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Abstract  6 

Humans have well-documented priors for many features present in nature that 7 

guide visual perception.  Despite being putatively grounded in the statistical 8 

regularities of the environment, scene priors are frequently violated due to the inherent 9 

variability of visual features from one scene to the next.  However, these repeated 10 

violations do not appreciably challenge visuo-cognitive function, necessitating the 11 

broad use of priors in conjunction with context-specific information.  We investigated 12 

the trade-off between participants’ internal expectations formed from both longer-term 13 

priors and those formed from immediate contextual information using a perceptual 14 

inference task and naturalistic stimuli.  Notably, our task required participants to make 15 

perceptual inferences about naturalistic images using their own internal criteria, rather 16 

than making comparative judgements. Nonetheless, we show that observers’ 17 

performance is well approximated by a model that makes inferences using a prior for 18 

low-level image statistics, aggregated over many images. We further show that the 19 

dependence on this prior is rapidly re-weighted against contextual information, 20 

whether relevant or irrelevant. Our results therefore provide insight into how apparent 21 

high-level interpretations of scene appearances follow from the most basic of 22 

perceptual processes, which are grounded in the statistics of natural images. 23 

  24 

Introduction 25 

We move through different environments many times each day.  Each 26 

environment exposes our visual system to a unique combination of features that guide 27 

cognition and behaviour (Frazor & Geisler, 2006; Torralba & Oliva, 2003).  When 28 

entering a new environment, we can readily categorise and identify how its features 29 

relate to our current goals (Greene & Oliva, 2009; Walther et al., 2009).  Our ability to 30 

make such flexible assessments suggests that visual cognition leverages internally 31 

stored sets of rules that help to make sense of new sensory information.  32 

The sets of rules that guide visual cognition can be considered as expectations, 33 

or priors, for visual features that are common across environments.  Priors putatively 34 

represent the average of features on any number of dimensions (Series & Seitz, 2013; 35 

Summerfield & Egner, 2009).  When incoming sensory information deviates from a set 36 

of priors, our expectations are violated. However, the inherent variability in image 37 

features across environments (Hansen et al., 2003, 2008) does not appreciably 38 

challenge our visual or cognitive capacities.  While priors may be a useful guiding tool 39 
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when interpretating our environment, therefore, they must be flexible, allowing 40 

functional interpretation of a vast array of possible visual scenes.  Indeed, expectations 41 

shift depending on context-specific information (Brockmole & Le-Hoa Vo, 2010; Wolfe 42 

et al., 2011), suggesting a trade-off between priors that generally apply in the longer 43 

term versus those that depend on a specific context.   44 

Visual information can be quantified at any arbitrary level, but in the present 45 

study we broadly categorise features as being either low- or high-level.  By low-level 46 

information, we refer to basic visual features, such as orientation, contrast, or hue.  47 

Under the same framework as Neri (2014), we consider high-level information to 48 

include features which convey meaningful information (e.g., the arrangements of 49 

chairs and a table that imply a dining room setting as opposed to an office).  50 

Importantly, two images can be matched on a subset of low-level features, but have 51 

these features arranged such that only one conveys meaning (Neri, 2014).  Low-level 52 

features, such as contrast energy across spatial frequency bands, are relatively stable 53 

across contexts, whereas many attributes of high-level features are scene-specific 54 

(Harrison, 2022; Torralba & Oliva, 2003), and their respective statistical regularities 55 

across scenes influence decision making.  For example, cardinally oriented features 56 

are overrepresented in natural images (Coppola et al., 1998; Essock et al., 2003; 57 

Girshick et al., 2011; Hansen et al., 2003; Hansen & Essock, 2004; Keil & Cristóbal, 58 

2000), leading to well-known biases in perceptual judgments of orientation (Appelle, 59 

1972; Berkley et al., 1975; Campbell et al., 1966; Dakin, 2001; Dakin et al., 2009; 60 

Dakin & Watt, 1997; de Gardelle et al., 2010; Emsley, 1925; Girshick et al., 2011; 61 

Pratte et al., 2016; Westheimer & Beard, 1998).  Similarly, relationships between high-62 

level visual objects can be predicted from scene context, leading to errors in object 63 

detection and recognition when objects are positioned at uncommon locations (Bar, 64 

2004; Bar & Ullman, 1993; Biederman et al., 1982).    Despite their differences in 65 

content and contextual stability, we combine low- and high-level features with great 66 

ease to allow a seamless percept of our environment.  However, the relative 67 

contribution of low- and high-level information to our interpretations of a scene remain 68 

largely unknown.  69 

In the present study, we investigated the interplay between relatively long-term 70 

priors and context-dependent information in forming visual expectations. To force 71 

observers to use and combine previous experience with changing high-level 72 

contextual information, we took advantage of the statistical distributions of features 73 
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present in naturalistic stimuli (David et al., 2004; Harrison, 2022; Olshausen & Field, 74 

1996; Simoncelli & Olshausen, 2001). Targets were randomly oriented natural image 75 

patches that participants rotated to appear subjectively “upright” based on their own 76 

internal criteria (see Methods for specific task design information). By windowing the 77 

targets within a small aperture, we removed large-scale contextual information. In the 78 

absence of such high-level information, we anticipated that observers would base their 79 

responses on how closely target features match their internal priors for low-level image 80 

features alone. In some conditions, the surrounding region of the target was presented 81 

briefly prior to target presentation, allowing observers to incorporate contextual 82 

information to inform their judgments. Our task, therefore, required participants to align 83 

targets with their internal expectations formed from both longer-term priors as well as 84 

immediate contextual information, thereby enabling us to disentangle the relative 85 

contribution of each.   86 

Results 87 

Natural image statistics predict perceptual inferences in the absence of context 88 

Participants rotated natural image target patches to make the targets appear 89 

upright (see Fig. 1A-B).  Targets contained very little high-level structure that could 90 

unambiguously inform responses, as we confirmed in control experiments (described 91 

below and in Supplemental Materials).  By having participants rotate the targets, they 92 

were able to control various low-level image features, such as the relative frequency 93 

of orientations present. In Experiment 1, targets were presented without context. If 94 

participants responded randomly, their responses would be uniformly distributed. If 95 

instead participants used any sort of strategy that depended on the target image 96 

features, their responses would be systematically biased by their strategy.  For 97 

example, if participants were biased by orientation information present in the targets, 98 

then we might observe response orientations biased towards particular orientations, 99 

such as cardinals.  100 
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 101 

Figure 1. Overview of paradigm. A) Example windowed image patches used as targets, shown to 102 

participants at random orientations from trial to trial.  B) Example schematic for a trial in Study 1 (stimuli 103 

are not to scale). Participants saw a fixation point, followed by a brief pink noise patch. Subsequently, 104 

the target was presented at a random orientation. Participants used the mouse to rotate the target to 105 

appear upright and clicked to input their response.  C) Observers’ judgments were circularly distributed 106 

deviations from the known objective vertical axis of the target. Note that the top left target patch in (A) 107 

is rotated 90° from upright, demonstrating the inherent ambiguity in the stimuli. 108 

The blue curve in Figure 2A shows the frequency distribution of participants’ 109 

responses relative to the objective upright orientation of each target. Participants’ 110 

responses have a clear cardinal bias: the most frequent response orientation is 111 

centred on 0°, demonstrating participants’ modal response was highly accurate, with 112 

smaller peaks at the other cardinal orientations (±90° and ±180°).  The multimodal 113 

distribution of responses reveals that participants were not simply guessing. Instead, 114 

observers must have combined target information with some internal representation 115 

of the most appropriate orientation given the features in the image.   116 
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 117 

Figure 2. Perceptual inferences are predicted by natural image statistics. A) Proportion of response 118 

orientations (bin size = 22.5°) as measured from model and human observers in Experiment 1. The 119 

model judged the same targets as participants using an orientation heuristic. The model judged the 120 

same targets as participants using an orientation heuristic. B) The same behavioural data from Panel 121 

A, however model data in Panel B represent proportions of reported orientations yielded from a model 122 

that judged the same targets as participants using an orientation and lighting heuristic. C) Difference 123 

scores between model predictions and participant data, comparing the full model incorporating lighting 124 

and orientation heuristics (green) and the alternative model using an orientation heuristic only (pink). A 125 

difference score of 0 indicates the model predicted the same frequency of responses that participants 126 

displayed, positive values indicate the model predicted less responses than participants displayed, and 127 

negative values indicate the model predicted more responses than participants displayed.  D) The mean 128 

distribution of contrast energy for each target when rotated to the orientation reported by the observer. 129 

Note this includes only the trials where participants responded with a >=90° response orientation.  N = 130 

10; error bars = ±1 SEM. 131 

To understand how observers made their judgments in the absence of 132 

meaningful contextual information, we built a model observer that rotates each target 133 

so that the distribution of low-level features approximates the average distribution 134 

across many thousands of natural images. For each target we computed contrast 135 
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energy across orientations, and calculated the circular shift required to minimise the 136 

difference between this distribution and the distribution of oriented contrast typically 137 

found in natural images, as reported previously (e.g., Hansen et al., 2003; Hansen & 138 

Essock, 2004; Harrison, 2022; see Methods). Note that this model is equivalent to 139 

asking what pattern of data would result from solely matching low-level target features 140 

to a prior acquired from averaging image statistics across many different scenes. 141 

The output of this model is shown as the pink function in Figure 2A. Importantly, 142 

we did not fit the model to the observers’ data. Nonetheless, the model provides a very 143 

good approximation of their responses, with clear cardinal biases. However, the model 144 

underrepresents the frequency of responses around 0°, and overrepresents the 145 

frequency of responses around ±180°. This model error arises because oriented 146 

contrast energy is phase invariant, and so the orientation distribution is very similar for 147 

an upright or inverted image. We therefore added a second stage of the model that, 148 

after rotating the image to align its oriented contrast distribution to the prior, determines 149 

whether the target needs to be rotated a further 180°. This stage involved using a 150 

broadscale filter to estimate the lighting direction, which we fit to observers’ data with 151 

a single free parameter. The output of this full model is shown in Figure 2B, and now 152 

correctly estimates the frequency of responses for all orientations. Indeed, the two-153 

stage model minimises the error in the overall model fit (Fig. 2C). 154 

The results for Experiment 1 suggest that observers judge the appropriate 155 

appearance of an image patch by matching a relatively simple set of low-level image 156 

statistics to an average of these statistics over many images. If this is the case, 157 

observers’ responses should reflect the statistics of natural images even when their 158 

responses are highly inaccurate. We tested this prediction using reverse correlation to 159 

analyse the distribution of oriented structure for trials in which observers’ absolute 160 

response orientation was at least 90° from the ground truth orientation. For such trials, 161 

we computed oriented contrast energy for each target after rotating the target to the 162 

orientation reported by the observer. The mean distribution of contrast energy is 163 

shown in Figure 2D. There are clear peaks and troughs at cardinal and oblique 164 

orientations, respectively, aligning closely with contrast energy distributions in nature.  165 

Taken together, our model and reverse correlation analyses suggest that observers’ 166 

perceptual inferences depend on their prior expectations for the statistics of natural 167 

images. 168 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 17, 2022. ; https://doi.org/10.1101/2022.09.15.507892doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.15.507892
http://creativecommons.org/licenses/by-nc/4.0/


8 
 

Contextual information enhances perceptual inferences  169 

In Experiment 2, we next investigated the extent to which participants integrate 170 

context-specific information when inferring the upright orientation of novel target 171 

patches.  Participants completed two blocks of trials in which we manipulated 172 

contextual information. In the “no-cue” block, the trial design was identical to that used 173 

in Experiment 1 above. In the “mixed-cue” block, participants performed the same 174 

task, but the target was preceded by either a contextual cue or a pink noise cue (see 175 

Fig. 3A).  Contextual cues were the surrounding image from which a given target was 176 

drawn, with the target cropped out.  By providing target-relevant contextual 177 

information, we directly investigated how observers weigh immediate contextual 178 

information relative to their longer-term priors. Furthermore, the use of a blocking 179 

design (Fig. 3B) allowed investigation into the temporal nature of contextual impacts 180 

on perceptual decisions. By interleaving contextual cues with noise cues in the mixed-181 

cue block, we could further assess the degree to which contextual information carries-182 

over from one trial to the next. 183 

The distributions of response orientations for the no-cue and mixed-cue 184 

conditions are shown in Figure 3C. The proportion of responses close to the objective 185 

upright (i.e., 0°) is almost two-fold greater in the mixed-cue condition than the no-cue 186 

condition, showing a clear facilitation of judgments when targets were preceded by a 187 

cue. Indeed, observers’ circular standard deviation was significantly lower in the 188 

mixed-cue condition (M = 73.55, SD = 3.52) than the no-cue condition (M = 78.01, SD 189 

= 1.58; BF10 = 42244.747; see Fig. 3C). By including contextual cues and noise cues 190 

in the mixed-cue condition, we further found that the changes in performance in the 191 

mixed-cue condition were driven by judgements only when contextual information was 192 

provided (Fig. 3D). These contextual effects cannot be accounted for by simple 193 

practice effects because there was no effect of block order on task performance (BF10 194 

= 0.366; see Fig. 3B/E). Instead, the findings suggest participants’ judgements are 195 

influenced by transient contextual information, enhancing such judgements above the 196 

use of long-term priors alone. However, when contextual information is removed, 197 

observers again rely on priors to make their judgments about novel stimuli.  198 
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 199 

Figure 3. Contextual information enhances perceptual inferences above long-term priors. A) Example 200 

trial schematics for both tasks (no-cue and mixed-cue) in Experiment 2. B) Depiction of the mixed 201 

design of Experiment 2. Participants were split into two groups of 10. Each group did both tasks, but in 202 

different orders to eliminate the impact of potential practice effects on result interpretations. C) 203 

Comparison of mean responses for the no-cue (blue) and mixed-cue (orange) conditions. D) 204 

Comparison of performance for the two cue types within the mixed-cue condition: contextual cues 205 

(yellow) and pink noise cues (blue). E) Comparison of response variability for the two groups depicted 206 

in panel B: Group 1 (no-cue condition first; pink) and Group 2 (mixed-cue condition first; green). The x-207 

axis indicates the block (a temporal category, indicating the order in which the two conditions were 208 

undertaken). The y-axis indicates the circular standard deviation of response orientations.  N = 20; error 209 

bars: ±1 SEM. 210 

Contextual benefits arise rapidly, but are image-specific 211 

The results of Experiment 2 revealed that observers’ perceptual inferences 212 

involve a trade-off between their prior expectations and transient contextual 213 

information.  Recent evidence suggests that contextual information is incorporated 214 

rapidly in the initial feedforward processing of an image (Neri, 2017).  To determine 215 

when contextual effects emerge in our paradigm, we conducted Experiment 3 in which 216 

the duration of the contextual cue was manipulated: cues were presented for either 217 

0.125, 0.25, 0.5, 1.0, 2.0 seconds, or not at all.  This allowed us to investigate the time 218 

course over which contextual information is integrated.   219 
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The distributions of response orientations as a function of cue duration are 220 

shown in Figure 4A. The proportion of inverted responses is similar across cue 221 

durations, most likely because some targets are approximately symmetric across the 222 

horizontal axis (e.g., the bricks in Figure 1A). Nonetheless, the positive relationship 223 

between cue duration and proportion of responses centred on 0° demonstrates the 224 

increasing influence context-specific evidence with exposure. We summarise the data 225 

from each condition using circular standard deviation in Figure 4B, which shows an 226 

inverse relationship between response variability and cue duration, and reveals that 227 

contextual influences emerge rapidly, consistent with previous findings (Neri, 2017).  228 

We fit a hinged line to these data, which further reveals that contextual benefits accrue 229 

with increasing presentation times but then plateau after approximately 0.5 seconds, 230 

suggesting a maximal benefit of contextual exposure (Fig. 4B, hinged line).  Hence, 231 

while contextual benefits appear to arise rapidly, their influences strengthen only up to 232 

a particular exposure time, after which additional benefits become negligible.   233 

 234 

Figure 4. The timing and orientation of the cues influence contextual benefits. A) Results of Experiment 235 

3, comparing mean response proportions for the six cue presentation time conditions (different 236 

conditions depicted by different colours). B) Comparison of response variability for the six cue durations 237 

(x-axis) as measured by circular standard deviation.  A hinged line has been fit to the data to illustrate 238 

the point of maximal contextual benefit (grey). C) Results of Experiment 4, comparing performance in 239 

the upright-cue condition (blue) and rotated-cue (orange) condition, specifically for trials where 240 

contextual cues were given. Given that rotated cues were presented at +90° and -90°, responses for -241 

90° trials have been reverse-coded such that any expected biases away from a 0° response orientation 242 

due to rotated cues can be expected in the same direction (i.e., towards 90°).  For ease of interpretation, 243 

data points of interest have been highlighted by grey boxes.  We see a biasing of responses towards 244 

the presented cue orientation, with a greater proportion of 90° response orientations in the rotated cue 245 

condition compared to the upright cue condition, revealing a biasing effect of the cues’ low-level 246 

features. N = 20 per experiment; error bars: ±1 SEM. 247 
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Contextual benefits arise regardless of relevance 248 

Experiments 2 and 3 elucidated a strong influence of relevant contextual 249 

information on participants’ responses.  However, it remains unclear whether 250 

participants utilise and become biased by contextual information because it is directly 251 

relevant to the task, or simply because observers automatically use any information 252 

regardless of its relevance. We investigated this in Experiment 4, presenting 253 

participants with upright contextual cues as well as cues rotated by ±90°.  Importantly, 254 

participants were explicitly told whether cues were going to be upright or rotated in 255 

separate blocks and were instructed to rotate the target to be upright (i.e., not 256 

necessarily aligned with the contextual cue).  In doing so, participants were actively 257 

discouraged from using rotated cues, allowing us to investigate whether participants 258 

still become biased by these less relevant cues.  259 

We first standardised responses in the ±90° rotated-cue conditions by reverse-260 

coding responses for trials where cues were rotated by -90°. As shown by the 261 

highlighted regions of the distributions in Figure 4C, responses were biased toward 262 

90° in the rotated-cue condition compared to in the upright cue condition.  We also 263 

observed an increase in responses in the opposite direction, i.e., toward -90°.  This is 264 

consistent with participants being influenced by the rotated cue and inverting their 265 

response on a subset of trials.  The presence of such biasing by unhelpful rotated cues 266 

suggests perceptual inferences cannot be made entirely independently of contextual 267 

information, even if that information is explicitly known to be irrelevant.   268 

Discussion  269 

We investigated the contributions of long-term priors and immediate contextual 270 

information to perceptual inferences. Observers performed a task in which they rotated 271 

a target stimulus to its upright orientation, which required them to match the image 272 

features to some internal representation. Across four main experiments, we found that 273 

such perceptual inferences follow from priors for natural image statistics, and that the 274 

availability of transient contextual information enhances such inferences above the 275 

use of long-term priors alone.  276 

Perceptual inferences from natural image statistics 277 

We found converging evidence that participants use priors for low-level image 278 

structure when interpreting isolated naturalistic image regions.  In Experiment 1, 279 

participants’ inferences were explained by a model that matches targets to the 280 

distribution of orientation contrast seen in the natural world on average.  Our reverse 281 
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correlation analyses revealed that even large errors were aligned with the statistics of 282 

natural images on average (Fig. 2D). Therefore, our results demonstrate that 283 

judgments about the appearance of naturalistic images depend on priors accumulated 284 

over many scenes over a relatively long period of time.  285 

While the tendency for observers' responses to be biased toward cardinal 286 

orientations is similar to the oblique effect (Appelle, 1972; Berkley et al., 1975; 287 

Campbell et al., 1966; Dakin, 2001; Dakin et al., 2009; Dakin & Watt, 1997; de Gardelle 288 

et al., 2010; Emsley, 1925; Girshick et al., 2011; Pratte et al., 2016; Westheimer & 289 

Beard, 1998), our results cannot be explained by an oblique effect alone.  Oriented 290 

contrast energy can only elucidate the horizontal and vertical axes of an image, not 291 

which half of the image should be at the top.  Our full model therefore included a free 292 

parameter that estimated observers’ preferred lighting direction, analogous to the well-293 

known light-from-above prior (Brewster, 1826; Metzger, 1936; Murray, 2013; 294 

Ramachandran, 1988), and aligned with behavioural responses. Hence, our results 295 

show that a relatively simple set of priors derived from natural image statistics is 296 

sufficient to drive heterogeneous patterns of perceptual inferences.  297 

Despite the abstract appearance of many targets, observers’ modal response 298 

was accurate in all experiments. We designed targets so that there was no information 299 

that could unambiguously inform participants’ responses. We nonetheless ruled out 300 

any meaningful contribution of high-level structure in two control experiments: these 301 

experiments showed that the targets’ size and image content precluded observers’ 302 

use of high-level or semantic image content to inform their judgments (see 303 

Supplemental Materials).  That observers’ modal response was accurate therefore 304 

reveals that low-level features provide sufficient information to interpret complex 305 

stimuli, such as natural image regions.     306 

Contextual information is assimilated rapidly  307 

Our study demonstrates that perceptual inferences are guided by contextual 308 

information on the sorts of timescales that are behaviourally relevant.  Such shifts in 309 

biases of perceptual judgements have been demonstrated for low-level features such 310 

as orientation (Lorenc et al., 2018; Rademaker et al., 2015; Taylor & Bays, 2018) and 311 

lighting (Adams et al., 2004; Morgenstern et al., 2011; Series & Seitz, 2013).  312 

Contextual influences have also been observed with high-level structures, with 313 

superior object detection and recognition when objects are embedded within 314 

contextually relevant scenes relative to contextually incongruent scenes or in isolation 315 
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(Bar, 2004; Bar & Ullman, 1993; Biederman et al., 1982; Oliva & Torralba, 2007; 316 

Palmer, 1975).  Importantly, we observe response bias shifts in response to contextual 317 

cues displayed for short durations.  Such a time course is consistent with studies 318 

demonstrating our ability to rapidly process high-level information (e.g., scene 319 

categorisations and descriptions; Fei-Fei et al., 2007; VanRullen & Thorpe, 2001; 320 

Walther et al., 2009) and low-level information (e.g., feature averaging; Chong & 321 

Treisman, 2003; Parkes et al., 2001; Wolfe et al., 2011).  Beyond supporting previous 322 

findings, our results suggest that the brain not only prioritises the rapid encoding and 323 

interpretation of complex stimuli, but that it is also able to utilise this information 324 

extremely effectively to inform judgements about subsequent stimuli.   325 

Contextual information is assimilated even when task-irrelevant 326 

In Experiment 4, we found evidence suggesting that contextual information had 327 

an effect on perceptual inferences, even when participants were aware it was task-328 

irrelevant.  Previous literature has demonstrated detrimental impacts of incongruent 329 

context on visual detection/recognition tasks (Bar, 2004; Bar & Ullman, 1993; 330 

Biederman et al., 1982; Oliva & Torralba, 2007; Palmer, 1975).  Such visual search 331 

tasks typically investigate the impact of irrelevant contextual information on an 332 

embedded target that cannot be separated from its contextual surroundings.  Our 333 

study, however, allows us to investigate contextual influences under circumstances 334 

where participants are both aware of the unhelpfulness of the contextual information, 335 

and do not need to use it or explicitly engage with it to complete the task.  The fact 336 

that we observe biasing towards irrelevant contextual information suggests that we 337 

interpret and incorporate contextual information regardless of relevance.  Such a 338 

strategy should be beneficial under most circumstances, reflecting our experience in 339 

the real world where information is most commonly observed within its relevant 340 

context.   341 

Low-level image statistics and cognitive judgments 342 

In the context of visual perception research, there has been substantial debate 343 

around the interactions between perceptual/bottom-up and cognitive/top-down 344 

processing (Firestone & Scholl, 2016; Pylyshyn, 1999).  Relatively little is known about 345 

how such processes interact with one another in the context of interpreting natural 346 

scenes, with many investigations focusing on the contribution of high-level structures 347 

alone, and very few assessing the contributions of low-level perceptual processing. 348 

Such a focus on the contributions of high-level structure to cognitive tasks risks 349 
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underestimating the potential contribution of low-level structure.  Indeed, there is a 350 

precedent for such a notion, with evidence to suggest that systematic biases in visual 351 

working memory for simple stimuli can be accounted for by changes in basic image 352 

statistics (Taylor & Bays, 2018).  Our results are in line with this finding: although our 353 

novel task involved what may be considered a relatively high-level task – to orient a 354 

random natural image patch to the subjective upright – observers’ performance can 355 

be captured by basic low-level image properties. Further, we have found clear 356 

contextual influences on such processes, with participants rapidly becoming biased by 357 

such information (whether relevant or irrelevant). Our results therefore provide insight 358 

into how interpretations of scene appearances follow from the most basic perceptual 359 

processes, which effectively assess a scene based on existing priors for such low-360 

level information in tandem with available contextual information.   361 

  362 
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Methods 363 

General task design 364 

On each trial, participants were presented with one target patch, which was 365 

randomly oriented in the centre of the display (see Fig. 1A-B).  Participants’ task was 366 

to infer the “upright” orientation of the target by rotating it using a mouse.  Specifically, 367 

participants were instructed that they would see a series of “targets”, each cut out from 368 

a larger image, the “source image”, and presented at a random orientation.  369 

Participants were instructed to rotate these targets to their upright orientation.  370 

Performance was measured using the orientations reported by the participant for each 371 

trial relative to the objective upright orientation of the patch (see Fig. 1C).    372 

Participants 373 

Numbers of participants differed across experiments, ranging from N=10-20.  374 

Participants had varying degrees of experience participating in psychophysical 375 

experiments, but all participants were naïve to the purpose of the experiments except 376 

for one participant in Experiment 1 (an author). Ethics approval was granted by the 377 

University of Queensland Medicine, Low & Negligible Risk Ethics Sub-Committee. 378 

Stimuli 379 

Targets and contextual cues were generated in the same manner across all 380 

experiments unless otherwise specified.  Digital natural images were taken from a 381 

database of high-resolution colour photos, cropped to 1080x1080 pixel regions (Burge 382 

& Geisler, 2011).  For Experiments 1-4, target patches were circular patches cropped 383 

from the centre of the 1080x1080 images, subtending 2° of visual angle in diameter. 384 

In experiments where contextual cues were given, the 1080x1080 images that the 385 

target patches were cropped from were used.  These were cropped to an annulus with 386 

a 27° outer diameter and a 2° inner diameter (i.e., cropping out the target patch).  All 387 

stimuli were converted to greyscale using Matlab’s rgb2gray() function.   388 

Apparatus 389 

Stimuli were displayed on a Dell Precision T1700 computer (running Windows 390 

7 Enterprise) with the Psychophysics Toolbox (3.0.12; Brainard, 1997; Pelli, 1997) for 391 

MATLAB (R2015a).  Stimuli were presented on a 24-inch Asus VG428QR 3D monitor 392 

with 1920 x 1080-pixel resolution and a refresh rate of 100 Hz.  A gamma correction 393 

was applied to the display, assuming that gamma was 2. 394 
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Experiment 1 Design 395 

Participants (N=10; no exclusions) completed 600 trials.  For each participant, 396 

150 unique target patches were pseudorandomly selected from a bank of 9,361 397 

potential targets.  Participants performed the task of re-orienting a randomly oriented 398 

target patch to be “upright” on each trial with no additional contextual information given 399 

about the patches (see Fig. 1A-B).  Prior to completing the experiment, participants 400 

did 20 practice trials.  Trial order was randomised and sessions were split into six 401 

blocks of 100 trials with self-timed breaks in between.   402 

In Experiment 1, four copies of each target patch were made, with each copy 403 

having a different level of white noise (0%, 2.5%, 5%, and 10%) applied through 404 

manipulating the RMS contrast of the image.  This was an initial line of interest in the 405 

current study, however there was no significant effect of target noise on participants’ 406 

performance as measured by circular standard deviation (BF10 = 0.933).  We therefore 407 

combined these conditions in the data shown in Figure 2 and the manipulation was 408 

not explored in further experiments.   409 

Experiment 2 design 410 

Twenty-one participants completed 600 trials split into two blocks (see Fig. 3A). 411 

One dataset was not analysed because the participant did not finish the experiment. 412 

In one block, each participant performed the basic task of re-orienting 300 target 413 

patches to be “upright” (the “no-cue” block).  In the other block, participants completed 414 

the same task, but a contextual cue (i.e., the surrounding source image the target was 415 

drawn from with the target cropped out) or a random pink noise patch was displayed 416 

for a duration of 500 ms prior to the target (the “mixed-cue” block).  For the mixed-cue 417 

block, 150 target patches were pseudorandomly selected for each participant: each 418 

unique target patch was presented twice – once preceded by a pink noise patch (noise 419 

cue) and once preceded by the surrounding image from which the target was drawn 420 

(contextual cue).  Participants completed 20 practice trials prior to completing each 421 

block, with practice trials implementing the same cue types as the blocks.  Block order 422 

was counterbalanced across participants (see Fig. 3B).  Trial order for each block was 423 

randomised and each block was split into three sets of 100 trials with self-timed breaks 424 

in between.  On average, participants took 29 minutes to complete each block 425 

(excluding three participants, due to a duration recording error). 426 
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Experiment 3 design 427 

Participants (N=21; one excluded due to not finishing the experiment) 428 

completed 450 trials.  For each participant, 75 unique target patches were 429 

pseudorandomly selected.  Unique target patches were presented six times, preceded 430 

by the surrounding image from which the target was drawn – once for each 431 

presentation length: 0, 0.125, 0.25, 0.5, 1.0, and 2.0 seconds.  Prior to completing the 432 

experiment, participants did 20 practice trials.  Trial order was randomised and 433 

sessions were split into six blocks of 75 trials with self-timed breaks in between.  On 434 

average, participants took 48 minutes to complete the task. 435 

Experiment 4 design 436 

Participants (N=20; no exclusions) completed 600 trials split into two blocks.  In 437 

one block, participants completed the base task, however before seeing the target 438 

patch participants were either shown a typical contextual cue or a random pink noise 439 

patch, with 150 pseudorandomly selected target patches for each participant (the 440 

“upright-cue” block; see Fig. 4C).  The other block had an identical design, however 441 

contextual cues (when presented) were rotated by ±90° (the “rotated-cue” block; see 442 

Fig. 4C).  Block order was counterbalanced across participants.  Participants 443 

completed 20 practice trials prior to completing each block, with practice trials 444 

implementing the same cue types as the blocks.  Each block was split into three sets 445 

of 100 trials with self-timed breaks in between.  On average, participants took 31 446 

minutes to complete each block. 447 

Control experiments 448 

Targets were generated in a uniform manner across images in our database 449 

and were not screened for their content before being shown to participants.  Therefore, 450 

in cases where participants were not given contextual information, the possibility 451 

remained that the targets themselves included sufficient high-level structure to 452 

unambiguously cue their objective upright orientation. The presence of such high-level 453 

information could potentially explain participants’ performance.  For example, if 454 

participants happened to be shown a picture of a car, they would be expected to know 455 

from their semantic knowledge which way is upright.  As such, two control experiments 456 

were conducted to investigate the potential contribution of high-level structure in the 457 

isolated target patches to participants’ performance.  These experiments are 458 

summarised below and described in detail in the Supplemental Materials. 459 
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The first control experiment had participants categorise individual patches 460 

according to whether there was sufficient high-level information present to 461 

unambiguously indicate the “correct” upright orientation of the image (informative) or 462 

not (uninformative).  This experiment found there was neither sufficient numbers of 463 

informative images shown to participants, nor consistently accurate responses made 464 

in response to informative images to account for levels of performance observed.  465 

Thus, informative image regions are unable to account for participants’ inference 466 

judgements of the upright appearance of naturalistic images.  467 

The second control experiment involved the same trial structure and task as 468 

Experiment 1, but the size of the target patch was manipulated to include varying 469 

amounts of the source image. We found that as target size increased (and therefore 470 

the amount of high-level structure), so did performance.  This pattern suggests that 471 

the decision to limit the target size was effective in eliciting task difficulty by limiting the 472 

amount of high-level information present.  Together, our two control experiments 473 

revealed relevant high-level information content that disambiguated the perceptual 474 

task was almost entirely absent for our target stimuli and therefore cannot account for 475 

participants’ performance.   476 

Analyses  477 

Where inferential statistics were performed, Bayesian analyses were 478 

implemented in JASP, using circular standard deviation (i.e., response orientation 479 

variance, where greater variance indicates poorer performance) as the dependent 480 

variable.  For Experiment 3 response variability data (Fig. 4B), we fit a hinged line by 481 

finding the parameters that minimised the square error between each participant’s 482 

data and the model using MATLAB’s fminsearch() function.  483 

A “pretty good observer” model of upright inferences 484 

We developed an observer model that estimates the upright orientation of a 485 

target patch by matching the target’s statistics with the anisotropic distribution of 486 

orientation energy found in nature (e.g., Hansen et al., 2003; Hansen & Essock, 2004; 487 

Harrison, 2022). We refer to this model here as a pretty good observer model, rather 488 

than an ideal observer model, because we only exploit orientation energy and ignore 489 

other statistical features that could further improve performance (e.g., conditional 490 

orientation statistics; Geisler et al., 2001). For a given target patch, we computed 491 

orientation energy in 180 equally spaced orientation bands, each of which covered all 492 

spatial frequencies. These operations were performed in the frequency domain; 493 
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energy was the absolute of the Fourier-transformed target values. Oriented filters were 494 

also constructed in the frequency domain: filters were raised cosines with a bandwidth 495 

of 45°. Energy was summed within each orientation band, giving a distribution of 496 

energy across orientations. We then compared the target's energy distribution to a 497 

prior derived from studies of natural images (e.g., Wei & Stocker, 2015): 498 끫殺(끫欆) ∝ 2− |끫毀끫毀끫毀끫欆| Equation 1 499 

Where 끫殺(끫欆) is the probability of observing contrast energy with an orientation 500 

of 끫欆, in radians. Whereas Equation 1 assumes equal prevalence of horizontal and 501 

vertical orientations, Hansen and colleagues noted there tends to be a horizontal bias 502 

(see also Harrison, 2022). We therefore modified Equation 1 by increasing the 503 

proportion of horizontal energy according to a von Mises function: 504 끫殺(끫欆) ∝ 2− |끫毀끫毀끫毀끫欆| + 끫歬끫歬끫歬끫殺�끫權(cos(끫欆) − 1)�           Equation 2 505 

Where C is the strength of the horizontal bias, and 끫權 is the width of the von 506 

Mises function, which we set to 2.5. Small changes in 끫權 did not change the results. 507 

Before summing the distributions, we first normalised the von Mises function to have 508 

a peak of one.  509 

The model selects the upright orientation of a target by computing the rotational 510 

offset that minimises the sum of the squared difference between the target patch’s 511 

energy and 끫殺(끫欆), performed using MATLAB’s fminsearch() function. Prior to this step, 512 

we further normalised the target’s energy distribution and 끫殺(끫欆) to both fall within the 513 

range 0 – 1. To avoid local minima, we fit the model with varying starting parameters 514 

and took the rotational offset at the global minimum from all fits. Note that this fitting is 515 

entirely independent of an observer’s response – we fit the target’s image statistics to 516 

the prior, but nonetheless approximate observers’ responses very closely (Figure 1A). 517 

However, as described in the Results, this model produces an equal proportion of 0° 518 

and ±180° responses, which is different than observers’ reports. We therefore added 519 

a second stage of the model that, after finding the best rotational offset, estimates 520 

lighting direction from a broadscale filter positioned at the centre of the target. The 521 

orientation of this filter matched the fitted offset. Crudely, this filter can be considered 522 

an estimate of the relative phase of a horizon running through the middle of the target. 523 

Depending on the polarity of the filter’s response, the image was either rotated a 524 

further 180°, or left as is. This step considerably improved the match between the 525 

model responses and observers’ data, as shown in Figures 1A - 1C. 526 
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Control Experiments 708 

Targets were generated in a uniform manner across images in our database 709 

and were not screened for their content before being shown to participants.  Therefore, 710 

in cases where participants were not given contextual information, the possibility 711 

remained that the targets themselves included sufficient high-level structure to 712 

unambiguously cue their objective upright orientation. The presence of such high-level 713 

information could potentially explain participants’ performance.  For example, if 714 

participants happened to be shown a picture of a car, they would be expected to know 715 

from their semantic knowledge which way is upright.  As such, two control experiments 716 

were conducted to investigate the potential contribution of high-level structure in the 717 

isolated target patches to participants’ performance.   718 

Participants 719 

Numbers of participants differed across experiments, ranging from N=2-3.  720 

Participants had varying degrees of experience participating in psychophysical 721 

experiments, and all participants were naïve to the purpose of the experiments except 722 

for one participant in both experiments (an author). Ethics approval was granted by 723 

the University of Queensland Medicine, Low & Negligible Risk Ethics Sub-Committee. 724 

Apparatus 725 

Stimuli were generated on a Dell Precision T1700 computer (running Windows 726 

7 Enterprise) with the Psychophysics Toolbox (3.0.12; Brainard, 1997; Pelli, 1997) for 727 

MATLAB (R2015a).  Stimuli were presented on a 24-inch Asus VG428QR 3D monitor 728 

with 1920 x 1080-pixel resolution and a refresh rate of 100 Hz.  A gamma correction 729 

was applied to the display, assuming that gamma was 2. 730 

Control Experiment 1 731 

Stimuli. Stimuli were made up of targets used in Experiment 1 and 2, as well 732 

as an additional unreported experiment that implemented the same design as 733 

Experiment 2 but did not involve a no-cue block.  In total, there were 7176 unique 734 

targets shown to participants across these three experiments.  Briefly, these targets 735 

were digital natural images taken from a database of high-resolution photos (Burge & 736 

Geisler, 2011) cropped to subtend 2° of visual angle in diameter and converted to 737 

greyscale (see Methods for more detail).   738 

Design. Participants (N = 2; one author) completed 7176 trials.  On each trial, 739 

participants were shown a target in its upright position. For each target, participants 740 

judged whether there was sufficient high-level information present to unambiguously 741 
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indicate the “correct” upright orientation of the image (“informative”) or not 742 

(“uninformative).  For example, patches that contained identifiable objects such as 743 

cars or signs were classified as informative.  Categorisations were made using the 0 744 

(uninformative) and 1 (informative) keys on a keyboard.  Targets were presented until 745 

a response was made, and participants had the ability to backtrack using the 746 

‘Backspace’ key.  Participants completed the experiment across self-selected block 747 

lengths.   748 

Analyses. Results presented here are based on Rater 2’s (non-author) data, 749 

who categorised more images as “informative” (295 of 7176) than Rater 1 (66 of 7176; 750 

an author).  Results are based on Rater 2 as we want to be conservative in attributing 751 

effects to low-level features relative to high-level features in our targets.  Hence, by 752 

basing analyses on Rater 2’s more liberal informative categorisations, we give 753 

informative images the greatest chance of explaining the observed patterns of data 754 

across experiments.   755 

Results. In Experiment 1, there was a sub-sample of image patches 756 

categorised as informative (58 of 1400 unique targets across 10 participants; 4%).  On 757 

average, 6.20 (SEM = 0.63) unique informative images were shown to each 758 

participant, accounting to 4% of the total number of unique targets seen.  Across 759 

participants, we see a range of response orientations when informative images are 760 

shown (Fig. S1A), with informative images responded to accurately on 29% of trials 761 

when they are shown.  Hence, even when presented with informative image regions, 762 

participants do not necessarily perform optimally, diminishing the explanatory power 763 

of informative images accounting for accurate responses.  Indeed, on average, 764 

accurate responses attributed to informative images account for just 1% of 765 

participants’ responses (Fig. S1A).   766 

 767 

 768 
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 769 

Figure S1. The contribution of informative images to participants’ responses. A) Proportion of responses 770 

made in Experiment 1, split by responses made to targets categorised as informative (orange) and 771 

uninformative (blue). B) Proportion of responses made in the no-cue block of Experiment 2, split by 772 

responses made to targets categorised as informative (orange) and uninformative (blue). C) Proportion 773 

of responses made in the mixed-cue block of Experiment 2, split by responses made to targets 774 

categorised as informative (orange) and uninformative (blue). N = 10 (A) & 20 (B/C); error bars: ±1 775 

SEM. 776 

This was reflected in Experiment 2 stimuli.  In the no-cue block, 190 (4%) of the 777 

4510 unique targets used were rated as informative.  On average, 13.5 (SEM = 0.92) 778 

unique informative images were shown to each participant, accounting for 5% of the 779 

total number of unique targets seen.  Again, a range of response orientations for 780 

informative images was observed (Fig. S1B), with informative images responded to 781 

accurately on 34% of trials when they are shown.  Similarly, on average, accurate 782 

responses attributed to informative images account for just 1% of participants’ 783 

responses (Fig. S1B).   784 

Similarly, in the mixed-cue block,107 (4%) of the 2609 unique targets were 785 

rated as informative.  On average, 6.3 (SEM = 0.54) unique informative images were 786 

shown to each participant, accounting for 4% of the total number of unique targets 787 

seen.  Again, a range of response orientations for informative images was observed 788 

(Fig. S1C), with informative images responded to accurately on 50% of trials when 789 

they are shown.  On average, accurate responses attributed to informative images 790 

account for just 2% of participants’ responses (Fig. S1C).   791 

Taken together, these results demonstrate there was neither sufficient numbers 792 

of informative images shown to participants, nor consistently accurate responses 793 

made in response to informative images to account for levels of performance 794 

observed.  Thus, informative image regions are unable to account for participants’ 795 

inference judgements of the upright appearance of naturalistic images.  796 
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Control Experiment 2 797 

Stimuli. Targets were digital natural images were taken from a database of 798 

high-resolution photos (Burge & Geisler, 2011). For each participant, 120 unique 799 

images were selected from the database.  Each unique image had five copies 800 

generated, each cropped to circular patches of different sizes (1, 2, 4, 8, and 16°), 801 

such that different target sizes included varying amounts of the source image (Fig. 802 

S2A).  All stimuli were converted to greyscale. 803 

Design.  Participants (N = 3; one author) completed five blocks of 120 trials, 804 

where each block corresponded to one target size (i.e., 1, 2, 4, 8, or 16°).  Block order 805 

was randomised for each participant.  The task was identical to Experiment 1, requiring 806 

participants to rotate a randomly oriented target patch to be perceptually upright. 807 

Results. As anticipated, when the aera of the original image presented 808 

increased beyond that used in Experiments 1-4 (2° of visual angle), performance 809 

steadily increased, supported by large increases in the number of responses centred 810 

on a response orientation of 0° (Fig. S2B) and large decreases in response variability 811 

as measured by circular standard deviation (Fig. S2C).  Improved performance with 812 

larger patch sizes suggests that providing larger patches, and therefore more high-813 

level structure, makes the patches more informative and decreases the difficulty of the 814 

task.   815 

 816 

Figure S2. The impact of image size on perceptual inferences for naturalistic images. A) Depiction of 817 

target sizes used (1, 2, 4, 8, and 16°; smaller than actual size, but to scale relative to one another). B) 818 

Comparison of mean response proportions for the five target size conditions (different conditions 819 

depicted by different colours). C) Comparison of response variability for the five target sizes (x-axis) as 820 

measured by circular standard deviation. N = 3; error bars: ±1 SEM. 821 
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Overview  822 

Overall, results from our informativeness and patch size control experiments 823 

suggest that limiting the targets to a windowed patch, particularly at our chosen patch 824 

size, was effective at removing much of the high-level structure present.  Taken 825 

together with the four main experiments, the results presented suggest that priors for 826 

statistical regularities of low-level features in nature are sufficient to make informed 827 

interpretations of isolated naturalistic stimuli. 828 
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