

1 Mangroves deviate from other angiosperms in their genome size, leaf cell 2 size, and cell packing density relationships

4 Guo-Feng Jiang^{1*}, Su-Yuan Li¹, Russell Dinnage², Kun-Fang Cao¹, Kevin A. Simonin³,
5 Adam B. Roddy^{2*}

6

¹ *Guangxi Key Laboratory of Forest Ecology and Conservation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi 530004, PR China*

10 ² *Institute of Environment, Department of Biological Sciences, Florida International
11 University, Miami FL 33199 USA*

12 ³Department of Biology, San Francisco State University, San Francisco, CA 94132 USA

13

14

¹⁵*For Correspondences. Email: aroddy@fiu.edu and gfjiang@gxu.edu.cn.

16

17 **Running title:** Deviation in leaf cell sizes and packing densities among mangroves

18

19 ORCID

30 GEI: 0000-0002-3221-8608

21 KAS: 0000-0002-1990-580X

22 ABR: 0000-0002-4423-8729

23

24

25

26

27

ABSTRACT

28

• **Background and Aims** While genome size limits the minimum sizes and maximum numbers of cells that can be packed into a given leaf volume, mature cell sizes can be substantially larger than their meristematic precursors and vary in response to abiotic conditions. Mangroves are iconic examples of how abiotic conditions can influence the evolution of plant phenotypes.

33

• **Methods** Here, we examined the coordination between genome size, leaf cell sizes, and cell packing densities, and leaf size in 13 mangrove species across four sites. Four of these species occurred at more than one site, allowing us to test the effect of climate on leaf anatomy.

37

• **Results** We found that genome sizes of mangroves were very small compared to other angiosperms, and, like other angiosperms, mangrove cells were always larger than the minimum size defined by genome size. Increasing mean annual temperature of a growth site led to higher packing densities of veins (D_v) and stomata (D_s) and smaller epidermal cells but had no effect on stomatal size. Contrary to other angiosperms, mangroves exhibited (1) a negative relationship between guard cell size and genome size; (2) epidermal cells that were smaller than stomata, and (3) coordination between D_v and D_s that was not mediated by epidermal cell size.

45

Furthermore, mangrove epidermal cell sizes and packing densities covaried with leaf size.

47

• **Conclusions** While mangroves exhibited coordination between veins and stomata and attained a maximum theoretical stomatal conductance similar to other angiosperms, the tissue-level tradeoffs underlying these similar relationships across species and environments was markedly different, perhaps indicative of the unique structural and physiological adaptations of mangroves to their stressful environments.

52 **Key words:** Environmental factors; genome size; cell size; stomata; vein density; stomatal

53 density

54

55

INTRODUCTION

56 One of the more iconic examples of how the environment can select for plant phenotypes are
57 mangroves. The mangrove habitat is characterized by multiple stresses, including osmotic
58 and drought stress, tidal inundation, high winds, high temperature, and high ultraviolet (UV)
59 radiation, which influence gas exchange rates of leaves and plant survival (Tomlinson, 1986;
60 Ball, 1988; Krauss *et al.*, 2008). Together, these abiotic conditions make the mangrove
61 habitat particularly stressful and suggest that mangroves are a valuable resource for
62 understanding plant adaptation to extreme environments (Scholander *et al.*, 1964; Reef and
63 Lovelock, 2015). The mangrove habit has evolved repeatedly in over 20 lineages of vascular
64 plants (Duke, 1992; He *et al.*, 2022) and encompasses both convergent evolution of similar
65 traits as well as the evolution of multiple novel morphological, anatomical, and physiological
66 strategies to survive under similar environmental challenges. These adaptations include
67 diverse leaf morphologies (e.g., leaves with glands that secrete salt), extensive support roots,
68 buttress roots, and viviparous water-dispersed propagules (Tomlinson, 1986; Ball, 1988; Reef
69 and Lovelock, 2015). The mangrove habitat is often considered extreme, with warm
70 temperatures characteristic of the tropics, frequent wind characteristic of coastal shores, and
71 near constant saltwater inundation from the ocean.

72

73 Because growth and survival depend on maintaining physiological function in the face of
74 often stressful environmental conditions, leaf anatomical traits that influence rates of
75 photosynthetic carbon gain may show plastic responses to the environment within species
76 and vary among species associated with their habitat affinities. Of particular importance are
77 the leaf anatomical traits that limit diffusion of CO₂ across the leaf surface and into the
78 mesophyll cells where photosynthesis occurs (Franks and Beerling, 2009; Brodribb *et al.*,
79 2010; Boyce and Zwieniecki, 2012; Franks *et al.*, 2012a; Franks *et al.*, 2012b; Théroux-

80 [Rancourt *et al.*, 2021](#)). Leaf surface conductance and the anatomical traits that control
81 maximum potential CO₂ diffusion into the leaf act as first-order constraints on photosynthetic
82 capacity and, therefore, define an upper limit to how much carbon can be allocated to growth,
83 reproduction, and defense ([Franks and Beerling, 2009](#); [Roddy *et al.*, 2020](#)). Increasing leaf
84 surface conductance to CO₂ has occurred predominantly by decreasing the size (S_s) and
85 increasing the packing density (D_s) of stomata ([Franks and Beerling, 2009](#)). Opening stomata
86 to allow CO₂ diffusion into the leaf exposes the wet surfaces of the leaf mesophyll cells to a
87 dry atmosphere, resulting in evaporative water loss that must ultimately be replaced in order
88 to maintain water balance and physiological function. As a result, increasing D_s is generally
89 associated with a higher density of leaf veins (D_v), which efficiently supply liquid water
90 throughout the leaf ([Sack and Frole, 2006](#); [Brodribb *et al.*, 2007](#); [Boyce *et al.*, 2009](#);
91 [Brodribb, 2009](#); [de Boer *et al.*, 2012](#)).

92
93 Coordination between veins and stomata is thought to be critical to maintaining leaf water
94 balance, and correlations between D_s and D_v suggest coordinated development across
95 multiple cell types and tissues during development. Because more cells and cell types can be
96 packed into a given space if these cells are smaller, reducing cell size has been a primary way
97 of increasing the packing densities of multiple tissue types, including stomata, veins, and
98 mesophyll cells ([Franks and Beerling, 2009](#); [Brodribb *et al.*, 2013](#); [Simonin and Roddy,
99 2018](#); [Théroux-Rancourt *et al.*, 2021](#)). How small a cell can be (i.e. meristematic cell size)—
100 and, by extension, the maximum number of cells that can be packed into a given space—is
101 fundamentally limited by the volume of the nucleus, or, as is more commonly measured,
102 genome size ([Cavalier-Smith, 1978](#); [Beaulieu *et al.*, 2008](#); [Šimová and Herben, 2012](#);
103 [Simonin and Roddy, 2018](#); [Roddy *et al.*, 2020](#)). Smaller cells and mesophyll tissues
104 composed of smaller cells have higher surface area-to-volume ratios, which allow for higher

105 rates of CO₂ diffusion into photosynthetic tissues (Théroux-Rancourt *et al.*, 2021). While
106 genome downsizing, particularly among angiosperm lineages during the Cretaceous, was
107 critical in reducing minimum cell sizes and allowing for smaller, more densely packed cells
108 (Simonin and Roddy, 2018), genome downsizing also allows for a greater range of mature
109 cell sizes and packing densities (Roddy *et al.*, 2020; Théroux-Rancourt *et al.*, 2021). Mature
110 cells are often considerably larger than their meristematic precursors, and the process of cell
111 expansion allows cell sizes and packing densities to be tuned to environmental conditions.
112 For example, differential expansion of epidermal pavement cells during leaf development can
113 lead to coordinated changes in the densities of veins and stomata (Carins Murphy *et al.*, 2012,
114 2014, 2016, 2017). Thus, while minimum cell sizes and maximum cell packing densities are
115 limited by genome size, deviation from these extreme limits may be driven by differential
116 expansion of leaf cells in response to variable environmental conditions (i.e. trait plasticity).
117 Thus, abiotic factors that influence plant water balance, and by extension of cell expansion,
118 can cause deviation in leaf anatomical traits away from the extreme limits imposed by
119 genome size.

120
121 Here we sought to characterize (1) how genome size limits cell sizes and packing densities in
122 mangrove leaves, (2) how abiotic conditions influence intraspecific variation in anatomical
123 traits, and (3) how traits of different cell types that influence leaf function are coordinated
124 within and among mangroves compared to other non-mangrove angiosperms. We sampled a
125 total of 13 species (one of them is a naturally occurring hybrid) from four sites (Fig. 1), with
126 four of these species occurring at more than one site. We explicitly incorporated previously
127 published data for comparison to mangroves and included phylogenetically corrected
128 regressions. Our results showcase that while some scaling relationships defined for
129 angiosperms apply to mangroves as well, mangroves nonetheless deviate in other

130 relationships, and these deviations may be due to the unique conditions of the mangrove
131 habitat. Understanding leaf trait coordination in hardy plants like mangroves provides an
132 important test of current theory linking leaf structure to leaf function.

133

134 MATERIALS AND METHODS

135 *Study sites and plant material*

136 Mangrove plants were sampled in five natural reserves along a latitudinal gradient in
137 Southern China (Fig. 1; Table 1): Fuding Mangrove Natural Reserve (FD; 27° 20' N / 120°
138 12' E), Longhai Mangrove Natural Reserve (LH; 24° 29' N / 118° 04' E), Shankou
139 Mangrove Natural Reserve (SK; 21° 28' N/109° 43' E), Sanya Tielu Port Mangrove Natural
140 Reserve (SYTL; 18° 15' N / 109° 42' E), and Sanya Qingmei Port Mangrove Natural
141 Reserve (SYQM; 18° 14' N / 109° 36' E), the latter two are located about 7 km from each
142 other and so were grouped as the same site Sanya (SY) in our analysis. In total, 13 species
143 were collected across all sites, and all taxa except *Kandelia obovata* occurred at the
144 southernmost site SY (Table 2). *K. obovata* was the only species that occurred at the
145 northernmost site (FD). Three species were found in three sites, and another species occurred
146 in two sites (Table 2). These four species located at multiple sites were used to test for
147 environmental effects on anatomical traits.

148

149 At least three randomly selected individuals per species per site were selected for sampling.
150 Sun-exposed branches were cut and sealed in a plastic bag with wet tissues, then transported
151 back to the laboratory at Guangxi University for subsequent sample processing and
152 measurements.

153

154 *Anatomical traits*

155 All measurements were made on three to six randomly selected, fully expanded, healthy, sun-
156 exposed leaves of each species at each site. Three to six approximately 1-cm² sections of
157 lamina were sampled from each leaf, avoiding the leaf margin and midrib. These sections
158 were cleared in a 1:1 solution of 30% H₂O₂ and 100% CH₃COOH and incubated at 70 °C
159 until all pigments had been removed. The sections were then rinsed in water and the
160 epidermises separated with forceps from the mesophyll and veins, allowing these three layers
161 (upper epidermis, lower epidermis, and mesophyll with veins) to be stained and mounted
162 separately. To increase contrast, all samples were stained with Safranin O (1% w/v in water)
163 for 15 min and Alcian Blue (1 % w/v in 3 % acetic acid) for 1 minute, then washed in water
164 and mounted on microscope slides. We found that Safranin O and Alcian Blue did not both
165 readily bind to the mangrove leaves.

166

167 Images were taken at 5x, 10x, or 20x magnification, which had fields of view of
168 approximately 3.99 mm², 0.89 mm², and 0.22 mm², respectively, using a compound
169 microscope outfitted with a digital camera (DM3000, Leica Inc., Germany). Both abaxial
170 (lower) and adaxial (upper) leaf surfaces were imaged for all species because *Laguncularia*,
171 *Lumnitzera*, and *Sonneratia* species were known to have stomata on both surfaces. In the
172 following analysis, we used only abaxial (bottom surface) D_s for packing densities, and the
173 sum of adaxial and abaxial stomatal densities (termed $D_{s,tot}$) for analyses related to fluxes.

174

175 All anatomical measurements from images were made using ImageJ ([Rueden *et al.*, 2017](#)).
176 From images of paradermal sections, vein density (D_v) was measured as the total length of
177 leaf vascular tissue per mm² of leaf area, epidermal pavement cell size (S_{ec}) was quantified by
178 measuring the two-dimensional area of individual epidermal cells in an epidermal image,
179 guard cell length (l_g) was measured as the maximum length of one guard cell in a pair,

180 stomatal density (D_s) was measured by counting the number of stomata in the image and
181 dividing by the area of the field of view, and epidermal cell packing density (D_{ec}) was
182 measured by counting the number of epidermal cells in an image and dividing by the area of
183 the field of view. Partial stomata and epidermal cells were included in the density counts if
184 they were partially bisected by the top and left borders of the image and ignored if they were
185 partially bisected by the bottom and right borders of the image. S_{ec} was measured on
186 approximately ten randomly chosen epidermal cells that were not touching stomata in each
187 image. Measurements of l_g were made on ten stomata per image.

188

189 We compared two methods for estimating the two-dimensional projected surface area of
190 stomata (i.e. stomatal size, S_s) in the plane of the leaf epidermis. First, we manually measured
191 the area of each of 10 stomata per image. Second, we calculated the two-dimensional area of
192 one guard cell as:

193 $S_{gc} = l_g \cdot w_g$ (eqn 1)

194 where l_g is the length of one guard cell and w_g is the width of one guard cell, which can be
195 estimated as $w_g = l_g \cdot 0.36$ (de Boer *et al.*, 2016). Doubling S_{gc} is equivalent to the size of a
196 pair of guard cells, i.e. one stoma (S_s). Species' average estimates of S_s using these two
197 methods were strongly correlated ($R^2 = 0.90$, $P < 0.0001$) with a standard major axis slope
198 not significantly different from unity ($P = 0.11$), and so for subsequent analyses we used the
199 measured values of S_s .

200

201 Epidermal cell size (S_{ec}) was quantified in two ways. First, the average S_{ec} for an image was
202 calculated according to Carins-Murphy *et al.* (2017) as:

203 $S_{ec} = \frac{1 - (D_s S_s)}{D_{ec}}$ (eqn 2)

204 where D_s is stomatal density, S_s is stomatal size, and D_{ec} is the epidermal cell density.
205 Second, we directly measured the two-dimensional surface area of five randomly chosen
206 epidermal cells in each image. These two methods showed strong agreement in quantifying
207 the two-dimensional epidermal cell surface area ($R^2 = 0.86$, $P < 0.0001$) with a slope not
208 significantly different from unity ($P = 0.93$), and so for subsequent analyses we used the
209 direct measurements of pavement cell surface area.

210

211 *Genome size*

212 The genome sizes of the mangrove species studied here were taken from the literature (Lyu *et*
213 *al.*, 2018; Hu *et al.*, 2020; He *et al.*, 2022). Measurements of genome size in megabases (Mb)
214 were converted to picograms (pg) following the equation 1 pg = 1 Mb / 978 (Dolezel *et al.*,
215 2003).

216

217 *Environmental data for the four sampling sites*

218 Climate data (mean annual temperature, MAT, and mean annual precipitation, MAP) for each
219 site were downloaded from <http://data.cma.cn>. Climate data were long-term averages of
220 monthly collected raw data from January 1951-December 2016. Estimates of soil water
221 salinity were obtained from published references for FD (Lin *et al.*, 1998) and LH (Cao,
222 2008), while data for SK and SY were provided by the Guangxi Mangrove Research Center,
223 Guangxi Academy of Sciences (previously unpublished data). At all sites, soil samples of 0-
224 50 cm depth were sampled throughout the area where the plants were growing, from inland to
225 the seashore, during low tide. At least 5 soil samples were collected for each site with PVC
226 tubes, then the soils were stored in plastic bags, and transported back to the laboratory. Soil
227 water was collected by filtering the soil from the water (Cao, 2008).

228

229 *Modeling gas exchange capacity from anatomical traits*

230 Using these anatomical data, we modeled maximum ($g_{s,max}$) stomatal conductance using
231 previously published methods. Maximum theoretical g_s was calculated according to Franks
232 and Beerling (2009) as:

$$233 \quad g_{s,max} = \frac{D_s a_{max} \frac{d_{H_2O}}{v}}{d_p + \frac{\pi}{2} \sqrt{a_{max}/\pi}} \quad (\text{eqn 3})$$

234 where d_{H_2O} is the diffusivity of water vapor in air (0.0000249 $\text{m}^2 \text{ s}^{-1}$), v is the molar volume
235 of air normalized to 25°C (0.0224 $\text{m}^3 \text{ mol}^{-1}$), D_s is the stomatal density, d_p is the depth of the
236 stomatal pore, and a_{max} is the maximum area of the open stomatal pore. The depth of the
237 stomatal pore, d_p , was assumed to be equal to the width of one guard cell, which was taken as
238 $0.36 \cdot l_g$ (de Boer *et al.*, 2016). The maximum area of the open stomatal pore, a_{max} , was
239 approximated as $\pi(p/2)^2$ where p is stomatal pore length and is approximated as $l_g/2$. Thus,
240 $g_{s,max}$ could be calculated from measurements of l_g and D_s .

241

242 *Leaf mass per area (LMA) measurements*

243 For LMA determination, 15 leaves were randomly selected per species, and their areas were
244 measured with an LI-3000A (LI-COR, USA). Afterwards, samples were oven-dried at 70°C
245 for 72 hours, weighed, and LMA was calculated as leaf dry mass divided by fresh leaf area.
246 Leaf size values were obtained from these leaf area data.

247

248 *Previously published data*

249 To generate a broad, phylogenetically diverse dataset of angiosperm leaf anatomical traits,
250 we compiled data from Beaulieu *et al.* (2008), Blonder and Enquist (2014), Boyce *et al.*
251 (2009), Brodribb and Feild (2010), Brodribb *et al.* (2013), Jordan *et al.* (2013), Coomes *et al.*
252 (2008), Feild *et al.* (Feild *et al.*, 2009; Feild *et al.*, 2011), Fridley and Craddock (2015),

253 Gleason *et al.* (2016), Sack *et al.* (2012), Carins Murphy *et al.* (2016), Bongers and Popma
254 (1990), and McElwain *et al.* (2016). Taxonomic names were corrected by comparing
255 querying The Plant List using the R package "Taxonstand" (Cayuela *et al.*, 2012). We
256 merged these data with the Kew Plant DNA C-Values database (version 6), after using the
257 same procedure to check taxonomic names in that database. Because our focus was on plants
258 with capsule-shaped guard cells, we removed monocots from the dataset because they are
259 known to have dumbbell-shaped guard cells. The resulting database encompassed 836
260 species from 126 families. Of these species, there were 300 species from 68 families with
261 guard cell length data, 274 species from 62 families with stomatal density data, and 638
262 species from 111 families with vein density data. There were 289 species with both l_g and D_s
263 measurements. Meristematic cell volumes as a function of genome size were taken from
264 Šimová and Herben (2012). Using these measured volumes of meristematic cells, we
265 approximated the maximum two-dimensional cross-sectional area of a spherical meristematic
266 cell by calculating the cross-sectional area of a sphere with the same volume.

267

268 *Data analysis*

269 All statistical analyses were conducted in R (v. 4.0.3) (R Core Team 2020). We used linear
270 regression and standard major axis (SMA) regression (R package 'smatr') to determine the
271 relationships between traits (Warton *et al.*, 2012). SMA regressions were used on log-scaled
272 traits. For visualization, confidence intervals around SMA regressions were calculated from
273 bootstrapping the SMA regressions 1000 times. We used slope tests, implemented in 'smatr'
274 to compare slopes and report P-values for whether the slopes are significantly different or
275 not. For the relationships between genome size and the sizes of guard cells and epidermal
276 pavement cells, we calculated the SMA regressions and associated statistics using species
277 means (i.e. averaged across sites) because species occurred at different numbers of sites, but

278 we plot points representing the species x site means to better visualize the variation in cell
279 size within species across sites. Because we did not measure leaf size and LMA on the same
280 leaves on which anatomical measurements were made, analyses of leaf size use species x site
281 mean data for each variable and rely on linear regressions.

282

283 To determine the effects of climate variables on anatomical and physiological traits, we
284 constructed linear mixed effects models for each trait and climate variable, using the four
285 species that were present at more than one site and including measurements from individual
286 plants (i.e. not using species x site mean trait values). We used the R package ‘lme4’ to
287 construct models that had a fixed effect of the environmental variable and a random effect of
288 species (Bates *et al.*, 2014). This random effect allowed each species to have a different
289 intercept. Because ‘lme4’ is unable to incorporate uncertainty about the random effects into
290 predictions, confidence intervals around the fixed effects cannot be calculated. We report
291 two R^2 values: (1) the marginal R^2 and P-value of the environmental variable after accounting
292 for the differences among species (i.e. random effects), and (2) the conditional R^2 that
293 indicates how much variation is explained by the entire model (i.e. both the environmental
294 variable and species identity).

295

296 To account for the statistical non-independence of sampling related species, we incorporated
297 phylogenetic covariance into our regression analyses. For mangroves, we used a recently
298 published chloroplast phylogeny that included the species sampled here (Li *et al.* 2021a; Li *et*
299 *al.* 2021b), and we used trait data for the southernmost population of each species (i.e. Sanya
300 for all species except *Kandelia obovata*, for which the southernmost population was located
301 at Shankou Natural Reserve). For non-mangrove angiosperms, we constructed a broad
302 phylogeny based on the large dated seed plant phylogeny of Smith and Brown (2018),

303 hereafter the 'reference phylogeny'. Approximately 80% of our species were included in the
304 reference phylogeny. We placed the remaining 47 species onto the reference phylogeny using
305 a randomization procedure based on known taxonomic relationships. Forty-five of the 47
306 species were placed within a congeneric clade. The remaining two species were placed with
307 other members of the same tribe (*Pseudolmedia glabrata* within the Castilleae and
308 *Trichospermum mexicanum* within the Grewieae). Rather than just placing taxa randomly
309 (i.e. uniformly) within the clade, the procedure for placement attempted to preserve the
310 relative distribution of branch-lengths within different clades, which is becoming the standard
311 practice (Chang *et al.*, 2020, Thomas *et al.*, 2013). Rather than resolving the branch-lengths
312 using a fitted diversification model, such as a birth-death model (as in Chang *et al.*, 2020), we
313 used a non-parametric approach with the goal of preserving clade-level branch-length
314 distributions. Based on the reasoning that the tips found in a clade on the reference tree
315 represent a sample drawn from the true diversification history of a clade, we placed missing
316 species by replacing randomly chosen species from the target clade on the reference
317 phylogeny with the target missing species. This is conceptually a bootstrapping approach to
318 missing species placement. The one exception to this approach were 7 species in the genus
319 *Trimenia*, for which the reference phylogeny had only one member. Since we had no other
320 phylogenetic data for this genus, these species were placed in a polytomy with zero branch-
321 lengths between them. After all missing species were placed, we pruned the reference tree of
322 all species that were not in our dataset. We created a distribution of trees representing
323 phylogenetic uncertainty by repeating this process 1000 times, generating 1000 equally likely
324 alternative placements for missing species.

325

326 For mangroves and non-mangrove angiosperms we used phylogenetically corrected
327 regressions between pairwise trait combinations using the R packages 'ape' (Paradis and

328 Schliep, 2019) and ‘picante’ (Kembel *et al.*, 2010). We calculated phylogenetically corrected
329 generalized least squares regressions for pairwise trait combinations using the R function *gls*
330 with a correlation structure equivalent to the phylogenetic relatedness under a Brownian
331 motion model of evolution (R function *corBrownian*). In order to account for the
332 phylogenetic uncertainty of the non-mangrove angiosperms in the previously published data,
333 we calculated these phylogenetic regressions on all 1000 equally likely phylogenies and
334 report the distributions of test statistics (slope, *t*-statistics, P-value) in the supplemental
335 information.

336

337

338 **RESULTS**

339 *Relationships between genome size and cell size in mangroves and non-mangrove
340 angiosperms*

341 Among non-mangrove angiosperms, there was a significant, positive relationship between
342 guard cell size (S_{gc} , μm^2) and genome size (Fig. 2; slope = 0.50 [0.44, 0.56], $R^2 = 0.62$, $P <$
343 0.0001) that remained highly significant after accounting for shared phylogenetic history
344 (Figure S1). However, among mangroves the relationship between guard cell size (S_{gc} , μm^2)
345 and genome size was negative (Fig. 2; slope = -1.16 [-1.81, -0.74], $R^2 = 0.34$, $P = 0.02$), such
346 that species with larger genomes had smaller guard cells (Fig. 2), but this relationship was not
347 significant after accounting for shared evolutionary history ($P = 0.27$). Moreover, there was
348 no effect of genome size on epidermal pavement cell size among mangroves (S_{ec} , μm^2 ; non-
349 phylogenetic $P = 0.37$; phylogenetic $P = 0.08$), although among a broader sampling of
350 angiosperms epidermal cell size and genome size were strongly and positively correlated
351 (slope = 0.50 [0.44, 0.56], $R^2 = 0.59$, $P < 0.0001$) even after accounting for shared
352 evolutionary history (Figure S1). Additionally, S_{gc} was generally greater than S_{ec} among

353 mangroves ($S_{gc}/S_{ec} = 2.91 \pm 0.55$, compared to $S_{gc}/S_{ec} = 0.18 \pm 0.02$ among non-mangrove
354 angiosperms) and both cell types were always larger than the minimum cell size defined by
355 the sizes of the genome (Fig. 2).

356

357 *Relationships between mean annual temperature and leaf anatomical traits*

358 The final sizes of mature cells are often much larger than their meristematic precursors,
359 allowing final cell size to be influenced by environmental variation. For the four species that
360 occurred at multiple sites, we tested the effects of climate on leaf anatomical traits by
361 incorporating intraspecific variation in traits and a random effect of species (Fig. 3). The
362 conditional R^2 that indicates the amount of variation explained by the entire model (i.e. the
363 fixed effect of the environmental variable and the random effect of species) were all above
364 0.50 and often above 0.75, indicating that there was substantial variation among species
365 in how traits responded to environmental variation (Figs. 3, S2; Table S1). The marginal R^2 ,
366 which indicates the amount of variation explained by the environmental variable alone, were
367 much lower though often still significant. Increasing temperature (MAT) had significant
368 effects on the packing densities of stomata (marginal $R^2 = 0.07$, $P < 0.01$) and leaf veins
369 (marginal $R^2 = 0.03$, $P < 0.01$) and the sizes of epidermal cells (marginal $R^2 = 0.03$, $P < 0.01$),
370 but not on the sizes of stomata (S_s) or the packing densities of epidermal cells (D_{ec}) (Fig. 3).
371 The small marginal R^2 combined with high conditional R^2 reported here indicate that climate
372 did have a significant but very small effect on traits, but species identity had a much larger
373 effect on the traits. In other words, each species was very different even at the same site, and
374 the species responded similarly but by a small amount to the environmental differences
375 across sites. There were no significant effects of MAP on any of the anatomical traits (all $P >$
376 0.05; Fig. S2, Table S1). Because MAT and salinity were strongly correlated across sites
377 (Fig. 1), higher salinity significantly increased the packing densities of stomata (marginal R^2

378 = 0.08, $P < 0.001$) and leaf veins (marginal $R^2 = 0.03$, $P = 0.001$), but salinity had no
379 significant effect on the sizes of stomata or epidermal cells or on the packing densities of
380 epidermal cells (Fig. S2).

381

382 *Relationships among leaf anatomical traits: S_s , D_s , D_v , and S_{ec}*

383 We compared inter- and intra-specific coordination between epidermal cell size, stomatal
384 size, stomatal density, and vein density to data previously reported for angiosperms (Beaulieu
385 *et al.*, 2008; Carins Murphy *et al.*, 2012, 2014, 2016) to test for common allometric scaling
386 relationships. The data from Carins Murphy *et al.* (2012, 2014, 2016) included intraspecific
387 variation driven by growing plants in high and low light or VPD environments. We
388 computed SMA regressions and confidence intervals from the broader selection of
389 angiosperms and compared these to the relationships observed for the 13 mangrove species in
390 this study. In addition, we tested for coordinated trait evolution by calculating generalized
391 least squares regressions among traits that included the expected covariance due to
392 phylogenetic relatedness. Overall, mangroves did not conform to the scaling relationships
393 previously observed for a broader selection of angiosperms (Fig. 4). While most
394 angiosperms had larger epidermal cells than stomata, species with smaller cells overall (i.e.
395 both smaller guard cells and epidermal cells) also had larger stomata than epidermal cells,
396 and all of the mangroves sampled here had epidermal cells smaller than stomata (Fig. 4a).
397 While S_{ec} strongly and positively scaled with S_s among non-mangrove angiosperms (slope =
398 0.77 [0.68, 0.88], $R^2 = 0.49$, $P < 0.001$) even after accounting for shared evolutionary history
399 (Fig. S4), the relationship between S_s and S_{ec} among mangroves was negative (slope = -0.97
400 [-1.41, -0.66], $R^2 = 0.37$, $P < 0.01$; Fig. 4a) and only marginally significant after accounting
401 for shared evolutionary history ($P = 0.068$). The relationship between D_s and S_{ec} was
402 significant and negative among non-mangrove angiosperms (slope = -0.85 [-0.95, -0.76], R^2

403 = 0.62, $P < 0.001$) even after accounting for shared evolutionary history (Fig. S3), but for
404 mangroves the relationship between these traits was positive, though only marginally
405 significant (slope = 0.88 [0.57, 1.36], $R^2 = 0.17$, $P = 0.07$; Fig. 4b) and non-significant after
406 incorporating shared evolutionary history ($P = 0.27$). Removing the one species
407 (*Laguncularia racemosa*) that had the largest epidermal cells resulted in a significant,
408 positive relationship between S_{ec} and D_s (slope = 1.00 [0.68, 1.48], $R^2 = 0.40$, $P < 0.01$) that
409 remained significant after accounting for shared evolutionary history ($P = 0.03$). Because
410 these relationships are fundamentally about packing cells into a two-dimensional space, we
411 used the D_s only of the abaxial leaf surface and not the total D_s per leaf area (i.e. the sum of
412 abaxial and adaxial surfaces, $D_{s,tot}$). Including instead the total D_s (sum of adaxial and
413 abaxial) for the three amphistomatous species resulted in a positive, significant relationship
414 between D_s and S_{ec} (slope = 0.89 [0.61, 1.29], $R^2 = 0.41$, $P < 0.01$) that was marginally
415 significant after accounting for shared evolutionary history ($P = 0.06$). There was a strong
416 and significant negative relationship between D_v and S_{ec} for non-mangrove angiosperms
417 (slope = -0.47 [-0.59, -0.38], $R^2 = 0.81$, $P < 0.001$; Fig. 4c), but this relationship was positive
418 though not significant for mangroves either excluding ($P = 0.22$) or including shared
419 evolutionary history ($P = 0.87$). Across sites and species, the relationship between stomatal
420 size (S_s) and density (D_s) for mangroves was consistent with the relationship across a broader
421 sampling of angiosperms (Fig. 4d; Fig. S3). Leaves always had smaller stomata or fewer
422 stomata than the maximum theoretical packing limit (solid line in Fig. 4e). Mangrove species
423 with higher D_s had smaller S_s (non-phylogenetic SMA: $R^2 = 0.42$, $P < 0.01$; phylogenetic
424 GLS: $P = 0.03$), and the slope of this relationship (slope = -0.91 [-1.32, -0.63]) was not
425 significantly different ($P = 0.44$) from the slope across all angiosperms (non-phylogenetic:
426 slope = -0.85 [-0.91, -0.79], $R^2 = 0.65$, $P < 0.0001$; phylogenetic: Fig. S3). However,
427 intraspecific variation across sites revealed that the overall negative relationship between S_s

428 and D_s was not always apparent within species (Fig. S4 inset). For example, at intermediate
429 MAP, *Kandelia obovata* had larger S_s and lower D_s than at both low and high MAP, but
430 across all three sites where this species occurred, there was a negative relationship between
431 D_s and S_s . We further tested whether tradeoffs between cell size and packing densities
432 extended to leaf veins (Fig. 4e). While across all angiosperms species with smaller S_s had
433 higher D_v ($R^2 = 0.13$, $P < 0.0001$) even after accounting for shared evolutionary history (Fig.
434 S3), among mangroves there was no significant relationship between S_s and D_v whether ($P =$
435 0.54) or not ($P = 0.07$) shared evolutionary history was included, though the relationship was
436 negative and the mangroves fell within the range of trait values occupied by non-mangrove
437 angiosperms (Fig. 4e).

438

439 *Coordination between D_v , $D_{s,tot}$ and maximum theoretical stomatal conductance*
440 Although $D_{s,tot}$ and D_v were coordinated among all the mangrove species x site combinations
441 sampled here (slope = 1.63 [1.08, 2.45], $R^2 = 0.28$, $P = 0.02$), $D_{s,tot}$ was generally lower for a
442 given D_v than it was among a broader sampling of angiosperms (slope = 1.53 [1.37, 1.71], R^2
443 = 0.37, $P < 0.001$; Fig. 5a). For non-mangrove angiosperms, the relationship between $D_{s,tot}$
444 and D_v remained as strong after accounting for shared evolutionary history (Fig. S5), but for
445 mangroves there was no coordinated evolution of $D_{s,tot}$ and D_v ($P = 0.84$). Mangroves
446 maintained a similar maximum theoretical stomatal conductance for a given $D_{s,tot}$ as other
447 non-mangrove angiosperms (mangrove slope = 0.56 [0.43, 0.75], $R^2 = 0.68$, $P < 0.0001$,
448 angiosperm slope = 0.64 [0.60, 0.68], $R^2 = 0.68$, $P < 0.0001$, slope test $P = 0.39$; Fig. 5b), and
449 there was evidence for coordinated evolution between $D_{s,tot}$ and maximum theoretical g_s for
450 both mangroves ($P < 0.01$) and non-mangrove angiosperms (Fig. S5).

451

452 *Relationships between leaf size, LMA, S_{ec} , and D_{ec}*

453 We also tested how these anatomical traits may be related to intra- and interspecific variation
454 in leaf size, which varied approximately five-fold across the mangrove species sampled here.
455 Across species, larger leaves were significantly associated with higher LMA ($R^2 = 0.23$, $P =$
456 0.02; Fig. 6a), smaller epidermal cells ($R^2 = 0.20$, $P < 0.05$; Fig. 6b), and a higher packing
457 density of epidermal cells ($R^2 = 0.46$, $P < 0.001$; Fig. 6c). The relationship between leaf size
458 and epidermal cell size was even stronger when the one mangrove species with very large
459 epidermal cells (*Laguncularia racemosa*) was removed ($R^2 = 0.27$, $P < 0.05$). However,
460 these pairwise relationships were weaker or not significant after accounting for shared
461 evolutionary history: there was no significant relationship between LMA and leaf size ($P =$
462 0.34), there was no significant relationship between S_{ec} and leaf size ($P = 0.25$) though
463 excluding *L. racemosa* improved the relationship ($P = 0.065$), and there was a marginally
464 significant relationship between D_{ec} and leaf size ($P = 0.073$).

465

466 DISCUSSION

467 Our analysis of 13 mangrove species, four of which occurred at more than one site, provides
468 strong evidence that the allometry of cells and tissues in mangrove leaves is distinct from
469 other C₃ angiosperm species. Our results highlight that while mangroves exhibit some of the
470 same trait relationships exhibited by non-mangrove angiosperms, they deviate in some
471 potentially important ways, most notably that they have unusually small epidermal pavement
472 cells and large guard cells. Despite these deviations from other angiosperms, mangroves
473 nonetheless attained similar maximum theoretical stomatal conductance. Because leaves are
474 composed of multiple cell types and because genome size limits only minimum cell size,
475 there can be numerous combinations of final cell sizes and packing densities that allow for
476 variation in leaf structure that lead to similar maximum potential gas exchange.

477 Understanding the implications of these differences could further shed light on how the

478 unique selective pressures of the mangrove habitat have resulted in novel anatomical and
479 physiological adaptations.

480

481 The mangroves we sampled from four sites in China (Fig. 1) had relatively small genomes
482 compared to other terrestrial vascular plants, yet they did not necessarily have smaller cells.
483 While interspecific analyses of genome size and cell size have repeatedly shown positive
484 scaling between genome size and minimum cell size, the absolute range of cell sizes is
485 negatively related to genome size, with smaller genomes allowing for a greater range of final
486 cell sizes (Beaulieu *et al.*, 2008; Simonin and Roddy, 2018; Roddy *et al.*, 2020; Théroux-
487 Rancourt *et al.*, 2021). The mangroves sampled here highlight this important nuance in the
488 genome size-cell size relationship: smaller genomes allow for smaller cells, but smaller
489 genomes do not necessarily mean that cells will always be small (Simonin and Roddy, 2018;
490 Roddy *et al.*, 2020). The interspecific relationship between stomatal guard cell size and
491 genome size among mangroves was actually negative, i.e. species with larger genomes had
492 smaller guard cells (Fig. 2). It is important to note that this negative relationship does not
493 contradict previous analyses (e.g. Beaulieu *et al.*, 2008) because a random sampling of any
494 subset of species in these previous analyses—particularly a set of species that exhibits little
495 variation in genome size—could produce the same negative relationship. Furthermore, the
496 inter- and intraspecific variation in guard cell size reported here all occurred within the range
497 of sizes defined by previously published data (Fig. 2, 4), and all of these guard cells were
498 larger than the minimum cell volume modeled from genome size. Similarly, while epidermal
499 cells were smaller than guard cells in all species, they were always larger than the minimum
500 cell size modeled from genome size (Fig. 2), further reiterating that genome size is associated
501 with strict limits on minimum cell size but has less direct impact on maximum or mature cell
502 sizes (Roddy *et al.*, 2020).

503

504 Above the minimum cell size defined by the size of the genome, leaf cell sizes and packing
505 densities can vary in response to abiotic conditions (Blonder *et al.*, 2017, Veselý *et al.*, 2020,
506 Wang *et al.*, 2020, Zhao *et al.*, 2020). Using the four species that occurred in more than one
507 site (Table 2), we calculated the effects of MAT, MAP, and soil water salinity on each
508 anatomical trait (Fig. 3 and S2, Table S1). Interestingly, MAT and soil water salinity, which
509 were strongly correlated among the four sites, affected most traits, whereas MAP had no
510 effect. Overall these environmental effects were weak, with no single environmental variable
511 explaining more than 8% of the variation in a trait, similar to the relatively weak effects on
512 leaf traits of mangrove seedlings grown under different temperatures (Inoue *et al.*, 2021).
513 Some of the significant effects of MAT were driven by the coldest site (FD), where only one
514 species (*Kandelia obovata*) was present (Fig. 1, Table 2). Although these trait correlations
515 with climate showcase that cell and tissue traits are plastic and that this plasticity is limited
516 by the minimum cell size defined by genome size, the climate effects were relatively weak
517 with differences among species explaining a greater proportion of the trait variance (Table
518 S1).

519

520 While there is typically a tradeoff between stomatal size and density (Franks and Beerling,
521 2009) that is driven largely by genome size variation among species (Beaulieu *et al.*, 2008;
522 Simonin and Roddy, 2018; Roddy *et al.*, 2020; Veselý *et al.*, 2020; Théroux-Rancourt *et al.*,
523 2021), individual species can move through this bivariate phenotype space in different ways
524 (Fig. S4). Although S_s and D_s for the 13 mangrove species showed a negative relationship
525 that overlapped with previous observations of angiosperms (Fig. 4d, Fig. S4), a strict,
526 mechanistic tradeoff between S_s and D_s occurs only at the packing limit (solid line in Fig. 4d),
527 and as species move farther away from this packing limit the potential for a strict tradeoff

528 between size and density becomes less likely. The species-specific responses to MAT
529 highlight that because both S_s and D_s are far from their packing limit (solid line in Fig. 4), a
530 relatively wide range of D_s can occur for a given S_s . For example, in *Kandelia obovata*,
531 decreasing temperature from the warmest site causes an increase in D_s with almost no change
532 in S_s , but decreasing MAT to the coolest site causes a reduction in D_s and a large increase in
533 S_s (Fig. S4 inset). These intraspecific patterns also highlight that traits do not necessarily
534 covary within species across habitats the same way they do among species. Furthermore,
535 while genome size determines minimum cell sizes and maximum cell packing densities (Fig.
536 2), acclimation and adaptation of mature cell sizes and cell packing densities can be driven by
537 the environment independent of genome size (Jordan *et al.*, 2015) or vary due to other
538 species-specific traits or constraints.

539

540 Despite the cell type-specific and species-specific responses of leaf anatomy to
541 environmental conditions (Figs. 3, 4, S2), $D_{s,tot}$ and D_v were strongly and positively related
542 (Fig. 5a)—though not after accounting for shared evolutionary history—and mangroves attained
543 the same maximum theoretical g_s for a given D_s as other angiosperms (Fig. 5b). The
544 coordination between $D_{s,tot}$ and D_v across environments occurred among species and,
545 generally, within species, although there was variation among species in the intraspecific
546 trends (Figs. 4, 5). The coordination between D_s and D_v within and across species has been
547 attributed to changes in the size and density of epidermal pavement cells (Carins Murphy *et*
548 *al.*, 2012, 2014, 2016, 2017). Specifically, epidermal cell size is thought to depend on
549 environmental conditions, such that differential expansion of epidermal cells modulates the
550 spacing of stomata and bundle sheath extensions from the veins. For the angiosperms studied
551 so far, inter- and intraspecific coordination between epidermal cell size (S_{ec}) and both D_s and
552 D_v have been taken as evidence in support of this ‘passive dilution’ model (Carins Murphy *et*

553 *al.*, 2012, 2014, 2016). In contrast to sun and shade leaves of nine angiosperm species
554 (Carins Murphy *et al.*, 2012) and a broader sampling of angiosperms (Beaulieu *et al.*, 2008),
555 mangroves deviated in the relationships between S_{ec} and both D_s and S_s (Fig. 4). While larger
556 epidermal cells are typically associated with larger stomata, among mangroves this
557 relationship was negative, due at least partially to the fact that mangrove epidermal cells were
558 substantially smaller than their stomata (Figs. 1, 2, 4a). The one mangrove species that had
559 epidermal cells larger than stomata was *Laguncularia racemosa*, and excluding this one
560 species revealed a significant, positive relationship between S_{ec} and D_s , in contrast to the
561 negative relationship between S_{ec} and D_s reported from other angiosperms (Fig. 4b).
562 Additionally, there was no relationship between S_{ec} and D_v in mangroves, in contrast to the
563 negative inter- and intraspecific relationship previously reported for nine non-mangrove
564 angiosperm species (Fig. 4c). Contrary to the lack of correlation between S_{ec} and both D_s and
565 D_v , the 13 mangroves studied here overlap with the broader group of angiosperms showing a
566 negative correlation between S_s and both D_s and D_v (Figs. 4d and 4e). Therefore, while there
567 is coordination between D_v and D_s among mangroves (Fig. 5a), variation in epidermal cell
568 size is likely not responsible for maintaining this coordination either within species across
569 environmental conditions or among species. That only some of these leaf traits exhibited
570 correlated evolution among mangroves could be due to the relatively small sample size of
571 only 13 species and to the relatively small variation in traits exhibited by mangroves
572 compared to the full range of trait values exhibited by non-mangrove angiosperms.
573 Nonetheless, these patterns in mangrove anatomy suggest that the unusually small epidermal
574 cells and the variation in S_{ec} within and between species may influence other aspects of leaf
575 function important to the mangrove habit, such as osmotic balance or leaf biomechanics.
576

577 All else being equal, smaller cells are more resistant to mechanical buckling than larger cells
578 ([Terashima *et al.*, 2001](#)). Additionally, cellular biomechanics is intimately related to cell
579 water balance via the effects of wall thickness on the bulk elastic modulus and the sensitivity
580 of turgor pressure to changes in water content. Possessing small and numerous epidermal
581 cells may be particularly advantageous for plants living in saline conditions that impose an
582 osmotic stress on cells throughout the plant. Indeed, S_{ec} decreased with increasing
583 temperature and salinity (Figs. 3 and S2), as would be predicted if osmotic balance and cell
584 mechanics were linked to epidermal cell size. Compared to freshwater and coastal plants,
585 marine plants have much stiffer cell walls that allow them to maintain the high turgor
586 pressures necessary to tolerate low osmotic potentials ([Touchette *et al.*, 2014](#)). While we do
587 not have water potential data or pressure-volume curve parameters for the mangroves studied
588 here, previous studies suggest that mangroves usually have lower water potentials than other
589 terrestrial angiosperms ([Jiang *et al.*, 2017, 2021, 2022](#)). Based on these lines of evidence, we
590 predict that lower osmotic potentials would be associated with hotter, more saline conditions
591 and would be related to epidermal cell size. Further evidence that epidermal cells may be
592 important for the biomechanics of mangrove leaves comes from the strong—and unexpected—
593 relationships between S_{ec} and D_{ec} and leaf size (Fig. 6). Larger leaves, which also have
594 higher LMA, have smaller and more densely packed epidermal cells (Fig. 6). However, there
595 were no significant relationships between leaf size and either S_s or D_s (data not shown), in
596 contrast to relationships seen in *Rhizophora mangle* across salinity gradients ([Peel *et al.*, 2017](#)).
597 In addition to being small, epidermal cells in mangrove leaves were also more
598 circular (Fig. 1) than epidermal cells of most other angiosperms, which are often highly
599 invaginated and puzzle-shaped ([Vofely *et al.*, 2019](#)). Puzzle-shaped cells seem to develop in
600 order to reduce mechanical stress without requiring excessively thick walls ([Sapala *et al.*,](#)

601 2018). The small, densely packed epidermal cells in mangroves may be advantageous
602 because they increase mechanical stiffness, allowing for larger leaves.
603
604 The warm, windy, saline environments of the mangrove habitat have driven the evolution of
605 a variety of physiological strategies, including tolerance to low osmotic potentials, salt
606 exclusion, and salt secretion, all of which influence mangrove hydraulics and photosynthesis
607 (Ball, 1988; Sobrado, 2000, 2002; Jiang *et al.*, 2017, 2022). Mangroves had higher D_v for a
608 given D_s than non-mangrove angiosperms, yet their environment and physiology are
609 amenable to foliar water uptake, which is expected to relax selection for high vein densities.
610 Deliquescence of salts on mangrove leaves can facilitate foliar water uptake even when
611 atmospheric humidity is unsaturated (Coopman *et al.*, 2021). The mean relative humidities at
612 the four sites where we sampled were all within the range in which deliquescence of salts is
613 likely (Zeng *et al.*, 2013). Thus, foliar water uptake may play an important role in mangrove
614 leaf water balance (Schreel *et al.*, 2019), potentially relaxing the role of leaf venation in
615 efficiently providing all of the water to the leaf. The likelihood that mangrove leaves may
616 use both root-derived and atmospheric water to hydrate leaves may relax selection on the
617 xylem to efficiently supply water and result in greater variation in leaf structure-function
618 relationships. Furthermore, that mangroves had smaller epidermal cells than their stomata, in
619 contrast to non-mangrove angiosperms, highlights another adaptation of mangrove anatomy
620 that may be advantageous in the warm, saline mangrove habitat. Understanding the
621 implications of small epidermal cells on mangrove hydraulics, gas exchange, and
622 biomechanics would be an important advance in understanding mangrove leaf adaptations.
623
624

CONCLUSION

625 Our results show that mangroves attain similar maximum theoretical gas exchange capacity
626 to other angiosperms despite deviating in many anatomical relationships well-characterized
627 for angiosperms. This highlights that there are multiple anatomical solutions with the same
628 functional outcome. The small genomes of mangroves allow for large variation in cell sizes
629 and cell packing densities in response to abiotic conditions. The unusually small epidermal
630 cells of mangrove leaves may help them tolerate the mechanical and osmotic demands of
631 their saline environments and their leaf size. Whether the extremely small epidermal cells
632 that enhance cell packing is an adaptation to the stressful mangrove environment deserves
633 further investigation.

634

635 **SUPPLEMENTARY DATA**

636 Additional Supporting Information may be found in the online version of the article at the
637 publisher's website.

638 **Table S1:** Linear mixed effects model results of each environmental parameter
639 (MAP, soil salinity, MAT) on each anatomical trait for the four species that occurred at
640 multiple sites.

641 **Figure S1:** Phylogenetic regression statistics (slope, *t*, *P*) of non-mangrove
642 angiosperms for relationships presented in Figure 2.

643 **Figure S2:** The effects of mean annual precipitation (MAP), soil salinity, and mean
644 annual temperature (MAT) on leaf anatomical traits of the four species that occurred at
645 multiple sites.

646 **Figure S3:** Phylogenetic regression statistics (slope, *t*, *P*) of non-mangrove
647 angiosperms for relationships presented in Figure 4.

648 **Figure S4:** The relationship between stomatal size (S_s) and stomatal density (D_s) for
649 non-mangrove angiosperms (grey points) and the mangrove species samples here (yellow-red
650 points).

651 **Figure S5:** Phylogenetic regression statistics (slope, t , P) of non-mangrove
652 angiosperms for relationships presented in Figure 5.

653 **FUNDING**

654 This work was supported by grants from the National Natural Science Foundation of China
655 (grant number 31860195) and Natural Science Foundation of Guangxi (Key Program
656 2022GXNSFDA035059) to G-FJ, and by DEB-1838327 from the U.S. National Science
657 Foundation to KAS and ABR.

658 **ACKNOWLEDGMENTS**

659 We thank Guangxi Mangrove Research Center, Guangxi Academy of Sciences for providing
660 soil water salinity data, and the many people (especially De-Hua Zeng from Sanya Academy
661 of Forestry) who helped with field sampling. This manuscript benefitted from constructive
662 comments by two reviewers. The authors declare no conflict of interest.

663

664 **AUTHORS' CONTRIBUTIONS**

665 G.-F.J. conceived the ideas and designed the study. G.-F.J., S.-Y. Li, and A.B.R. collected the
666 data. G.-F.J. and A.B.R. analyzed the data. G.-F.J., A.B.R. and K.A.S. wrote the manuscript,
667 and all authors reviewed each draft before giving approval for submission of the final
668 version.

LITERATURE CITED

670 **Ball MC. 1988.** Ecophysiology of mangroves. *Trees* **2**: 129-142. doi:10.1007/BF00196018.

671 **Bates D, Mächler M, Bolker B, Walker S. 2014.** Fitting linear mixed-effects models using
672 lme4. *Journal of Statistical Software* **67**: 1-48. doi:10.18637/jss.v067.i01.

673 **Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA. 2008.** Genome size is a
674 strong predictor of cell size and stomatal density in angiosperms. *New Phytologist*
675 **179**: 975-986. doi:10.1111/j.1469-8137.2008.02528.x.

676 **Blonder B, Enquist BJ. 2014.** Inferring climate from angiosperm leaf venation networks.
677 *New Phytologist* **204**: 116-126. doi:10.1111/nph.12780.

678 **Bongers F, Popma J. 1990.** Leaf Characteristics of the Tropical Rain Forest Flora of Los
679 Tuxtla, Mexico. *Botanical Gazette* **151**: 354-365. doi:10.1086/337836.

680 **Blonder B, Salinas N, Patrick Bentley L, Shenkin A, Chambi Porroa PO, Valdez Tejeira
681 Y, Violle C, Fyllas NM, Goldsmith GR, Martin RE. 2017.** Predicting trait -
682 environment relationships for venation networks along an Andes - Amazon elevation
683 gradient. *Ecology* **98**: 1239-1255. doi:10.1002/ecy.1747.

684 **Boyce CK, Brodribb TJ, Feild TS, Zwieniecki MA. 2009.** Angiosperm leaf vein evolution
685 was physiologically and environmentally transformative. *Proceedings of the Royal
686 Society B-Biological Sciences* **276**: 1771-1776. doi:10.1098/rspb.2008.1919.

687 **Boyce CK, Zwieniecki MA. 2012.** Leaf fossil record suggests limited influence of
688 atmospheric CO₂ on terrestrial productivity prior to angiosperm evolution.
689 *Proceedings of the National Academy of Sciences* **109**: 10403-8.
690 doi:10.1073/pnas.1203769109.

691 **Breheny P, Burchett W. 2017.** Visualization of Regression Models Using visreg. *R Journal*
692 **9**: 56-71. doi:10.32614/Rj-2017-046.

693 **Brodribb TJ. 2009.** Xylem hydraulic physiology: the functional backbone of terrestrial plant
694 productivity. *Plant Science* **177**: 245-251. doi:10.1016/j.plantsci.2009.06.001.

695 **Brodribb TJ, Feild TS. 2010.** Leaf hydraulic evolution led a surge in leaf photosynthetic
696 capacity during early angiosperm diversification. *Ecology Letters* **13**: 175-183.
697 doi:10.1111/j.1461-0248.2009.01410.x.

698 **Brodribb TJ, Feild TS, Jordan GJ. 2007.** Leaf maximum photosynthetic rate and venation
699 are linked by hydraulics. *Plant Physiology* **144**: 1890-8. doi:10.1104/pp.107.101352.

700 **Brodribb TJ, Feild TS, Sack L. 2010.** Viewing leaf structure and evolution from a
701 hydraulic perspective. *Functional Plant Biology* **37**: 488-498. doi:10.1071/FP10010.

702 **Brodribb TJ, Jordan GJ, Carpenter RJ. 2013.** Unified changes in cell size permit
703 coordinated leaf evolution. *New Phytologist* **199**: 559-570. doi:10.1111/nph.12300.

704 **Cao, C. 2008.** *Effects of Kandelia candel mangrove restoration on soil physical, chemical
705 and biochemical parameters in Jiulong river estuary*. Masters thesis, Xiamen
706 University.

707 **Carins Murphy MR, Jordan GJ, Brodribb TJ. 2012.** Differential leaf expansion can
708 enable hydraulic acclimation to sun and shade. *Plant, Cell & Environment* **35**: 1407-
709 1418. doi:10.1111/j.1365-3040.2012.02498.x.

710 **Carins Murphy MR, Jordan GJ, Brodribb TJ. 2014.** Acclimation to humidity modifies
711 the link between leaf size and the density of veins and stomata. *Plant, Cell &
712 Environment* **37**: 124-131. doi: 10.1111/pce.12136.

713 **Carins Murphy MR, Jordan GJ, Brodribb TJ. 2016.** Cell expansion not cell
714 differentiation predominantly co-ordinates veins and stomata within and among herbs
715 and woody angiosperms grown under sun and shade. *Annals of Botany* **118**: 1127-
716 1138. doi:10.1093/aob/mcw167.

717 **Carins Murphy MR, Jordan GJ, Brodribb TJ. 2017.** Ferns are less dependent on passive
718 dilution by cell expansion to coordinate leaf vein and stomatal spacing than
719 angiosperms. *Plos One* **12**: e0185648. doi:10.1371/journal.pone.0185648.

720 **Cavalier-Smith T. 1978.** Nuclear volume control by nucleoskeletal DNA, selection for cell
721 volume and cell growth rate, and the solution of the DNA C-value paradox. *Journal
722 of Cell Science* **34**: 247-78. doi:10.1242/jcs.34.1.247.

723 **Cayuela L, Granzow-de la Cerda Í, Albuquerque FS, Golicher DJ. 2012.** taxonstand: An
724 r package for species names standardisation in vegetation databases. *Methods in
725 Ecology and Evolution* **3**: 1078-1083. doi:10.1111/j.2041-210X.2012.00232.x.

726 **Chang J, Rabosky DL, Alfaro ME. 2020.** Estimating diversification rates on incompletely
727 sampled phylogenies: theoretical concerns and practical solutions. *Systematic Biology*
728 **69**: 602-611. doi: 10.1093/sysbio/syz081.

729 **Coomes DA, Heathcote S, Godfrey ER, Shepherd JJ, Sack L. 2008.** Scaling of xylem
730 vessels and veins within the leaves of oak species. *Biology Letters* **4**: 302-306.
731 doi:10.1098/rsbl.2008.0094.

732 **Coopman RE, Nguyen HT, Mencuccini M, Oliveira RS, Sack L, Lovelock CE, Ball MC.**
733 **2021.** Harvesting water from unsaturated atmospheres: deliquescence of salt secreted
734 onto leaf surfaces drives reverse sap flow in a dominant arid climate mangrove,
735 *Avicennia marina*. *New Phytologist* **231**: 1401-1414. doi:10.1111/nph.17461.

736 **de Boer HJ, Eppinga MB, Wassen MJ, Dekker SC. 2012.** A critical transition in leaf
737 evolution facilitated the Cretaceous angiosperm revolution. *Nature Communications*
738 **3**: 1221. doi:10.1038/ncomms2217.

739 **de Boer HJ, Price CA, Wagner-Cremer F, Dekker SC, Franks PJ, Veneklaas EJ. 2016.**
740 Optimal allocation of leaf epidermal area for gas exchange. *New Phytologist* **210**:
741 1219-1228. doi:10.1111/nph.13929.

742 **Dolezel J, Bartoš J, Voglmayr H, Greilhuber J. 2003.** Nuclear DNA content and Genome
743 Size of Trout and Human. *Cytometry. Part A : the journal of the International Society
744 for Analytical Cytology* **51**: 127-8; author reply 129. doi:10.1002/cyto.a.10013.

745 **Dolezel J, Greilhuber J, Suda J. 2007.** Estimation of nuclear DNA content in plants using
746 flow cytometry. *Nature Protocols* **2**: 2233-2244. doi:10.1038/nprot.2007.310.

747 **Duke NC. 1992.** Mangrove floristics and biogeography. In: AI Robertson, DM Alongi, eds.
748 *Tropical Mangrove Ecosystems*. Washington, D.C.: American Geophysical Union.

749 **Feild TS, Chatelet DS, Brodribb TJ. 2009.** Ancestral xerophobia: a hypothesis on the
750 whole plant ecophysiology of early angiosperms. *Geobiology* **7**: 237-264.
751 doi:10.1111/j.1472-4669.2009.00189.x.

752 **Feild TS, Upchurch GR, Chatelet DS, Brodribb TJ, Grubbs KC, Samain MS, Wanke S.**
753 **2011.** Fossil evidence for low gas exchange capacities for Early Cretaceous
754 angiosperm leaves. *Paleobiology* **37**: 195-213. doi:10.1666/10015.1.

755 **Franks PJ, Beerling DJ. 2009.** Maximum leaf conductance driven by CO₂ effects on
756 stomatal size and density over geologic time. *Proceedings of the National Academy of
757 Sciences U S A* **106**: 10343-10347. doi:10.1073/pnas.0904209106.

758 **Franks PJ, Freckleton RP, Beaulieu JM, Leitch IJ, Beerling DJ. 2012a.** Megacycles of
759 atmospheric carbon dioxide concentration correlate with fossil plant genome size.
760 *Philosophical Transactions of The Royal Society B Biological Sciences* **367**: 556-64.
761 doi:10.1098/rstb.2011.0269.

762 **Franks PJ, Leitch IJ, Ruszala EM, Hetherington AM, Beerling DJ. 2012b.** Physiological
763 framework for adaptation of stomata to CO₂ from glacial to future concentrations.
764 *Philosophical Transactions of The Royal Society B Biological Sciences* **367**: 537-46.
765 doi:10.1098/rstb.2011.0270.

766 **Fridley JD, Craddock A. 2015.** Contrasting growth phenology of native and invasive forest
767 shrubs mediated by genome size. *New Phytologist* **207**: 659-
768 68.doi:10.1111/nph.13384.

769 **Gleason SM, Blackman CJ, Chang Y, Cook AM, Laws CA, Westoby M. 2016.** Weak
770 coordination among petiole, leaf, vein, and gas - exchange traits across Australian
771 angiosperm species and its possible implications. *Ecology & Evolution* **6**: 267-278.
772 doi:10.1002/ece3.1860.

773 **He Z, Feng X, Chen Q, Li L, Li S, Han K, Guo Z, Wang J, Liu M, Shi C, Xu S, Shao S,**
774 **Liu X, Mao X, Xie W, Wang X, Zhang R, Li G, Wu W, Zheng Z, Zhong C, Duke**
775 **NC, Boufford DE, Fan G, Wu C-I, Ricklefs RE, Shi S. 2022.** Evolution of coastal
776 forests based on a full set of mangrove genomes. *Nature Ecology & Evolution* doi:
777 10.1038/s41559-022-01744-9.

778 **Hu MJ, Sun WH, Tsai WC, Xiang S, Lai XK, Chen DQ, Liu XD, Wang YF, Le YX,**
779 **Chen SM, Zhang DY, Yu X, Hu WQ, Zhou Z, Chen YQ, Zou SQ, Liu ZJ. 2020.**
780 Chromosome-scale assembly of the *Kandelia obovata* genome. *Horticulture Research*
781 7:75. doi:10.1038/s41438-020-0300-x.

782 **Inoue T, Akaji Y, Noguchi K. 2021.** Distinct responses of growth and respiration to growth
783 temperatures in two mangrove species. *Annals of Botany* **129**: 15-28.
784 doi:10.1093/aob/mcab117.

785 **Jiang GF, Brodribb TJ, Roddy AB, Lei JY, Si HT, Pahadi P, Zhang YJ, Cao KF. 2021.**
786 Contrasting Water Use, Stomatal Regulation, Embolism Resistance, and Drought
787 Responses of Two Co-Occurring Mangroves. *Water* **13**:1945.
788 doi:10.3390/w13141945.

789 **Jiang GF, Goodale UM, Liu YY, Hao GY, Cao KF. 2017.** Salt management strategy
790 defines the stem and leaf hydraulic characteristics of six mangrove tree species. *Tree*
791 *Physiology* **37**: 389-401. doi:10.1093/treephys/tpw131.

792 **Jiang GF, Li S-Y, Li Y-C, Roddy AB. 2022.** Coordination of hydraulic thresholds across
793 roots, stems, and leaves of two co-occurring mangrove species. *Plant Physiology*.
794 10.1093/plphys/kiac240.

795 **Jordan GJ, Brodribb TJ, Blackman CJ, Weston PH. 2013.** Climate drives vein anatomy
796 in Proteaceae. *American Journal of Botany* **100**: 1483-1493.
797 doi:10.3732/ajb.1200471.

798 **Jordan GJ, Carpenter RJ, Koutoulis A, Price A, Brodribb TJ. 2015.** Environmental
799 adaptation in stomatal size independent of the effects of genome size. *New*
800 *Phytologist* **205**: 608-617. doi:10.1111/nph.13076.

801 **Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg**
802 **SP, Webb CO. 2010.** Picante: R tools for integrating phylogenies and ecology.
803 *Bioinformatics* **26**:1463-1464. doi: 10.1093/bioinformatics/btq166.

804 **Krauss KW, Lovelock CE, McKee KL, Lopez-Hoffman L, Ewe SML, Sousa WP. 2008.**
805 Environmental drivers in mangrove establishment and early development: A review.
806 *Aquatic Botany* **89**: 105-127. doi:10.1016/j.aquabot.2007.12.014.

807 **Li FL, Zhong L, Cheung SG, Wong YS, Shin PKS, Lei AP, Zhou HC, Song X, Tam**
808 **NFY (2020)** Is *Laguncularia racemosa* more invasive than *Sonneratia apetala* in
809 northern Fujian, China in terms of leaf energetic cost? *Mar Pollut Bull* **152**: 110897.

810 **Li SY, Li YC, Zhang TH, Qin LL, An YD, Pang YK, Jiang GF. 2021a.** Characterization
811 of the complete chloroplast genome of mangrove *Bruguiera gymnorhiza* (L.) Lam.
812 ex Savigny. *Mitochondrial DNA Part B* **6**:2076-2078. doi:
813 10.1080/23802359.2021.1914220.

814 **Li YC, Li SY, Zhang TH, Qin LL, An YD, Pang YK, Jiang GF. 2021b.** Characterization
815 of the complete chloroplast genome of mangrove *Rhizophora apiculata* Blume

816 (Rhizophoraceae). **Mitochondrial DNA Part B** 6:2071-2073. doi:
817 10.1080/23802359.2021.1923421.

818 **Lin, Y., Lin, J. & Lin, P. 1998.** Ecological comparison of secondary xylem anatomy of
819 *Kandelia candel*. *Journal of Oceanography in Taiwan Strait*, 17, 219-223.
820 doi:CNKI:SUN:TWHX.0.1998-02-018.

821 **Lyu HM, He ZW, Wu CI, Shi SH. 2018.** Convergent adaptive evolution in marginal
822 environments: unloading transposable elements as a common strategy among
823 mangrove genomes. *New Phytologist* 217: 428-438. doi:10.1111/nph.14784.

824 **McElwain JC, Yiotis C, Lawson T. 2016.** Using modern plant trait relationships between
825 observed and theoretical maximum stomatal conductance and vein density to examine
826 patterns of plant macroevolution. *New Phytologist* 209: 94-103.
827 doi:10.1111/nph.13579.

828 **Paradis E, Schliep K. 2019.** ape 5.0: an environment for modern phylogenetics and
829 evolutionary analyses in R. *Bioinformatics* 35:526-528. doi:
830 10.1093/bioinformatics/bty633.

831 **Peel JR, Sanchez MCM, Portillo JL, Golubov J. 2017.** Stomatal density, leaf area and
832 plant size variation of Rhizophora mangle (Malpighiales: Rhizophoraceae) along a
833 salinity gradient in the Mexican Caribbean. *Revista De Biología Tropical* 65: 701-
834 712. doi:10.15517/RBT.V65I2.24372.

835 **R Core Team. 2020.** R: A language and environment for statistical computing. R Foundation
836 for Statistical Computing, Vienna, Austria. <http://www.r-project.org/index.html>.

837 **Reef R, Lovelock CE. 2015.** Regulation of water balance in mangroves. *Annals of Botany*
838 115: 385-95. doi:10.1093/aob/mcu174.

839 **Roddy A, Theroux-Rancourt G, Abbo T, Brodersen CR, Jensen BM, Jiang G-F,
840 Thompson RA, Kuebbing SE, Simonin KA. 2020.** The scaling of genome size and
841 cell size limits maximum rates of photosynthesis with implications for ecological
842 strategies. *International Journal of Plant Sciences* 181: 75-87. doi:10.1086/706186.

843 **Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW.
844 2017.** ImageJ2: ImageJ for the next generation of scientific image data. *BMC
845 Bioinformatics* 18: 529. doi:10.1186/s12859-017-1934-z.

846 **Sack L, Frole K. 2006.** Leaf structural diversity is related to hydraulic capacity in tropical
847 rain forest trees. *Ecology* 87: 483-491. doi 10.1890/05-0710.

848 **Sack L, Scoffoni C, McKown AD, Frole K, Rawls M, Havran JC, Tran H, Tran T. 2012.**
849 Developmentally based scaling of leaf venation architecture explains global
850 ecological patterns. *Nature Communications* 3: 837. doi:10.1038/ncomms1835.

851 **Sapala A, Runions A, Routier-Kierzkowska A-L, Das Gupta M, Hong L, Hofhuis H,
852 Verger S, Mosca G, Li C-B, Hay A, Hamant O, Roeder AHK, Tsiantis M,
853 Prusinkiewicz P, Smith RS. 2018.** Why plants make puzzle cells, and how their
854 shape emerges. *eLife* 7: e32794. doi:10.7554/eLife.32794.

855 **Scholander PF, Hammel HT, Hemmingsen EA, Bradstreet ED. 1964.** Hydrostatic
856 Pressure and Osmotic Potential in Leaves of Mangroves and Some other Plants.
857 *Proceedings of the National Academy of Sciences U S A* 52: 119-125.
858 doi:10.1073/pnas.52.1.119.

859 **Schreel JDM, Van de Wal BAE, Hervé-Fernandez P, Boeckx P, Steppe K. 2019.**
860 Hydraulic redistribution of foliar absorbed water causes turgor-driven growth in
861 mangrove seedlings. *Plant, Cell & Environment* 42: 2437-2447.
862 doi:10.1111/pce.13556.

863 **Simonin KA, Roddy AB. 2018.** Genome downsizing, physiological novelty, and the global
864 dominance of flowering plants. *PLoS Biology* 16: e2003706.
865 doi:10.1371/journal.pbio.2003706.

866 Šimová I, Herben T. 2012. Geometrical constraints in the scaling relationships between
867 genome size, cell size and cell cycle length in herbaceous plants. *Proceedings of the*
868 *Royal Society B: Biological Sciences* **279**: 867-875. doi:10.1098/rspb.2011.1284.

869 Smith SA, Brown JW. 2018. Constructing a broadly inclusive seed plant phylogeny.
870 *American Journal of Botany* **105**: 302-314. doi: 10.1002/ajb2.1019.

871 Sobrado M. 2000. Relation of water transport to leaf gas exchange properties in three
872 mangrove species. *Trees* **14**: 258-262. doi:10.1007/s004680050011.

873 Sobrado M. 2002. Effect of drought on leaf gland secretion of the mangrove *Avicennia*
874 *germinans* L. *Trees* **16**: 1-4. doi:10.1007/s004680100122.

875 Terashima I, Miyazawa SI, Hanba YT. 2001. Why are sun leaves thicker than shade
876 leaves? Consideration based on analyses of CO₂ diffusion in the leaf. *Journal of Plant*
877 *Research* **114**: 93-105. doi:10.1007/Pl00013972.

878 Théroux-Rancourt G, Roddy AB, Earles JM, Gilbert ME, Zwieniecki MA, Boyce CK,
879 Tholen D, McElrone AJ, Simonin KA, Brodersen CR. 2021. Maximum CO₂
880 diffusion inside leaves is limited by the scaling of cell size and genome size.
881 *Proceedings of the Royal Society B: Biological Sciences* **288**: 20203145.
882 doi:10.1098/rspb.2020.3145.

883 Thomas GH, Hartmann K, Jetz W, Joy JB, Mimoto A, Mooers AO. 2013. PASTIS: an R
884 package to facilitate phylogenetic assembly with soft taxonomic inferences. *Methods*
885 *in Ecology and Evolution* **4**: 1011-1017. doi: 10.1111/2041-210X.12117.

886 Tomlinson PB. 1986. *The botany of mangroves*. Cambridge Cambridgeshire; New York:
887 Cambridge University Press.

888 Touchette BW, Marcus SE, Adams EC. 2014. Bulk elastic moduli and solute potentials in
889 leaves of freshwater, coastal and marine hydrophytes. Are marine plants more rigid?
890 *AoB Plants* **6**. doi:10.1093/aobpla/plu014.

891 Vofely RV, Gallagher J, Pisano GD, Bartlett M, Braybrook SA. 2019. Of puzzles and
892 pavements: a quantitative exploration of leaf epidermal cell shape. *New Phytologist*
893 **221**: 540-552. doi:10.1111/nph.15461.

894 Veselý P, Šmarda P, Bureš P, Stirton C, Muasya AM, Mucina L, Horová L, Veselá K,
895 Šílerová A, Šmerda J, Knápek O. 2020. Environmental pressures on stomatal size
896 may drive plant genome size evolution: evidence from a natural experiment with
897 Cape geophytes. *Annals of Botany* **126**: 323-330. doi:10.1093/aob/mcaa095.

898 Wang R, Chen H, Liu X, Wang Z, Wen J, Zhang S. 2020. Plant Phylogeny and Growth
899 Form as Drivers of the Altitudinal Variation in Woody Leaf Vein Traits. *Frontiers in*
900 *Plant Science* **10**: 1735. doi:10.3389/fpls.2019.01735.

901 Warton DI, Duursma RA, Falster DS, Taskinen S. 2012. smatr 3 – an R package for
902 estimation and inference about allometric lines. *Methods in Ecology and Evolution* **3**:
903 257-259. doi:10.1111/j.2041-210X.2011.00153.x.

904 Zeng JR, Zhang GL, Long SL, Liu K, Cao LL, Bao LM, Li Y. 2013. Sea salt
905 deliquescence and crystallization in atmosphere: an in situ investigation using x-ray
906 phase contrast imaging. *Surface and Interface Analysis* **45**: 930-936.
907 doi:10.1002/sia.5184.

908 Zhao WL, Fu PL, Liu GL, Zhao P. 2020. Difference between emergent aquatic and
909 terrestrial monocotyledonous herbs in relation to the coordination of leaf stomata with
910 vein traits. *AoB Plants* **12**: plaa047. doi:10.1093/aobpla/plaa047.

911 Zhou QJ, Chen YM, Wu W, Zhou RC, Zhang Y (2018) The complete chloroplast genome
912 sequence of an endangered mangrove tree *Lumnitzera littorea* (Combretaceae).
913 *Conservation Genetics Resources* **10**: 911-913.

914

915 **Figure Legends**

916 **Fig. 1** Sites and species sampled. Map of southeastern China shows the four sites in the
917 provinces of Fujian, Guangxi, and Hainan where plants were sampled. Points on the map are
918 colored according to their mean annual temperature (MAT), and colors for site means of
919 annual temperature (MAT, °C), soil water salinity (g kg⁻¹), and annual precipitation (MAP,
920 mm), are shown to the right. Note these colors are used in subsequent figures to color points.
921 Images of exemplary leaves of each species show the diversity in leaf size among the species.
922 Scale bar next to the leaf of *Lumnitzera racemosa* is 1 cm and applies to all leaf images.
923 Microscopic images below each leaf are exemplary images of abaxial epidermises for each
924 species, and each epidermal image is 250 µm on each side. The bottom row of images shows
925 exemplary images of veins for each species, and each vein image is 1000 µm on each side.
926

927 **Fig. 2** Two-dimensional sizes of (a) stomatal guard cells (S_{gc}) and (b) epidermal pavement
928 cells (S_{ec}) as a function of genome size. The solid line indicates the maximum two-
929 dimensional cross-sectional area of meristematic cells based on data from Šímová and
930 Herben (2012) (see methods for details about calculation). S_{gc} was calculated from
931 measurements of guard cell length assuming that guard cells were shaped as capsules (see
932 methods for details). S_{ec} was measured from epidermal images. Note that points for
933 mangroves represent species x site means and standard errors, though standard error bars are
934 small enough that they are mostly obscured by the points. Grey points represent published
935 data from angiosperms.

936 **Fig. 3** Effects of mean annual temperature (MAT) on leaf anatomical traits of the four species
937 that occurred at multiple sites: (a) epidermal cell size (S_{ec}), (b) abaxial stomatal density (D_s),
938 and (c) leaf vein density (D_v). Blue lines and the marginal R^2 values were calculated by
939 linear mixed effects models based on individual plant level data and indicate the effect of
940 MAT on each trait after accounting for the random effect of species (i.e. each species has a
941 different intercept). For easier visualization, points and error bars represent species x site
942 means and standard error. Note that all traits except vein density (D_v) are plotted on log-
943 scaled y-axes and that slight jitter has been added along the x-axis to better distinguish points.
944 **P < 0.01

945 **Fig. 4** The scaling of epidermal cell size (S_{ec}) and (a) stomatal size (S_s), (b) stomatal density
946 (D_s), and (c) vein density (D_v), and the scaling of stomatal size (S_s) and (d) stomatal density
947 (D_s) and (e) vein density (D_v). In (a-c), grey circles represent data from Beaulieu et al.
948 (2008), and grey triangles represent data from Carins-Murphy et al. (2016), with lines
949 connecting conspecific plants grown under different conditions. In (a), the solid line
950 represents the 1:1 line. In (d) the thick solid line represents the maximum packing limits
951 where $D_s = 1/S_s$ (Franks and Beerling, 2009). In (d) the inset shows a focused view of
952 mangrove data colored according to site MAP (Figure 1) with solid lines connecting species
953 across multiple sites and dashed lines connecting adaxial and abaxial data for
954 amphistomatous species. In (d-e), grey points are previously published data from a variety of
955 sources (see methods). (b,d) Only D_s of the abaxial (lower) surface is plotted for
956 amphistomatous species because this relationship is based on cell packing. In all panels, grey
957 dashed lines and shading are standard major axis regressions and confidence intervals for
958 angiosperms, and dashed lines and red shading are standard major axis regressions and
959 confidence intervals for mangroves.

960 **Fig. 5** Coordination between (a) vein density (D_v) and total stomatal density ($D_{s,tot}$, the sum of
961 adaxial and abaxial D_s , relevant for fluxes) and (b) total stomatal density ($D_{s,tot}$) and

965 maximum stomatal conductance (g_s) for mangroves (yellow/red points, colored according to
966 site MAT, and connected by solid lines for species occurring in multiple sites) compared to a
967 broader sampling of angiosperms (grey points). Circles represent species with
968 hypostomatous leaves, and triangles represent species with amphistomatous leaves. The
969 solid, grey lines and shading are the SMA regressions and 95% CI for angiosperms, and the
970 dashed, black lines and red shading are the SMA regressions and 95% CI for mangroves.
971

972 **Fig. 6** Relationships between leaf size and (a) leaf mass per area (LMA), (b) epidermal cell
973 size (S_{ec}), and (c) packing density of epidermal cells (D_{ec}). Connected points represent
974 species that occur across multiple sites, and points are colored according to site-specific
975 MAT.
976

977 **Figure S1.** The effects of mean annual precipitation (MAP), soil salinity, and mean annual
978 temperature (MAT) on leaf anatomical traits of the four species that occurred at multiple
979 sites: (a,f,k) stomatal size (S_s), (b,g,l) epidermal cell size (S_{ec}), (c,h,m) abaxial stomatal
980 density (D_s), (d,i,n) epidermal cell packing density (D_{ec}), and (e,j,o) leaf vein density (D_v).
981 Blue lines indicate the effect of each environmental variable on each trait after accounting for
982 the random effect of species (i.e. each species has a different intercept). Note that all traits
983 except vein density (D_v) are plotted on log-scaled y-axes. Points represent individual plants,
984 whereas in Figure 3 points represent species x site means. See Table S1 for complete
985 marginal and conditional R^2 values.
986

987
988 **Table S1.** Linear mixed effects model results of each environmental parameter (MAP, soil
989 salinity, MAT) on each anatomical trait for the four species that occurred at multiple sites.
990 Note that the marginal R^2 is the proportion of the variance explained by the fixed effects
991 alone (i.e. the environmental variable) and that the conditional R^2 is the proportion of the
992 variance explained by both the fixed and random effects (i.e. the environmental variable and
993 the species identity). * $P < 0.05$; ** $P < 0.01$, *** $P < 0.001$
994

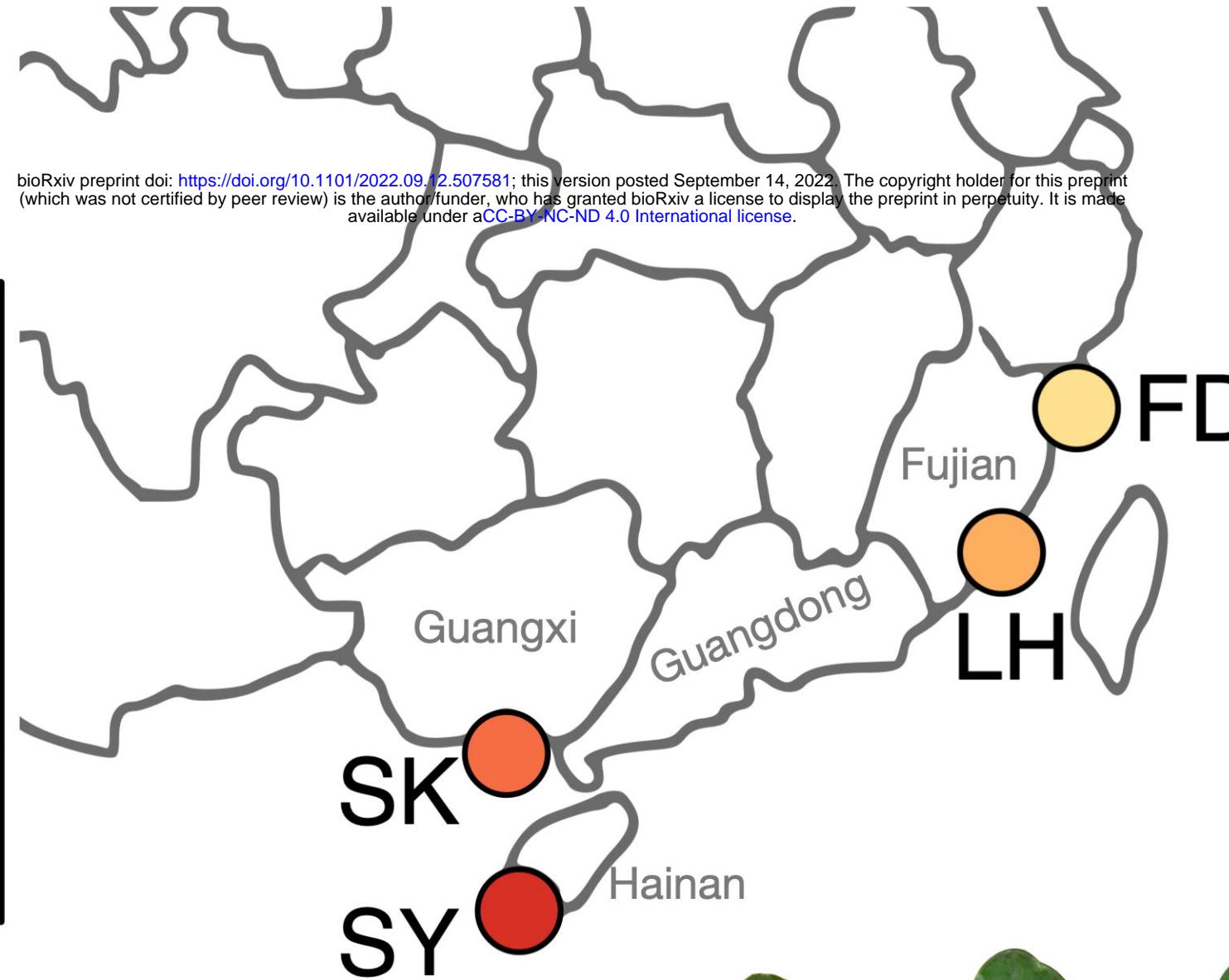
995
996

997 **Table 1.** Site names, locations, and mean climate variables used in the analyses.

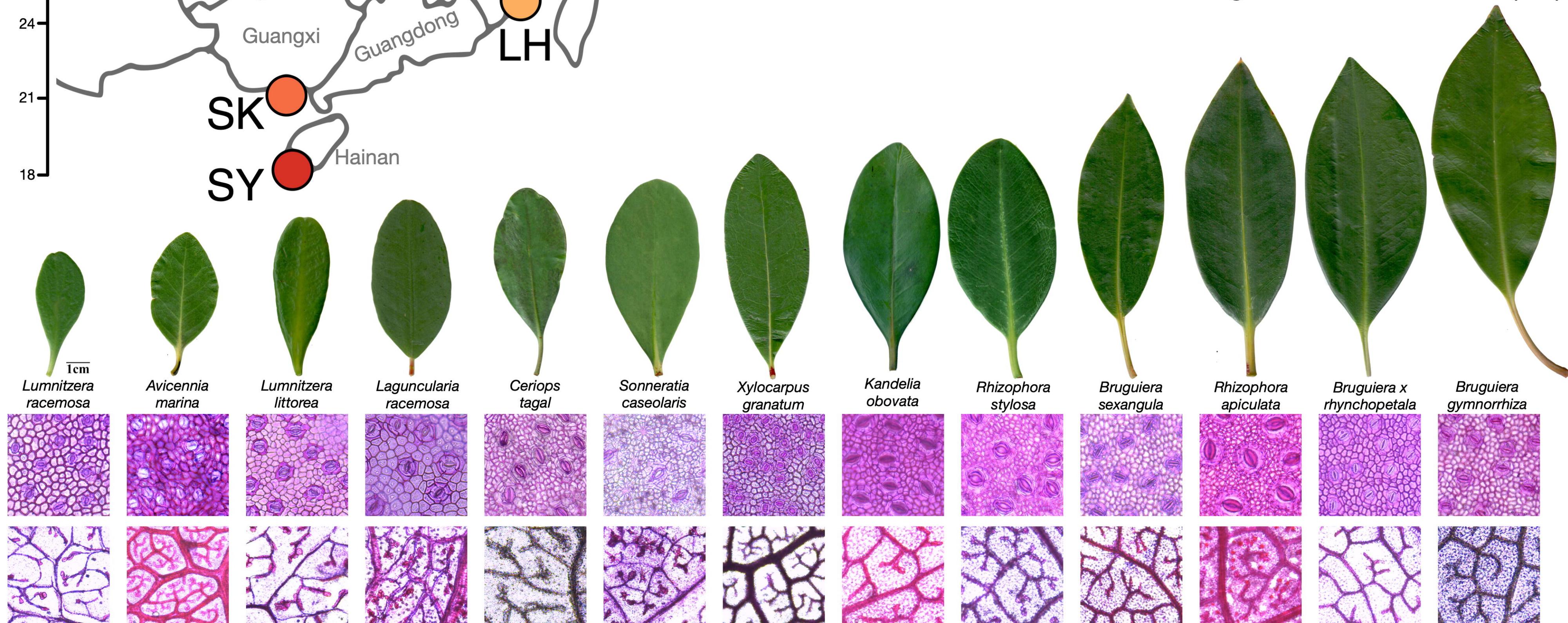
998

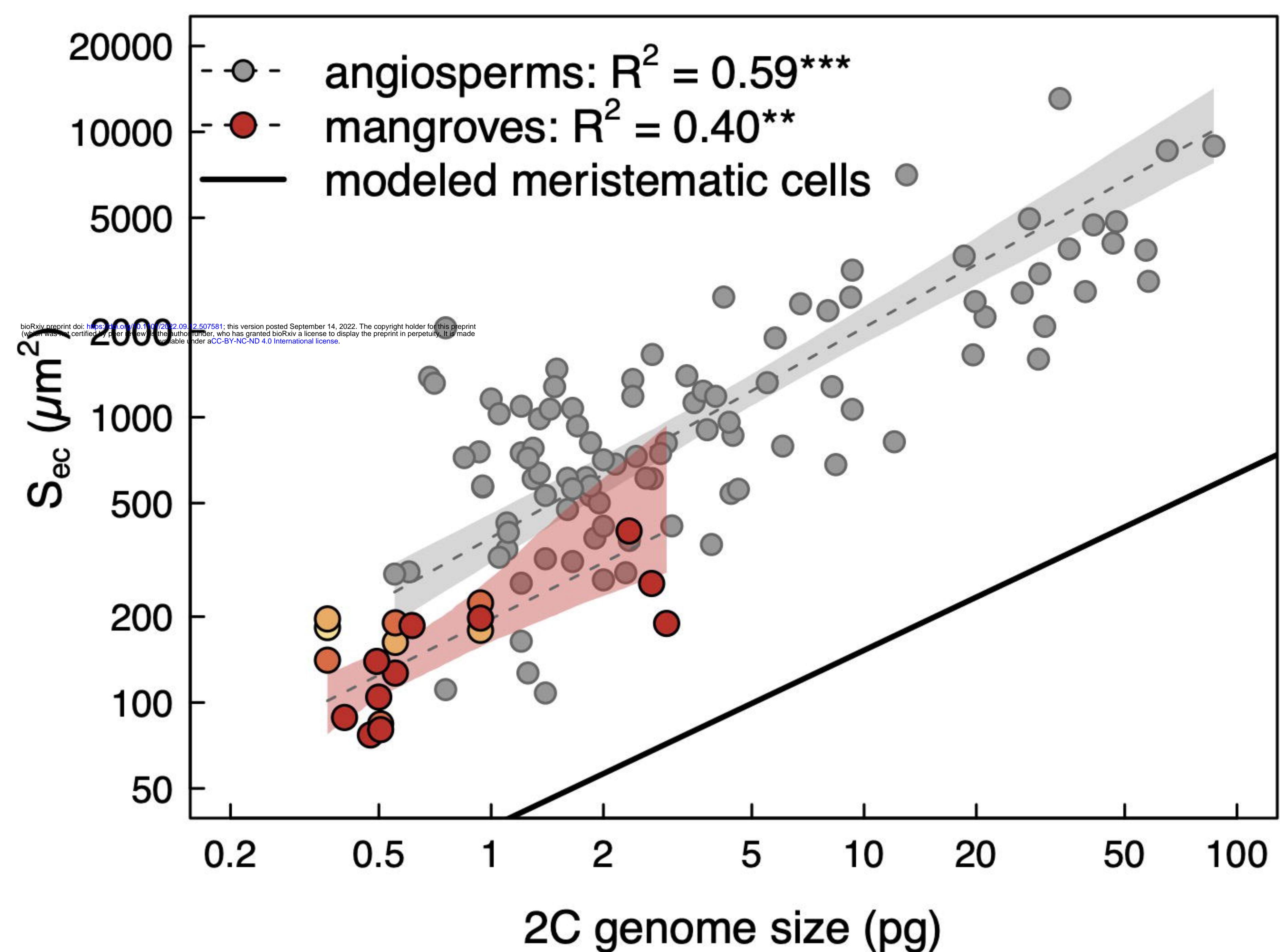
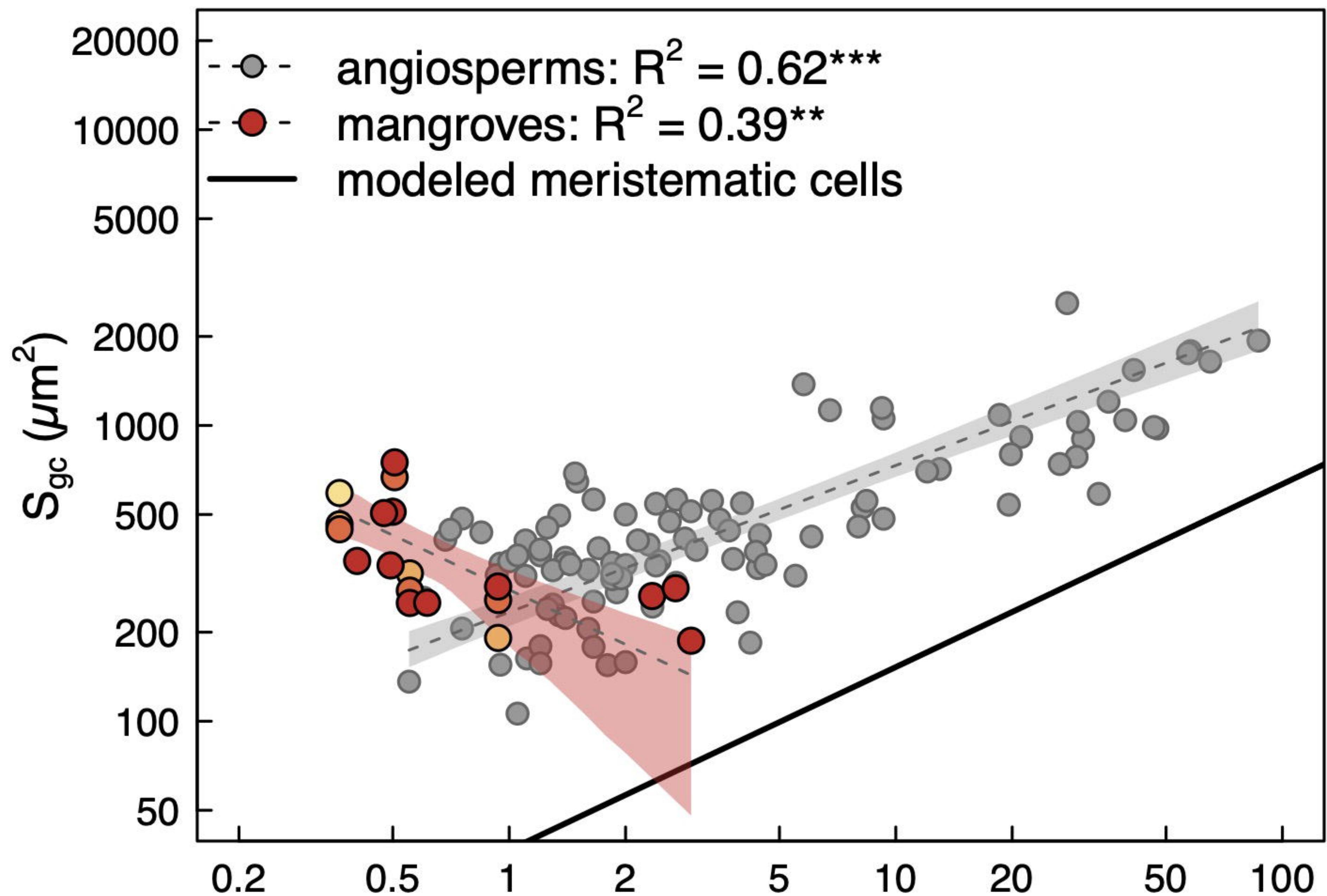
<i>Site name</i>	<i>Latitude, longitude</i>	<i>Mean annual temperature (MAT) from years 1955-2016 (°C)</i>	<i>Mean Annual precipitation (MAP) from years 1955-2016 (mm)</i>	<i>Mean relative humidity (%)</i>	<i>Salinity (g/kg)</i>
Fuding Mangrove Natural Reserve (FD)	27° 20' N, 120° 12' E	18.7	1730.3	78.1	11.4
Longhai Mangrove Natural Reserve (LH)	24° 29' N, 118° 04' E	20.8	1266.8	77.0	15.8
Shankou Mangrove Natural Reserve (SK)	21° 28' N, 109° 43' E	22.8	1762.0	80.4	26.0
Sanya Tielu Port Mangrove Natural Reserve and Sanya Qingmei Port Mangrove Natural Reserve (SY)	18° 15' N, 109° 42' E 18° 14' N, 109° 36' E	25.5	1395.6	79.2	28.5

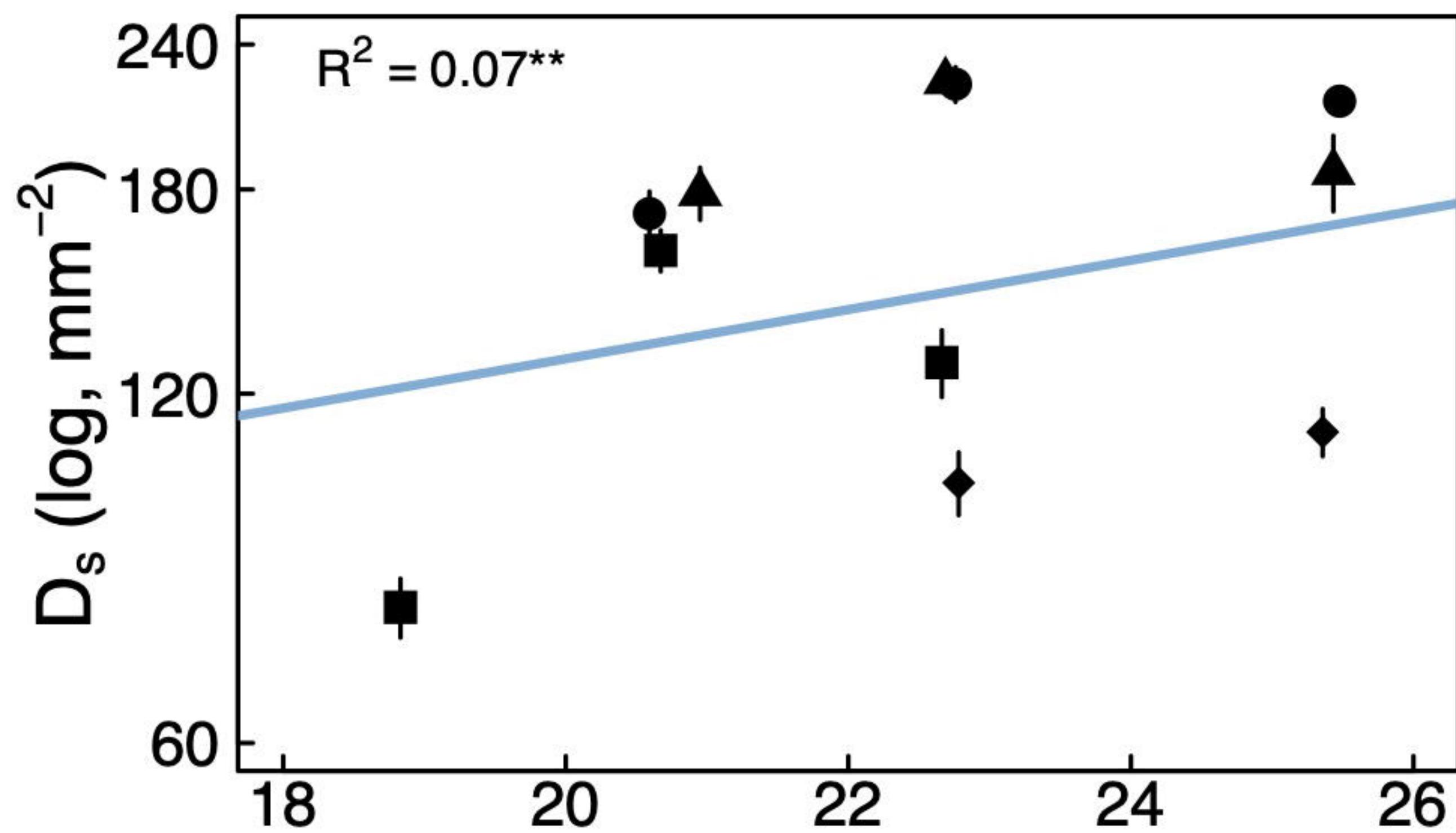
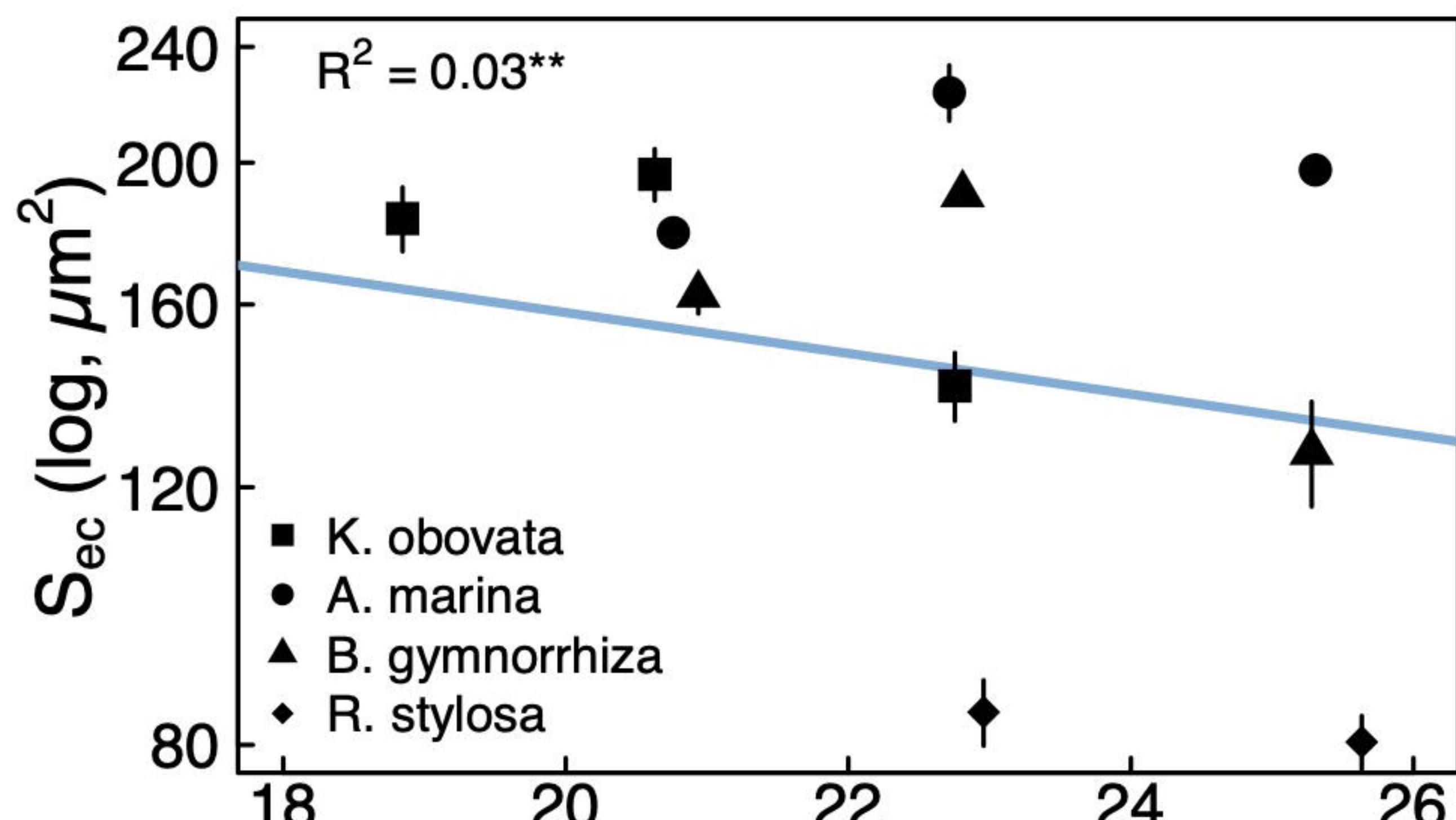
999

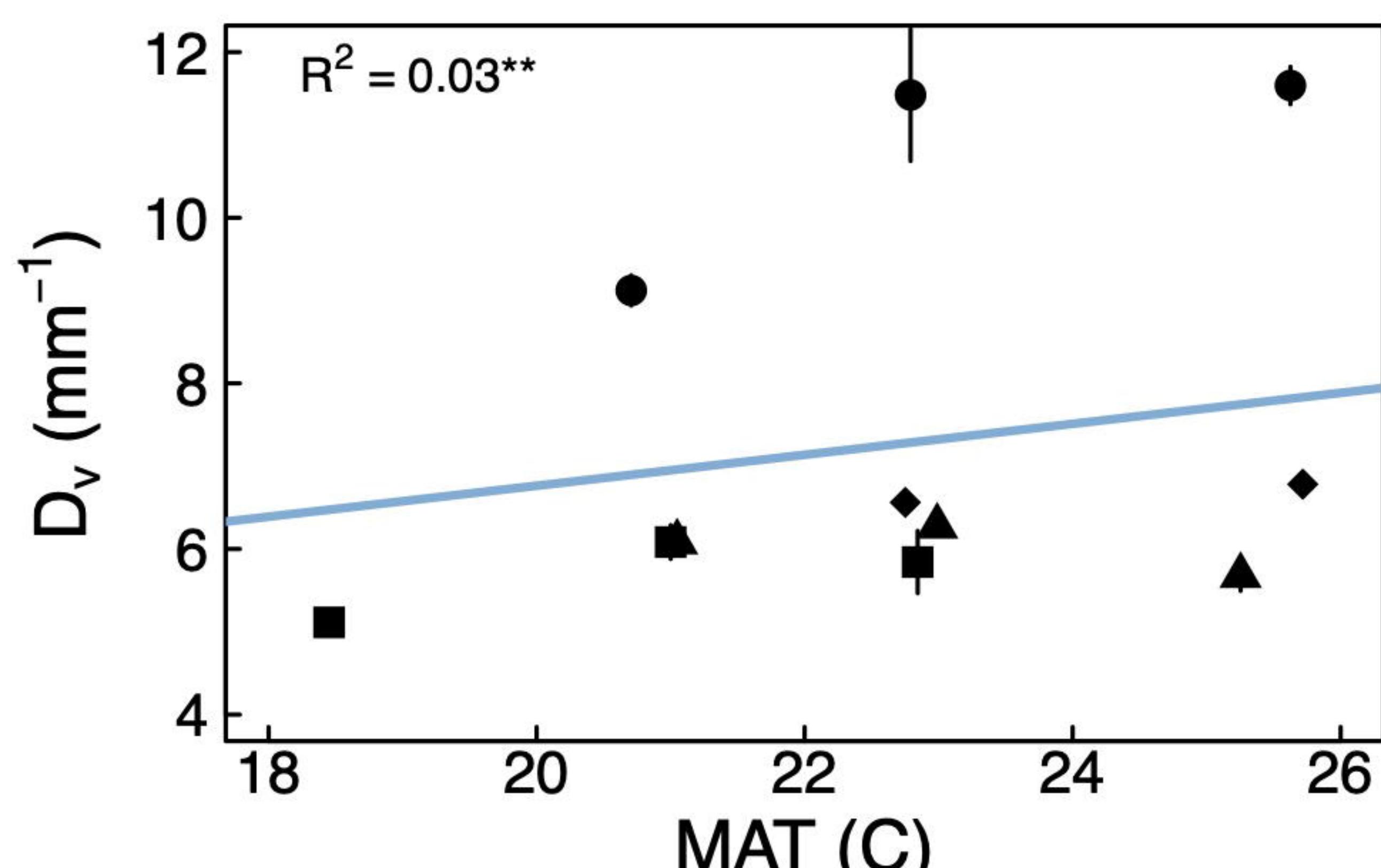

1000

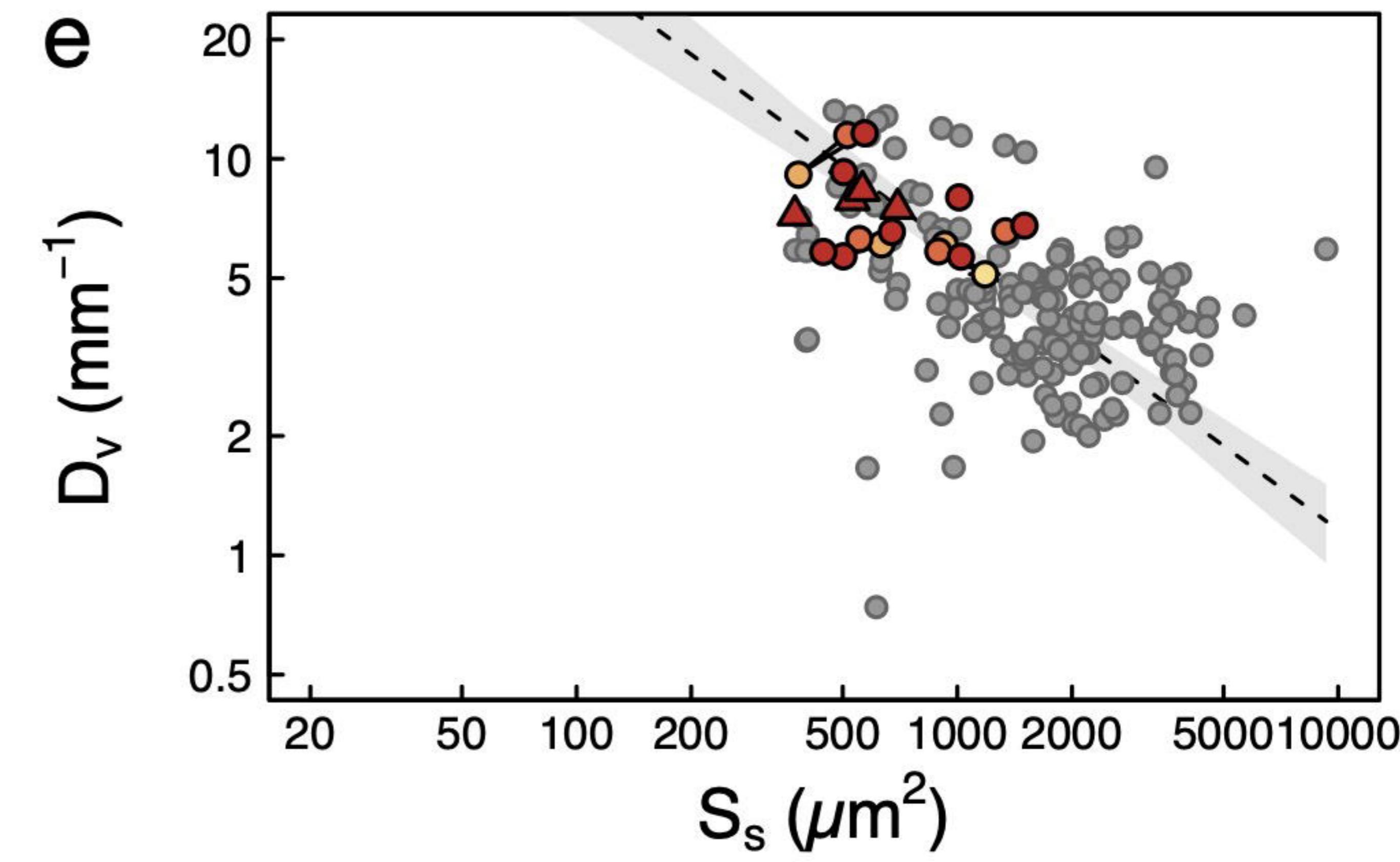
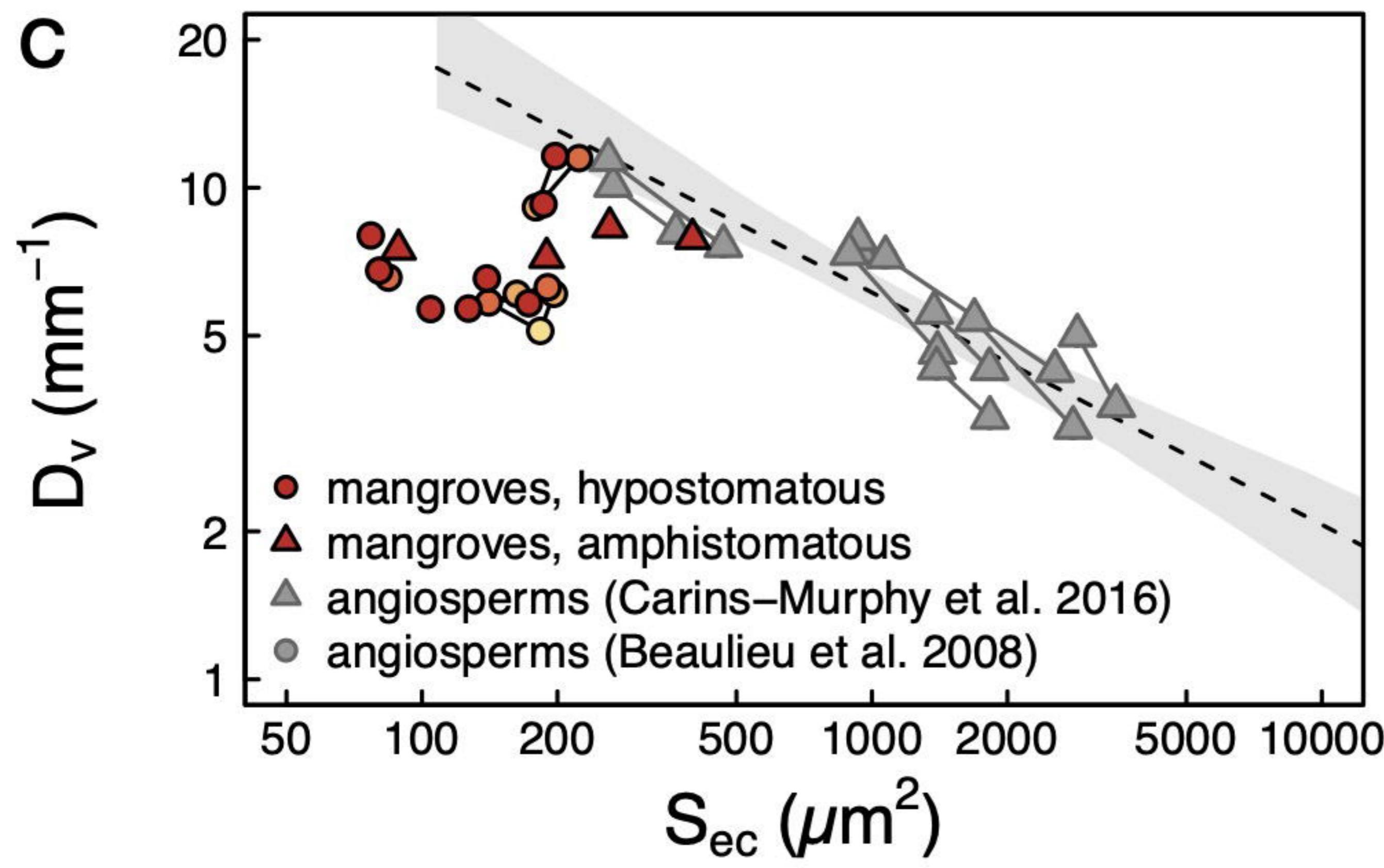
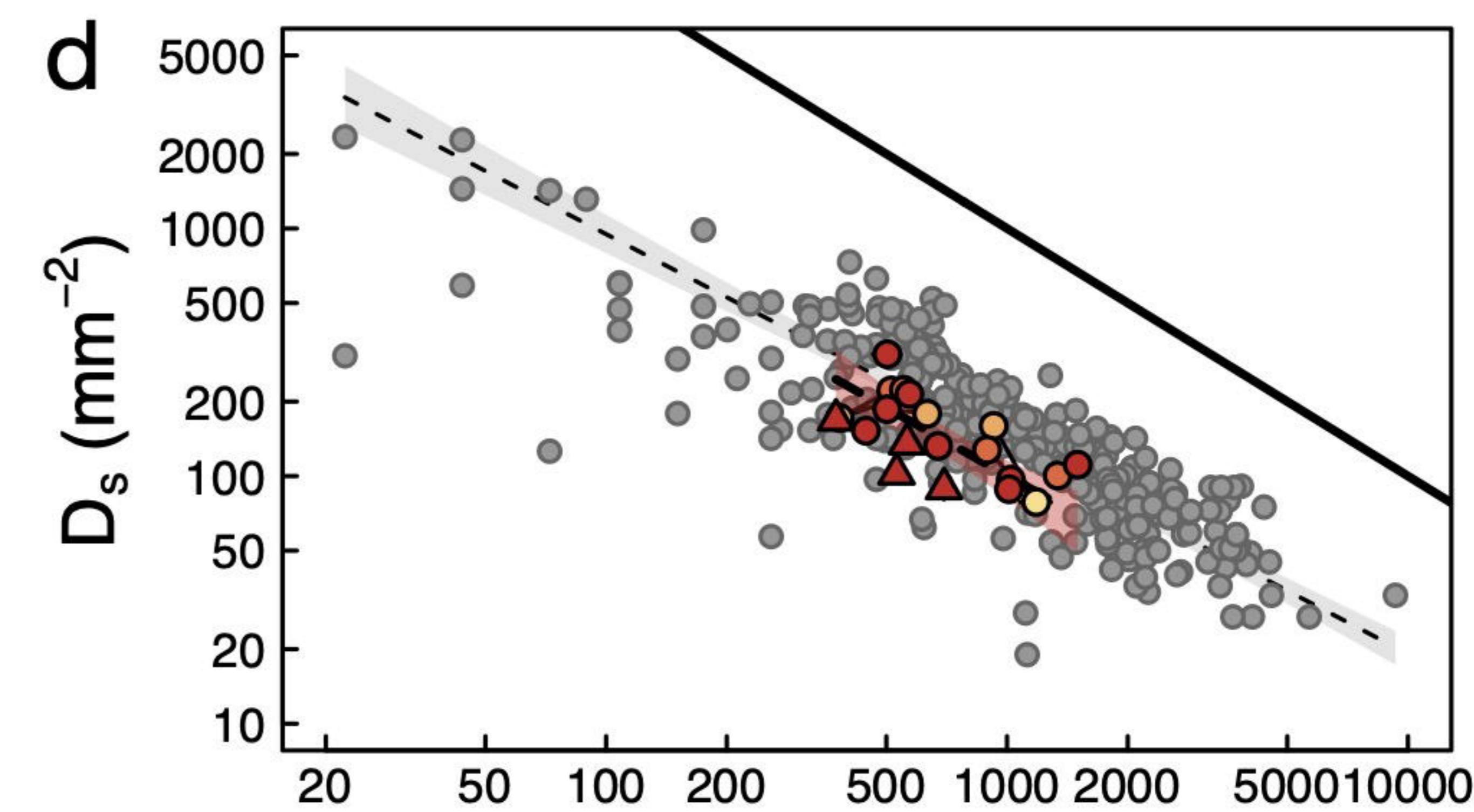
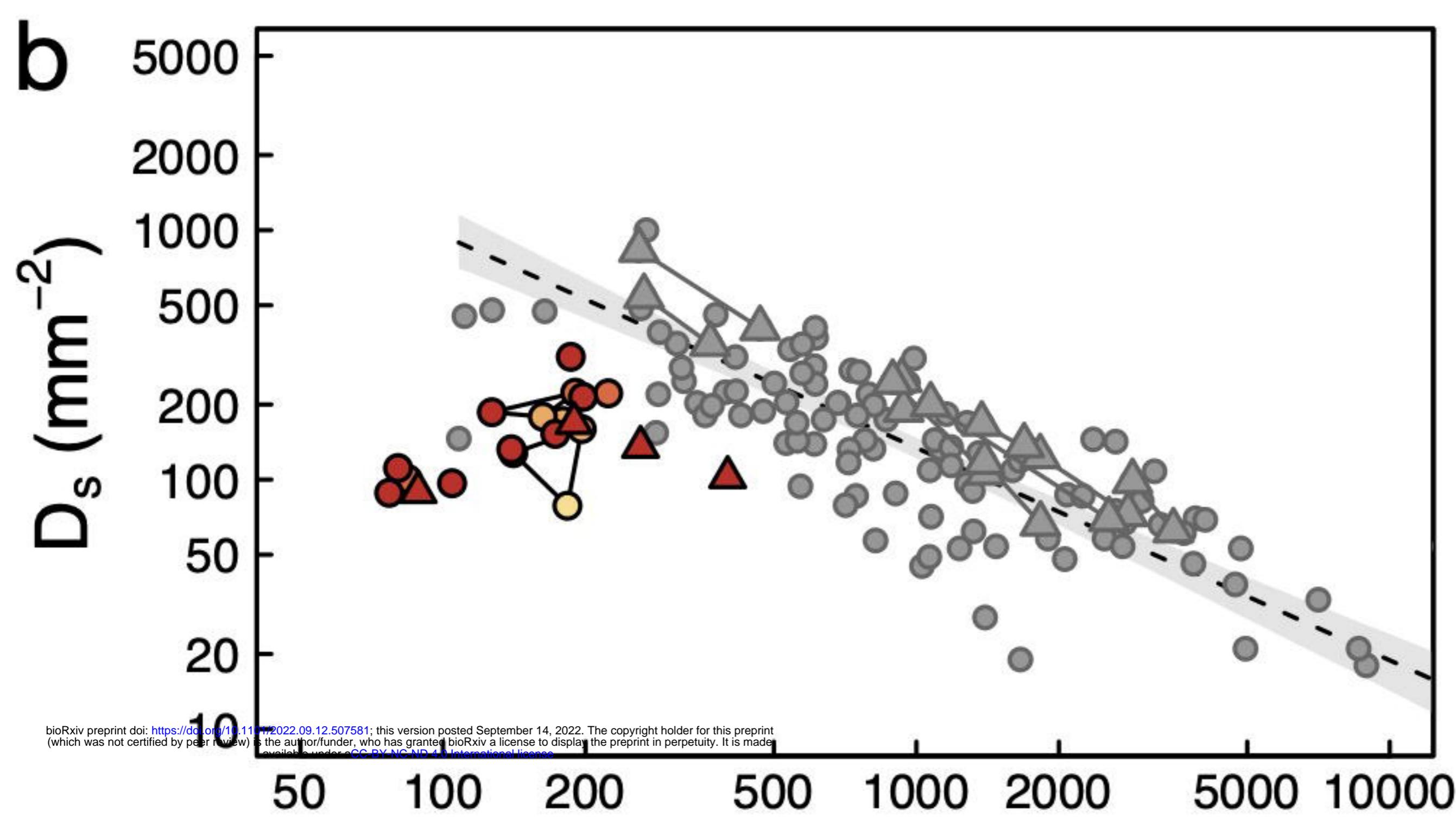
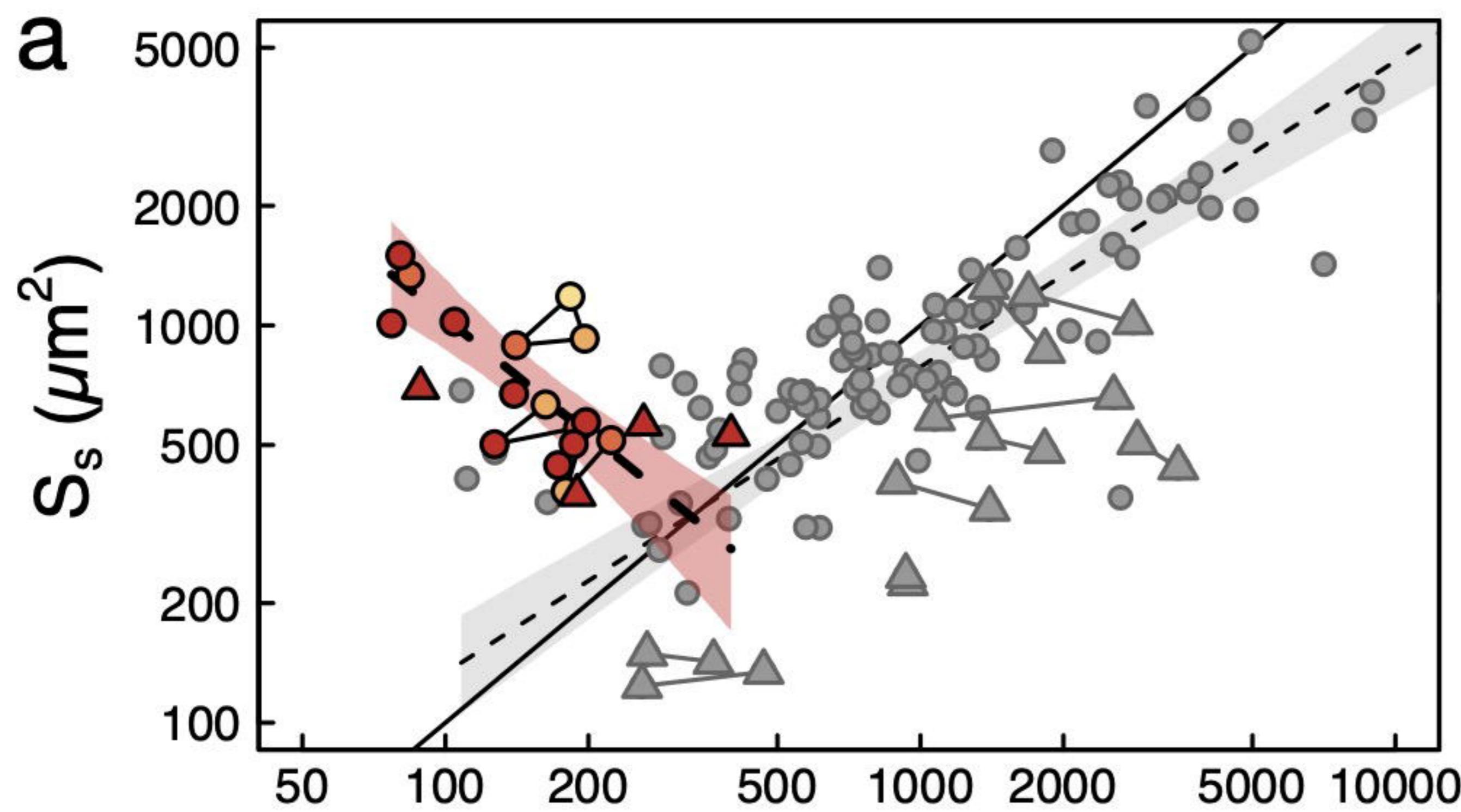
1001 **Table 2.** Taxa sampled, their taxonomic authorities, and the sites at which they occurred.
1002 Location abbreviations are as follows: FD, Fuding Mangrove Natural Reserve; LH, Longhai
1003 Mangrove Natural Reserve; SK, Shankou Mangrove Natural Reserve; SYTL, Sanya Tielu
1004 Port Mangrove Natural Reserve; SYQM, Sanya Qingmei Port Mangrove Natural Reserve.
1005

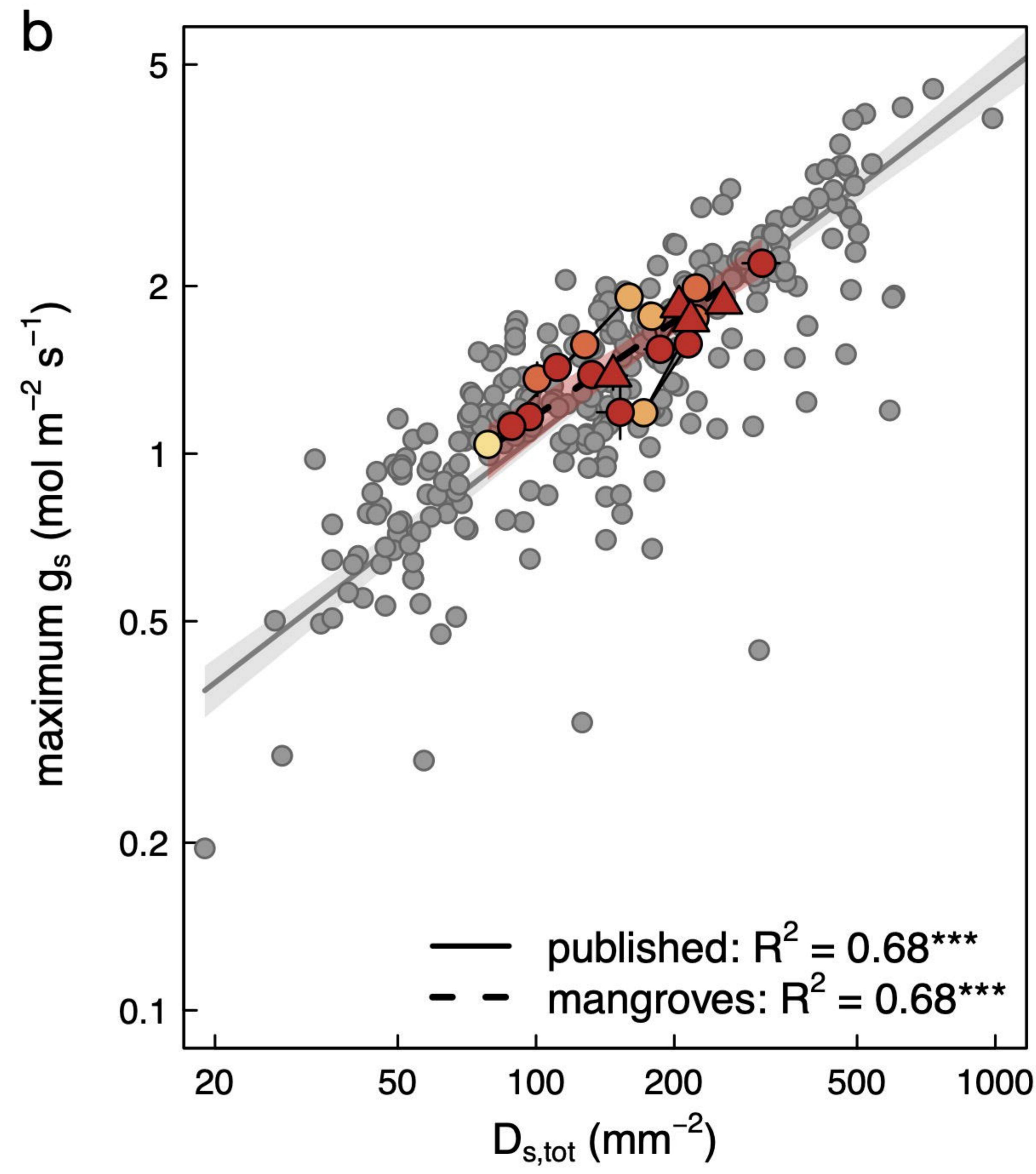
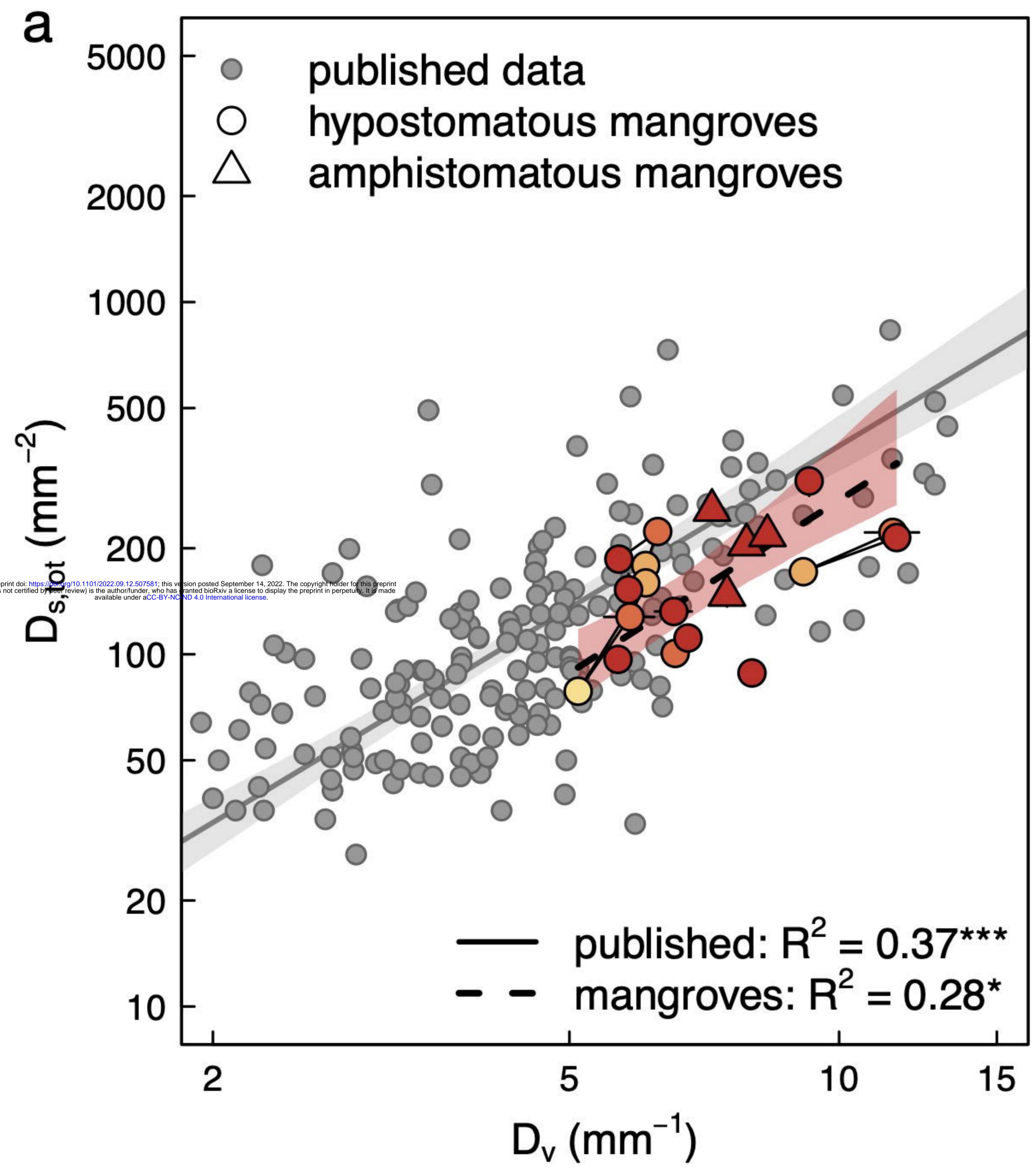

Family	Species	Location
Rhizophoraceae	<i>Kandelia obovata</i> (S., L.) Yong	FD
Rhizophoraceae	<i>Kandelia obovata</i> (S., L.) Yong	LH
Rhizophoraceae	<i>Bruguiera gymnorhiza</i> (Linn.) Savigny	LH
Acanthaceae	<i>Avicennia marina</i> (Forsk.) Vierh.	LH
Rhizophoraceae	<i>Kandelia obovata</i> (S., L.) Yong	SK
Rhizophoraceae	<i>Bruguiera gymnorhiza</i> (Linn.) Savigny	SK
Rhizophoraceae	<i>Rhizophora stylosa</i> Griff.	SK
Acanthaceae	<i>Avicennia marina</i> (Forsk.) Vierh.	SK
Rhizophoraceae	<i>Rhizophora apiculata</i> Bl.	SYTL
Rhizophoraceae	<i>Bruguiera sexangula</i> (Lour.) Poir.	SYTL
Rhizophoraceae	<i>Bruguiera x rhynchospera</i> W. C. Ko.	SYTL
Rhizophoraceae	<i>Bruguiera gymnorhiza</i> (Linn.) Savigny	SYTL
Meliaceae	<i>Xylocarpus granatum</i> Koenig.	SYTL
Combretaceae	<i>Lumnitzera racemosa</i> Willd.	SYTL
Combretaceae	<i>Lumnitzera littorea</i> (Jack) Voigt	SYTL
Combretaceae	<i>Laguncularia racemosa</i> (L.) C.F.Gaertn.	SYTL
Acanthaceae	<i>Avicennia marina</i> (Forsk.) Vierh.	SYTL
Sonneratiaceae	<i>Sonneratia caseolaris</i> (L.) Engl.	SYTL
Rhizophoraceae	<i>Ceriops tagal</i> (perr.) C. B. Rob.	SYQM
Rhizophoraceae	<i>Rhizophora stylosa</i> Griff.	SYQM

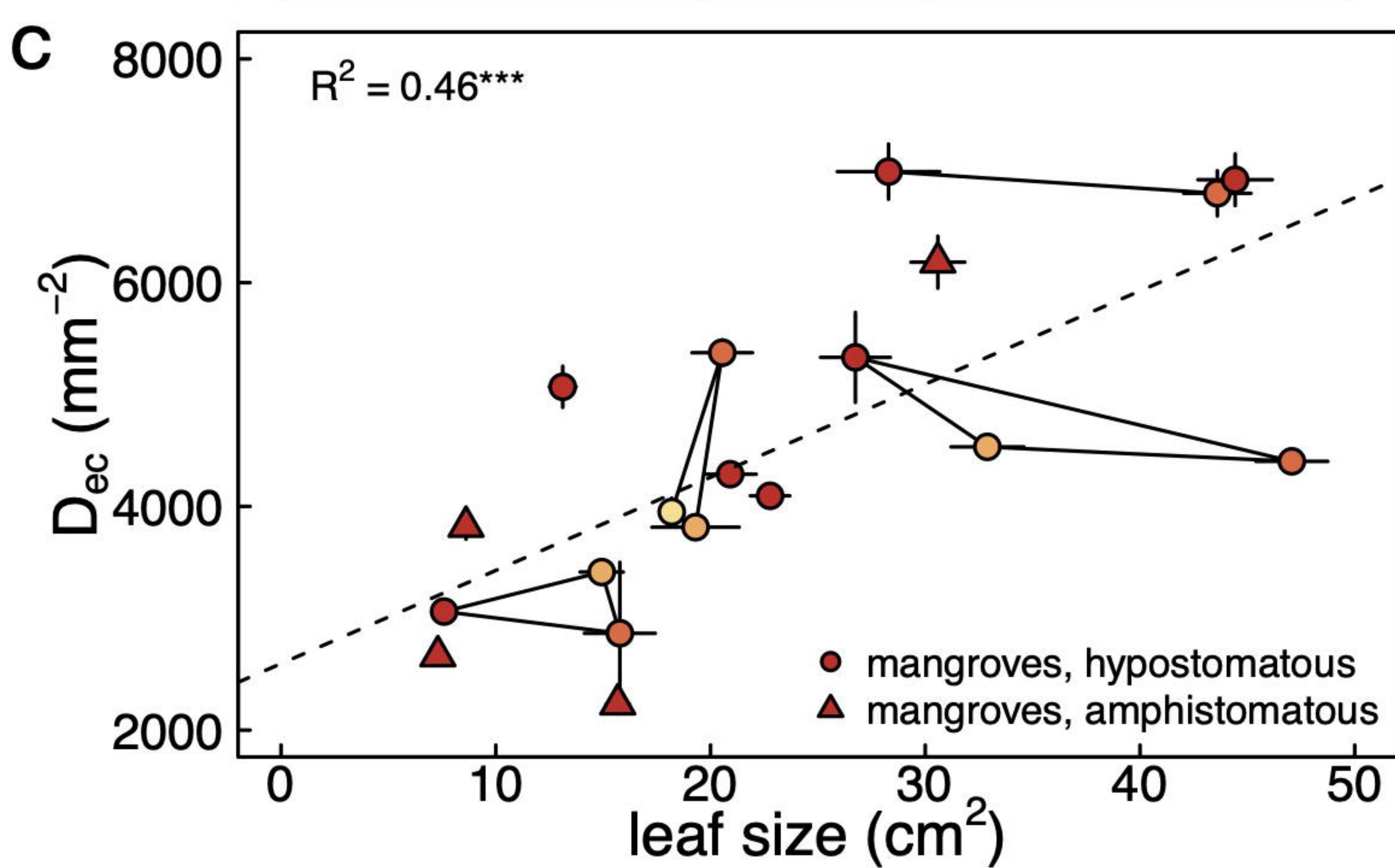
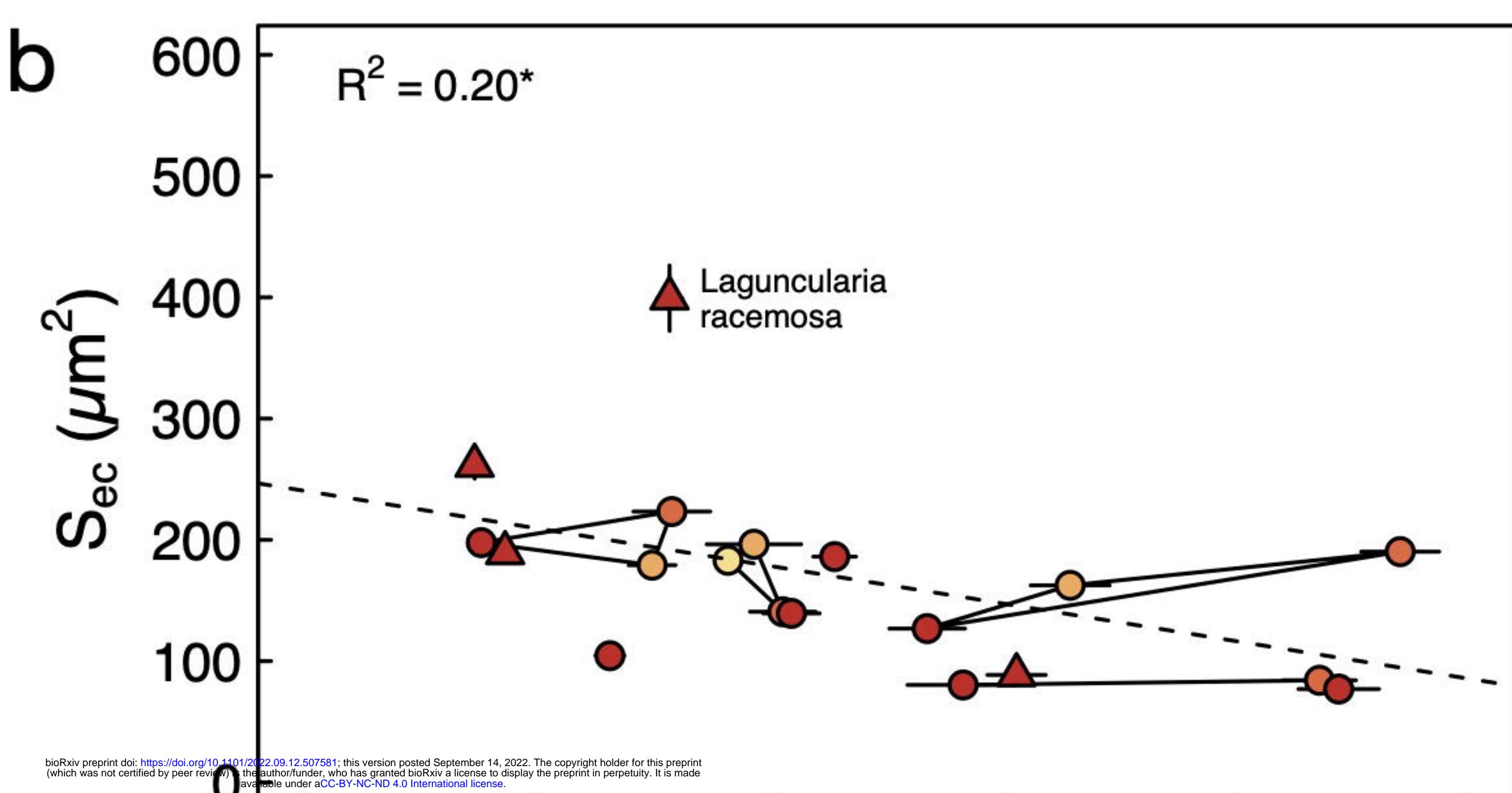
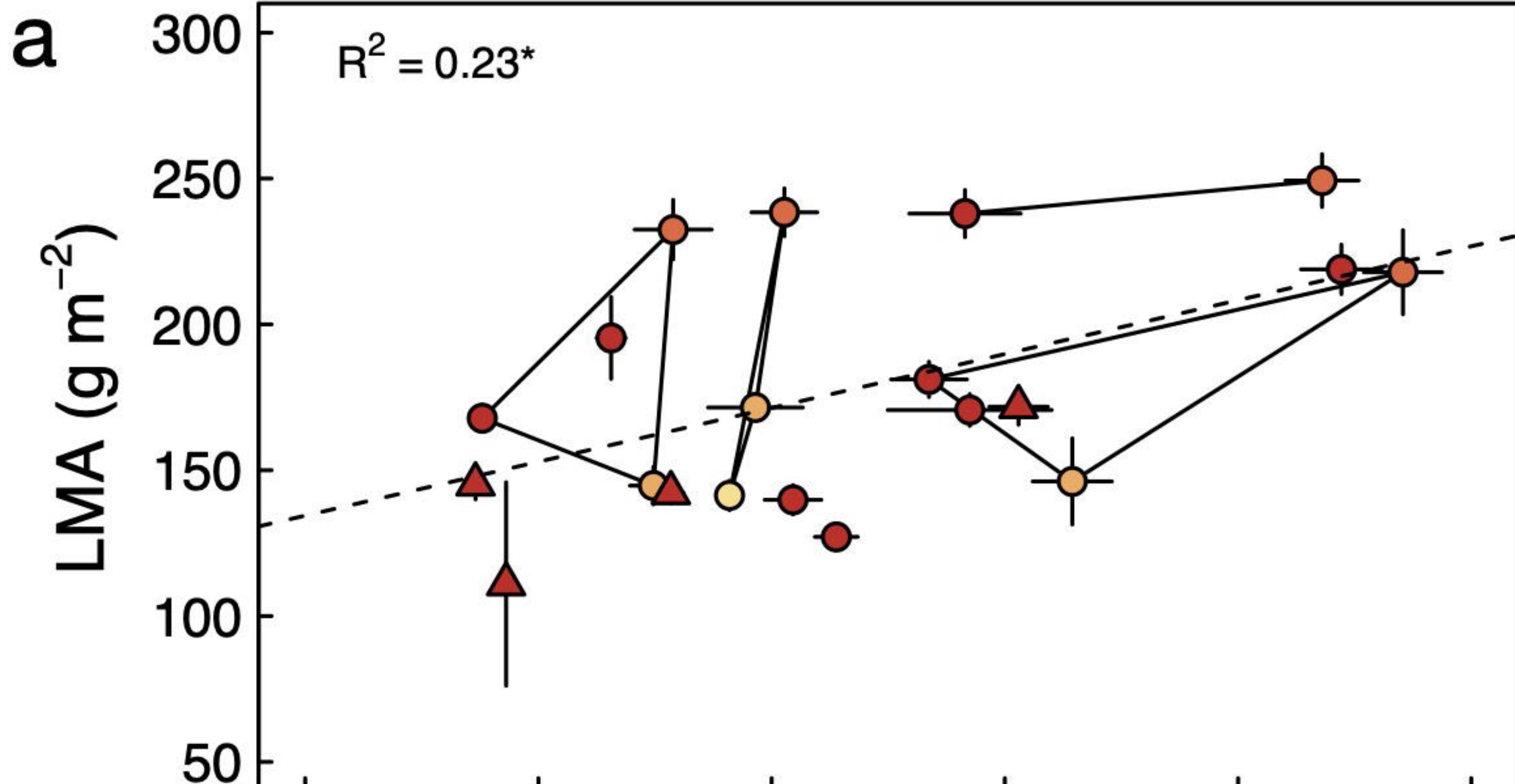


1006
1007
1008
1009



105 110 115 120


MAT	salinity	MAP	
18.7	11.4	1730.3	Fuding Mangrove Reserve (FD)
20.8	15.8	1266.8	Longhai Natural Reserve (LH)
22.8	26	1762	Shankou Natural Reserve (SK)
25.5	28.5	1395.6	Sanya Qingmei Port Mangrove Natural Reserve and Sanya Tielu Port Mangrove Natural Reserve (SY)

bioRxiv preprint doi: <https://doi.org/10.1101/2022.09.12.507581>; this version posted September 14, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

