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Abstract

Birth defects are functional and structural abnormalities that impact 1 in 33 births in the United
States. Birth defects have been attributed to genetic as well as other factors, but for most birth
defects there are no known causes. Small molecule drugs, cosmetics, foods, and environmental
pollutants may cause birth defects when the mother is exposed to them during pregnancy. These
molecules may interfere with the process of normal fetal development. To characterize
associations between small molecule compounds and their potential to induce specific birth
abnormalities, we gathered knowledge from multiple sources to construct a reproductive toxicity
Knowledge Graph (ReproTox-KG) with an initial focus on associations between birth defects,
drugs, and genes. Specifically, to construct ReproTox-KG we gathered data from drug/birth-defect
associations from co-mentions in published abstracts, gene/birth-defect associations from genetic
studies, drug- and preclinical-compound-induced gene expression data, known drug targets,
genetic burden scores for all human genes, and placental crossing scores for all small molecules
in ReproTox-KG. Using the data stored within ReproTox-KG, we scored 30,000 preclinical small
molecules for their potential to induce birth defects. Querying the ReproTox-KG, we identified
over 500 birth-defect/gene/drug cliques that can be used to explain molecular mechanisms for
drug-induced birth defects. The ReproTox-KG is provided as curated tables and via a web-based
user interface that can enable users to explore the associations between birth defects, approved and

preclinical drugs, and human genes.
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Introduction

The United States Department of Labor’s Occupational Safety and Health Administration [1]
defines reproductive toxicity as a characteristic of “substances or agents that may affect the
reproductive health of women or men, or the ability of couples to have healthy children. These
hazards may cause problems such as infertility, miscarriage, and birth defects.” The prevention
and clinical management of reproductive toxicity caused by chemical agents [2] requires the
combined expertise from several medical fields including: public health and occupational health
to protect against environmental/occupational toxins that lead to miscarriage [3], food and drug
regulatory medicine to avoid drug teratogenicity or toxins in food that impact fertility, as well as
clinical genetics, obstetrics, gynecology, and pediatrics to screen, prevent, monitor, and manage
birth defects. This multidisciplinary nature of reproductive health is challenging. For instance,
prescribing drugs in pregnancy remains a complex and controversial issue for mothers and
physicians [4]. A key challenge to prescribing for the gravid patient is that recommendations are
based on limited human pharmacological data and conflicting cases of adverse outcomes, given
that pregnant populations are routinely excluded from randomized controlled trials [5].
Multidisciplinary challenges and data availability limitations are also key considerations in the
prediction of drug-drug interactions [6,7] that may impact reproductive health [8,9]. As a result,
birth defects, which in the US account for 3% of births [10] and 20% of infant deaths [11,12] are

still mostly poorly understood.

In recent years, knowledge graphs have gained popularity as a productive approach to integrate
data from multiple sources to organize information and gain new knowledge [13]. Knowledge
graph databases store information about the semantic relationships between objects and represent
relationships and events as triples: subject->predicate->object, for example, chicken->lays->eggs.
Once these assertions are combined, they form a network made of nodes and edges and this
establishes the knowledge graph. Once data from multiple sources are organized in a knowledge
graph, it can be queried to extract subgraphs that can illuminate unexpected associations between
entities. Integrated data organized into knowledge graphs can be used as input into graph
embedding algorithms [14] that aim at predicting missing and novel associations that are not
present in the original knowledge graph. Such an approach is increasingly applied in the domain

of drug discovery [15]. In this study, we aimed at combining knowledge about birth defects with
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knowledge about genes and drugs to identify potential molecular mechanisms for known birth
defects and predict birth defects for preclinical drugs and other small molecules. Specifically, we
assembled evidence about the functional relationships between birth defect phenotypes and gene
products and small molecules that are implicated in their occurrence from multiple sources. We
ranked genes based on their association with pathogenicity; predicted the likelihood of small
molecules to cross the placental barrier, and induce birth defects, using unsupervised learning;
assembled knowledge about known drug targets for marked drugs [16]; and abstracted knowledge
about the effects of drugs and preclinical small molecules on gene expression [17]. All this data is
serialized into a knowledge graph representation and provided for access via a user-friendly web-

based user interface.

Methods

Curating phenotypic terms relevant to birth defects

Human abnormal morphology of the great vessels, heart, and central nervous system (CNS)
phenotypes were obtained from the EMBL-EBI Ontology Lookup Service (OLS) human
phenotype ontology (HPO) v2021-10-10 [18]. To this end we considered the parent terms
HP:0030962 (Abnormal morphology of the great vessels), HP:0001627 (Abnormal heart
morphology) and HP:0012639 (Abnormal nervous system morphology) and extracted all the child
nodes. The phenotype terms were then filtered based on relevance to birth defects. In all, 166, 193
and 252 phenotype terms were retained for great vessels, heart, and CNS respectively. In addition,
36 major birth defect terms were extracted from the Center for Disease Control and Prevention
(CDC) website [19] on January 6, 2022.

To enhance the consistent representation of the above phenotypic terms, and to link these birth
defects with knowledge about the appropriate anatomical entities involved with these pathologies,
we manually curated the HPO terms onto an anatomy connectivity knowledge graph. The schema
adopted by this graph is based on the ApiINATOMY knowledge representation [20,21], which was
developed as part of the SPARC [22] connectivity mapping effort. The ApiINATOMY subgraph

within the ReproTox KG provides links to knowledge about constituent anatomical structures such
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as cell types that may be involved in the birth defect mechanisms, as well as representations of

abnormal anatomical organizations that typify these pathological phenotypes.

Curating small molecules associated with birth defects

Manually curated known teratogens and xenobiotics that cause birth defects were extracted from
various sources including Google searches and PubMed MeSH terms. We also used DrugCentral
[23], which is an online drug information resource to query FDA D and X category drugs and their
associated Simplified Molecular Input Line Entry System (SMILES) with absorption, distribution,
metabolism, excretion, and toxicity (ADMET) properties. FDA approved drugs classified as X or
D are drugs with evidence of inducing birth defects in humans and animal models. X category
drugs should not be taken during pregnancy, while category D drugs should be avoided as much
as possible. SMILES compound representations and names of active pharmaceutical ingredients
were retrieved. We then utilized DrugCentral again to query birth defect terms that are within the
FDA Adverse Event Reporting System (FAERS) [24] and mapped associated drugs with a
likelihood ratio (LLR) cutoff of LLR > 2*LLRT. In addition, using DrugShot [25], we queried
each CDC birth defect term through PubMed to extract PMIDs associated with each birth defect
term. Abstracts associated with these PubMed IDs were mined to extract drug PubChem IDs based
on co-mentions of the birth defect with a drug. The 30 most frequently occurring drugs for each

birth defect were retained as the drug sets for each birth defect.

Evidence implicating genes with birth defects

Given the curated phenotype lists described above, human phenotype-gene associations were
retrieved from multiple sources, including Online Mendelian Inheritance in Man (OMIM) [26],
Orphanet [27], ClinVar [28], DISEASES [29], Databask of genomiC varlation and Phenotype in
Humans using Ensembl Resources (DECIPHER) [30], the American Heart Association (AHA)
[31], and Geneshot [32]. From OMIM and Orphanet human phenotype-gene associations were
obtained from the Jackson Laboratory HPO database (hpo.jax.org, October 2021 release),
providing curated links between HPO terms and human genes. The OMIM and Orphanet-based

HPO-term gene associations were retrieved for the human abnormal morphology of the great
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vessels, heart, and CNS phenotypes. Gene-birth defect associations were also obtained from
ClinVar human genetic variants-phenotype submission summary dataset (v2021-11-03) [28]. This
dataset was utilized to extract relationships between human genes harboring a pathogenic variant
and their associated phenotypes given the birth defect phenotypes described above. Only genes
with pathogenic variants and variants affecting a single gene were considered: that is, variants
affecting multiple genes were excluded, due to the complexities in interpreting the relationships
between their affected subset of genes and associated human diseases. The ClinVar-based HPO-
gene associations were compiled for the human abnormal morphology of the great vessels, heart,
and CNS phenotypes. Literature-based human disease-gene associations were obtained from the
DISEASES portal [29]. This dataset contains disease-gene associations text-mined from literature
and genome-wide association studies. The disease ontology identifier (DOID) and ICD-10 codes
listed in this database were converted to HPO terms discussed above, which were used to filter the
gene-term associations. The DECIPHER [30] provided this study with a curated list of genes
reported to be associated with developmental disorders, processed by expert clinicians as a part of
the Deciphering Developmental Disorders (DDD) study [33] to facilitate clinical feedback of
likely causal variants. The DECIPHER-based HPO-gene associations were compiled for the
human abnormal morphology of the heart, and CNS phenotypes. We included a dataset of human
congenital heart disease-associated genes associated with syndromic, non-syndromic, and
ciliopathic cardiac disorders that was recently published by the AHA as general guidance for
genetic testing by practitioners in 2018 [31]. Finally, using the Geneshot API [32], we queried
each one of the 36 CDC birth defect terms through PubMed to extract PMIDs associated with each
term. These PubMed IDs were converted into genes using the AutoRIF option. The most

frequently occurring genes were retained as gene sets for each birth defect.

Linking small molecule and drugs to their known targets

Drugs and small molecules that have known targets were extracted from the TCRD database [16]
and converted into KG assertions. Only compounds with a defined structure were included because
other substances do not have PubChem [34] chemical IDs. In addition, only human targets were

included, and only single gene/protein targets were included excluding some multi-component ion
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channels and transporters. Properties such as SMILES, binding affinity, original source, PubChem

IDs, and common names are provided for each drug.

Linking small molecules to genes based on changes in gene expression

The ReproTox-KG holds knowledge about most FDA-approved drugs and over 30,000 preclinical
small molecules profiled by the LINCS program for their effects on the transcriptome of selected
human cell lines [17]. To extract a set of genes that are up- or down-regulated by each drug and
small molecule profiled by the L1000 assay for LINCS, we computed the mean of the
Characteristic Direction [35] gene expression vector for each drug in the LINCS L1000 chemical
perturbation signature dataset downloaded from SigCom LINCS [36]. We then retained the top 25

up- and down-regulated genes for each drug.

Drug-drug similarity based on gene expression and chemical structure

To enable drug-drug similarity search across the ReproTox-KG, and to perform the unsupervised
machine learning predictions, we developed two drug-drug similarity matrices, one based on
structure, and one based on gene expression similarity. The drug-drug similarity matrix based on
gene expression vector similarity was computed by transforming the consensus signatures
described above using cosine similarity, comparing all pairs of consensus drug gene-expression
vectors to produce a square matrix where the value at (i,j) is the gene expression-based cosine
similarity between the drugs at row i and column j. The matrices that contain the consensus
signatures for all drugs and small molecules, and the drug-drug similarity matrix are available for
download from SigCom LINCS [36] and the ReproTox-KG download page. To create drug-drug
similarity based on chemical structure similarity, we first converted the SMILES strings of each
compound to a binary feature vector using the Morgan fingerprint (2048 bits) method [37] with
radius 2, 3, and 4 was implemented in RDKit [38]. Other chemical structure similarity methods
such as MACCS, Avalon, Atom Pair, RDKit with maxPath 2 and 4, and Topological fingerprints
using FingerprintMol were tested. Next, we computed the inverse document frequency (IDF)
between all pairs of drug vectors and the distance measure between each pair of drugs. We found

that IDF performs much better than the standard Tanimoto similarity measure typically used for
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quantifying the similarity between pairs of compounds (data not shown). The resultant matrix of
drug-drug similarity based on chemical structure is available from the ReproTox-KG download
page. Chemical structure-based similarity search was also implemented using a workflow which
queries the KG for compounds and generates fingerprints and similarity measures at runtime, for
additional flexibility and interoperability. The CFChemDb database and development system was

employed, with source code available at https://github.com/unmtransinfo/CFChemDb.

Gene intolerance scoring

Gene intolerance scores were introduced to the knowledge graph from three main sources as
measures of gene essentiality in human health and disease. Such intolerance scores are based on
large-scale human exome sequencing projects and reflect the order of magnitude of the impact of
negative selections on human genes, as their associated variants are filtered out from the human
population most probably due to lack of ability of carrying individuals to pass them down
(reproductive disadvantages). In this sense, the observed frequency of such genetic variants and
their deviation from their expected values are computed through different methods and captured
via the intolerance scores. In this section we include some technical details on the ingested
intolerance scores. Gene intolerance scores were calculated utilizing three scoring systems
assessing three interrelated intolerance measures, namely, haplo-insufficiency, triplo-sensitivity
(collectively regarded as dosage sensitivity), and general intolerance. Augmented with population-
wide whole exome sequencing, each of these measures aims to quantify the magnitude of
consequences of expected and observed mutations within a gene and present it as a single value
assigned to that gene. Probability of being loss of function intolerant (pLI) scores [39] for 18,225
human genes were obtained from a large-scale study conducted by the Exome Aggregation
Consortium (EXAC) [40] using a database of exomes from 60,706 unrelated individuals sequenced
as part of various disease-specific and population genetic studies. The basis for calculating pLI is
to account for the frequency of observing disease-associated isoforms of the protein encoded by
the gene which is resulted from a variant in its coding region. Therefore, the absence or low
frequency of such variants implies higher gene intolerance to mutations and higher pLI. According
to this study, 3,230 genes lacked almost any predicted protein-truncating variants (PTVS),
signifying the variant effect on the emergence of a reproductively disadvantageous phenotype. In
this regard, the pLI scores are defined over the range [0,1] as an estimate of the probability that a
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candidate gene is intolerant to a deleterious mutation. Specifically, larger values of pLI (closer to
1) are correlated with higher intolerance of the gene to mutations with genes having pLI > 0.9
considered as highly intolerant genes. It should be noted that the opposite case is not necessarily
true; that is, genes with low pLI could also be associated with lethal phenotypes or higher
likelihood of pathogenicity depending on the stage of the human lifespan in which the gene
expression plays a key biological role. Residual Variant Intolerance Score (RVIS) [41] values of
16,956 human genes were adopted from a large-scale analysis that processed 6,503 human whole
exome sequences made available by the NHLBI Exome Sequencing Project (ESP) [42]. The
scoring system developed in this study aimed to assess the functional mutations in the genic
regions compared to all neutral variations that could occur in a gene and accordingly rank genes
as a measure of intolerance to loss of function mutations. As an attempt to prioritize genes based
on their likelihood of influencing disease/abnormal phenotype, the RVIS measures the deviation
between the observed and predicted functional variants considering the total number of common
variations in the target genes. The resulting scores were then compared with the available
information on whether the gene causes any known mendelian diseases. In this sense, genes with
higher functional mutations to total variant sites ratio will be considered more tolerant and vice
versa [41]. Dosage sensitivity scores [43] such as haploinsufficiency and triplo-sensitivity are
commonly used as measures of gene intolerance and disease association caused by low-frequency
high-impact deletions and duplications known as rare copy number variants (rCNVs). Estimated
haploinsufficiency and triplo-sensitivity for 17,263 of human genes were presented by a recent
large-scale study meta-analyzing 753,994 individuals with neurological disease phenotypes [43].
This database presents an unprecedented knowledge repository on gene intolerance to duplication,
whereas haploinsufficiency provides information on whether a heterozygous variant could lead to
insufficient expression of the respective protein and its subsequent pathogenicity. In this sense,
haploinsufficiency is an autosomal dominant gene action. This study characterizes 3,006 haplo-
insufficient and 295 triplo-sensitive genes. The provided scores can effectively be utilized in gene
prioritization by their potential loss-of-function or gain-of-function through the introduction of de-
novo rCNVs as opposed to the point mutations.

Gene-gene similarity based on co-expression
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Gene-gene similarity associations were obtained from the human gene-gene correlation matrix
provided by the ARCHS4 resource [44]. The matrix stores the Pearson correlation coefficient
between genes across bulk RNA-seq expression samples uniformly processed by the ARCHS4
pipeline. Genes were filtered to include only protein-coding genes to keep the size of the graph
manageable, and for each of the 17,966 genes, the top five most positively and most negatively
correlated genes based on the correlation coefficients were extracted for a total of 170,819 edges.
Each edge was weighted by the correlation coefficient between the two connected genes. These
gene-gene associations were then integrated into the ReproTox KG. From these associations, it
may be possible to identify novel genes that are potentially affected by known teratogens and

discover how the role that different groups of genes may play in inducing birth defect phenotypes.

Placental crossing and D and X category predictions for small molecules

Using unsupervised learning we generated placental crossing scores and D and X category scores
for all FDA-approved and preclinical compounds profiled by LINCS that are included in the
ReproTox KG. To obtain true positives for placental crossing, we first extracted the list of 248
compounds assembled by Di Filippo et al. [45]. Category D and X drugs were obtained from
DrugCentral [23] and Drugs.com [46], and drugs were filtered by those which could be mapped to
the LINCS compounds. Drugs associated with both categories were considered category X.
Predictions were made with a symmetric drug-drug similarity matrix using the same approach
described by DrugShot [25] by selecting the vectors corresponding to drugs known to be in the
true positive set and computing the average similarity score to all drugs in the matrix. The diagonal
is set to zero to prevent contribution from the drug itself. Using the similarity scores, receiver
operating characteristic (ROC) curves were computed along with the area under that curve (ROC-
AUC). Additionally, the percentage of hits in the top 1% were computed by sorting the true scores
and computing the sum across the first 1% entries in this vector. This approach was used to score
all LINCS compounds. The placental crossing scores and the category D and X scores for all drugs
and small molecules in the ReproTox KG are displayed as node properties for drugs and are
depicted as the hue level of the drug nodes in the ReproTox KG user interface. In addition, all the

predictions are provided as downloadable files available from https://maayanlab.cloud/reprotox-

kg/downloads.

10


https://paperpile.com/c/CM9aaF/MqCj
https://paperpile.com/c/CM9aaF/KK6U
https://paperpile.com/c/CM9aaF/Hz6c
https://paperpile.com/c/CM9aaF/cT3a
https://paperpile.com/c/CM9aaF/esGt
https://maayanlab.cloud/reprotox-kg/downloads
https://maayanlab.cloud/reprotox-kg/downloads
https://doi.org/10.1101/2022.09.15.508198
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.15.508198; this version posted September 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Combining predictions from expression similarity and structural similarity

Two methods were developed to combine the predictions made by the gene expression and
chemical structure similarity predictions. Given two scoring vectors produced by the two different
similarity matrices, the Top Rank method takes the highest ranking of the drugs across all
predictions to be the aggregated score. This score is then used for the ROC curve and ROC-AUC
calculation. Alternatively, given two similarity score vectors, one based on expression, and one
based on structure, we aggregated these predictions by assigning a weight to each score coming
from the two sources: expression and structure. These weights were optimized for performance
using the Adam optimizer [47]. The learned weights are then applied for combining the L1000 and
structural features in the FDA drug categorization and placenta crossing sets into a singular score.
This score is then used for the ROC curve and ROC-AUC calculation.

UMAP visualization of L1000 perturbations

Uniform Manifold Approximation and Projection (UMAP) [48] was applied to the normalized
L1000 count matrix of over 718,055 chemical perturbations performed with different drugs across
different cell lines, time points, and concentrations. Perturbations with FDA drug categories D and
X and drugs known to cross the placenta were colored by category. To identify the top MOAS in
the L1000 perturbation space, we first clustered L1000 perturbations directly using HDBSCAN
[49] with a minimum cluster size of 40, we then selected the top 25 clusters with highest
concentration of drugs for each drug category, finally we identified the top 5 MOAs for drugs in
those clusters. We colored the L1000 UMAP with those top MOA:s.

ReproTox KG backend KG database
The ReproTox KG uses a graph-structured data model to integrate data. The KG is implemented
using the Neo4J [50]. The information in the ReproTox KG represents a network of nodes

representing birth defects, genes, and drugs, and edges representing their relationships. In addition,

attributes/properties of the nodes and edges are provided. The ReproTox KG is made up of datasets
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from the various sources listed above and listed in two tables (Table 1 and Table 2) and illustrated
in the associated schematic (Fig. 1). The ReproTox KG uses standardized JSON schema
serialization to ingest data into the KG. Queries to the Neo4J platform are constructed using the
Cypher query language [51].

Original graphical user interface to interact with the ReproTox KG

Since Neo4j currently does not provide an open-source, free, and customizable standalone web-
based user interface (Ul) to visualize the results from Cypher queries, we developed an original
Ul with these features for this project. Leveraging the Cytoscape.JS library [52], the Ul renders
Cypher query results in JSON format into nodes and links network visualizations. The Ul provides
access to perform queries for finding neighbors of single entities, finding shortest paths between
pairs of entities, displaying the networks using various layouts, expanding, and shrinking the size
of the displayed subnetwork, viewing properties of nodes and links, and downloading the displayed

associations in tabular format.

Results

Overall construction and composition of the ReproTox KG

The ReproTox KG contains semantic assertions that connect birth defects, genes, and drugs. In
addition, drug-drug and gene-gene similarity assertions are included (Fig. 1; Tables 1-2). Each
entity in the ReproTox KG has a set of attributes and properties. Some of these attributes are unique
to the project. For example, we ranked the likelihood of all included compounds and drugs to cross
the placental barrier and to cause birth defects using an unsupervised machine learning approach.
To achieve this, we first identified a list of 248 drugs that are known to cross the placenta [45],
and lists of FDA approved drugs classified in the X (n=60) and D categories (n=112). We then
mapped these drugs to all the drugs and small molecules profiled by the LINCS L1000 assay (Fig.
2). Next, we constructed two drug-drug similarity matrices, one based on drug structural similarity,
and one based on gene expression induced signature similarity. These matrices were used to

perform unsupervised machine learning to prioritize all drugs for the likelihood to cross the
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placenta, or to be categorized as D and/or X. Before performing such predictions with these two
matrices, we projected the known placental crossing drugs (Fig. 3A) and the category D and X
drugs (Fig. 3B) onto the LINCS L1000 gene expression space of 718,055 gene expression
signatures induced by >30,000 small molecules using UMAP [48]. We observe that these drugs
fall into distinct regions within the L1000 gene expression space. By comparing the UMAP
visualization of the known placental crossing drugs and the category D and X drugs to the same
layout with highlighted known mechanisms of actions (Fig. 3C), we observe that dense clusters of
D and X drugs involve estrogen disruptors and topoisomerase inhibitors. Other clusters colored by
their uniqgue MOAs also have many placental crossing drugs and category D and X drugs within
them. The observed punctate distribution strongly suggests that we can make predictions about the

likelihood of preclinical drugs to induce birth defects and cross the placenta.

Next, we applied the unsupervised learning approach to rank all mapped approved drugs and
preclinical compounds to predict their likelihood to cross the placental barrier or induce a birth
defect. We observed that with the L1000 signature similarity matrix we achieve an AUC of 0.620
for predicting D and X category membership, and 0.725 for placental crossing (Fig. 4A, Fig. 4C).
The predictions that are based on chemical structural similarity achieve AUCs of 0.746 and 0.660
for D and X category membership and for placental crossing, respectively (Fig. 4A and 4C).
Combining the predictions made by gene expression with chemical structure together with the Top
Rank or the weighted contribution methods improved such predictions to 0.803 and 0.788 for D
and X category membership, as well as 0.785 and 0.759 for the placental crossing predictions,
respectively. Overall, these are high quality predictions for an unsupervised approach. Importantly,
these predictions perform well at the leading edge (Fig. 4B, Fig. 4D, and Tables 3 and 4). It should
be noted that predictions made with structural similarity only performed well when we defined the
similarity between compounds using IDF instead of Tanimoto. This is likely because there is a
bias with the Tanimoto method which emphasizes similarity between complex larger compounds
that share common features. The predictions made by the unsupervised method highly ranked
compounds that are known as ACE inhibitors, antibiotics, and statins (Tables 3 and 4). This is not
surprising because such compounds are already common among known category X & D drugs
[53] and drugs that are known to cross the placenta. For example, the top ranked drug by structural

similarity to be categorized as X & D is enalaprilat. Enalaprilat is a known ACE inhibitor used to
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treat high blood pressure and is administered via 1V [54]. It is listed as category C for the first
trimester and as category D for the second and third. Overall, such predictions can be used to warn

about the potential of newly approved drugs to cross the placenta and induce birth defects.

In addition, for each gene included in the KG, we computed likelihood for deleterious mutations
using three established methods: (pLI) scores [39], RVIS [41], and Dosage sensitivity scores [20].
Each entity in the ReproTox KG also includes links out to databases based on entity ID resolution.
In particular, 694 birth defects are mapped to HPO identifiers [18], 18,233 genes and proteins are
mapped to HGNC IDs, and 5,403 drugs are mapped to their PubChem identifiers [34]. Lists of
birth defect terms were extracted from HPO [18] and the CDC website [19]. The 127,023
associations between birth defect terms and genes were extracted from OMIM [26], Orphanet [27],
ClinVar [28], DISEASES [23], DECIPHER [30], American Heart Association (AHA) [31] and
Geneshot [32]. The 13,561 assertions between birth defects and drugs were extracted from
DrugCentral [32], DrugShot [25], DrugEnrichr, and FAERS [24]. Two types of assertions connect
genes and drugs within the ReproTox KG, genes that are differentially expressed after drug
treatment based on transcriptomics and known drug targets for the drugs. Overall, 225,509 drug-
gene associations were extracted from the LINCS L1000 data [36], and 7,326 drug-target
assertions were extracted from TCRD [16]. Similarly, 9,546 drug-drug similarity assertions were
identified based on chemical similarity and 33,608 based on gene expression signature similarity.

Finally, gene-gene similarity included in the KG is based on gene-gene co-expression [44].

The processed data from these resources was created by customized extract, transform, and load
(ETL) scripts and stored in a JSON schema data model. This processed data was ingested into a
Neo4J database, and it is made available for download on the ReproTox KG website at:

https://maayanlab.cloud/reprotox-kg/downloads. The ETL scripts are open source and available

from: https://github.com/nih-cfde/ReproToxTables/. To provide access to the processed data in a

user-friendly manner, we developed an original graphical user interface (Fig. 5).

Extraction of birth defect-gene-small molecule cliques to explain potential MOAs
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To demonstrate the utility of the ReproTox KG to illuminate new knowledge, we queried the graph
to identify all three-node cliques/cycles. That is, we extracted from the ReproTox KG all instances
where a birth defect was connected to a gene and a drug that were also connected. In total, 533
such cliques/cycles were identified. From this collection of cliques/cycles, we identified six drugs
and small molecules that were not previously listed as crossing the placenta and had a placental
scoring rank in the top 10% (<3000 out of ~30,000) (Fig. 6). This subnetwork demonstrates how
the ReproTox KG can be used to suggest mechanisms of action (MOA) for how drugs and pre-
clinical compounds may induce specific birth defects by affecting the gene expression of genes
already known to be associated with the birth defect. For example, LINCS L1000 transcriptomics
data shows that the approved drug methotrexate, a chemotherapeutic and immunosuppressive
drug, inhibits the expression of the mitotic checkpoint serine/threonine-protein kinase BUB1.
BUBL is known to cause microcephaly when mutated [55], and methotrexate is known to cause
microcephaly and atrial defects [56]. Hence, this adverse effect of methotrexate can be attributed
to its direct influence on the expression levels of BUBL. Similarly, the experimental drug LY-
294002 which is a morpholine-containing chemical compound that is a strong inhibitor of PI3K,
was previously shown to influence cell proliferation of epithelial cells isolated from human fetal
palatal shelves (hFPECSs) [57]. Besides inhibiting the activity of PI3K, LY-294002 increases the
expression of DUSP6, a dual specificity phosphatase that dephosphorylates members of the PI3K
pathway. The approved antidepressant drug sertraline was reported to induce cardiac and vascular
birth defects based on analysis of FAERS [58]. The ReproTox KG subnetwork of cliques/cycles
suggests that such adverse birth defects could be mediated via the activation of the
dehydrocholesterol reductase DHCR7 and DHCR24. Mutations in DHCR7 are known to cause
Smith-Lemli-Opitz syndrome, a disease of multiple congenital abnormalities [59], while mutations
in DHCR24 can cause desmosterolosis [60]. Hence, it is plausible that sertraline mediates
induction of cardiac and vascular birth defects via its up-regulatory effects on DHCR7 and
DHCR24. Overall, these are just a few examples of how the ReproTox KG can illuminate new
knowledge about potential mechanisms of how drugs and preclinical small molecules may induce
birth defects.
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Discussion and Conclusions

To characterize associations between small molecule compounds and their potential to induce
reproductive toxicity, we gathered knowledge from multiple sources to construct a reproductive
toxicity Knowledge Graph with an initial focus on associations between birth defects, drugs, and
genes. The idea of abstracting genes, drugs, and diseases into networks is not new. We and others
constructed networks to represent functional and physical associations between genes/proteins
[61] [62] [63], drugs and their targets [64] [65], and diseases based on their gene set similarity
[66]. The unique features of the ReproTox KG are that it provides a flexible framework not only
to connect entities such as gene-drug, gene-gene, gene-birth defect, drug-drug, and drug-birth
defects, but also a flexible way to query this network, extend it, visualize it, and add attributes to
different node and link types. The ReproTox-KG is an initial effort towards integrating knowledge
about birth defects, genes, and drugs. Similar efforts have been recently published, including
studies that attempted to use graph embedding algorithms to predict missing/novel associations
between drugs and diseases [67], for drug repurposing opportunities [68] [69], predicting drug
targets [70] [71], adverse events [72], and drug-drug interactions [73]. These are just a few studies
in this domain. Here, we did not attempt to make predictions based on the knowledge graph
structure but provided the needed building blocks to enable such future applications. Hence, the

ReproTox KG was developed as a resource for the community to explore and expand.

One of the limitations of ReproTox KG, and knowledge graphs representation in general, is the
ability to cover many associations between entities. For example, we decided to only consider the
top 25 up- and down-regulated genes for each drug. This leaves out many genes that may be
affected by drugs but will be missed from queries and post-hoc analyses. We also created
consensus signatures for each drug from the LINCS L1000 data, this approach masks the effect of
drugs in specific cellular contexts. This was done to make the ReproTox KG project focused and
manageable. However, tissue and cell type distribution of the affected genes, and how drugs and
small molecules induce such differential effects, are critical information for associating genes and
drugs with birth defects. Such information is partially available and could be included in future
releases of ReproTox KG. One excellent resource for gene expression during development is
DESCARTES, a human cell atlas for fetal tissues [74].
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In conclusion, ReproTox KG provides a resource for exploring knowledge about the molecular
mechanisms of birth defects with the potential of predicting the likelihood of genes and preclinical
small molecules to induce birth defect phenotypes. It should be noted that the ReproTox KG is

preliminary and should not be used for clinical applications and clinical decision support.
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Fig. 1 The ReproTox KG is made of lists of birth defects extracted from HPO and the CDC; birth defect
gene associations from HPO and Geneshot; drug-birth defect associations from DrugCentral and

DrugShot; drug-gene associations from LINCS L1000 data and from drug-target knowledge.
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Fig. 2 Supervenn diagram of drug identifier overlap between FDA category D and X, known placenta
crossing drugs, and unique drugs and small molecules within the L1000 LINCS perturbation datasets.
Drugs and compounds not represented in the L1000 perturbations are not shown or considered.
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Fig. 3 UMAP of 718,055 L1000 perturbations, colored by (A) FDA D and X category; (B) known
placental crossing; (C) top MOASs across clusters. Clusters computed using HDBSCAN with a minimum

cluster size of 40, top 25 clusters for each category and top 5 MOAs of those clusters are included.
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Fig. 4 ROC curves colored by prediction method for predicting FDA D and X categories (top) and
placenta crossing (bottom). AUC values shown in the legend. Leading edges of the same ROC curves are
shown on the right of each complete ROC plot.
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Fig. 5 Screenshot from the ReproTox KG user interface. A query to identify connections between the
birth defect anencephaly and the drug valproic acid with a limit of 21 nodes is provided as an example.

22


https://doi.org/10.1101/2022.09.15.508198
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.15.508198; this version posted September 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Fig. 6 Cliques of drugs with a placenta crossing predicted ranks of less than 3000, that are also known to
induce a birth defect based on literature evidence, connected to the genes that their expression is affected
based on LINCS L1000 data, and associations between those genes where known mutations are also
associated with the same birth defect. Light blue nodes represent birth defect terms, orange nodes
represent genes, and pink nodes represent drugs and preclinical small molecules. Red lines with diamond
arrowheads indicate an L1000 consensus drug signature that up-regulates the gene, and plungers indicate
an L1000 consensus drug signature that down-regulates the target gene. Gray arrowheads indicate genes
that their mutations induce a birth defect, and gray diamond-heads connect drugs to the birth defects they
are known to induce.
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Table 1
Assertion Name Relationship Reference Nodes/Nodes/Edges
Edge Type
Birth Defect- | HPO Genes known to be Human 599 /5093 /127,023
Gene associated with a birth Phenotype
defect Ontology
Geneshot Genes co-mentioned with | Geneshot 32/1091 /1565
birth defect terms in
publications
Birth Defect- | FDA Adverse Event | Drugs with reported FDA Adverse 32/94/372
Drug Reporting System adverse events related to | Event Reporting
(Female/Male) birth defects System
Drugshot Drugs co-mentioned with Drugshot 679 /2207 /13,000
birth defect terms in
publications
DrugEnrichr Drugs belonging to drug DrugEnrichr 12/131/189
sets associated with birth
defect terms
Drug-Gene IDG (Drug-Target) Drugs with known human | Target Central 1363 /1034 /7326
gene targets Resource
Database
SigCom LINCS Drugs that up- or down- SigCom LINCS 4523/ 4419 / 225,509
Drug-to-Gene regulate genes across the
(upregulates/ LINCS L1000 signatures
downregulates)
Drug-Drug LINCS Drugs Drugs that induce similar SigCom LINCS 4523/ 3449/ 20,785
Cosine Similarity gene expression patterns
across LINCS L1000
signatures based on
cosine similarity
Chemical Structure | Drugs similar to other CFChemDB 4564 / 4564 / 10,417,330
Similarity drugs in chemical
structure
Gene-Gene ARCHS4 Genes positively or ARCHS4 17,964 / 12,185/ 170,801
(positively/ negatively correlated
negatively across ARCHS4 gene
correlated) expression samples

Table 1. The ReproTox KG is made of entities (nodes) representing birth defects, genes, and
drugs that are connected based on semantic assertions (edges/relationships) extracted from
different sources. The table lists the type of assertion, the nature of the relationship, the original
source from where the assertion was extracted from, and the number of entities and relations for

each entry in the table (left entity/right entity/relations).
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Entity Type Property Source Description Entities with
property
Birth Defect MEDDRA code MedDRA ontology 32
identifier
Drug Placenta crossing Drugshot Cosine similarity score | 4523
likelihood score to L1000 gene

expression signatures
for drugs known to
cross placental barrier

Placenta crossing Drugshot Rank (1=most similar) 4523
likelihood rank of cosine similarity
score to L1000 gene
expression signatures
for drugs known to
cross placental barrier

SMILES PubChem SMILES structure
Gene pLI Exome Aggregation Probability of loss of 9466

Consortium (ExXAC) function intolerance

pHI Collins et al. 2021 Haploinsufficiency 9466
[43] score

pTS Collins et al. 2021 Triplosensitivity score 9466
[43]

Residual Variant NHLBI Exome Ratio of functional 9466

Intolerance Score Sequencing Project mutations to total

variant sites

Residual Variant NHLBI Exome Percentile of RVIS 9466
Intolerance Score Sequencing Project across all scored genes
Percentile

Table 2. The ReproTox KG is made of entities (nodes) representing birth defects, genes, and
drugs that are decorated with attributes and properties associated with them, for example,
common identifiers. The table lists the properties and their sources for each entity type, namely,
birth defects, genes, and drugs represented in the ReproTox KG.
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BRD-K76551930 6 0 0

imidapril 15 0 0

Table 3. Top predicted X and D category drugs and preclinical compounds. The top 15 ranked
compounds predicted using unsupervised learning with L1000 gene expression similarity or
chemical structure similarity, or two by two methods that combine the predictions from the two

sources, namely, weighted, and top rank, are listed together with whether these were previously
known to belong to the X or D categories.

27


https://doi.org/10.1101/2022.09.15.508198
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.15.508198; this version posted September 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Drug L1000 Structure Weighted Top Rank Known
nafcillin 1 1 1 0
FTI-276 1 1 0
piperacillin 2 4 2 0
Gossypetin 2 2 0
cefotaxime 3 3 3 0
TAK-715 3 3 0
ciclacillin 4 2 4 0
BRD-K08703257 4 4 0
7-aminocephalosporanic-acid 5 6 5 0
temozolomide 5 5 0
penicillin 6 5 6 0
CGS-21680 6 6 0
ceforanide 7 9 7 0
Y-27632 7 7 0
lorazepam 8 8 1
BRD-K43966364 8 8 9 0
benzathine 8 9 0
estradiol-cypionate 9 10 0
BRD-K50776152 10 11 0
isoetharine 9 11 0
enalaprilat 10 12 12 0
rolipram 11 12 0
BRD-A66025870 11 13 0
PT-630 12 13 0
EMF-csc-9 13 14 0
practolol 12 14 0
cephalothin 13 15 15 1
DL-TBOA 14 15 0
pravastatin 14 7 0
cefoperazone 10 1
orciprenaline 11 0
ampicillin 13 1
dicloxacillin 14 0
BRD-K55591206 15 0
micropenin 15 0
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Table 4. Top predicted placental crossing drugs and preclinical compounds. The top 15 ranked
compounds predicted using unsupervised learning with L1000 gene expression similarity or
chemical structure similarity, or two by two methods that combine the predictions from the two

sources, namely, weighted, and top rank, are listed together with whether these were previously
known to cross the placenta.
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