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Abstract: 20 
When deciding between options that do or do not lead to future choices, humans often choose to 21 
choose. We studied choice seeking by asking subjects to decide between a choice opportunity or 22 
performing a computer-selected action. Subjects preferred choice when these options were equally 23 
rewarded, even deterministically, and were willing to trade extrinsic rewards for the opportunity to 24 
choose. We explained individual variability in choice seeking using reinforcement learning models 25 
incorporating risk sensitivity and overvaluation of rewards obtained through choice. Degrading 26 
perceived controllability diminished choice preference, although willingness to repeat selection of 27 
choice opportunities remained unchanged. In choices following these repeats, subjects were 28 
sensitive to rewards following freely chosen actions, but ignored environmental information in a 29 
manner consistent with a desire to maintain personal control. Choice seeking appears to reflect the 30 
intrinsic need for personal control, which competes with extrinsic reward properties and external 31 
information to motivate behavior.  32 
 33 
Author summary: 34 
Human decisions can often be explained by the balancing of potential rewards and punishments. 35 
However, some research suggests that humans also prefer opportunities to choose, even when 36 
these have no impact on future rewards or punishments. Thus, opportunities to choose may be 37 
intrinsically motivating, although this has never been experimentally tested against alternative 38 
explanations such as cognitive dissonance or exploration. We conducted behavioral experiments 39 
and used computational modelling to provide compelling evidence that choice opportunities are 40 
indeed intrinsically rewarding. Moreover, we found that human choice preference varied 41 
according to individual risk attitudes, and expressed a need for personal control that competes 42 
with maximizing reward intake. 43 
  44 
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 2 

Preference for choice has been observed in humans(136) as well as other animals including rats(7), 45 

pigeons(8) and monkeys(9,10). This free-choice premium can be behaviorally measured by having 46 

subjects perform trials in two stages: a decision is first made between the opportunity to choose 47 

from two terminal actions (free) or to perform a mandatory terminal action (forced) in the second 48 

stage(7). Although food or fluid rewards follow terminal actions in non-human studies, choice 49 

preference in humans can be elicited using hypothetical outcomes that are never obtained(3,11). 50 

Thus, choice opportunities appear to possess or acquire value in and of themselves. It may be that 51 

choice has value because it represents an opportunity to exercise control, which is itself intrinsically 52 

rewarding(1,4,12). Personal control is central in numerous psychological theories, where 53 

constructs such as autonomy(13,14), controllability(15,16), personal causation(17), effectance(18), 54 

perceived behavioral control(19) or self-efficacy(15) are key for motivating behaviors that are not 55 

economically rational or easily explained as satisfying basic drives such as hunger, thirst, sex, or 56 

pain avoidance(20). 57 

There are alternative explanations for choice seeking. For example, subjects may prefer 58 

choice because they are curious and seek information(21,22), or they wish to explore potential 59 

outcomes to eventually exploit their options(23), or because they seek variety to perhaps reduce 60 

boredom(24) or keep their options open(3). By these accounts, however, the expression of personal 61 

control is not itself the ends, but rather a means for achieving an objective that once satisfied 62 

reduces choice preference. For example, choice preference should decline when there is no further 63 

information to discover in the environment, or after uncertainty about reward contingencies have 64 

been satisfactorily resolved.  65 

Choice seeking may also arise due to selection itself altering outcome representations. 66 

Contexts signaling choice opportunities may acquire distorted value through choice-induced 67 

preference change(25). By this account, deciding between equally valued terminal actions 68 
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generates cognitive dissonance that is resolved by post-choice revaluation favoring the chosen 69 

action(25,26). This renders the free option more valuable than the forced option since revaluation 70 

only occurs for self-determined actions(27,28). Alternatively, subjects may develop distorted 71 

outcome representations through a process related to the winner9s or optimizer9s curse(29), 72 

whereby optimization-based selection upwardly biases value estimates for the chosen action. One 73 

algorithm subject to this bias is Q-learning(30), where action values are updated using the 74 

maximum value to approximate the maximum expected value. In a two-stage task, the free action 75 

value is biased upwards due to considering only the best of two possible future actions, while the 76 

forced action value remains unbiased since there is only one possible outcome(31). Again, the 77 

expression of personal control is not itself the ends for these selection-based accounts, and both 78 

predict that choice preference should be reduced when terminal rewards associated with the free 79 

option are clearly different. 80 

Data from prior studies does not arbitrate between competing explanations for choice-81 

seeking. Here, we used behavioral manipulations and computational modelling to explore the 82 

factors governing human preference for choice. In the first experiment, we altered the reward 83 

contingencies associated with terminal actions in order to rule out curiosity, exploration, variety-84 

seeking, and selection-based explanations for choice seeking. In the second experiment, we used a 85 

titration procedure to measure the value of choice relative to an extrinsic reward available in the 86 

environment (i.e., money). We then used reinforcement learning models to show that optimistic 87 

learning (considering the best possible future outcome) was insufficient to explain individual 88 

variability in choice seeking. Rather, subjects adopted different decision attitudes, the desire to 89 

make or avoid decisions independent of the outcomes(11), which were balanced against differing 90 

levels of risk sensitivity. Finally, in the third experiment, we sought to test whether choice 91 

preference was motivated by personal control beliefs. We manipulated the perceived controllability 92 
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of the task and found that subjects' willingness to repeat a free choice was not affected by the lack 93 

of objective controllability over reward outcome. Importantly, subjects were sensitive to past 94 

rewards only in trials where state outcomes could be attributed to self-determined choice, and 95 

ignored rewards on trials where there was an apparent loss of control.  Together, our results support 96 

the hypothesis that human preference for choice opportunities derives from the intrinsic motivation 97 

for personal control.  98 
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Results: 99 

Subjects performed repeated trials with a two-stage structure (Fig. 1). In each trial, subjects made 100 

a 1st-stage choice between two options defining the 2nd-stage: the opportunity to choose between 101 

two fractal targets (free) or performing an obligatory selection of another fractal target (forced). 102 

Extrinsic rewards (¬) were delivered only for terminal (i.e., 2nd-stage) actions. If subjects chose the 103 

forced option, the computer always selected the same fractal target for the subjects. If subjects 104 

chose the free option, they had to choose between two fractal targets associated with two different 105 

terminal states. We fixed reward contingencies in blocks of trials, and used unique fractal targets 106 

for each block. We divided each block into an initial training phase (Fig. 1B) followed by a test 107 

phase (Fig. 1C) to ensure that the subjects learned the associations between the different fractal 108 

targets and extrinsic reward probabilities. 109 

 

Figure 1. Two-stage task structure. A. State diagram illustrating the 6 possible states (s), actions (a) and associated 

extrinsic reward probabilities (e.g., P = 0.5, 0.75 or 1 for blocks 1 to 3, respectively); s2 and s3 were represented by 

two different 1st-stage targets (e.g., colored squares with or without arrows for free and forced trials, respectively) 

and s4 to s6 were associated to three different 2nd-stage targets (fractals). B. Sequence of events during the training 

phase where the subjects learned the contingencies between the fractal targets and their reward probabilities (P) 

associated with the forced (no choice) and free (choice available) options. When training the reward contingencies 

associated with the forced option, subjects9 actions in the 2nd-stage had to match the target indicated by a grey V-

shape and was always the same (s4). When training the reward contingencies associated with the free option, no 

mandatory target is present at the 2nd-stage (s5 or s6 can be chosen) but one of the targets is more rewarded when 

P > 0.5. Black arrows represent the selection of the target by the subject. C. Sequence of events during the test 

phase: subjects first decided between the free or forced option and then experienced the associated 2nd-stage. 

Rewards, when delivered, were represented by a large green euro symbol (¬). 
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Free choice preference across different extrinsic reward probabilities  110 

In experiment 1, we varied the overall expected value by varying the probability of extrinsic reward 111 

delivery (P) across different blocks of trials. These probabilities ranged from 0.5 to 1 across the 112 

blocks (i.e., low to high), and the programmed probabilities in free and forced 2nd-stage rewards 113 

were equal (Fig. 2A). For example, in high probability blocks, we set the probabilities of the forced 114 

terminal action and of one of the free terminal actions (a1) to 1, and set the probability of the second 115 

free terminal action (a2) to 0. Therefore, the maximum expected value was equal for the free and 116 

forced options. 117 

Subjects chose to choose more frequently, selecting the free option in 64% (n=58) of test 118 

trials on average (Fig. 2B). The level of preference did not differ significantly across blocks (p = 119 

0.857, low = 65%, medium = 64%, high = 66%). We found that subjects immediately expressed 120 

above chance preference for the free option (Fig. 2C) despite never having actualized 1st-stage 121 

choices during training. Looking within a block, we found that subjects9 preference remained 122 

constant across trials in medium and high reward probability blocks (p = 0.22 and 0.6823 for 123 

nonlinear smooth by trial deviating from a flat line, respectively; Fig. 2C, middle and right panels). 124 

In low probability blocks, subjects started with a lower choice preference that gradually increased 125 

to match that observed in the medium and high probability blocks (p = 0.0014 for nonlinear smooth 126 

by trial; Fig. 2C left panel). The lower reward probability may have prevented subjects from 127 

developing accurate reward representations by the end of the training phase, which may have led 128 

to additional sampling of the three 2nd-stage targets (two in free and one in forced) in the beginning 129 

of the test phase.  130 

 131 
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Figure 2. Choice preference across different absolute extrinsic reward probabilities. A. Experiment 1 task design 

where maximal extrinsic reward probabilities increased equally across free and forced options. B. Subject 

preference for free option during 1st-stage. Colored points indicate individual subject mean choice preference per 

block, plotted against the obtained average reward. Black diamonds indicate the average of subject means per 

block. Line indicates the estimated choice preference from a GLMM, with 95% CI. C. Dynamics of free option 

preference across test phase blocks for low (left), medium (middle) and high (right) absolute extrinsic reward 

probabilities. Each point represents the average free option preference as a function of trial within a block. 

Diamonds: as in B. Lines indicate the estimated choice preference from a GAMM, with 95% CI. D to E. Dynamics 

of the selection of the most rewarded 2nd-stage targets in free option for low (left), medium (middle) and high 

(right) during the training (D) and test (E) phases. Note that in left panels, the probability of extrinsic rewards is 

equal for two 2nd-stage targets (P=0.5). We labelled the best choice as 1 when P > 0.5. Triangles represents the 

final average selection at the end of the training phases. Lines: as in C. 

 132 

Second-stage performance following free selection 133 

We investigated participants9 2nd-stage choices following free selection to exclude the possibility 134 

that choice preference arose because reward contingencies had not been learned. During the 135 

training phase, when P>0.5, participants quickly learned to choose the most rewarded fractal targets 136 

(at P=0.5, all fractal targets were equally rewarded) (Fig. 2D). During the test phase, participants 137 
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 8 

continued to select the same targets (Fig. 2E), confirming stable application of learned 138 

contingencies (p > 0.1 for nonlinear smooth by trial deviating from a flat line for all blocks). 139 

Choice preference was not explained by subjects obtaining more extrinsic rewards 140 

following selection of free compared to forced options. Obtained reward proportions were not 141 

significantly different in the low (following selection of free vs. forced, 0.516 vs. 0.536, p = 0.276) 142 

or medium (0.746 vs. 0.762, p = 0.322) probability blocks. In contrast, in high probability blocks, 143 

subjects received significantly fewer rewards on average after free selection than after forced 144 

selection (0.989 vs. 1, p = 0.0016). In this block, reward was fully deterministic, and forced 145 

selection always led to a reward, whereas free selections could lead to missed rewards if subjects 146 

chose the incorrect target.  147 

 148 

Trading extrinsic rewards for choice opportunities 149 

Since manipulating the overall expected reward did not alter choice seeking behavior at the group-150 

level, we investigated the effect of changing the relative expected reward between 1st-stage options. 151 

In experiment 2, we tested a new group of 36 subjects for whom we decreased the objective value 152 

of the free versus forced options. This allowed us to assess the point at which these options were 153 

equally valued and potentially reversed to favor the initially non-preferred (forced) option (Fig. 154 

3A). Thus, we titrated the value of choice opportunity by increasing the reward probabilities 155 

following forced selection (block 1: Pforced = 0.75; block 2: Pforced = 0.85; block 3: Pforced = 0.95), 156 

while keeping the reward probabilities following free selection fixed (Pfree|a1 = 0.75, Pfree|a2 = 0.25 157 

for all blocks). 158 

As in experiment 1, we found that subjects preferred choice when the extrinsic reward 159 

probabilities of the free and forced options were equal (block 1: 68% 1st-stage choice in favor of 160 

free; Fig. 3B, dark green). Increasing the reward probability associated with the forced option 161 
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significantly reduced choice preference (p = 0.00344, Fig. 3B) to 49% (block 2) and 39% (block 162 

3). We estimated the population preference reversal point at Pforced = 0.88, indicating that 163 

indifference was obtained on average when the value of the forced option was 17% greater than 164 

that of the free. We found that subjects9 preference remained constant across trials when reward 165 

probabilities were equal (p = 0.875 for nonlinear smooth by trial; Fig. 3C, left panel). Although 166 

reduced overall, the selection of the free option also did not vary across trials in blocks 2 and 3 (p 167 

= 0.737 and 0.078 for nonlinear smooth by trial, respectively). Furthermore, as in experiment 1, 168 

subjects acquired preference for the most rewarded 2nd-stage targets during the learning phase 169 

(Fig.3D) and continued to express this preference during the test phase in all three blocks (Fig. 3E). 170 

Thus, the decrease in choice preference was not related to failure to learn the reward contingencies 171 

during the training phase. 172 

 Although decreasing the relative value of the free option reduced choice preference, most 173 

subjects did not switch exclusively to the forced option. Even in block 3, where the forced option 174 

was set to be rewarded most frequently (Pforced = 0.95 versus Pfree = 0.75), 32/36 subjects selected 175 

the free option in a non-zero proportion of trials.  Since exclusive selection of the forced option 176 

would maximize extrinsic reward intake, continued free selection indicates a persistent appetency 177 

for choice opportunities despite their diminished relative extrinsic value.  178 

 179 
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Figure 3. Choice preference across different relative extrinsic reward probabilities. A. Experiment 2 task design 

where extrinsic reward probably is always at P = 0.75 for the highly rewarded target in free options but vary from 

0.75 to 0.95 across 3 blocks for forced options. B. Subject preference for free option during 1st-stage. Colored 

points indicate individual subject mean choice preference per block, plotted against the average reward in forced 

option. Black diamonds indicate the average of subject means per block. Line indicates the estimated choice 

preference from a GLMM, with 95% CI. C. Dynamics of free option preferences across test phase blocks when 

extrinsic reward probabilities of forced options were set at 0.75 (left), 0.85 (middle) and 0.95 (right). Each point 

represents the average free option preference as a function of trial within a block. Diamonds: as in B. Lines indicate 

the estimated choice preference from a GAMM, with 95% CI. D to E. Dynamics of the selection of the most 

rewarded 2nd-stage targets in free option when extrinsic reward probabilities of forced options are set at 0.75 

(left), 0.85 (middle) and 0.95 (right) during the training (D) and test (E) phases. Triangles represents the final 

average selection at the end of the training phases. Lines: as in C. 

 180 

Reinforcement-learning model of choice seeking 181 

We next sought to explain individual variability in choice behavior using a value-based decision-182 

making framework. We first used mixed logistic regression to examine whether rewards obtained 183 

from 2nd-stage actions influenced 1st-stage choices. We found that obtaining a reward on the 184 

previous trial significantly increased the odds that subjects repeated the 1st-stage selection that 185 

ultimately led to that reward (p < 0.0001, odds ratio rewarded/unrewarded on previous trial: 1.92 186 
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±95% CI [1.40, 2.60]). This suggest that subjects continued to update their extrinsic reward 187 

expectation based on experience during the test phase. We therefore leveraged the framework of 188 

temporal-difference reinforcement learning (TDRL) to provide a model-based characterization of 189 

the emergence of choice preference.  190 

 We fitted TDRL models to individual data using two distinct features to capture individual 191 

variability across different extrinsic reward contingencies. The first feature was a free choice bonus 192 

added to self-determined actions as an intrinsic reward. This can lead to overvaluation of the free 193 

option via standard TD learning. The second feature modifies the form of the future value estimate 194 

used in the TD value iteration, which in common TDRL variants is, or approximates, the best future 195 

action value (Q-learning or SARSA with softmax behavioral policy, respectively). We treated both 196 

Q-learning and SARSA together as optimistic algorithms since they are not highly discriminable 197 

with our data (Supplementary Fig. 1). We compared this optimism with another TDRL variant that 198 

explicitly weights the best and worst future action values (Gaskett9s "-pessimistic model(32)), 199 

which could capture avoidance of choice opportunities through increased weighting of the worst 200 

possible future outcome (pessimistic risk attitude). For example, risk is maximal in the high reward 201 

probability block in experiment 1 since selection of one 2nd-stage target led to a guaranteed reward 202 

(best possible outcome) whereas selection of the other target led to guaranteed non-reward (worst 203 

possible outcome). 204 

We found that it was necessary to incorporate the overvaluation of rewards obtained from 205 

free actions to predict choice preference in experiment 1 (Fig. 4A). Moreover, the magnitude of 206 

the bonus was significantly associated with increasing choice preference during the 1st-stage of the 207 

trials (p = 0.0005 for nonlinear smooth, Fig. 4B). Therefore, optimistic or pessimistic targets alone 208 

were insufficient to explain individual choice preference across different extrinsic reward 209 

contingencies. We found that a pessimistic target best fitted about 28% (16 of 58) of the subjects 210 
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in experiment 1. Moreover, most pessimistic subjects (13 of 16) were best fitted with a model 211 

including a free choice bonus to balance risk and decision attitudes across reward contingencies. 212 

In experiment 1, we introduced risk by varying the difference in extrinsic reward probability for 213 

the best and worst outcome following free selection. The majority of so-called 8pessimistic 214 

subjects9 preferred choice when extrinsic reward probabilities were low, but their weighting of the 215 

worst possible outcome decreased this preference as risk increased (Fig. 4C, pink). Thus, 216 

pessimistic subjects avoided the free option despite rarely or never selecting the more poorly 217 

rewarded 2nd-stage target during the test phase.  218 

We also fitted the TDRL variants to individual data from experiment 2, and found that a 219 

free choice bonus was also necessary to explain choice preference across extrinsic reward 220 

contingencies in that experiment. Four subjects (of 36) were best fitted using the "-pessimistic 221 

target (see Supplementary Fig. 2) although this may be a conservative estimate since we did not 222 

vary risk in experiment 2. 223 

 
Figure 4. Reinforcement learning models capture individual choice behavior. A. Obtained free choice proportion 

as a function of model error in experiment 1, averaged over all conditions. For subjects where the selected model 

did not include a free choice bonus, only one symbol (X) is plotted. For subjects where the selected model included 

a free choice bonus, two symbols are plotted. Filled symbol represents the fit error with the selected model, and 

the open symbol represents the next best model that did not include a free choice bonus. Lines connect individual 

subjects. B. Bonus coefficients increase as a function of subjects9 preference for free options irrespectively of the 

target policy they used when performing the task. Choice preference from low probability blocks (P=0.5). Filled 

circles indicate that the best model included a free choice bonus parameter. Line illustrates a generalized additive 
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model smooth. C. Pessimistic subjects significantly decrease their free option preference as a function of extrinsic 

reward probabilities. Symbol legend from B applies to the small points representing individual means in C. Error 

bars for 95% CI. 

 224 

Influence of action-outcome coherence on choice seeking behavior  225 

We next asked whether choice preference was related to personal control beliefs. To do so, we 226 

manipulated the coherence between an action and its consequence over the environment. In 227 

experiment 3, we tested the relationship between preference for choice opportunity and the physical 228 

coherence of the terminal action by directly manipulating the perceived controllability of 2nd-stage 229 

actions. We modified the two-stage task to introduce a mismatch between the subject9s selection 230 

of the 2nd-stage target and the target ultimately displayed on the screen by the computer (Fig. 5A). 231 

We did this by manipulating the probability that a 2nd-stage target selected by a subject would be 232 

swapped for the 2nd-stage target that had not been selected. That is, on coherent trials, a subject 233 

selecting the fractal on the right side of the screen would receive visual feedback indicating that 234 

the right target had been selected. On incoherent trials, a subject selecting the fractal on the right 235 

side would receive feedback that the opposite fractal target had been selected (i.e., the left target). 236 

To ensure that all other factors were equalized between the two 1st-stage choices, we 237 

implemented target swaps following both free and forced selections by adding an additional state 238 

to our task (Fig. 5A). In one block of trials, the incoherence was set to 0 and every subject action 239 

in the 2nd-stage led to a coherent selection of the second target. In the other blocks, we set 240 

incoherence to 0.15 or 0.3, resulting in lower perceived controllability between target choice and 241 

target selection (e.g., 85% of the time, pressing the left key will select the left target, and in 15% 242 

the right target). We set all of the extrinsic reward probabilities associated with the different fractal 243 

targets to P = 0.75. Since all 2nd -stage actions had the same expected value, the experiment was 244 

objectively uncontrollable because the probability of reward was independent of all actions(16). 245 
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Moreover, equal reward probabilities ensured that outcome diversity(33,34), outcome entropy(35), 246 

and instrumental divergence(36) did not contribute to choice preference since these were all equal 247 

between the forced and free options.   248 

The same group of participants who performed experiment 2 also performed experiment 3 249 

(n=36). Choice preference was high (70%) in block 1 when coherence was not altered, similar to 250 

block 1 from experiment 2 where extrinsic reward was equal between free and forced options. The 251 

only difference between these two blocks was that choosing the forced option resulted in the 252 

obligatory selection of the same fractal (experiment 2) or one of two fractals randomly selected by 253 

the computer (experiment 3), which indicates that subjects9 choice preference was not related to 254 

action variability per se following forced selection. Moreover, we found that choice preference was 255 

significantly correlated (r = 0.358, p = 0.03175) between block 1 of experiments 2 and 3, 256 

highlighting a within-subject consistency in choice preference. 257 

Increasing the incoherence of the 2nd-stage actions progressively reduced choice preference 258 

(block 2 and 3: 67% and 64% in favor of free respectively). As in experiments 1 and 2, choice 259 

preference was expressed immediately after the training phase and remained constant throughout 260 

the different blocks (Supplementary Fig. 3). We found that the decline in choice preference 261 

depended on the 1st-stage choice on the previous trial. Specifically, following coherent trials, we 262 

found that there was a significant interaction between the previous 1st-stage choice (free or forced) 263 

and the degree of incoherence (p = 0.0015, Fig. 5B). The difference in slopes was due to decreasing 264 

propensity to choose the free option following forced selection on the previous trial (p = 0.0111), 265 

with no change in the propensity to choose the free option following free selection on the previous 266 

trial (p = 0.8706). Thus, as incoherence increased, subjects tended to stay more with the forced 267 

option, while maintaining a preference to repeat free selections.   268 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.09.20.508669doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.20.508669
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

 The sustained repetition of free selections across the different levels of incoherence 269 

suggests that subjects may have been seeking to regain control of the environment through self-270 

determined 2nd-stage choices. Although the task was objectively uncontrollable since all terminal 271 

action-target sequences were associated with the same reward probability, subjects may have 272 

developed structure beliefs based on local reward history and target swaps, which could be reflected 273 

in 2nd-stage patterns of choice. Thus, subjects may have followed a strategy based on reward 274 

feedback by repeating only actions associated with a previous reward (illusory maximization of 275 

reward intake; Fig.5C, first panel). Alternatively, they could have followed a strategy based on 276 

action-outcome incoherence feedback and thus avoided trials associated with a previous target 277 

swap (illusory minimization of incoherent states; Fig. 5C, second panel). However, subjects may 278 

have also employed another classic strategy known as <model-based= where agents use their (here 279 

illusory) understanding of the task structure built from all the information provided by the 280 

environment (Fig.5C, third panel)(37). Under this strategy, subjects try to integrate both the reward 281 

and target-swap feedback to select the next target in order to maximize reward. For example, an 282 

incoherent but rewarded trial would lead to a behavioral switch because the subject has integrated 283 

the information provided by the environment (i.e., the target swap induced by the computer), 284 

signaling that the other target is actually rewarded (see second bar on third panel of Fig. 5C). 285 

Finally, an alternative strategy could rely on maximizing personal (i.e., internal) control, where the 286 

subject is the (illusory) agent of the entire sequence of events (i.e., action-state-reward) and would 287 

therefore ignore reward outcomes when they are not associated with the selected action-state 288 

(Fig.5C, fourth panel).  289 

Results of the stay behavior during 2nd-stage choice following free selection suggests that 290 

subjects seek personal control when choosing between the different fractal targets (Fig.5D). Indeed, 291 

when their action was consistent with the state they were choosing (i.e., the coherent fractal target 292 
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feedback), they took the reward outcome into account to adjust their behavior on the next trial, 293 

either by staying on the same target when the trial was rewarded or by switching to the other one 294 

when no reward was delivered. However, subjects were insensitive to the reward outcome during 295 

incoherent trials as they maintained the same strategy (staying) during subsequent trials, regardless 296 

of whether they were previously rewarded or not. This strategy reflects an attempt to regain 297 

personal control over the environment at the expense of the task goal of maximizing reward intake. 298 

 299 

 
Figure 5. Perceived controllability alters choice preference. A. Task design where a 7th state, associated to the 

forced options, has been added to manipulate the incoherence in both free and forced options. At incoherence = 

0, the visual feedback presented to the subject matches their selected target. Extrinsic reward probabilities set at 

P=0.75 for all the 2nd-stage targets. B. First-stage probabilities to stay or switch in free options after a free and 

forced trial respectively, as a function of the different incoherence blocks. C. Second-stage stay probabilities for 
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the different action-state-reward trial type. Each sub-panels represent a putative strategy followed by the subject.  

D. Estimated 2nd-stage stay probabilities. Error bars for 95% CI. P-values are displayed for significant pairwise 

comparisons and adjusted for multiple comparisons. 

 300 

  301 
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Discussion 302 

Animals prefer situations that offer more choice to those that offer less. Although this behavior can 303 

be reliably measured using the two-stage task design popularized by Voss and Homzie(7), their 304 

conclusion that choice has intrinsic value is open to debate. To rule out alternative explanations for 305 

choice-seeking, we performed three experiments in which we clearly separated learning of reward 306 

contingencies from testing of choice preference. Our experiments point to a sustained preference 307 

for choice opportunities that express an intrinsic need for personal control. Moreover, this need 308 

may compete with potentially valuable information for maximizing outcomes or even extrinsic 309 

rewards per se. 310 

In the first and second experiments, we varied the reward probabilities associated with 311 

terminal actions following free and forced selection. Consistent with previous studies, subjects 312 

preferred the opportunity to make a choice when expected rewards were equal between terminal 313 

actions (P = 0.5). Surprisingly, subjects also preferred choice when we increased the value 314 

difference between terminal actions in the free option, while keeping the maximum expected reward 315 

equal in the free and forced options (P > 0.5). This sustained preference for choice is potentially 316 

economically suboptimal since making a free choice carries the risk of making an error leading to 317 

lowered reward intake. The persistence of this preference for free choice even when reward 318 

delivery was deterministic (P = 1), makes it unlikely that this preference was due to an 319 

underestimation of forced trials due to poor learning of reward contingencies. 320 

Subjects appeared to have understood the reward contingencies as evidenced by their 321 

consistent preference for the highest-rewarded 2nd-stage fractal, which was acquired during the 322 

training phase and expressed during the test phase. This stable 2nd-stage fractal selection, together 323 

with the immediate expression and maintenance of 1st-stage choice preference, renders unlikely 324 
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accounts based on curiosity, exploration or variety seeking since varying the probability of rewards 325 

did not modulate choice preference about two third of the subjects (i.e., optimistic subjects). 326 

Selection-based accounts also have trouble explaining the pattern of results we observed. 327 

The idea that post-choice revaluation specifically inflates expected outcomes after choosing the 328 

free option can explain choice-seeking when all terminal reward probabilities are equal. However, 329 

post-choice revaluation cannot explain choice preference when the terminal reward probabilities 330 

in the free option clearly differ from one another, since revaluation appears to occur only after 331 

choosing between closely valued options(28,38). That is, there is no cognitive dissonance to resolve 332 

when reward contingencies are easy to discriminate, and no preference for choice should be 333 

observed when the choice is between a surely (i.e., deterministically) rewarded action and a never 334 

rewarded action. The existence of choice preference in the deterministic condition (P = 1) also 335 

cannot be explained by an optimistic algorithm such as Q-learning, since the maximum action value 336 

is equal to the maximum expected value, and the value of the free option is not biased upwards 337 

under repeated sampling(31).  338 

Although standard Q-learning could not capture variability across different terminal reward 339 

probabilities, we found that combining two novel modifications to TDRL models was able to do 340 

so. The first feature was a free choice bonus4a fixed value added to all extrinsic rewards obtained 341 

through free actions4that can lead to overvaluation of the free option via standard TD learning. 342 

This bonus implements Beattie and colleagues9 concept of decision attitude, the desire to make or 343 

avoid decisions independent of the outcomes(11). The second feature modifies the form of the 344 

future value estimate in the TD value iteration. Zorowitz and colleagues(31) showed that replacing 345 

the future value estimate in Q-learning with a weighted mixture of the best and worst future action 346 

values(32) can generate behavior ranging from aversion to preference for choice. The mixing 347 

coefficient determines how optimism (maximum of future action values, total risk indifference) is 348 
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tempered by pessimism (minimum of future action values, total risk aversion). In experiment 1, we 349 

found that 28% of subjects were best fitted with a model incorporating pessimism, which captured 350 

a downturn in choice preference with increasing relative value difference between the terminal 351 

actions in the free option. Importantly however, individual variability in the TD future value 352 

estimates alone did not explain the pattern of choice preference across target reward probabilities, 353 

and a free choice bonus was still necessary for most subjects. Thus, the combination of both a free 354 

choice bonus (decision attitude) and pessimism (risk attitude) was key for explaining why some 355 

individuals shift from seeking to avoiding choice. This was unexpected because the average choice 356 

preference in experiment 1 was not significantly different across reward manipulations, 357 

highlighting the importance of examining behavior at the individual level. Here, we examined risk 358 

using the difference between the best and worst outcomes as well as relative value using probability 359 

(see(39)). It may be the case that variability is also observed in how individuals balance the intrinsic 360 

rewards with other extrinsic reward properties that can influence choice preference, such as reward 361 

magnitude(39).  362 

 Why are choice opportunities highly valued? It may be that choice opportunities have 363 

acquired intrinsic value because they are particularly advantageous in the context of the natural 364 

environment in which the learning system has evolved. Thus, choice opportunities might be 365 

intrinsically rewarding because they promote the search for states that minimize uncertainty and 366 

variability, which could be used by an agent to improve their control over the environment and 367 

increase extrinsic reward intake in the long run(40,41). Developments in reinforcement learning 368 

and robotics support the idea that both extrinsic and intrinsic rewards are important for maximizing 369 

an agent9s survival(42344). Building intrinsic motivation into RL agents can promote the search 370 

for uncertain states and facilitate the acquisition of skills that generalize better across different 371 

environments, an essential feature for maximizing an agent9s ability to survive and reproduce over 372 
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its lifetime, i.e. its evolutionary fitness(42).  373 

The intrinsic reward of choice may be a specific instance of more general motivational 374 

constructs such as autonomy(13,14), personal causation(17), effectance(18), learned 375 

helplessness(45), perceived behavioral control(19) or self-efficacy(15), which are key for 376 

motivating behaviors that are not easily explained as satisfying basic drives such as hunger, thirst, 377 

sex, or pain avoidance(20). Common across these theoretical constructs is that control is 378 

intrinsically motivating only when the potential exists for agents to determine their own behavior, 379 

which when realized can give rise to a sense of agency and, in turn, strengthens the belief in the 380 

ability to exercise control over one's life(46). Thus, individuals with an internal locus of control 381 

tend to believe that they, as opposed to external factors such as chance or other agents, control the 382 

events that affect their lives. Crucially, the notion of locus of control makes specific predictions 383 

about the relationship between preference for choice4choice being an opportunity to exercise 384 

control4and the environment: individuals should express a weaker preference for choice when the 385 

environment is adverse, stressful or unpredictable(47). This prediction is consistent with what is 386 

known about the influence of environmental adversity on control externalization: individuals 387 

exposed to greater environmental instabilities tend to believe that external and uncontrollable 388 

forces are the primary causes of events that affect their lives, as opposed to themselves(48). In other 389 

words, one would expect belief in one's ability to control events, and thus preference for choice, to 390 

decline as the environment is perceived as increasingly unpredictable. 391 

In our third experiment, we sought to test whether it was specifically a belief in personal 392 

control that motivated subjects, by altering the perceived controllability of the task environment. 393 

To do so, we introduced a novel change to the two-stage task where in a fraction of trials subjects 394 

experienced random swapping of the terminal states (fractals). Thus, subjects were subjected to 395 

trials where the terminal state was incoherent with their choice, and thus experienced alterations in 396 
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their ability to predict the state of the environment following their action. Incoherence occurred 397 

with equal probability following free and forced actions in order to equate for any value associated 398 

with swapping itself. We found a significant reduction in the propensity to switch from forced to 399 

free choice following action-target incoherence, suggesting that altering the perceived 400 

controllability of the task causes choice to lose its attractiveness. This reduction in choice 401 

preference following incoherent trials is reminiscent of a form of locus externalization, and is 402 

consistent with the notion that choice preference is driven by a belief in one's personal control. In 403 

this experiment, we focused on the value of personal control, and therefore held other decision 404 

variables such as outcome diversity(33,34), outcome entropy(35), and instrumental divergence 405 

(36,49). Further experiments are needed to understand how these variables interact with personal 406 

control in the acquisition of potential control over the environment. 407 

Interestingly, when subjects selected the free option, the subsequent choice was sensitive 408 

to the past reward when the terminal state (the selected target) was coherent and the reward could 409 

therefore be attributed to the subject's action. In contrast, subjects9 choices were insensitive to past 410 

reward when the terminal state was incoherent. Furthermore, the probability of sticking with the 411 

previous 2nd-stage choice following incoherent trials, whether rewarded or not, was not different 412 

from the probability of sticking with the previously rewarded 2nd-stage choice following coherent 413 

trials. Thus, subjects appeared to ignore information about action-state-reward contingencies that 414 

was externally derived, and instead appeared to double down by repeating their past choice as if 415 

they sought to maintain or regain personal control. This behavior is consistent with many 416 

observations suggesting that when individuals experience situations that threaten or reduce their 417 

personal control, they implement compensatory strategies to restore their perceived control to its 418 

baseline level(50,51). 419 
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Computationally, however, this compensatory strategy is at odds with a pure model-based 420 

strategy(37), where an agent could exploit information about action-state-reward contingencies 421 

whether it derived from their own choices (internal control) or from the environment (external 422 

control). Rather, it is consistent with work showing that choice-seeking could emerge when self-423 

determined actions amplify subsequent positive reward prediction errors(5,52), and more generally 424 

with the notion that events are processed differently depending on individuals' beliefs about their 425 

own control abilities. Thus, positive events are amplified only when they are believed to be within 426 

one's personal control, whereas they are treated impartially when they are not(52), or when they 427 

come from an uncontrollable environment(53). 428 

Together, our results suggest that choice seeking may represent one critical facet of intrinsic 429 

motivation and is associated with the desire of personal control. They also suggest that the need for 430 

personal control can compete with maximization of extrinsic reward provided by externally driven 431 

actions. Indeed, subjects favor positive outcomes associated to internally driven action even if 432 

reward rate is lower than for action performed under the instruction of an external agent. In general, 433 

the perception of being in personal control could then account for several aspects of our daily life 434 

such as enjoyment during game(54) or motivation to perform demanding task(55). Since our results 435 

shown inter-individual difference, it would be nonetheless important in the future to phenotype 436 

subject behaviors during choice-making to investigate how these individual traits can explain 437 

attitude difference when facing decision and their consequences, as exemplified by the variety of 438 

attribution and explanation styles of individuals in the general population(56,57). 439 

 440 

 441 

 442 

  443 
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Materials and Methods: 444 

Participants. Ninety-four healthy individuals (mean age = 30 ±SD 7.32 years, 64 females) 445 

responded to posted advertisements and were recruited to participate in this study. Relevant 446 

inclusion criteria for all participants were being fluent in French, not treated for neuropsychiatric 447 

disorders, having no color vision deficiency and being aged between 18 and 45 years old. Out of 448 

these 94 subjects, 58 participated to experiment 1 and 36 to experiments 2-3. We gave subjects 40 449 

euros for participating. The sample size was chosen based on previous studies that used similar 450 

two-alternative decision making tasks(52,58,59).  451 

 452 

Ethics statement. The local ethics committee (Comité d9Evaluation Éthique de l9Inserm) approved 453 

the study (2019-CER2-MR-004). Participants gave written informed consent during inclusion in 454 

the study, which was carried out in accordance with the declaration of Helsinki (1964; revised 455 

2013).  456 

 457 

General procedure. The paradigm was written in Matlab, using the Psychophysics Toolbox 458 

extensions(60,61). It was presented on a 24 inches screen (1920 x 1080 pixels, aspect ratio 16:9). 459 

Subjects seat ~57 cm from the center of the monitor. Our behavioral task design was designed as a 460 

value-based decision paradigm. All participants received written and oral instructions. They were 461 

told that the goal of the task was to gain the maximum number of rewards (a large green euro). 462 

They were informed about the differences between the different trial types and that the extrinsic 463 

reward contingencies experienced during the training phases remained identical during the test 464 

phases. After instructions, participants received a pre-training session of a dozen trials (pre-train 465 

and pre-test phases) in order to familiarize them with the task design and the keys they would have 466 
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to press. 467 

In our experiments, subjects performed repeated trials with a two-stage structure. In the 1st-468 

stage they made an initial decision about what could occur in the 2nd-stage. Selecting the free 469 

option led to a subsequent opportunity to choose and selecting the forced option led to an obligatory 470 

computer-selected action. In the 2nd-stage, we presented subjects with two fractal images, one of 471 

them being more rewarded following free selection in experiment 1 (except for P=0.5) and 472 

experiment 2. In experiments 1 and 2, the computer always selected the same fractal target 473 

following forced selection. Experiment 3 all fractal targets were equally rewarded and the computer 474 

randomly selected one of the two fractal targets following forced selection (50%). Following forced 475 

selection, the target to select with a key press was indicated by a grey V-shape above the target. 476 

Pressing the other key on this trial type did nothing and the computer waited for the correct key 477 

press to proceed further in the trial sequence. Either at the 1st- or 2nd-stage, after the subject9s 478 

selection of the target, a red V-shape appears immediately after above the target to indicate the one 479 

they had selected (in experiment 3 blocks this red V-shape remains 250ms on the screen and 480 

eventually jumped with the target, see below).  481 

 482 

Experimental conditions. In experiment 1, fifty-eight subjects performed trials where the 483 

maximal reward probabilities were matched following free and forced selection. We varied the 484 

overall expected value across different blocks of trials, each of them being associated to different 485 

programmed extrinsic reward probabilities (P). Forty-eight subjects performed a version with 3 486 

blocks (experiment 1a) with different extrinsic reward probabilities ranging from 0.5 to 1 (block 1: 487 

Pforced = Pfree = 0.5; block 2: Pforced = 0.75, Pfree|a1 = 0.75, Pfree|a2 = 0.25; block 3: Pforced = 1, Pfree| 488 

a1 = 1, Pfree|a2 = 0; where a1 and a2 represent the two possible key presses associated with the 489 

fractal targets). Ten additional subjects performed the same task with 4 different blocks 490 
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(experiment 1b) associated to extrinsic reward probabilities also ranging from 0.5 to 1 (P = 0.5 or 491 

0.67 or 0.83 or 1 from block 1 to 4 respectively.) We did not observe any substantial difference 492 

between these two subject groups, and pooled them for analyses. 493 

Experiment 2 was similar to experiment 1 (six states) except programmed extrinsic reward 494 

associated with the forced option were higher than than the free option in two out of three blocks 495 

(Pforced = 0.75, 0.85 or 0.95). Reward probabilities following free selection did not change across 496 

the three blocks (Pfree|a1 = 0.75, Pfree|a2 = 0.25) 497 

Experiment 3 consisted of a 7-state version of the two-stage task. Here, we manipulated the 498 

coherence between the subject selection of a 2nd-stage (fractal) target and the target ultimately 499 

displayed on the screen by the computer. Irrespectively of the target finally selected by the 500 

computer or the subjects, the extrinsic reward probability associated to all the 2nd-stage targets in 501 

free and forced trials was set at P=0.75. Importantly, adding the 7th state in this last task version 502 

allowed the computer to swap the fractal 2nd-stage targets following both free and forced selection. 503 

Thus, subjects did not perceive the weak coherence as a feature specific to the free condition.  504 

We associated unique fractal targets with each action in the 2nd-stage, and a new set was 505 

used for each block in all experiments. Colors of the 1st-stage targets were different between 506 

experiments. Positive or negative reward feedback, as well as the side of the 1st-stage and 2nd-stage 507 

target positions, were pseudo-randomly interleaved on the right or left of screen center. Feedback 508 

was represented by the presentation (reward) or not (non-reward) of a large green euro image.  509 

In experiment 1, when P<1, participants performed a minimum of 48 trials per block in the 510 

training phases (forced and free) and the test phases. For P=1, participants performed a minimum 511 

24 trials for training phases (forced and free) and 48 trials for test phase. The order of the blocks 512 

were randomly interleaved. In experiments 2 and 3 they performed a minimum of 40 trials for each 513 

block. Here, subjects started by performing experiment 3 followed by experiment 2. This was to 514 
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ensure that the value of free trials was not devalued by experiment 2 (titration) when performing 515 

experiment 3. In experiment 3, subjects always started by the block with no target swaps 516 

(incoherence = 0), and in experiment 2 by the block with equal extrinsic reward probability 517 

(equivalent to the block P=0.75 of experiment 1). All the other blocks were randomly interleaved. 518 

 519 

Trial structure. During the training phase, for each trial, a first fixation point appeared in the 520 

center of the screen for 500ms, followed by the one of the first two targets of the different trial 521 

types for an additional 750ms, either (forced or free) to the left or right of the fixation point (~11° 522 

from the center of the screen on the horizontal axis, 3° wide). Immediately after, the first target 523 

was turned off and two fractal targets appeared at the same eccentricity than the first target to the 524 

left and right of the fixation point. The subjects could then choose by themselves or had to match 525 

the target (depending on the trial type) using a key press (left or right arrow keys for left and right 526 

targets, respectively). After their selection, a red V-shape appeared for about 1000ms above the 527 

selected target (trace epoch). Note that in experiment 3, the V-shape was initially light red and 528 

turned on for 250ms above the actual fractal target selected by the subjects. It was then turn in dark 529 

red for 750ms. If the trial was incoherent, after 250ms, the red V-shape jumped and thus reappeared 530 

simultaneously with the other target on the other side of the screen also for 750ms. Finally, the 531 

fixation point was turned-off and the outcome was displayed during 750ms before the next trial. 532 

For the test phase, the timing was equivalent except for the decision epoch related to the first stage 533 

where participants could choose their favorite trial type (free and forced targets positioned 534 

randomly, left or right) after 500ms of fixation point presentation. When a selection was made, the 535 

first target remained for 500ms, associated to a red V-shape over the selected 1st-stage target 3 536 

indicating their choice. The second stage started with a 500ms epoch where only the fixation point 537 

was presented on the screen, followed by the fractal target presentation. During the first and second 538 
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action epochs, no time pressure was imposed on subjects to make their choice, but if they pressed 539 

one of the keys during the first 100ms after target presentation (8early press9), a large red cross was 540 

displayed in the center of the screen for 500ms and the trial was repeated.  541 

  542 

Computational modelling. We fitted individual subject data with variants of temporal-difference 543 

reinforcement learning (TDRL) models. All models maintained a look-up table of state-action 544 

value estimates (#(%, ')) for each unique target and each action across all conditions within a 545 

particular experiment. State-action values were updated at each stage () * {1,2}) within a trial 546 

according to the prediction error measuring the discrepancy between obtained and expected 547 

outcomes: 548 

/! = 1!"# + 	4(%!"#, '!"#) 2 #(%! , '!) 549 

where 1!"# 	 * {0,1}	 indicates whether the subject received an extrinsic reward, and 4(%!"#, '!"#) 550 

represents the current estimate of the state-action value. The latter could take three possible forms: 551 

4(%!"#, '!"#) = 	7						 #(%!"#, '!"#) SARSAmax
$%

#(%!"#, '2) Q-learning" ; max
$%

#(%!"#, '2) + (1 2 ") ; min
$%

#(%!"#, '2) "-pessimistic 552 

Although Q-learning and SARSA variants differ in whether they learn off- or on-policy, 553 

respectively, we treated both of these algorithms as optimistic. Q-learning is strictly optimistic by 554 

considering only the best future state-action value, whereas SARSA can be more or less optimistic 555 

depending on the sensitivity of the mapping from state-action value differences to behavioral 556 

policy. We compared Q-learning and SARSA variants with a third state-action value estimator that 557 

incorporates risk attitude through a weighted mixture of the best and worst future action values 558 

(Gaskett9s "-pessimistic model(32)). As " ÷ 1 the pessimistic estimate of the current state-action 559 

value converges to Q-learning. 560 
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The prediction error was then used to update all state-action values according to: 561 

#(%!"#, '!"#) ± #(%!"#, '!"#) + 	N ; /! 562 

where N * [0,1] represents the learning rate.  563 

 We tested whether a free choice bonus could explain choice preference by modifying the 564 

obtained reward as follows: 565 

1!"# = 1!"#extrinsic + Q 566 

where Q * (2inf, +inf) is a scalar parameter added to any extrinsic reward following any action 567 

taken following selection of the free option. 568 

 Free actions at each stage were generated using a softmax policy as follows: 569 

S(%, '#) = 	 exp	(#(%, '#)/U)exp	(#(%, '#)/U) + exp	(#(%, '.)/U) 570 

where increasing the temperature, U * [0, +inf), produces a softer probability distribution over 571 

actions. The forced option, on the other hand, always led to the same fixed action. We used a 572 

softmax behavioral policy for all TDRL variants, and in the context of our task, the Q-learning and 573 

SARSA algorithms were often similar in explaining subject data, so we treated them together in 574 

the main text (Supplementary Fig. 1).  575 

 We also tested the possibility that subjects exhibited tendencies to alternate or perseverate 576 

following free or forced actions. We implemented this using a stickiness parameter that modified 577 

the policy as follows: 578 

S(%, '#) = 	 exp	[(#(%, '#) + V ; W!(%, '#))/U]exp	[(#(%, '#) + V ; W!(%, '#))/U] + exp	[(#(%, '.) + V ; W!(%, '.))/U] 579 

where the V * (2inf, +inf) parameter represents the subject9s tendance to perseverate, and W!(%, ') 580 

is a binary indicator for which fractal and action was chosen on the previous trial. 581 

 We independently combined the free parameters to produce a family of model fits for each 582 
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subject. We allowed the learning rate (N) and softmax temperature (U) to differ for each of the two 583 

stages in a trial. We therefore fitted a total of 48 models (3 estimates of current state-action value 584 

[SARSA, Q, "-pessimistic] ×	presence or absence of free choice bonus [Q] × 2- vs 1-learning rate 585 

[N] × 2- vs 1-temperature [U] × presence or absence of stickiness [V]).  586 

 587 

Parameter estimation and model comparison. We fitted model parameters using maximum a 588 

posteriori (MAP) estimation using the following priors: 589 

N > beta(shape1=1.1,	shape2=1.1) 590 

1/U	 > gamma(shape=1.2,	scale=5) 591 

" > beta(shape1=1.1,	shape2=1.1) 592 

Q > norm(mean=0,	sd=1) 593 

V > norm(mean=0,	sd=1). 594 

We based hyperparameters for N and 1/U on Daw and colleagues (37). We used the same priors 595 

and hyperparameters for all models containing a particular parameter. We used limited-memory 596 

quasi-Newton algorithm (L-BFGS-B) to numerically compute MAP estimates, with N and " 597 

bounded between 0 and 1 and 1/U bounded below at 0. For each model, we selected the best MAP 598 

estimate from 10 random parameter initializations. 599 

 For each model for each subject, we fitted a single set of parameters to both training and 600 

test data across conditions. We initialized state-action values to zero at the beginning of the training 601 

phase for each condition. Data from the training phase consisted of 2nd-stage actions and rewards, 602 

but we also presented subjects with the 1st-stage cues corresponding to the condition being trained 603 

(forced or free). Therefore, we fitted the TDRL models assuming that the state-action values 604 

associated with the 1st-stage fractals also underwent learning during the training phase, and that 605 
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these backups continued into the test phase, where subjects actually made 1st-stage decisions. That 606 

is, we initialized the state-action values during the test phase with the final state-action values 607 

during the training phase. 608 

 We used Schwarz weights to compare models, which provides a measure of the strength of 609 

evidence in favor of one model over others and can be interpreted as the probability that a model 610 

is best in the Bayesian Information Criterion (BIC) sense(62). We calculated weights for each 611 

model as: 612 

`/(BIC) = exp	(2&/(BIC)/2)3 exp	(2&0(BIC)/2)1

02#

 613 

so that 3`/(BIC) = 1.	We selected the model with the maximal Schwarz weight for each subject. 614 

 In order to verify that we could discriminate different state-action value estimates and how 615 

accurately we could estimate parameters, we performed model and parameter recovery analyses on 616 

simulated datasets (Supplementary Fig. 1). 617 

 618 

Statistical analyses. We used generalized linear mixed models (GLMM) to examine differences 619 

in choice behavior. When the model did not include trial-specific information (e.g., reward on the 620 

previous trial), we aggregated data to the block level. Otherwise, we used choice data at the trial 621 

level. We included random effects by subject for all models (random intercepts and random slopes 622 

for the variable manipulated in each experiment; maximal expected value, relative expected value, 623 

or incoherence for experiments 1, 2, and 3, respectively). We performed GLMM significance 624 

testing using likelihood-ratio tests, and we corrected for multiple comparisons in post-hoc tests 625 

using Tukey9s method. We used generalized additive mixed models (GAMM) to examine choice 626 

behavior as a function of trial within a block. We obtained smooth estimates of choice behavior 627 

using penalized regression splines, with penalization that allowed smooths to be reduced to zero 628 
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effect(63). We included separate smooths by block. We performed GAMM significance testing 629 

using approximate Wald-like tests(64). 630 

 631 
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