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Abstract:

When deciding between options that do or do not lead to future choices, humans often choose to
choose. We studied choice seeking by asking subjects to decide between a choice opportunity or
performing a computer-selected action. Subjects preferred choice when these options were equally
rewarded, even deterministically, and were willing to trade extrinsic rewards for the opportunity to
choose. We explained individual variability in choice seeking using reinforcement learning models
incorporating risk sensitivity and overvaluation of rewards obtained through choice. Degrading
perceived controllability diminished choice preference, although willingness to repeat selection of
choice opportunities remained unchanged. In choices following these repeats, subjects were
sensitive to rewards following freely chosen actions, but ignored environmental information in a
manner consistent with a desire to maintain personal control. Choice seeking appears to reflect the
intrinsic need for personal control, which competes with extrinsic reward properties and external
information to motivate behavior.

Author summary:

Human decisions can often be explained by the balancing of potential rewards and punishments.
However, some research suggests that humans also prefer opportunities to choose, even when
these have no impact on future rewards or punishments. Thus, opportunities to choose may be
intrinsically motivating, although this has never been experimentally tested against alternative
explanations such as cognitive dissonance or exploration. We conducted behavioral experiments
and used computational modelling to provide compelling evidence that choice opportunities are
indeed intrinsically rewarding. Moreover, we found that human choice preference varied
according to individual risk attitudes, and expressed a need for personal control that competes
with maximizing reward intake.
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Preference for choice has been observed in humans(1-6) as well as other animals including rats(7),
pigeons(8) and monkeys(9,10). This free-choice premium can be behaviorally measured by having
subjects perform trials in two stages: a decision is first made between the opportunity to choose
from two terminal actions (firee) or to perform a mandatory terminal action (forced) in the second
stage(7). Although food or fluid rewards follow terminal actions in non-human studies, choice
preference in humans can be elicited using hypothetical outcomes that are never obtained(3,11).
Thus, choice opportunities appear to possess or acquire value in and of themselves. It may be that
choice has value because it represents an opportunity to exercise control, which is itself intrinsically
rewarding(1,4,12). Personal control is central in numerous psychological theories, where
constructs such as autonomy(13,14), controllability(15,16), personal causation(17), effectance(18),
perceived behavioral control(19) or self-efficacy(15) are key for motivating behaviors that are not
economically rational or easily explained as satisfying basic drives such as hunger, thirst, sex, or
pain avoidance(20).

There are alternative explanations for choice seeking. For example, subjects may prefer
choice because they are curious and seek information(21,22), or they wish to explore potential
outcomes to eventually exploit their options(23), or because they seek variety to perhaps reduce
boredom(24) or keep their options open(3). By these accounts, however, the expression of personal
control is not itself the ends, but rather a means for achieving an objective that once satisfied
reduces choice preference. For example, choice preference should decline when there is no further
information to discover in the environment, or after uncertainty about reward contingencies have
been satisfactorily resolved.

Choice seeking may also arise due to selection itself altering outcome representations.
Contexts signaling choice opportunities may acquire distorted value through choice-induced

preference change(25). By this account, deciding between equally valued terminal actions
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generates cognitive dissonance that is resolved by post-choice revaluation favoring the chosen
action(25,26). This renders the free option more valuable than the forced option since revaluation
only occurs for self-determined actions(27,28). Alternatively, subjects may develop distorted
outcome representations through a process related to the winner’s or optimizer’s curse(29),
whereby optimization-based selection upwardly biases value estimates for the chosen action. One
algorithm subject to this bias is Q-learning(30), where action values are updated using the
maximum value to approximate the maximum expected value. In a two-stage task, the free action
value is biased upwards due to considering only the best of two possible future actions, while the
forced action value remains unbiased since there is only one possible outcome(31). Again, the
expression of personal control is not itself the ends for these selection-based accounts, and both
predict that choice preference should be reduced when terminal rewards associated with the free
option are clearly different.

Data from prior studies does not arbitrate between competing explanations for choice-
seeking. Here, we used behavioral manipulations and computational modelling to explore the
factors governing human preference for choice. In the first experiment, we altered the reward
contingencies associated with terminal actions in order to rule out curiosity, exploration, variety-
seeking, and selection-based explanations for choice seeking. In the second experiment, we used a
titration procedure to measure the value of choice relative to an extrinsic reward available in the
environment (i.e., money). We then used reinforcement learning models to show that optimistic
learning (considering the best possible future outcome) was insufficient to explain individual
variability in choice seeking. Rather, subjects adopted different decision attitudes, the desire to
make or avoid decisions independent of the outcomes(11), which were balanced against differing
levels of risk sensitivity. Finally, in the third experiment, we sought to test whether choice

preference was motivated by personal control beliefs. We manipulated the perceived controllability
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of the task and found that subjects' willingness to repeat a free choice was not affected by the lack
of objective controllability over reward outcome. Importantly, subjects were sensitive to past
rewards only in trials where state outcomes could be attributed to self-determined choice, and
ignored rewards on trials where there was an apparent loss of control. Together, our results support
the hypothesis that human preference for choice opportunities derives from the intrinsic motivation

for personal control.
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99 Results:

100  Subjects performed repeated trials with a two-stage structure (Fig. 1). In each trial, subjects made
101  a 1-stage choice between two options defining the 2"d-stage: the opportunity to choose between
102 two fractal targets (free) or performing an obligatory selection of another fractal target (forced).
103 Extrinsic rewards (€) were delivered only for terminal (i.e., 2"-stage) actions. If subjects chose the
104  forced option, the computer always selected the same fractal target for the subjects. If subjects
105  chose the free option, they had to choose between two fractal targets associated with two different
106  terminal states. We fixed reward contingencies in blocks of trials, and used unique fractal targets
107  for each block. We divided each block into an initial training phase (Fig. 1B) followed by a test
108  phase (Fig. 1C) to ensure that the subjects learned the associations between the different fractal

109  targets and extrinsic reward probabilities.
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Figure 1. Two-stage task structure. A. State diagram illustrating the 6 possible states (s), actions (a) and associated
extrinsic reward probabilities (e.g., P = 0.5, 0.75 or 1 for blocks 1 to 3, respectively); s2 and s3 were represented by
two different 1%'-stage targets (e.g., colored squares with or without arrows for free and forced trials, respectively)
and s4 to s6 were associated to three different 2"-stage targets (fractals). B. Sequence of events during the training
phase where the subjects learned the contingencies between the fractal targets and their reward probabilities (P)
associated with the forced (no choice) and free (choice available) options. When training the reward contingencies
associated with the forced option, subjects’ actions in the 2"%-stage had to match the target indicated by a grey V-
shape and was always the same (s4). When training the reward contingencies associated with the free option, no
mandatory target is present at the 2"%-stage (s5 or s6 can be chosen) but one of the targets is more rewarded when
P > 0.5. Black arrows represent the selection of the target by the subject. C. Sequence of events during the test
phase: subjects first decided between the free or forced option and then experienced the associated 2"-stage.
Rewards, when delivered, were represented by a large green euro symbol (€).
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110 Free choice preference across different extrinsic reward probabilities

111 Inexperiment 1, we varied the overall expected value by varying the probability of extrinsic reward
112 delivery (P) across different blocks of trials. These probabilities ranged from 0.5 to 1 across the
113 blocks (i.e., low to high), and the programmed probabilities in fiee and forced 2"-stage rewards
114 were equal (Fig. 2A). For example, in high probability blocks, we set the probabilities of the forced
115  terminal action and of one of the free terminal actions (al) to 1, and set the probability of the second
116  free terminal action (a2) to 0. Therefore, the maximum expected value was equal for the free and
117  forced options.

118 Subjects chose to choose more frequently, selecting the free option in 64% (n=58) of test
119  trials on average (Fig. 2B). The level of preference did not differ significantly across blocks (p =
120  0.857, low = 65%, medium = 64%, high = 66%). We found that subjects immediately expressed
121  above chance preference for the free option (Fig. 2C) despite never having actualized 1%-stage
122 choices during training. Looking within a block, we found that subjects’ preference remained
123 constant across trials in medium and high reward probability blocks (p = 0.22 and 0.6823 for
124 nonlinear smooth by trial deviating from a flat line, respectively; Fig. 2C, middle and right panels).
125  In low probability blocks, subjects started with a lower choice preference that gradually increased
126  to match that observed in the medium and high probability blocks (p = 0.0014 for nonlinear smooth
127 by trial; Fig. 2C left panel). The lower reward probability may have prevented subjects from
128  developing accurate reward representations by the end of the training phase, which may have led
129  to additional sampling of the three 2"-stage targets (two in fiee and one in forced) in the beginning
130  of the test phase.

131
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Figure 2. Choice preference across different absolute extrinsic reward probabilities. A. Experiment 1 task design
where maximal extrinsic reward probabilities increased equally across free and forced options. B. Subject
preference for free option during 1°*-stage. Colored points indicate individual subject mean choice preference per
block, plotted against the obtained average reward. Black diamonds indicate the average of subject means per
block. Line indicates the estimated choice preference from a GLMM, with 95% CI. C. Dynamics of free option
preference across test phase blocks for low (left), medium (middle) and high (right) absolute extrinsic reward
probabilities. Each point represents the average free option preference as a function of trial within a block.
Diamonds: as in B. Lines indicate the estimated choice preference from a GAMM, with 95% Cl. D to E. Dynamics
of the selection of the most rewarded 2"-stage targets in free option for low (left), medium (middle) and high
(right) during the training (D) and test (E) phases. Note that in left panels, the probability of extrinsic rewards is
equal for two 2"-stage targets (P=0.5). We labelled the best choice as 1 when P > 0.5. Triangles represents the
final average selection at the end of the training phases. Lines: as in C.

132

133 Second-stage performance following free selection

134 We investigated participants’ 2"-stage choices following free selection to exclude the possibility
135  that choice preference arose because reward contingencies had not been learned. During the
136  training phase, when P>0.5, participants quickly learned to choose the most rewarded fractal targets

137  (at P=0.5, all fractal targets were equally rewarded) (Fig. 2D). During the test phase, participants
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138  continued to select the same targets (Fig. 2E), confirming stable application of learned
139  contingencies (p > 0.1 for nonlinear smooth by trial deviating from a flat line for all blocks).

140 Choice preference was not explained by subjects obtaining more extrinsic rewards
141  following selection of free compared to forced options. Obtained reward proportions were not
142 significantly different in the low (following selection of free vs. forced, 0.516 vs. 0.536, p = 0.276)
143 or medium (0.746 vs. 0.762, p = 0.322) probability blocks. In contrast, in high probability blocks,
144 subjects received significantly fewer rewards on average after free selection than after forced
145  selection (0.989 vs. 1, p = 0.0016). In this block, reward was fully deterministic, and forced
146  selection always led to a reward, whereas free selections could lead to missed rewards if subjects
147  chose the incorrect target.

148

149  Trading extrinsic rewards for choice opportunities

150  Since manipulating the overall expected reward did not alter choice seeking behavior at the group-
151  level, we investigated the effect of changing the relative expected reward between 1%-stage options.
152 Inexperiment 2, we tested a new group of 36 subjects for whom we decreased the objective value
153 of the free versus forced options. This allowed us to assess the point at which these options were
154  equally valued and potentially reversed to favor the initially non-preferred (forced) option (Fig.
155 3A). Thus, we titrated the value of choice opportunity by increasing the reward probabilities
156  following forced selection (block 1: Prorced = 0.75; block 2: Proreea = 0.85; block 3: Prorcea = 0.95),
157  while keeping the reward probabilities following free selection fixed (Psec|al = 0.75, Pseela2 = 0.25
158  for all blocks).

159 As in experiment 1, we found that subjects preferred choice when the extrinsic reward
160  probabilities of the free and forced options were equal (block 1: 68% 1%-stage choice in favor of

161  free; Fig. 3B, dark green). Increasing the reward probability associated with the forced option
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162  significantly reduced choice preference (p = 0.00344, Fig. 3B) to 49% (block 2) and 39% (block
163  3). We estimated the population preference reversal point at Ppreed = 0.88, indicating that
164  indifference was obtained on average when the value of the forced option was 17% greater than
165  that of the free. We found that subjects’ preference remained constant across trials when reward
166  probabilities were equal (p = 0.875 for nonlinear smooth by trial; Fig. 3C, left panel). Although
167  reduced overall, the selection of the free option also did not vary across trials in blocks 2 and 3 (p
168 = 0.737 and 0.078 for nonlinear smooth by trial, respectively). Furthermore, as in experiment 1,
169  subjects acquired preference for the most rewarded 2"-stage targets during the learning phase
170  (Fig.3D) and continued to express this preference during the test phase in all three blocks (Fig. 3E).
171  Thus, the decrease in choice preference was not related to failure to learn the reward contingencies
172 during the training phase.

173 Although decreasing the relative value of the frree option reduced choice preference, most
174  subjects did not switch exclusively to the forced option. Even in block 3, where the forced option
175  was set to be rewarded most frequently (Prorces = 0.95 versus Pge. = 0.75), 32/36 subjects selected
176  the free option in a non-zero proportion of trials. Since exclusive selection of the forced option
177  would maximize extrinsic reward intake, continued free selection indicates a persistent appetency
178  for choice opportunities despite their diminished relative extrinsic value.

179
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Figure 3. Choice preference across different relative extrinsic reward probabilities. A. Experiment 2 task design
where extrinsic reward probably is always at P = 0.75 for the highly rewarded target in free options but vary from
0.75 to 0.95 across 3 blocks for forced options. B. Subject preference for free option during 1%*-stage. Colored
points indicate individual subject mean choice preference per block, plotted against the average reward in forced
option. Black diamonds indicate the average of subject means per block. Line indicates the estimated choice
preference from a GLMM, with 95% Cl. C. Dynamics of free option preferences across test phase blocks when
extrinsic reward probabilities of forced options were set at 0.75 (left), 0.85 (middle) and 0.95 (right). Each point
represents the average free option preference as a function of trial within a block. Diamonds: as in B. Lines indicate
the estimated choice preference from a GAMM, with 95% Cl. D to E. Dynamics of the selection of the most
rewarded 2"%-stage targets in free option when extrinsic reward probabilities of forced options are set at 0.75
(left), 0.85 (middle) and 0.95 (right) during the training (D) and test (E) phases. Triangles represents the final
average selection at the end of the training phases. Lines: as in C.

Reinforcement-learning model of choice seeking

We next sought to explain individual variability in choice behavior using a value-based decision-
making framework. We first used mixed logistic regression to examine whether rewards obtained
from 2"-stage actions influenced 1%-stage choices. We found that obtaining a reward on the
previous trial significantly increased the odds that subjects repeated the 1%'-stage selection that

ultimately led to that reward (p < 0.0001, odds ratio rewarded/unrewarded on previous trial: 1.92

10
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187  +95% CI [1.40, 2.60]). This suggest that subjects continued to update their extrinsic reward
188  expectation based on experience during the test phase. We therefore leveraged the framework of
189  temporal-difference reinforcement learning (TDRL) to provide a model-based characterization of
190  the emergence of choice preference.

191 We fitted TDRL models to individual data using two distinct features to capture individual
192 variability across different extrinsic reward contingencies. The first feature was a free choice bonus
193 added to self-determined actions as an intrinsic reward. This can lead to overvaluation of the free
194  option via standard TD learning. The second feature modifies the form of the future value estimate
195  usedinthe TD value iteration, which in common TDRL variants is, or approximates, the best future
196  action value (Q-learning or SARSA with softmax behavioral policy, respectively). We treated both
197  Q-learning and SARSA together as optimistic algorithms since they are not highly discriminable
198  with our data (Supplementary Fig. 1). We compared this optimism with another TDRL variant that
199  explicitly weights the best and worst future action values (Gaskett’s [-pessimistic model(32)),
200  which could capture avoidance of choice opportunities through increased weighting of the worst
201  possible future outcome (pessimistic risk attitude). For example, risk is maximal in the high reward
202  probability block in experiment 1 since selection of one 2"-stage target led to a guaranteed reward
203  (best possible outcome) whereas selection of the other target led to guaranteed non-reward (worst
204  possible outcome).

205 We found that it was necessary to incorporate the overvaluation of rewards obtained from
206  free actions to predict choice preference in experiment 1 (Fig. 4A). Moreover, the magnitude of
207  the bonus was significantly associated with increasing choice preference during the 15'-stage of the
208  trials (p = 0.0005 for nonlinear smooth, Fig. 4B). Therefore, optimistic or pessimistic targets alone
209  were insufficient to explain individual choice preference across different extrinsic reward

210  contingencies. We found that a pessimistic target best fitted about 28% (16 of 58) of the subjects

11
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211  in experiment 1. Moreover, most pessimistic subjects (13 of 16) were best fitted with a model
212 including a free choice bonus to balance risk and decision attitudes across reward contingencies.
213 In experiment 1, we introduced risk by varying the difference in extrinsic reward probability for
214  the best and worst outcome following free selection. The majority of so-called ‘pessimistic
215  subjects’ preferred choice when extrinsic reward probabilities were low, but their weighting of the
216  worst possible outcome decreased this preference as risk increased (Fig. 4C, pink). Thus,
217  pessimistic subjects avoided the free option despite rarely or never selecting the more poorly
218  rewarded 2"-stage target during the test phase.

219 We also fitted the TDRL variants to individual data from experiment 2, and found that a
220  free choice bonus was also necessary to explain choice preference across extrinsic reward
221  contingencies in that experiment. Four subjects (of 36) were best fitted using the [-pessimistic
222 target (see Supplementary Fig. 2) although this may be a conservative estimate since we did not

223 vary risk in experiment 2.
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Figure 4. Reinforcement learning models capture individual choice behavior. A. Obtained free choice proportion
as a function of model error in experiment 1, averaged over all conditions. For subjects where the selected model
did not include a free choice bonus, only one symbol (X) is plotted. For subjects where the selected model included
a free choice bonus, two symbols are plotted. Filled symbol represents the fit error with the selected model, and
the open symbol represents the next best model that did not include a free choice bonus. Lines connect individual
subjects. B. Bonus coefficients increase as a function of subjects’ preference for free options irrespectively of the
target policy they used when performing the task. Choice preference from low probability blocks (P=0.5). Filled
circles indicate that the best model included a free choice bonus parameter. Line illustrates a generalized additive

12
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model smooth. C. Pessimistic subjects significantly decrease their free option preference as a function of extrinsic
reward probabilities. Symbol legend from B applies to the small points representing individual means in C. Error
bars for 95% CI.

224

225  Influence of action-outcome coherence on choice seeking behavior

226  We next asked whether choice preference was related to personal control beliefs. To do so, we
227  manipulated the coherence between an action and its consequence over the environment. In
228  experiment 3, we tested the relationship between preference for choice opportunity and the physical
229  coherence of the terminal action by directly manipulating the perceived controllability of 2"¢-stage
230  actions. We modified the two-stage task to introduce a mismatch between the subject’s selection
231  of the 2"-stage target and the target ultimately displayed on the screen by the computer (Fig. 5A).
232 We did this by manipulating the probability that a 2"-stage target selected by a subject would be
233 swapped for the 2"-stage target that had not been selected. That is, on coherent trials, a subject
234  selecting the fractal on the right side of the screen would receive visual feedback indicating that
235  the right target had been selected. On incoherent trials, a subject selecting the fractal on the right
236  side would receive feedback that the opposite fractal target had been selected (i.e., the left target).
237 To ensure that all other factors were equalized between the two 1%-stage choices, we
238  implemented target swaps following both firee and forced selections by adding an additional state
239  to our task (Fig. SA). In one block of trials, the incoherence was set to 0 and every subject action
240  in the 2"-stage led to a coherent selection of the second target. In the other blocks, we set
241  incoherence to 0.15 or 0.3, resulting in lower perceived controllability between target choice and
242  target selection (e.g., 85% of the time, pressing the left key will select the left target, and in 15%
243  theright target). We set all of the extrinsic reward probabilities associated with the different fractal
244 targets to P = 0.75. Since all 2" -stage actions had the same expected value, the experiment was

245  objectively uncontrollable because the probability of reward was independent of all actions(16).
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246  Moreover, equal reward probabilities ensured that outcome diversity(33,34), outcome entropy(35),
247  and instrumental divergence(36) did not contribute to choice preference since these were all equal
248  between the forced and free options.

249 The same group of participants who performed experiment 2 also performed experiment 3
250  (n=36). Choice preference was high (70%) in block 1 when coherence was not altered, similar to
251  block 1 from experiment 2 where extrinsic reward was equal between free and forced options. The
252  only difference between these two blocks was that choosing the forced option resulted in the
253  obligatory selection of the same fractal (experiment 2) or one of two fractals randomly selected by
254  the computer (experiment 3), which indicates that subjects’ choice preference was not related to
255  action variability per se following forced selection. Moreover, we found that choice preference was
256  significantly correlated (r = 0.358, p = 0.03175) between block 1 of experiments 2 and 3,
257  highlighting a within-subject consistency in choice preference.

258 Increasing the incoherence of the 2"d-stage actions progressively reduced choice preference
259  (block 2 and 3: 67% and 64% in favor of free respectively). As in experiments 1 and 2, choice
260  preference was expressed immediately after the training phase and remained constant throughout
261  the different blocks (Supplementary Fig. 3). We found that the decline in choice preference
262  depended on the 1%-stage choice on the previous trial. Specifically, following coherent trials, we
263  found that there was a significant interaction between the previous 1%-stage choice (free or forced)
264  andthe degree of incoherence (p = 0.0015, Fig. 5B). The difference in slopes was due to decreasing
265  propensity to choose the free option following forced selection on the previous trial (p = 0.0111),
266  with no change in the propensity to choose the free option following free selection on the previous
267  trial (p = 0.8706). Thus, as incoherence increased, subjects tended to stay more with the forced

268  option, while maintaining a preference to repeat firee selections.
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269 The sustained repetition of free selections across the different levels of incoherence
270  suggests that subjects may have been seeking to regain control of the environment through self-
271  determined 2"-stage choices. Although the task was objectively uncontrollable since all terminal
272  action-target sequences were associated with the same reward probability, subjects may have
273 developed structure beliefs based on local reward history and target swaps, which could be reflected
274  in 2"-stage patterns of choice. Thus, subjects may have followed a strategy based on reward
275  feedback by repeating only actions associated with a previous reward (illusory maximization of
276  reward intake; Fig.5C, first panel). Alternatively, they could have followed a strategy based on
277  action-outcome incoherence feedback and thus avoided trials associated with a previous target
278  swap (illusory minimization of incoherent states; Fig. 5C, second panel). However, subjects may
279  have also employed another classic strategy known as “model-based” where agents use their (here
280  illusory) understanding of the task structure built from all the information provided by the
281  environment (Fig.5C, third panel)(37). Under this strategy, subjects try to integrate both the reward
282  and target-swap feedback to select the next target in order to maximize reward. For example, an
283  incoherent but rewarded trial would lead to a behavioral switch because the subject has integrated
284  the information provided by the environment (i.e., the target swap induced by the computer),
285  signaling that the other target is actually rewarded (see second bar on third panel of Fig. 5C).
286  Finally, an alternative strategy could rely on maximizing personal (i.e., internal) control, where the
287  subject is the (illusory) agent of the entire sequence of events (i.e., action-state-reward) and would
288  therefore ignore reward outcomes when they are not associated with the selected action-state
289  (Fig.5C, fourth panel).

290 Results of the stay behavior during 2"-stage choice following fi-ee selection suggests that
291  subjects seek personal control when choosing between the different fractal targets (Fig.5D). Indeed,

292  when their action was consistent with the state they were choosing (i.e., the coherent fractal target
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293  feedback), they took the reward outcome into account to adjust their behavior on the next trial,
294  either by staying on the same target when the trial was rewarded or by switching to the other one
295  when no reward was delivered. However, subjects were insensitive to the reward outcome during
296  incoherent trials as they maintained the same strategy (staying) during subsequent trials, regardless
297  of whether they were previously rewarded or not. This strategy reflects an attempt to regain

298  personal control over the environment at the expense of the task goal of maximizing reward intake.
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Figure 5. Perceived controllability alters choice preference. A. Task design where a 7™ state, associated to the
forced options, has been added to manipulate the incoherence in both free and forced options. At incoherence =
0, the visual feedback presented to the subject matches their selected target. Extrinsic reward probabilities set at
P=0.75 for all the 2"-stage targets. B. First-stage probabilities to stay or switch in free options after a free and
forced trial respectively, as a function of the different incoherence blocks. C. Second-stage stay probabilities for
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the different action-state-reward trial type. Each sub-panels represent a putative strategy followed by the subject.
D. Estimated 2"¢-stage stay probabilities. Error bars for 95% Cl. P-values are displayed for significant pairwise
comparisons and adjusted for multiple comparisons.
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302 Discussion

303  Animals prefer situations that offer more choice to those that offer less. Although this behavior can
304  be reliably measured using the two-stage task design popularized by Voss and Homzie(7), their
305  conclusion that choice has intrinsic value is open to debate. To rule out alternative explanations for
306  choice-seeking, we performed three experiments in which we clearly separated learning of reward
307  contingencies from testing of choice preference. Our experiments point to a sustained preference
308  for choice opportunities that express an intrinsic need for personal control. Moreover, this need
309 may compete with potentially valuable information for maximizing outcomes or even extrinsic
310  rewards per se.

311 In the first and second experiments, we varied the reward probabilities associated with
312 terminal actions following free and forced selection. Consistent with previous studies, subjects
313 preferred the opportunity to make a choice when expected rewards were equal between terminal
314  actions (P = 0.5). Surprisingly, subjects also preferred choice when we increased the value
315  difference between terminal actions in the free option, while keeping the maximum expected reward
316  equal in the free and forced options (P > 0.5). This sustained preference for choice is potentially
317  economically suboptimal since making a free choice carries the risk of making an error leading to
318 lowered reward intake. The persistence of this preference for free choice even when reward
319  delivery was deterministic (P = 1), makes it unlikely that this preference was due to an
320  underestimation of forced trials due to poor learning of reward contingencies.

321 Subjects appeared to have understood the reward contingencies as evidenced by their
322 consistent preference for the highest-rewarded 2"¢-stage fractal, which was acquired during the
323  training phase and expressed during the test phase. This stable 2"-stage fractal selection, together

324  with the immediate expression and maintenance of 1%-stage choice preference, renders unlikely
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325  accounts based on curiosity, exploration or variety seeking since varying the probability of rewards
326  did not modulate choice preference about two third of the subjects (i.e., optimistic subjects).

327 Selection-based accounts also have trouble explaining the pattern of results we observed.
328  The idea that post-choice revaluation specifically inflates expected outcomes after choosing the
329  free option can explain choice-seeking when all terminal reward probabilities are equal. However,
330  post-choice revaluation cannot explain choice preference when the terminal reward probabilities
331 in the free option clearly differ from one another, since revaluation appears to occur only after
332 choosing between closely valued options(28,38). That is, there is no cognitive dissonance to resolve
333 when reward contingencies are easy to discriminate, and no preference for choice should be
334  observed when the choice is between a surely (i.e., deterministically) rewarded action and a never
335 rewarded action. The existence of choice preference in the deterministic condition (P = 1) also
336  cannot be explained by an optimistic algorithm such as Q-learning, since the maximum action value
337 is equal to the maximum expected value, and the value of the free option is not biased upwards
338  under repeated sampling(31).

339 Although standard Q-learning could not capture variability across different terminal reward
340  probabilities, we found that combining two novel modifications to TDRL models was able to do
341  so. The first feature was a free choice bonus—a fixed value added to all extrinsic rewards obtained
342  through free actions—that can lead to overvaluation of the free option via standard TD learning.
343 This bonus implements Beattie and colleagues’ concept of decision attitude, the desire to make or
344  avoid decisions independent of the outcomes(11). The second feature modifies the form of the
345  future value estimate in the TD value iteration. Zorowitz and colleagues(31) showed that replacing
346  the future value estimate in Q-learning with a weighted mixture of the best and worst future action
347  values(32) can generate behavior ranging from aversion to preference for choice. The mixing

348  coefficient determines how optimism (maximum of future action values, total risk indifference) is
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349  tempered by pessimism (minimum of future action values, total risk aversion). In experiment 1, we
350  found that 28% of subjects were best fitted with a model incorporating pessimism, which captured
351 a downturn in choice preference with increasing relative value difference between the terminal
352 actions in the free option. Importantly however, individual variability in the TD future value
353  estimates alone did not explain the pattern of choice preference across target reward probabilities,
354  and a free choice bonus was still necessary for most subjects. Thus, the combination of both a free
355  choice bonus (decision attitude) and pessimism (risk attitude) was key for explaining why some
356  individuals shift from seeking to avoiding choice. This was unexpected because the average choice
357  preference in experiment 1 was not significantly different across reward manipulations,
358  highlighting the importance of examining behavior at the individual level. Here, we examined risk
359  using the difference between the best and worst outcomes as well as relative value using probability
360  (see(39)). It may be the case that variability is also observed in how individuals balance the intrinsic
361  rewards with other extrinsic reward properties that can influence choice preference, such as reward
362  magnitude(39).

363 Why are choice opportunities highly valued? It may be that choice opportunities have
364  acquired intrinsic value because they are particularly advantageous in the context of the natural
365 environment in which the learning system has evolved. Thus, choice opportunities might be
366 intrinsically rewarding because they promote the search for states that minimize uncertainty and
367  variability, which could be used by an agent to improve their control over the environment and
368 increase extrinsic reward intake in the long run(40,41). Developments in reinforcement learning
369  androbotics support the idea that both extrinsic and intrinsic rewards are important for maximizing
370  an agent’s survival(42—44). Building intrinsic motivation into RL agents can promote the search
371  for uncertain states and facilitate the acquisition of skills that generalize better across different

372 environments, an essential feature for maximizing an agent’s ability to survive and reproduce over
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373 its lifetime, i.e. its evolutionary fitness(42).

374 The intrinsic reward of choice may be a specific instance of more general motivational
375 constructs such as autonomy(13,14), personal causation(17), -effectance(18), learned
376  helplessness(45), perceived behavioral control(19) or self-efficacy(15), which are key for
377  motivating behaviors that are not easily explained as satisfying basic drives such as hunger, thirst,
378 sex, or pain avoidance(20). Common across these theoretical constructs is that control is
379 intrinsically motivating only when the potential exists for agents to determine their own behavior,
380  which when realized can give rise to a sense of agency and, in turn, strengthens the belief in the
381  ability to exercise control over one's life(46). Thus, individuals with an internal locus of control
382  tend to believe that they, as opposed to external factors such as chance or other agents, control the
383  events that affect their lives. Crucially, the notion of locus of control makes specific predictions
384  about the relationship between preference for choice—choice being an opportunity to exercise
385  control—and the environment: individuals should express a weaker preference for choice when the
386  environment is adverse, stressful or unpredictable(47). This prediction is consistent with what is
387  known about the influence of environmental adversity on control externalization: individuals
388  exposed to greater environmental instabilities tend to believe that external and uncontrollable
389  forces are the primary causes of events that affect their lives, as opposed to themselves(48). In other
390  words, one would expect belief in one's ability to control events, and thus preference for choice, to
391  decline as the environment is perceived as increasingly unpredictable.

392 In our third experiment, we sought to test whether it was specifically a belief in personal
393  control that motivated subjects, by altering the perceived controllability of the task environment.
394  To do so, we introduced a novel change to the two-stage task where in a fraction of trials subjects
395  experienced random swapping of the terminal states (fractals). Thus, subjects were subjected to

396 trials where the terminal state was incoherent with their choice, and thus experienced alterations in
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397  their ability to predict the state of the environment following their action. Incoherence occurred
398  with equal probability following free and forced actions in order to equate for any value associated
399  with swapping itself. We found a significant reduction in the propensity to switch from forced to
400 free choice following action-target incoherence, suggesting that altering the perceived
401  controllability of the task causes choice to lose its attractiveness. This reduction in choice
402  preference following incoherent trials is reminiscent of a form of locus externalization, and is
403  consistent with the notion that choice preference is driven by a belief in one's personal control. In
404  this experiment, we focused on the value of personal control, and therefore held other decision
405  variables such as outcome diversity(33,34), outcome entropy(35), and instrumental divergence
406  (36,49). Further experiments are needed to understand how these variables interact with personal
407  control in the acquisition of potential control over the environment.

408 Interestingly, when subjects selected the free option, the subsequent choice was sensitive
409  to the past reward when the terminal state (the selected target) was coherent and the reward could
410  therefore be attributed to the subject's action. In contrast, subjects’ choices were insensitive to past
411  reward when the terminal state was incoherent. Furthermore, the probability of sticking with the
412  previous 2"-stage choice following incoherent trials, whether rewarded or not, was not different
413  from the probability of sticking with the previously rewarded 2™-stage choice following coherent
414  trials. Thus, subjects appeared to ignore information about action-state-reward contingencies that
415  was externally derived, and instead appeared to double down by repeating their past choice as if
416  they sought to maintain or regain personal control. This behavior is consistent with many
417  observations suggesting that when individuals experience situations that threaten or reduce their
418  personal control, they implement compensatory strategies to restore their perceived control to its

419  baseline level(50,51).
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420 Computationally, however, this compensatory strategy is at odds with a pure model-based
421  strategy(37), where an agent could exploit information about action-state-reward contingencies
422 whether it derived from their own choices (internal control) or from the environment (external
423 control). Rather, it is consistent with work showing that choice-seeking could emerge when self-
424  determined actions amplify subsequent positive reward prediction errors(5,52), and more generally
425  with the notion that events are processed differently depending on individuals' beliefs about their
426  own control abilities. Thus, positive events are amplified only when they are believed to be within
427  one's personal control, whereas they are treated impartially when they are not(52), or when they
428  come from an uncontrollable environment(53).

429 Together, our results suggest that choice seeking may represent one critical facet of intrinsic
430  motivation and is associated with the desire of personal control. They also suggest that the need for
431  personal control can compete with maximization of extrinsic reward provided by externally driven
432  actions. Indeed, subjects favor positive outcomes associated to internally driven action even if
433 reward rate is lower than for action performed under the instruction of an external agent. In general,
434  the perception of being in personal control could then account for several aspects of our daily life
435  such as enjoyment during game(54) or motivation to perform demanding task(55). Since our results
436  shown inter-individual difference, it would be nonetheless important in the future to phenotype
437  subject behaviors during choice-making to investigate how these individual traits can explain
438  attitude difference when facing decision and their consequences, as exemplified by the variety of
439  attribution and explanation styles of individuals in the general population(56,57).

440

441

442

443
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444  Materials and Methods:

445  Participants. Ninety-four healthy individuals (mean age = 30 £SD 7.32 years, 64 females)
446  responded to posted advertisements and were recruited to participate in this study. Relevant
447  inclusion criteria for all participants were being fluent in French, not treated for neuropsychiatric
448  disorders, having no color vision deficiency and being aged between 18 and 45 years old. Out of
449  these 94 subjects, 58 participated to experiment 1 and 36 to experiments 2-3. We gave subjects 40
450  euros for participating. The sample size was chosen based on previous studies that used similar
451  two-alternative decision making tasks(52,58,59).

452

453  Ethics statement. The local ethics committee (Comité d’Evaluation Ethique de 1’Inserm) approved

454 the study (2019-CER2-MR-004). Participants gave written informed consent during inclusion in
455  the study, which was carried out in accordance with the declaration of Helsinki (1964; revised
456  2013).

457

458  General procedure. The paradigm was written in Matlab, using the Psychophysics Toolbox

459  extensions(60,61). It was presented on a 24 inches screen (1920 x 1080 pixels, aspect ratio 16:9).
460  Subjects seat ~57 cm from the center of the monitor. Our behavioral task design was designed as a
461  value-based decision paradigm. All participants received written and oral instructions. They were
462  told that the goal of the task was to gain the maximum number of rewards (a large green euro).
463  They were informed about the differences between the different trial types and that the extrinsic
464  reward contingencies experienced during the training phases remained identical during the test
465  phases. After instructions, participants received a pre-training session of a dozen trials (pre-train

466  and pre-test phases) in order to familiarize them with the task design and the keys they would have
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467  to press.

468 In our experiments, subjects performed repeated trials with a two-stage structure. In the 15
469  stage they made an initial decision about what could occur in the 2nd-stage. Selecting the free
470  option led to a subsequent opportunity to choose and selecting the forced option led to an obligatory
471  computer-selected action. In the 2"-stage, we presented subjects with two fractal images, one of
472  them being more rewarded following free selection in experiment 1 (except for P=0.5) and
473  experiment 2. In experiments 1 and 2, the computer always selected the same fractal target
474  following forced selection. Experiment 3 all fractal targets were equally rewarded and the computer
475  randomly selected one of the two fractal targets following forced selection (50%). Following forced
476  selection, the target to select with a key press was indicated by a grey V-shape above the target.
477  Pressing the other key on this trial type did nothing and the computer waited for the correct key
478  press to proceed further in the trial sequence. Either at the 15- or 2"-stage, after the subject’s
479  selection of the target, a red V-shape appears immediately after above the target to indicate the one
480  they had selected (in experiment 3 blocks this red V-shape remains 250ms on the screen and
481  eventually jumped with the target, see below).

482

483  Experimental conditions. In experiment 1, fifty-eight subjects performed trials where the
484  maximal reward probabilities were matched following free and forced selection. We varied the
485  overall expected value across different blocks of trials, each of them being associated to different
486  programmed extrinsic reward probabilities (P). Forty-eight subjects performed a version with 3
487  blocks (experiment 1a) with different extrinsic reward probabilities ranging from 0.5 to 1 (block 1:
488  Plorced = Piee = 0.5; block 2: Porced = 0.75, Prieelal = 0.75, Ppec|a2 = 0.25; block 3: Prorcea = 1, Ppee|
489 al =1, Psea2 = 0; where al and a2 represent the two possible key presses associated with the

490  fractal targets). Ten additional subjects performed the same task with 4 different blocks

25


https://doi.org/10.1101/2022.09.20.508669
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.20.508669; this version posted September 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

491  (experiment 1b) associated to extrinsic reward probabilities also ranging from 0.5to 1 (P =0.5 or
492 0.67 or 0.83 or 1 from block 1 to 4 respectively.) We did not observe any substantial difference
493  between these two subject groups, and pooled them for analyses.

494 Experiment 2 was similar to experiment 1 (six states) except programmed extrinsic reward
495  associated with the forced option were higher than than the frree option in two out of three blocks
496  (Pforcea = 0.75, 0.85 or 0.95). Reward probabilities following free selection did not change across
497  the three blocks (Ppeclal =0.75, Ppecla2 = 0.25)

498 Experiment 3 consisted of a 7-state version of the two-stage task. Here, we manipulated the
499  coherence between the subject selection of a 2"-stage (fractal) target and the target ultimately
500 displayed on the screen by the computer. Irrespectively of the target finally selected by the
501  computer or the subjects, the extrinsic reward probability associated to all the 2"9-stage targets in
502  free and forced trials was set at P=0.75. Importantly, adding the 7" state in this last task version
503  allowed the computer to swap the fractal 2"-stage targets following both fiee and forced selection.
504  Thus, subjects did not perceive the weak coherence as a feature specific to the free condition.

505 We associated unique fractal targets with each action in the 2"-stage, and a new set was
506  used for each block in all experiments. Colors of the 1%-stage targets were different between
507  experiments. Positive or negative reward feedback, as well as the side of the 1%-stage and 2™-stage
508 target positions, were pseudo-randomly interleaved on the right or left of screen center. Feedback
509  was represented by the presentation (reward) or not (non-reward) of a large green euro image.
510 In experiment 1, when P<1, participants performed a minimum of 48 trials per block in the
511 training phases (forced and free) and the test phases. For P=1, participants performed a minimum
512 24 trials for training phases (forced and free) and 48 trials for test phase. The order of the blocks
513  were randomly interleaved. In experiments 2 and 3 they performed a minimum of 40 trials for each

514  block. Here, subjects started by performing experiment 3 followed by experiment 2. This was to
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515  ensure that the value of free trials was not devalued by experiment 2 (titration) when performing
516  experiment 3. In experiment 3, subjects always started by the block with no target swaps
517  (incoherence = 0), and in experiment 2 by the block with equal extrinsic reward probability
518  (equivalent to the block P=0.75 of experiment 1). All the other blocks were randomly interleaved.
519

520  Trial structure. During the training phase, for each trial, a first fixation point appeared in the

521  center of the screen for 500ms, followed by the one of the first two targets of the different trial
522 types for an additional 750ms, either (forced or free) to the left or right of the fixation point (~11°
523  from the center of the screen on the horizontal axis, 3° wide). Immediately after, the first target
524  was turned off and two fractal targets appeared at the same eccentricity than the first target to the
525  left and right of the fixation point. The subjects could then choose by themselves or had to match
526  the target (depending on the trial type) using a key press (left or right arrow keys for left and right
527  targets, respectively). After their selection, a red V-shape appeared for about 1000ms above the
528  selected target (trace epoch). Note that in experiment 3, the V-shape was initially light red and
529  turned on for 250ms above the actual fractal target selected by the subjects. It was then turn in dark
530  red for 750ms. If the trial was incoherent, after 250ms, the red V-shape jumped and thus reappeared
531 simultaneously with the other target on the other side of the screen also for 750ms. Finally, the
532 fixation point was turned-off and the outcome was displayed during 750ms before the next trial.
533  For the test phase, the timing was equivalent except for the decision epoch related to the first stage
534  where participants could choose their favorite trial type (free and forced targets positioned
535  randomly, left or right) after 500ms of fixation point presentation. When a selection was made, the
536  first target remained for 500ms, associated to a red V-shape over the selected 1%-stage target —
537  indicating their choice. The second stage started with a 500ms epoch where only the fixation point

538  was presented on the screen, followed by the fractal target presentation. During the first and second
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539  action epochs, no time pressure was imposed on subjects to make their choice, but if they pressed
540  one of the keys during the first 100ms after target presentation (‘early press’), a large red cross was
541  displayed in the center of the screen for 500ms and the trial was repeated.

542

543  Computational modelling. We fitted individual subject data with variants of temporal-difference

544  reinforcement learning (TDRL) models. All models maintained a look-up table of state-action
545  value estimates (Q(s,a)) for each unique target and each action across all conditions within a
546  particular experiment. State-action values were updated at each stage (t € {1,2}) within a trial
547 according to the prediction error measuring the discrepancy between obtained and expected
548  outcomes:

549 6t = 1ee1 + Z(St+1, Ar1) — Q(St, ar)

550  where 1., € {0,1} indicates whether the subject received an extrinsic reward, and Z(S¢41, Gr41)

551  represents the current estimate of the state-action value. The latter could take three possible forms:

Q(St+1, Ae+1) SARSA
552 Z(St41, Qpy1) = max Q(Se+1,a) Q-learning

B+ max Q(siy,a)+ (A —p)- rr‘lllln Q(s¢41,a")  B-pessimistic
553  Although Q-learning and SARSA variants differ in whether they learn off- or on-policy,
554  respectively, we treated both of these algorithms as optimistic. Q-learning is strictly optimistic by
555  considering only the best future state-action value, whereas SARSA can be more or less optimistic
556  depending on the sensitivity of the mapping from state-action value differences to behavioral
557  policy. We compared Q-learning and SARSA variants with a third state-action value estimator that
558 incorporates risk attitude through a weighted mixture of the best and worst future action values
559  (Gaskett’s B-pessimistic model(32)). As f — 1 the pessimistic estimate of the current state-action

560  value converges to Q-learning.
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561 The prediction error was then used to update all state-action values according to:

562 Q(st+1, Ar+1) <« Q(Sey1, Arrr) + - &y

563  where a € [0,1] represents the learning rate.

564 We tested whether a free choice bonus could explain choice preference by modifying the
565  obtained reward as follows:

566 Tppq = roXgnsic 4

567  where p € (—inf, +inf) is a scalar parameter added to any extrinsic reward following any action
568 taken following selection of the free option.

569 Free actions at each stage were generated using a softmax policy as follows:

exp (Q(s,a")/7)

570 58 = o @G @) + exp QG /)

571  where increasing the temperature, T € [0, +inf), produces a softer probability distribution over
572  actions. The forced option, on the other hand, always led to the same fixed action. We used a
573  softmax behavioral policy for all TDRL variants, and in the context of our task, the Q-learning and
574  SARSA algorithms were often similar in explaining subject data, so we treated them together in
575  the main text (Supplementary Fig. 1).

576 We also tested the possibility that subjects exhibited tendencies to alternate or perseverate
577  following free or forced actions. We implemented this using a stickiness parameter that modified

578  the policy as follows:

exp [(Q(s,a') + k- C(s,a))/7]

579 n(si al) = exp [(Q(s; al) + K- Ct(S, al))/q_’] + exp [(Q(S, az) + K- Ct(S, az))/T]

580  where the k € (—inf, +inf) parameter represents the subject’s tendance to perseverate, and C,(s, a)
581 is a binary indicator for which fractal and action was chosen on the previous trial.

582 We independently combined the free parameters to produce a family of model fits for each
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583  subject. We allowed the learning rate () and softmax temperature (7) to differ for each of the two
584  stages in a trial. We therefore fitted a total of 48 models (3 estimates of current state-action value
585 [SARSA, Q, f-pessimistic] X presence or absence of free choice bonus [p] X 2- vs 1-learning rate
586  [a] X 2-vs l-temperature [7] X presence or absence of stickiness [k]).

587

588  Parameter estimation and model comparison. We fitted model parameters using maximum a

589  posteriori (MAP) estimation using the following priors:

590 a ~ beta(shapel=1.1, shape2=1.1)
591 1/t ~ gamma(shape=1.2, scale=5)
592 B ~ beta(shapel=1.1, shape2=1.1)
593 p ~ norm(mean=0, sd=1)
594 Kk ~ norm(mean=0, sd=1).

595  We based hyperparameters for « and 1/t on Daw and colleagues (37). We used the same priors
596  and hyperparameters for all models containing a particular parameter. We used limited-memory
597  quasi-Newton algorithm (L-BFGS-B) to numerically compute MAP estimates, with « and f8
598  bounded between 0 and 1 and 1/t bounded below at 0. For each model, we selected the best MAP
599  estimate from 10 random parameter initializations.

600 For each model for each subject, we fitted a single set of parameters to both training and
601 test data across conditions. We initialized state-action values to zero at the beginning of the training
602  phase for each condition. Data from the training phase consisted of 2"-stage actions and rewards,
603  but we also presented subjects with the 1%'-stage cues corresponding to the condition being trained
604  (forced or free). Therefore, we fitted the TDRL models assuming that the state-action values

605  associated with the 1%-stage fractals also underwent learning during the training phase, and that
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606  these backups continued into the test phase, where subjects actually made 1%'-stage decisions. That
607 is, we initialized the state-action values during the test phase with the final state-action values
608  during the training phase.

609 We used Schwarz weights to compare models, which provides a measure of the strength of
610 evidence in favor of one model over others and can be interpreted as the probability that a model
611 is best in the Bayesian Information Criterion (BIC) sense(62). We calculated weights for each

612  model as:

_exp (=1(BIO)/2)
613 w; (BIC) = K_ exp (—Ax(BIC)/2)

614  sothat ), w;(BIC) = 1. We selected the model with the maximal Schwarz weight for each subject.
615 In order to verify that we could discriminate different state-action value estimates and how
616  accurately we could estimate parameters, we performed model and parameter recovery analyses on
617  simulated datasets (Supplementary Fig. 1).

618

619  Statistical analyses. We used generalized linear mixed models (GLMM) to examine differences

620  in choice behavior. When the model did not include trial-specific information (e.g., reward on the
621  previous trial), we aggregated data to the block level. Otherwise, we used choice data at the trial
622  level. We included random effects by subject for all models (random intercepts and random slopes
623  for the variable manipulated in each experiment; maximal expected value, relative expected value,
624  or incoherence for experiments 1, 2, and 3, respectively). We performed GLMM significance
625  testing using likelihood-ratio tests, and we corrected for multiple comparisons in post-hoc tests
626  using Tukey’s method. We used generalized additive mixed models (GAMM) to examine choice
627  behavior as a function of trial within a block. We obtained smooth estimates of choice behavior

628  using penalized regression splines, with penalization that allowed smooths to be reduced to zero
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effect(63). We included separate smooths by block. We performed GAMM significance testing

using approximate Wald-like tests(64).
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