

1 **FULL TITLE: Human commensal *Candida albicans* strains demonstrate**
2 **substantial within-host diversity and retained pathogenic potential**

3
4 **AUTHORS:** Faith M Anderson^{¶1}, Noelle Visser^{¶1#^a}, Kevin Amses^{2#^b}, Andrea Hodgins-
5 Davis¹, Alexandra M Weber³, Katura M Metzner¹, Michael J McFadden¹, Ryan E Mills^{3,4}
6 Matthew J O'Meara³, Timothy Y James², Teresa R O'Meara^{1*}

7
8 **AFFILIATIONS:**

9 1. Department of Microbiology and Immunology, University of Michigan Medical School,
10 Ann Arbor, MI, USA
11 2. Department of Ecology and Evolution, University of Michigan, Ann Arbor, MI, USA
12 3. Department of Computational Medicine and Bioinformatics, University of Michigan
13 Medical School, Ann Arbor, MI, USA
14 4. Department of Human Genetics, University of Michigan Medical School, Ann Arbor,
15 MI, USA
16

17 ^{#a} Current address: Department of Biology, University of Louisville, Louisville, Kentucky,
18 USA

19 ^{#b} Current address: Department of Botany and Plant Pathology, Oregon State
20 University, Corvallis, OR, USA

21 [¶] authors contributed equally

22 * Corresponding author

23

24
25 **Short Title:** Commensal *Candida albicans* diversity

26

27 ***Address correspondence to:**

28 Teresa O'Meara, Ph.D
29 Department of Microbiology and Immunology
30 1150 W. Medical Center Dr
31 Medical Sciences Building II, Room 6751
32 Ann Arbor, MI, 48109, USA
33 Phone: 734-647-1853
34 Fax: 734-764-3562
35 Email: tromeara@umich.edu

36 **ABSTRACT:**

37 *Candida albicans* is a frequent colonizer of human mucosal surfaces as well as
38 an opportunistic pathogen. *C. albicans* is remarkably versatile in its ability to colonize
39 diverse host sites with differences in oxygen and nutrient availability, pH, immune
40 responses, and resident microbes, among other cues. It is unclear how the genetic
41 background of a commensal colonizing population can influence the shift to
42 pathogenicity. Therefore, we undertook an examination of commensal isolates from
43 healthy donors with a goal of identifying site-specific phenotypic adaptation and genetic
44 variation associated with these phenotypes. We demonstrate that healthy people are
45 reservoirs for genotypically and phenotypically diverse *C. albicans* strains, and that this
46 genetic diversity includes both SNVs and structural rearrangements. Using limited
47 diversity exploitation, we identified a single nucleotide change in the uncharacterized
48 *ZMS1* transcription factor that was sufficient to drive hyper invasion into agar. However,
49 our commensal strains retained the capacity to cause disease in systemic models of
50 infection, including outcompeting the SC5314 reference strain during systemic
51 competition assays. This study provides a global view of commensal strain variation and
52 within-host strain diversity of *C. albicans* and suggests that selection for commensalism
53 in humans does not result in a fitness cost for invasive disease.

54

55

56

57

58 **INTRODUCTION:**

59 *Candida albicans* is a common colonizer of humans, with between 20-80% of the
60 world's population estimated to be asymptotically colonized at any given time [1,2],
61 although this depends on many factors, including host health status and diet [3–5].
62 Colonization occurs at multiple body sites including the mouth, skin, GI tract, and
63 vaginal tract [6]. These sites present a wide range of physiological stresses to
64 colonizing fungi, including variation in pH, temperature, and oxygen levels, as well as
65 nutrient limitation and host immune responses [6–9]. *C. albicans*-host interactions are
66 generally commensal, but *C. albicans* can also act as an opportunistic pathogen,
67 resulting in an estimated 400,000 serious bloodstream infections per year [10–12].
68 Additionally, *C. albicans* can cause more minor mucosal infections, including oral and
69 vaginal thrush and skin infections [13]. As a consequence, *C. albicans* represents the
70 2nd most common human fungal pathogen and the most common source of healthcare-
71 associated fungal infections [14].

72 While host immune status is known to be an important predictor of disease
73 outcomes, whether genetic variation between *C. albicans* strains also contributes to
74 differences in virulence remains an open question. In the model yeast *Saccharomyces*
75 *cerevisiae*, there is extensive variability in genotype and phenotype among different
76 isolates that has been linked to the ability of *S. cerevisiae* to adapt to a wide range of
77 environmental conditions [15,16]. Recent work has highlighted intra-species variation in
78 important aspects of *C. albicans* biology [17–20]. There are currently 17 clades of *C.*
79 *albicans*, which were initially defined through multilocus sequence typing (MLST) [21–
80 23]. More recently, genome sequencing has resolved finer population structure in the

81 group [24]. Genetic epidemiology studies suggest that the major clades of *C. albicans*
82 may differ in how frequently they are isolated from bloodstream infections or
83 asymptomatic colonization [25], with five clades accounting for the majority of clinical
84 isolates [26–28]. These clinical isolates have demonstrated significant variation in
85 murine models of systemic infection, biofilm formation, cell wall remodeling, secretion of
86 toxins and proteolytic enzymes, and morphological plasticity [25,29–33]. However, our
87 primary understanding of the genotype-phenotype relationship in *C. albicans* results
88 from analyses of a relatively limited set of pathogenic clinical isolates and their
89 laboratory derivatives, with the majority of the work performed in the SC5314 genetic
90 background. Detailed analysis of the genetic determinants of biofilm regulation between
91 five different strains, each representing a different clade of *C. albicans*, have highlighted
92 that circuit diversification is widespread between strains [17], adding complexity to our
93 understanding of *C. albicans* biology.

94 Recent work suggests that *C. albicans* experiences fitness tradeoffs between
95 invasive and colonizing growth, with selection for commensal behavior during
96 colonization [34–40]. In serial passage experiments or competitive fitness experiments
97 in the gut, mutations in key transcription factors controlling hyphal formation, *EFG1* and
98 *FLO8*, resulted in increased fitness in the gut and decreased fitness in systemic models
99 of infection [34–39]. In oral candidiasis, trisomic strains have been identified with a
100 commensal phenotype [41]. Additionally, the 529L strain of *C. albicans* causes less
101 damage and inflammation during oropharyngeal candidiasis [42], and persists at a
102 higher fungal burden in both the mouth and the gut [20]. These potentially divergent
103 selection pressures imply that commensal *C. albicans* strains can differ from isolates

104 that cause invasive disease, but the genetic determinants underlying this difference
105 have not been defined.

106 Here, we demonstrate that healthy people are reservoirs for genotypically and
107 phenotypically diverse *C. albicans* strains that retain their capacity to cause disease.
108 We obtained representative isolates from healthy undergraduate student donors,
109 including both oral and fecal isolates. These isolates included representatives from 8
110 clades of *C. albicans*, including instances of colonization by strains from multiple clades
111 within a single individual, highlighting the within-host diversity of the colonizing fungal
112 population. Synthetic long-read sequencing coupled with CHEF gel analysis revealed
113 large structural variation between strains, consistent with early karyotyping work in the
114 field [43]. Phenotyping of the strains revealed extensive variation in growth, stress
115 response, biofilm formation, and interaction with macrophages, but no separation of
116 strains by sample origin site. Instead, we identified shared structural variations and
117 phenotypes that were shared between strains from the same phylogenetic clade,
118 suggesting that underlying genetic background may be more predictive of certain
119 phenotypes than selection pressure at a specific sample site. We also discovered and
120 mapped specific nucleotide variants to the ability of strains to invade agar, identifying a
121 new role for *ZMS1* transcription factor. Notably, the majority of the strains showed
122 increased competitive fitness in invertebrate models of systemic candidiasis compared
123 with the reference SC5314 strain and retained their capacity to cause disease during
124 monotypic infections. Together, these data suggest that the selective pressures
125 experienced by *C. albicans* during commensal colonization do not necessarily result in
126 decreased pathogenic potential.

127 **RESULTS:**

128 **Phenotypic Characterization of commensal *C. albicans* strains**

129 We sourced *C. albicans* from oral and fecal samples from undergraduate student
130 donors, using these as a representative sample of colonizing *C. albicans* strains from
131 healthy individuals. These new isolates complement previous work focusing on
132 bloodstream or mucosal infection isolates [18]. In this population of students, 16%
133 (16/98) were positive for oral *Candida* colonization and 12% (12/98) were positive for
134 fecal colonization (Fig 1A). From each host and site, we collected every individual
135 colony present on the BD ChromAgar plates and confirmed species identity through ITS
136 amplicon sequencing. Overall, we obtained 910 *C. albicans* isolates (fecal: n = 84
137 colonies, oral: n = 826 colonies), with oral samples giving rise to more individual
138 colonies per donor (Fig 1B).

139 **Fig 1. Characterization of isolates from healthy donors reveals extensive**
140 **phenotypic heterogeneity.**

141 A) The number of healthy donors from whom *C. albicans* colonies were obtained
142 by isolation site with 4 donors exhibiting both oral and fecal colonization. B)
143 Number of *C. albicans* colonies isolated per donor from each sample site. Error
144 bars represent mean and SD in number of colonies from each positive individual
145 donor. C) Strains varied in maximum growth rate and carrying capacity in
146 response to different carbon sources. Growth curves were performed on each
147 isolate under three carbon sources at 30°C for 24 hours in biological duplicate.
148 Rate and carrying capacity were determined using the GrowthcurveR analysis
149 package. D) All strains retained the capacity to filament in liquid inducing cues,

150 but some demonstrated altered morphology and aggregation. Strains were
151 incubated in the indicated conditions and imaged at 20X magnification. Scale =
152 10 μ M. E) Strains varied in their capacity to invade into solid agar. Colonies were
153 incubated on the indicated conditions for 5 days before gentle washing and
154 imaging for invasion. F) Parallel coordinate plot. Each strain was ranked for each
155 growth condition, and the relationships between phenotypes are indicated with
156 the lines. Blue highlights the slow growing strains.

157

158

159 We then performed growth assays on all 910 isolates and the SC5314 reference
160 strain in rich medium (yeast peptone) with dextrose, galactose, or glycerol as the carbon
161 source. We observed unimodal distributions with a long tail of slow-growing strains for
162 both exponential growth (μ_{max}) and saturating density (K) in rich media (Fig 1C). The
163 five slowest-growing strains originated from five different hosts and showed significantly
164 decreased growth rate and saturating density relative to other isolates from the same
165 host. Although the five slowest-growing isolates were all obtained from oral samples, we
166 did not observe a significant difference in growth rate between oral and fecal samples
167 (S1A Fig), and overall, the growth rates between the different carbon sources were
168 correlated (S1B Fig), as slow growth on one carbon source was predictive of slow
169 growth on other carbon sources.

170 As filamentation has been tightly associated with virulence, and because
171 previous work in murine models has suggested that gut adapted strains may lose their
172 ability to filament [20,34,36], we examined each isolate in the collection for their ability

173 to form hyphae using 10% serum and febrile temperatures as two inducing cues.

174 Additionally, we examined the morphology of each strain under the non-inducing

175 condition of YPD at 30°C to identify constitutive filamentation, as has been observed

176 from isolates collected from sputum samples from cystic fibrosis patients [44]. We

177 observed that while none of the strains were constitutively filamentous, several strains

178 aggregated at YPD 30°C. All strains were able to filament in response to the inducing

179 conditions of serum and high temperature, albeit with some variation in the shape and

180 aggregation of the cells (Fig 1D). This may be consistent with the hypothesis that

181 interaction with bacteria in the gut maintains selection for the hyphal program [34,45].

182 Notably, the aggregative isolates were more likely to grow slowly and reach a lower

183 carrying capacity. The universal ability of commensal strains isolated from healthy

184 humans to filament stands in contrast to the observation that *C. albicans* evolves a

185 yeast-locked phenotype in germ-free or antibiotic-treated mouse models, suggesting

186 that selection in these models may not recapitulate important features of *C. albicans*-

187 human interactions.

188 Filamentation programs under solid and liquid growth can involve distinct genetic

189 programs [46], and the human host can present a variety of substrates for *C. albicans* to

190 utilize. Therefore, we also tested each isolate for its colony morphology and capacity to

191 invade into a set of solid agar media, including YPD agar at 30°C as the baseline

192 condition, Spider agar at 37°C as a strong hyphae-inducing condition, YPD agar at 37°C

193 as an intermediate inducing condition, and YPD agar at 37°C anaerobic conditions [46].

194 After several days of growth in each condition, colonies were gently rinsed from the

195 plate and were given an invasion score from 0-5, with representative images of each

196 score provided in (Fig 1E). As expected for a strong inducing cue, the highest degree of
197 invasive growth was observed on Spider agar at 37°C [46]. Interestingly, although all
198 strains showed the ability to form hyphae under liquid culture conditions, many strains
199 failed to invade into solid agar, giving scores of 0 or 1 under multiple conditions (Fig
200 1E). Overall, there was a trend for the oral strains to invade more on Spider agar (S1C
201 Fig). We also observed substantial phenotypic heterogeneity among strains isolated
202 from the same host, including in strains isolated from the same site, consistent with
203 each individual being colonized by multiple, phenotypically-distinct, strains of *C.*
204 *albicans*.

205 To examine the relationship between the strains and the observed phenotypes,
206 we generated a parallel coordinate plot by ranking each strain for each phenotype (Fig
207 1F). From these data, we could observe that a subset of the slow growing strains in
208 YPD (blue) exhibited increased invasion on solid agar surfaces (Fig 1F), suggesting that
209 slow growth in liquid media does not necessarily correlate with defects in other growth
210 conditions. Upon closer inspection, several of these slow growing strains originated
211 from donor 882. This subset of strains showed hyper invasion (score of 5) at the
212 baseline condition of YPD agar at 30°C. Interestingly, although these strains retained
213 their hyper invasive phenotype under the strong inducing cue of Spider agar at 37°C,
214 they exhibited only moderate invasion (average score of 2) in the YPD agar at 37°C
215 condition. Together, these experiments demonstrate a large variation in phenotypes
216 between commensal isolates, even among traits, such as filamentation and invasion,
217 that are often correlated with virulence.

218

219 **Genomic Variability**

220 Due to the extensive variation in observed phenotypes among the isolates, we
221 next wanted to characterize the genomic variability in these strains, at both a sequence
222 and structural variation level. To carry out these analyses, we selected a set of 45
223 commensal isolates, hereafter referred to as the 'condensed set'. Isolates were chosen
224 for inclusion in the condensed set where we had matched pairs from oral and fecal
225 isolates from the same donor or isolates from the same donor that exhibited multiple
226 phenotypes based on growth, filamentation, or invasion. For these analyses, we
227 compared each isolate to the SC5314 reference strain. We also included the human
228 isolate, CHN1, to represent an alternate clinical isolate that has been previously
229 phenotypically and genotypically characterized [47].

230 Previous descriptions of population genomic variation in *C. albicans* have largely
231 relied on short read sequencing approaches, which are limited in their ability to resolve
232 structural variation between strains. Therefore, we performed whole genome
233 sequencing on all 45 commensal strains and the SC5314 and CHN1 reference strains
234 using the Transposase Enzyme Linked Long-read Sequencing (TELL-Seq) method for
235 library preparation [48]. This approach uses barcode linked-reads to produce synthetic
236 long reads with Illumina quality sequence, thus allowing us to capture both SNVs and
237 structural variants. The TELL-Seq library was then sequenced using an Illumina
238 NovaSeq, resulting in a read coverage of approximately 150X for each sample.

239 To identify single nucleotide variants (SNVs) and compare our strains to the
240 existing set of sequenced *C. albicans* isolates, we collected 388 previously published *C.*
241 *albicans* genomes and mapped them, and our 45 newly-generated genomes, to the

242 SC5314 reference genome with BWA- MEM [49]. We called variants using GATK
243 HaplotypeCaller and after filtering, we obtained final set of 112,136 high quality SNVs
244 across 431 remaining samples. Of these, 90,675 (80.86%) were represented in at least
245 one member of our set of newly sequenced strains. The population diversity captured in
246 this analysis was consistent with the largest previous analysis of *C. albicans* genomic
247 variation, which called 589,255 SNPs from 182 genomes [24]. Although our final SNV
248 set was significantly smaller than that identified in past work, our filtering criteria were
249 significantly more stringent and robust for inferring population level patterns.

250 We then wanted to place our newly sequenced isolates in the phylogenetic
251 context of previous work on *C. albicans* strains [18,24,50]. To remove redundancy and
252 focus on natural *C. albicans* diversification, we removed samples corresponding to
253 resequenced strains (e.g., multiple SC5314 samples present in full data set) and those
254 sequenced as part of experimental evolution studies (i.e., [34,51,52]). Following removal
255 of these samples, we were left with 324 sample SNV profiles, which were then used to
256 cluster the samples into a dendrogram of relationships. Despite the reduced size of our
257 dataset, our SNV-based clustering recovers all major accepted clades of *C. albicans*
258 (Fig 2) [21–25]. The fact that >80% of the 112,136 high-quality SNVs we identified are
259 represented in the genome sequences of the 45 new *C. albicans* isolates we
260 sequenced, in addition to their clustering with 8 major clades, asserts the high degree of
261 diversity captured in our study of commensal *C. albicans* strains actively colonizing
262 humans. In line with past work and underpinning the validity of our SNV-based
263 clustering, our isolates are not represented in clades of *C. albicans* known to exhibit a
264 high degree of geographic specificity (e.g., Clade 13) (Fig 2) [24] .

265 **Fig 2. The newly sequenced *C. albicans* commensal isolates include**
266 **representatives from multiple clades.**

267 A) A maximum likelihood tree showing the phylogenetic relationships between
268 the 324 isolates analyzed via (neighbor joining). Previous clusters from [24] are
269 highlighted with colored boxes. New isolates were colored based on the nearest
270 defined cluster.

271

272 The majority of the new isolates (26/45) belonged to Clade 1, of which the
273 reference strain SC5314 is also a member. We identified cases where isolates from the
274 same donor clustered tightly together, such as donor 814, whose 6 strains included in
275 the condensed set clustered in Clade 1. Consistent with previous reports on
276 microevolution in the host [52], we observed primarily SNVs and short-tract loss of
277 heterozygosity between these six isolates, perhaps consistent with clonal expansion
278 and diversification during colonization. In contrast, we also identified donors with
279 colonizing strains from multiple clades, such as donor 882, whose 4 strains came from
280 Clade 1 and Clade C, or donor 811, whose 4 strains came from Clade 1, Clade C, and
281 Clade 4 (Fig 2). Interestingly, some isolates from multiple donors clustered within one
282 another, such as those from donors 838 and 833, likely indicating transmission between
283 individuals. Together, this suggests that variation in an individual's colonizing *C.*
284 *albicans* strains can come from both within-host diversification and between-host
285 transmission.

286 To characterize genomic variation at a structural level, we performed pulsed-field
287 gel electrophoresis to separate the chromosomes of our condensed set of commensal

288 *C. albicans* isolates, including SC5314 as a reference (Fig 3A, S2A Fig). The
289 commensal *C. albicans* strains show between 7 and 10 chromosome bands, ranging
290 from ~0.8 MB to ~3.2 MB in size [53]. We observed many size differences in
291 chromosomes, especially among the smaller chromosomes (corresponding with Chr
292 5, 6, and 7 in SC5314), but we also observed size variation in large chromosomes at
293 approximately ~ 1 MB, ~1.5 MB, and ~2 MB, potentially indicating variation in Chrs 2,4,
294 and R.

295 **Fig 3. *C. albicans* commensal isolates display extensive structural**
296 **variation.** A) CHEF karyotyping gels show alterations in chromosome size and
297 number between *C. albicans* isolates. Novel chromosomes are indicated with the
298 colored bands. Gel images in S2 Fig. B) Heatmaps of read coverage across the
299 condensed set of isolates for each chromosome. Each column represents a 500
300 bp bin of the reference genome and each row is an isolate from the condensed
301 set. Values greater than one (red) suggest potential duplications while values
302 less than one (blue) suggest potential deletions. C) Isolates 880-2 and 859-2
303 chromosomal fusion events identified & chosen for validation. D) PCR validation
304 of fusion events in isolates 880-2 and 859-2. Bands corresponding with fusion
305 events were not present in the SC5314 reference strain.

306
307 When comparing the chromosomal structural variations to our SNV tree, we
308 identified several unique patterns, and observed that a phylogenetic ordering of the
309 isolates did not encompass the structural variation. For example, a subset of isolates
310 within Clade 1 from donors 833 and 838 all contained an extra chromosome below Chr

311 4, with the exception of isolate 833-19, despite being within the same phylogenetic
312 cluster based on SNV analyses (Fig 3A). We also observed clade-level variation in
313 karyotypes: Isolate 871-1 was the only strain in the condensed set from Clade 9, and
314 this strain showed a unique pattern with different banding patterns at Chrs 2, 3, and 4.
315 The 3 strains from Clade C, which originated from donors 882 and 811, all contained a
316 chromosome band between Chrs 5 and 6. Finally, the two closely related strains, 859-2
317 and 806-1, both contained a chromosome band between Chrs 2 and 3 (Fig 3A).

318 An advantage of our TELL-seq based platform was the opportunity to resolve the
319 differences between the SNV-level analysis and the structural variants that we identified
320 through the CHEF gels. We used the synthetic long-reads to assemble contigs for each
321 strain, using Universal Sequencing's TELL-seq pipelines: Tell-Read and Tell-Link. We
322 could observe variation in copy number across the chromosomes (Fig 3B), as well as
323 potential inversions, duplications, or deletions (S2B Fig). Across our isolates, we
324 observed substantial copy number variation, with a trend towards increased copy
325 number. We noted that the isolates globally exhibited copy number expansion in the
326 telomeric regions, and that copy number increases were more common on smaller
327 chromosomes. Overall, the considerable copy number variation among our commensal
328 isolates is in line with past work suggesting that host environmental pressures induce
329 changes in genome size and that increased ploidy enhances fitness within the host
330 [54,55].

331 Notably, we were able to identify structural rearrangements and putative
332 chromosome fusions, and used PCR to test for the presence of the fusion event. In
333 strain 880-2, we observed a fusion event between chromosomes 3 and 4, connected by

334 a 1.3 kb intervening sequence (Fig 3C). This intervening sequence had 94% sequence
335 identity to an intergenic sub-telomeric region of chromosome 6. To determine whether
336 this was a true event or a sequencing artifact, we designed primers to span the junction
337 and performed PCR to amplify the fusion (Fig 3D). Using this approach, we observed
338 that in strain 880-2, there is a bona fide structural rearrangement that links
339 chromosomes 3 and 4. In strain 859-2, we observed a fusion event between
340 chromosomes 1 and 3, connected by an approximately 7kb intervening sequence with
341 no obvious sequence identity to the SC5314 reference strain, but instead had 99.76%
342 sequence identity to a region on chromosome 2 from *C. albicans* strain TIMM 1768 (Fig
343 3C). We were again able to use PCR to span both junctions observed the presence of
344 the fusion between chromosomes 1, 2, and 3 (Fig 3D). This fusion event may
345 correspond to the additional chromosomal band between chromosomes 2 and 3 that we
346 observed in the karyotype for this strain. Importantly, neither of these fusion events
347 were present in the SC5314 reference strain, indicating that the fusions were unique to
348 the specific isolate (Fig 3D). These structural variations were not captured in the SNV
349 analysis, and may play important roles in gene regulation or phenotypic variation
350 between the strains.

351 Together, our sequence-level and structural-level genomic analysis of
352 commensal *C. albicans* isolates indicate that healthy individuals can harbor multiple
353 strains of *C. albicans* from different clades. Furthermore, our structural analysis shows
354 substantial heterogeneity in number and size of chromosomes among commensal
355 isolates, which suggests that even within similar strains, there is potential for structural
356 variation.

357 **Deep Phenotyping of Commensal Isolates**

358 The set of isolates for sequencing were initially chosen based on variation in
359 growth rate in rich medium and alterations in invasion into agar. However, we
360 hypothesized that we may identify specific adaptations in *C. albicans* strains isolated
361 from different sites that allow for colonizing different host microenvironments. The host
362 sites commonly colonized by *C. albicans* vary dramatically in environmental cues, such
363 as nutrient availability, pH, immune responses, and resident microbiomes. Additionally,
364 we hypothesized we may identify phenotypes associated with specific *C. albicans*
365 clades, as we were able to identify structural variants shared between closely related
366 isolates. To test this, we performed a set of growth analyses under multiple
367 environmental conditions, including pH stresses, nutrient limitation, cell wall stressors,
368 and antifungal drugs (Fig 4A). These analyses produced a dense array of quantitative
369 phenotypic information for each strain.

370 **Fig 4. Deep phenotyping reveals heterogeneity in *in vitro* and host
371 response phenotypes.**

372 A) Growth curve analysis under multiple environmental conditions. Carrying
373 capacity (K) was normalized to SC5314, and the fold-change plotted by heatmap.
374 Aggregating strains (882-60, 882-46, and 811-7) demonstrate a consistently
375 lower carrying capacity. B) Relative macrophage phagocytosis rates of
376 commensal isolates to reference strain SC5314. C) Macrophage cell death rates.
377 D) Representative images of isolates following 4 hour macrophage infection.
378 Representative filamentation score of 0 (left). Representative filamentation score
379 of 5 (right). 20x magnification. Scale = 50 μ M. E) Parallel coordinate plot ranking

380 isolates for macrophage filamentation scoring, phagocytosis rates, and cell death
381 rates. SC5314 reference strain is indicated in red. For phagocytosis rates,
382 significant differences from the SC5314 reference strain were determined by
383 one-way ANOVA, with Dunnett's multiple correction testing. For cell death,
384 significant differences from the mock condition were determined by one-way
385 ANOVA, with Dunnett's multiple correction testing. Asterisks indicate $P < 0.05$ (*),
386 $P < 0.005$ (**), $P < 0.001$ (***) and $P < 0.0001$ (****).

387
388 From these data, we identified 3 strains, 882-60, 882-46, and 811-7, that
389 consistently grew more poorly than the wildtype under multiple conditions; these strains
390 were those that exhibited aggregation at 30°C and slow growth in rich media conditions.
391 These strains all belonged to Clade C and were closely related, despite arising from two
392 donors (Fig 4A). Growth rates in the nutrient limitation conditions were generally
393 correlated with each other. However, we did not observe a correlation between body
394 site and growth rate, even in response to cues that would appear to be specific for a
395 particular body site, such as anaerobic growth. Across the commensal isolates, we
396 noted the most variation in growth in response to caffeine and the antifungals
397 fluconazole and rapamycin. In addition to growth, we measured each of the strains for
398 their ability to form biofilms on plastic surfaces [56]. Although we observed variation
399 between the strains, there was no correlation between isolation site or clade with the
400 propensity of isolates to form biofilms (S3 Fig).

401 Our dense array of phenotypic data across 45 *C. albicans* isolates and 8 clades
402 reveal that commensal isolates largely retain the plasticity to grow efficiently under

403 diverse environmental cues, even those not immediately relevant to their colonizing site,
404 as we did not observe growth enrichment in cues specific to isolation sites.

405 A major stress condition and environmental factor impacting *C. albicans* in the
406 host is the immune response. Therefore, we moved from pure growth assays to
407 measuring host-microbe interactions, using macrophages as representative
408 phagocytes. We first hypothesized that the oral strains may show decreased recognition
409 by macrophages, as persistent oral isolates were recently shown to result in reduced
410 immune recognition and inflammation in both an OPC model of infection and in cell
411 culture [57]. We tested this by measuring phagocytosis of each strain by immortalized
412 bone-marrow derived macrophages and determining the ratio of internalized to external
413 cells by differential staining and microscopy (Fig 4B) [58]. Although most isolates were
414 not significantly different from the SC5314 reference, the isolates generally had a lower
415 phagocytic rate than SC5314. Additionally, there was no correlation between sample
416 origin site or clade with phagocytosis rate.

417 As phagocytosis was not a major differentiating factor between strains, we then
418 wanted to examine whether the strains would induce different levels of macrophage cell
419 death. We primed bone-marrow derived macrophage for 2 hours with LPS before
420 infecting with each of our isolates for 4 hours. Following infection, we stained the cells
421 with propidium iodide (PI) as a measure of cell death (Fig 4C). On average, the
422 commensal isolates induced between 5% and 20% cell death, which was significantly
423 lower than the reference strain, SC5314, which induced an average of 40% cell death.
424 Several strains, including the 3 aggregating strains, 882-60, 882-46, and 811-7, were

425 not significantly different than the mock condition. Other than SC5314, only one isolate,
426 831-1, was significantly different ($p = 0.0411$) from the mock condition.

427 Recently, we showed that *C. albicans* mutants that filament in serum are not
428 always filamentous within macrophages [59]. As filamentation is linked, but not required,
429 for inflammasome activation within host phagocytes [59–61], and clinical isolates show
430 variability in induction of host inflammatory responses [62,63], we examined the
431 morphology of the commensal isolates after incubation for four hours with
432 macrophages. We observed considerable variation in the extent of filamentation among
433 the natural isolates (Fig 4D), including strains that completely failed to filament and
434 those that filamented more than the SC5314 reference strain. Notably, the extent of
435 filamentation did not correlate with colony morphology or invasion on agar, with many
436 strains showing invasion into agar but no filamentation inside the macrophage, and vice
437 versa (S4 Fig). Additionally, oral and fecal isolates both demonstrated defects in
438 filamentation in macrophages, and filamentation in macrophages was not predictive of
439 the phagocytic rate or cell death rate (Fig 4E).

440 Using individual phenotypic measures, we were unable to identify associations
441 between strains based on body site or donor. However, it is possible that the combined
442 phenotypic and genotypic profile would identify clusters of strains with similar distinct
443 phenotypes or reveal connections between isolates. Therefore, we turned to uniform
444 manifold approximation projection (UMAP) embedding, which will plot strains with
445 similar phenotypes closer together and strains with dissimilar phenotypes farther apart
446 based on the cosign metric. We observed three major clusters, but they did not
447 segregate by isolation site, clade, or participant (S5 Fig). In sum, all of the commensal

448 isolates showed extensive phenotypic variation, but this was not dependent on the body
449 site or participant from which they were collected.

450

451 **Limited Diversity Exploitation:**

452 Genome-wide association studies have been a powerful tool for identifying the
453 genetic basis of variation in phenotypes of interest in humans and other recombining
454 species. However, the generally clonal and asexual reproduction of *C. albicans* creates
455 a population structure that confounds traditional GWAS methods. By sampling multiple
456 isolates from each individual, we were able to obtain phenotypically diverse strains with
457 a limited set of unique SNPs between isolates, allowing us to identify causative variants
458 associated with a particular phenotype.

459 We focused on the strains from donor 814, as this donor's matched oral and
460 fecal samples produced the most colonies of any donor, with 144 colonies arising from
461 the oral sample, and 19 arising from the fecal sample, for a total of 163 colonies. 6 of
462 these 163 colonies were included in the condensed set, and these 6 strains clustered
463 tightly in Clade 1, which we hypothesized would allow us to identify causative variants
464 associated with particular phenotypes that were divergent between strains.

465 Our agar invasion analysis revealed that isolate 814-168 demonstrated hyper
466 invasion into Spider agar at 37°C, whereas the other 5 isolates from the condensed set
467 were less invasive (Fig 5A). Moreover, from this donor's 163 isolates, only this single
468 isolate exhibited the hyper invasive phenotype into Spider agar at 37°C (Fig 5B); this
469 phenotype was the motivation for initially including this strain in the sequenced set.

470 **Fig 5. SNV Limited Diversity Exploitation analysis of donor 814 commensal**
471 **isolates reveals role for Zms1 in regulating agar invasion.**

472 A) Agar invasion images for isolates from donor 814 included in the condensed
473 set. Colonies were grown on YPD or Spider agar for 5 days. Invasion was
474 determined after gentle washing.
475 B) Agar invasion scores for all isolates from donor 814 under YPD and Spider
476 conditions.
477 C) Co-expression analysis of Zms1. Width of the lines represents strength of the
478 co-expression score. Gene names and predicted functions from Candida
479 Genome Database. Dark outlines indicate genes examined in Fig 5E.
480 D) Agar invasion images for allele swap and deletion strains. Colonies were
481 grown on YPD or Spider agar for 5 days before imaging. Invasion was
482 determined after gentle washing.

483
484 Variant analysis identified 12 genes with unique SNVs in the 814-168 strain
485 compared with the other 5 sequenced 814 strains, including a heterozygous adenine to
486 thymine SNV in the transcription factor Zms1, resulting in a change in amino acid 681
487 from a threonine to a serine. Moreover, co-expression analysis [64] of *ZMS1* revealed
488 that it is highly correlated with genes involved in regulating the yeast-to-hyphal
489 morphogenic transition (Fig 5C). To test whether this SNV can drive an invasive
490 phenotype, we generated complementation plasmids encoding the *ZMS1T681S* allele
491 cloned out of the 814-168 background, and performed allele swap transformations into
492 814-183, a closely related strain from the same host which demonstrated minimal agar

493 invasion. In the minimally invasive 814-183 background, replacing one copy of the
494 endogenous *ZMS1* allele with one harboring a serine residue at amino acid 681
495 (T681S) resulted in hyper invasion into Spider agar (Fig 5D).

496 Previous work on the function of Zms1 via deletion mutant analysis had not
497 revealed a phenotype [65], however, this was in the SC5314 genetic background and
498 the impact of a specific transcription factor on a given phenotype can vary depending on
499 the strain [17]. Therefore, we deleted *ZMS1* from both 814 backgrounds and tested the
500 strains for invasion and filamentation. On YPD agar, deletion of *ZMS1* in both genetic
501 backgrounds had minimal effects, with the mutant strains behaving similarly to their
502 parent strains (Fig 5D). However, on Spider agar, *ZMS1* deletion changed the colony
503 morphology in the 814-168 background, although it did not decrease overall invasion.
504 Additionally, deletion of *ZMS1* increased invasion in the otherwise minimally invasive
505 814-183 background, highlighting the differential impact of *ZMS1* mutation in the
506 different genetic backgrounds (Fig 5D). Our results demonstrate that a single SNV
507 changing amino acid 681 to a serine is a dominant active allele that is sufficient to drive
508 a hyphal invasion program into Spider agar. We also identified natural variation that was
509 distinct from deletion phenotypes. This approach highlights how deep phenotypic
510 analysis of a limited set of natural isolates from a single host can be exploited to identify
511 causative variants and identify new functions for under-characterized genes.

512

513 **Virulence:**

514 We next examined the fitness and virulence of the commensal isolates relative to
515 the SC5314 reference strain; we hypothesized that the commensal isolates would have

516 decreased virulence compared to SC5314, a clinical isolate. To test this, we turned to
517 two models of *Galleria mellonella* systemic infection as this insect model of virulence is
518 significantly correlated with the murine systemic infection model [18,66,67]. We first
519 examined competitive fitness by infecting with a 1:1 mixture of fluorescently marked
520 SC5314 and each sequenced commensal isolate [68]. After three days, the worms were
521 homogenized and CFUs were plated to determine the competitive index, calculated as
522 the log₂ ratio of fluorescent to nonfluorescent colonies [35]. When comparing the
523 marked and unmarked SC5314 strains, we obtained a competitive index of 0, indicating
524 that both strains are equally fit and that the fluorescence does not impose a fitness cost.
525 In contrast, most commensal strains had a competitive index > 2, suggesting that these
526 strains have a competitive advantage over SC5314, even during systemic infection (Fig
527 6A). Notably, the 3 strains previously identified from Clade C, 882-60, 882-46, and 811-
528 7, consistently demonstrated a competitive index of less than 0, indicating these strains
529 are less fit than SC5314 in this model of infection. This is consistent with the slow
530 growth exhibited by these strains in many growth conditions (Fig 4A).

531 **Fig 6. Commensal isolates retain pathogenic potential.**

532 A) Competition assays in *G. mellonella* demonstrate increased fitness of many
533 commensal isolates compared to SC5314 reference. Isolates were competed
534 against a fluorescent SC5314 isolate, starting at a 1:1 initial inoculum.
535 Competitive fitness was calculated as the ratio between fluorescent and non-
536 fluorescent colonies, normalized to the inoculum, and log₂ transformed.
537 Significant differences from the SC5314 reference strain were determined by
538 one-way ANOVA, with Dunnett's multiple correction testing. B) Survival assays in

539 *G. mellonella*, comparing the SC5314 reference to 6 isolates from donor 814.

540 Each strain was standardized to 2×10^6 cells/mL before inoculating 20 *G.*

541 *mellonella* larvae per strain with 50 μL of prepared inoculum. Larvae were

542 monitored daily for survival. Statistical differences were determined using a

543 Mantel-Cox log-rank test. Asterisks indicate $P < 0.05$ (*), $P < 0.005$ (**), $P <$

544 0.001 (***) and $P < 0.0001$ (****) compared with SC5314.

545

546 The striking increased competitive fitness of the other isolates motivated us to

547 test whether this increased ratio was correlated with increased disease. Here, we

548 examined the survival of *G. mellonella* after performing monotypic infections. We started

549 by using the six isolates from donor 814, which all had increased competitive fitness

550 compared with SC5314, to test the hypothesis that increased invasion is associated

551 with increased disease. However, the majority of the strains from donor 814 were not

552 significantly different from the SC5314 reference strain ($p > 0.05$, log-rank test),

553 including the hyper-invasive 814-168 isolate (Fig 6B). Two strains had a slight defect in

554 virulence ($p < 0.05$ log-rank test). We additionally tested two other clusters of strains for

555 their ability to cause systemic disease in the insect model. However, the human

556 commensal isolates were again not significantly decreased in virulence from the

557 SC5314 reference strain (S6 Fig), despite the increased ability of the SC5314 strain to

558 cause host immune cell death (Fig 4C). Together, this suggests that there is not a

559 consistent selection for avirulent behavior in the commensal human isolates. Although

560 we observed wide variation in *in vitro* host response phenotypes, the isolates generally

561 retained their pathogenic potential, indicating that our *in vitro* assays may not capture
562 the complex stresses experienced during whole-organism infections.

563

564

565 **DISCUSSION:**

566

567 Intra-species analyses of microbial strains can allow for the identification of
568 variants that are associated with specific clinical outcomes, as demonstrated widely in
569 bacterial virulence [69,70] and recently in the human fungal pathogen *Cryptococcus*
570 *neoformans* [71,72]. Understanding the differences between strains can allow for
571 insights into mechanisms of colonization and pathogenesis [17]. However, assessing
572 the underlying genetic variation responsible for differences in virulence in *C. albicans* is
573 challenging in the absence of clear candidate genes because *C. albicans* is a primarily
574 clonal yeast that does not generally undergo meiosis and recombination. Additionally,
575 the genetic basis underlying the ability of commensal strains of *C. albicans* to transition
576 to pathogenic behavior is not well defined. Moreover, *C. albicans* exhibits high rates of
577 structural mutation and ploidy variation [41,73] as well as high heterozygosity [24].
578 Previous descriptions of population genomic variation in *C. albicans* have largely relied
579 on short read sequencing [24] or molecular typing methods [27] at relatively few loci to
580 define genetic variation in the species. Here, we have greatly expanded the number of
581 available long-read genomes for *C. albicans* and have generated a catalog of structural
582 variants that was largely absent from previous descriptions of natural diversity. We were
583 able to leverage clonal variation within a single donor to identify meaningful variation

584 that arose during microevolution. Overall, we performed a systematic phenotypic
585 analysis of commensal isolates from healthy donors, thus allowing us to examine *C.*
586 *albicans* genotypic and phenotypic diversity before the transition to virulence.

587 Strikingly, our commensal strains generally maintained their capacity to cause
588 disease, and all strains were able to filament in response to the inducing cues of 10%
589 serum or high temperature. This observation is in contrast to work suggesting that
590 passage through the mammalian gut would cause a decrease in systemic virulence and
591 filamentation [34]. Although we observed significant variation in the ability of strains to
592 invade into agar, recent intravital imaging approaches suggest that filamentation in
593 response to serum matched that seen *in vivo* more than filamentation in response to
594 solid Spider agar [74]. Together, the robust filamentation and disease-causing ability in
595 all of the commensal isolates suggests that the selective pressures that occur during
596 mouse models of colonization may not recapitulate the selection that occurs during
597 human colonization.

598 Although we were not able to associate a particular phenotype with increased
599 systemic disease, we observed extensive phenotypic and genotypic variation between
600 the commensal isolates. This variability is also consistent with recent work from clinical,
601 disease-associated strains [18]. Moreover, our commensal strains were able to
602 proliferate on a range of different environmental conditions, and we did not observe
603 significant differences in phenotypes between isolates obtained from oral or fecal sites,
604 except for a slight increase in invasion into Spider medium for oral samples. This work
605 highlights the striking ability of *C. albicans* to adapt to a wide range of environmental

606 conditions and indicates that colonization at a specific body site does not necessarily
607 predict pathogenic potential.

608 Previous work has suggested that the *C. albicans* population within a given
609 individual is clonal [68,75–78], and that the fungus is acquired during birth as a part of
610 the normal microbiota [42]. In these studies, they were often sampling from patients with
611 active disease; this may suggest that there is selection for the ability to cause disease,
612 resulting in repeated isolation of representative samples of a clonal population. In
613 contrast, we identified disparate individuals that appeared to be colonized by strains that
614 were nearly identical, suggesting that there was some transmission between individuals.
615 Whether these transmission events allow for long-term colonization, and how they affect
616 the initial *C. albicans* colonizing strains, is still not fully understood.

617 We also observed diversification within hosts, with multiple instances of closely-
618 related strains showing variation in phenotypes, such as invasion into agar. In one
619 representative example, we were able to use comparative genome analysis coupled
620 with co-expression, which we term “limited diversity exploitation”, to identify a candidate
621 transcription factor that regulates invasion. Previous work on a *ZMS1* knockout strain of
622 *C. albicans* did not show any differences in phenotype compared with the parent strain
623 [65]. However, we observed that a single amino acid substitution in the predicted fungal
624 transcription factor regulatory middle homology region was sufficient to drive hyper-
625 invasive growth. Moreover, this phenotype was distinct from the deletion phenotypes in
626 these two genetic backgrounds, again contrasting with the SC5314 reference strain. It is
627 likely that populations of colonizing *C. albicans* will vary in other important clinically-
628 relevant traits, including filamentation in macrophages or intrinsic drug tolerance and

629 resistance, and our results suggest that studying more than a single representative
630 isolate gives opportunities to discover new biology.

631 **METHODS:**

632 **Human Subjects and Sample Collection:**

633 Study volunteers were recruited through the Authentic Research Sections of the
634 introductory biology laboratory course at the University of Michigan (BIO173). All
635 participants provided written, informed consent for sample collection as well as isolation
636 and characterization of microbes from feces. This study was approved by the
637 Institutional Review Board of the University of Michigan Medical School (HUM00094242
638 and HUM00118951) and was conducted in compliance with the Helsinki Declaration.

639 Oral samples were obtained by self-administered cotton swabbing, and fecal
640 samples were collected and diluted in PBS+DMSO before plating; in each case, BD
641 ChromAgar was used to identify *C. albicans* colonies. Individual *Candida albicans*
642 colonies were picked from all plates with a toothpick into 100 μ L of YPD in a 96 well
643 plate. The cultures were then inoculated onto BD Chromagar to differentiate between
644 yeast species and ITS regions were amplified to confirm *C. albicans* strains. The *C.*
645 *albicans* colonies were individually inoculated into fresh 96-well plate in YPD and after
646 24 hours of incubation at 30° C, 50% glycerol was added to generate the stock plates.
647 For each oral sample, individual *Candida albicans* colonies were picked from the
648 CHROMagar plates and incubated overnight in 100 μ L of YPD in a 96 well plate. After
649 24 hours incubation in 30° C, 50% glycerol was added to the 96 wells to generate the
650 stock plates. All strains were maintained in -80 C cryoculture.

651

652 **Media and culture conditions:**

653 Media for growth curves is described in Supplemental Table 1.

654

655 **Growth Curve Analysis:**

656 Overnight cultures of each *Candida albicans* isolate were grown in 200 µL of
657 YPD in 96-well plates at 30° C, then subcultured into fresh media using a sterile pinner.
658 Growth curves were performed on a BioTek 800 TS Absorbance Reader in the
659 indicated conditions for 24 hours, without shaking. Maximum growth rate and carrying
660 capacity were determined using the GrowthcurveR analysis package [79]. All media and
661 conditions are listed in Table S1. Summary statistics from GrowthcurveR for the entire
662 collection of isolates are included in Table S2. Summary statistics from GrowthcurveR
663 for the condensed set in multiple environmental conditions are included in Table S4.

664

665 **Filamentation Analysis:**

666 Overnight cultures of each *Candida albicans* isolate were grown in 100 µL of
667 YPD in 96 well plates at 30° C, then subcultured into 100 µL of YPD at either 30° C or
668 42° C for three hours. After three hours, the plates were imaged on an Olympus IX80
669 microscope at 20X magnification. To test the response to serum, overnight cultures
670 were subcultured into 5 mL of YPD with 10% serum and rotated in a 37 °C incubator for
671 three hours before vortexing and imaging on glass slides at 20X magnification.

672

673 **Agar Invasion Methods**

674 Isolates were taken from frozen glycerol stocks, incubated overnight in yeast
675 extract peptone dextrose (YPD) in 96-well plates and inoculated onto solid YPD and
676 spider media using a 96-pin replicator tool (Singer Instruments). Plates were then

677 incubated at the indicated temperature and oxygen conditions for 7-9 days. Colonies on
678 plates were first imaged on a Biorad Gel Doc XR. Colonies were then gently washed off
679 with deionized water. Plates were imaged again to capture invasion images. The
680 invasiveness of each isolate was determined through a rubric scale of 0-5, as indicated
681 in Fig 1. A 0 indicates no invasion, 1-2 indicates minimal invasion, a 3 indicates distinct
682 circular hyphal invasion, while a 4 indicates an even larger circular hyphal invasion. A 5
683 indicates the most aggressive invasion, with a “halo” of more hyphae surrounding the
684 initial growth. A summary of invasion scores is in Table S2.

685

686 ***Galleria mellonella* Infections**

687 Each isolate was examined for competitive fitness in a one-to-one ratio with a
688 fluorescent wildtype SC5314 *C. albicans* strain in *Galleria mellonella* larvae. Infections
689 were performed as previously described (Fuchs et al., 2010). Briefly, *G. mellonella*
690 larvae were purchased from speedyworm.com and maintained in sawdust at room
691 temperature. Overnights were prepared for each isolate and wildtype strain in yeast
692 extract peptone dextrose (YPD) at 30°C, with rotation.

693 To measure competitive fitness, a 1:1 ratio of fluorescent wild type to unlabeled
694 isolate was prepared in 1X PBS at 5×10^5 cells/ml. 10 larvae/strain were randomly
695 chosen and infected via the last right proleg with 50 μ L of the 1:1 inoculum using an
696 exel veterinary U-40 diabetic syringe (0.5CC X 29G X ½). After injection, larvae were
697 maintained at room temperature for 3 days before harvesting using a Benchmark D1000
698 homogenizer. Larvae were homogenized in 0.5 ml of 1X PBS, diluted 1:10 in PBS, and
699 plated onto YPD plates containing gentamicin, ampicillin, and ciprofloxacin. Plates were

700 left at 30°C for 48 hours before imaging on a Typhoon™ FLA 9500 biomolecular
701 Imager. The ratio of fluorescent to unmarked strains was compared with the inoculum to
702 determine competitive index.

703 To measure virulence, 20 *G. mellonella* larvae/strain were infected with 50 µL of
704 2x10⁶ cells/mL inoculum using an exel veterinary U-40 diabetic syringe (0.5CC X 29G X
705 ½). After injection, larvae were maintained at room temperature and monitored daily for
706 survival. Virulence was analyzed using Kaplan Meier survival curves in GraphPad Prism
707 (version 9).

708

709 **Mammalian Cell Culture**

710 J2-iBMDM cells were isolated from the bone marrows of C57BL/6J mice and
711 differentiated in BMDM medium (50% DMEM, 2 mM l-glutamine, 1 mM sodium
712 pyruvate, 30% L929-conditioned medium, 20% heat-inactivated fetal bovine serum
713 [FBS; Invitrogen], 55 µM 2-mercaptoethanol, and Pen/Strep), then immortalized using
714 Cre-J2 viral supernatants.

715

716 **Phagocytosis**

717 Phagocytosis assays were performed as previously described [58]. Briefly,
718 iBMDM macrophages were prepared for infection in RPMI media containing 3% FBS,
719 diluted to 3x10⁶ cells/ml and incubated overnight at 100 µL/well in a 96-well plate.
720 Overnight cultures of *Candida albicans* isolates were incubated and diluted to 4 X 10⁶
721 cells/ml into RPMI media with 3% FBS and used to infect macrophages. Inoculated
722 plates were centrifuged for 1 minute at 1,000 rpm to synchronize. After 30 minutes,

723 media was removed, and cells were fixed with 4% paraformaldehyde (PFA) for 10
724 minutes. The cells were washed three times in 1 X PBS. Cells were then stained with 50
725 μ L of FITC-Concanavalin (5 ug/mL Sigma-Aldrich C7642) at room temperature, rocking
726 for 30 minutes, wrapped in foil. The plates were then washed 3X with 100 μ L of 1X
727 PBS, and then 50 μ L of 0.05% Triton-X100 was added to permeabilize the cells. Cells
728 were then washed 3X with 1X PBS and a final stain of 50 μ L of calcofluor white (100
729 ug/mL, Sigma-Aldrich C7642) was added to cells to incubate for 10 minutes. The cells
730 were then washed 3X with 100 μ L of 1X PBS and then maintained in 100 μ L of 1X PBS
731 at 4°C before imaging on the microscope at 20X magnification using the DIC, FITC, and
732 DAPI channels. Images were analyzed with a CellProfiler pipeline to determine the
733 percentage of internalized *Candida*. The total number of *Candida* was determined
734 through calcofluor white staining. Next, the number of external *Candida* was determined
735 through FITC-ConA staining. (1 – external cells)/total cells = % of internalized *Candida*.

736

737 **Macrophage filamentation assay**

738 To assess filamentation of isolates in macrophages, iBMDM macrophages were
739 prepared for infection in RPMI media containing 3% FBS, diluted to 3×10^6 cells/ml and
740 incubated overnight at 100 μ L/well in a 96-well plate. Overnights of *Candida albicans*
741 isolates were incubated and diluted to 4×10^6 cells/ml into RPMI media with 3% FBS
742 and used to infect macrophages at an MOI of ~1:1. The inoculated plate was
743 centrifuged for 1 minute at 1,000 rpm to synchronize phagocytosis. After 2 hours, the
744 media was removed, and cells were fixed with 4% paraformaldehyde (PFA) for 10
745 minutes, permeabilized with 0.05% Triton-X100, and stained with 50 μ L of calcofluor

746 white (100 ug/mL, Sigma-Aldrich C7642) before imaging at 40X magnification using the
747 DIC and DAPI channels. The extent of filamentation for each isolate was scored on a
748 rubric from 0-5. A score of 0 indicates an isolate that exhibited only yeast morphology
749 with no filamentation during macrophage infection. A score of 1 indicates an isolate that
750 remains primarily in the yeast form, with some hyphae or pseudohyphae, while a score
751 of 2 indicates an isolate that remains primarily in the yeast form, with more hyphae and
752 pseudohyphae present than a score of 1. A score of 3 indicates an isolate that had
753 approximately equal numbers of yeast and true hyphae. A score of 4 indicates an
754 isolate with more true hyphae than yeast during infection and a score of 5 indicates an
755 isolate in which the majority of cells formed hyphae with very few yeast remaining.

756

757 **Cell death assay**

758 To assess macrophage cell death, J2-iBMDM macrophages were prepared for
759 infection in RPMI media containing 3% FBS, diluted to 4×10^5 cells/ml and incubated
760 overnight at 100 μ L/well in a 96-well plate. Macrophages were primed with 200 ng/mL
761 LPS in RPMI media with 3% FBS for 2 hours. Overnights of *Candida albicans* isolates
762 were incubated and diluted to 5×10^5 cells/ml into RPMI media with 3% FBS and used
763 to infect macrophages at an MOI of ~1:1. The plate was centrifuged for 1 minute at
764 1,000 rpm to synchronize phagocytosis. After 4 hours, the media was removed and
765 cells were stained with Hoechst (20 uM, Cayman Chemical 33342) to mark nuclei and
766 propidium iodide (1ug/mL, Acros Organics 440300250) to mark cell death. Plates were
767 then imaged on an Cellomics ArrayScanTM VTI Objective Module at 20x with at least 5
768 images taken per well. Images were analyzed with a CellProfiler pipeline (available by

769 request) to determine the percent of dead macrophages. Macrophages were identified
770 through Hoescht nuclear staining to determine the total number of cells in each field of
771 view. Next, cell death events were determined based on propidium iodide staining. (# of
772 propidium iodide events)/(# of total cells) = % of dead macrophages.

773

774 **Biofilm Formation**

775 Biofilm formation was assessed as previously described [56]. Briefly, overnights
776 of *C. albicans* isolates were incubated and diluted to 0.5 OD₆₀₀. In a 96-well plate,
777 isolates were added to 200 µL of RPMI media, covered with a Breathe-Easy film, and
778 incubated at 37°C shaking at 250 rpm. After 90 minutes, RPMI media was removed and
779 wells were washed once with 200 µL of 1X PBS and 200 µL of fresh RPMI media was
780 added. Plates were covered in a Breathe-Easy film and left to incubate at 37°C with
781 shaking at 250 rpm for 24 hours before a final read on the plate reader at OD₆₀₀.

782

783 **CHEF gel electrophoresis**

784 Agarose plugs for CHEF gel electrophoresis were prepared as in Selmecki 2005
785 [80]. Electrophoresis was performed as in Chibana [81], with minor modifications to
786 improve chromosome separation. Plugs were run on 0.9% megabase agarose (Biorad
787 1613108), with run conditions of 60 to 300 sec, 4.5 V/cm, 120 angle for 36 hr, followed
788 by 720 to 900 sec, 2.0 V/cm, 106 for 24 hr. Sizes were determined based on
789 approximations from Selmecki and a CHEF DNA Size Marker, 0.2–2.2 Mb, *S.*
790 *cerevisiae* Ladder (Biorad 1703605).

791

792 **High Molecular Weight Genomic DNA extraction and sequencing**

793 High molecular weight (>20 kb fragment) genomic DNA was prepared using the
794 Qiagen MagAttract HMW DNA Kit (Qiagen 67563), following the manufacturer's
795 protocol, with minor modification. Fungal cell walls were first digested using Zymolyase
796 (Zymo E1005) before DNA extraction. TELL-seq [48] libraries were prepared at the
797 University of Michigan Advanced Genomics facility. Libraries were sequenced on an
798 Illumina NovaSeq SP 300 cycle flow cell. All sequences are uploaded to NCBI SRA at
799 PRJNA875200.

800

801 **Sequence Variation Analysis**

802 To identify single nucleotide variants (SNVs), we mapped 435 read libraries to
803 the SC5314 reference genome with BWA- MEM [49]. We used various samtools utilities
804 to convert alignment files, remove PCR duplicates, and assign read groups [49].
805 Variants were called with GATK HaplotypeCaller and individual sample GVCFs were
806 combined with GATK CombineGVCFs. Finally, we genotyped our combined GVCF
807 across samples and loci with GATK GenotypeGVCFs [82]. GATK identified 851,355
808 total variable loci. Of the 741,027 diallelic loci, GATK identified 60,626 indel-derived
809 alleles (8.18%), and 680,401 SNV alleles (91.82%). To refine our raw variant set to only
810 include high-confidence SNVs, we removed low quality variant calls at the (i) individual
811 genotype call, (ii) whole locus, and (iii) whole sample levels. First, we removed
812 individual sample genotype calls if their genotype quality (i.e., GQ) was < 0.99 (out of
813 1.0) or the results of the map quality rank sum test (i.e., MQRS) differed from 0.0 (i.e.,
814 the perfect score). Second, we removed all variant calls with more than one alternative

815 allele (i.e., not diallelic), an alternate allele longer than 1 nucleotide (i.e., indels), or with
816 >5% missing genotype calls across samples. Finally, we removed entire samples from
817 the combined VCF if their genotype calls across all loci were more than 90% missing,
818 which resulted in the removal of 4 entire samples. Filtering our variant set in this way
819 yielded a final set of 112,136 high quality SNVs across 431 remaining samples. Of
820 these, 90,675 (80.86%) were represented in at least one member of our set of newly
821 sequenced strains.

822 To remove redundancy and focus on natural *C. albicans* diversification, we
823 removed samples corresponding to resequenced strains (e.g., multiple SC5314
824 samples present in full data set) and those sequenced as part of experimental evolution
825 studies (i.e., [34,51,52]). Following removal of these samples, we were left with 324
826 sample SNV profiles (280 published, and 44 new genomes strains) (Table S3). To
827 generate an input matrix for distance calculation and NJ clustering, we coded genotypes
828 as homozygous for the reference allele (R), heterozygous (H), homozygous for the
829 alternative allele (A), or missing (N). Raw distance between two sample genotypes at a
830 particular locus (i.e, GT_i and GT_j) were calculated as 0.5 per alternative allele, with
831 respect to the SC5314 reference such that $D(H, A) = 0.5$, $D(R, A) = 1.0$, etc. Missing
832 genotypes (i.e., coded as N) were ignored. Using these raw distances, we calculated
833 the pairwise distance between all sample pairs across all 112,136 loci according to the
834 generalized distance function for sample i and sample j ...

$$D_{ij} = \frac{1}{nSNPs - nN} \sum_{x=1}^{nSNPs} D(GT_{ix}, GT_{jx})$$

835

836 ...where $nSNPs$ is the total number of high-quality SNPs in our dataset (i.e.,
837 112,136), nN is the number of uncalled genotypes between each pair (i.e., coded as N),
838 GT_{ix} is the genotype of sample i at locus x , and GT_{jx} is genotype of sample j at locus x .
839 The resulting distance matrix was clustered with the nj function in phytools in R [83]. We
840 visualized the resulting tree structure and associated data with ggtree in R [84–86].

841

842 **Structural Variant Analysis from TELL-seq**

843 To identify structural variation genome wide in the condensed set of *C. albicans*
844 isolates, we mapped the read libraries to the SC5314 reference genome with BWA-
845 MEM [49]. We visualized the read depth across the genome by breaking the reference
846 genome into 500bp bins. Each read was assigned to a single bin based on the first
847 coordinate in the reference genome to which the read aligned. The read counts were
848 normalized across the samples by the average read coverage for each sample. The
849 value for each bin ($v_{b,s}$) for each sample was calculated using the following formula:

850

$$v_{b,s} = \frac{\text{bin read count} * \text{read length}}{\text{bin size} * \text{sample coverage}}$$

851

852 Additionally, we performed structural variant calling using lumpy-sv [87] and genotyping
853 with svtyper [88] using smoove (version 0.2.5). We visualized the variant calls by
854 breaking the reference genome into 500bp bins and identified the number of variant
855 calls of a give type which overlapped with each bin.

856 To identify potential translocations from the TELL-seq data, we used the Tell-Link
857 pipeline to assemble the read libraries into contigs and aligned the assembled contigs to

858 the SC5314 reference genome using MiniMap2 [89]. We identified candidate junctions
859 where consecutive aligned segments longer than 10,000 bp on the same contig aligned
860 to different chromosomes. To experimentally validate the predicted junctions, we
861 designed primers from uniquely mapped contig segments on either side of the junction
862 i.e., one from each of the two chromosomes predicted to be joined together. Primers
863 were selected from the 500 bp directly upstream and downstream from the predicted
864 junction location unless the junction was directly flanked by non-uniquely mapping
865 segments in which case, the 500 bp of the closest uniquely mapping segments were
866 used. Primers are in Table S5.

867

868 **ZMS1 strain construction**

869 To make the *ZMS1* allele swap strains, we used the NEBuilder HiFi assembly kit
870 to clone both alleles of *ZMS1* from the 814-168 strain background into the pUC19
871 cloning vector, along with the nourseothricin resistance cassette, to generate plasmid
872 pTO192. *ZMS1* and 500 bp of putative terminator was amplified using
873 oTO771+oTO734. NAT was amplified using oTO18 + oTO735. pUC19 was amplified
874 using oTO590 + oTO591. The plasmids were Sanger sequenced to confirm the
875 presence of the specific *ZMS1* allele and the absence of additional mutations using
876 oTO736. These plasmids were transformed into the 814-183 background using a
877 transient CRISPR approach [90]. NAT-resistant transformants were tested for the
878 presence of specific *ZMS1* alleles by Sanger sequencing using oTO736.

879 To generate the deletion strains, the *ZMS1::NAT* cassette was amplified from the
880 NAT flipper plasmid [91] using primers oTO1215 and oTO1216, and transformed into

881 the 814-168 and 814-183 strain backgrounds using a transient CRISPR approach [90].
882 Integration was tested using oTO5 and oTO1218 and loss of the wild-type *ZMS1* gene
883 was tested using oTO736 and oTO1218.

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904 **ACKNOWLEDGEMENTS:**

905 We thank members of the O'Meara lab for critical reading of the manuscript, the
906 Advanced Genomics Core at the University of Michigan for assistance with TellSeq, and
907 the University of Michigan Great Lakes research computing cluster.

908

909 **FUNDING:**

910 Funding for this project included mCubed collaborative grant to TRO and TYJ, NIH
911 grant NIH KAI137299 (NIAID) to TRO, NIAID T32 AI007528 to FMA, NIH
912 1F31HG010569-01 to AMW, NIH T32GM007544 to KRA, University of Michigan
913 Postdoctoral Pioneer Program to MJM. TYJ is a fellow of the Canadian Institute for
914 Advanced Research program Fungal Kingdom: Threats & Opportunities.

915

916

917 **Supplemental Tables:**

918 Supplemental table 1: Media and growth conditions.
919 Supplemental table 2: Full collection growth curves (Tab 1) and invasion scores (Tab 2).
920 Supplemental table 3: SRA accession numbers for strains included in phylogenetic
921 analysis.
922 Supplemental table 4: Condensed set strain information and quantitative phenotypes.
923 Supplemental table 5: Primers used in this study.

924

925

926 **Supplemental Figure Legends:**

927

928 **Supplemental Figure 1: Comparisons of growth rate between samples and**
929 **nutrient source.** A) Enrichment of fecal vs. oral samples by carrying capacity. B)
930 Correlation between growth rates in different carbon sources. C) Comparison between
931 oral and fecal strains for agar invasion.

932

933 **Supplemental Figure 2: Structural Variation.**

934 A. CHEF karyotype gels were performed on the condensed set of *C. albicans*
935 isolates and visualized using ethidium bromide staining. Red arrows indicate
936 large chromosome banding patterns that differ from the SC5314 reference strain.
937 Chromosome 5 showed especially extensive variability in size between isolates.
938 B. Heatmaps of Lumpy Structural variation calls for the condensed set of isolates.
939 Each column represents a 500 bp bin of the reference genome and each row of
940 the heat map for a given variant class is an isolate from the condensed set. The
941 value for each bin indicates the number of SV calls overlapping the 500 bp
942 window.

943

944 **Supplemental Figure 2: Biofilm formation.** Each condensed set isolate was tested for
945 its ability to form a biofilm on a plastic surface. Asterisks indicate $P < 0.05$ (*) compared
946 with SC5314, one-way ANOVA compared with SC5314, with Dunnett's post-hoc test for
947 multiple corrections.

948

949

950 **Supplemental Figure 4: Comparison between filamentation in macrophages and**
951 **agar invasion.** A) Images of *C. albicans* condensed set isolates after growth in
952 macrophages for 4 hours. *C. albicans* were stained with calcofluor white. Images taken
953 using DIC and DAPI channels at 20X magnification. Scale = 50 μ M. B) Colony
954 morphology and agar invasion for *C. albicans* condensed set isolates on Spider at 37°C
955 after 5 days. C) Histogram of the distribution of macrophage filamentation scores of the
956 condensed set.

957

958

959 **Supplemental Figure 5: UMAP embedding.**

960 Non-linear embedding dimensionality reduction was performed on the phenotypic data
961 on the condensed set of isolates using UMAP. Clusters did not segregate by sample
962 site, donor, or clade. Data used to generate the UMAP are included in Table S4.

963

964 **Supplemental Figure 6: Virulence in *G. mellonella*.** A) Survival assays in *G.*
965 *mellonella*, comparing the SC5314 reference to 4 isolates from donors 882 and 811. B)
966 Survival assays in *G. mellonella*, comparing the SC5314 reference to 5 isolates from
967 donors 833 and 838. Each strain was standardized to 2×10^6 cells/mL before inoculating
968 20 *G. mellonella* larvae per strain with 50 μ L of prepared inoculum. Larvae were
969 monitored daily for survival. Statistical differences were determined using a Mantel-Cox
970 log-rank test. ** indicates P-value < 0.01, * indicates P-value < 0.05.

971 **References:**

972

973

974 1. Mukherjee PK, Sendid B, Hoarau G, Colombel J-F, Poulain D, Ghannoum MA.
975 Mycobiota in gastrointestinal diseases. *Nat Rev Gastroenterol Hepatol.* 2015;12:
976 77–87.

977 2. Polvi EJ, Li X, O'Meara TR, Leach MD, Cowen LE. Opportunistic yeast pathogens:
978 reservoirs, virulence mechanisms, and therapeutic strategies. *Cell Mol Life Sci.*
979 2015;72: 2261–2287.

980 3. Li J, Chen D, Yu B, He J, Zheng P, Mao X, et al. Fungi in Gastrointestinal Tracts of
981 Human and Mice: from Community to Functions. *Microb Ecol.* 2018;75: 821–829.

982 4. Hoffmann C, Dollive S, Grunberg S, Chen J, Li H, Wu GD, et al. Archaea and fungi
983 of the human gut microbiome: correlations with diet and bacterial residents. *PLoS*
984 *One.* 2013;8: e66019.

985 5. Gunsalus KTW, Tornberg-Belanger SN, Matthan NR, Lichtenstein AH, Kumamoto
986 CA. Manipulation of Host Diet To Reduce Gastrointestinal Colonization by the
987 Opportunistic Pathogen *Candida albicans*. *mSphere.* 2016;1.
988 doi:10.1128/mSphere.00020-15

989 6. Noble SM, Gianetti BA, Witchley JN. *Candida albicans* cell-type switching and
990 functional plasticity in the mammalian host. *Nat Rev Microbiol.* 2017;15: 96–108.

991 7. Alves R, Barata-Antunes C, Casal M, Brown AJP, Van Dijck P, Paiva S. Adapting
992 to survive: How *Candida* overcomes host-imposed constraints during human
993 colonization. *PLoS Pathog.* 2020;16: e1008478.

994 8. Ene IV, Brunke S, Brown AJP, Hube B. Metabolism in fungal pathogenesis. *Cold*
995 *Spring Harb Perspect Med.* 2014;4: a019695.

996 9. Polke M, Hube B, Jacobsen ID. *Candida* survival strategies. *Adv Appl Microbiol.*
997 2015;91: 139–235.

998 10. Zhai B, Ola M, Rolling T, Tosini NL, Joshowitz S, Littmann ER, et al. High-
999 resolution mycobiota analysis reveals dynamic intestinal translocation preceding
1000 invasive candidiasis. *Nat Med.* 2020. doi:10.1038/s41591-019-0709-7

1001 11. Yan L, Yang C, Tang J. Disruption of the intestinal mucosal barrier in *Candida*
1002 *albicans* infections. *Microbiol Res.* 2013;168: 389–395.

1003 12. Alenazy H, Alghamdi A, Pinto R, Daneman N. *Candida* colonization as a predictor
1004 of invasive candidiasis in non-neutropenic ICU patients with sepsis: A systematic
1005 review and meta-analysis. *Int J Infect Dis.* 2021;102: 357–362.

1006 13. Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC. Hidden
1007 killers: human fungal infections. *Sci Transl Med.* 2012;4: 165rv13-165rv13.

1008 14. Magill SS, O'Leary E, Janelle SJ, Thompson DL, Dumyati G, Nadle J, et al.
1009 Changes in prevalence of health care--associated infections in US hospitals. *N
1010 Engl J Med.* 2018;379: 1732–1744.

1011 15. Libkind D, Hittinger CT, Valério E, Gonçalves C, Dover J, Johnston M, et al.
1012 Microbe domestication and the identification of the wild genetic stock of lager-
1013 brewing yeast. *Proc Natl Acad Sci U S A.* 2011;108: 14539–14544.

1014 16. Hittinger CT. *Saccharomyces* diversity and evolution: a budding model genus.
1015 *Trends Genet.* 2013;29: 309–317.

1016 17. Huang MY, Woolford CA, May G, McManus CJ, Mitchell AP. Circuit diversification
1017 in a biofilm regulatory network. *PLoS Pathog.* 2019;15: e1007787.

1018 18. Hirakawa MP, Martinez DA, Sakthikumar S, Anderson MZ, Berlin A, Gujja S, et al.
1019 Genetic and phenotypic intra-species variation in *Candida albicans*. *Genome Res.*
1020 2015;25: 413–425.

1021 19. Wang JM, Woodruff AL, Dunn MJ, Fillinger RJ, Bennett RJ, Anderson MZ.
1022 Intraspecies Transcriptional Profiling Reveals Key Regulators of *Candida albicans*
1023 Pathogenic Traits. *MBio.* 2021;12. doi:10.1128/mBio.00586-21

1024 20. McDonough L, Mishra AA, Tosini N, Kakade P, Penumutchu S, Liang S-H, et al.
1025 *Candida albicans* Isolates 529L and CHN1 Exhibit Stable Colonization of the
1026 Murine Gastrointestinal Tract. *bioRxiv.* 2021. p. 2021.06.27.450080.
1027 doi:10.1101/2021.06.27.450080

1028 21. Soll DR, Pujol C. *Candida albicans* clades. *FEMS Immunol Med Microbiol.* 2003;39:
1029 1–7.

1030 22. Blignaut E, Pujol C, Lockhart S, Joly S, Soll DR. Ca3 fingerprinting of *Candida*
1031 *albicans* isolates from human immunodeficiency virus-positive and healthy
1032 individuals reveals a new clade in South Africa. *J Clin Microbiol.* 2002;40: 826–836.

1033 23. Odds FC. Molecular phylogenetics and epidemiology of *Candida albicans*. *Future
1034 Microbiology.* 2010. pp. 67–79. doi:10.2217/fmb.09.113

1035 24. Ropars J, Maufrais C, Diogo D, Marcket-Houben M, Perin A, Sertour N, et al. Gene
1036 flow contributes to diversification of the major fungal pathogen *Candida albicans*.
1037 *Nat Commun.* 2018;9: 2253.

1038 25. MacCallum DM, Castillo L, Nather K, Munro CA, Brown AJP, Gow NAR, et al.
1039 Property differences among the four major *Candida albicans* strain clades.
1040 *Eukaryot Cell.* 2009;8: 373–387.

1041 26. Bougnoux M-E, Aanensen DM, Morand S, Théraud M, Spratt BG, d'Enfert C.
1042 Multilocus sequence typing of *Candida albicans*: strategies, data exchange and
1043 applications. *Infect Genet Evol.* 2004;4: 243–252.

1044 27. Odds FC, Bougnoux M-E, Shaw DJ, Bain JM, Davidson AD, Diogo D, et al.
1045 Molecular phylogenetics of *Candida albicans*. *Eukaryot Cell.* 2007;6: 1041–1052.

1046 28. Tavanti A, Davidson AD, Fordyce MJ, Gow NAR, Maiden MCJ, Odds FC.
1047 Population Structure and Properties of *Candida albicans*, as Determined by
1048 Multilocus Sequence Typing. *J Clin Microbiol.* 2005;43: 5601–5613.

1049 29. Li X, Yan Z, Xu J. Quantitative variation of biofilms among strains in natural
1050 populations of *Candida albicans*. *Microbiology.* 2003;149: 353–362.

1051 30. Slutsky B, Staebell M, Anderson J, Risen L. “White-opaque transition”: a second
1052 high-frequency switching system in *Candida albicans*. *Journal of ...* 1987.
1053 doi: <https://doi.org/10.1128/JB.02E4C532-97D3-4987-B50F-D8EAF9F2A6CF>

1054 31. Wu W, Lockhart SR, Pujol C, Srikantha T, Soll DR. Heterozygosity of genes on the
1055 sex chromosome regulates *Candida albicans* virulence. *Mol Microbiol.* 2007;64:
1056 1587–1604.

1057 32. Calderone RA, Fonzi WA. Virulence factors of *Candida albicans*. *Trends Microbiol.*
1058 2001;9: 327–335.

1059 33. Pappas PG, Lionakis MS, Arendrup MC, Ostrosky-Zeichner L, Kullberg BJ.
1060 Invasive candidiasis. *Nat Rev Dis Primers.* 2018;4: 18026.

1061 34. Tso GHW, Reales-Calderon JA, Tan ASM, Sem X, Le GTT, Tan TG, et al.
1062 Experimental evolution of a fungal pathogen into a gut symbiont. *Science.*
1063 2018;362: 589–595.

1064 35. Witchley JN, Penumetcha P, Abon NV, Woolford CA, Mitchell AP, Noble SM.
1065 *Candida albicans* Morphogenesis Programs Control the Balance between Gut
1066 Commensalism and Invasive Infection. *Cell Host Microbe.* 2019;25: 432–443.e6.

1067 36. Pierce JV, Kumamoto CA. Variation in *Candida albicans* EFG1 expression enables
1068 host-dependent changes in colonizing fungal populations. *MBio.* 2012;3: e00117–
1069 12.

1070 37. Liang S-H, Anderson MZ, Hirakawa MP, Wang JM, Frazer C, Alaalm LM, et al.
1071 Hemizygosity Enables a Mutational Transition Governing Fungal Virulence and
1072 Commensalism. *Cell Host Microbe.* 2019;25: 418–431.e6.

1073 38. Witchley JN, Basso P, Brimacombe CA, Abon NV, Noble SM. Recording of DNA-
1074 binding events reveals the importance of a repurposed *Candida albicans* regulatory
1075 network for gut commensalism. *Cell Host Microbe.* 2021.
1076 doi: [10.1016/j.chom.2021.03.019](https://doi.org/10.1016/j.chom.2021.03.019)

1077 39. White SJ, Rosenbach A, Lephart P, Nguyen D, Benjamin A, Tzipori S, et al. Self-
1078 regulation of *Candida albicans* population size during GI colonization. *PLoS*
1079 *Pathog.* 2007;3: e184-13.

1080 40. Pande K, Chen C, Noble SM. Passage through the mammalian gut triggers a
1081 phenotypic switch that promotes *Candida albicans* commensalism. *Nat Genet.*
1082 2013;45: 1088–1091.

1083 41. Forche A, Solis NV, Swidergall M, Thomas R, Guyer A, Beach A, et al. Selection of
1084 *Candida albicans* trisomy during oropharyngeal infection results in a commensal-
1085 like phenotype. *PLoS Genet.* 2019;15: e1008137.

1086 42. Schönherr FA, Sparber F, Kirchner FR, Guiducci E, Trautwein-Weidner K,
1087 Gladiator A, et al. The intraspecies diversity of *C. albicans* triggers qualitatively and
1088 temporally distinct host responses that determine the balance between
1089 commensalism and pathogenicity. *Mucosal Immunol.* 2017;10: 1335–1350.

1090 43. Magee BB, Magee PT. Electrophoretic karyotypes and chromosome numbers in
1091 *Candida* species. *J Gen Microbiol.* 1987;133: 425–430.

1092 44. Kim SH, Clark ST, Surendra A, Copeland JK, Wang PW, Ammar R, et al. Global
1093 Analysis of the Fungal Microbiome in Cystic Fibrosis Patients Reveals Loss of
1094 Function of the Transcriptional Repressor Nrg1 as a Mechanism of Pathogen
1095 Adaptation. *PLoS Pathog.* 2015;11: e1005308.

1096 45. Tan CT, Xu X, Qiao Y, Wang Y. A peptidoglycan storm caused by β -lactam
1097 antibiotic's action on host microbiota drives *Candida albicans* infection. *Nat*
1098 *Commun.* 2021;12: 2560.

1099 46. Azadmanesh J, Gowen AM, Creger PE, Schafer ND, Blankenship JR.
1100 Filamentation Involves Two Overlapping, but Distinct, Programs of Filamentation in
1101 the Pathogenic Fungus *Candida albicans*. *G3* . 2017;7: 3797–3808.

1102 47. Garg S, Ranjan P, Erb-Downward JR, Huffnagle GB. High-Quality Genome
1103 Reconstruction of *Candida albicans* CHN1 Using Nanopore and Illumina
1104 Sequencing and Hybrid Assembly. *Microbiol Resour Announc.* 2021;10: e0029921.

1105 48. Chen Z, Pham L, Wu T-C, Mo G, Xia Y, Chang PL, et al. Ultralow-input single-tube
1106 linked-read library method enables short-read second-generation sequencing
1107 systems to routinely generate highly accurate and economical long-range
1108 sequencing information. *Genome Res.* 2020;30: 898–909.

1109 49. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. 1000 Genome
1110 Project Data Processing Subgroup. 2009. The sequence alignment/map format and
1111 samtools. *Bioinformatics.* 2009;25: 2078–2079.

1112 50. Sitterlé E, Coste AT, Obadia T, Maufrais C, Chauvel M, Sertour N, et al. Large-
1113 scale genome mining allows identification of neutral polymorphisms and novel

1114 resistance mutations in genes involved in *Candida albicans* resistance to azoles
1115 and echinocandins. *Journal of Antimicrobial Chemotherapy*. 2020.
1116 doi:10.1093/jac/dkz537

1117 51. Todd RT, Wikoff TD, Forche A, Selmecki A. Genome plasticity in *Candida albicans*
1118 is driven by long repeat sequences. *Elife*. 2019;8. doi:10.7554/eLife.45954

1119 52. Ene IV, Farrer RA, Hirakawa MP, Agwamba K, Cuomo CA, Bennett RJ. Global
1120 analysis of mutations driving microevolution of a heterozygous diploid fungal
1121 pathogen. *Proc Natl Acad Sci U S A*. 2018;115: E8688–E8697.

1122 53. Pittet D, Monod M, Filthuth I, Frenk E, Suter PM, Auckenthaler R. Contour-clamped
1123 homogeneous electric field gel electrophoresis as a powerful epidemiologic tool in
1124 yeast infections. *Am J Med*. 1991;91: 256S-263S.

1125 54. Forche A, Cromie G, Gerstein AC, Solis NV, Pisithkul T, Srifa W, et al. Rapid
1126 Phenotypic and Genotypic Diversification After Exposure to the Oral Host Niche in
1127 *Candida albicans*. *Genetics*. 2018;209: 725–741.

1128 55. Smith AC, Hickman MA. Host-Induced Genome Instability Rapidly Generates
1129 Phenotypic Variation across *Candida albicans* Strains and Ploidy States. *mSphere*.
1130 2020;5. doi:10.1128/mSphere.00433-20

1131 56. Gulati M, Lohse MB, Ennis CL, Gonzalez RE, Perry AM, Bapat P, et al. In Vitro
1132 Culturing and Screening of *Candida albicans* Biofilms. *Curr Protoc Microbiol*.
1133 2018;50: e60.

1134 57. Kirchner FR, Littringer K, Altmeier S, Tran VDT, Schönherr F, Lemberg C, et al.
1135 Persistence of *Candida albicans* in the Oral Mucosa Induces a Curbed
1136 Inflammatory Host Response That Is Independent of Immunosuppression. *Front
1137 Immunol*. 2019;10: 330.

1138 58. Santana DJ, Anderson FM, O'Meara TR. Monitoring Inflammasome Priming and
1139 Activation in Response to *Candida albicans*. *Curr Protoc Microbiol*. 2020;59: e124.

1140 59. O'Meara TR, Duah K, Guo CX, Maxson ME, Gaudet RG, Koselny K, et al. High-
1141 Throughput Screening Identifies Genes Required for *Candida albicans* Induction of
1142 Macrophage Pyroptosis. Kronstad JW, editor. *MBio*. 2018;9: a019620.

1143 60. O'Meara TR, Veri AO, Ketela T, Jiang B, Roemer T, Cowen LE. Global analysis of
1144 fungal morphology exposes mechanisms of host cell escape. *Nat Commun*.
1145 2015;6: 6741.

1146 61. Wellington M, Koselny K, Krysan DJ. *Candida albicans* morphogenesis is not
1147 required for macrophage interleukin 1 β production. *MBio*. 2012;4: e00433-12.

1148 62. Shankar M, Lo TL, Traven A. Natural Variation in Clinical Isolates of *Candida
1149 albicans* Modulates Neutrophil Responses. *mSphere*. 2020;5.

1150 doi:10.1128/mSphere.00501-20

1151 63. Gerwien F, Dunker C, Brandt P, Garbe E, Jacobsen ID, Vylkova S. Clinical
1152 Candida albicans Vaginal Isolates and a Laboratory Strain Show Divergent
1153 Behaviors during Macrophage Interactions. *mSphere*. 2020;5.
1154 doi:10.1128/mSphere.00393-20

1155 64. O'Meara TR, O'Meara MJ. DeORFanizing *Candida albicans* Genes using
1156 Coexpression. *mSphere*. 2021;6. doi:10.1128/mSphere.01245-20

1157 65. Homann OR, Dea J, Noble SM, Johnson AD. A phenotypic profile of the *Candida*
1158 *albicans* regulatory network. *PLoS Genet*. 2009;5: e1000783.

1159 66. Brennan M, Thomas DY, Whiteway M, Kavanagh K. Correlation between virulence
1160 of *Candida albicans* mutants in mice and *Galleria mellonella* larvae. *FEMS Immunol*
1161 *Med Microbiol*. 2002;34: 153–157.

1162 67. Dunn MJ, Woodruff AL, Anderson MZ. The *Galleria mellonella* Waxworm Infection
1163 Model for Disseminated Candidiasis. *J Vis Exp*. 2018. doi:10.3791/58914

1164 68. Hill JA, O'Meara TR, Cowen LE. Fitness trade-offs associated with the evolution of
1165 resistance to antifungal drug combinations. *Cell Rep*. 2015;10: 809–819.

1166 69. Martin RM, Bachman MA. Colonization, Infection, and the Accessory Genome of
1167 *Klebsiella pneumoniae*. *Front Cell Infect Microbiol*. 2018;8: 4.

1168 70. Allen JP, Snitkin E, Pincus NB, Hauser AR. Forest and Trees: Exploring Bacterial
1169 Virulence with Genome-wide Association Studies and Machine Learning. *Trends*
1170 *Microbiol*. 2021;29: 621–633.

1171 71. Gerstein AC, Jackson KM, McDonald TR, Wang Y, Lueck BD, Bohjanen S, et al.
1172 Identification of Pathogen Genomic Differences That Impact Human Immune
1173 Response and Disease during *Cryptococcus neoformans* Infection. *MBio*. 2019;10.
1174 doi:10.1128/mBio.01440-19

1175 72. Beale MA, Sabiiti W, Robertson EJ, Fuentes-Cabrejo KM, O'Hanlon SJ, Jarvis JN,
1176 et al. Genotypic Diversity Is Associated with Clinical Outcome and Phenotype in
1177 *Cryptococcal* Meningitis across Southern Africa. *PLoS Negl Trop Dis*. 2015;9:
1178 e0003847.

1179 73. Ene IV, Bennett RJ, Anderson MZ. Mechanisms of genome evolution in *Candida*
1180 *albicans*. *Curr Opin Microbiol*. 2019;52: 47–54.

1181 74. Wakade RS, Huang M, Mitchell AP, Wellington M, Krysan DJ. Intravital imaging of
1182 *Candida albicans* identifies differential *in vitro* and *in vivo* filamentation phenotypes
1183 for transcription factor deletion mutants. *bioRxiv*. 2021. p. 2021.05.10.443530.
1184 doi:10.1101/2021.05.10.443530

1185 75. Pujol C, Reynes J, Renaud F, Raymond M, Tibayrenc M, Ayala FJ, et al. The yeast
1186 *Candida albicans* has a clonal mode of reproduction in a population of infected
1187 human immunodeficiency virus-positive patients. *Proc Natl Acad Sci U S A*.
1188 1993;90: 9456–9459.

1189 76. Moorhouse AJ, Rennison C, Raza M, Lilic D, Gow NAR. Clonal Strain Persistence
1190 of *Candida albicans* Isolates from Chronic Mucocutaneous Candidiasis Patients.
1191 *PLoS One*. 2016;11: e0145888.

1192 77. McManus BA, Maguire R, Cashin PJ, Claffey N, Flint S, Abdulrahim MH, et al.
1193 Enrichment of multilocus sequence typing clade 1 with oral *Candida albicans*
1194 isolates in patients with untreated periodontitis. *J Clin Microbiol*. 2012;50: 3335–
1195 3344.

1196 78. Ford CB, Funt JM, Abbey D, Issi L, Guiducci C, Martinez DA, et al. The evolution of
1197 drug resistance in clinical isolates of *Candida albicans*. *Elife*. 2015;4: e00662.

1198 79. Sprouffske K, Wagner A. Growthcurver: an R package for obtaining interpretable
1199 metrics from microbial growth curves. *BMC Bioinformatics*. 2016;17: 172.

1200 80. Selmecki A, Bergmann S, Berman J. Comparative genome hybridization reveals
1201 widespread aneuploidy in *Candida albicans* laboratory strains. *Mol Microbiol*.
1202 2005;55: 1553–1565.

1203 81. Chibana H, Beckerman JL, Magee PT. Fine-resolution physical mapping of
1204 genomic diversity in *Candida albicans*. *Genome Res*. 2000;10: 1865–1877.

1205 82. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-
1206 Moonshine A, et al. From FastQ data to high confidence variant calls: the Genome
1207 Analysis Toolkit best practices pipeline. *Curr Protoc Bioinformatics*. 2013;43:
1208 11.10.1-11.10.33.

1209 83. Revell LJ. phytools: an R package for phylogenetic comparative biology (and other
1210 things). *Methods Ecol Evol*. John Wiley & Sons, Ltd (10.1111); 2012.

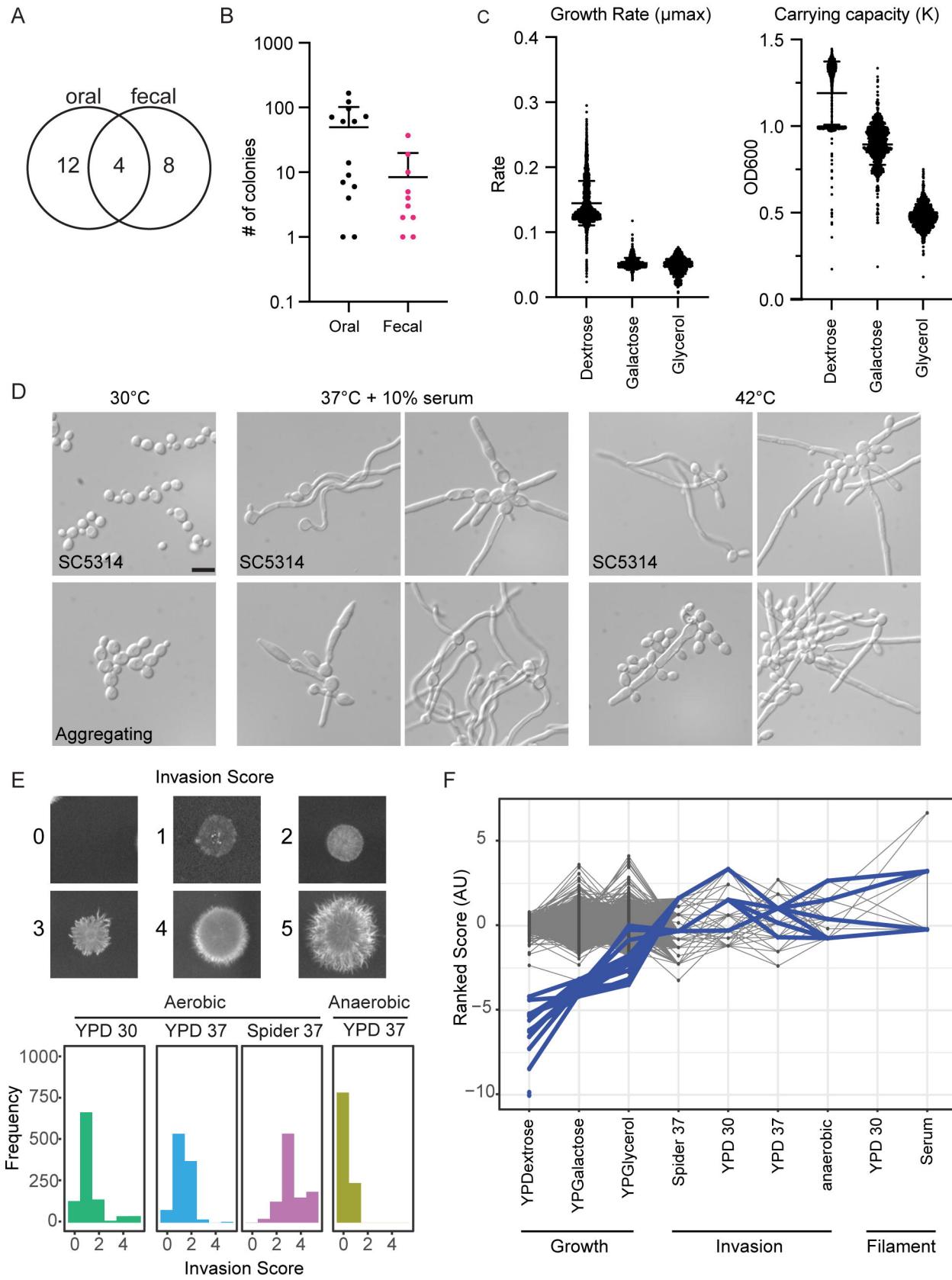
1211 84. Yu G. Using ggtree to Visualize Data on Tree-Like Structures. *Curr Protoc*
1212 *Bioinformatics*. 2020;69: e96.

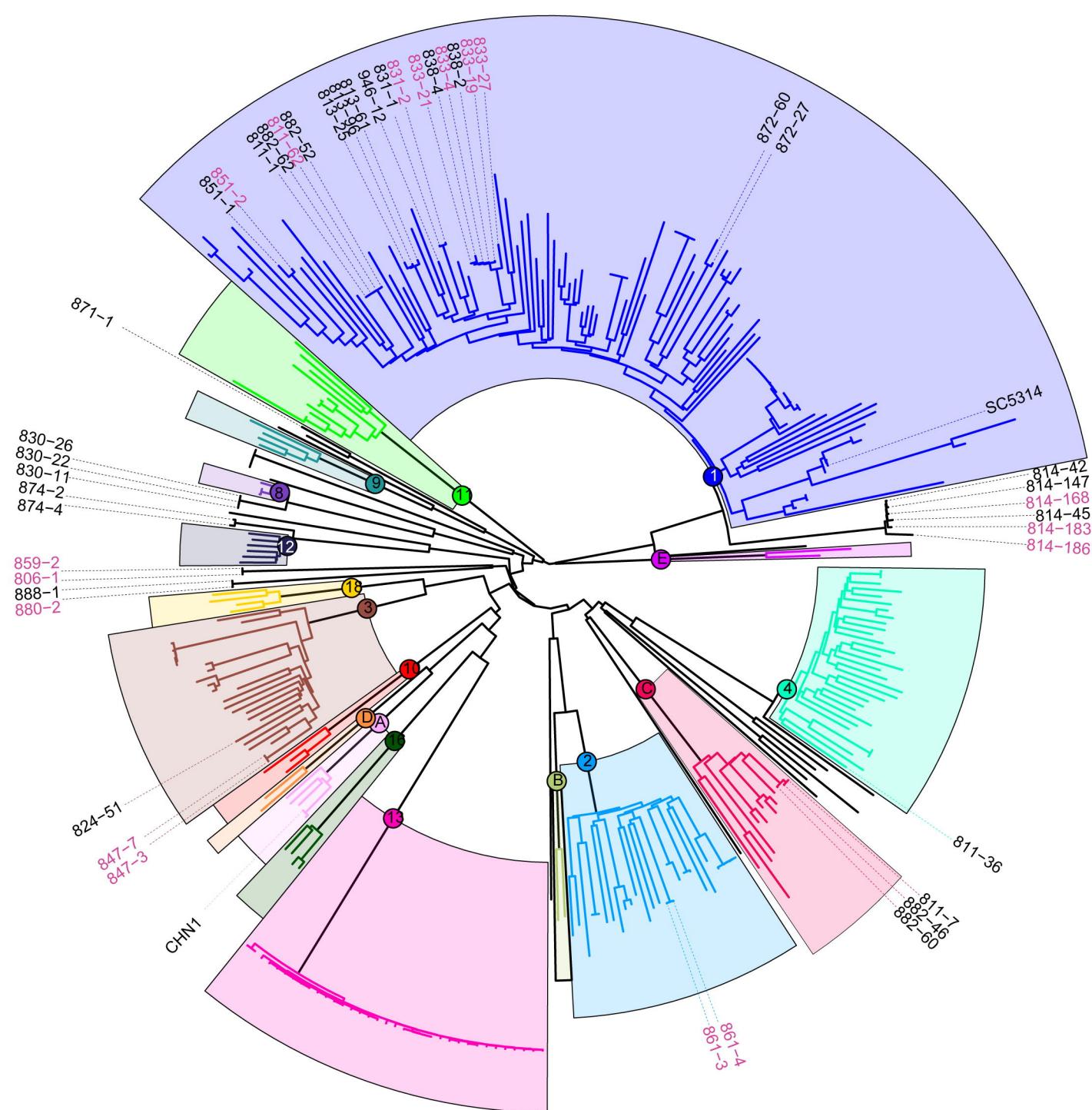
1213 85. Yu G, Lam TT-Y, Zhu H, Guan Y. Two Methods for Mapping and Visualizing
1214 Associated Data on Phylogeny Using Ggtree. *Mol Biol Evol*. 2018;35: 3041–3043.

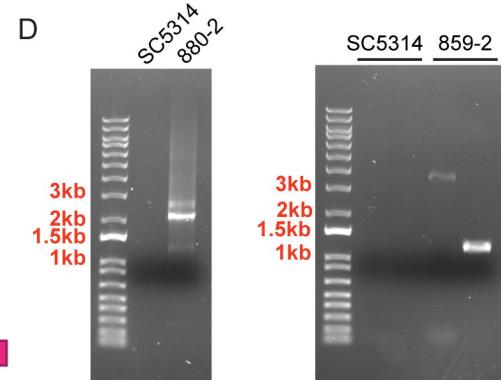
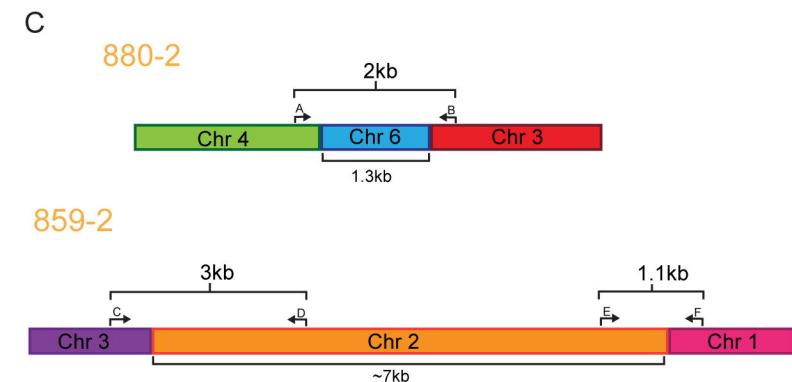
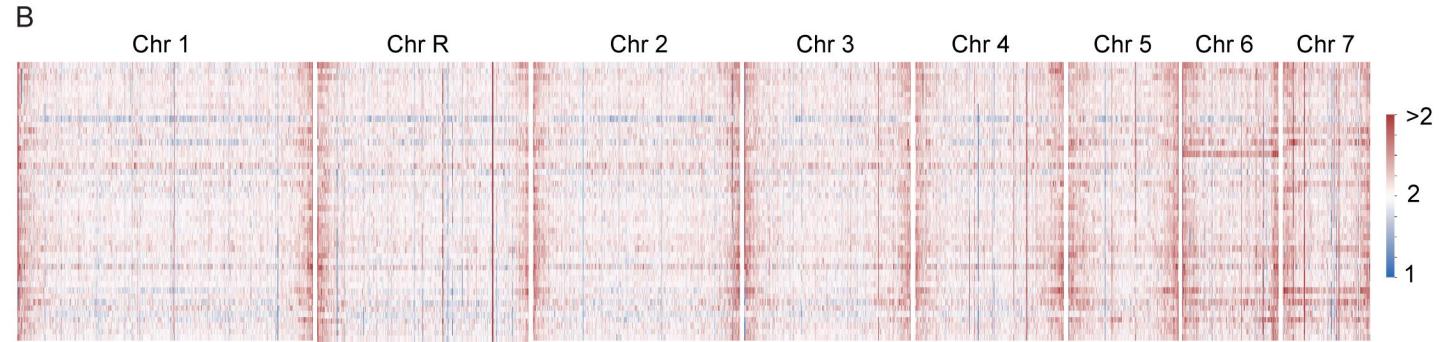
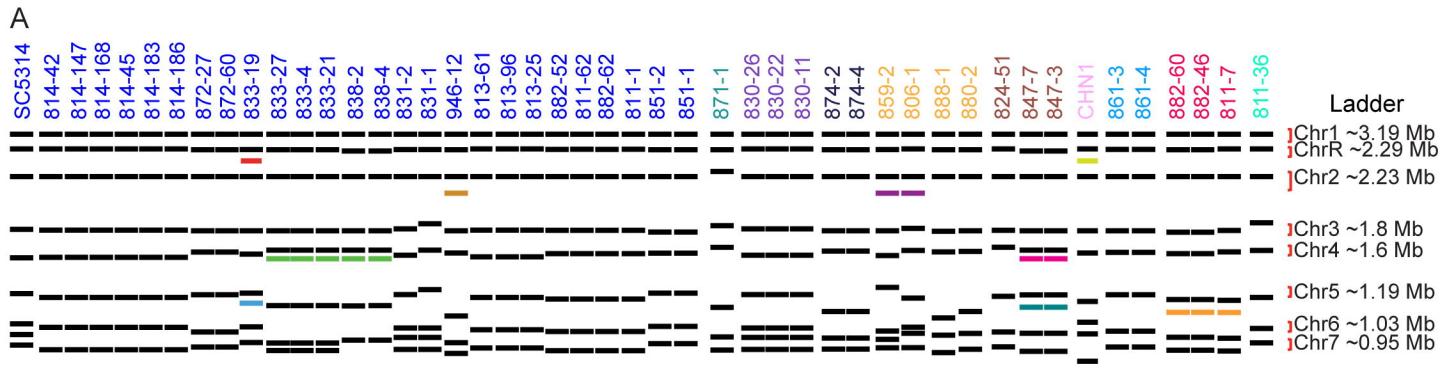
1215 86. Yu G, Smith DK, Zhu H, Guan Y, Lam TT-Y. Ggtree : An r package for visualization
1216 and annotation of phylogenetic trees with their covariates and other associated
1217 data. *Methods Ecol Evol*. 2017;8: 28–36.

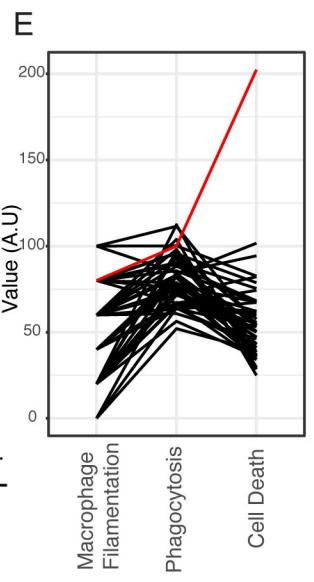
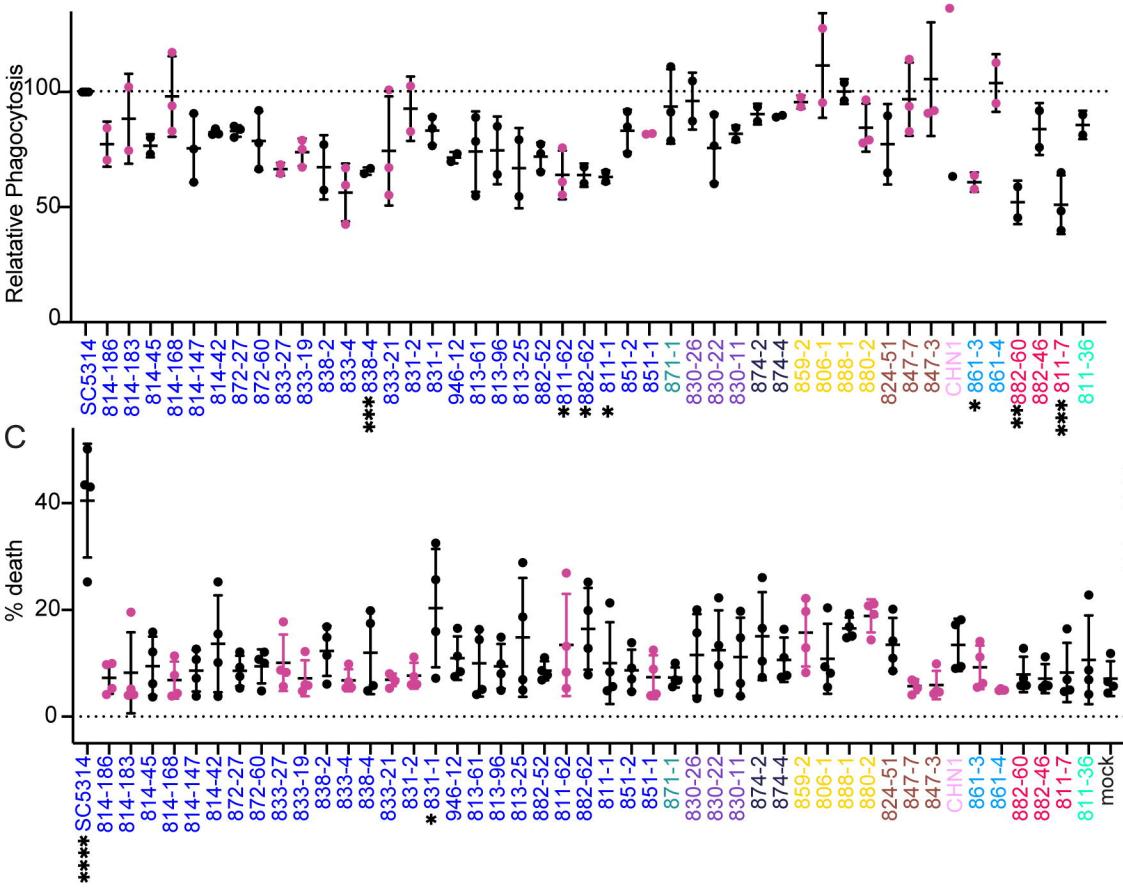
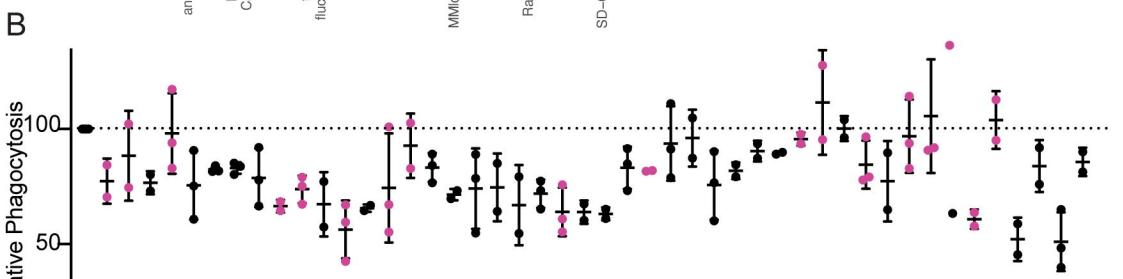
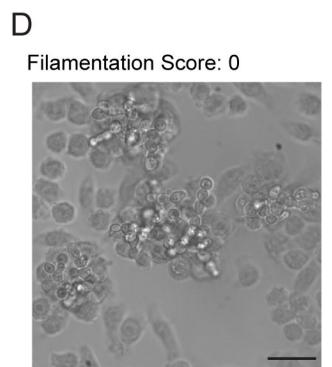
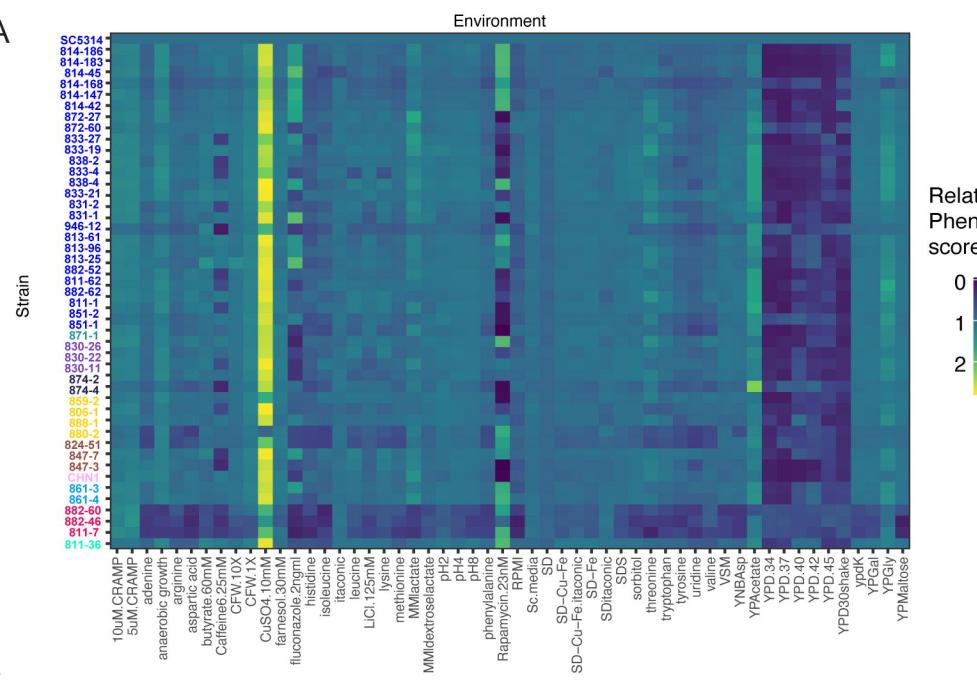
1218 87. Layer RM, Chiang C, Quinlan AR, Hall IM. LUMPY: a probabilistic framework for
1219 structural variant discovery. *Genome Biol*. 2014;15: R84.

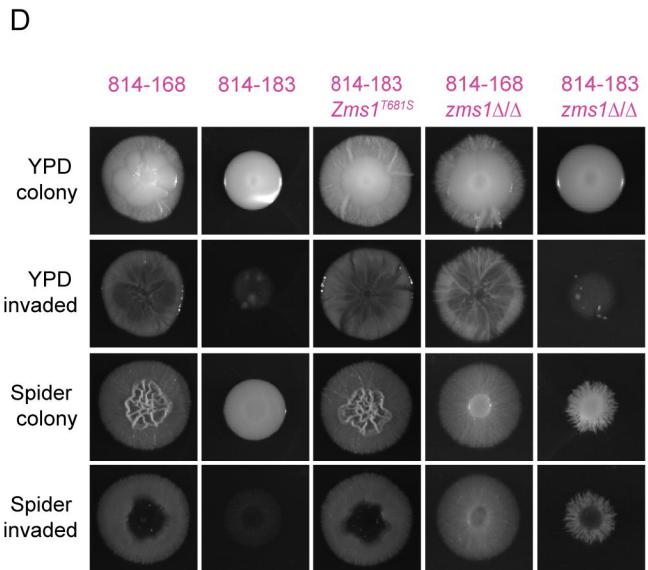
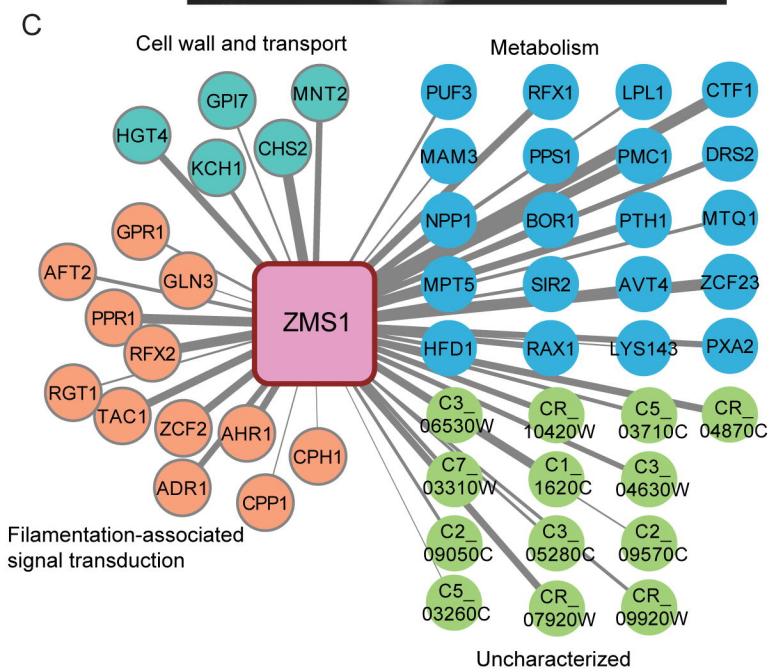
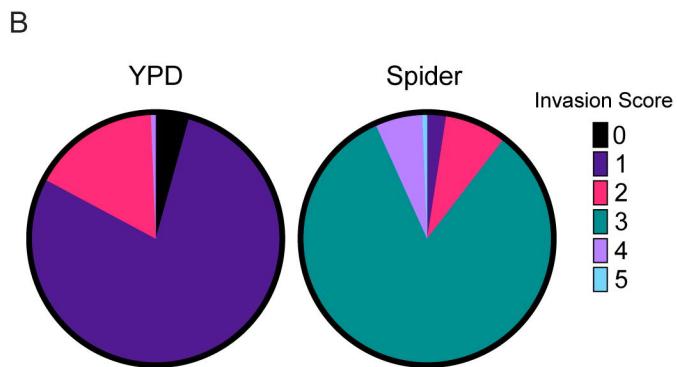
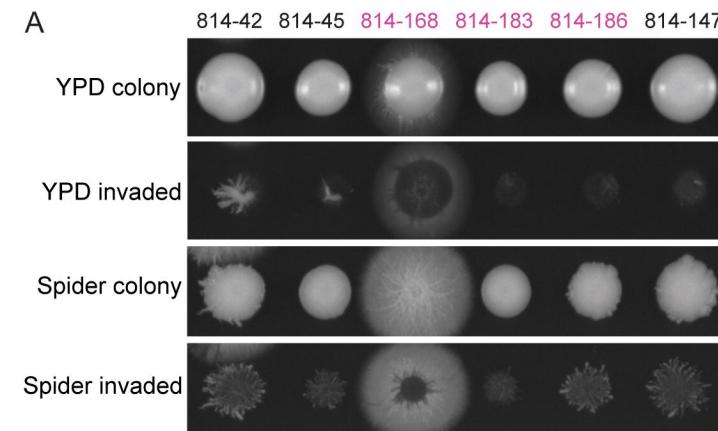
1220 88. Chiang C, Layer RM, Faust GG, Lindberg MR, Rose DB, Garrison EP, et al.
1221 SpeedSeq: ultra-fast personal genome analysis and interpretation. *Nat Methods*.
1222 2015;12: 966–968.


1223 89. Li H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics*.
1224 2018;34: 3094–3100.


1225 90. Veri AO, Miao Z, Shapiro RS, Tebbji F, O'Meara TR, Kim SH, et al. Tuning Hsf1
1226 levels drives distinct fungal morphogenetic programs with depletion impairing
1227 Hsp90 function and overexpression expanding the target space. *PLoS Genet*.
1228 2018;14: e1007270.





1229 91. Shen J, Guo W, Köhler JR. CaNAT1, a heterologous dominant selectable marker
1230 for transformation of *Candida albicans* and other pathogenic *Candida* species.
1231 *Infect Immun*. 2005;73: 1239–1242.






1232 92. Lee DW, Hong CP, Kang HA. An effective and rapid method for RNA preparation
1233 from non-conventional yeast species. *Anal Biochem*. 2019;586: 113408.





1234 93. Aranda PS, LaJoie DM, Jorcyk CL. Bleach gel: a simple agarose gel for analyzing
1235 RNA quality. *Electrophoresis*. 2012;33: 366–369.

