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Abstract  

Mutations to gene regulatory networks can be maladaptive or a source of evolutionary 

novelty. Epistasis confounds our understanding of how mutations impact the expression 

patterns of gene regulatory networks, because such nonlinearities make it difficult to 

predict the combined phenotypic effects of mutations based on knowledge of the 

mutations’ individual effects. This challenge is exacerbated by the dependence of epistasis 

on the environment, which is particularly germane to gene regulatory networks that 

interpret signals in space or time. To help fill this knowledge gap, we used the toolkit of 

synthetic biology to systematically assay the effects of pairwise and triplet combinations 

of mutant genotypes on the expression pattern of a gene regulatory network expressed in 

Escherichia coli that interprets an inducer gradient across a spatial domain. We uncovered 

a preponderance of epistasis in both pairwise and triplet combinations that can switch in 

magnitude and sign across the inducer gradient to produce a greater diversity of expression 

pattern phenotypes than would be possible in the absence of such environment-dependent 

epistasis. We discuss our findings in the context of the evolution of hybrid incompatibilities 

and evolutionary novelties, arguing that environment-dependent epistasis is likely an 

important cause of both phenomena in gene regulatory networks. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2022. ; https://doi.org/10.1101/2022.09.18.508240doi: bioRxiv preprint 

mailto:joshua.payne@env.ethz.ch
mailto:yolanda.schaerli@unil.ch
https://doi.org/10.1101/2022.09.18.508240
http://creativecommons.org/licenses/by-nc/4.0/


2 

 

Introduction 

The regulation of gene expression is essential for the spatiotemporal control of diverse 

biological functions. Gene regulation is mainly mediated by trans-regulatory proteins and 

protein complexes such as transcription factors and RNA polymerase, which target specific 

DNA sequences in cis-regulatory regions such as promoters and enhancers to modulate 

gene expression levels (Signor and Nuzhdin, 2018). Transcription factors often regulate 

their own expression levels, as well as the expression levels of other transcription factors, 

giving rise to gene regulatory networks (Alon, 2007). Gene regulatory networks drive 

fundamental physiological and developmental processes, such as the interpretation of 

morphogen gradients for spatial patterning during embryogenesis (Ben-Tabou de-Leon and 

Davidson, 2007). 

Given their central role in essential biological functions, it is crucial that gene 

regulatory networks are robust to genetic perturbation. Indeed, mutations in cis-regulatory 

regions that induce quantitative (e.g., DNA mutations that alter the affinity of a 

transcription factor binding site) or qualitative (e.g., DNA mutations that create or destroy 

a transcription factor binding site) changes to a gene regulatory network often do not 

change the network’s spatiotemporal expression pattern phenotype (Dalal and Johnson, 

2017; Payne and Wagner, 2015).  This robustness causes gene regulatory networks to be 

highly evolvable, because it facilitates the neutral accumulation of mutations (Ciliberti et 

al., 2007; Cotterell and Sharpe, 2010; Payne and Wagner, 2019; van Nimwegen et al., 

1999). This creates genetic diversity and promotes <system drift= (True and Haag, 2001), 

in which a population undergoes a series of quantitative and qualitative changes to a gene 

regulatory network that are phenotypically neutral (Crombach et al., 2016; Dalal and 

Johnson, 2017). Subsequent mutations to, or recombination events among, such diverse 

network configurations can then generate phenotypic variation (Ciliberti et al., 2007; 

Johnson, 2017; Martin and Wagner, 2009).  

Mutations to gene regulatory networks are commonly implicated in evolutionary 

adaptations and innovations (Johnson, 2017; Prud'homme et al., 2007). There has been an 

intense research effort to understand the molecular details of these mutations and the 

mechanistic basis of how they alter gene expression pattern phenotypes (from here on 

referred to as pattern phenotypes) (Nghe et al., 2020). A common observation is that the 
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combination of two (or more) mutations can result in phenotypic effects that would not be 

expected based on an additive assumption of each single mutant’s phenotypic contribution 

(Lagator et al., 2017b; Li et al., 2019; New and Lehner, 2019). Such context-dependence 

of mutational effects is called epistasis and is referred to as negative (positive) when the 

combined effects of mutations are less than (more than) expected based on their individual 

effects. Moreover, epistasis can itself be dependent on environmental conditions, such as 

the concentration of an expression inducer or an enzymatic co-factor (de Vos, Poelwijk et 

al. 2013, Flynn, Cooper et al. 2013, de Vos, Dawid et al. 2015, Lagator, Sarikas et al. 2017, 

Li and Zhang 2018, Li, Lalic et al. 2019, Anderson, Baier et al. 2021). For example, in the 

lambda phage promoter, a canonical gene regulatory system, Lagator and colleagues 

(2017a) found that 67% (14%) of 141 double mutants exhibited negative (positive) 

epistasis when the transcription factor that competes for binding with RNA polymerase 

was not expressed, and that 58% of the double mutants switched from negative to positive 

epistasis (or vice versa) when the transcription factor was expressed. Epistatic interactions 

and their dependence on the environment are not limited to pairs of mutations, but can also 

occur amongst three or more mutations (Domingo et al., 2018; New and Lehner, 2019), a 

phenomenon known as higher-order epistasis (Weinreich et al., 2013).  

Epistasis in GRNs has many causes including specific interactions across 

intermolecular interfaces, such as protein-protein (Diss and Lehner, 2018; Podgornaia and 

Laub, 2015) and transcription factor-DNA interactions (Anderson et al., 2015). This is the 

particular case of typical non-linearities inherent to competitive and cooperative binding 

of several transcription factors to the same target. In addition, the presence of feedback and 

feedforward loops in the network introduce additional epistatic effects that depend on the 

topology of the GRN (Domingo et al., 2019; Nghe et al., 2020). 

Despite substantial progress in the characterization of epistasis in macromolecules 

(Julien et al., 2016; Li et al., 2016; Olson et al., 2014; Puchta et al., 2016) and gene 

regulatory networks (Lagator et al., 2017a; Lagator et al., 2017b; Schaerli et al., 2018), it 

remains poorly understood how environment-dependent epistasis influences the 

spatiotemporal pattern phenotypes of gene regulatory networks. This is an important 

knowledge gap, because epistasis can constrain or facilitate evolvability (Nghe et al., 2020; 

Payne and Wagner, 2019), and the interpretation of chemical gradients (i.e., the 
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environment) by gene regulatory networks is fundamental to developmental patterning 

(Ashe and Briscoe, 2006; Rogers and Schier, 2011), as well as other essential biological 

processes like chemotaxis (Swaney et al., 2010). One of the reasons this knowledge gap 

persists is the difficulty of studying gene regulatory networks in situ, due to their 

embedding in large and complex cellular networks. 

Synthetic biology offers a path forward (Baier and Schaerli, 2021; Crocker and 

Ilsley, 2017). By extracting a gene regulatory network from its native cellular environment, 

it becomes feasible to systematically study the effects of mutations, individually and in 

combination, on the pattern phenotype of a gene regulatory network. We recently built and 

studied a synthetic three-node gene regulatory network, expressed in Escherichia coli (E. 

coli), that produces a stripe pattern phenotype (low-high-low) along an inducer gradient – 

analogous to a morphogen gradient interpreted during embryogenesis (Schaerli et al., 

2014). The network topology was based on the incoherent feed-forward loop 2 motif (Alon, 

2007), which drives numerous biological functions, such as blastoderm patterning in 

Drosophila (Jaeger et al., 2012). We previously used this synthetic gene regulatory network 

to study how mutation brings forth phenotypic variation in the network’s pattern phenotype 

(Schaerli et al., 2018).  

Here, we systematically combined mutations in the cis-regulatory regions of each 

of the network’s three nodes, covering promoters and transcription factor binding sites, 

into pairwise and triplet combinations. We analyzed how pairwise and higher-order 

epistasis varies along the inducer gradient. In doing so, we provide the first study of how 

environment-dependent epistasis influences the pattern phenotype of a gene regulatory 

network. Our results reveal a context-dependent picture of epistasis in which genotype 

combinations exhibit diverse epistatic effects, including positive and negative epistasis, 

that can change drastically along the inducer gradient. In turn, this inducer dependence of 

epistasis leads to more diverse pattern phenotypes in our network than would be expected 

if the mutations did not interact epistatically or depend on the environment. In the context 

of evolution, such increased diversity could facilitate adaptive evolution, but may also 

underlie hybrid incompatibility and speciation.  
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Results 

Experimental system and approach 

We studied a synthetic gene regulatory network with three nodes, which we refer 

to as sensor, regulator and output (Figure 1a) (Schaerli et al., 2018; Schaerli et al., 2014). 

Given the correct promoter activity and repression between nodes, the network produces a 

stripe pattern phenotype (low-high-low gene expression of the output node) along an 

inducer gradient, using the following mechanism (Figure 1b): The sensor is activated by 

the inducer and represses the regulator and the output. The regulator also represses the 

output, but its activity decreases with increasing inducer concentration, due to repression 

by the sensor. Consequently, the output is the least repressed at intermediate inducer levels, 

resulting in high expression and the formation of a stripe along the inducer gradient. Our 

definition of a stripe pattern phenotype requires the output expression to be the highest at 

intermediate inducer levels but leaves room for variation in terms of the stripe shape, 

intensity and overall expression (Schaerli et al., 2018).  

We encoded the three nodes of the synthetic gene regulatory network on separate 

plasmids (one per node), which we expressed in E. coli. The arabinose-responsive promoter 

pBAD receives the inducer signal (arabinose) (Figure 1c). The inhibitions are 

implemented by the transcriptional repressors TetR (tetracycline repressor) and LacI 

(lactose repressor) binding to their operator sites (TetO and LacO), which we placed 

downstream of the regulator and output promoters, respectively. The observable network 

output is expression of the superfolder green fluorescent protein (GFP) from the output 

node (Pedelacq et al., 2006).  

We previously introduced random nucleotide changes in the cis-regulatory regions 

spanning the promoter and operator sequences separately in each of the network nodes 

(Schaerli et al., 2018). From this study, we selected 31 genotypes: the starting network 

(<wild-type=, WT) and ten mutant genotypes for each of the three network nodes. Each 

mutant genotype contained one to three nucleotide changes in its cis-regulatory regions in 

only one of the nodes, either sensor, regulator or output (Extended Figure 1.1). All of 

them displayed a stripe phenotype, although with quantitative variations in overall 

fluorescence level and shape of the stipe pattern (Figure 1d). We refer to the 30 mutant 

genotypes as sensor-1, regulator-1, output-1, sensor-2, etc. The variation in GFP expression 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2022. ; https://doi.org/10.1101/2022.09.18.508240doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.18.508240
http://creativecommons.org/licenses/by-nc/4.0/


6 

 

along the gradient reflects the mechanistic role of the mutated node in the network. For 

example, sensor genotypes showed high variation at higher inducer concentrations, caused 

by a weaker promoter and/or lower sensitivity towards the inducer, which resulted in a 

lower repression of the output node at high inducer concentrations. In contrast, output 

genotypes showed variation along the gradient, which is caused by changes in their 

promoter and operator strengths.  

To study two-way and three-way epistasis between genotypes, we systematically 

combined all 3x10 mutant genotypes to generate all possible 300 (3x10x10) pairwise and 

1000 (10x10x10) triplet combinations by transforming the plasmid combinations into E. 

coli cells (Figure 1e). We cultured cells in 384-well plates and measured GFP expression 

of all 300 pairwise and 1000 triplet genotypes in triplicate at low (0%), medium (0.0002%) 

and high (0.2%) inducer concentrations using a fluorescence spectrophotometer (Figure 

1b). Fluorescence measurements correlated well between replicates (Extended Figure 

1.2a, R2 of 0.90 for all pairwise and 0.95 for all triplet combinations measurements). The 

standard deviation of measurement was similar between single, pairwise and triplet 

genotypes (Extended Figure 1.2b). In addition to the measurements at three inducer 

concentrations, we also assayed all single mutant genotypes (i.e. the 30 genotypes selected 

from (Schaerli et al., 2018)) and 40 pairwise and triplet genotypes at 16 inducer 

concentrations. These measurements over 16 inducer concentrations confirmed that the 

measurements at three inducer concentrations capture the pattern phenotypes well 

(Extended Figure 1.2c and d).  

 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2022. ; https://doi.org/10.1101/2022.09.18.508240doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.18.508240
http://creativecommons.org/licenses/by-nc/4.0/


7 

 

 

Figure 1. Experimental system. (a) Topology of the studied gene regulatory network. (b) 

Schematic of gene expression patterns of sensor, regulator and output nodes along an inducer 

gradient. The pattern phenotype of the <wild-type= (WT) network is a stripe of gene expression of 

the output node (green) along an inducer gradient. (c) Molecular implementation of the synthetic 

gene regulatory network in E. coli. The network is induced with arabinose through a pBAD 

promoter. Repressive regulatory interactions are implemented with LacI and TetR repressor 

proteins binding to their respective operators lacO and tetO, which lowers transcription from the 

promoter upstream. The detected network output is fluorescence of GFP. The cis-regulatory 

regions containing mutations are indicated with red brackets. (d) GFP expression patterns of the 

30 genotypes carrying mutations in the sensor (left), regulator (middle) or output (right) node. 

GFP expression of the WT network is shown in grey. Each genotype was measured in triplicate at 

16 inducer concentrations and the mean and standard deviation from three biological replicates 

are shown. (e) Schematic of how we generated all 300 pairwise and 1000 triplet combinations. 
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Extended Figure 1.1. Nucleotide changes in promoter and operator regions of (a) sensor, (b) 

regulator and (c) output mutant genotypes.  
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Extended Figure 1.2. (a) Correlation between the three replicate measurements for all genotypes 

(left). X means replicate 1 or 2. Y means replicate 2 or 3. (b) Comparison of standard deviation 

values of fluorescence measurements between pairwise and triplet combinations. (c) Correlation 

between the two independent measurements of 40 selected genotypes shown in (d) at low, medium 

and high inducer concentrations. (d) Measured GFP expression pattern of the 40 selected pairwise 

(left) and triplet (right) genotypes. Each genotype was measured in triplicate at 3 (large points) 

and 16 (small points) inducer concentrations and the mean and standard deviation from three 

biological replicates are shown.  
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Most genotype combinations exhibit epistasis  

We used a multiplicative model to determine whether pairwise or higher-order interactions 

exhibited epistasis. In this model, epistasis is defined as the deviation of the observed gene 

expression of the pairwise or triplet combinations from the product of the single mutant 

expression levels relative to the WT genotype. The multiplicative model is commonly used 

to detect epistasis in gene regulatory systems (Lagator et al., 2017a; Lagator et al., 2017b; 

Li et al., 2019; New and Lehner, 2019), as well as in other systems (Gao et al., 2010; 

Poelwijk et al., 2019) (Figure 2a). The multiplicative model is also referred as log-additive, 

since it becomes additive when the concentrations are transformed to logarithmic scale.  

First, we calculated the observed fold change in fluorescence relative to the WT 

(�ÿobs with  ÿ = 1, & ,30) for each of the 30 single mutant genotypes at each inducer 

concentration (Extended figure 2.1a). Under the multiplicative (log-additive) model, for 

a pairwise combination of mutations (ÿ, Ā) we expect a fold change in fluorescence with 

respect to the mutant (�(ÿ,Ā)expected
) that follows, �(ÿ,Ā)expected ≡ log10 (�(ÿ,Ā)expected) = log10(�ÿobs) +  log10(�Āobs)  

(Extended figure 2.1b). 

Similarly, for triplet mutants we have                      �(ÿ,Ā,ā)expected ≡ log10 (�(ÿ,Ā,ā)expected) = log10(�ÿobs) +  log10(�Āobs) + log10(�āobs) 

(Extended figure 2.1c).  

Next, we compared these expected values predicted from the single mutant 

genotypes with the actual observed GFP expression for pairwise or triplet combinations to 

calculate the magnitude of epistasis as ℇ = �observed 2 �expected, 

where �observed is the logarithm of the observed fluorescence fold change of the mutant 

with respect to the wildtype (log10 �(ÿ,Ā,ā)observed). The magnitude and sign of the parameter ℇ 

measure the strength and sign of epistasis (Figure 2a). In particular, we defined epistasis 

values as significant if ℇ deviates from 0 with a false discovery rate (FDR) adjusted p-value 

of <0.05 (Domingo et al., 2018; Gao et al., 2010) (Figure 2b). From all measurements of 

pairwise combinations at all inducer concentrations, we found that 53% (476 of 900) 

resulted in significant epistasis (FDR adjusted p-value of <0.05) (Figure 2c). Similarly, 
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57% (1726 of 3000) of triplet combinations resulted in significant epistasis (FDR adjusted 

p-value of <0.05) (Figure 2c). Of the significant epistatic pairwise combinations, 82% 

were negative and only 18% positive, whereas for the triplet combination 88% were 

negative and only 12% positive (Figure 2c). Thus, most mutant genotype combinations 

resulted in lower GFP expression than expected.  

Epistatic interactions can be classified depending on the phenotypic effects of each 

single mutant genotype and their combinations. For example, in magnitude epistasis the 

expression level associated to a genotype, but not its sign, changes with the genetic 

background more or less than would be expected under additivity. In contrast, if a genotype 

has the opposite effect when in combination with another genotype, i.e., it changes the sign 

of its relative effect, it is called sign epistasis. Reciprocal sign epistasis is a special case of 

sign epistasis, in which each single genotype has the opposite effect when combined with 

other genotypes (Domingo et al., 2019). Notably, most of the 2202 cases of significant 

epistasis for pairwise and triplet genotypes (n = 1230) could be attributed to negative 

reciprocal sign epistasis (RSE) (Figure 2f). In our case, single mutant genotypes had a 

higher gene expression than the WT network, but in combination they had a lower gene 

expression than any of the single mutant genotypes and the WT, resulting in negative RSE. 

These observations are in line with prior work in other systems, which uncovered epistasis 

amongst components that interact functionally (Lagator et al., 2016; Lagator et al., 2017a; 

Lagator et al., 2017b; Nghe et al., 2018) and physically (Anderson et al., 2015; Diss and 

Lehner, 2018). In sum, most interactions are epistatic in our system, with a preponderance 

of negative epistasis and negative reciprocal sign epistasis. 

 

 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2022. ; https://doi.org/10.1101/2022.09.18.508240doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.18.508240
http://creativecommons.org/licenses/by-nc/4.0/


12 

 

 

Figure 2. Definition and prevalence of epistasis. (a) Illustration of the multiplicative (log-additive) 

model for pairwise mutational combinations in a gene expression system. In this example, the gene 

expression of each single mutant genotype is higher than the WT (ab). If the observed gene 

expression of the pairwise genotype combination is significantly higher than what would be 

expected based on the single mutant genotypes, we define it as positive epistasis. If the observed 

gene expression is lower, we define it as negative epistasis. (b) Epistasis values and corresponding 

q-values, with significant values (FDR <0.05) in colour and non-significant values (FDR >0.05) 

in grey. Data from measurements at low (0%), medium (0.0002%) and high (0.2%) inducer 

concentrations are combined. (c) Observed versus expected GFP expression values of all 300 

pairwise (left) and 1000 triplet (right) genotypes. Points above the identity line have positive 

epistasis, whereas points below display negative epistasis. Data points represent the mean value 

of three biological replicates. Error bars for observed values (vertical) represent the standard 

deviation of three biological replicates. Error bars for expected values (horizontal) represent the 

calculated propagated errors from the errors of the single mutant genotype measurements (see 

Methods). (d) Different types of epistasis for all significant (2202 of 3900) pairwise (476 of 900) 

and triplet (1726 of 3000) combinations at the three inducer concentrations. (Left) Cases with all 

single mutant genotypes having a lower expression than the WT. (Middle) Cases with all single 

mutant genotypes having a higher expression than the WT. (Right) Cases of single mutant 

genotypes with mixed lower and higher expression than the WT. Percentages are based only on 

significantly epistatic genotype combinations and combined for pairwise and triplet combinations. 

sign: sign epistasis, magtd.: magnitude epistasis, RSE: reciprocal sign epistasis.  
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Extended Figure 2.1. (a) Relative change in fluorescence (log10 (g)) of the 30 single mutant 

genotypes at low (0%), medium (0.0002%) and high (0.2%) inducer concentrations. Lines 

connect the same genotypes at different inducer concentrations. (b) Relative change in 

fluorescence (log10 (g)) of observed (obs.) and expected (exp.) pairwise combinations. (c) Relative 

change in fluorescence (log10 (g)) of observed (obs.) and expected (exp.) triplet combinations. 

Asterisks indicate significant difference of variability between the observed and expected relative 

fluorescence values (significance calculated using unpaired t-test (F test) with a of p-value 

<0.0001). n.s. means not significant with a p-value >0.0001. 

  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2022. ; https://doi.org/10.1101/2022.09.18.508240doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.18.508240
http://creativecommons.org/licenses/by-nc/4.0/


14 

 

Epistasis depends on the genetic background 

Next, we compared the effects of the mutated nodes across the complete set of 

genetic backgrounds. For this we plotted the values of ℇ of all pairwise and triplet 

combinations for each of the 30 mutant genotypes separately and calculated the mean and 

variability of epistasis (Figure 3). Notably, we found that every genotype displayed both 

negative and positive epistasis, depending on the genetic background. Most genotypes have 

a negative mean value of ℇ, the exceptions being combinations of regulator-10, output-2 

and output-10, whose mean ℇ was slightly positive (Figure 3a and b). To quantify the 

variability of epistasis we calculated the standard deviation of epistasis for each genotype 

(Figure 3c). The variability of epistasis decreased from sensor to regulator to output node, 

particularly at low and medium inducer concentrations, suggesting that the variability of ℇ 

was dependent on which network component was mutated (Extended Figure 3.1). In sum, 

these results show that epistasis is highly idiosyncratic in our system (Lyons et al., 2020) 

because the same mutation tends to have different effects in different genetic backgrounds.  

 

Epistasis is inducer-dependent 

Next, we asked if inducer concentrations influence the sign and variability of 

epistasis values. For this, we plotted the mean of epistasis values at low (0%), medium 

(0.0002%) and high (0.2%) inducer concentrations separately (Figure 3d). We found that 

the mean epistasis values increased, i.e. became more positive, with the inducer 

concentration for all three network nodes and this trend was more pronounced for triplet 

combinations (Extended Figure 3.2 and Extended Figure 3.3).  

To define significant inducer-dependent epistasis we performed a t-test with FDR 

adjusted p-values values at low, medium and high inducer concentration for each genotype 

of all pairwise and triplet combinations. Specifically, we defined a significant inducer-

dependence of epistasis if the FDR q-value is <0.1 between any of the three inducer 

concentrations (Extended Figure 3.4). At this significance cut-off, 37% of pairwise (111 

of 300) and 45% of triplet (447 of 1000) combinations exhibited significant inducer-

dependent epistasis. 
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Figure 3. Sign and variability of epistasis varies with genetic background and inducer 

concentration. (a) Epistasis values for pairwise combinations of the 30 different mutant genotypes. 

Each genotype has 20 pairwise combinations with epistasis values at low (0%), medium (0.0002%) 

and high (0.2%) inducer concentrations giving rise to 60 values per genotype. Mean values 

represent the average epistasis of all 60 values and their variability is shown as the standard 

deviation. (b) Epistasis values for triplet combinations. Each genotype has 100 triplet combinations 

with epistasis values at low (0%), medium (0.0002%) and high (0.2%) inducer concentrations 

giving rise to 300 values per genotype. Mean values represent the average epistasis of all 300 

values and their variability is shown as the standard deviation. (c) Variability of epistasis defined 

as the standard deviation of epistasis for all ten genotypes per node for pairwise (left) and triplet 

(right) combinations at low L (0%), medium M (0.0002%) and high H (0.2%) inducer 

concentrations. Horizontal bars represent the mean of the variability, and the error bars show the 

standard deviation. Statistical analysis is shown in Extended Figure 3.1. (d) Mean values of 

epistasis for all ten genotypes per node for pairwise (left) and triplet (right) combinations at low 

<L= (0%), medium <M" (0.0002%) and high <H= (0.2%) inducer concentrations. Horizontal bars 

represent the mean and the error bars show the variability as the standard deviation. Statistical 

analysis is shown in Extended Figure 3.2. 
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Extended Figure 3.1. Statistical analysis for the variability of epistasis between regulatory nodes 

for (a) pairwise combinations and (b) triplet combinations at different inducer concentrations. 

Asterisk indicates significant difference of variability between the observed and expected relative 

fluorescence values (significance calculated using unpaired t-test with Welch’s correction. 
Asterisk indicates significant differences of the mean with a p-value <0.05). n.s. means not 

significant p-value >0.05. 
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Extended Figure 3.2. Statistical analysis for mean values of epistasis between different inducer 

concentrations for (a) pairwise combinations and (b) triplet combinations for the different 

regulatory nodes. Asterisk indicates significant difference of mean between the observed and 

expected relative fluorescence values (significance calculated using unpaired t-test with Welch’s 
correction). Asterisk indicates significant differences of the mean with p-values <0.05 and n.s. 

means not significant with p-values >0.05. 
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Extended Figure 3.3. Epistasis is inducer-dependent. Epistasis values for each mutant genotype 

and inducer concentration for (a) pairwise combinations and (b) triplet combinations. 
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Extended Figure 3.4. Defining significant inducer-dependent epistasis. (a) Defining significant 

inducer-dependent epistasis of all 300 pairwise (purple) and 1000 triplet (orange) genotype 

combinations. Significance was calculated with a series of t-tests (Welch’s test) with FDR 

correction (n = 3900, Benjamini-Krieger-Yekutieli method) with significant values (FDR q-value 

<0.1) in colour and non-significant values (FDR q-value >0.1) in grey. At this significance cut-off, 

37% of pairwise (111 of 300) and 45% of triplet (447 of 1000) combinations exhibited significant 

inducer-dependent epistasis. (b) Projection of inducer-dependence of epistasis (ℇ) to two-

dimensional coordinates using ratios of ℇ between medium-low (X axis) and high-medium (Y axis) 

inducer concentrations. (b) Genotypes with significant inducer-dependence are shown in color 

(pairwise in purple and triplet combinations in orange) and genotypes with non-significant inducer 

dependence are shown in grey. 

 

To further explore the inducer-dependence of epistasis in our dataset we explored 

how ℇ changed from low, medium to high inducer concentrations for each genotype 

combination. To do so, we classified the changes in epistasis along the inducer 

concentration into four categories, depending on which inducer concentration the epistasis 

value was highest or lowest (Figure 4): (a) with epistasis being highest at medium inducer 

concentrations; (b) with epistasis increasing with increasing inducer concentrations; (c) 

with epistasis decreasing with increasing inducer concentrations; (d) with epistasis being 

lowest at medium inducer concentrations. We quantified the distribution of pairwise and 

triplet combinations into these four categories. We found that out of all 300 pairwise 

combinations 33% fell into category (a), 31% into category (b), 18% each into categories 

(c) and (d). For the 1000 triplet combinations this distribution changed to 21% falling into 

category (a), 59% into category (b), 5% into category (c) and 15% in category (d). Thus, 

our results show that epistasis changes drastically with inducer concentration. 

Next, we asked if epistasis also switched sign between inducer concentrations. For 

this we sub-classified the four categories into three different scenarios: remaining negative, 

remaining positive or switching sign at different inducer concentrations (Figure 4 – right 

part). Overall, we found that 31% of the pairwise combinations switched sign along the 

inducer concentrations, and 13% remained always positive and 56% always negative. For 

the triplet combinations, we found that 21% switched sign and 10% remained always 

positive and 69% always negative. In sum, these results demonstrate that epistasis is 

environment-dependent in our system, changing in magnitude and sign along the inducer 

gradient. 
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Figure 4. Epistasis changes with inducer concentrations. Epistasis along the inducer 

concentration gradient for pairwise combinations (left) and triplet combinations (middle). (a) 

Genotype combinations with epistasis highest at medium inducer concentration. (b) Genotype 
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combinations with epistasis increasing with increasing inducer concentrations. (c) Genotype 

combinations with epistasis decreasing with increasing inducer concentrations. (d) Genotype 

combinations with epistasis lowest at medium inducer concentration. A quantification of the 

different scenarios of epistasis values changing or maintaining sign across inducer concentration 

is shown on the right.  

 

Inducer-dependent epistasis increases phenotypic diversity  

We have shown that pairwise and higher-order epistasis depends on the inducer 

concentration in our system. Since the function of the network is to interpret an inducer 

gradient into a gene expression pattern, we next analyzed how this inducer-dependence of 

epistasis impacted the network’s pattern phenotype. To this end, we characterized the 

pattern phenotype of all single, pairwise and triplet genotypes. For this, we calculated the 

difference in gene expression between low and medium arabinose concentrations and 

between high and medium arabinose concentrations (Figure 5a) (Schaerli et al., 2018). 

This approach allows for a simple visualization on a cartesian plot and classification of 

pattern phenotypes into four categories for each one of the four quadrants: increase (Q1), 

anti-stripe (Q2), decrease (Q3) and stripe (Q4). Projections near the origin correspond to a 

constant expression phenotype. 

We first plotted the pattern phenotypes of the WT and all 30 single mutant 

genotypes (Figure 5b, left). As expected, they all fell into the stripe category (Q4). We 

further examined the pattern phenotypes of all 300 pairwise (Figure 5b, middle) and 1000 

triplet (Figure 5b, right) genotypes. Based on the multiplicative model, most of the 

pairwise (n=289 of 300) and triplet (n = 920 of 1000) genotypes were also expected to 

display a stripe pattern phenotype, with few exceptions (11 pairwise and 80 triplet) that 

were expected to adopt an increase pattern phenotype. These cases were the result of 

combinations of single mutant genotypes with high GFP expression at high inducer 

concentrations (e.g., sensor-3, -7, -10 and regulator-5, -6) or low GFP expression at low 

inducer concentrations (e.g., regulator-1 and output-10) (Extended Figure 1.2). However, 

the observed phenotypes were more frequently non-stripe patterns than expected. 

Specifically, for pairwise and triplet combinations we observed 22 (11 expected vs 33 

observed) and 237 (80 expected vs 317 observed) more increase pattern phenotypes, 

respectively (Figure 4b). In addition, observed pairwise and triplet combinations also each 

showed one decrease phenotype. 
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In addition to the changes of distribution into the pattern phenotype categories, we 

also observed that the pattern phenotypes within one category were more diverse than 

expected from the multiplicative model. For example, several genotypes had a stronger 

stripe pattern phenotype than the WT, i.e., a bigger difference between lowest and highest 

GFP expression levels. To quantify and compare this spread of pattern phenotypes, we 

calculated the Euclidean distance between the pattern of the WT and the pattern of each 

genotype (schematic Figure 5c). We found that for most genotypes the observed mean 

distance to the WT was significantly higher than expected, both for pairwise (0.24 vs. 0.18, 

paired t-test p-value <0.001) and triplet combinations (0.36 vs 0.23, paired t-test p-value 

<0.001) (Figure 5d). Thus, we conclude that environment-dependent epistasis causes a 

greater diversity of pattern phenotypes than would be expected if the mutations did not 

interact epistatically or depend on the environment. 

 

 

Figure 5. Pattern phenotypes. (a) Projection of pattern phenotypes to two-dimensional 

coordinates using ratios of GFP expression between medium-low (X axis) and high-medium (Y 

axis) inducer concentrations. (b) Pattern phenotypes of 30 single mutant genotypes (left) and 

expected (grey) and observed (colored) pairwise (middle) and triplet (right) genotypes. (c) 

Schematic of distance for pattern phenotypes relative to the wild type in the two-dimensional space 
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depicted with arrows and calculated as Euclidean distance. (d) Measure of distance of pattern 

phenotypes relative to the wild type. Statistical significance (p-values) was calculated using a two-

tailed paired t-test (Wilcoxon test).  

 

 

Discussion  

Mutations in cis-regulatory regions can alter the spatiotemporal gene expression patterns 

of gene regulatory networks. Such alterations are often deleterious, resulting in 

developmental abnormalities, disease, or death (Schaub et al., 2012; Ward and Kellis, 

2012). However, they are occasionally advantageous, as evidenced by their common 

implication in evolutionary adaptations and innovations (Johnson, 2017; Prud'homme et 

al., 2007). Here, we used the toolkit of synthetic biology to systematically interrogate how 

combinations of mutations in the cis-regulatory regions of a three-gene regulatory network 

interact to influence the network’s spatial pattern phenotype. We uncovered pervasive 

epistasis, particularly negative epistasis and negative reciprocal sign epistasis. Moreover, 

we found epistasis to be more common among triplet combinations than among pairwise 

combinations, and that epistasis depended on the environment, because it varied across the 

inducer gradient. Finally, we showed that this inducer-dependent epistasis resulted in a 

greater diversity of pattern phenotypes than would be expected if the mutations did not 

interact epistatically and their phenotypic effects did not depend on the environment. 

 

Prior work has shown that epistasis can either constrain or facilitate the evolution of 

phenotypic diversity. For example, in individual macromolecules such as DNA, RNA, and 

proteins, reciprocal sign epistasis has been shown to constrain the evolution of phenotypic 

diversity by forming maladaptive valleys in fitness landscapes, which can trap evolving 

populations on suboptimal adaptive peaks and preclude the generation of further adaptive 

phenotypic variation (Payne and Wagner, 2019; Poelwijk et al., 2011). However, when 

such macromolecules interact, epistasis amongst mutations in the interacting components 

can alleviate the constraints of the individual components, facilitating the evolution of 

phenotypic diversity (Anderson et al., 2015; Lagator et al., 2017b). Lagator and colleagues 

(2017b) provide a representative example. They studied the phenotypic effects of 

mutations in the canonical Lambda bacteriophage switch, a regulatory network consisting 
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of RNA polymerase, a transcriptional repressor, and a cis-regulatory element to which both 

proteins bind. Their study showed that the phenotypic variation induced by combinations 

of mutations in the three interacting components was greater than that induced by mutations 

in the individual components. Moreover, the amount of phenotypic variation brought forth 

by combinations of mutations in the interacting components was different in the presence 

and absence of the transcriptional repressor, thus revealing environment-dependent 

epistasis in this system (Lagator et al., 2017b). Our study complements and extends this 

work by studying higher-order, environment-dependent epistasis in a larger regulatory 

network in which the mutations can interact functionally, but not physically (since 

mutations are only in cis-regulatory regions), to influence phenotypic diversity in a spatial 

pattern phenotype. 

 

Our experiments also shed light on the robustness of gene expression pattern phenotypes 

to recombination, and how recombination generates novel phenotypes in gene regulatory 

networks. Prior work with computational models of gene regulatory networks compared 

the pattern phenotypes of recombinant offspring derived from parental networks that have 

the same phenotype to the pattern phenotypes of mutated offspring derived from these same 

parents (Martin and Wagner, 2009). Recombination was far less likely to cause a change 

in pattern phenotype than mutation. For example, more than 90% of recombinant offspring 

that differed from their parent by one regulatory interaction preserved the parental 

phenotype, as compared to only ~75% of mutated offspring that differed from their parent 

by one regulatory interaction. These differences in the robustness of pattern phenotypes to 

recombination and mutation only increased as the difference in the number regulatory 

interactions between parent and offspring increased. Our study provides experimental 

support for these findings, at least qualitatively. Specifically, in our previous work 

(Schaerli et al., 2018), we found that 67% of mutations to our regulatory network resulted 

in a non-stripe phenotype, whereas here we found that only 31.8% and 34% of pairwise 

and triplet genotype combinations resulted in a non-stripe phenotype, respectively. 

Relative to mutation, this is a 2-fold reduction. Further, we found that when recombination 

does generate a novel phenotype, this can be partly explained by environment-dependent 

epistasis. Without such epistasis, recombination is far more likely to preserve the parental 
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pattern phenotype, as evidenced by comparisons with our null model. Our study thus 

supports the theoretical prediction of a low cost to recombination in creating novel 

phenotypes in gene regulatory networks (Wagner, 2011) and highlights environment-

dependent epistasis as one cause of phenotypic novelty in recombinant offspring. 

 

The robustness of a gene regulatory network’s pattern phenotype to mutation and 

recombination facilitates so-called <system drift= (True and Haag, 2001), in which an 

evolving population accumulates diversity in the regulatory and coding regions of the 

networks’ constituent components without causing a change in phenotype. System drift 

can facilitate the evolution of phenotypic novelties, because the resulting genetic diversity 

may serve as the basis for subsequent mutations or recombination to bring forth novel 

phenotypes, or it may be revealed as phenotypic variation upon environmental change 

(Payne and Wagner, 2019). Modeling work has long suggested that gene regulatory 

networks are susceptible to system drift, because many different mutationally-connected 

networks have the same expression phenotype (Ciliberti et al., 2007; Cotterell and Sharpe, 

2010; Crombach et al., 2016; Jaeger, 2018), and recent empirical work has demonstrated a 

role for system drift in the evolution of biofilm formation in the fungus Candida albicans 

(Nocedal et al., 2017). Our work bridges these theoretical and empirical studies, using 

synthetic gene regulatory networks to experimentally interrogate the phenotypic effects of 

mutation and recombination, confirming the susceptibility of regulatory networks to 

system drift and the constructive role of the resulting genetic diversity in the evolution of 

novel phenotypes. A key finding of our study is that such novelties are at least partly 

explained by epistatic interactions amongst network components, which can change in 

magnitude and sign along an environmental gradient, thus altering gene expression levels 

across the spatial domain. 

 

Our finding that environment-dependent epistasis can cause novel pattern phenotypes in 

recombinant offspring is germane to a growing body of literature on hybrid 

incompatibilities in gene regulatory networks (Johnson and Porter, 2000, 2007; Khatri and 

Goldstein, 2015, 2019; Palmer and Feldman, 2009; Porter and Johnson, 2002; Schiffman 

and Ralph, 2022; Tulchinsky et al., 2014a; Tulchinsky et al., 2014b). These modeling 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2022. ; https://doi.org/10.1101/2022.09.18.508240doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.18.508240
http://creativecommons.org/licenses/by-nc/4.0/


26 

 

studies highlight several factors that influence the evolution of such hybrid 

incompatibilities, including population structure (Porter and Johnson, 2002), population 

genetic conditions (Khatri and Goldstein, 2015, 2019), mutational target size (Tulchinsky 

et al., 2014a; Tulchinsky et al., 2014b), network topology (Palmer and Feldman, 2009), 

and whether selection is directional or stabilizing (Porter and Johnson, 2002). Under 

stabilizing selection, where system drift can occur, these models suggest that hybrid 

incompatibilities are most likely to arise when many network variants that have the same 

pattern phenotype are mutationally connected with one another, forming so-called 

<genotype networks= (Wagner, 2008) or <neutral networks= (Schuster et al., 1994), and 

when at least some mutations in network components interact epistatically. Genotype 

networks facilitate system drift, because an evolving population can spread across the 

network while preserving pattern phenotype (Wagner, 2008), whereas epistasis can create 

maladaptive <holes= in these networks, into which recombinant offspring may fall 

(Gavrilets, 1997). Our work here and in previous studies (Santos-Moreno et al., 2022; 

Schaerli et al., 2018; Schaerli et al., 2014) provides experimental support that gene 

regulatory networks form genotype networks, and demonstrates that epistasis is not only 

prevalent amongst mutations in network components, but also depends on the environment. 

Thus, in line with prior modeling, our results suggest that system drift is likely to result in 

hybrid incompatibilities in recombinant regulatory networks. Whereas we observe that 

most recombinant offspring preserve the parental stripe phenotype, we emphasize that the 

genetic diversity in our parental population is limited. Recombination amongst a more 

diverse pool of parental networks may reveal a larger fraction of non-stripe phenotypes. 

 

In sum, we used the toolkit of synthetic biology to perform a systematic analysis of the 

combined effects of mutations that are individually phenotypically neutral on the pattern 

phenotype of a gene regulatory network, uncovering pervasive pairwise and higher-order 

epistasis that changed in magnitude and sign along an inducer gradient, thus giving rise to 

novel spatial gene expression patterns that in natural gene regulatory networks may cause 

hybrid incompatibilities or embody evolutionary innovations. Such environment-

dependent epistasis therefore strongly influences the evolution of gene regulatory 

networks, with implications for our understanding of speciation and evolutionary novelty. 
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Materials and Methods 

Materials 

Chemicals and media components, unless stated otherwise, were purchased from 

Sigma-Aldrich.  

Media. For cloning and precultures we used Luria–Bertani medium (LB: 10 g 

Bacto- tryptone, 5 g yeast extract, 10 g NaCl per 1 l) supplemented with the appropriate 

antibiotics (100 μg/ml ampicillin for pET plasmids (output), 30 μg /ml kanamycin for 

pCOLA plasmids (sensor) or 50 μg /ml spectinomycin for pCDF plasmids (regulator)). For 

all plate reader assays of the synthetic networks <Stripe Medium= (SM) was prepared as 

follows: LB ingredients were dissolved in ultrapure water (Roth), sterile filtered (22 μm 

filter pores company) and supplemented with sterile 0.4% (w/v) glucose, 100 μg/ml 

ampicillin, 30 μg /ml kanamycin and 50 μg /ml spectinomycin and 5 μM isopropyl b-D-1-

thiogalactopyranoside (IPTG). 

The synthetic regulatory network and selected mutants. Our model system, a 

synthetic stripe-forming regulatory network based on the incoherent feed-forward loop 

type 2 architecture, was constructed and characterized previously (Schaerli et al., 2014). 

Each of the three nodes is encoded on a separate plasmid and the WT sequences are 

available at the NCBI GenBank (https://www.ncbi.nlm.nih.gov/genbank/). The GenBank 

accession codes are KM229377 (sensor, pCOLA backbone, kanamycin resistance marker), 

KM229382 (regulator, pCDF backbone, spectinomycin resistance marker) and KM229387 

(output, pET backbone, ampicillin resistance marker). For a functional network to generate 

an inducer-dependent gene expression pattern, all three plasmids need to be transformed 

into E. coli MKO1 cells (Kogenaru and Tans, 2014). Mutated networks were selected from 

a previous study, in which we introduced mutations in the promoter and operator region of 

each node (Schaerli et al., 2018). Each single mutant genotype contains only mutations in 

one of the three plasmids, whereas the other two plasmids did not contain mutations. 

Extended figure 1.1 shows the nucleotide changes in promoter and operator regions of the 

30 selected mutant genotypes.  

Generating pairwise and triplet genotype combinations. Plasmids of selected 

mutants were extracted and purified using the QIAprep Spin Miniprep Kit (Qiagen) 

according to the manufactures protocol. Each mutant selected from our previous study 
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(Schaerli et al., 2018) contains one mutated and two wild-type plasmids. To extract only 

the mutated plasmids, we first removed the wild-type plasmids with restriction digest, 

retransformed the single plasmids into E. coli NEB5α cells, plated and cultured the cells 

with the appropriate antibiotics, and extracted the single plasmids. XhoI was used to isolate 

pCOLA plasmids (sensor), AatII and XmaI was used to isolate regulator pCDF plasmids 

(regulator) and XbaI was used to isolate pET plasmids (output). 

We transformed the selected ten sensor, ten regulator and ten output mutants in all 

possible pairwise and triplet combinations into chemical competent MK01 E. coli cells. To 

generate pairwise combinations we transformed the two mutant plasmids into competent 

cells that already contained the third WT plasmid. For the triplet combinations, we 

transformed the sensor and regulator mutant plasmids (10 × 10 = 100) into competent cells 

that already carried one of the ten output mutant plasmids. Combinatorial libraries were 

cultured overnight in 96-deep well plates using selective LB medium and stored in 96-well 

plates at -80° C as glycerol stocks. Each 96-well plate contained 50 mutant genotype 

combinations and three wells with the wild-type variant and a well containing only media 

for data normalization purposes as described below. 

Fluorescence measurement at 16 inducer concentrations. We measured the 

pattern phenotype over a gradient of 16 inducer concentrations for the wild-type, 30 single 

and 40 selected pairwise and triplet genotypes. We performed the measurements as 

follows: Starting from a glycerol stock we inoculated three 5 ml cultures (LB medium 

containing 0.4% (w/v) glucose and antibiotics) for each genotype, which served as our 

biological replicates and were from this point on treated independently. They were cultured 

overnight at 37°C and 200 rpm shaking. The following morning, we inoculated a fresh 

culture of 5 mL with 200 μl of the overnight culture followed by incubation for 3 h at 37°C 

and 200 rpm shaking. From these pre-cultures we used 5 μl to inoculate 384-well plates 

(Sigma-Aldrich, Nunc®, flat-bottom) containing 55 ul of SM media per well with inducer 

concentrations of 0.2%, 0.1%, 0.05%, 0.025%, 0.0125%, 0.00625, 0.00313%, 0.0016%, 

0.0008%, 0.0004%, 0.0002%, 0.0001%, 0.00005%, 0.000025%, 0.000012% (w/v) 

arabinose. Immediately after inoculation 384-well plates were covered with clear lids to 

reduce evaporation and loaded into plate readers (Biotek Synergy H1) and measured as 

described below.    
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Fluorescence measurement of libraries. Measurement of the complete pairwise 

and triplet mutant libraries were performed as follows: starting from a glycerol stock plate, 

we inoculated three 96-well plates, which served as our biological replicates and were from 

this point on treated independently. Each 96-well plate contained one well with media only 

and three wells with the wild-type network, which were used for data normalization as 

described below. Each well contained 120 μl stripe LB medium containing 0.4% (w/v) 

glucose and antibiotics and plates were cultured overnight at 37°C and 700 rpm 

(THERMOstar, BMG Labtech). From each overnight culture 5 μl were used to inoculate a 

120 μl selective LB medium pre-culture, which was incubated for 3 h at 37°C and 700 rpm 

(THERMOstar, BMG Labtech). From the preculture plate we used 5 μl to inoculate each 

of four different wells of a 384-well plate (Sigma-Aldrich, Nunc®, flat-bottom) each 

containing 55 μl of SM containing: 

1. 0% arabinose (<low=)  

2. 0.0002% arabinose (<medium =)  

3. 0.2% arabinose (<high=)  

4. 0.2% arabinose + 700 μM IPTG (<metabolic load= control) 

Position A1 of a 96-well plate was used to inoculate position A1 (low), A2 

(medium), B1 (high) and B2 (metabolic load) of a 384 well plate. The pipetting steps to 

inoculate 384-well plates were carried out using a semi-automatic pipetting robot (Rainin 

Smart 96, Mettler Toledo). Immediately after inoculation 384-well plates were covered 

with clear lids to reduce evaporation and loaded into plate readers (Biotek Synergy H1) 

and measured as described below.   

Plate reader assay and data normalization. Microplates (96-well and 384-well) 

were incubated in plate readers (Biotek Synergy H1) with clear lids to reduce evaporation 

and shaken continuously in double orbital mode at a 2 mm radius and monitored for cell 

growth (optical density at 600 nm) and green fluorescence (excitation: 485 nm, emission: 

520 nm) every 10 minutes at 37°C. Approximately after 3 h GFP expression peaked and 

E. coli cells started to reach stationary phase. As described previously (Schaerli 2014), the 

time-point when the fluorescence of the WT network at the medium arabinose 

concentration (0.0002%) peaked was chosen for further analysis of all fluorescence 

measurements. Fluorescence measurements were corrected for media background 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2022. ; https://doi.org/10.1101/2022.09.18.508240doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.18.508240
http://creativecommons.org/licenses/by-nc/4.0/


30 

 

fluorescence and variation in cell number by dividing fluorescence with absorbance values. 

To adjust for plate-to-plate variation, we first normalized the three replicate plates based 

on the average of the three wild-type replicates on each plate. We then calculated the mean 

and standard deviation from the replicates and normalized again using the wild-type values 

from each plate to adjust for variation between all plates. The final data represent the 

average of three replicates, independent cultures started from the same glycerol stock, and 

errors correspond to the standard deviation between replicates.  

Replicate measurements were excluded if values of cell growth differed by >0.2 

from the absorbance of the WT controls on the same plate for any of the four conditions or 

suffered from metabolic load (as described previously (Schaerli et al., 2018)). 

Measurements were repeated if more than two replicates failed. Twenty-one out of the 

1300 genotypes miss one replicate measurement due to growth differences. Note that we 

did not observe any metabolic load for any of the genotypes and combinations.  

Correlations of R2 between replicates and between measurements of three and 16 

inducer concentrations were calculated with Prism (Version 9.4.0, GraphPad Software, 

LLC.) using linear regression. 

  

Calculating and defining significant epistasis. Based on a multiplicative model of 

epistasis, we calculated epistasis for all pairwise and triplet combinations at three inducer 

concentrations (low (0%), medium (0.0002%) and high (0.2%)) (Lagator et al., 2017a; 

Lagator et al., 2017b; Li et al., 2019; New and Lehner, 2019). First, based on the 

normalized fluorescence values we calculated the relative fold change in fluorescence (�ÿ) 
for each of the 30 single mutant genotypes at each inducer concentration with respect to 

wildtype,   �ÿobs = fluorescence mutant ÿfluorescence WT  

shown in Extended figure 2.1a. Under the multiplicative model, the expected relative 

changes of fluorescence are multiplicative. This allowed us to calculate the expected 

relative change in fluorescence of pairwise (�(ÿ,Ā)expected = log10 �ÿobs + log10 �Āobs) and 

triplet combinations (�(ÿ,Ā,ā)expected = log10 �ÿobs + log10 �Āobs + log10 �āobs), shown in 
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Extended figure 2.1b and c. We next calculated the relative change in fluorescence for all 

measured 300 pairwise and 1000 triplet combinations at each inducer concentration, �(ÿ,Ā)observed = log10 �(ÿ,Ā)obs = log10 fluorescence pairwise mutant (ÿ, Ā)fluorescence WT  

Similarly defined for the triplet combination, shown in Extended figure 2.1b and c. The 

definitions of � were used to calculate the epistasis for all pairwise or triplet genotype 

combinations, ℇ = �obs. 2 �exp., 
To define significant epistasis, we first calculated the uncertainty for each �expected 

by propagating the log-transformed standard deviation (σ) from the single mutant 

measurements, σexpected = x�√σ�þý12 + σ�þý22   and σexpected = x�√σ�þý12 + σ�þý22  +σ�þý32 , 

for pairwise and triplet combinations, respectively, with x� as the mean value of �expected. 

Using the mean of triplicate measurements and their SD or propagated errors, we then 

defined significant ℇ through series of t-tests (R function <tsum.test= with n.y  and n.x = 3, 

alternative = "two.sided", var.equal = TRUE). The resulting p-values were then corrected 

for multiple testing using the <qvalue= package in R with its base parameters (reference). 

We defined epistasis values as significant if ℇ deviates from 0 with a false discovery rate 

(FDR) adjusted p-value of <0.05 (Domingo et al., 2018; Gao et al., 2010) (Figure 2b). 

To define significant epistasis between low, medium inducer levels for each mutant 

genotype combination, we first propagated the error of observed and expected values as 

follows, σepistasis = x�√σobs.2 + σexp.2    
with x� as the epistasis value and σ the standard deviation of �observed and �expected, for 

each inducer concentration separately. Significant differences of epistasis between low, 

medium and high inducer levels were calculated with a series of t-tests (Welch’s test) and 

corrected for multiply testing with the Benjamini-Krieger-Yekutieli method in Prism 

(Version 9.4.0, GraphPad Software, LLC.). We defined significance values below a false 

discovery rate (FDR) q-value of <0.1.   
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Classifying types of epistasis. We classified epistatic interactions depending on 

the phenotypic effects of each single mutant genotype and their combinations into 

magnitude, sign and reciprocal sign epistasis (RSE) (Kemble et al., 2020). Their definition 

is schematically illustrated in Figure 2d. Briefly, magnitude epistasis is defined when the 

combined phenotypic effect of a genotype combination deviates from the expected effect 

but does not change the sign of the phenotypic effect of each single mutant. For instance, 

if two single mutant genotypes have a higher gene expression than the WT and their 

combination results in an even higher than expected gene expression, it is defined as 

positive magnitude epistasis. If their combined effect is lower than expected but remains 

higher than any of the two single mutant genotypes, this is defined as negative magnitude 

epistasis. A combination is classified as sign epistasis when the combined effect is lower 

than one of the two mutants, and thus changes the sign. For example, if two single mutant 

genotypes have a higher gene expression than the WT and their combination results in a 

value which is lower than one, but still higher than the other single mutant genotype. A 

special case of sign epistasis, reciprocal sign epistasis, occurs when the combined 

phenotypic effect has the opposite effect compared to any of the single mutant genotype’s 

effect. For example, RSE occurs when two single mutant genotypes have a higher gene 

expression than the WT, but their combined effect is lower than any single mutant genotype 

or even lower than the WT. 

Pattern phenotype analysis. We visualized the pattern phenotypes on a cartesian 

plot (Schaerli et al., 2018). To this end, we calculated the difference in gene expression 

between low and medium arabinose concentrations for   �� = �medium 2 �low  

and between high and medium arabinose concentrations  �y = �high 2 �medium  

for all single mutant genotypes and observed and expected pairwise and triplet genotype 

combinations. The values of �x and �y for each genotype were then plotted as cartesian 

coordinates and classified into stripe (Q4), decrease (Q3), anti-stripe (Q2) and increase 

(Q1) pattern phenotypes, corresponding to the four quadrants. Projections near the origin 

correspond to a constant expression phenotype, i.e. a flat pattern phenotype.  
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To quantify and compare the spread of pattern phenotypes between observed and 

expected mutant genotypes, we calculated the Euclidean distance ‖�exp 2�obs‖   between the pattern of the WT and the pattern of each genotype as follows, ‖�exp 2 �obs‖= √(�xexp. 2 �xobs.)2 + (�yexp. 2 �yobs.)2. 

Significant differences between observed and expected Euclidean Distance values 

were calculated using a two-tailed paired t-test assuming no Gaussian distribution 

(Wilcoxon matched-pairs signed rank test) in Prism (Version 9.4.0, GraphPad Software, 

LLC.).  

 

Data availability 

Source data of experiments are provided in Source_Data. 
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