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Abstract
Recurrence of somatic mutations at the exact same position across patients (hotspots) are often

identified as potential cancer drivers, assuming that they are unlikely to be generated by neutral

mutagenesis.  Recent  studies  have  challenged  this  by  identifying  examples  of  mutational

processes that generate passenger hotspots. However, no comprehensive study to identify and

quantify the determinants of hotspots formation across tumours has been carried out to date. In

this work, we conducted a systematic analysis of passenger hotspot events across more than

7,500  whole  genome  sequences  from  different  malignancies.  We  found  that  mutational

signatures  1  (SBS1)  and  17  (SBS17a  and  SBS17b)  have  the  highest  propensity  to  form

hotspots, generating 5-80 times more than other common somatic mutational processes. The

trinucleotide mutational probabilities and genomic sequence composition partially explain the

high SBS1 hotspot propensity. Strikingly, the vast majority of hotspots (46-96%) contributed by

different signatures remain unexplained after correcting for their sequence context preferences

and the large-scale mutation rate variability. This finding reveals the extension of our lack of

knowledge about how mutations occur, and highlights the need of identifying and subsequently

modelling  additional  sequence  and  chromatin  features  that  influence  mutation  rate  at  base

resolution. This is key to accurately modelling the mutation rate under neutrality, an essential

step  for  identifying  cancer  drivers,  and  –given  the  known  activity  of  SBS1  across  other

organisms  and  in  germ  cells–  also  for  reconstructing  evolutionary  histories  and  studying

genome evolution.
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Introduction

Accurately modelling mutation rate in human and other species is essential to study somatic

and germline evolution. The landscape of somatic mutations in the human genome is shaped by

the interplay between DNA damage and repair. These processes act differently across genomic

regions influenced by multiple features of the genome organisation. At large scale, variables

such  as  chromatin  accessibility,  transcriptional  activity  and  replication  timing  are  known  to

impact the distribution of mutations1–4. At small scale, nucleotide sequence composition is a key

determinant  of  mutagenesis  and  has  been  exploited  to  characterise  mutational  processes

through the identification of mutational signatures5–7. 

Moreover, genomic features at the local-scale level --ranging from less than 10 nucleotides to

up to a few thousand base pairs-- can also influence the distribution of mutations contributed by

specific  mutational  processes or  signatures8.  For  example,  clusters of  somatic  mutations at

transcription  factor  binding  sites  in  melanomas  are  contributed  by  single  base  substitution

signature  7  (SBS7)  caused  by  exposure  to  UV-light9–12.  Similarly,  mutations  contributed  by

SBS17, a signature of unknown aetiology that has been identified in esophageal and stomach

cancers, as well as in neoplasms previously exposed to capecitabine or 5-FU, has been shown

to cluster at CTCF binding sites in colorectal cancers13,14. The formation of non-canonical DNA

secondary structures, such as DNA hairpins at short inverted repeats, are localised targets of

SBS2 and SBS13 caused by the APOBEC family of  cytidine deaminases and microsatellite

instability  related signatures15,16.  At  a  larger  scale,  APOBEC has  been shown to  contribute

localised  or  scattered  hypermutation  clusters  in  processes  known  as  kataegis and  omikli,

respectively6,17,18.  The  DNA  wrapping  around  nucleosomes  is  also  known  to  affect  the

distribution of mutations contributed by different signatures, including SBS7 and SBS17 19. 

Less is known about the determinants of the extreme case of mutation clustering: mutational

hotspots,  defined as recurrent  mutations  affecting  the exact  same genomic  position  across

cancers.  They  have been  analysed  mostly  in  the  context  of  the  identification  of  signals  of

positive selection in cancer20–22, and it is often assumed that they indicate the presence of driver

mutations. Nevertheless, recent studies have challenged this assumption by showing a high

frequency of passenger hotspots across cancers23–25. There is thus a need to characterise the

mutational  processes  and  genomic  determinants  involved  in  the  formation  of  passenger

hotspots, as a key to reliably identifying driver mutations. In this line, it has been shown that UV-

light damage can preferentially target specific residues within the binding sites of ETS-family of

transcription  factors,  generating  hotspots26,27.  It  is  also  known that  hotspots  of  APOBEC3A

mutations  are  more  likely  to  appear  at  particular  positions  in  ssDNA  loops  within  DNA

hairpins24,28,29.  Although  these  studies  demonstrate  that  mutational  processes  --without  the

action of positive selection-- can create passenger hotspots, no large-scale analysis to broadly

characterise and quantify hotspots, and to explore the processes underlying their formation has
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been carried out to date. The knowledge of mutational processes is essential to correctly model

the  mutation  rate  under  neutrality.  This,  in  turn,  is  key  to  accurately  identifying  drivers  of

tumorigenesis across cancer samples, modelling evolutionary trajectories, assessing the impact

of variants in the human germline, and understanding the evolution of genomic sequences. It is

within this framework that a comprehensive characterization of the underlying determinants of

hotspots mutagenesis is of interest. 

In  the  present  work,  we  leveraged  somatic  mutations  of  more  than  7,500  whole  genome

sequences of tumours from 49 cancer types, and we systematically detected and quantified the

mutational processes creating passenger hotspots. We discovered that mutational processes

active across tumours exhibit  very different  propensities to form hotspots,  with signatures 1

(SBS1) and 17 (SBS17a and SBS17b) generating 5-80 times more hotspots than other common

mutational  processes considered in our study (SBS2, SBS3, SBS4, SBS5, SBS7a-b, SBS8,

SBS13, SBS18, SBS40, and SBS93). A part of the higher propensities of these two signatures

to  form hotspots  are  explained  by  the  specificity  of  their  activity  across  trinucleotides,  the

trinucleotide  composition  of  the  human  genome and  the  megabase-scale  variability  of  the

mutation  rate.  However,  a  large  proportion  (74-96%)  of  the  hotspots  attributed  to  SBS1,

SBS17a and SBS17b remain unexplained after correcting for these features. Other small scale

sequence and chromatin features may thus play an important role in hotspot formation. We

explore CTCF binding sites in the case of SBS17, and CpG islands for SBS1, and find that

although those regions accumulate significantly more hotspots than their neighbouring areas,

they account for only a tiny proportion of the unexplained hotspots along the genome. This

leaves other, mostly unknown, DNA sequence and chromatin features as contributors to the

high propensity of these two signatures to form hotspots across tissues. Altogether, our results

show that mutational processes, particularly SBS1 and SBS17, have an unexpected propensity

to create passenger hotspots. This finding highlights our current difficulty to accurately estimate

the mutation rate –specifically contributed by these signatures– under neutrality at nucleotide

resolution, and stresses the need for identifying and subsequently modelling additional small

scale features that influence it. 
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Results

Mutational hotspots across cancers

We collected and filtered publicly available whole genome sequencing (WGS) data from 7,507

tumours comprising 83,410,018 somatic mutations (SNVs and short indels) from primary and

metastatic cancers (Fig. 1a-c;  Supplementary Table S1; Methods). Samples were classified

into 49 different cancer types, 8 of them meta-groups, following the Memorial Sloan Kettering

Cancer  Center  (MSKCC)  OncoTree hierarchy30 (Fig.  1a;  Supplementary  Table  S1 and S2).

Since our objective was the study of the distribution of mutational hotspots along the genome

under  neutrality,  we removed mutations  overlapping  the coding sequence  of  known cancer

driver genes31,32 and their surrounding non-coding regions (Fig. 1e; Supplementary Table S3;

Methods). Next, we identified hotspots of somatic mutations across the samples of each cancer

type using a new method named HotspotFinder. Briefly, HotspotFinder identifies and annotates

unique genomic positions that are recurrently mutated (two or more times) to the same alternate

(e.g., two C>T transitions) across tumours by independently analysing single nucleotide variants

(SNVs),  multi-nucleotide  variants (MNVs),  small  insertions  and deletions  (Fig.  1d;  Methods;

Supplementary Note 1). HotspotFinder may also be used to identify hotspots of mutations with

different alternates (e.g., C>T and C>G; Supplementary Note 1). 

A  total  of  1,562,007  alternate  specific  hotspots  of  four  different  types  of  mutations  were

identified across individual cancer types (3,106,182 across the pan-cancer cohort): 1,361,633

corresponded to SNVs (87.2%), 125,658 to deletions (8.0%), 72,892 to insertions (4.7%), and

1,824 to MNVs (0.1%) (Fig. 1f-g;  Supplementary Table S4). Hotspots covered approximately

0.06% of the mappable hg38 reference genome (approximately 2,531 Mbps; see Methods) and

the vast majority (99.44%) were located in non-coding regions. The largest number of hotspots

(n=1,095,121)  were  observed  across  skin  melanomas,  followed  by  colorectal  (n=165,473

hotspots) and esophageal cancers (n=106,025 hotspots) (Fig. 1f). In all cancer types except

retinoblastomas  at  least  one  hotspot  was  observed.  The  majority  of  hotspots  were  small,

comprising  2  or  3  mutated  samples  (Fig.  1h,  Supp.  Fig.  1),  although  we  observed  a  few

exceptions  (Fig.  1h,  Supp.  Fig.  1-2).  Hotspots  of  insertions  and  deletions  were  particularly

abundant (at similar or greater rates than SNVs hotspots) across cancer types with active indel

mutational  processes  (i.e.,  19.3%  and  30.1%  insertion  and  deletion  hotspot  frequency  in

colorectal tumours) (Fig. 1f-g, Supp. Fig. 3). High rates of hotspots of insertions and deletions

across other tumour types with few samples may be due to other mutational  processes,  or

sequencing and/or calling errors and biases across cohorts as shown in other studies33. Given

that the vast majority of hotspots identified are composed of SNVs, we decided to focus on the

study of their formation. Henceforth, we use hotspot as synonymous with SNV hotspot.

As expected, the number of hotspots per cancer type increased with sample size and mutation

burden  (Spearman’s  R=0.93,  p=9e-18  and  R=0.72,  p=2e-7,  respectively;  Supp  Fig.  4).

However, we noticed that hotspots formed at different rates across tumour types (Fig. 2a; Supp.
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Fig. 5). In order to quantify and compare hotspots formation across cancer types, we calculated

the number of SNVs required to generate one hotspot (hotspot conversion rates) in each group

(Methods). We found large variability in hotspot conversion rates across malignancies, ranging

from  21  mutations  in  melanomas  to  3,036  mutations  in  medulloblastomas  (Fig.  2b).  After

melanomas, the lowest conversion rates were observed across esophageal, colorectal, bladder-

urinary and non-small cell lung cancers (36, 208, 333, and 569 mutations, respectively) (Fig.

2b). Altogether, these findings indicate that the rate of hotspot formation differs more than 144

fold across cancer types. 
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Figure 1 
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Fig. 1. Identification of hotspots across cancers. a) Cancer types analysed depicting specific and meta-cancer

types in light and dark grey, respectively.  b) Number of patients and sequencing cohorts among specific cancer

types. c) Detail of the number of primary, metastatic, adult and paediatric tumours analysed. d) Schematic overview

of HotspotFinder, a new algorithm to identify hotspots of somatic mutations (Methods; Supplementary Note 1).  e)

Overview of the steps for hotspots identification. f) Summary of total hotspots identified across specific cancer types

and g) meta-cancer types. h) Histograms of hotspot size (number of mutated samples per hotspot) considering only

hotspots from specific cancer types. Embedded dotplots show hotspot sizes per individual hotspot, where the shape

and the colour represents the overlapping genomic element and the cancer type where the hotspot was identified,

respectively.  Cancer types are listed as follows:  Acute Lymphoblastic Leukemia (ALL),  Acute Myeloid Leukemia

(AML),  Adrenocortical  Carcinoma  (ACC),  Anal  Cancer  (AN),  Basal  Cell  Carcinoma  (BCC),  Biliary  Tract

(BILIARY_TRACT),  Bladder/Urinary  Tract  (BLADDER_URI),  Bone/Soft  Tissue  (BONE_SOFT_TISSUE),  Bowel

(BOWEL), CNS/Brain (BRAIN), Cervix (CERVIX), Colorectal Adenocarcinoma (COADREAD), Cutaneous Melanoma

(SKCM),  Cutaneous Squamous Cell  Carcinoma (CSCC),  Endometrial  Carcinoma (UCEC),  Ependymoma (EPM),

Esophageal cancer (ES), Esophagus/Stomach (ESOPHA_STOMACH), Glioblastoma Multiforme (GBM), Head and

Neck (HEAD_NECK), High-Grade Glioma NOS (HGGNOS), Invasive Breast Carcinoma (BRCA), Kidney (KIDNEY),

Liver (LIVER), Low-Grade Glioma NOS (LGGNOS), Lung (LUNG), Lung Neuroendocrine Tumor (LNET), Lymphoid

Neoplasm  (LNM),  Medulloblastoma  (MBL),  Myeloid  Neoplasm  (MNM),  Myeloproliferative  Neoplasms  (MPN),

Neuroblastoma (NBL), Non-Hodgkin Lymphoma (NHL), Non-Small Cell Lung Cancer (NSCLC), Oligodendroglioma

(ODG),  Ovarian  Cancer  (OV),  Pancreas  (PANCREAS),  Pilocytic  Astrocytoma  (PAST),  Pleural  Mesothelioma

(PLMESO), Prostate (PROSTATE), Retinoblastoma (RBL), Skin (SKIN), Small Bowel Cancer (SBC), Small Bowel

Neuroendocrine Tumor (SBNET), Small Cell Lung Cancer (SCLC), Stomach cancer (ST), Thyroid (THYROID), Vulva

(VULVA). 
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Figure 2

Fig. 2. Cancer types differ in their tendency to form hotspots. a) Scatter plots showing hotspot burden versus

mutation burden per sample across the full set of esophageal and colorectal cancers. Fitted regression lines are

shown in grey (Methods).  b) Median conversion rates (number of mutations to observe 1 hotspot) across cancer

types with more than 100 samples and at least 750 significant linear models across random replicates (mean=978.9

models per cancer type, range=777-1000; Methods). Dot size represents the goodness of fit of the linear model (R2

adjusted). Error bars show the range of conversion rates across significant replicates. 
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Propensity of mutational processes to form hotspots

We  reasoned  that  mutational  processes  with  different  activity  across  tumour  types  would

present  different  propensity  to  form  mutational  hotspots,  thus  underlying  the  observed

differences in conversion rates. Supporting this hypothesis, we found that, across cancer types,

hotspots  were  differentially  enriched  for  different  types  of  nucleotide  changes,  and  within

particular trinucleotide sequences (Supp. Fig. 6-7). In order to identify the mutational processes

contributing hotspots,  we conducted a de novo extraction  of  single  base substitution (SBS)

signatures in the 96 pyrimidine-centred trinucleotide contexts and decomposed the extracted

signatures  into  their  component  COSMIC  v3.2  GRCh38  SBS  signatures  to  facilitate

comparisons across tumour types (Fig. 3a; Supp. Fig. 8; Methods; Supplementary Note 2). 

We then estimated the number of hotspots generated by each COSMIC mutational signature in

each tumour type (Fig. 3b; Supp. Fig. 9; Methods). SBS1 appeared as an important contributor

of hotspots across all  cancer types, particularly in tumours of the brain (69.6% of hotspots),

pancreas  (60.9%;  Fig.  3b),  prostate  (42.3%)  and  colorectum (39.7%;  Fig.  3b),  which  is  in

agreement with the observed enrichment of hotspots in C>T transitions in the NpCpG context in

these malignancies  (Supp.  Fig.  6-7).  We found SBS17a and SBS17b to  contribute  a large

proportion  of  hotspots  in  esophageal  cancers  (16.8  and  72.3%  of  hotspots,  respectively),

stomach tumours (12.1 and 67.4%), and, to a lesser degree, to those in colorectal cancers (1.51

and 18.6%) (Fig.  3b;  Supp.  Fig.  9).  This  is  in  accordance with  hotspot  enrichment  of  T>G

transversions and T>C transitions, specially within CpTpT contexts in gastrointestinal tumours

(Supp. Fig. 6-7). SBS5, an age-related signature of unknown aetiology ubiquitous across cancer

types, SBS2 and SBS13 (APOBEC-related), SBS4 (related to tobacco smoking), and SBS7a

(caused by UV light  damage) were responsible for a high proportion of  hotspots of  specific

cancer types (Fig. 3b; Supp. Fig. 9). Considering that some mutational processes are known to

be  better  defined  by  extended  contexts,  e.g.,  pentanucleotides7,  we  checked  whether  the

hotspots contributed by different signatures show preferences for certain nucleotides in a 21 bp-

wide window (Supp. Fig. 10). A small preference for specific nucleotides within this extended

context (some of them already known) are apparent for some signatures, such as SBS7a and

b7, SBS17a and b34,35, and SBS93. In every case, however, the contribution of the trinucleotide

sequence is clearly stronger than that of the extended context, suggesting that the latter would

only play a smaller role in the formation of hotspots, similarly as others have found for overall

mutations7. 

While the burden of hotspots contributed by each mutational signature showed, as expected, a

good correlation with its activity and the proportion of samples at which it  was found active

(Supp. Fig. 11), neither of these variables explain the differences in conversion rate observed

across malignancies (Fig. 2b). We thus set out to estimate the propensity of signatures to form

hotspots --that is, their intrinsic inclination to contribute hotspots, independent of their overall

contribution to the mutation burden. We selected 14 mutational signatures with high activity in at

least  one  cancer  type  (detailed  criteria  in  Methods)  and  re-ran  hotspot  identification  upon
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subsampling  a  fixed number  of  mutations  contributed by each of  them. Across  a  range of

10,000-30,000  mutations  sampled  from  100  tumours  (at  equal  number  of  mutations  per

sample), we observed approximately 1 to 2 orders of magnitude more hotspots contributed by

SBS17b,  SBS17a and SBS1 than by the other eleven mutational  signatures studied across

tumour types (Fig. 3c-f). Specifically, for 30,000 mutations across 100 samples, a median of 79,

73 and 40 hotspots  were observed for  SBS17b,  SBS17a and SBS1,  respectively  (Fig.  3f).

Conversely, SBS7a,  SBS18,  SBS2,  SBS93,  SBS8,  SBS7b,  and  SBS13  contributed  4-7

hotspots,  and  SBS5,  SBS40,  SBS3  and  SBS4  generated  1-2  hotspots  (Fig.  3f).  That  is,

SBS17b, SBS17a and SBS1 contributed  5-80 times more hotspots than the other signatures

under  the same conditions.  In  an orthogonal  calculation  of  the propensity  to  form hotspots

employing the fold change of mutations contributed by each signature across tumours inside

and outside hotspots, we obtained very similar results (Supp. Fig. 12,13; Supplementary Note

3). In summary, SBS17b,  SBS17a and SBS1 show the highest  propensity to form hotspots

among mutational processes commonly active in human tissues. 
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Figure 3

Fig. 3. Mutational processes with increased propensity to form hotspots. a) Graphical definition of the analysis

of mutational signatures in the sets of mutations inside and outside hotspots.  b) Pie charts depicting the relative

number of hotspots observed per signature in the cancer type. c) Number of hotspots per signature and cancer type

observed by subsampling 30,000 total mutations (300 mutations/sample, 100 samples) within each group in the set of

mappable megabases (Methods). Cancer type-signature pairs are sorted by descending mean number of observed

hotspots. d) Median number of observed hotspots per signature across subsamples containing at different mutation

burdens  (100-300  mutations/sample,  100  samples)  (Methods).  In  order  to  obtain  signature-level  estimates,

subsamples across different cancer types were merged as listed in Methods. e) Zoom into 0-10 hotspots from d. f)

Number  of  hotspots  per  signature  observed  within  30,000  subsampled  mutations  (300  mutations/sample,  100

samples) across cancer types merging data shown in c. Error bars show 1.5 times the IQR below and above 1st and

3rd quartiles, respectively. Signatures are sorted in descending order according to the mean number of observed

hotspots. 
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Signature profile unevenness and trinucleotide abundance affect hotspot formation

We hypothesised that one possible reason for the disparity in propensity to form hotspots of

different mutational processes could be the number of genomic positions available to each of

them. This is determined, in the first place, by the particular trinucleotide mutational probabilities

of the signature that give rise to a particular shape (i.e., skewness or unevenness vs uniformity

or  evenness)  of  its  trinucleotide  profile.  We  measured  the  unevenness  of  the  activity  of

signatures across trinucleotides as the entropy of their mutational profile normalised by their

abundance  in  the  human  genome,  which  informs  about  the  mutational  probability  of  the

signature across trinucleotides irrespective of the genome composition. The more uneven the

profile of a signature, the lower its entropy (Fig. 4a; Supp. Fig. 14a). The three signatures with

the highest propensity to form hotspots across tissues (SBS1, SBS17b and SBS17a) showed a

low entropy profile (Fig. 4b; Methods). In general, signatures with even profiles, such as SBS3

and SBS5, did not display a high propensity to form hotspots. This can be explained by the fact

that the fewer active trinucleotides in a mutational signature (the more uneven its profile), the

more likely it is that two mutations contributed by the process map to the same genomic position

(Fig. 4b).

The availability of the 96 trinucleotides in the human genome must also influence the propensity

of  different  mutational  signatures  to  form  hotspots.  To  investigate  the  combined  effect  of

genomic  trinucleotide  abundance  and  signatures  prolife  unevenness,  we  determined  the

theoretical  (or  expected)  number  of  hotspots  formed  by  mutations  contributed  by  several

processes  (see  details  in  Methods  and  Supplementary  Note  4).  The  expected  number  of

hotspots contributed by different  mutational  signatures  differed from those observed for  the

same signatures in two important aspects (Fig. 4c). First,  4.3-75.6 times  more hotspots were

expected to be contributed by SBS1 than by any other signature at equal sample size and

mutation  rate  (Fig.  4c;  Supp.  Fig.  14b).  SBS17b and  SBS17a  fell  to  the  second  and  third

position of the ranking under this theoretical model, with 5.8 times fewer expected hotspots than

SBS1 (Fig. 4c; Supp. Fig. 14b). The four trinucleotides with highest activity of SBS1 (NpCpG)

are comparatively depleted in the human genome (0.4-0.5 % NpCpG vs 1.9-7.9 % non-NpCpG

in mappable bins) (Fig. 4d;  Supp. Fig. 14c). Conversely, the NpTpT and CpTpN trinucleotides,

which concentrate the activity of SBS17b and SBS17a, respectively, show average (or above

average)  representation  in  the  human  genome  (Fig.  4d).  This  difference  in  trinucleotides

availability thus explains why SBS1 has the highest expected propensity to form hotspots (Fig.

4b-c) and suggests that other factors apart from trinucleotide sequence composition underlie the

observed propensity of SBS17. 

Secondly, for all mutational signatures analysed, we observed more hotspots than expected,

with  the highest  differences for  SBS17b,  SBS17a and SBS1 (Fig.  4e;  Methods).  Since the

number of hotspots computed via the theoretical model only account for the unevenness of the

mutational profile of the signature and the abundance of trinucleotides in the genome, other

factors must be at play in the generation of the observed number of hotspots. 
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Figure 4

Fig.  4.  Contribution  of  trinucleotide  mutational  probabilities  and  trinucleotide  abundance  to  hotspots

formation across signatures. a) Normalised trinucleotide profiles of SBS1, SBS17b, SBS5 and SBS3; additional

signatures  are  shown  in  Supp.  Fig.  14a.  b)  Number  of  observed  hotspots  (y  axis)  versus  the  entropy  of  the

normalised  signature  profile  (x  axis).  Observed  hotspot  propensity  was  computed  by  subsampling  30,000  total

mutations  (300  mutations/sample,  100  samples)  within  mappable  megabases  (Methods).  Error  bars  show  the

interquartile ranges (IQR) of the number of hotspots observed across subsamples. c)  Number of expected hotspot

propensity (y axis) versus the entropy of the normalised signature profile (x axis). Expected data was generated using

the  trinucleotide  model  of  hotspots  formation  for  300  mutations/sample  and  100  samples  across  mappable

megabases, therefore it is comparable to the data in b. d) Mutational probability of trinucleotides per signature versus

their  frequency  within  mappable  megabases.  The  mutational  probability  for  each  trinucleotide  was  obtained  by

merging those from the respective three alternates given by the normalised signature profile.  e)  Comparison of

observed versus expected hotspot propensity per signature (top-middle) and the fold change of observed versus

expected number of hotspots (bottom). Observed dots show median hotspots; error bars show the IQR. Observed

and expected data correspond to that shown in b and c. 
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The effect of large scale chromatin features

We  reasoned  that  another  factor  underlying  the  differences  in  hotspot  propensity  across

signatures could be the uneven distribution of their mutations along the human genome. Several

megabase scale chromatin features, such as replication time and chromatin compaction are

known to play a role in this variability of the mutation rate along the genome1–4,36–38. To compute

if  the distribution  of  mutations  at  the megabase scale  influences the propensity  of  different

signatures to form hotspots, we counted the number of mutations and hotspots contributed by

each signature in  autosomal mappable bins of  length 1 Mbp. We found that  the density  of

hotspots was positively correlated with that of mutations at the megabase scale (Supp. Fig. 15),

as illustrated along chromosome 1 for SBS1 and SBS17b in colorectal cancers (Fig. 5a).  As

expected, hotspot density per megabase correlated with chromatin accessibility, replication time

and level of transcription (Fig. 5a; Supp. Fig.16-18).

In  order  to  quantify  the  potential  effect  of  the  unevenness of  the  genomic  distribution  of  a

signature in the formation of hotspots, we first computed the overdispersion of the distribution of

the number of mutations contributed at different megabase bins along the genome (Fig. 5b;

Methods). SBS1 mutations exhibit low overdispersion across megabase genomic bins. Others,

like SBS17b, show large variability in mutation counts at the megabase scale (Fig. 5b; Supp.

Fig.  19).  Actually,  SBS1,  SBS17a  and  SBS17b,  the  mutational  processes  with  the  highest

propensity to form hotspots, appear at opposite ends of the spectrum of megabase mutation

overdispersion  (Fig.  5c).  SBS17a and SBS17b exhibit  the highest  megabase mutation  rate

unevenness,  followed  by  SBS18  and  SBS4  (Fig.  5c).  While  differences  in  the  interplay  of

mutational processes with chromatin features may underlie the dissimilar unevenness observed

across signatures, it is worth noticing that the NpTpT trinucleotides targeted by SBS17a and

SBS17b show a greater inter-megabase variability than the NpCpG targeted by SBS1 (Supp.

Fig. 14d). 

Next, we compared the number of hotspots observed across 1 Mb segments of the genome

with  that  expected  after  accounting  for  the  megabase  distribution  of  mutations  and  the

trinucleotide  composition  of  each  segment  (Fig.  5d;  Methods).  The  observed-to-expected

hotspot fold-change is still  greater than 1 for all  signatures, as was the case when only the

signature  profile  and  the  trinucleotide  composition  were  taken  into  account  (Fig.  4e).

Nevertheless, the expected number of hotspots (in particular for SBS17a and SBS17b, those

with highest  megabase mutation rate unevenness) is higher than that in Figure 4e. In other

words,  the  megabase-scale  distribution  of  mutations  contributed  by  different  signatures

influences their propensity to form hotspots, and this influence appears clearer the higher the

unevenness  of  their  mutation  rate  along  the  genome.  However,  an  important  part  of  the

propensity of signatures to form hotspots (especially in those with higher propensity) remains

unexplained.
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Figure 5

Fig.  5.  Contribution of  large scale unevenness to hotspots  formation across signatures.  a) Proportion  of

observed hotspots  (top)  and mutations  (bottom)  in  colorectal  cancers  attributable  to  SBS1 and SBS17b across

mappable megabases of chromosome 1. Normalised epigenomic signals of chromatin accessibility, replication timing

and expression per megabase are shown below.  b)  Distribution of  the observed proportion of  mutations across

mappable megabases. Alpha values show the overdispersion of the negative binomial  distribution fitted with the

mutation counts per megabase (Methods). c) Number of observed hotspots versus the overdispersion (unevenness)

of mutation counts within  genomic megabases. Observed hotspots were computed by subsampling 30,000 total

mutations (300 mutations/sample, 100 samples) within mappable megabases as shown in Fig. 4b. d) Comparison of

observed  versus  the  expected  theoretical  number  of  hotspots  per  signature  (top-middle)  calculated  with  the

trinucleotide-megabase  model  accounting  for  trinucleotide  composition  and  large-scale  mutation  rate  variability.

Expected data was generated for 300 mutations/sample and 100 samples across mappable megabases. Dots show

the median number of hotspots across cancers. Error bars correspond to the IQR. The fold change of observed

versus expected number of hotspots is shown below.
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Missing factors explaining the number of observed hotspots

We  quantified  the  proportion  of  hotspots  contributed  by  different  signatures  that  remain

unexplained after accounting for the signature profile unevenness, the trinucleotide composition

of  the  human  genome,  and  the  differential  megabase-scale  distribution  of  mutations.  On

average  across 14 mutational  signatures,  81.2% (range=46.1-96.2%)  of  observed  hotspots

remain unexplained after taking these factors into account (Fig. 6a). The fraction of unexplained

hotspots is particularly sizable for SBS17a and SBS17b, where only 6.7% and 3.8% hotspots,

respectively,  are  explained  by  theoretical  models  that  accommodate  previously  mentioned

covariables of hotspot generation. The proportion of SBS1-contributed hotspots explained by

these factors is larger (25.8%), but still far from their observed number (Fig. 6a). This suggests

that other sequence and chromatin features below the megabase-scale play a significant role in

hotspots formation and their distribution across the genome (Supp. Fig. 20).

Some  chromatin  features  below  the  megabase  scale  are  known  to  interact  with  different

mutational processes influencing their local activity8. We thus explored the effect of known small

scale chromatin covariates on the formation of SBS1 and SBS17a and SBS17b hotspots. For

example, SBS17a and SBS17b hotspots appear increased in colorectal (14.78 and 14.79 times)

and esophageal-stomach tumours (3.82 and 3.21 times) at CTCF binding sites with respect to

their flanking sequences, significantly beyond the expectation from their sequence composition

(Fig. 6b,c; Supp. Fig. 21). These results are consistent with CTCF binding sites bearing clusters

of SBS17 mutations13,14,38. Similarly, the rate of SBS1 hotspots at CpG islands is, on average,

four  times higher  than their  flanking regions across tumour  types (mean=4.44,  range=3.27-

5.16), and also above the rate expected from their sequence composition (Fig. 6e,f; Supp. Fig.

22). This indicates that non-sequence based local features affect SBS17a, SBS17b and SBS1

hotspot formation at CTCF binding sites and CpG islands, respectively. 

Importantly, only 0.8% and 1.7% of SBS17a hotspots, and 0.5% and 1.3% of SBS17b hotspots

in esophageal-stomach and colorectal cancers, respectively, overlap CTCF binding sites (Fig.

6d), although the majority of CTCF-overlapping hotspots in these two tumour types (86% and

53.5%) are contributed by these two signatures together. Similarly, only 2% of SBS1 hotspots

are located within CpG islands across cancer types (range=1.4-2.5%; Fig. 6g), despite the fact

that  between 15% (breast  tumours)  and  82% (colorectal  adenocarcinomas)  of  CpG island-

overlapping hotspots are attributed to SBS1. 

In summary, the results presented here highlight that the observed hotspot propensity remains

by large unexplained by currently known factors affecting mutation rates, stressing the need for

identifying the broad set of sequence and chromatin features governing hotspots formation to

accurately measure neutral mutagenesis. 
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Figure 6

Fig. 6. Trinucleotide composition and large-scale covariates do not account for most observed hotspots. a )

Observed hotspots by subsampling 30,000 total mutations (300 mutations/sample, 100 samples) within mappable

megabases and the proportion of observed hotspots that are accounted for by the theoretical models (trinucleotide

model in light yellow and trinucleotide-megabase model in yellow) at equivalent mutation rates and genomic regions.

b) Fold changes of piled up observed mutations within CTCF binding sites (600 bp) compared to their flanking 5’ and

3’ regions (700 bp on each flank). Significance of the observed fold change compared to the expected fold change

are shown as p<1e-6 (*); 1e-6<p<0.01 (#). c) Normalised mutation rate of SBS17b in colorectal cancers across CTCF

binding sites and their flanking regions. Piled-up mutation rates of mutations inside and outside hotspots, together

with the expected distribution of mutations inside hotspots, are shown. Observed fold changes and their significance

with respect to the expected fold change distribution are depicted on top. Additional plots for all signatures can be

found at Supp. Fig. 21. d) Proportion of SBS17b colorectal hotspots overlapping tissue-matched CTCF binding sites.

e) Fold changes of piled up observed mutations within CpG islands (1,000 bp) compared to their flanking 5’ and 3’

regions (1,000 bp on each flank). Significance of the observed fold change compared to the expected fold change are

shown as p<1e-6 (*). f) Normalised mutation rate of SBS1 in colorectal cancers across CpG islands and their flanking

regions. Piled-up mutation rates of mutations inside and outside hotspots, together with the expected distribution of

mutations inside hotspots, are shown. Observed fold changes and their significance with respect to the expected fold

change distribution are depicted on top. Additional plots for all signatures can be found at Supp. Fig. 22. g) Proportion

of SBS1 colorectal hotspots overlapping CpG islands.
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Discussion

This study constitutes,  to the best  of  our knowledge,  the largest  systematic  analysis  of  the

prevalence  and  causes  of  hotspots  of  somatic  mutations  across  cancer  genomes.  We

discovered  that  SBS1,  SBS17a and SBS17b exhibit  strikingly  increased  propensity  to  form

mutational  hotspots.  SBS1,  the  ubiquitous  clock-like  mutational  process  attributed  to  5-

methylcytosine  deamination5,6,  shows  increased  propensity  to  create  hotspots  across  most

cancer types analysed. SBS17a and SBS17b, signatures of unknown aetiology, stand out as

hotspot-prone both in primary esophageal and stomach cancers34. In our dataset, SBS17b is

also observed in metastases of patients exposed to capecitabine/5-fluorouracil as part of the

treatment  of  their  primary  tumours19,35 (Supplementary  Note  2).  Other  signatures  previously

related to mutational hotspots, including the dominant signature of UV-light SBS7a 9,10,26,27 and

the  APOBEC  signature  SBS2  24,28,29,  also  showed  increased  propensity  to  form  hotspots,

although  to  a  lesser  degree  than  SBS1  and  SBS17a/b.  While  this  study  has  focused  on

hotspots formed by SNVs, the increasing availability of cancer genome sequences, coupled with

improvements in mutation calling and the filtering of false positive calls, will pave the way for the

exploration of hotspot propensity of other mutational mechanisms (e.g., indels). 

These  high  hotspot  propensities  are  partially  explained  by  very  particular  combinations  of

trinucleotide  specificities  in  their  profile,  genomic  sequence composition,  distribution  of  their

mutations  at  the  megabase  scale  and  interaction  with  other  chromatin  features  at  smaller

scales.  In the case of SBS1, the unevenness of the trinucleotide mutational  profile  and the

genome-wide depletion of NpCpG trinucleotides (resulting from the evolution of the sequence of

the genome39,40) are key determinants of the increase in hotspots formation. SBS1 hotspots are

enriched within CpG islands, which is consistent with described CpG island hypermethylation in

cancers41,42. In the case of SBS17a and SBS17b, the uneven mutational profile and a larger

variability  of  the  megabase-scale  mutation  rate  explain  only  a  very  small  fraction  of  the

observed hotspots. Sequence or chromatin features below the megabase scale36,38 appear to

play a preponderant role in its observed high propensity to form hotspots. Among these smaller

scale  features,  CTCF  binding  sites  are  known  to  contribute  to  the  uneven  distribution  of

SBS17a/b  mutations13,14 and  this  in  turn  has  now  been  shown  to  contribute  to  their  high

propensity to form hotspots. Whether this is related with the –yet not established– aetiology of

these signatures, and what its implications may be in tumour development remains unknown.

A previous study focused on the prevalence of  hotspots across tumours suggested that  an

important fraction could arise as a result of sequencing errors or artefacts of the alignment or

mutation calling25. To avoid this concern, here we have focused on hotspots contributed by well-

characterised mutational signatures (and by establishing careful filters of genomic regions with

mappability issues and hypermutated tumours). Another potential caveat of the analysis based

on  trinucleotide  profile-defined  signatures  is  that  some  may  show  preferences  for  some

nucleotides in an extended (e.g., pentanucleotide) context. The signatures included in the study,
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however, appear to be well defined on the basis of their trinucleotide profile (see above and

Supp. Fig. 19), and using this standard representation allows us to use the reference set of

signatures in the study.

One of the most interesting findings of our study is that the majority of hotspots contributed by

SBS1, SBS17a and SBS17b remain unexplained after accounting for the mutational profile of

these signatures, the trinucleotide composition of the human genome and the megabase-scale

mutation variability. A large fraction of the observed number of hotspots attributable to these

signatures are apparently explained by sequence or chromatin features below the megabase

scale. At the end of this study we have focused on a couple of well known features (of few tens

of  bases)  that  favour  the  formation  of  SBS1  and  SBS17b.  They  are  however  capable  of

explaining only a tiny fraction (1-3%) of these hotspots, which suggests that other known or yet

unknown features also favour SBS1 and SBS17a/b hotspot formation. These features may exist

in scales of length between tens of bases and several kilobases. Probing the effect of candidate

features at these scales is not a simple task, however, because they first need to be identified

and mapped onto the genome. Then, their instances across the genome can be stacked and

their collective influence assessed8 (e.g., Fig. 6d,g).  Carefully estimating the effect of bigger

features (in the kilobase-scale) will require larger cohorts of whole-genome sequenced tumours

to increase the granularity of mutation rate simulation experiments. 

The discovery of the high propensity of several mutational processes (particularly striking for

SBS1,  SBS17a and SBS17b),  to  generate  passenger  hotspots  has different  implications.  It

indicates that our current estimates of the mutational probability below the megabase-scale are

far  from  correct,  stressing  our  limited  understanding  about  how  somatic  mutations  occur.

Despite big strides in the past decades in explaining the determinants of the megabase scale

mutation rate and identifying some smaller scale features influencing it, the landscape of the

interactions of different mutagens and DNA repair processes with the chromatin structure and

features  of  the  genomic  sequence  is  far  from  complete.  Understanding  the  distribution  of

somatic  mutations  under  neutrality  is  key  to  accurately  identifying  driver  elements  and

mutations. While statistical methods typically account for heterogeneity in mutational distribution

across  large  genomic  regions  (for  example,  see4,43),  local  scale  features  are  generally  not

considered. This is particularly relevant for hotspots, which have been exploited as a signal of

positive selection20–22 and are potential targets for the development of precision cancer medicine

strategies. Some of the genomic features underlying this variability of mutation rates below the

megabase scale remain unknown, but  even in those instances for  which the role has been

demonstrated9,10,24,26–29,  their  incorporation  into  models  of  background  mutation  rate  remain

problematic. This problem transcends the study of mutational hotspots and impacts all efforts to

model the background rate of mutations, and is more acute at non-coding regions, where the

location of elements perturbing mutational processes is more challenging44. 

Spontaneous 5-methylcytosine deamination, the likely cause of SBS1 5,6, is a universal ageing-

related  process  affecting  not  only  human  somatic  cells,  but  also  human  germ  cells45,  and
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genomes from other species46,47. Thus, our results showing that yet unknown DNA sequence

and chromatin features influence the neutral mutational probability of SBS1 at the nucleotide

resolution have implications beyond the identification of cancer drivers. Accurate estimates of

mutation rates under neutrality are required for models of the evolution of genomic elements

across organisms, to understand genome evolution and to study the potential effect of human

germline variants. Our work, therefore, evidences the knowledge gap in our understanding on

how mutation occurs at base resolution,  which is needed to build these accurate models of

background mutation rates.  
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Methods

Cohorts

We collected somatic mutations from 78 cohorts of whole genome sequenced cancer patients

included in IntOGen32 (release 1 February 2020).  Cohorts contained primary and metastatic

tumours  from adult  and  paediatric  individuals,  encompassing  a  total  of  7,507  samples  and

83,410,018  somatic  mutations.  Detailed  information  about  each  sequencing  cohort  and

information  on  how  to  download  them  can  be  found  at  Supplementary  Table  S1  and

www.intogen.org. 

Pre-processing of cohorts

In order to homogenise the datasets for our analysis and minimise the number of false mutation

calls, we conducted the following pre-processing on individual cohorts as follows: 

- Liftover of somatic mutations to hg38 reference genome. Mutations in those cohorts that used

hg19  as  reference  genome  were  lifted  over  to  hg38  using  pyliftover  package  version  0.3

(pypi.org/project/pyliftover/) as described in  32. Only mutations that mapped to hg38 were kept

for analysis. 

-  Filtering of  somatic  mutations:  we removed mutations that  a)  fell  outside of  autosomal or

sexual chromosomes; b) had the same reference and alternate nucleotides; c) had a reference

nucleotide that did not match the annotated hg38 reference nucleotide; d)  had an unknown

nucleotide  --a  nucleotide  not  corresponding  to A,  C,  G,  T--  in  their  tri-nucleotide  or  penta-

nucleotide reference sequence, as stated by their start position; e)  were classified as complex

indels --indels that are a mixture of insertions and deletions such as GTG>GAAA.

- Filtering of germline variants: our analysis aimed for the identification of hotspots of somatic

mutations. In order to decrease contamination of somatic calls by unfiltered germline mutations,

we  removed  mutations  overlapping  population  variants.  Briefly,  we  removed  mutations

overlapping  genomic positions  with one or  more polymorphic  variants (i.e.,  allele  frequency

equal  or  greater  than  1%)  (see  “Mappable  genome and  high  mappability  megabase  bins”

section for complete details).

- Filtering of low mappability sequences: non-mappable regions (i.e., repetitive or non-unique

sequences  in  the  genome)  are  prone  to  sequencing  artefacts.  To  control  such  errors,  we

discarded  mutations  that  1)  fell  outside  high  mappability  regions  and/or  2)  overlapped

blacklisted regions of low mappability (see “Mappable genome and high mappability megabase

bins” section for complete details). 

- Filtering of hypermutated samples: from each cohort, we filtered out hypermutated samples,

this  is,  samples  that  carried  more  than  10,000  mutations  and  exceeded  1.5  times  the

interquartile range over the 75th percentile, as described in 32. 

Cancer types classification

WGS samples  were  merged  into  cancer  types  comprising  one  or  more  individual  cohorts.
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Cancer type classification was based on the Memorial Sloan Kettering Cancer Center (MSKCC)

OncoTree30 (2021-11-02 release, available at oncotree.mskcc.org). Assignment of each cohort

to the different cancer type levels in the OncoTree hierarchy was carried out using the available

clinical information of the cohort and can be found in Supplementary Table S1. Ad-hoc cancer

types were added in those cases where the OncoTree classification did not fulfil  the cohort

definition. In order to avoid redundant cancer types --entities containing the same or very similar

set of samples-- within our analysis, we simplified the resulting hierarchy into two different levels

A  (specific)  and  B  (meta-cancer  type):  level  A  entities  were  the  most  specific  annotation

available for a group of samples (e.g., melanomas); when two or more level A entities could be

merged together according to the hierarchy, a level B annotation was added (e.g., melanomas,

basal cell carcinomas, and cutaneous squamous cell carcinoma were grouped in skin cancers).

Finally,  all  samples  were  merged  into  the  Pancancer  level.  Cancer  types  included  in  the

analysis are listed in Supplementary Table S2. 

Pre-processing of cancer types

In  order  to  identify  the  presence  of  multiple  samples  originating  from the same donor,  we

conducted a systematic analysis of shared mutations among samples in each cohort and cancer

type. Briefly, for every sample in a dataset, we computed the number of equal mutations with

any other sample in the group and divided it over the total number of mutations of both samples

in the comparison. Samples with more than 10% of shared mutations with any other sample

were flagged for manual review. Two samples from M_OS were found to have primary tumour

samples  sequenced  in  D_OS  and  were  subsequently  removed  from  the  metastatic  cohort

M_OS. 

Mappable genome and high mappability megabase bins

We de昀椀ned the mappable genome as the fraction of the reference hg38 genome

containing  mutations  within  our  analysis  (2,531,296,367  bp).  The  mappable

genome  consisted  of  regions  of  high  mappability  that  did  not  overlap  with  1)

blacklisted sequences of  low mappability and/or  2)  genomic positions containing

population variants. Regions of high mappability (≥ 0.9) based on 100-mer pileup

mappability were computed for hg38 reference genome using The GEnomic Multi-

tool48 (GEM) mappability software version 2013-04-06. BED files containing hg38 blacklisted

regions  of  low  mappability  were  obtained  from  the  ENCODE  Unified  GRCh38  Blacklist

(downloaded from encodeproject.org/files/ENCFF356LFX on 16-06-2020). Positions containing

population variants were defined as those overlapping any substitution or short indel with total

variant allele frequency above 1% as identified by gnomAD  49 version 3.0 (downloaded from

gnomad.broadinstitute.org on 25-06-2020). Additionally, we defined a set of megabases (1 Mbp)

of  high  mappability.  We  first  obtained  hg38  genomic  bins  by  partitioning  chromosome

coordinates in consecutive non-overlapping chunks of 1 Mb length. For each bin, we computed

the sequence overlap with the mappable genome using the Python library pybedtools50,51 and

kept those bins within autosomes where at least 90% of their sequence was included in the

mappable genome (n=2,222 bins). Mappable bins encompassed a total of 2,065,481,419 bp.
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hg38 nucleotide sequences were retrieved from the Python package bgreference version 0.6. 

Driver gene annotations

Cancer driver gene annotations were collected from two sources: the Compendium of Cancer

Genes from the driver discovery pipeline IntOGen32 (release 1 February 2020) and the COSMIC

Cancer  Gene  Census31 (CGC)  (downloaded  on  24-08-2021).  The  Compendium  of  Cancer

Genes is composed of genes with experimental and/or in silico protein-coding driver evidence

(n=568 genes). CGC list contains expert-curated genes with experimental driver evidence from

sporadic and familial cancers. Only those genes annotated as somatic and having a cancer role

different  from  fusion  partners  were  included  (n=589  genes).  Our  final  set  of  driver  genes

consisted of 782 genes as listed in Supplementary table S3. 

Identification of hotspots of somatic mutations

Genome-wide recurrently mutated positions from independent samples were identified using the

new  algorithm  HotspotFinder  version  1.0.0  (Supplementary  Note  1),  freely  available  at

bitbucket.org/bbglab/hotspotfinder. Hotspots of the four mutation types (SNVs, MNVs, insertions

and deletions) were analysed separately. For each cancer type, HotspotFinder was run over the

set  of  filtered mutations  after  excluding  those overlapping  coding  or  non-coding  sequences

(5’UTR, 3’UTR, splice sites, introns, proximal and distal promoters; Supplementary Note 1) of

driver elements. Hotspots were identified as single positions in the genome that contained i) 2 or

more mutations of equal  alternates (e.g.,  two C>T transitions) or ii)  2 or more mutations of

different alternates (e.g., C>T and C>G). All the analyses included in the present work were

carried  out  using  hotspots  of  equal  alternate.  Hotspots  were  annotated  with  the  default

mappability,  population  variants  and  genomic  regions  provided  within  the  method

(Supplementary  Note  1)  and those non-overlapping  genomic  elements  were kept.  All  other

parameters were set as default. 

Hotspot burden modelling

We modelled the relationship between hotspot burden and mutation burden per sample for each

cancer type with univariate ordinary least squares (OLS) regression models using the Python

package statsmodels52. 

Estimation of conversion rates

Conversion rates or the number of mutations to observe 1 hotspot were calculated for cancer

types with more than 100 individuals through a subsampling experiment. For 1,000 times, we

selected  100  random  individuals  (without  replacement)  and  pooled  their  SNVs  to  identify

hotspots of equal alternate as previously explained. We then modelled the number of hotspots

per  individual  against  their  observed  mutation  burden  using  OLS  regression  models52.

Conversion rates were computed as the inverse of the regression slope of significant models

(p<0.05)  for  those  cancer  types  with  at  least  750  significant  linear  models  across  random

replicates. 
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Enrichment of substitution types in hotspots 

Mutations overlapping and non-overlapping hotspots (mutations inside and outside hotspots,

respectively)  were  classified  into  6  and  96  pyrimidine-based  substitution  types  based  on

GRCh38  reference  genome  using  SigProfilerMatrixGenerator53 version  1.1.26.  Hotspot

enrichments for each substitution in a cancer type were computed as the ratio (fold change) of

the  substitution  frequency  in  the  set  of  mutations  inside  versus  the  substitution  frequency

outside.  Clustering of  cancer types according to enrichments of  6-class based substitutions

were computed using the hierarchical clustering function cluster.hierarchy from the Python scipy

library54 with the linkage function “complete”. 

Mutational signatures extraction

De novo trinucleotide based SBS mutational signatures (96-mutation types using pyrimidines as

reference) were extracted using SigProfiler framework53,55,56 for the cancer types bearing at least

30 samples  and 100,000 total  SNVs (Supplementary Note 2).  Input  GRCh38 96-mutational

catalogues were calculated using SigProfilerMatrixGenerator53 version 1.1.26 and mutational

signatures were extracted with SigProfilerExtractor56 version 1.1.0 (Supplementary Note 2). De

novo signatures were decomposed into COSMIC v3.2 GRCh38 reference signatures to allow

comparisons across cancer types (Supplementary Note 2). All SBS signature names used in the

manuscript correspond to this reference set.  Signatures that were present in at least 5% of

mutations  in  a  sample  were  considered  active  in  the  sample.  At  the  cancer  type  level,

signatures that were active in at least 5% of samples were considered active in the cancer type. 

Assignment of mutational signatures to mutations and hotspots

The probability of each SNV --considering its sample of origin and trinucleotide context-- to arise

from  each  of  the  decomposed  COSMIC signatures  in  the  cancer  type  was  obtained  from

SigProfilerExtractor  (“Decomposed_Mutation_Probabilities.txt”  table  for  the  best  extracted

solution). As a result, a vector of mutational probabilities was generated for each SNV. In those

cases where the 1 to 1 attribution of mutations to signatures was required, mutations were

credited  to  the  signature  showing  highest  mutational  probability  (maximum  likelihood36).

Hotspots were assigned to mutational signatures by computing, first, the average mutational

probability  vector  among  the  mutations  contributing  to  the  hotspot,  and  then  selecting  the

signature with the maximum average probability. 

Estimation of hotspot propensity

We set to estimate the propensity of commonly active mutational signatures to form hotspots

across cancer types independently of their number of exposed samples and mutation burden

contributed to each of them. First, we selected the 7 cancer types with the largest sample size

(5,000  or  more  observed  hotspots  and  prioritising  non-meta-cancer  types  when  possible),

including:  bladder-urinary tract  cancers (BLADDER_URI),  breast  cancers (BRCA),  colorectal

cancers (COADREAD),  oesophagus-stomach cancers (ESOPHA_STOMACH),  non-small  cell

lung cancers (NSCLC), prostate cancers (PROSTATE) and skin melanomas (SKCM). Then, we

selected  the  14  signatures  that  fulfilled  the  following  criteria:  i)  they  showed  450  or  more

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2022. ; https://doi.org/10.1101/2022.09.14.507952doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=1412726&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10195722&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7418462&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1227956,7418462,10195722&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=1227956,7418462,10195722&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=8189935&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7418462&pre=&suf=&sa=0
https://doi.org/10.1101/2022.09.14.507952
http://creativecommons.org/licenses/by-nc-nd/4.0/


attributed hotspots (resulting in  at least  1% of  the total  hotspots in the cancer type) and ii)

contributed more than 300 high confidence mutations per sample attributed to the signature via

highest probability (maximum likelihood p > 0.5) in at least 101 samples within the cancer type.

The signature-cancer type pairs that passed these thresholds included: SBS1 (BLADDER_URI,

BRCA,  COADREAD,  ESOPHA_STOMACH,  NSCLC,  PROSTATE),  SBS13  (BLADDER_URI,

BRCA,  NSCLC),  SBS17a  (COADREAD,  ESOPHA_STOMACH),  SBS17b  (COADREAD,

ESOPHA_STOMACH), SBS18 (COADREAD), SBS2 (BLADDER_URI, BRCA, NSCLC), SBS3

(BRCA),  SBS4  (NSCLC),  SBS40  (COADREAD,  NSCLC),  SBS5  (BLADDER_URI,  BRCA,

COADREAD, ESOPHA_STOMACH, NSCLC, PROSTATE), SBS7a (SKCM), SBS7b (SKCM),

SBS8 (PROSTATE), SBS93 (COADREAD). To estimate the propensity of a signature to form

hotspots  in  a  cancer  type while  accounting  for  differences  in  sample  size  and activity,  we

subsampled groups of 100 tumours of a given cancer type with a fixed number n (between 100

and 300 mutations/sample or ~ 0.048 and 0.145 mutations/sample·Mbp), of randomly selected

high confidence mutations (maximum likelihood p > 0.5) without replacement contributed by the

signature  under  analysis.  For  each  subsample,  we  then  counted  the  number  of  observed

hotspots (allowing a single hotspot per position) among the 100 · nsubsampled mutations of the

signature under analysis across cancer types. This analysis was carried out over the set of high

mappable megabase bins (total size 2,065,481,419 bp). 

Signatures enrichment in hotspots

For each sample containing hotspots, we first computed the frequency of its active signatures in

the sets of hotspot and non-hotspot mutations. These frequencies were obtained by aggregating

the signature mutational probability vectors (conveying the relative contribution of all possible

signatures to a mutation) across all  mutations in the specified set, which were subsequently

normalised to 1 (see Assignment of mutational signatures to mutations and hotspots). Then, a

signature fold change (FC) in a given sample was computed as the ratio of the normalised

frequency of the signature S inside hotspots versus the normalised frequency of the signature

outside hotspots: 

F(S)=(Prob (S )inside /ΣT Prob (T )inside)/(Prob (S)outside /ΣT Prob(T )outside)

To obtain the fold change per active signature we calculated the median fold change among

active samples. For each signature, we tested whether the magnitude of the frequency inside

hotspots deferred from that of non-hotspot mutations across sample-paired observations. We

applied a two-sided Wilcoxon rank-sum test using the wilcoxon function from the Python module

scipy.stats54.  The obtained  p-values  were adjusted for  multiple  testing  using the Benjamini-

Hochberg method from statsmodels.sandbox.stats.multicomp function52 in Python with α=0.01. 

Entropy of mutational signatures profiles

The entropy of the 96-channel profiles of SBS mutational signatures (COSMIC v3.2 GRCh38)
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was calculated after correcting by the trinucleotide content of the mappable genome, i.e. we

only account for the relative mutability of each context. This is done by taking the frequency

profiles from COSMIC, dividing each trinucleotide frequency by the genome-wide abundance of

the corresponding reference triplet and normalising the resulting profile so that the probabilities

add up to 1. The entropy was calculated using the scipy.stats.entropy function54 in Python.

Theoretical models of hotspots formation

We devised a method to compute  the expected number  of  hotspots generated by  a  given

mutational process in a given DNA region, in a theoretical scenario whereby all samples in the

cohort  have  identical  mutation  rates  and  positions  mutate  independently.  Briefly,  when  the

regional mutation rate is uniform, we can estimate the probability that each position in the region

undergoes  mutation  consistently  with  the  relative  mutability  of  each  trinucleotide  context

dictated by the mutational process. The expected presence of a hotspot at a given position can

then be calculated as the probability of at least two samples getting the same mutation at a

given position. Because of statistical independence across positions, the regional expectation is

given as the sum of  expectations across positions.  Equipped  with  this  method,  we provide

theoretical hotspot rate estimates associated with the 14 different mutational signatures from

which  we  calculated  hotspot  propensity.  Theoretical  hotspot  rates  were  computed  in  two

scenarios: i) genome wide based on the trinucleotide composition alone and ii) per megabase,

considering cancer type-specific variation in the distribution of mutations per signature across

megabases (Supplementary Note 4). In the second model, the megabase mutation rates per

signature and cancer type were calculated from the total number of mutations attributed to the

signature  by  maximum likelihood.  The  same  signature-cancer  type  pairs  used  to  calculate

observed hotspot propensity were analysed. For both models, comparisons between observed

and  expected  hotspot  propensity  were  carried  out  using  30,000  total  mutations  (300

muts/sample across mappable 1 Mbp bins), which was equivalent to approximately 0.14524

muts/Mbp. To match the definition of  hotspots with the theoretical  models,  only 1 observed

hotspot per genomic position was considered (e.g., 2 C>A mutations and 2 C>T within the same

position resulted in 1 hotspot).

Analysis of large scale chromatin features 

Chromatin accessibility and gene expression data for different tissues and cell lines matching

the cancer  types under  analysis  were obtained  from the Epigenome Roadmap Project57 at

egg2.wustl.edu/roadmap/web_portal (see Supplementary Table 5 for complete details and urls).

Replication  timing data  for  7 cell  lines  from solid  tissues was obtained from ENCODE58 at

hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwRepliSeq

(Supplementary  Table  5).  For  each  of  these  three  chromatin  features  (mapped  to  hg19

reference  genome),  we  obtained  the  average  signal  across  hg19  mappable  megabases  --

liftovered from the original hg38 mappable megabase coordinates-- as follows. For chromatin

accessibility, we first computed the average counts across megabases from genome-wide fold-

enrichment DNase counts tracks (BIGWIG format) per epigenome. Then, for each megabase,

we computed the average DNase-seq signal across the different epigenomes linked to a cancer
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type. Similarly, megabase gene expression signals were computed from normalised coverage

genome  tracks  (BIGWIG  format).  In  this  case,  if  stranded  libraries  were  available  for  an

epigenome, we first  added up the absolute RNA-seq signals from the negative and positive

strands and then computed the average signal per epigenome and megabase. The cancer type

signal per megabase was obtained by calculating the mean megabase RNA-seq signal from the

different  epigenomes  linked  to  the  cancer  type.  For  replication  timing  data,  we  used  the

percentage-normalised Repli-seq signal tracks (BIGWIG format). Following the same approach,

we obtained the average Repli-seq signal across cell  lines per megabase. Signals extracted

from BIGWIG files were handled using the Python package pyBigWig59. 

In  order  to  investigate  the  relationship  between  the  number  of  hotspots  and  non-hotspot

mutations with chromatin accessibility, gene expression and replication timing per signature and

cancer  type,  we  first  intersected  mutations  inside  and  outside  hotspots  with  mappable

megabase bins. Next, we added up the vector of mutational probabilities of each mutation to

arise from a signature in the cancer type (see Assignment of mutational signatures to mutations

and hotspots). For each signature, we normalised its signal across megabases for mutations

inside and outside hotspots.  We then categorised mappable megabases into 10 percentiles

(deciles) according to the distribution of the chromatin feature signal across megabases and

plotted the signature activity inside and outside hotspots on each decile. 

Overdispersion of mutational signatures across the genome

For each signature, we fitted the distribution of their attributed mutation counts across mappable

megabase bins by fitting a negative binomial regression model, which yields an overdispersion

parameter.  Briefly,  the overdispersion parameter,  referred to as  α  throughout, measures the

excess variance over the mean, i.e., excess variance over the variance that we would expect if

the  mutation  counts  were  Poisson  distributed.  Specifically,  if  μ denotes  the  mean,  in  our

negative binomial regression setting the relationship between the variance v and the mean μ is

given by the equation 

v=μ+α μ
2 

The Python function statsmodels.discrete.discrete_model.NegativeBinomial was used52. 

Analysis of small scale chromatin features

CpG  islands  coordinates  mapped  to  hg38  reference  genome  were  downloaded  from60 at

haowulab.org/software/makeCGI/model-based-cpg-islands-hg38.txt on 02-03-2022. In order to

homogenise the CpG islands under analysis, only those within autosomes, 200-1,000 bp long

and showing a 90% or larger overlap with the mappable genome were used for the analysis

(n=30,513 elements) (Supplementary Table 5). CTCF binding sites were defined as CTCF ChIP

peaks in a tissue or cell line matching the cancer type type. hg38 ChIP peak coordinates were

downloaded from ReMap202261 at remap.univ-amu.fr on 08-03-2022 (Supplementary Table 5).

Only CTCF peaks within autosomes, 200-600 bp long, and showing 90% or more overlap to the

mappable  genome  were  kept  for  analysis  (mean  n=41,307.5,  range=28,802-51,635  CTCF
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binding  sites  per  cancer  type).  Intersections  between  annotations  were  carried  out  using

pybedtools50,51.  The enrichment of hotspots within CpG islands and CTCF binding sites was

computed as follows. For each individual small scale chromatin feature, we first constructed a

window of length L where the feature of length Lfeature was positioned in the centre surrounded

by two flanking sites of equal size  (L−L feature)/2. Window length was defined as 3,000 bp for

CpG islands and 2,000 bp for CTCF binding sites. Feature length was set as the maximum size

encompassing all individual features under analysis as: CpG islands=1,000 bp, CTCF=600 bp.

For  each  active  signature  in  a  cancer  type  and  the  corresponding  matched  small  scale

chromatin  feature,  we  intersected  inside  and  outside  hotspot  mutations  attributed  to  the

signature by maximum likelihood with each window. We obtained the expected distribution of

mutations per signature by randomising 1,000 times the observed number of mutations inside

hotspots  across  the  window  according  to  the  signature  trinucleotide  probabilities  and  the

window sequence composition. To compute the hotspot enrichment in the feature (fold change),

we piled-up mutations in equal positions across windows and calculated the ratio of mutations

inside  the  feature  versus  its  flanks.  The  significance  of  the  observed  fold  changes  was

estimated by fitting simulated fold changes to a gaussian kernel density estimate distribution

and deriving the upper quantile of the observed fold change. Resulting p-values were adjusted

for  multiple  testing  using  the  statsmodels  Benjamini-Hochberg  function52 with  α=0.01.  To

visualise  the  results  across  piled-up  features,  observed  and  expected  mutation  counts  per

position  were normalised to the respective  total  number  of  mutations  in  the set  across the

window. A smoothing Savitzky-Golay filter of length 301 bp for CpG islands and 101 bp for

CTCF binding sites was applied using the scipy.signal.savgol_filter function54.

Sequence logos

We computed the frequency of the nucleotide sequence composition around hotspots attributed

to a signature across cancer types. The same signature-cancer type groups as those used to

calculate hotspot propensity were used. For each hotspot in the signature, we retrieved the 10

bp 5’ and 3’ flanking sequences (considering the strand containing a pyrimidine in the hotspot

position) from bgreference package and built a 21 bp window centred at the hotspot. We then

computed the information content over the nucleotide frequency with respect to the nucleotide

hg38  mappable  genome  frequency  at  each  position  across  the  window.  Logo  plots  and

information content were generated using the Python package logomaker62 version 0.8. 

Additional software used

The following Python packages were used across different  analyses,  including:  matplotlib63,

numpy64, and pandas65. 
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Supplementary Note 3. Comment on hotspot propensity.
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Data availability
Somatic mutations were retrieved from several sources as listed in Supplementary Table S1.

Large and small scale features (DNase, Repli-seq, RNA-seq, CTCF ChIP, CpG islands) are

listed in Supplementary Table S5.

Code availability
The code used within this work is freely available from external sources (see Methods) or has

been  developed  in-house.  HotspotFinder  algorithm  is  available  for  download  at

bitbucket.org/bbglab/hotspotfinder. The in-house code containing the analyses and figures will

be available at the time of publication. 
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