione Agarose (Thermo Scientific) pre-equilibrated in wash buffer
517 (50 mM Tris HCl [pH 8.0] 500 mM NaCl) on a rotator for 1 hour. The lysate was then
518 centrifuged at 700 x g for 2 minutes and the supernatant discarded. The glutathione
519 agarose was washed once, resuspended in 10 mL wash buffer and applied to a 10 mL
520 disposable gravity flow column (Thermo Scientific). The agarose resin was then
521 washed until a baseline A₂₈₀ value was reached. GST fusion protein was eluted off the
522 column in 1 mL fractions using wash buffer supplemented with 10 mM glutathione.
523 Fractions containing GST-Cbx1 were pooled and then subjected to size
524 exclusion chromatography using a Superdex 200 column (GE Lifesciences).

525 Recombinant GST-Cbx2, composed of an N-terminal GST tag fused to the C-terminal
526 22 kDa of Cbx2 (amino acids 503 to 703) was produced by Dundee Cell Products.

527

528 **Histone H3 peptide binding assays**

529 1 µg of GST tagged protein was added to 1 µg of biotin labelled peptide (EpiCypher)
530 in 300 µL pulldown binding buffer (50 mM Tris [pH 7.5], 300 mM NaCl, 0.01 % NP-40)
531 and rotated overnight at 4°C on a rotating wheel. An aliquot (30 µL) of a 50 % slurry
532 of streptavidin beads (Thermo Scientific) pre-equilibrated in pulldown binding
533 buffer, was added and the sample and incubated at 4°C for one hour on a rotating
534 wheel. Beads were then pelleted by centrifugation at 800 x g for 1 minute and
535 washed four times with 1 mL pulldown binding buffer. The supernatant
536 was removed and streptavidin beads were boiled in 60 µL 2 x protein loading dye (125
537 mM Tris-HCL [pH 6.8], 20 % glycerol [v/v], 5 % SDS [w/v], 370 mM β-
538 mercaptoethanol [added directly before use]). A control sample of GST fusion protein
539 (100 ng) was loaded alongside the pulldown samples which were resolved on 10%
540 SDS polyacrylamide gels and subject to western blotting using anti-GST antibody
541 (Sigma G7781). Membranes were developed with an ECL plus Chemiluminescent kit
542 (GE Healthcare) and imaged on a Typhoon FLA 9500 (GE Healthcare). GST fusion
543 protein levels relative to the input control were quantified using image J.

544

545 **Chromatin Immunoprecipitation (ChIP) Assays**

546 An exponential phase culture of *Z. tritici* was diluted to OD₆₀₀ 0.25, grown overnight at
547 18°C, and harvested at OD₆₀₀ 0.80. For each 100 mL of culture, 1.35 mL 37 %
548 formaldehyde (Sigma Aldrich) was added to each flask and the cells fixed for 15
549 minutes. 2 mL 2.5 M glycine was then added to quench the remaining formaldehyde

550 and the flasks incubated at room temperature for a further 5 minutes. Cells were
551 harvested by centrifugation and washed sequentially in 50 mL and 2 mL sterile MilliQ
552 water. Cell pellets were snap-frozen in liquid nitrogen and stored at -80°C. Tissue was
553 ground in under liquid nitrogen in a pestle and mortar and resuspended in freshly made
554 chromatin buffer (50 mM HEPES [pH7.5], 20 mM NaCl, 1 mM EDTA, 1 % Triton X-
555 100, 0.1 % sodium deoxycholate [w/v]) supplemented with protease inhibitors (1 mM
556 PMSF, 1 µg/mL leupeptin, 1 µg/mL E-64, 0.1 µg/mL pepstatin). CaCl₂ was then added
557 to a final concentration of 2 mM. To initiate digestion, 150 U MNase (USB/Pharmacia)
558 (prepared as 15 U/µL in 10 mM Tris HCl [pH7.5] 10 mM NaCl 100 µg/ml BSA) per 1
559 mL of lysate was added and the reaction incubated at 37°C for 20 minutes with
560 frequent mixing by inversion of the tubes. Digestion was stopped by the addition of
561 EGTA to a final concentration of 2 mM. The cell debris was pelleted at 4000 rpm at 4
562 °C in a microcentrifuge centrifuge and the supernatant was retained. Two 100 µL
563 aliquots of the lysate were taken to be used as 'input' and to check MNase digestion
564 respectively. The remaining lysate split was into 200 µL fractions to be used in each
565 immunoprecipitation. To each IP fraction 2 µL of α-GFP antibody (A-11122 –
566 Invitrogen) was added and incubated rotating overnight at 4°C. The following day, 20
567 µL protein A Dynabeads® (Invitrogen), pre-equilibrated in chromatin buffer were
568 added to each IP and rotated at 4 °C for 2 hours. The supernatant was then removed,
569 and the beads washed twice for 5 minutes at 4 °C in ChIP lysis buffer (50 mM HEPES
570 [pH 7.4], 140 mM NaCl, 1 mM EDTA [8.0], 1 % Triton X-100 [v/v], 0.01 % sodium
571 deoxycholate [w/v]). The beads were then washed once in each of the following
572 buffers: ChIP lysis buffer + 500 mM NaCl, LiCl buffer (10 mM Tris-HCl [pH 8.0], 250
573 mM LiCl, 0.5% NP40 [v/v], 0.5 % sodium deoxycholate [w/v], 1 mM EDTA), TE buffer
574 (10 mM TRIS [pH 8.0], 1 mM EDTA [pH 8.0]) On the final wash the supernatant was

575 removed and 100 μ L 10 % Chelex® 100 (w/v) (Bio-Rad) in MilliQ water was added the
576 beads. 100 μ L of 10% Chelex® 100 (w/v) was also added to 10 μ L of the input fraction.
577 All samples were then boiled at 100°C for 12 minutes. 2.5 μ L 10 mg/mL proteinase K
578 was then added, and the samples incubated at 55°C for 30 minutes. Samples were
579 then boiled at 100°C for 10 minutes, after which the beads and Chelex® were pelleted
580 and 60 μ L of the supernatant transferred to a clean tube. The input and IP fractions
581 were diluted by 1:000 and 1:5, respectively. 2 μ L of diluted input and IP template were
582 used for each 10 μ L qPCR reaction. qPCR was carried out with a KAPA SYBR® FAST
583 qPCR Master Mix Kit with 0.2 mM forward and reverse primers in a Rotor-Gene® 6000
584 HRM Real Time PCR Machine (Corbett). Primer sequences are detailed in Table S5.

585

586 **RNA extraction**

587 Dense liquid cultures of *Z. tritici* were diluted to 0.1 OD₆₀₀ in fresh YMS and grown
588 to OD₆₀₀ 1.0. Cells were then harvested, snap frozen in liquid nitrogen and ground to
589 a fine powder in liquid nitrogen with a pestle and mortar. Approximately 100 mg of
590 ground tissue was added to 2 mL of Tri reagent (Invitrogen), transferred to a 2 mL
591 heavy lock tube (Eppendorf) and centrifuged at 16 000 x g for 5 minutes. The
592 supernatant was extracted with chloroform/isoamyl alcohol and then RNA was
593 precipitated by the addition of an equal volume of propan-2-ol, followed by
594 centrifugation at 16 000 x g for up to 30 minutes. The pellet was washed twice in 70%
595 ethanol, air dried for 15 minutes at room temperature and resuspended in
596 50 μ L of MilliQ water. Aliquots were stored at -80°C until required. For RNA
597 sequencing experiments samples were purified using an RNA Clean and Concentrate
598 column (Zymo research) according to the manufacturer's instructions.

599

600 **RT-qPCR**

601 RNA to be reverse transcribed to cDNA was first treated with Precision DNase (Primer
602 Design) following the manufacturer's instructions. cDNA was then prepared using
603 SuperScript™ IV Reverse Transcriptase (Invitrogen) with Random Hexamers
604 (Invitrogen) following the manufacturer's instructions. qPCR was carried out with as
605 described for ChIP assays. Primer sequences are detailed in Table S5.

606

607 **RNA-seq and bioinformatics**

608 Purified RNA samples were sequenced by Novogene (China). Read quality was
609 confirmed by FastQC version 0.11.9 (Andrews, 2010) and MultiQC version 1.8 (Ewels
610 *et al.*, 2016). STAR version 2.7.1a (Dobin *et al.*, 2013) was used to index and align
611 reads to the MG2 IPO323 genome assembly. 'FeatureCounts' version 1.6.5 from the
612 Subread package (Liao *et al.*, 2014) was used to count reads mapped to genes. Gene
613 annotations (King *et al.*, 2017) was used for alignment and read counting. File
614 conversions and manipulations were carried out with SAMtools (Li *et al.*, 2009) and
615 BAMtools (Barnett *et al.*, 2011). Where necessary BEDTools (Quinlan, 2014) was
616 used to convert between the Zt09 (an IPO323 derivative strain) gene annotation
617 (Grandaubert *et al.*, 2015) and the IPO323 strain annotation (King *et al.*, 2017).
618 Mapping of reads to transposable elements followed the same analysis pipeline using
619 transposable element annotation (Grandaubert *et al.*, 2015). To minimise differences
620 caused by data analysis, published ChIP-seq data (Schotanus *et al.*, 2015) was
621 analysed following the previously described workflow (Schotanus *et al.*, 2015) with
622 minor modifications including read trimming using Trimmomatic (Bolger *et al.*, 2014),
623 alignment with Bowtie 2 version 2.4.1 (Langmead & Salzberg, 2012) and peak
624 coverage determined by RSEG version 0.4.9 (Song & Smith, 2011). Peaks that

625 occurred in both replicates were merged using BEDTools. Gene annotations (King *et*
626 *al.*, 2017) were merged with bed files of identified ChIP-seq peaks to generate lists of
627 genes marked by the specified histone modification (completely or < 1 bp association).
628 Read counts were imported into R, normalised and subject to differential expression
629 analysis with DESeq2 (Love *et al.*, 2014). DESeq2 was run independently for protein
630 coding genes and transposable elements. Data manipulation and data plotting were
631 carried out in R with the dplyr, stringr, and ggplot2 packages from the tidyverse
632 (Wickham *et al.*, 2019) and the reshape2 package (Wickham, 2007). Heatmaps were
633 made in R with pheatmap (Kolde, 2019). Eggnog mapper (Huerta-Cepas *et al.*, 2017)
634 was run to gain additional functional information for the differentially expressed genes.

635

636 **DATA AVAILABILITY**

637 The sequence data that support the findings of this study are available at the NCBI
638 Sequence Read Archive (SRA) under accession PRJNA769830. Additional sequence
639 data were derived from resources available in the public domain at the SRA under
640 accessions SRP059394 and PRJNA494102. Other data that support the findings of
641 this study are available from the corresponding author upon reasonable request.

642

643 **ACKNOWLEDGEMENTS**

644 We thank Elizabeth Veal for comments on the manuscript. CJF was supported by a
645 BBSRC NLD Doctoral Training Partnership studentship. The authors indicate no
646 conflict of interest.

647

648 **AUTHOR CONTRIBUTIONS**

649 CJF and SKW contributed to the conception and design of the study. All authors
650 contributed to the acquisition, analysis, and/or interpretation of the data and writing of
651 the manuscript.

652

653 **ABBREVIATED SUMMARY**

654 Heterochromatin associated with methylation of histone H3 on lysine 9 (H3K9me) is
655 required for the genome stability and virulence of the fungal pathogen, *Zymoseptoria*
656 *tritici*. We have identified chromodomain proteins, Cbx1 and Cbx2, which recognise
657 H3K9me and show that loss of these proteins mimics phenotypes that are associated
658 with the loss of the H3K9 methyltransferase, Kmt1. Overall, our data suggest that key
659 functions of H3K9me modifications are mediated by a combination of Cbx1 and Cbx2.

660 **REFERENCES**

661 Allshire, R.C., and Madhani, H.D. (2018) Ten principles of heterochromatin formation
662 and function. *Nat Rev Mol Cell Biol* **19**: 229-244.

663 Allshire, R.C., Nimmo, E.R., Ekwall, K., Javerzat, J.P., and Cranston, G. (1995)
664 Mutations derepressing silent centromeric domains in fission yeast disrupt
665 chromosome segregation. *Genes Dev* **9**: 218-233.

666 Andrews, S. (2010) FastQC: a quality control tool for high throughput sequence data
667 Available online at: <http://www.bioinformatics.babraham.ac.uk/projects/fastqc>.

668 Bannister, A.J., Zegerman, P., Partridge, J.F., Miska, E.A., Thomas, J.O., Allshire,
669 R.C., and Kouzarides, T. (2001) Selective recognition of methylated lysine 9 on
670 histone H3 by the HP1 chromo domain. *Nature* **410**: 120-124.

671 Barnett, D.W., Garrison, E.K., Quinlan, A.R., Stromberg, M.P., and Marth, G.T. (2011)
672 BamTools: a C++ API and toolkit for analyzing and managing BAM files.
673 *Bioinformatics* **27**: 1691-1692.

674 Bolger, A.M., Lohse, M., and Usadel, B. (2014) Trimmomatic: a flexible trimmer for
675 Illumina sequence data. *Bioinformatics* **30**: 2114-2120.

676 Cam, H.P., Noma, K., Ebina, H., Levin, H.L., and Grewal, S.I. (2008) Host genome
677 surveillance for retrotransposons by transposon-derived proteins. *Nature* **451**:
678 431-436.

679 Canzio, D., Larson, A., and Narlikar, G.J. (2014) Mechanisms of functional promiscuity
680 by HP1 proteins. *Trends Cell Biol* **24**: 377-386.

681 Carlson, S.M., and Gozani, O. (2016) Nonhistone Lysine Methylation in the Regulation
682 of Cancer Pathways. *Cold Spring Harb Perspect Med* **6**.

683 Choudhary, M.N., Friedman, R.Z., Wang, J.T., Jang, H.S., Zhuo, X., and Wang, T.
684 (2020) Co-opted transposons help perpetuate conserved higher-order
685 chromosomal structures. *Genome Biol* **21**: 16.

686 Chujo, T., Lukito, Y., Eaton, C.J., Dupont, P.Y., Johnson, L.J., Winter, D., Cox, M.P.,
687 and Scott, B. (2019) Complex epigenetic regulation of alkaloid biosynthesis and
688 host interaction by heterochromatin protein 1 in a fungal endophyte-plant
689 symbiosis. *Fungal Genet Biol* **125**: 71-83.

690 Chujo, T., and Scott, B. (2014) Histone H3K9 and H3K27 methylation regulates fungal
691 alkaloid biosynthesis in a fungal endophyte-plant symbiosis. *Mol Microbiol* **92**:
692 413-434.

693 Cowieson, N.P., Partridge, J.F., Allshire, R.C., and McLaughlin, P.J. (2000)
694 Dimerisation of a chromo shadow domain and distinctions from the
695 chromodomain as revealed by structural analysis. *Curr Biol* **10**: 517-525.

696 Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P.,
697 Chaisson, M., and Gingeras, T.R. (2013) STAR: ultrafast universal RNA-seq
698 aligner. *Bioinformatics* **29**: 15-21.

699 Dong, S., Raffaele, S., and Kamoun, S. (2015) The two-speed genomes of filamentous
700 pathogens: waltz with plants. *Curr Opin Genet Dev* **35**: 57-65.

701 Ewels, P., Magnusson, M., Lundin, S., and Kaller, M. (2016) MultiQC: summarize
702 analysis results for multiple tools and samples in a single report. *Bioinformatics*
703 **32**: 3047-3048.

704 Faino, L., Seidl, M.F., Shi-Kunne, X., Pauper, M., van den Berg, G.C., Wittenberg,
705 A.H., and Thomma, B.P. (2016) Transposons passively and actively contribute
706 to evolution of the two-speed genome of a fungal pathogen. *Genome Res* **26**:
707 1091-1100.

708 Figueiredo, M.L., Philip, P., Stenberg, P., and Larsson, J. (2012) HP1a recruitment to
709 promoters is independent of H3K9 methylation in *Drosophila melanogaster*.
710 *PLoS Genet* **8**: e1003061.

711 Goodwin, S.B., M'Barek S, B., Dhillon, B., Wittenberg, A.H., Crane, C.F., Hane, J.K.,
712 Foster, A.J., Van der Lee, T.A., Grimwood, J., Aerts, A., Antoniw, J., Bailey, A.,
713 Bluhm, B., Bowler, J., Bristow, J., van der Burgt, A., Canto-Canche, B.,
714 Churchill, A.C., Conde-Ferraez, L., Cools, H.J., Coutinho, P.M., Csukai, M.,
715 Dehal, P., De Wit, P., Donzelli, B., van de Geest, H.C., van Ham, R.C.,
716 Hammond-Kosack, K.E., Henrissat, B., Kilian, A., Kobayashi, A.K., Koopmann,
717 E., Kourmpetis, Y., Kuzniar, A., Lindquist, E., Lombard, V., Maliepaard, C.,
718 Martins, N., Mehrabi, R., Nap, J.P., Ponomarenko, A., Rudd, J.J., Salamov, A.,
719 Schmutz, J., Schouten, H.J., Shapiro, H., Stergiopoulos, I., Torriani, S.F., Tu,
720 H., de Vries, R.P., Waalwijk, C., Ware, S.B., Wiebenga, A., Zwiers, L.H., Oliver,
721 R.P., Grigoriev, I.V., and Kema, G.H. (2011) Finished genome of the fungal
722 wheat pathogen *Mycosphaerella graminicola* reveals dispensome structure,
723 chromosome plasticity, and stealth pathogenesis. *PLoS Genet* **7**: e1002070.

724 Grandaubert, J., Bhattacharyya, A., and Stukenbrock, E.H. (2015) RNA-seq-Based
725 Gene Annotation and Comparative Genomics of Four Fungal Grass Pathogens
726 in the Genus *Zymoseptoria* Identify Novel Orphan Genes and Species-Specific
727 Invasions of Transposable Elements. *G3 (Bethesda)* **5**: 1323-1333.

728 Habig, M., Quade, J., and Stukenbrock, E.H. (2017) Forward Genetics Approach
729 Reveals Host Genotype-Dependent Importance of Accessory Chromosomes in
730 the Fungal Wheat Pathogen *Zymoseptoria tritici*. *mBio* **8**.

731 Hiragami-Hamada, K., and Nakayama, J.I. (2019) Do the charges matter?-balancing
732 the charges of the chromodomain proteins on the nucleosome. *J Biochem* **165**:
733 455-458.

734 Huerta-Cepas, J., Forsslund, K., Coelho, L.P., Szklarczyk, D., Jensen, L.J., von Mering,
735 C., and Bork, P. (2017) Fast Genome-Wide Functional Annotation through
736 Orthology Assignment by eggNOG-Mapper. *Mol. Biol. Evol.* **34**: 2115-2122.

737 Jih, G., Iglesias, N., Currie, M.A., Bhanu, N.V., Paulo, J.A., Gygi, S.P., Garcia, B.A.,
738 and Moazed, D. (2017) Unique roles for histone H3K9me states in RNAi and
739 heritable silencing of transcription. *Nature* **547**: 463-467.

740 Kellner, R., Bhattacharyya, A., Poppe, S., Hsu, T.Y., Brem, R.B., and Stukenbrock,
741 E.H. (2014) Expression profiling of the wheat pathogen *Zymoseptoria tritici*
742 reveals genomic patterns of transcription and host-specific regulatory
743 programs. *Genome Biol Evol* **6**: 1353-1365.

744 Keon, J., Antoniw, J., Carzaniga, R., Deller, S., Ward, J.L., Baker, J.M., Beale, M.H.,
745 Hammond-Kosack, K., and Rudd, J.J. (2007) Transcriptional adaptation of
746 *Mycosphaerella graminicola* to programmed cell death (PCD) of its susceptible
747 wheat host. *Mol Plant Microbe Interact* **20**: 178-193.

748 King, R., Urban, M., Lauder, R.P., Hawkins, N., Evans, M., Plummer, A., Halsey, K.,
749 Lovegrove, A., Hammond-Kosack, K., and Rudd, J.J. (2017) A conserved
750 fungal glycosyltransferase facilitates pathogenesis of plants by enabling hyphal
751 growth on solid surfaces. *PLoS Pathog* **13**: e1006672.

752 Kolde, R., (2019) pheatmap: Pretty Heatmaps. In., pp.

753 Krishnan, P., Meile, L., Plissonneau, C., Ma, X., Hartmann, F.E., Croll, D., McDonald,
754 B.A., and Sanchez-Vallet, A. (2018) Transposable element insertions shape

755 gene regulation and melanin production in a fungal pathogen of wheat. *BMC*
756 *Biol* **16**: 78.

757 Kumar, A., and Kono, H. (2020) Heterochromatin protein 1 (HP1): interactions with
758 itself and chromatin components. *Biophys Rev* **12**: 387-400.

759 Langmead, B., and Salzberg, S.L. (2012) Fast gapped-read alignment with Bowtie 2.
760 *Nat. Methods* **9**: 357-359.

761 Laurent, B., Palaiokostas, C., Spataro, C., Moinard, M., Zehraoui, E., Houston, R.D.,
762 and Foulongne-Oriol, M. (2018) High-resolution mapping of the recombination
763 landscape of the phytopathogen *Fusarium graminearum* suggests two-speed
764 genome evolution. *Mol Plant Pathol* **19**: 341-354.

765 Lee, W.S., Rudd, J.J., Hammond-Kosack, K.E., and Kanyuka, K. (2014)
766 *Mycosphaerella graminicola* LysM effector-mediated stealth pathogenesis
767 subverts recognition through both CERK1 and CEBiP homologues in wheat.
768 *Mol Plant Microbe Interact* **27**: 236-243.

769 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,
770 Abecasis, G., Durbin, R., and Genome Project Data Processing, S. (2009) The
771 Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**: 2078-2079.

772 Liao, Y., Smyth, G.K., and Shi, W. (2014) featureCounts: an efficient general purpose
773 program for assigning sequence reads to genomic features. *Bioinformatics* **30**:
774 923-930.

775 Love, M.I., Huber, W., and Anders, S. (2014) Moderated estimation of fold change and
776 dispersion for RNA-seq data with DESeq2. *Genome Biol* **15**: 550.

777 Machida, S., Takizawa, Y., Ishimaru, M., Sugita, Y., Sekine, S., Nakayama, J.I., Wolf,
778 M., and Kurumizaka, H. (2018) Structural Basis of Heterochromatin Formation
779 by Human HP1. *Mol Cell* **69**: 385-397 e388.

780 Mamillapalli, A., Pathak, R.U., Garapati, H.S., and Mishra, R.K. (2013) Transposable
781 element 'roo' attaches to nuclear matrix of the *Drosophila melanogaster*. *J*
782 *Insect Sci* **13**: 111.

783 Marshall, R., Kombrink, A., Motteram, J., Loza-Reyes, E., Lucas, J., Hammond-
784 Kosack, K.E., Thomma, B.P., and Rudd, J.J. (2011) Analysis of two in planta
785 expressed LysM effector homologs from the fungus *Mycosphaerella*
786 *graminicola* reveals novel functional properties and varying contributions to
787 virulence on wheat. *Plant Physiol* **156**: 756-769.

788 Möller, M., Schotanus, K., Soyer, J.L., Haueisen, J., Happ, K., Stralucke, M., Happel,
789 P., Smith, K.M., Connolly, L.R., Freitag, M., and Stukenbrock, E.H. (2019)
790 Destabilization of chromosome structure by histone H3 lysine 27 methylation.
791 *PLoS Genet* **15**: e1008093.

792 Motteram, J., Kufner, I., Deller, S., Brunner, F., Hammond-Kosack, K.E., Nurnberger,
793 T., and Rudd, J.J. (2009) Molecular characterization and functional analysis of
794 MgNLP, the sole NPP1 domain-containing protein, from the fungal wheat leaf
795 pathogen *Mycosphaerella graminicola*. *Mol Plant Microbe Interact* **22**: 790-799.

796 Quinlan, A.R. (2014) BEDTools: The Swiss-Army Tool for Genome Feature Analysis.
797 *Curr Protoc Bioinformatics* **47**: 11 12 11-34.

798 Reyes-Dominguez, Y., Bok, J.W., Berger, H., Shwab, E.K., Basheer, A., Gallmetzer,
799 A., Scazzocchio, C., Keller, N., and Strauss, J. (2010) Heterochromatic marks
800 are associated with the repression of secondary metabolism clusters in
801 *Aspergillus nidulans*. *Mol Microbiol* **76**: 1376-1386.

802 Rudd, J.J. (2015) Previous bottlenecks and future solutions to dissecting the
803 *Zymoseptoria tritici*-wheat host-pathogen interaction. *Fungal Genet Biol* **79**: 24-
804 28.

805 Rudd, J.J., Kanyuka, K., Hassani-Pak, K., Derbyshire, M., Andongabo, A., Devonshire,
806 J., Lysenko, A., Saqi, M., Desai, N.M., Powers, S.J., Hooper, J., Ambroso, L.,
807 Bharti, A., Farmer, A., Hammond-Kosack, K.E., Dietrich, R.A., and Courbot, M.
808 (2015) Transcriptome and metabolite profiling of the infection cycle of
809 *Zymoseptoria tritici* on wheat reveals a biphasic interaction with plant immunity
810 involving differential pathogen chromosomal contributions and a variation on
811 the hemibiotrophic lifestyle definition. *Plant Physiol* **167**: 1158-1185.

812 Schotanus, K., Soyer, J.L., Connolly, L.R., Grandaubert, J., Happel, P., Smith, K.M.,
813 Freitag, M., and Stukenbrock, E.H. (2015) Histone modifications rather than the
814 novel regional centromeres of *Zymoseptoria tritici* distinguish core and
815 accessory chromosomes. *Epigenetics Chromatin* **8**: 41.

816 Sidhu, Y.S., Cairns, T.C., Chaudhari, Y.K., Usher, J., Talbot, N.J., Studholme, D.J.,
817 Csukai, M., and Haynes, K. (2015) Exploitation of sulfonylurea resistance
818 marker and non-homologous end joining mutants for functional analysis in
819 *Zymoseptoria tritici*. *Fungal Genet Biol* **79**: 102-109.

820 Smothers, J.F., and Henikoff, S. (2000) The HP1 chromo shadow domain binds a
821 consensus peptide pentamer. *Curr Biol* **10**: 27-30.

822 Song, Q., and Smith, A.D. (2011) Identifying dispersed epigenomic domains from
823 ChIP-Seq data. *Bioinformatics* **27**: 870-871.

824 Soyer, J.L., El Ghalid, M., Glaser, N., Ollivier, B., Linglin, J., Grandaubert, J.,
825 Balesdent, M.H., Connolly, L.R., Freitag, M., Rouxel, T., and Fudal, I. (2014)
826 Epigenetic control of effector gene expression in the plant pathogenic fungus
827 *Leptosphaeria maculans*. *PLoS Genet* **10**: e1004227.

828 Soyer, J.L., Grandaubert, J., Haueisen, J., Schotanus, K., and Stukenbrock, E.H.
829 (2019) In planta chromatin immunoprecipitation in *Zymoseptoria tritici* reveals
830 chromatin-based regulation of putative effector gene expression. *BioRxiv*.
831 Soyer, J.L., Rouxel, T., and Fudal, I. (2015) Chromatin-based control of effector gene
832 expression in plant-associated fungi. *Curr Opin Plant Biol* **26**: 51-56.
833 Steinberg, G. (2015) Cell biology of *Zymoseptoria tritici*: Pathogen cell organization
834 and wheat infection. *Fungal Genet Biol* **79**: 17-23.
835 Sun, L., Jing, Y., Liu, X., Li, Q., Xue, Z., Cheng, Z., Wang, D., He, H., and Qian, W.
836 (2020) Heat stress-induced transposon activation correlates with 3D chromatin
837 organization rearrangement in *Arabidopsis*. *Nat Commun* **11**: 1886.
838 Turck, F., Roudier, F., Farrona, S., Martin-Magniette, M.L., Guillaume, E., Buisine, N.,
839 Gagnot, S., Martienssen, R.A., Coupland, G., and Colot, V. (2007) *Arabidopsis*
840 TFL2/LHP1 specifically associates with genes marked by trimethylation of
841 histone H3 lysine 27. *PLoS Genet* **3**: e86.
842 Uhse, S., and Djamei, A. (2018) Effectors of plant-colonizing fungi and beyond. *PLoS*
843 *Pathog* **14**: e1006992.
844 Wickham, H. (2007) Reshaping Data with the reshape Package. *Journal of Statistical*
845 *Software* **21**: 1-20.
846 Wickham, H., Averick, M., Bryan, J., Chang, W., D'Agostino McGowan, L., François,
847 R., Golemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T.,
848 Miller, E., Bache, S., Müller, K., Ooms, J., Robinson, D., Seidel, P., Spinu, V.,
849 Takahashi, K., Vaughan, D., Wilke, C., Woo, K., and Yutani, H. (2019) Welcome
850 to the tidyverse. *Journal of Open Source Software* **4**: 1686.

851 Yale, K., Tackett, A.J., Neuman, M., Bulley, E., Chait, B.T., and Wiley, E. (2016)

852 Phosphorylation-Dependent Targeting of Tetrahymena HP1 to Condensed

853 Chromatin. *mSphere* **1**.

854 Yap, K.L., and Zhou, M.M. (2011) Structure and mechanisms of lysine methylation

855 recognition by the chromodomain in gene transcription. *Biochemistry* **50**: 1966-

856 1980.

857 Zeng, W., Ball, A.R., Jr., and Yokomori, K. (2010) HP1: heterochromatin binding

858 proteins working the genome. *Epigenetics* **5**: 287-292.

859

860 **FIGURE LEGENDS**

861 **Figure 1. Cbx1 is an HP1 homolog.** Schematic representation of the domain
862 architecture of Cbx1 showing the locations and theoretical pI values of the acidic N-
863 terminal patch, chromodomain (CD), hinge, and chromoshadow domain (CSD) (top
864 panel). Sequence alignment of the CD and CSD regions from the indicated fungal HP1
865 proteins was generated using CLUSTAL (middle and bottom panels). Full shading
866 (black) represents conservation of an amino acid in at least 50% of the sequences,
867 whilst grey shading denotes conservation of a residue of similar chemistry in at least
868 50% of the analysed sequences. Aromatic 'methyl-lysine cage' residues are coloured
869 yellow and their positions are highlighted with asterisks.

870

871 **Figure 2. Cbx1 binds H3K9me2/3.** (A) GST-Cbx1 (1 μ g) was incubated with the
872 indicated biotinylated histone H3 peptide and streptavidin beads. Beads were
873 recovered and co-precipitation of GST-Cbx1 was analyzed by western blotting using
874 a GST specific antibody. A 10% input GST-Cbx1 was included as a reference. A
875 representative of three biological repeats is shown. (B) Quantification of the GST-Cbx1
876 signal was relative to the 10% input. Data is the mean of three biological repeats and
877 error bars are \pm SEM. (C) Fluorescence microscopy of the *cbx1-GFP* strain. (D) Cbx1
878 is associated with H3K9me3 modified chromatin. Chromatin immunoprecipitation
879 (ChIP)-qPCR was used to determine the enrichment of Cbx1-GFP at the indicated
880 loci. The reference IPO323 (untagged) strain was included as a control. %IP was
881 quantified relative to the input sample. Data is the mean of three biological repeats
882 error bars are \pm SEM.

883

884 **Figure 3. Deletion of *cbx1* and *kmt1* results in distinct phenotypes.** Cell
885 suspensions of the indicated strain were subjected to a five-fold serial dilution and
886 pinned onto the indicated agar plates and incubated at 18°C unless indicated
887 otherwise. Agar plates were made with YMS (Yeast extract, malt extract, sucrose) or
888 where indicated, PDA (potato dextrose agar). Concentrations of the stress-inducing
889 agents were, NaCl 1 M, sorbitol 1 M, calcofluor white (CFW) 50 µg/mL, congo red (CR)
890 150 µg/mL, H₂O₂ 2 mM, UV dose 250 J/m², hydroxyurea (HU) 5 mM, Bleocin 250
891 ng/mL and Carboxin 2.5 ng/mL.

892

893 **Figure 4. *cbx1* deletion slows disease progression.** **(A)** Wheat leaves treated with
894 IPO323, the indicated Δ *cbx1* strains, and a mock infected leaf at 14 days post infection
895 (dpi). **(B)** Wheat leaves from (A) at 21 dpi. A large reduction in pycnidia was observed
896 in leaves treated with the Δ *cbx1* strains. The displayed leaves are representative of
897 three biological repeats. **(C)** Close up of leaves shown in (B).

898

899 **Figure 5. Global impact of Cbx1 and Kmt1 on the transcriptome** **(A)** Hierarchical
900 clustering analysis of the indicated RNA-seq samples. Clustering was performed
901 according to Pearson correlation with the complete linkage method and calculated on
902 log₂ normalised read counts. **(B)** An MA plot of mean normalised counts plotted
903 against log₂ fold change for all genes expressed in Δ *cbx1* and IPO323. Genes in red
904 indicate a statistically significant change in gene expression (p<0.05). Genes in grey
905 fall below the cut-off adjusted p value **(C)** An MA plot of Δ *kmt1* and IPO323. Details
906 as for (B). **(D)** Venn diagram comparing differentially expressed genes (>2-fold change
907 in expression, adjusted p value < 0.05) in Δ *cbx1* and Δ *kmt1*. The statistical significance

908 of the overlap was calculated using a Fisher's test based on hypergeometric
909 distribution. **(E)** As for (D) with up-regulated genes. **(F)** As for (D) with down-regulated
910 genes.

911

912 **Figure 6. Loss of Cbx1 does not result in a global increase of expression from**
913 **TEs and accessory chromosomes. (A)** Median sorted boxplots of Rlog normalised
914 read counts from genes on accessory chromosomes. n = number of genes/elements
915 analysed. * = $p < 0.05$, ns = not significant (ANOVA). **(B)** TE expression analysed
916 as described in (A) *** = $p < 0.001$ (ANOVA). **(C)** Hierarchical clustering analysis of
917 TE expression in the indicated RNA-seq samples. Clustering was performed according
918 to Pearson correlation with the complete linkage method and calculated on \log_2
919 normalised read counts. **(D)** Genes associated ($\pm 2\text{Kb}$) with TE elements. Venn
920 diagram displaying proportions of TE-associated genes commonly and uniquely
921 differentially expressed in $\Delta cbx1$ and $\Delta kmt1$. The statistical significance of the overlap
922 was calculated using a Fisher test based on hypergeometric distribution. **(E)** Heatmap
923 of TE-associated genes that are differentially expressed in both $\Delta cbx1$ and $\Delta kmt1$.
924 The colour scale represents \log_2 fold changes from -7 to 10. Genes linked to
925 secondary metabolism are indicated. Genes were clustered using euclidean distance
926 and complete linkage.

927

928 **Figure 7. The majority of H3K9me-associated genes are not differentially**
929 **expressed in $\Delta cbx1$ mutants. (A)** Venn diagram of genes differentially expressed
930 (DE) in $\Delta cbx1$ and genes associated with (> 1bp) H3K9me (B) $\Delta cbx1$ DE genes and
931 fully marked (100%) H3K9me genes. (C) $\Delta kmt1$ DE genes and H3K9me3 associated
932 genes. (D) $\Delta kmt1$ DE genes and H3K9me fully marked genes. The statistical

933 significance of the overlaps in each case was calculated using a Fisher's test based
934 on hypergeometric distribution.

935

936 **Figure 8. Cbx2, a fungal specific chromodomain protein that binds to H3K9me3**

937 **(A)** Schematic representation of the domain architecture of Cbx2 showing the
938 location and theoretical pls of the two chromodomains CD1 and CD2. **(B)** Fungal
939 species with close homologs of Cbx2. The organism, pathogenicity, family, number of
940 chromodomains (predicted by Prosite) and E value relative to Cbx2 are shown. **(C)**
941 GST-Cbx2 ($\alpha\alpha$ 503-703) (1 μ g) was incubated with the indicated biotinylated histone
942 H3 peptide and streptavidin beads. Beads were recovered and co-precipitation of
943 GST-Cbx2 was analyzed by western blotting using a GST specific antibody. A 10%
944 input GST-Cbx2 was included as a reference. A representative of three biological
945 repeats is shown. **(D)** Quantification of the GST-Cbx2 signal was relative to the 10%
946 input. Data is the mean of three biological repeats and error bars are \pm SEM.

947

948 **Figure 9. Deletion of cbx2 does not impair growth in planta (A)** Wheat leaves
949 treated with IPO323, Δ cbx2 strains and a mock infection (M) at 14 dpi. **(B)** The same
950 wheat leaves at 21 dpi. The displayed leaves are representative of three biological
951 repeats. **(C)** Close up of the leaves shown in (B).

952

953 **Figure 10. Cbx1 and Cbx2 have redundant functions. (A)** The *in vitro* growth
954 defects of Δ cbx1 Δ cbx2 mutants are similar to Δ kmt1. Cell suspensions of the
955 indicated strain were subjected to a five-fold serial dilution and pinned onto the
956 indicated agar plates. Abbreviations and concentrations are as described for Figure 3.
957 **(B)** RNA was extracted from the indicated strains. Mycgr3103556 mRNA levels were

958 determined by RT-qPCR, normalised to actin (Mycgr3G105948) mRNA and scaled
959 relative to the wild type (IPO323) level. Data are the mean of ≥ 3 independent
960 biological repeats and error bars represent \pm SEM. **(C)** Mycgr3G44980 mRNA levels
961 were determined as described in (B).

962

963 **Figure S1. Deletion of *kmt1* results in loss of H3K9me3 and virulence**

964 **Figure S2. Principal component analysis (PCA) analysis of RNA-seq data**

965 **Figure S3. Differentially expressed (DE) genes in $\Delta kmt1$ overlap with DE genes**
966 **in the Zt09- $\Delta kmt1$ strain (Moller et al., 2019).**

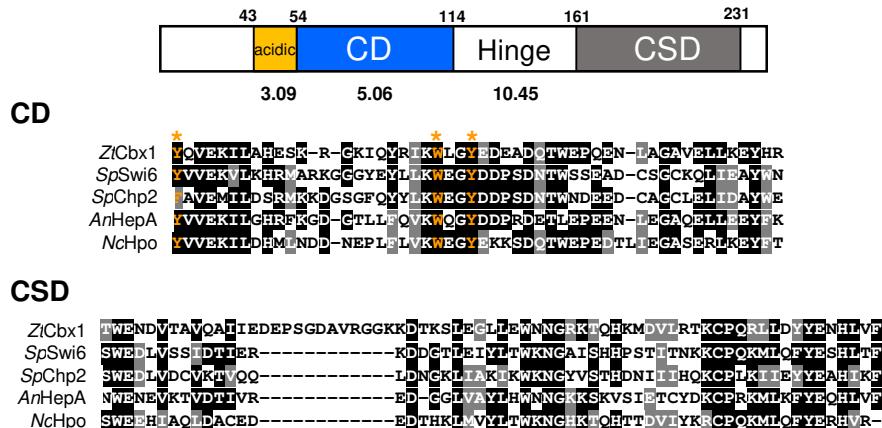
967 **Figure S4. Comparison of Cbx2 chromodomains with HP1 chromodomains.**

968 **Figure S5. Sequence alignments of Cbx2 homologs**

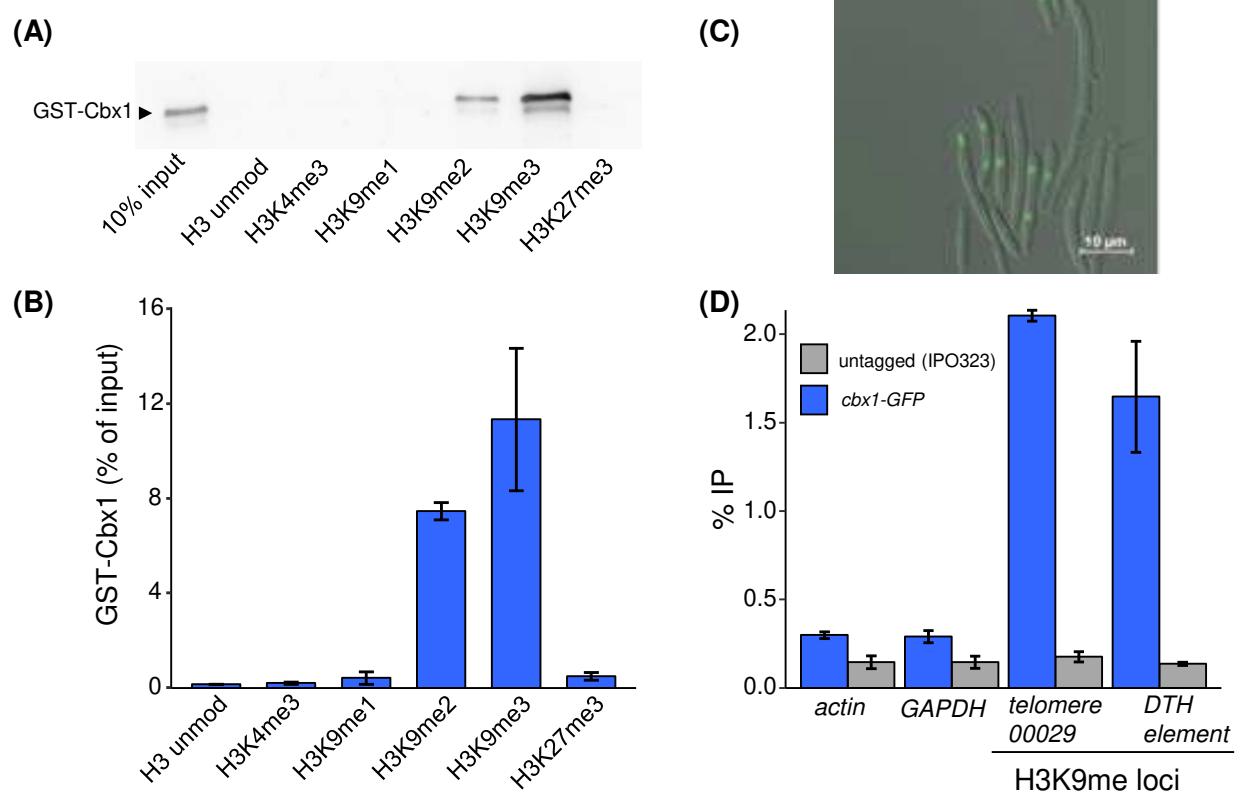
969 **Figure S6. *In vitro* growth phenotypes of $\Delta cbx2$ mutants**

970

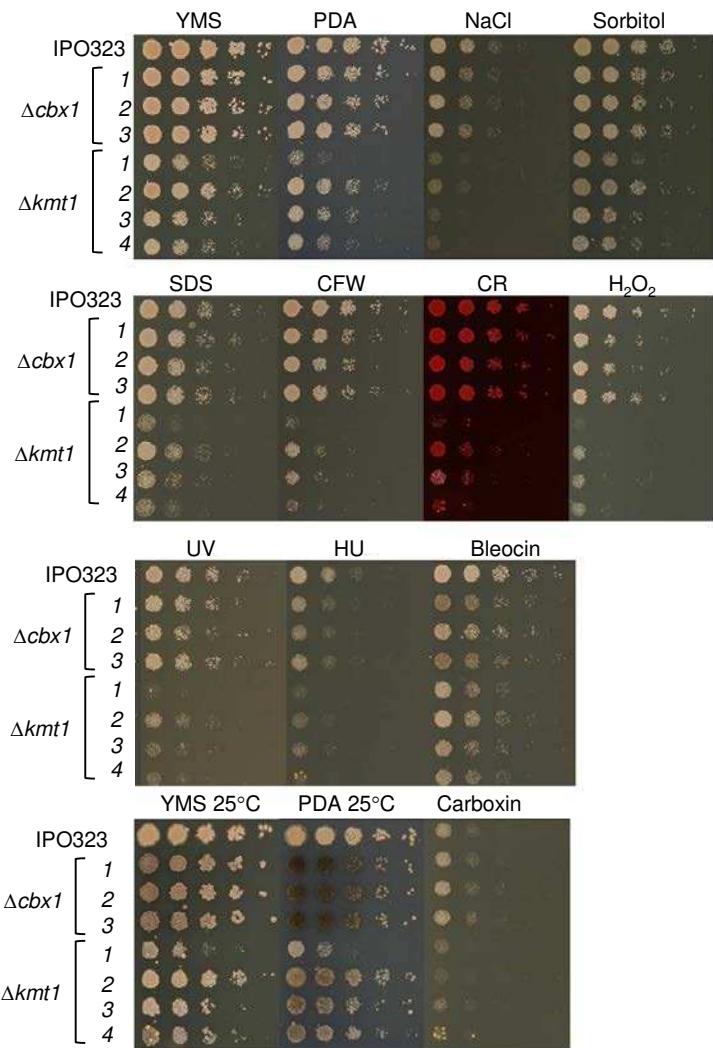
971 **Table S1. Genes differentially expressed in $\Delta kmt1$**

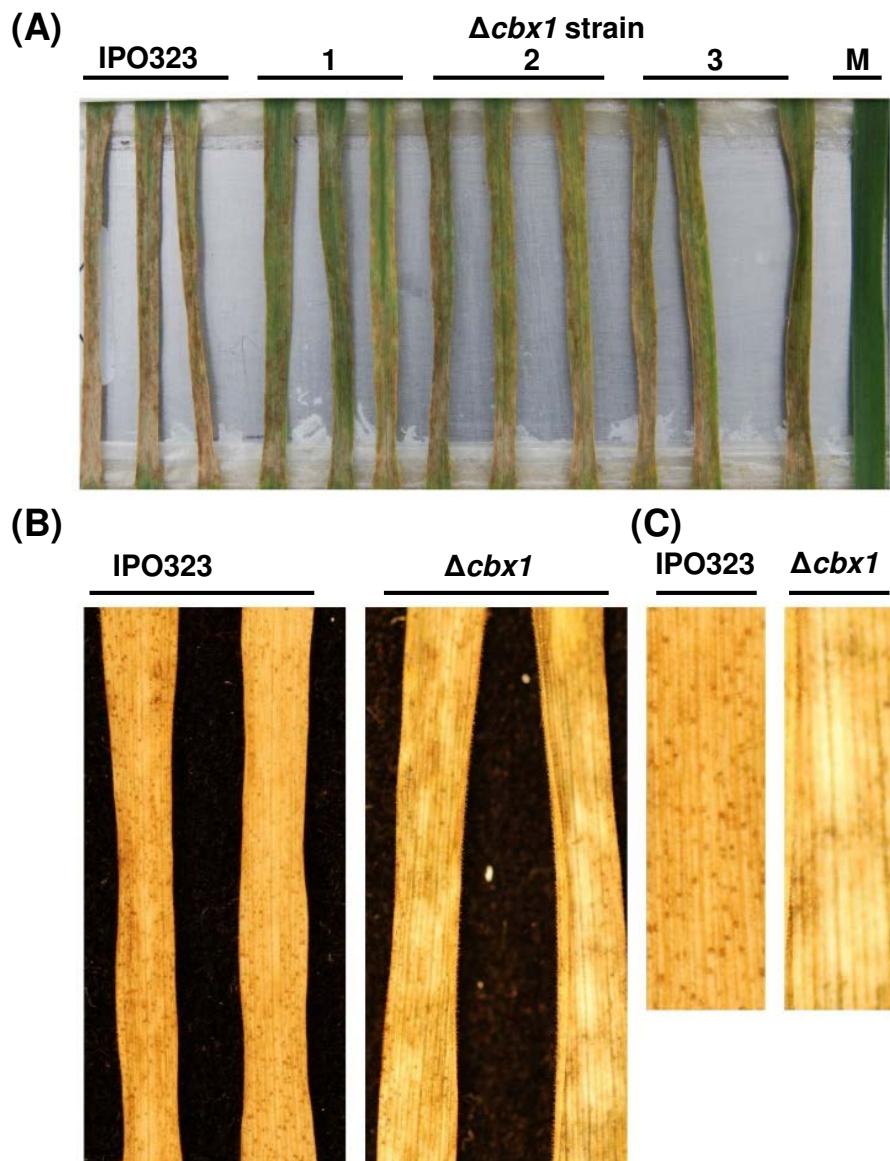

972 **Table S2. Genes differentially expressed in $\Delta cbx1$**

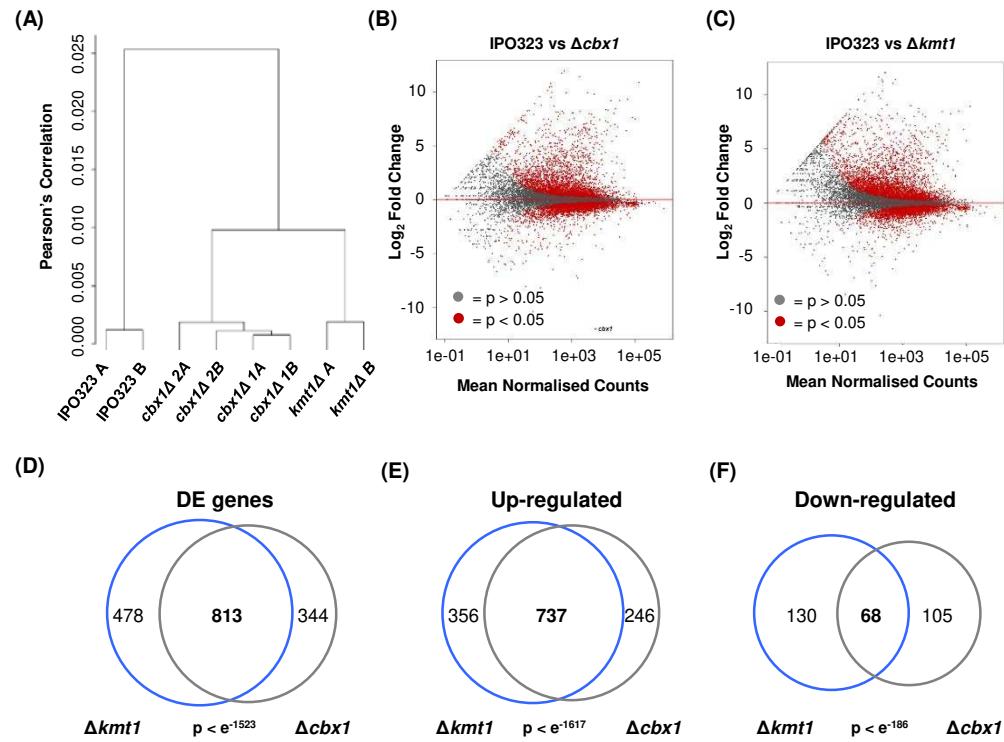
973 **Table S3. Genes differentially expressed in $\Delta cbx1$ but not $\Delta kmt1$**

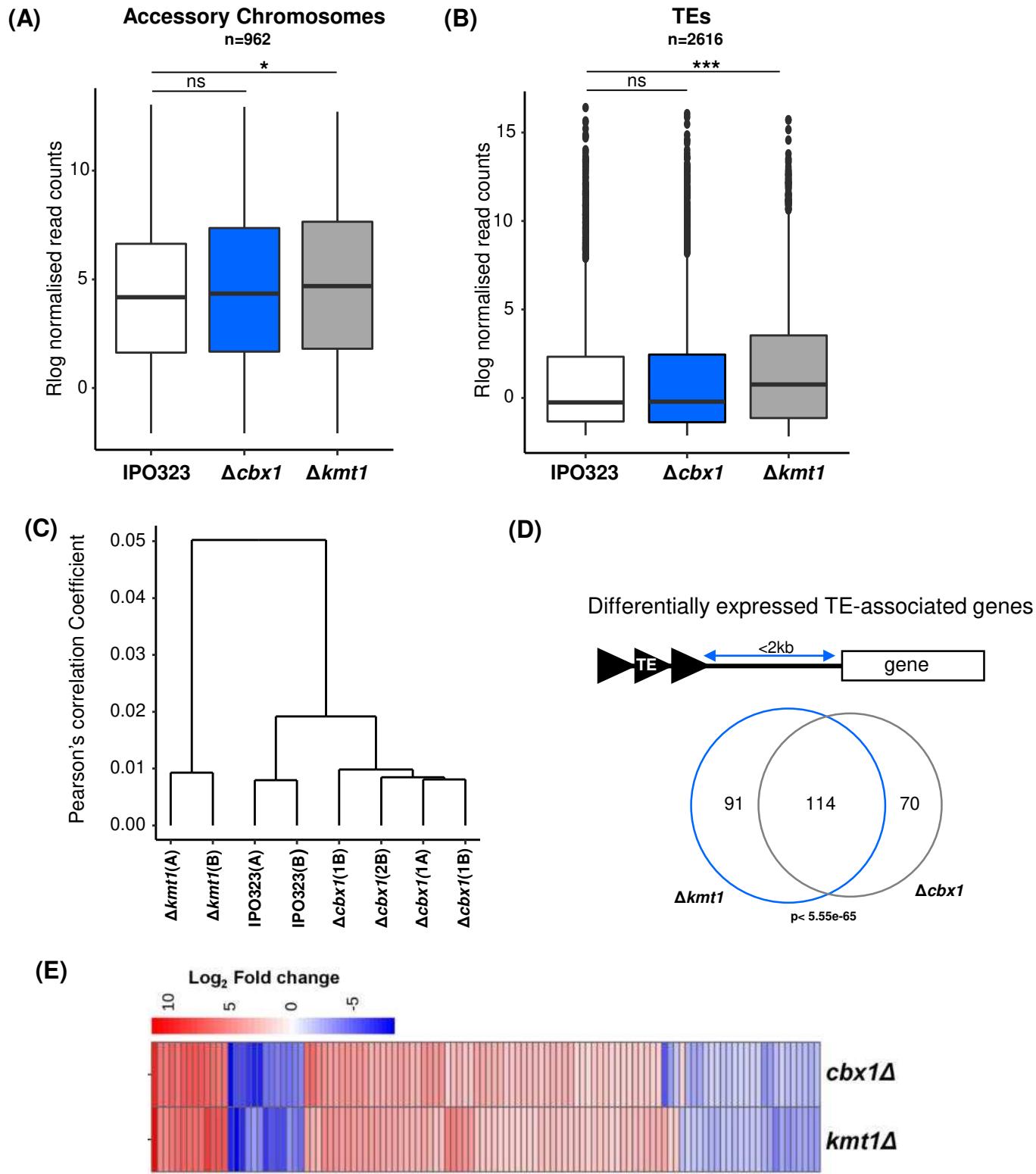

974 **Table S4. Genes differentially expressed in $\Delta kmt1$ but not $\Delta cbx1$**

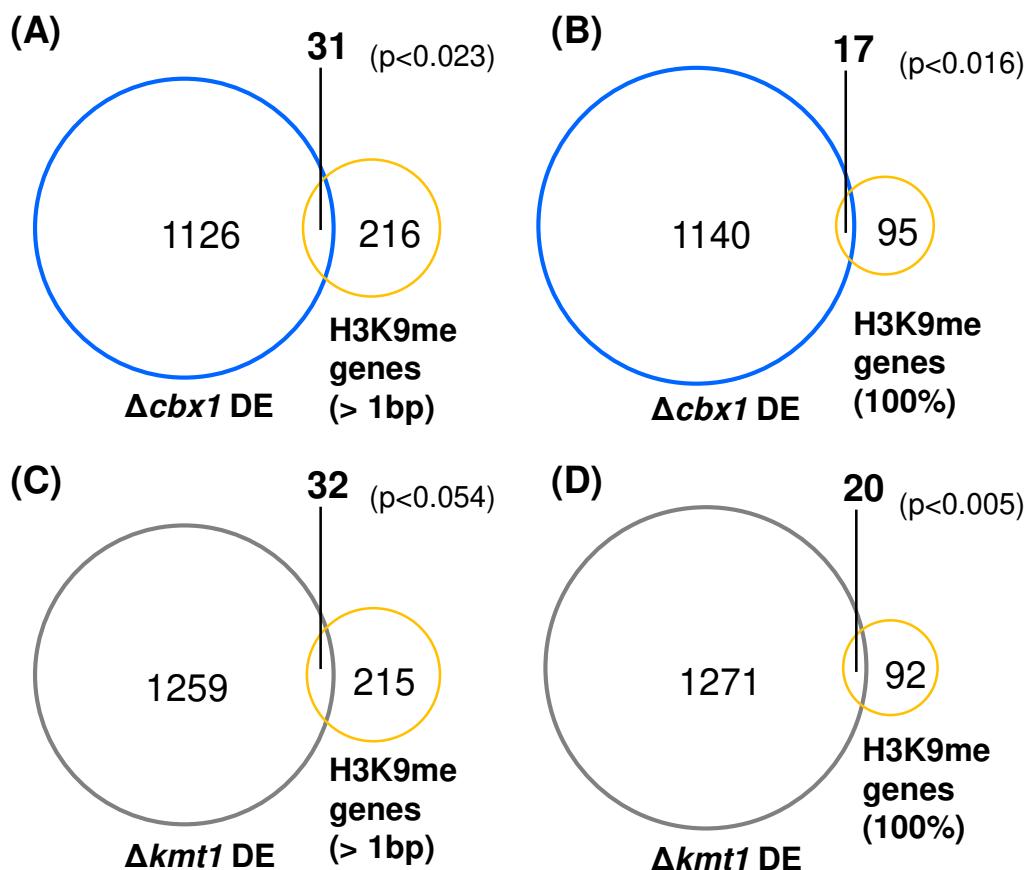
975 **Table S5. Oligonucleotide primers used for qPCR in this study.**

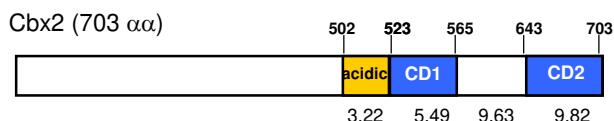
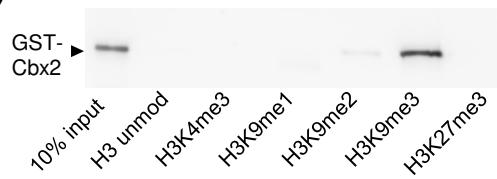
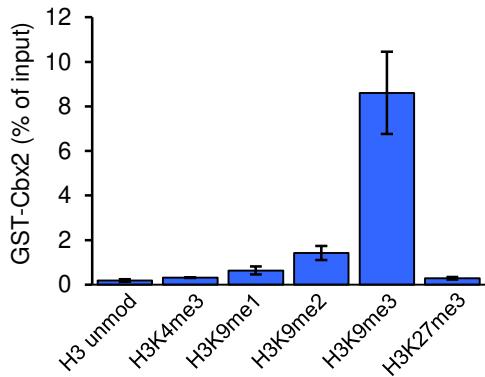
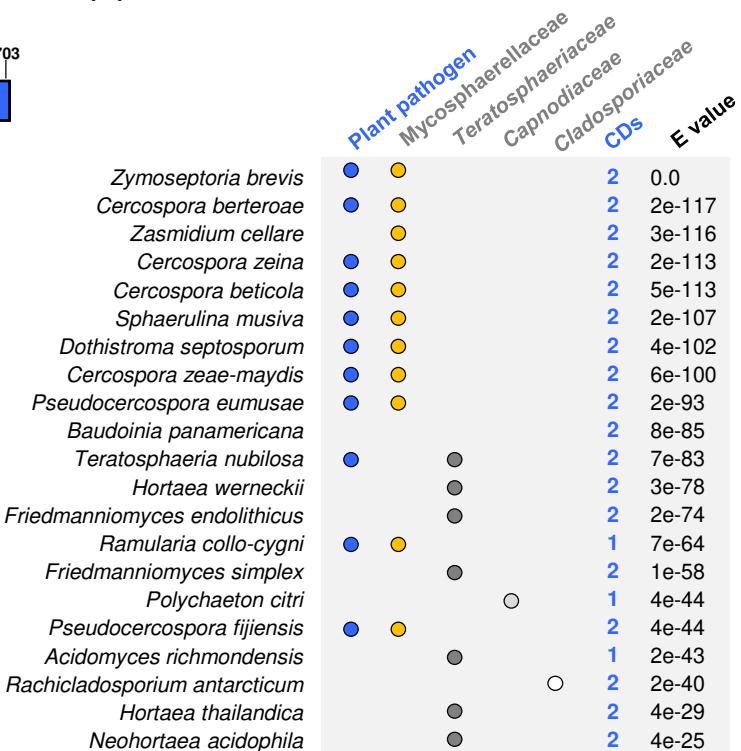

Cbx1 (239 $\alpha\alpha$)


Figure 1


Figure 2


Figure 3


Figure 4





Figure 5

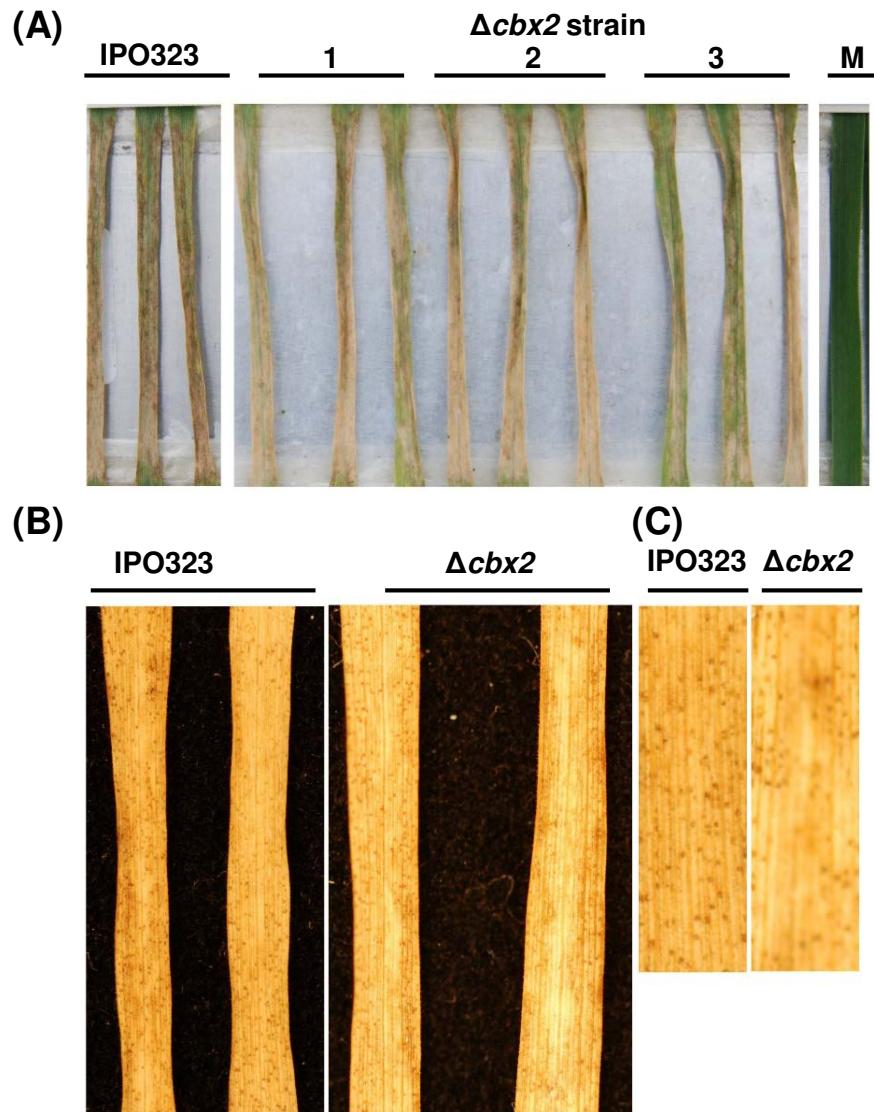


Figure 6

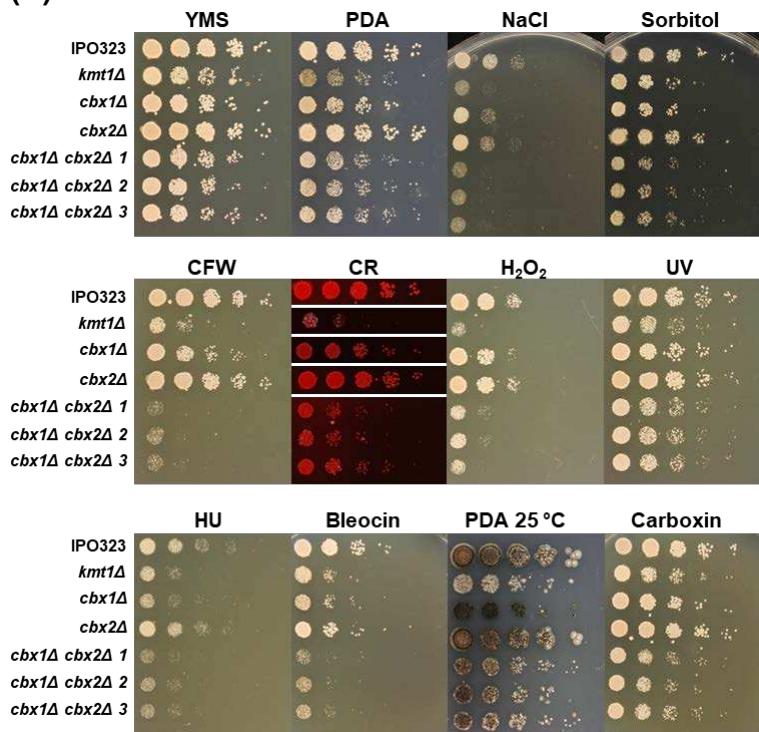
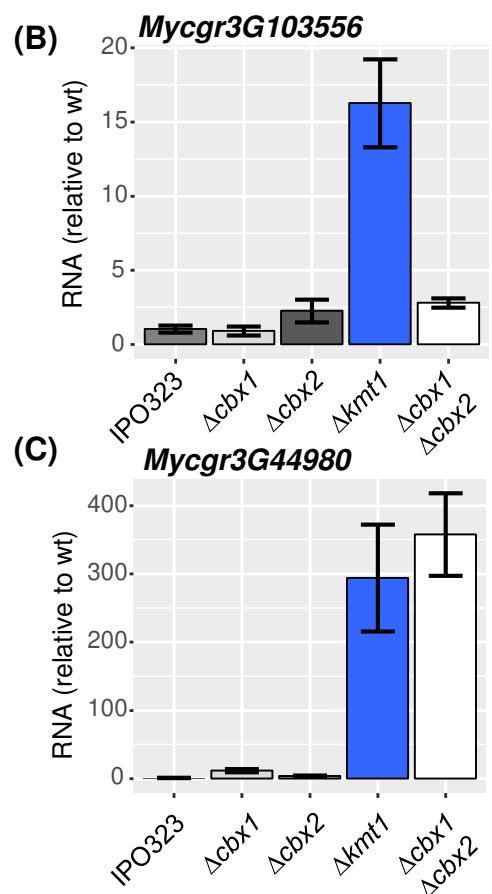
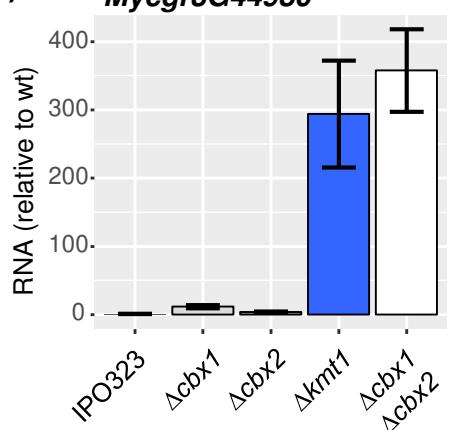




Figure 7

(A)**(C)****(D)****(B)****Figure 8**

Figure 9

(A)**(B)****(C)****Figure 10**