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Abstract 

Birth defects are functional and structural abnormalities that impact 1 in 33 births in the United 

States. Birth defects have been attributed to genetic as well as other factors, but for most birth 

defects there are no known causes. Small molecule drugs, cosmetics, foods, and environmental 

pollutants may cause birth defects when the mother is exposed to them during pregnancy. These 

molecules may interfere with the process of normal fetal development. To characterize 

associations between small molecule compounds and their potential to induce specific birth 

abnormalities, we gathered knowledge from multiple sources to construct a reproductive toxicity 

Knowledge Graph (ReproTox-KG) with an initial focus on associations between birth defects, 

drugs, and genes. Specifically, to construct ReproTox-KG we gathered data from drug/birth-defect 

associations from co-mentions in published abstracts, gene/birth-defect associations from genetic 

studies, drug- and preclinical-compound-induced gene expression data, known drug targets, 

genetic burden scores for all human genes, and placental crossing scores for all small molecules 

in ReproTox-KG. Using the data stored within ReproTox-KG, we scored 30,000 preclinical small 

molecules for their potential to induce birth defects. Querying the ReproTox-KG, we identified 

over 500 birth-defect/gene/drug cliques that can be used to explain molecular mechanisms for 

drug-induced birth defects. The ReproTox-KG is provided as curated tables and via a web-based 

user interface that can enable users to explore the associations between birth defects, approved and 

preclinical drugs, and human genes. 
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Introduction 

The United States Department of Labor’s Occupational Safety and Health Administration [1] 

defines reproductive toxicity as a characteristic of “substances or agents that may affect the 

reproductive health of women or men, or the ability of couples to have healthy children. These 

hazards may cause problems such as infertility, miscarriage, and birth defects.” The prevention 

and clinical management of reproductive toxicity caused by chemical agents [2] requires the 

combined expertise from several medical fields including: public health and occupational health 

to protect against environmental/occupational toxins that lead to miscarriage [3], food and drug 

regulatory medicine to avoid drug teratogenicity or toxins in food that impact fertility, as well as 

clinical genetics, obstetrics, gynecology, and pediatrics to screen, prevent, monitor, and manage 

birth defects.  This multidisciplinary nature of reproductive health is challenging. For instance, 

prescribing drugs in pregnancy remains a complex and controversial issue for mothers and 

physicians [4]. A key challenge to prescribing for the gravid patient is that recommendations are 

based on limited human pharmacological data and conflicting cases of adverse outcomes, given 

that pregnant populations are routinely excluded from randomized controlled trials [5].  

Multidisciplinary challenges and data availability limitations are also key considerations in the 

prediction of drug-drug interactions [6,7] that may impact reproductive health [8,9]. As a result, 

birth defects, which in the US account for 3% of births [10] and 20% of infant deaths [11,12] are 

still mostly poorly understood. 

 

In recent years, knowledge graphs have gained popularity as a productive approach to integrate 

data from multiple sources to organize information and gain new knowledge [13]. Knowledge 

graph databases store information about the semantic relationships between objects and represent 

relationships and events as triples: subject->predicate->object, for example, chicken->lays->eggs. 

Once these assertions are combined, they form a network made of nodes and edges and this 

establishes the knowledge graph. Once data from multiple sources are organized in a knowledge 

graph, it can be queried to extract subgraphs that can illuminate unexpected associations between 

entities. Integrated data organized into knowledge graphs can be used as input into graph 

embedding algorithms [14] that aim at predicting missing and novel associations that are not 

present in the original knowledge graph. Such an approach is increasingly applied in the domain 

of drug discovery [15]. In this study, we aimed at combining knowledge about birth defects with 
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knowledge about genes and drugs to identify potential molecular mechanisms for known birth 

defects and predict birth defects for preclinical drugs and other small molecules. Specifically, we 

assembled evidence about the functional relationships between birth defect phenotypes and gene 

products and small molecules that are implicated in their occurrence from multiple sources. We 

ranked genes based on their association with pathogenicity; predicted the likelihood of small 

molecules to cross the placental barrier, and induce birth defects, using unsupervised learning; 

assembled knowledge about known drug targets for marked drugs [16]; and abstracted knowledge 

about the effects of drugs and preclinical small molecules on gene expression [17]. All this data is 

serialized into a knowledge graph representation and provided for access via a user-friendly web-

based user interface.  

 

Methods 

 

Curating phenotypic terms relevant to birth defects 

 

Human abnormal morphology of the great vessels, heart, and central nervous system (CNS) 

phenotypes were obtained from the EMBL-EBI Ontology Lookup Service (OLS) human 

phenotype ontology (HPO) v2021-10-10 [18]. To this end we considered the parent terms 

HP:0030962 (Abnormal morphology of the great vessels), HP:0001627 (Abnormal heart 

morphology) and HP:0012639 (Abnormal nervous system morphology) and extracted all the child 

nodes. The phenotype terms were then filtered based on relevance to birth defects. In all, 166, 193 

and 252 phenotype terms were retained for great vessels, heart, and CNS respectively. In addition, 

36 major birth defect terms were extracted from the Center for Disease Control and Prevention 

(CDC) website [19] on January 6, 2022. 

 

To enhance the consistent representation of the above phenotypic terms, and to link these birth 

defects with knowledge about the appropriate anatomical entities involved with these pathologies, 

we manually curated the HPO terms onto an anatomy connectivity knowledge graph. The schema 

adopted by this graph is based on the ApiNATOMY knowledge representation [20,21], which was 

developed as part of the SPARC [22] connectivity mapping effort. The ApiNATOMY subgraph 

within the ReproTox KG provides links to knowledge about constituent anatomical structures such 
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as cell types that may be involved in the birth defect mechanisms, as well as representations of 

abnormal anatomical organizations that typify these pathological phenotypes. 

 

Curating small molecules associated with birth defects 

 

Manually curated known teratogens and xenobiotics that cause birth defects were extracted from 

various sources including Google searches and PubMed MeSH terms. We also used DrugCentral 

[23], which is an online drug information resource to query FDA D and X category drugs and their 

associated Simplified Molecular Input Line Entry System (SMILES) with absorption, distribution, 

metabolism, excretion, and toxicity (ADMET) properties. FDA approved drugs classified as X or 

D are drugs with evidence of inducing birth defects in humans and animal models. X category 

drugs should not be taken during pregnancy, while category D drugs should be avoided as much 

as possible. SMILES compound representations and names of active pharmaceutical ingredients 

were retrieved. We then utilized DrugCentral again to query birth defect terms that are within the 

FDA Adverse Event Reporting System (FAERS) [24] and mapped associated drugs with a 

likelihood ratio (LLR) cutoff of LLR > 2*LLRT.  In addition, using DrugShot [25], we queried 

each CDC birth defect term through PubMed to extract PMIDs associated with each birth defect 

term. Abstracts associated with these PubMed IDs were mined to extract drug PubChem IDs based 

on co-mentions of the birth defect with a drug. The 30 most frequently occurring drugs for each 

birth defect were retained as the drug sets for each birth defect. 

 

Evidence implicating genes with birth defects 

 

Given the curated phenotype lists described above, human phenotype-gene associations were 

retrieved from multiple sources, including Online Mendelian Inheritance in Man (OMIM) [26], 

Orphanet [27], ClinVar [28], DISEASES [29], DatabasE of genomiC varIation and Phenotype in 

Humans using Ensembl Resources (DECIPHER) [30], the American Heart Association (AHA) 

[31], and Geneshot [32]. From OMIM and Orphanet human phenotype-gene associations were 

obtained from the Jackson Laboratory HPO database (hpo.jax.org, October 2021 release), 

providing curated links between HPO terms and human genes. The OMIM and Orphanet-based 

HPO-term gene associations were retrieved for the human abnormal morphology of the great 
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vessels, heart, and CNS phenotypes. Gene-birth defect associations were also obtained from 

ClinVar human genetic variants-phenotype submission summary dataset (v2021-11-03) [28]. This 

dataset was utilized to extract relationships between human genes harboring a pathogenic variant 

and their associated phenotypes given the birth defect phenotypes described above. Only genes 

with pathogenic variants and variants affecting a single gene were considered: that is, variants 

affecting multiple genes were excluded, due to the complexities in interpreting the relationships 

between their affected subset of genes and associated human diseases. The ClinVar-based HPO-

gene associations were compiled for the human abnormal morphology of the great vessels, heart, 

and CNS phenotypes. Literature-based human disease-gene associations were obtained from the 

DISEASES portal [29]. This dataset contains disease-gene associations text-mined from literature 

and genome-wide association studies. The disease ontology identifier (DOID) and ICD-10 codes 

listed in this database were converted to HPO terms discussed above, which were used to filter the 

gene-term associations. The DECIPHER [30] provided this study with a curated list of genes 

reported to be associated with developmental disorders, processed by expert clinicians as a part of 

the Deciphering Developmental Disorders (DDD) study [33] to facilitate clinical feedback of 

likely causal variants. The DECIPHER-based HPO-gene associations were compiled for the 

human abnormal morphology of the heart, and CNS phenotypes. We included a dataset of human 

congenital heart disease-associated genes associated with syndromic, non-syndromic, and 

ciliopathic cardiac disorders that was recently published by the AHA as general guidance for 

genetic testing by practitioners in 2018 [31]. Finally, using the Geneshot API [32], we queried 

each one of the 36 CDC birth defect terms through PubMed to extract PMIDs associated with each 

term. These PubMed IDs were converted into genes using the AutoRIF option. The most 

frequently occurring genes were retained as gene sets for each birth defect. 

 

Linking small molecule and drugs to their known targets 

 

Drugs and small molecules that have known targets were extracted from the TCRD database [16] 

and converted into KG assertions. Only compounds with a defined structure were included because 

other substances do not have PubChem [34] chemical IDs. In addition, only human targets were 

included, and only single gene/protein targets were included excluding some multi-component ion 
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channels and transporters. Properties such as SMILES, binding affinity, original source, PubChem 

IDs, and common names are provided for each drug. 

 

Linking small molecules to genes based on changes in gene expression 

 

The ReproTox-KG holds knowledge about most FDA-approved drugs and over 30,000 preclinical 

small molecules profiled by the LINCS program for their effects on the transcriptome of selected 

human cell lines [17]. To extract a set of genes that are up- or down-regulated by each drug and 

small molecule profiled by the L1000 assay for LINCS, we computed the mean of the 

Characteristic Direction [35] gene expression vector for each drug in the LINCS L1000 chemical 

perturbation signature dataset downloaded from SigCom LINCS [36]. We then retained the top 25 

up- and down-regulated genes for each drug. 

 

Drug-drug similarity based on gene expression and chemical structure 

 

To enable drug-drug similarity search across the ReproTox-KG, and to perform the unsupervised 

machine learning predictions, we developed two drug-drug similarity matrices, one based on 

structure, and one based on gene expression similarity. The drug-drug similarity matrix based on 

gene expression vector similarity was computed by transforming the consensus signatures 

described above using cosine similarity, comparing all pairs of consensus drug gene-expression 

vectors to produce a square matrix where the value at (i,j) is the gene expression-based cosine 

similarity between the drugs at row i and column j. The matrices that contain the consensus 

signatures for all drugs and small molecules, and the drug-drug similarity matrix are available for 

download from SigCom LINCS [36] and the ReproTox-KG download page. To create drug-drug 

similarity based on chemical structure similarity, we first converted the SMILES strings of each 

compound to a binary feature vector using the Morgan fingerprint (2048 bits) method [37] with 

radius 2, 3, and 4 was implemented in RDKit [38]. Other chemical structure similarity methods 

such as MACCS, Avalon, Atom Pair, RDKit with maxPath 2 and 4, and Topological fingerprints 

using FingerprintMol were tested. Next, we computed the inverse document frequency (IDF) 

between all pairs of drug vectors and the distance measure between each pair of drugs. We found 

that IDF performs much better than the standard Tanimoto similarity measure typically used for 
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quantifying the similarity between pairs of compounds (data not shown). The resultant matrix of 

drug-drug similarity based on chemical structure is available from the ReproTox-KG download 

page. Chemical structure-based similarity search was also implemented using a workflow which 

queries the KG for compounds and generates fingerprints and similarity measures at runtime, for 

additional flexibility and interoperability. The CFChemDb database and development system was 

employed, with source code available at https://github.com/unmtransinfo/CFChemDb.  

 

Gene intolerance scoring 

 

Gene intolerance scores were introduced to the knowledge graph from three main sources as 

measures of gene essentiality in human health and disease. Such intolerance scores are based on 

large-scale human exome sequencing projects and reflect the order of magnitude of the impact of 

negative selections on human genes, as their associated variants are filtered out from the human 

population most probably due to lack of ability of carrying individuals to pass them down 

(reproductive disadvantages). In this sense, the observed frequency of such genetic variants and 

their deviation from their expected values are computed through different methods and captured 

via the intolerance scores. In this section we include some technical details on the ingested 

intolerance scores. Gene intolerance scores were calculated utilizing three scoring systems 

assessing three interrelated intolerance measures, namely, haplo-insufficiency, triplo-sensitivity 

(collectively regarded as dosage sensitivity), and general intolerance. Augmented with population-

wide whole exome sequencing, each of these measures aims to quantify the magnitude of 

consequences of expected and observed mutations within a gene and present it as a single value 

assigned to that gene. Probability of being loss of function intolerant (pLI) scores [39] for 18,225 

human genes were obtained from a large-scale study conducted by the Exome Aggregation 

Consortium (ExAC) [40] using a database of exomes from 60,706 unrelated individuals sequenced 

as part of various disease-specific and population genetic studies. The basis for calculating pLI is 

to account for the frequency of observing disease-associated isoforms of the protein encoded by 

the gene which is resulted from a variant in its coding region. Therefore, the absence or low 

frequency of such variants implies higher gene intolerance to mutations and higher pLI. According 

to this study, 3,230 genes lacked almost any predicted protein-truncating variants (PTVs), 

signifying the variant effect on the emergence of a reproductively disadvantageous phenotype. In 

this regard, the pLI scores are defined over the range [0,1] as an estimate of the probability that a 
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candidate gene is intolerant to a deleterious mutation. Specifically, larger values of pLI (closer to 

1) are correlated with higher intolerance of the gene to mutations with genes having pLI ≥ 0.9 

considered as highly intolerant genes. It should be noted that the opposite case is not necessarily 

true; that is, genes with low pLI could also be associated with lethal phenotypes or higher 

likelihood of pathogenicity depending on the stage of the human lifespan in which the gene 

expression plays a key biological role. Residual Variant Intolerance Score (RVIS) [41] values of 

16,956 human genes were adopted from a large-scale analysis that processed 6,503 human whole 

exome sequences made available by the NHLBI Exome Sequencing Project (ESP) [42]. The 

scoring system developed in this study aimed to assess the functional mutations in the genic 

regions compared to all neutral variations that could occur in a gene and accordingly rank genes 

as a measure of intolerance to loss of function mutations. As an attempt to prioritize genes based 

on their likelihood of influencing disease/abnormal phenotype, the RVIS measures the deviation 

between the observed and predicted functional variants considering the total number of common 

variations in the target genes. The resulting scores were then compared with the available 

information on whether the gene causes any known mendelian diseases. In this sense, genes with 

higher functional mutations to total variant sites ratio will be considered more tolerant and vice 

versa [41]. Dosage sensitivity scores [43] such as haploinsufficiency and triplo-sensitivity are 

commonly used as measures of gene intolerance and disease association caused by low-frequency 

high-impact deletions and duplications known as rare copy number variants (rCNVs). Estimated 

haploinsufficiency and triplo-sensitivity for 17,263 of human genes were presented by a recent 

large-scale study meta-analyzing 753,994 individuals with neurological disease phenotypes [43]. 

This database presents an unprecedented knowledge repository on gene intolerance to duplication, 

whereas haploinsufficiency provides information on whether a heterozygous variant could lead to 

insufficient expression of the respective protein and its subsequent pathogenicity. In this sense, 

haploinsufficiency is an autosomal dominant gene action. This study characterizes 3,006 haplo-

insufficient and 295 triplo-sensitive genes. The provided scores can effectively be utilized in gene 

prioritization by their potential loss-of-function or gain-of-function through the introduction of de-

novo rCNVs as opposed to the point mutations. 

Gene-gene similarity based on co-expression 
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Gene-gene similarity associations were obtained from the human gene-gene correlation matrix 

provided by the ARCHS4 resource [44]. The matrix stores the Pearson correlation coefficient 

between genes across bulk RNA-seq expression samples uniformly processed by the ARCHS4 

pipeline. Genes were filtered to include only protein-coding genes to keep the size of the graph 

manageable, and for each of the 17,966 genes, the top five most positively and most negatively 

correlated genes based on the correlation coefficients were extracted for a total of 170,819 edges. 

Each edge was weighted by the correlation coefficient between the two connected genes. These 

gene-gene associations were then integrated into the ReproTox KG. From these associations, it 

may be possible to identify novel genes that are potentially affected by known teratogens and 

discover how the role that different groups of genes may play in inducing birth defect phenotypes.  

 

Placental crossing and D and X category predictions for small molecules 

 

Using unsupervised learning we generated placental crossing scores and D and X category scores 

for all FDA-approved and preclinical compounds profiled by LINCS that are included in the 

ReproTox KG. To obtain true positives for placental crossing, we first extracted the list of 248 

compounds assembled by Di Filippo et al. [45]. Category D and X drugs were obtained from 

DrugCentral [23] and Drugs.com [46], and drugs were filtered by those which could be mapped to 

the LINCS compounds. Drugs associated with both categories were considered category X. 

Predictions were made with a symmetric drug-drug similarity matrix using the same approach 

described by DrugShot [25] by selecting the vectors corresponding to drugs known to be in the 

true positive set and computing the average similarity score to all drugs in the matrix. The diagonal 

is set to zero to prevent contribution from the drug itself. Using the similarity scores, receiver 

operating characteristic (ROC) curves were computed along with the area under that curve (ROC-

AUC). Additionally, the percentage of hits in the top 1% were computed by sorting the true scores 

and computing the sum across the first 1% entries in this vector. This approach was used to score 

all LINCS compounds. The placental crossing scores and the category D and X scores for all drugs 

and small molecules in the ReproTox KG are displayed as node properties for drugs and are 

depicted as the hue level of the drug nodes in the ReproTox KG user interface. In addition, all the 

predictions are provided as downloadable files available from https://maayanlab.cloud/reprotox-

kg/downloads. 
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Combining predictions from expression similarity and structural similarity 

 

Two methods were developed to combine the predictions made by the gene expression and 

chemical structure similarity predictions. Given two scoring vectors produced by the two different 

similarity matrices, the Top Rank method takes the highest ranking of the drugs across all 

predictions to be the aggregated score. This score is then used for the ROC curve and ROC-AUC 

calculation. Alternatively, given two similarity score vectors, one based on expression, and one 

based on structure, we aggregated these predictions by assigning a weight to each score coming 

from the two sources: expression and structure. These weights were optimized for performance 

using the Adam optimizer [47]. The learned weights are then applied for combining the L1000 and 

structural features in the FDA drug categorization and placenta crossing sets into a singular score. 

This score is then used for the ROC curve and ROC-AUC calculation. 

 

UMAP visualization of L1000 perturbations 

 

Uniform Manifold Approximation and Projection (UMAP) [48] was applied to the normalized 

L1000 count matrix of over 718,055 chemical perturbations performed with different drugs across 

different cell lines, time points, and concentrations. Perturbations with FDA drug categories D and 

X and drugs known to cross the placenta were colored by category. To identify the top MOAs in 

the L1000 perturbation space, we first clustered L1000 perturbations directly using HDBSCAN 

[49] with a minimum cluster size of 40, we then selected the top 25 clusters with highest 

concentration of drugs for each drug category, finally we identified the top 5 MOAs for drugs in 

those clusters. We colored the L1000 UMAP with those top MOAs. 

 

ReproTox KG backend KG database 

 

The ReproTox KG uses a graph-structured data model to integrate data. The KG is implemented 

using the Neo4J [50]. The information in the ReproTox KG represents a network of nodes 

representing birth defects, genes, and drugs, and edges representing their relationships. In addition, 

attributes/properties of the nodes and edges are provided. The ReproTox KG is made up of datasets 
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from the various sources listed above and listed in two tables (Table 1 and Table 2) and illustrated 

in the associated schematic (Fig. 1). The ReproTox KG uses standardized JSON schema 

serialization to ingest data into the KG. Queries to the Neo4J platform are constructed using the 

Cypher query language [51]. 

 

Original graphical user interface to interact with the ReproTox KG 

 

Since Neo4j currently does not provide an open-source, free, and customizable standalone web-

based user interface (UI) to visualize the results from Cypher queries, we developed an original 

UI with these features for this project. Leveraging the Cytoscape.JS library [52], the UI renders 

Cypher query results in JSON format into nodes and links network visualizations. The UI provides 

access to perform queries for finding neighbors of single entities, finding shortest paths between 

pairs of entities, displaying the networks using various layouts, expanding, and shrinking the size 

of the displayed subnetwork, viewing properties of nodes and links, and downloading the displayed 

associations in tabular format.  

Results 

 

Overall construction and composition of the ReproTox KG 

 

The ReproTox KG contains semantic assertions that connect birth defects, genes, and drugs. In 

addition, drug-drug and gene-gene similarity assertions are included (Fig. 1; Tables 1-2). Each 

entity in the ReproTox KG has a set of attributes and properties. Some of these attributes are unique 

to the project. For example, we ranked the likelihood of all included compounds and drugs to cross 

the placental barrier and to cause birth defects using an unsupervised machine learning approach. 

To achieve this, we first identified a list of 248 drugs that are known to cross the placenta [45], 

and lists of FDA approved drugs classified in the X (n=60) and D categories (n=112). We then 

mapped these drugs to all the drugs and small molecules profiled by the LINCS L1000 assay (Fig. 

2). Next, we constructed two drug-drug similarity matrices, one based on drug structural similarity, 

and one based on gene expression induced signature similarity. These matrices were used to 

perform unsupervised machine learning to prioritize all drugs for the likelihood to cross the 
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placenta, or to be categorized as D and/or X. Before performing such predictions with these two 

matrices, we projected the known placental crossing drugs (Fig. 3A) and the category D and X 

drugs (Fig. 3B) onto the LINCS L1000 gene expression space of 718,055 gene expression 

signatures induced by >30,000 small molecules using UMAP [48]. We observe that these drugs 

fall into distinct regions within the L1000 gene expression space. By comparing the UMAP 

visualization of the known placental crossing drugs and the category D and X drugs to the same 

layout with highlighted known mechanisms of actions (Fig. 3C), we observe that dense clusters of 

D and X drugs involve estrogen disruptors and topoisomerase inhibitors. Other clusters colored by 

their unique MOAs also have many placental crossing drugs and category D and X drugs within 

them. The observed punctate distribution strongly suggests that we can make predictions about the 

likelihood of preclinical drugs to induce birth defects and cross the placenta.  

 

Next, we applied the unsupervised learning approach to rank all mapped approved drugs and 

preclinical compounds to predict their likelihood to cross the placental barrier or induce a birth 

defect. We observed that with the L1000 signature similarity matrix we achieve an AUC of 0.620 

for predicting D and X category membership, and 0.725 for placental crossing (Fig. 4A, Fig. 4C). 

The predictions that are based on chemical structural similarity achieve AUCs of 0.746 and 0.660 

for D and X category membership and for placental crossing, respectively (Fig. 4A and 4C). 

Combining the predictions made by gene expression with chemical structure together with the Top 

Rank or the weighted contribution methods improved such predictions to 0.803 and 0.788 for D 

and X category membership, as well as 0.785 and 0.759 for the placental crossing predictions, 

respectively. Overall, these are high quality predictions for an unsupervised approach. Importantly, 

these predictions perform well at the leading edge (Fig. 4B, Fig. 4D, and Tables 3 and 4). It should 

be noted that predictions made with structural similarity only performed well when we defined the 

similarity between compounds using IDF instead of Tanimoto. This is likely because there is a 

bias with the Tanimoto method which emphasizes similarity between complex larger compounds 

that share common features. The predictions made by the unsupervised method highly ranked 

compounds that are known as ACE inhibitors, antibiotics, and statins (Tables 3 and 4). This is not 

surprising because such compounds are already common among known category X & D drugs 

[53] and drugs that are known to cross the placenta. For example, the top ranked drug by structural 

similarity to be categorized as X & D is enalaprilat.  Enalaprilat is a known ACE inhibitor used to 
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treat high blood pressure and is administered via IV [54]. It is listed as category C for the first 

trimester and as category D for the second and third. Overall, such predictions can be used to warn 

about the potential of newly approved drugs to cross the placenta and induce birth defects. 

 

In addition, for each gene included in the KG, we computed likelihood for deleterious mutations 

using three established methods: (pLI) scores [39], RVIS [41], and Dosage sensitivity scores [20]. 

Each entity in the ReproTox KG also includes links out to databases based on entity ID resolution. 

In particular, 694 birth defects are mapped to HPO identifiers [18], 18,233 genes and proteins are 

mapped to HGNC IDs, and 5,403 drugs are mapped to their PubChem identifiers [34]. Lists of 

birth defect terms were extracted from HPO [18] and the CDC website [19]. The 127,023 

associations between birth defect terms and genes were extracted from OMIM [26], Orphanet [27], 

ClinVar [28], DISEASES [23], DECIPHER [30], American Heart Association (AHA) [31] and 

Geneshot [32]. The 13,561 assertions between birth defects and drugs were extracted from 

DrugCentral [32], DrugShot [25], DrugEnrichr, and FAERS [24]. Two types of assertions connect 

genes and drugs within the ReproTox KG, genes that are differentially expressed after drug 

treatment based on transcriptomics and known drug targets for the drugs. Overall, 225,509 drug-

gene associations were extracted from the LINCS L1000 data [36], and 7,326 drug-target 

assertions were extracted from TCRD [16]. Similarly, 9,546 drug-drug similarity assertions were 

identified based on chemical similarity and 33,608 based on gene expression signature similarity. 

Finally, gene-gene similarity included in the KG is based on gene-gene co-expression [44].  

 

The processed data from these resources was created by customized extract, transform, and load 

(ETL) scripts and stored in a JSON schema data model. This processed data was ingested into a 

Neo4J database, and it is made available for download on the ReproTox KG website at: 

https://maayanlab.cloud/reprotox-kg/downloads. The ETL scripts are open source and available 

from: https://github.com/nih-cfde/ReproToxTables/. To provide access to the processed data in a 

user-friendly manner, we developed an original graphical user interface (Fig. 5).   

 

Extraction of birth defect-gene-small molecule cliques to explain potential MOAs 
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To demonstrate the utility of the ReproTox KG to illuminate new knowledge, we queried the graph 

to identify all three-node cliques/cycles. That is, we extracted from the ReproTox KG all instances 

where a birth defect was connected to a gene and a drug that were also connected. In total, 533 

such cliques/cycles were identified. From this collection of cliques/cycles, we identified six drugs 

and small molecules that were not previously listed as crossing the placenta and had a placental 

scoring rank in the top 10% (<3000 out of ~30,000) (Fig. 6). This subnetwork demonstrates how 

the ReproTox KG can be used to suggest mechanisms of action (MOA) for how drugs and pre-

clinical compounds may induce specific birth defects by affecting the gene expression of genes 

already known to be associated with the birth defect. For example, LINCS L1000 transcriptomics 

data shows that the approved drug methotrexate, a chemotherapeutic and immunosuppressive 

drug, inhibits the expression of the mitotic checkpoint serine/threonine-protein kinase BUB1. 

BUB1 is known to cause microcephaly when mutated [55], and methotrexate is known to cause 

microcephaly and atrial defects [56]. Hence, this adverse effect of methotrexate can be attributed 

to its direct influence on the expression levels of BUB1. Similarly, the experimental drug LY-

294002 which is a morpholine-containing chemical compound that is a strong inhibitor of PI3K, 

was previously shown to influence cell proliferation of epithelial cells isolated from human fetal 

palatal shelves (hFPECs) [57]. Besides inhibiting the activity of PI3K, LY-294002 increases the 

expression of DUSP6, a dual specificity phosphatase that dephosphorylates members of the PI3K 

pathway. The approved antidepressant drug sertraline was reported to induce cardiac and vascular 

birth defects based on analysis of FAERS [58]. The ReproTox KG subnetwork of cliques/cycles 

suggests that such adverse birth defects could be mediated via the activation of the 

dehydrocholesterol reductase DHCR7 and DHCR24. Mutations in DHCR7 are known to cause 

Smith-Lemli-Opitz syndrome, a disease of multiple congenital abnormalities [59], while mutations 

in DHCR24 can cause desmosterolosis [60]. Hence, it is plausible that sertraline mediates 

induction of cardiac and vascular birth defects via its up-regulatory effects on DHCR7 and 

DHCR24. Overall, these are just a few examples of how the ReproTox KG can illuminate new 

knowledge about potential mechanisms of how drugs and preclinical small molecules may induce 

birth defects. 
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Discussion and Conclusions 

To characterize associations between small molecule compounds and their potential to induce 

reproductive toxicity, we gathered knowledge from multiple sources to construct a reproductive 

toxicity Knowledge Graph with an initial focus on associations between birth defects, drugs, and 

genes. The idea of abstracting genes, drugs, and diseases into networks is not new. We and others 

constructed networks to represent functional and physical associations between genes/proteins 

[61] [62] [63], drugs and their targets [64] [65], and diseases based on their gene set similarity 

[66]. The unique features of the ReproTox KG are that it provides a flexible framework not only 

to connect entities such as gene-drug, gene-gene, gene-birth defect, drug-drug, and drug-birth 

defects, but also a flexible way to query this network, extend it, visualize it, and add attributes to 

different node and link types. The ReproTox-KG is an initial effort towards integrating knowledge 

about birth defects, genes, and drugs. Similar efforts have been recently published, including 

studies that attempted to use graph embedding algorithms to predict missing/novel associations 

between drugs and diseases [67], for drug repurposing opportunities [68] [69], predicting drug 

targets [70] [71], adverse events [72], and drug-drug interactions [73]. These are just a few studies 

in this domain. Here, we did not attempt to make predictions based on the knowledge graph 

structure but provided the needed building blocks to enable such future applications. Hence, the 

ReproTox KG was developed as a resource for the community to explore and expand. 

 

One of the limitations of ReproTox KG, and knowledge graphs representation in general, is the 

ability to cover many associations between entities. For example, we decided to only consider the 

top 25 up- and down-regulated genes for each drug. This leaves out many genes that may be 

affected by drugs but will be missed from queries and post-hoc analyses. We also created 

consensus signatures for each drug from the LINCS L1000 data, this approach masks the effect of 

drugs in specific cellular contexts. This was done to make the ReproTox KG project focused and 

manageable. However, tissue and cell type distribution of the affected genes, and how drugs and 

small molecules induce such differential effects, are critical information for associating genes and 

drugs with birth defects. Such information is partially available and could be included in future 

releases of ReproTox KG. One excellent resource for gene expression during development is 

DESCARTES, a human cell atlas for fetal tissues [74]. 
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In conclusion, ReproTox KG provides a resource for exploring knowledge about the molecular 

mechanisms of birth defects with the potential of predicting the likelihood of genes and preclinical 

small molecules to induce birth defect phenotypes. It should be noted that the ReproTox KG is 

preliminary and should not be used for clinical applications and clinical decision support. 

 

Acknowledgements  

This project was supported by NIH grants OT2OD030160, OT2OD030546, OT2OD032619, and 

OT2OD030162. 

 

Conflict of Interest  

Tudor I. Oprea, Cristian G. Bologa, and Jessica Binder have been compensated for their work as 

employees of Roivant Sciences Inc. All other authors declare no conflicts of interest. 

 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2022. ; https://doi.org/10.1101/2022.09.15.508198doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.15.508198
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

18 

Figure and figure legends 

 

 

Fig. 1 The ReproTox KG is made of lists of birth defects extracted from HPO and the CDC; birth defect 

gene associations from HPO and Geneshot; drug-birth defect associations from DrugCentral and 

DrugShot; drug-gene associations from LINCS L1000 data and from drug-target knowledge. 
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Fig. 2 Supervenn diagram of drug identifier overlap between FDA category D and X, known placenta 

crossing drugs, and unique drugs and small molecules within the L1000 LINCS perturbation datasets. 

Drugs and compounds not represented in the L1000 perturbations are not shown or considered. 
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A       B 

 
C 

 
 

Fig. 3 UMAP of 718,055 L1000 perturbations, colored by (A) FDA D and X category; (B) known 

placental crossing; (C) top MOAs across clusters. Clusters computed using HDBSCAN with a minimum 

cluster size of 40, top 25 clusters for each category and top 5 MOAs of those clusters are included. 
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Fig. 4 ROC curves colored by prediction method for predicting FDA D and X categories (top) and 

placenta crossing (bottom). AUC values shown in the legend. Leading edges of the same ROC curves are 

shown on the right of each complete ROC plot. 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2022. ; https://doi.org/10.1101/2022.09.15.508198doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.15.508198
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

22 

 
Fig. 5 Screenshot from the ReproTox KG user interface. A query to identify connections between the 

birth defect anencephaly and the drug valproic acid with a limit of 21 nodes is provided as an example. 
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Fig. 6 Cliques of drugs with a placenta crossing predicted ranks of less than 3000, that are also known to 

induce a birth defect based on literature evidence, connected to the genes that their expression is affected 

based on LINCS L1000 data, and associations between those genes where known mutations are also 

associated with the same birth defect. Light blue nodes represent birth defect terms, orange nodes 

represent genes, and pink nodes represent drugs and preclinical small molecules. Red lines with diamond 

arrowheads indicate an L1000 consensus drug signature that up-regulates the gene, and plungers indicate 

an L1000 consensus drug signature that down-regulates the target gene. Gray arrowheads indicate genes 

that their mutations induce a birth defect, and gray diamond-heads connect drugs to the birth defects they 

are known to induce.  
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Table 1 

Assertion 
Edge Type 

Name Relationship Reference  Nodes/Nodes/Edges 

Birth Defect-
Gene 

HPO Genes known to be 
associated with a birth 
defect 

Human 
Phenotype 
Ontology 

599 / 5093 / 127,023 

Geneshot Genes co-mentioned with 
birth defect terms in 
publications  

Geneshot 32 / 1091 / 1565 

Birth Defect-
Drug 

FDA Adverse Event 
Reporting System 
(Female/Male) 

Drugs with reported 
adverse events related to 
birth defects 

FDA Adverse 
Event Reporting 
System 

32 / 94 / 372 

Drugshot Drugs co-mentioned with 
birth defect terms in 
publications 

Drugshot 679 / 2207 / 13,000 

DrugEnrichr Drugs belonging to drug 
sets associated with birth 
defect terms 

DrugEnrichr 12 / 131 / 189 

Drug-Gene IDG (Drug-Target) Drugs with known human 
gene targets 

Target Central 
Resource 
Database 

1363 / 1034 / 7326 

SigCom LINCS 
Drug-to-Gene 
(upregulates/ 
downregulates) 

Drugs that up- or down-
regulate genes across the 
LINCS L1000 signatures 

SigCom LINCS 4523 / 4419 / 225,509 

Drug-Drug LINCS Drugs 
Cosine Similarity 

Drugs that induce similar 
gene expression patterns 
across LINCS L1000 
signatures based on 
cosine similarity 

SigCom LINCS 4523 / 3449 / 20,785 

Chemical Structure 
Similarity 

Drugs similar to other 
drugs in chemical 
structure 

CFChemDB 4564 / 4564 / 10,417,330  

Gene-Gene ARCHS4 
(positively/ 
negatively 
correlated) 

Genes positively or 
negatively correlated 
across ARCHS4 gene 
expression samples 

ARCHS4 17,964 / 12,185 / 170,801 

 

Table 1. The ReproTox KG is made of entities (nodes) representing birth defects, genes, and 

drugs that are connected based on semantic assertions (edges/relationships) extracted from 

different sources. The table lists the type of assertion, the nature of the relationship, the original 

source from where the assertion was extracted from, and the number of entities and relations for 

each entry in the table (left entity/right entity/relations).  
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Entity Type Property Source Description Entities with 
property 

Birth Defect MEDDRA code  MedDRA ontology 
identifier 

32 

Drug Placenta crossing 
likelihood score 

Drugshot Cosine similarity score 
to L1000 gene 
expression signatures 
for drugs known to 
cross placental barrier 

4523 

Placenta crossing 
likelihood rank 

Drugshot Rank (1=most similar) 
of cosine similarity 
score to L1000 gene 
expression signatures 
for drugs known to 
cross placental barrier 

4523 

SMILES PubChem SMILES structure  

Gene pLI Exome Aggregation 
Consortium (ExAC) 

Probability of loss of 
function intolerance 

9466 

pHI Collins et al. 2021 
[43] 

Haploinsufficiency 
score 

9466 

pTS Collins et al. 2021 
[43] 

Triplosensitivity score 9466 

Residual Variant 
Intolerance Score 

NHLBI Exome 
Sequencing Project 

Ratio of functional 
mutations to total 
variant sites 

9466 

Residual Variant 
Intolerance Score 
Percentile 

NHLBI Exome 
Sequencing Project 

Percentile of RVIS 
across all scored genes 

9466 

 

 

Table 2. The ReproTox KG is made of entities (nodes) representing birth defects, genes, and 

drugs that are decorated with attributes and properties associated with them, for example, 

common identifiers. The table lists the properties and their sources for each entity type, namely, 

birth defects, genes, and drugs represented in the ReproTox KG.  
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Drug 

D & X  

L1000 

D & X 

Structure Weighted Top Rank D Known X Known 

enalaprilat  1 1 1 0 0 

TAK-715 1   1 0 0 

pitavastatin  2 11 2 0 0 

BRD-K08703257 2   2 0 0 

ramipril  3 2 3 1 0 

pentoxifylline 3   3 0 0 

trandolapril  3 6 4 1 0 

troglitazone 4   4 0 0 

perindopril  4 3 5 1 0 

FTI-276 5   5 0 0 

BRD-K76846644  5 5 6 0 0 

Gossypetin 7   6 0 0 

pravastatin  6 4 7 0 1 

phenothiazine 9   7 0 0 

evodiamine  7 7 8 0 0 

lorazepam 10   8 1 0 

BRD-K40167599  8  9 0 0 

losartan 11   9 1 0 

lovastatin  9  10 0 1 

zebularine 13   10 0 0 

CTPB  10 15 11 0 0 

risperidone    11 0 0 

VX-765  11 8 12 0 0 

BMS-191011    12 0 0 

methiopril  12 10 13 0 0 

EX-527    13 0 0 

canrenone  13 12 14 0 0 

BRD-K55591206    14 0 0 

BRD-K80672993    15 0 0 

oxytetracycline  14  15 0 0 

BRD-K63784565   9  0 0 

zofenopril-calcium   13  0 0 

BRD-K93367411   14  0 0 

BRD-K08533345 14    0 0 

BRD-K27194553 12    0 0 

BRD-K27889081 8    0 0 

BRD-K37848780 15    0 0 
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BRD-K76551930 6    0 0 

imidapril  15   0 0 

 

Table 3. Top predicted X and D category drugs and preclinical compounds. The top 15 ranked 

compounds predicted using unsupervised learning with L1000 gene expression similarity or 

chemical structure similarity, or two by two methods that combine the predictions from the two 

sources, namely, weighted, and top rank, are listed together with whether these were previously 

known to belong to the X or D categories. 
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Drug L1000  Structure  Weighted Top Rank Known 

nafcillin  1 1 1 0 

FTI-276 1   1 0 

piperacillin  2 4 2 0 

Gossypetin 2   2 0 

cefotaxime  3 3 3 0 

TAK-715 3   3 0 

ciclacillin  4 2 4 0 

BRD-K08703257 4   4 0 

7-aminocephalosporanic-acid  5 6 5 0 

temozolomide 5   5 0 

penicillin  6 5 6 0 

CGS-21680 6   6 0 

ceforanide  7 9 7 0 

Y-27632 7   7 0 

lorazepam 8   8 1 

BRD-K43966364  8 8 9 0 

benzathine  8  9 0 

estradiol-cypionate 9   10 0 

BRD-K50776152 10   11 0 

isoetharine  9  11 0 

enalaprilat  10 12 12 0 

rolipram 11   12 0 

BRD-A66025870  11  13 0 

PT-630 12   13 0 

EMF-csc-9 13   14 0 

practolol  12  14 0 

cephalothin  13 15 15 1 

DL-TBOA 14   15 0 

pravastatin  14 7  0 

cefoperazone   10  1 

orciprenaline   11  0 

ampicillin   13  1 

dicloxacillin   14  0 

BRD-K55591206 15    0 

micropenin  15   0 
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Table 4. Top predicted placental crossing drugs and preclinical compounds. The top 15 ranked 

compounds predicted using unsupervised learning with L1000 gene expression similarity or 

chemical structure similarity, or two by two methods that combine the predictions from the two 

sources, namely, weighted, and top rank, are listed together with whether these were previously 

known to cross the placenta. 
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