

Singh *et al.*

Potentiation of Adipogenesis by Reactive Oxygen Species is a Unifying Mechanism in the Pro-adipogenic Properties of Bisphenol A and its New Structural Analogues.

Radha D. Singh,^{1,2,3} Jessica L. Wager,^{1,2,3} Taylor B Scheidl,^{1,2,3} Liam T. Connors,^{1,2,3} Sarah Easson^{1,2,3} Mikyla A. Callaghan,^{1,3} Samuel Alatorre-Hinojosa,¹ Lucy H. Swift,^{1,4} Pina Colarusso,⁴ Anshul Jadli,^{1,2} Timothy E. Shutt,^{3,5,6,7} Vaibhav Patel,^{1,2} Jennifer A. Thompson^{1,2,3*}

Department of Physiology and Pharmacology,¹ Libin Cardiovascular Institute,² Alberta Children's Hospital Research Institute,³ Snyder Institute for Chronic Diseases,⁴ Department of Medical Genetics,⁵ Department of Biochemistry and Molecular Biology,⁶ Hotchkiss Brain Institute,⁷ University of Calgary, Calgary, AB, T2N 4N1

Running title: Redox signaling, adipogenesis and bisphenols

Corresponding Author:

Jennifer Thompson PhD

Department of Physiology and Pharmacology

Cumming School of Medicine

University of Calgary

Calgary, AB

T2N 4N1

Email: jennifer.thompson2@ucalgary.ca

Twitter: @JThompsonlab

Keywords: Stem cells, adipogenesis, bisphenol, environmental toxicants, redox signaling

Singh *et al.*

1 **ABSTRACT**

2 **Aims:** Structural analogues of bisphenol A (BPA), including BPS and BPF, are emerging
3 environmental toxicants as their presence in the environment is rising since new regulatory
4 restrictions were placed on BPA-containing infant products. The adipogenesis-enhancing effect of
5 bisphenols may explain the link between human exposure and metabolic disease; however,
6 underlying molecular pathways remain unresolved. **Results:** Exposure to BPS, BPF, BPA or ROS
7 generators enhanced lipid droplet formation and expression of adipogenic markers after induction
8 of differentiation in adipose-derived progenitors isolated from mice. RNAseq analysis in BPS-
9 exposed progenitors revealed modulation in pathways regulating adipogenesis and responses to
10 oxidative stress. ROS was higher in bisphenol-exposed cells, while co-treatment with antioxidants
11 attenuated adipogenesis and abolished the effect of BPS. There was a loss of mitochondria
12 membrane potential in BPS-exposed cells and mitochondria-derived ROS contributed to
13 potentiation of adipogenesis by BPS and its analogues. Male mice exposed to BPS during gestation
14 had higher whole-body adiposity, as measured by TD-NMR, while postnatal exposure had no
15 impact on adiposity in either sex. **Innovation:** These findings support existing evidence showing
16 a role for ROS in regulating adipocyte differentiation and are the first to highlight ROS as a
17 unifying mechanism that explains the pro-adipogenic properties of BPA and its structural
18 analogues. **Conclusion:** ROS act as signaling molecules in the regulation of adipocyte
19 differentiation and mediate bisphenol-induced potentiation of adipogenesis.

20

21

22

23

Singh *et al.*

24 **LIST OF ABBREVIATIONS**

25 Adiponectin (ADIPOQ); AP-1 transcription factor subunit (Fos); Bisphenol A (BPA); bisphenol
26 F (BPF); bisphenol S (BPS); catalase (Cat); CCAAT/enhancer binding protein beta (C/EBP β);
27 endocrine disrupting chemical (EDC); electron transport chain (ETC); fatty acid binding protein 4
28 (FABP4); fatty acid synthase (FASN); glucose transporter type 4 (GLUT4); Glutathione
29 peroxidase 1 (Gpx1); Kruppel-like factor 4 (Klf4); nuclear receptor sub-family 6 group A member
30 1 (Nr6a1); peroxisome proliferator-activated receptor gamma (PPAR γ); prostaglandin
31 endoperoxidase synthase 2 (Ptgs2); reactive oxygen species (ROS); red blood cell (RBC);
32 subcutaneous adipose tissue (SAT); stearoyl-CoA desaturase 1 (SCD1); stromal vascular fraction
33 (SVF); superoxide dismutase (SOD).

34

35

36

37

38

39

40

41

42

43

44

45

46

Singh *et al.*

47 **INTRODUCTION**

48 The *Lancet* Commission on pollution and health identified chemical intensification of the
49 environment as one of the most significant causes of premature death (Landrigan *et al.*, 2018). The
50 plastic industry is a major contributor to the environmental chemical burden, emitting 400 million
51 tonnes of synthetic chemicals each year (Naidu *et al.*, 2021). Bisphenols, plasticizers used in the
52 manufacturing of polycarbonate plastics and epoxy resins, are classified as endocrine disrupting
53 chemicals (EDC), which interfere with developmental and reproductive processes by mimicking
54 endogenous ligands to receptors and acting as agonists or antagonists. After regulatory bans on the
55 sale or import of baby products containing bisphenol A (BPA), manufacturers responded by
56 replacing it with structural analogues, marketing them as ‘safe’ substitutes. However, evidence
57 supporting this claim of health benefit is lacking and emerging data suggest that BPA analogues
58 are another example of ‘regrettable substitution’, where toxic chemicals are replaced with equally
59 toxic substitutes (Zimmerman and Anastas, 2015). BPA substitutes, such as bisphenol S (BPS)
60 and bisphenol F (BPF), are now recognized as emerging toxicants as their production is on the
61 rise, approaching or exceeding the world average daily intake of BPA in countries that introduced
62 regulatory restrictions (Wang *et al.*, 2020). Therefore, there is a need to fill the gap in knowledge
63 with respect to health effects and biological properties of the new BPA substitutes.

64

65 A large body of published data show that BPA promotes adipogenesis *in vitro* (Ariemma *et al.*,
66 2016, Ohlstein *et al.*, 2014). Fewer studies have investigated the structural analogues of BPA;
67 however, the available evidence to-date reveal that commonly used substitutes, BPS and BPF,
68 exhibit similar pro-adipogenic properties as their predecessor, with some studies showing effects
69 at lower doses (Ramskov Tetzlaff *et al.*, 2020). Investigation into the molecular pathways

Singh *et al.*

70 mediating the adipogenic effect of bisphenols have almost exclusively focused on endocrine
71 pathways as it is well known that BPA and its analogues bind to estrogen, androgen and other
72 hormone receptors. These studies have yielded inconsistent results with some showing a role for
73 estrogen receptors and others a role for glucocorticoid receptor (Ahmed and Atlas, 2016, Boucher
74 et al., 2016). Overall, the cellular mechanisms responsible for the adipogenesis-promoting
75 properties of bisphenols remain unresolved.

76

77 Adipogenesis is a sequential differentiation process by which mesenchymal stem cells commit to
78 the adipocyte lineage and terminally differentiate into lipid-storing adipocytes. Specification of
79 stem cells to the adipocyte fate in subcutaneous adipose tissue (SAT), the primary site of energy
80 storage, is restricted to late fetal life (Jiang et al., 2014, Wang et al., 2013). Establishment of the
81 progenitor pool is followed by two periods of rapid fat accumulation occurring after birth and
82 during puberty, with adipocyte numbers stabilizing thereafter (Holtrup et al., 2017). In adult
83 adipose depots, *de novo* adipogenesis is stimulated to support normal cellular turnover and to
84 increase lipid storage capacity in response to an obesogenic environment (Jeffery et al., 2015,
85 Wang et al., 2013, White and Ravussin, 2019). Current evidence suggests that new adipocytes
86 arising in adult depots derive from a distinct compartment of progenitors that are also specified to
87 the adipocyte lineage *in utero* (Jiang et al., 2014, Wang et al., 2015). Thus, the early life window
88 of adipogenesis establishes the setpoint of adiposity and programs lipid buffering capacity in adult
89 depots.

90

91 Herein, we set out to determine the effect of BPS on adipogenesis and elucidate the molecular
92 pathways involved. Our data reveal a critical role for reactive oxygen species (ROS) in acting as

Singh *et al.*

93 physiological signaling molecules in the regulation of adipogenesis under normal conditions.

94 Increased ROS production, contributed by mitochondria dysfunction, was responsible for the

95 potentiation of adipogenesis in progenitors exposed to BPS as well as other structural analogues.

96 Thus, bisphenol-induced ROS may be a unifying mechanism that explains the pro-adipogenic

97 properties of BPA and its substitutes. Second, we exposed mice to an environmentally relevant

98 dose of BPS during or after the early life window of adipogenesis and determined that only early-

99 life exposure had an impact on adiposity in adulthood. Therefore, exposure to BPS before birth

100 may raise the setpoint for adiposity, predisposing to obesity.

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

Singh *et al.*

116 **RESULTS**

117 **BPS, BPF and BPA potentiate differentiation of adipocyte progenitors *in vitro***

118 Adipocyte progenitors isolated from inguinal SAT (iSAT) were exposed to various concentrations
119 of BPS prior to differentiation. Exposure of progenitors to BPS increased lipid droplet formation
120 on day 2, 4 & 7 post-differentiation, albeit in a non-monotonic manner such that the increase in
121 differentiation at low doses was attenuated at the highest dose (Figure 2A & B). The MTT assay
122 revealed a decrease in cell viability at 25 μ M, the highest dose of BPS (Supplementary Figure 1),
123 suggesting that the attenuation of lipid droplet staining at this concentration of BPS is due to
124 cytotoxicity. On day 7 of differentiation, lipid droplet staining was higher in progenitors exposed
125 to BPA or BPF (Supplementary Figure 2A &B). The adipogenic response to BPA occurred at
126 higher doses, while the attenuation of the adipogenic response at 25 μ M of BPS was not observed
127 at the same concentration of BPA or BPF. On day 2 of differentiation in BPS-exposed progenitors,
128 there was an increase in mRNA expression of peroxisome proliferator-activated receptor gamma
129 (*Ppar γ*), a nuclear receptor required for adipogenesis, as well as glucose transporter type 4 (*Glut4*),
130 an adipogenic marker (Figure 2C). On day 2, the mRNA expression of CCAAT/enhancer binding
131 protein beta (*C/ebp β*), an early regulator of differentiation, was decreased in BPS-exposed
132 progenitors (Figure 2C). *Glut4* mRNA expression remained high on day 4 and there was an
133 increase in stearoyl-CoA desaturase 1 (*Scd1*), a key enzyme involved in lipogenesis (Figure 2C).
134 Protein expression of adiponectin, SCD1, fatty acid binding protein 4 (FABP4) and C/EBP β was
135 increased on day 2 and 4 of differentiation in BPS-exposed progenitors (Figure 2D & E).

136

137 **BPS exposure modulates gene pathways involved in oxidative stress responses**

Singh et al.

138 RNAseq analysis was performed in extracted RNA collected from adipose-derived progenitors on
139 D0, at which time changes in gene expression patterns and epigenetic signatures stimulated by
140 contact inhibition prime the cells for differentiation (Guo et al., 2016). There were over 30 DEGs
141 involved in adipogenesis and over 12 genes involved in Nrf-2-mediated responses to oxidative
142 stress between vehicle-treated and BPS-exposed cells (Figure 3A). MSigDB Hallmark Pathway
143 Analysis showed that DEGs were enriched in pathways regulating cellular stress (reactive oxygen
144 species; hypoxia), inflammatory/immune cascades (TNF α /NF- κ B; IL6/JAK/STAT3; Interferon
145 α/γ), responses to DNA damage (UV light response; G2-M checkpoint), as well as cell growth and
146 death (p53 pathway; KRAS signaling; apoptosis; mTORC1) (Figure 3B). Interaction Networks
147 Analysis shows the predicted relationship between DEGs involved in pathways regulating
148 adipogenesis and Nrf2-mediated oxidative stress responses (Figure 3C). Validation by qPCR of
149 DEGs identified by RNAseq with fold changes >1 confirmed a downregulation of antioxidant
150 genes, catalase (*Cat*) and superoxide dismutase 3 (*Sod3*), and upregulation of *c-FOS*, a redox-
151 sensitive early response gene involved in the regulation of cellular proliferation and differentiation
152 (Figure 3D).

153

154 **ROS production is increased in progenitors exposed to bisphenol analogues**

155 In undifferentiated progenitors a surge in ROS generation was observed in response to acute BPS
156 exposure in a concentration-dependent manner, as assessed by quantification of DCFDA (Figure
157 4A). Similarly, detection of DCFDA by fluorescence spectroscopy revealed increased ROS
158 production after acute exposure to BPA (Figure 4B) or BPF (Figure 4C). The number of cells
159 stained with DCFDA was quantified by flow cytometry, also showing increased ROS production
160 after acute BPS exposure (Figure 4D & E). After 48 hrs of BPS exposure, staining intensity of

Singh *et al.*

161 CellROX™ deep red, a fluorescent probe that detects oxidative stress, was higher in BPS-exposed
162 cells (Figure 4F & G). Similarly, CellROX staining was increased in undifferentiated progenitors
163 exposed to BPA (Figure 4H) or BPF (Figure 4I) for 48 hrs. These data show that BPA and its
164 structural analogues stimulate an increase ROS production.

165

166 **ROS regulate adipogenesis and mediate BPS-induced potentiation of adipogenesis.**

167 Exposure of progenitors to low concentrations of the ROS generator, menadione, augmented lipid
168 droplet formation on day 4 post-differentiation in a non-monotonic manner similar to BPS, such
169 that increased lipid droplets at lower concentrations was attenuated with higher concentrations
170 (Figure 5A). On day 2 post-differentiation in progenitors exposed to menadione, mRNA
171 expression of *Ppar γ* and *Glut4* was increased, while expression of *C/ebp β* was decreased (Figure
172 5B). Similarly, exposure of progenitors to another ROS generator, 2,3-dimethoxy-1,4-
173 naphthalenedione (DMNQ), lead to a non-monotonic increase in lipid droplet staining on day 4
174 (Figure 5C) and an increase in mRNA expression of *Ppar γ* and *Glut4* on day 2 (Figure 5D). In the
175 absence of BPS, suppression of ROS generation via a ROS scavenger (Tempol), led to a
176 concentration-dependent decrease in lipid droplet staining after differentiation (Figure 5E). Co-
177 treatment of progenitors with either Tempol or the antioxidant, apocynin, abolished the effect of
178 BPS on adipogenesis (Figure 5F-H). Together, these data reveal ROS to be critical regulators of
179 adipogenesis and mediators of BPS-induced potentiation of adipogenesis.

180

181 **Dysfunctional mitochondria are important sources of ROS in BPS-exposed progenitors**

182 Tightly regulated release of ROS from healthy mitochondria plays a role in modulating signaling
183 cascades, whereas dysfunctional mitochondria produce excess ROS that contribute to oxidative

Singh *et al.*

184 stress. Mitochondrial transmembrane polarization in undifferentiated progenitors was measured
185 by the JC-1 and TMRE assays. A loss of membrane potential in BPS-exposed progenitors was
186 apparent by a higher ratio of cationic JC-1 monomers relative to the J-aggregates formed when JC-
187 1 enters the mitochondria (Figure 6A) and a lower accumulation of the cationic dye, TMRE (Figure
188 6B). Mitochondrial-derived superoxide (O_2^-) was increased in BPS-exposed progenitors (Figures
189 6C-E), while co-treatment of progenitors with the mitochondria-targeted antioxidant, MitoQ,
190 markedly attenuated lipid droplet formation on day 4 of differentiation and abolished BPS-induced
191 potentiation of adipogenesis (Figure 6F). Similarly, MitoQ attenuated the adipogenesis-enhancing
192 effects of BPA and BPF (Supplementary Figure 2C &D). Co-treatment with the mitochondria-
193 targeted antioxidant, SS31, which also protects against membrane depolarization, attenuated lipid
194 droplet formation in differentiated progenitors exposed to BPS without having an impact on
195 control cells (Figure 6G). Together, these data highlight mitochondria as sources of ROS that play
196 a role in the regulation of adipogenesis and in the bisphenol-induced adipogenic response.

197

198 **Prenatal BPS exposure programs higher adiposity in adulthood**

199 To determine the impact of *in vivo* BPS exposure on adiposity, an environmentally relevant dose
200 of BPS (2 μ g/kg body weight) was administered via glass water bottles to C57BL/6J mice housed
201 in an environment absent of plastic enrichment. Exposure occurred during the early life window
202 of adipocyte commitment and differentiation (Gd0-Pd21) by exposing pregnant and lactating dams
203 or in postnatal life after weaning (Figure 7A & B). Exposure to BPS during early life resulted in
204 higher whole-body fat mass in adult male offspring, but not female offspring (Figure 7C). In
205 contrast, exposure to BPS during postnatal life did not influence adiposity in adulthood in either
206 male or female mice (Figure 7D).

Singh *et al.*

207

208 **DISCUSSION**

209 Studies to-date have shown structural analogues marketed as safer substitutes for BPA to exhibit
210 similar adipogenic properties as their predecessor (Ahmed and Atlas, 2016, Boucher *et al.*, 2016).

211 The adipogenesis-enhancing effects of BPA and its analogues have been attributed to their
212 endocrine disrupting behaviour (Boucher *et al.*, 2016), as they are classified as EDC that bind to
213 estrogen, androgen, and glucocorticoid receptors, albeit with lower affinity and activity than
214 endogenous ligands. Studies exploring endocrine pathways as mediators of the pro-adipogenic
215 effects of bisphenols have yielded inconsistent findings with some reporting a role for estrogen
216 and others showing a role for glucocorticoids (Ahmed and Atlas, 2016, Boucher *et al.*, 2014).

217 Results of the present study reveal a novel role for ROS in mediating the adipogenesis-promoting
218 effect of BPS. Similar to BPS, BPA and BPF increased ROS production and had a potentiating
219 effect on adipogenesis that was abolished by co-treatment with antioxidants. Therefore, cellular
220 stress leading to heightened ROS production may be a common mechanism that explains the pro-
221 adipogenic properties of BPA and its structural analogues. While it is well established that
222 bisphenols and other EDC like phthalates promote oxidative stress in a variety of cell types
223 (Špačková *et al.*, 2020, Xie *et al.*, 2020); to our knowledge this is the first study to explore the role
224 of ROS in mediating the pro-adipogenic properties of EDC.

225

226 A handful of published studies demonstrate ROS to act as mediators of adipocyte differentiation
227 (Schröder *et al.*, 2009, Tormos *et al.*, 2011); however, the role of redox signaling in adipogenesis
228 has not received wide attention. Our data substantiate these studies as exposure of progenitors to
229 low concentrations of O_2^- generators enhanced differentiation, while antioxidant treatment

Singh *et al.*

230 inhibited adipogenesis in the absence of BPS. A non-monotonic response to increasing
231 concentrations of BPS or ROS generators was observed, such that the increased differentiation at
232 lower concentrations was attenuated at the highest dose. Cell viability was unaffected at BPS
233 concentrations that enhanced adipogenesis, but reduced at the highest concentration of BPS,
234 suggesting that the nonmonotonicity is due to cytotoxicity at higher levels of ROS production.
235 Thus, cellular ROS promote adipocyte differentiation within a range of physiological
236 concentrations below the cytotoxic threshold.

237

238 When produced at high levels in response to cellular stress, ROS damage macromolecules and
239 contribute to cellular dysfunction, but at physiological levels, act as second messengers in
240 signaling cascades that regulate a wide variety of cellular processes. ROS derive from several
241 sources including mitochondria and enzymes such as the NADPH oxidases and xanthine oxidase.
242 Silencing of NADPH oxidase 4 (Nox4) by RNA interference in bone marrow-derived
243 mesenchymal stem cells or by siRNA in 3T3-L1 cells, abrogated lipid droplet formation after
244 differentiation, implicating Nox4-derived hydrogen peroxide (H_2O_2) in the regulation of
245 adipogenesis (Kanda *et al.*, 2011, Schröder *et al.*, 2009). Our findings cannot rule out a role for
246 H_2O_2 as antioxidants and O_2^- generators like DMNQ and menadione will influence levels of both
247 O_2^- and H_2O_2 , as the former quickly dismutates to H_2O_2 . Our data show that BPS exposure
248 increases DCFDA staining of cellular ROS as well as O_2^- levels inside mitochondria detected by
249 MitoSox. Mitochondria are both generators and targets of ROS and crosstalk with enzymatic
250 sources of ROS to promote an environment of oxidative stress. Thus, while our findings show
251 mitochondria to be important contributors to BPS-induced oxidative stress, contributions from
252 other sources of ROS cannot be ruled out.

Singh *et al.*

253

254 Our data support studies showing that mitochondria-derived ROS are required for the induction of
255 adipogenesis (Carrière *et al.*, 2003, Tormos *et al.*, 2011), as mitochondria-targeted antioxidants
256 attenuated differentiation even in the absence of BPS. An increase in oxygen consumption during
257 activation of the adipogenic program is driven by mitochondria biogenesis leading to an increase
258 in mitochondria content (Li *et al.*, 2017). Distinct subpopulations of mitochondria tethered to lipid
259 droplets support formation and expansion of lipid droplets (Benador *et al.*, 2019), the final steps
260 in terminal differentiation. Mitochondria are major sources of ROS as complexes of the electron
261 transport chain (ETC) leak electrons that combine with oxygen to produce O_2^- . The increase in
262 oxidative phosphorylation that occurs during adipocyte differentiation is accompanied by an
263 increase in ROS production (Tormos *et al.*, 2011, Zhang *et al.*, 2013). Decreasing mitochondria
264 respiration by inhibiting the ETC abrogated differentiation of human mesenchymal stem cells into
265 adipocytes (Zhang *et al.*, 2013). Interestingly, a study by Tormos *et al.* showed that knockdown of
266 a complex III subunit required for O_2^- production attenuated differentiation of adipocyte
267 progenitors, whereas adipogenesis was unaffected when complex III-derived O_2^- was maintained
268 with knockdown of a complex II subunit (Tormos *et al.*, 2011). These findings demonstrate that
269 an increase in mitochondria-derived ROS are not only by-products of differentiation but play a
270 direct role in regulating adipogenesis that is independent of oxidative phosphorylation. Findings
271 of the current study show that increased mitochondria-derived ROS in BPS exposed
272 undifferentiated stem cells was accompanied by a loss of mitochondria membrane potential,
273 indicative of mitochondria injury. Therefore, disruption of mitochondria leading to moderate levels
274 of ROS may potentiate differentiation, while more extensive mitochondrial damage and oxidative
275 stress may interfere with the mitochondrial dynamics required for successful differentiation.

Singh *et al.*

276 Moderate mitochondria membrane depolarization has been shown to serve as a protective
277 mechanism that preserves energetic capacity while mitigating mitochondria-derived ROS under
278 conditions of ischemia (Vysokikh *et al.*, 2020). Therefore, it is possible that the mitochondria
279 membrane depolarization in BPS-exposed progenitors is a compensatory response to cellular
280 stress.

281

282 Although *in vitro* studies consistently show an adipogenesis-promoting effect of BPA and its
283 analogues, human and animal studies have yielded inconsistent results with respect to the
284 relationship between bisphenol exposure and adiposity (Callaghan *et al.*, 2020). Adipogenic
285 responses *in vitro* do not necessarily reflect adipogenesis *in vivo*, the latter influenced heavily by
286 the microenvironment of the adipose depot. Further, exposure to bisphenols have pleiotropic
287 effects with the potential to impact metabolism and adiposity through multiple mechanisms.
288 Nevertheless, several epidemiological studies have demonstrated relationships between urinary
289 levels of BPA or its analogues and components of the metabolic syndrome including abdominal
290 obesity, hypertension, and insulin resistance (Callaghan *et al.*, 2020). Most human studies use
291 single timepoint measurements of bisphenol levels and are unable to assess low dose affects due
292 to ubiquitous exposure. Further, humans are not exposed to single toxicants, but rather toxicant
293 mixtures, and correlates to exposure such as consumption of processed foods are confounding
294 variables. Animal studies vary widely in the dose, timing, and duration of bisphenol exposure,
295 some reporting prenatal BPA exposure to result in increased adiposity and some reporting fetal
296 growth restriction (Rubin *et al.*, 2019). The current study demonstrated that BPS exposure in
297 pregnant and lactating dams leads to an increase in adiposity in adult male offspring, while
298 postnatal exposure had no impact on fat mass. Seminal studies by Graff and others show that the

Singh *et al.*

299 progenitor pool giving rise to adipocytes during postnatal expansion of subcutaneous adipose
300 depots are specified to the adipocyte fate before birth (Jeffery *et al.*, 2015, Jiang *et al.*, 2014, Wang
301 *et al.*, 2013, Wang *et al.*, 2015). Thus, our data show that a programmed predisposition to high
302 adiposity occurs when exposure coincides with this critical window of adipogenesis. However, it
303 is also possible that higher adiposity in adulthood is a secondary effect of other developmental
304 perturbations. For instance, some studies report maternal bisphenol exposure to result in fetal
305 growth restriction, which is well known to cause rapid catch-up growth and program a
306 predisposition to obesity. The sexual dimorphism in programming of adiposity by early life BPS
307 exposure suggests an interaction of BPS with endocrine pathways that warrants further
308 investigation.

309
310 The dose used for *in vivo* exposure was below the tolerable daily intake (TDI) for BPA (4 μ g/kg
311 body weight/day) established by the European Food Safety Authority (EFSA). Currently, there are
312 no established limits for BPA analogues. Recent findings from China show that ingestion of BPS
313 from contaminated food, the primary route of human exposure, ranged between 5.74 to 56.9 ng/kg
314 body weight/day, exceeding that of BPA intake (Zhang *et al.*, 2022). In Alberta, Canada, daily 24
315 hr intake of BPS in pregnant women reached up to 14 nM/kg body weight, approaching the TDI
316 of BPA (Liu *et al.*, 2018). We acknowledge that prenatally-exposed and postnatally-exposed adult
317 mice were not exposed to the same level of BPS; however, our approach reflects the real-world
318 scenario where the fetus and lactating infant is exposed to a fraction of the mother's intake of BPS.
319 Nevertheless, our findings suggest that BPA analogues are obesogenic and reveal increased ROS
320 production as a contributing mechanism.

321

Singh *et al.*

322 **INNOVATION**

323 Pro-adipogenic effects of BPA are well characterized; however, little is known regarding new
324 structural analogues that are replacing BPA since introduction of new regulatory restrictions and
325 heightened awareness of its adverse health effects. Molecular pathways underlying the
326 adipogenesis-promoting properties of bisphenols remain unresolved, and studies to-date have
327 almost exclusively focused on their endocrine disrupting properties. Herein, we undertook
328 extensive investigation that substantiates existing data identifying ROS act as signaling molecules
329 in the regulation of adipocyte differentiation and highlight ROS as a unifying mechanism that
330 explains the pro-adipogenic properties of BPA and its analogues that is independent of endocrine
331 disruption (Fig. 1).

332

333

334

335

336

337

338

339

340

341

342

343

344

Singh *et al.*

345 MATERIAL AND METHODS

346 Isolation and differentiation of adipocyte progenitor cells:

347 All animal procedures were approved by the University of Calgary Animal Care Committee
348 (AC19-0006) and conducted in accordance with guidelines by the Canadian Council on Animal
349 Care Ethics. At 6-8 weeks of age, C57BL/6J male mice were sacrificed for harvesting of inguinal
350 SAT (iSAT), which was digested in a 1mg/ml Collagenase I (Worthington Biochemical,
351 Lakewood, New Jersey, cat no: LS004194) digestion buffer in HBSS with 100 mM HEPES and
352 1.5% BSA. The pelleted stromal vascular fraction (SVF) was treated with RBC lysis buffer (Alfa
353 Aesar, Tewksbury, Massachusetts, cat no: J62150) resuspended in preadipocyte growth medium
354 (Cell Applications, San Diego, California, cat no: 811), and cultured at 37 °C and 5% CO₂. After
355 a single passage, cells were seeded, and differentiation was induced 48 hours after contact
356 inhibition (Day 0) until day 5 when differentiation medium (Cell Applications, cat no: 811D) was
357 replaced with maintenance medium (Cell Applications, cat no: 811M). Prior to contact inhibition
358 (90% confluence) cells were treated with various doses of BPS (Sigma-Aldrich, Oakville, Ontario,
359 cat no: 103039), BPA (Sigma-Aldrich, cat no: 239658), BPF (Sigma-Aldrich, cat no: 51453) or
360 ROS generators or vehicle (DMSO), in the presence or absence of antioxidants. Menadione
361 (Sigma-Aldrich, cat no: M5625) and 2,3-dimethoxy-1,4-naphthalenedione (DMNQ, Sigma-
362 Aldrich, cat no: D5439) were used as ROS generators. Lipid droplets were stained with an Oil Red
363 O solution (Sigma-Aldrich, cat no: O0625) or 2 µM BODIPY (Thermo Fisher Scientific,
364 Mississauga, Ontario, cat no: D3922), captured using a Nikon Eclipse Ts2 microscope and
365 processed with NIS-Elements D 5.11.00. After thorough washing, Oil-Red O-stained cells were
366 incubated with a lysis buffer and the absorbance of the eluted dye quantified in triplicates at 490nm
367 on a spectrophotometer (Biotek 800TS).

Singh *et al.*

368

369 **Prenatal and postnatal exposure to BPS**

370 After weaning, female C57BL/6J mice (Jackson Laboratories, , Bar Harbor, Maine, stock #: 000664) were transferred to cages equipped with glass water bottles (Lab Products LLC, Seaford, Delaware, cat no: 30800) and absent of plastic enrichment to eliminate background exposure to plasticizers. For prenatal exposure, 12-week-old dams were randomized to BPS drinking water (2 µg/kg body weight/day) or vehicle control, started on a phytoestrogen-low diet (Envigo, Indianapolis, Indiana, Teklad diet: 2020) and mated with males. Exposure was initiated at gestational day 0 (Gd0) after confirmation of pregnancy by observation of a copulatory plug. Dams were allowed to deliver spontaneously, and litters culled to a maximum of 6 to minimize litter effects. Exposure continued through lactation until postnatal day 21 (Pd21), at which time pups were weaned and maintained on a plastic-reduced environment. For postnatal exposure, littermates were randomized to BPS or vehicle drinking water after weaning. At 12-weeks of age, mice were sacrificed and whole-body fat mass measured with a TD-NMR body composition analyzer (Bruker, Billerica, Massachusetts, LF90II). Fat mass of litter mates was averaged for prenatally-exposed offspring to control for litter effects, while litter mates were compared in postnatally-exposed mice.

385

386 **RNAseq and Pathway Analysis**

387 RNA samples were assessed with TapeStation and Qubit assays and 1000ng RNA was used in 388 library preparation using the NEBNext Ultra II directional RNA library prep kit for Illumina, along 389 with the NEBNext Poly(A) mRNA Magnetic Isolation Module. Final libraries were assessed with 390 the Kapa library quantification qPCR assay and sequencing performed on the NextSeq 75 cycle

Singh *et al.*

391 high output run. The sequencing run passed all QC metrics. Samples were quantified using Kallisto
392 v0.42.4 against the NCBI RefSeq transcriptome (GRCm38) (Bray *et al.*, 2016). A linear regression
393 model was used to determine differentially expressed transcripts, with terms for treatment as well
394 as sample admixture proxy markers identified in principal component analysis. Differentially
395 expressed genes (DEG) were considered as those with a false discover rate (Benjamini-Hochberg
396 corrected p-value) < 0.05 under the Wald test in Sleuth v0.30.0 (Pimentel *et al.*, 2017). DEGs were
397 subsequently annotated and analyzed using the Molecular Signatures Database (MSigDB)
398 hallmark pathway analysis using Enrichr (<https://maayanlab.cloud/Enrichr/>), a comprehensive
399 gene set enrichment analysis web server. A heatmap of DEGs involved in adipogenesis and the
400 Nrf2-mediated oxidative stress response was created using R studio software (2022.02.0+443).
401 The potential interaction between DEGs involved in these two pathways was presented using
402 Interaction Network Analysis using the Path Explorer Tool of Qiagen IPA software. These data
403 have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series
404 accession number GSE213781 (<https://www.ncbi.nlm.nih.gov/geo/info/linking.html>).

405

406 **Quantitative real time PCR**

407 Total RNA was isolated using the RNeasy Mini Kit (Qiagen, Hilden, Germany, cat no: 74004),
408 assessed for integrity using a TapeStation RNA assay (Agilent, Santa Clara, California) and
409 quantified using a N50 Nanophotometer (Implen Inc., Westlake Village, California). Following
410 DNase treatment, cDNA synthesis was performed using a High-Capacity cDNA Reverse
411 Transcription kit (Applied Biosystems, Waltham, Massachusetts, cat no: 4368814). cDNA products
412 were run in triplicates for Quantitative real time PCR using a QuantStudio 5 Real-time PCR
413 System (Applied Biosystems, cat no: 4368814) and Powerup SYBR green master mix (Applied

Singh *et al.*

414 Biosystems, cat no: A25741). Primers were designed using the NCBI/Primer Blast tool
415 (Supplementary Table 1). Target mRNA expression was normalized to β -actin and fold change
416 calculated using $2^{-\Delta\Delta Ct}$ method.

417

418 **Western blot**

419 Proteins were extracted from cell lysates in buffer containing a protease and phosphatase inhibitor
420 cocktail (Thermo Fisher Scientific, cat no: 78440) and resolved in precasted NuPAGE 4%–12%
421 Bis-Tris polyacrylamide gels (Invitrogen, Oregon, cat no: NPO321) and then transferred to
422 Amersham Hybond PVDF membranes (GE Healthcare Life Sciences, Illinois, cat no: 10600069)
423 at 100V for 2 hr. The membrane was then washed, blocked with 5% blotting grade blocker (Bio
424 Rad, Hercules, California, cat no: 1706404) for 1 hr and probed with primary antibodies [Cell
425 Signaling, Danvers, Massachusetts, ADIPOQ (2789S); C/EBP β (3087S); SCD1 (2794S); FAPB4
426 (2120S); GAPDH (2118S)]. After washing and re-probing with a horseradish peroxidase-
427 conjugated secondary antibody (Thermo Fisher Scientific, cat no: A11077), bands were visualized
428 with the iBright CL1500 Imaging system (Applied Biosystems).

429

430 **ROS detection**

431 For the detection of cellular ROS, cells were prestained with 2',7'-dichlorodihydrofluorescein
432 diacetate (DCFDA, Sigma-Aldrich, cat no: D6883), washed and incubated in BPS at 37 °C for 45
433 min. CellROX™ deep red dye (5 μ M, 640/665 nm, Invitrogen, cat no: C10422) and MitoSOX™
434 Red dye (2.5 μ M, 510/580 nm, Invitrogen, cat no: M36008) were used to detect cellular ROS and
435 mitochondria-derived ROS, respectively, after 24 or 48 hr of BPS exposure. Relative Fluorescent
436 Unit (RFU) was measured with a spectrophotometer (SpectraMax M2) and normalized to
437 background fluorescence and protein concentration. Flowcytometric analysis was carried out using

Singh *et al.*

438 an Attune® Acoustic Focusing Cytometer (ThermoFisher Scientific) after cells were dissociated
439 using 5 mM EDTA in HBSS, centrifuged at 500g and resuspended in HBSS. Stained cells were
440 imaged with the 60X objective using a Nikon Ti Eclipse Widefield microscope, employing the
441 DAPI, CY5, and CY4 filters.

442

443 **Mitochondria function**

444 After 24 hrs of BPS exposure, cells were incubated in 2 μ M JC-1 (5, 5', 6, 6'-tetrachloro-1, 1', 3,
445 3'-tetraethylbenzimidazolylcarbocyanine iodide, Invitrogen, cat no: T3168) at 37°C for 15 min.
446 After washing, fluorescence signals were measured at 514/529 (green, monomer) and 514/590
447 (red, aggregate) using SpectraMax® M2 and the mitochondria membrane potential expressed as
448 the ratio of green to red fluorescence. The mitochondria membrane potential was also assessed in
449 live cells exposed to BPS for 24 hrs using tetramethyl rhodamine ethyl ester (TMRE, Thermo
450 Fisher Scientific, cat no: T669) staining. Live cells were collected in HBSS containing 5 mM
451 EDTA, washed and resuspended in media and the TMRE mean fluorescent signal quantified on a
452 flow cytometer.

453

454 **Statistical Analysis:**

455 Statistical analyses were performed using GraphPad Prism 9. Two-tailed student's t-test or One-
456 way ANOVA with Dunnett's or Tukey's multiple comparison test were used to evaluate
457 differences between groups. All data in this study are represented as the mean \pm standard error of
458 mean (SEM) or maximum, minimum, and median. P values <0.05 are considered statistically
459 significant. An electronic laboratory notebook was not used.

460

Singh *et al.*

461 **FIGURE LEGENDS**

462 **Figure 1: Summary Graphic Illustration.** Reactive oxygen species (ROS) act as signaling
463 molecules that regulate the commitment and differentiation of adipocyte progenitors, a
464 developmental event that occurs during a discrete window in intrauterine life and establishes the
465 setpoint of adiposity. Bisphenol S (BPS) potentiates adipogenesis via stimulating an increased
466 production of ROS in part through inducing mitochondria dysfunction. Therefore, gestational
467 exposure to BPS and other structural analogues of BPA may predispose to the development of
468 later-life obesity.

469

470 **Figure 2: BPS potentiates differentiation of adipocyte progenitors.** Representative images of
471 lipid droplet staining by Oil Red-O or BODIPY/DAPI on day 7 of differentiation in adipose-
472 derived progenitors exposed to BPS or vehicle control (A). Lipid droplet formation quantified by
473 measuring the optical density (OD, 490 nm) of eluted Oil Red-O dye from stained progenitors on
474 day 2, 4 & 7 of differentiation after BPS exposure (B). Relative mRNA expression of adipogenic
475 markers on day 2 & 4 of differentiation (C). Representative blots (D) and quantification (E) by
476 densitometry of Western blots for determination of protein expression of adipogenic markers on
477 day 2 & 4 of differentiation. Each experiment was conducted in cells isolated from 2-3 animals and
478 triplicate absorbance readings from each well are averaged. Differences are compared by One-way
479 ANOVA with Dunnett's multiple comparison test; * p < 0.05 BPS vs. vehicle. Abbreviations:
480 Adiponectin (ADIPOQ); CCAAT/enhancer binding protein beta (C/EBP β); fatty acid binding
481 protein 4 (FABP4); fatty acid synthase (FASN); glucose transporter type 4 (GLUT4); peroxisome
482 proliferator-activated receptor gamma (PPAR γ); stearoyl-CoA desaturase 1 (SCD1).

483

Singh *et al.*

484 **Figure 3: Prior to differentiation, pathways involved in adipocyte differentiation and**
485 **oxidative stress are modulated in adipose-derived stem cells exposed to BPS.** Heat map
486 showing DEGs involved in adipogenesis and Nrf2-mediated responses to oxidative stress, in
487 vehicle vs. BPS-exposed undifferentiated progenitors (A). Bubble plot showing number of
488 upregulated and downregulated genes in the top 10 enriched pathways in MSigDB Hallmark
489 analysis (B). IPA showing integration of DEGs involved in pathways regulating adipogenesis and
490 NRF2-mediated responses to oxidative stress (C); Green = downregulated genes; Orange =
491 upregulated genes. PCR validation of differences in gene expression with > 1fold change between
492 vehicle and BPS-exposed progenitors (D). RNAseq analysis included n = 5 samples/group. * p <
493 0.05 BPS vs. vehicle. Abbreviations: Catalase (Cat); Kruppel-like factor 4 (Klf4); AP-1
494 transcription factor subunit (Fos); Glutathione peroxidase 1 (Gpx1); nuclear receptor sub-family 6
495 group A member 1 (Nr6a1); prostaglandin endoperoxidase synthase 2 (Ptgs2); superoxide
496 dismutase 3 (Sod3).

497
498 **Figure 4: BPS and other bisphenol analogues increase production of ROS.** Production of
499 superoxide (O_2^-) was detected by measuring relative fluorescence units (RFU) of 2',7'-
500 dichlorodihydrofluorescein diacetate (DCFDA) staining by the plate reader method in
501 undifferentiated cells acutely exposed to various concentrations of BPS (A), BPA (B) or BPF (C).
502 Additionally, DCFDA staining was quantified by flow cytometry in progenitors exposed to BPS
503 (D) and representative histograms are shown (E). Oxidative stress was detected in cells exposed
504 to BPS for 48 hrs by CellROX staining. Representative images of CellROX-stained cells with
505 DAPI nuclear staining are shown (F), and CellROX fluorescence was quantified by spectroscopy
506 (G). Oxidative stress measured by quantification of CellROX staining was also detected in stem

Singh et al.

507 cells exposed to BPA (H) or BPF (I). Each experiment was conducted in cells isolated from 2-3
508 animals and triplicate absorbance readings from each well are averaged. Differences are compared
509 by One-way ANOVA with Dunnett's multiple comparison test. * p < 0.05 BPS vs. vehicle.

510

511 **Figure 5: ROS regulate adipogenesis and mediate BPS-induced potentiation of adipogenesis.**

512 Lipid droplet formation assessed by measuring optical density (OD, 490 nm) of eluted Oil Red-O
513 dye in progenitors exposed to the superoxide (O_2^-) generator, menadione, on day 4 of
514 differentiation (A). Relative mRNA expression of adipogenic markers on day 2 of differentiation
515 after exposure to menadione (B). Quantification of lipid droplet staining by Oil Red-O on day 4 of
516 differentiation of progenitors treated with the O_2^- generator, 2,3-dimethoxy-1,4-naphthalenedione
517 (DMNQ) (C). Relative mRNA expression of adipogenic markers on day 2 of differentiation after
518 exposure to DMNQ (D). Quantification of Oil Red-O staining in progenitors exposed to various
519 doses of the ROS scavenger, Tempol, in the absence of BPS (E). Absorbance of Oil Red-O staining
520 in vehicle or BPS-exposed progenitors in the presence or absence of Tempol (F) or the NADPH
521 oxidase inhibitor and antioxidant, apocynin (G). Representative BODIPY-stained differentiated
522 progenitors exposed to vehicle or BPS in the presence or absence of Tempol (H). Each experiment
523 was conducted in cells isolated from 2-3 animals and triplicate absorbance readings from each well
524 were averaged. Differences were assessed by One-way ANOVA with Dunnett's multiple
525 comparison test to compare BPS vs. vehicle (* p < 0.05) or One-way ANOVA with Tukey's post
526 hoc test to compare vehicle or BPS with inhibitor vs. without inhibitor († p < 0.05 vs. without
527 inhibitor). Abbreviations: CCAAT/enhancer binding protein beta (C/ebp β); glucose transporter
528 type 4 (Glut4); peroxisome proliferator-activated receptor gamma (Ppary); stearoyl-CoA
529 desaturase 1 (Scd1).

Singh *et al.*

530 **Figure 6: Mitochondria are important sources of ROS in BPS-exposed progenitors.** Degree
531 of depolarization calculated as the ratio of 5, 5', 6, 6'-tetrachloro-1, 1', 3, 3'-
532 tetraethylbenzimidazolylcarbocyanine iodide (JC-1) monomer (green) to aggregate (red)
533 fluorescent signal in undifferentiated progenitors exposed to BPS for 48 hrs (A). Flow cytometric
534 quantification of tetramethyl rhodamine ethyl ester (TMRE) fluorescence indicating mitochondria
535 membrane polarization in progenitors exposed to BPS or mitochondrial oxidative phosphorylation
536 uncoupler (FCCP) that induces mitochondria membrane depolarization (B). Determination of
537 mitochondria-derived superoxide (O_2^-) in undifferentiated stem cells exposed to BPS for 24 hrs by
538 measuring relative fluorescence units (RFU) with a plate reader (C) or flow cytometric analysis
539 (D). Representative histograms of progenitors stained positive for MitoSOX (E). Quantification of
540 lipid droplet staining after differentiation of progenitors exposed to BPS or vehicle in the presence
541 or absence of mitochondria-targeted antioxidants, MitoQ (F) or SS31 (G). Each experiment was
542 performed in cells isolated from 2-3 animals and absorbance of triplicates from each well were
543 averaged. Differences were assessed by One-way ANOVA with Dunnett's multiple comparison
544 test to compared BPS vs. vehicle (* $p < 0.05$) or One-way ANOVA with Tukey's post hoc test to
545 compare vehicle or BPS with inhibitor vs. without inhibitor (‡ $p < 0.05$ vs. without inhibitor).
546

547 **Figure 7: Intrauterine exposure to BPS programs an increase in later-life adiposity.** In
548 subcutaneous adipose depots, commitment of adipose progenitors cells (APC) to the adipocyte
549 lineage occurs prior to birth, followed by rapid expansion of fat accumulation in the early postnatal
550 period and during a second wave in puberty, with adipocytes numbers stabilizing thereafter (A).
551 In C57BL6 mice, 2 μ g/kg body weight BPS was administered to pregnant dams (prenatal
552 exposure) starting on gestational day 0 (Gd0) and continuing until the pups weaned on postnatal

Singh et al.

553 day 21 (Pd21) or postnatal exposure to BPS was initiated on Pd21 (B). At 12 weeks of age
554 prenatally exposed mice (C) or postnatally exposed mice (D) were assessed for whole-body fat
555 mass content using TD-NMR. Fat mass of litter mates in prenatally-exposed mice is averaged for
556 each sample (n = 7-11 litters). * p < 0.05 vs. control.

557

558 **Supplementary Figure 1: Cell viability is not compromised over the range of BPS**
559 **concentrations that promote adipogenesis.** Quantification of MTT, as an indicator of cell
560 viability, in undifferentiated progenitors exposed to various concentrations of BPS for 24 hrs (A)
561 or 48 hrs (B). Differences compared by One-way ANOVA with Dunnett's post hoc test. * p < 0.05
562 BPS vs. vehicle.

563

564 **Supplementary Figure 2: Enhanced lipid droplet formation in stem cells exposed to BPA or**
565 **BPF is attenuated with a mitochondria-specific antioxidant.** Quantification of eluted Oil-Red
566 O dye in differentiated progenitors after exposure to various concentrations of BPA (A) or BPF
567 (B). Lipid droplet formation was measured in presence or absence of MitoQ to assess the role of
568 mitochondria-derived ROS in mediating the effect of BPA (C) or BPF (D) on adipogenesis.
569 Differences were assessed by One-way ANOVA with Dunnett's multiple comparison test to
570 compared BPS vs. vehicle (* p < 0.05) or One-way ANOVA with Tukey's post hoc test to compare
571 vehicle or BPS with inhibitor vs. without inhibitor († p < 0.05 vs. without inhibitor).

572

573

574

575

Singh *et al.*

576 **ACKNOWLEDGEMENTS**

577 We would like to thank Paul Gordan and the Centre for Health Genomics and Informatics at the
578 University of Calgary for support in analyzing the RNAseq data. We also thank Dr. Steven
579 Greenway from the Libin Cardiovascular Institute for providing the mitochondria-targeted
580 antioxidant, SS31.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

Singh *et al.*

599 **AUTHOR CONTRIBUTIONS**

600 RDS contributed to the generation of hypotheses, experimental design, data collection, analysis,
601 and manuscript writing. JW, MC, TS, LC, SE and SAH contributed to data collection and analysis.
602 AH, VP and TS provided support for mitochondria analyses, while PC and LS provided support
603 for imaging.

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

Singh *et al.*

622 **AUTHOR DISCLOSURES**

623 There are no conflicts of interest to declare.

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

Singh *et al.*

645 **FUNDING STATEMENT**

646 The salary of RDS was supported by fellowships from the Molly Towell Perinatal Research
647 Foundation and the Libin Cardiovascular Institute. JW was supported by an O-Brien Summer
648 Studentship and MC was supported by scholarships from the Alberta Children's Hospital Research
649 Institute (ACHRI) and NSERC. The salaries of TS and LC were supported by scholarships from
650 the Libin Cardiovascular Institute. LC also received scholarships from the Cumming School of
651 Medicine and Faculty of Graduate Studies at the University of Calgary. The research performed
652 for this study was supported by start-up funds provided to JAT from the Libin Cardiovascular
653 Institute and an equipment grant from the Canadian Foundation for Innovation (CFI). RDS
654 received a research grant from ACHRI to support experiments for the current work. JAT was
655 supported by a National New Investigator Award from the Heart and Stroke Foundation of Canada
656 (HSFC).

657

658

659

660

661

662

663

664

665

666

667

Singh et al.

668 **REFERENCES**

669 Ahmed S, Atlas E. Bisphenol S- and bisphenol A-induced adipogenesis of murine preadipocytes
670 occurs through direct peroxisome proliferator-activated receptor gamma activation. *Int J Obes*
671 (Lond) 2016;40(10):1566-1573; doi: 10.1038/ijo.2016.95.

672 Ariemma F, D'Esposito V, Liguoro D, et al. Low-Dose Bisphenol-A Impairs Adipogenesis and
673 Generates Dysfunctional 3T3-L1 Adipocytes. *PLoS One* 2016;11(3):e0150762; doi:
674 10.1371/journal.pone.0150762.

675 Benador IY, Veliova M, Liesa M, et al. Mitochondria Bound to Lipid Droplets: Where
676 Mitochondrial Dynamics Regulate Lipid Storage and Utilization. *Cell Metab* 2019;29(4):827-
677 835; doi: 10.1016/j.cmet.2019.02.011.

678 Boucher JG, Ahmed S, Atlas E. Bisphenol S Induces Adipogenesis in Primary Human
679 Preadipocytes From Female Donors. *Endocrinology* 2016;157(4):1397-1407; doi:
680 10.1210/en.2015-1872.

681 Boucher JG, Boudreau A, Atlas E. Bisphenol A induces differentiation of human preadipocytes
682 in the absence of glucocorticoid and is inhibited by an estrogen-receptor antagonist. *Nutr*
683 *Diabetes* 2014;4(1):e102; doi: 10.1038/nutd.2013.43.

684 Bray NL, Pimentel H, Melsted P, et al. Near-optimal probabilistic RNA-seq quantification. *Nat*
685 *Biotechnol* 2016;34(5):525-527; doi: 10.1038/nbt.3519.

686 Callaghan MA, Alatorre-Hinojosa S, Connors LT, et al. Plasticizers and Cardiovascular Health:
687 Role of Adipose Tissue Dysfunction. *Front Pharmacol* 2020;11:626448; doi:
688 10.3389/fphar.2020.626448.

689 Carrière A, Fernandez Y, Rigoulet M, et al. Inhibition of preadipocyte proliferation by
690 mitochondrial reactive oxygen species. *FEBS Lett* 2003;550(1-3):163-167; doi: 10.1016/s0014-
691 5793(03)00862-7.

692 Guo W, Chen J, Yang Y, et al. Epigenetic programming of Dnmt3a mediated by AP2α is
693 required for granting preadipocyte the ability to differentiate. *Cell Death Dis* 2016;7(12):e2496;
694 doi: 10.1038/cddis.2016.378.

695 Holtrup B, Church CD, Berry R, et al. Puberty is an important developmental period for the
696 establishment of adipose tissue mass and metabolic homeostasis. *Adipocyte* 2017;6(3):224-233;
697 doi: 10.1080/21623945.2017.1349042.

698 Jeffery E, Church CD, Holtrup B, et al. Rapid depot-specific activation of adipocyte precursor
699 cells at the onset of obesity. *Nat Cell Biol* 2015;17(4):376-385; doi: 10.1038/ncb3122.

700 Jiang Y, Berry DC, Tang W, et al. Independent stem cell lineages regulate adipose organogenesis
701 and adipose homeostasis. *Cell Rep* 2014;9(3):1007-1022; doi: 10.1016/j.celrep.2014.09.049.

702 Kanda Y, Hinata T, Kang SW, et al. Reactive oxygen species mediate adipocyte differentiation
703 in mesenchymal stem cells. *Life Sci* 2011;89(7-8):250-258; doi: 10.1016/j.lfs.2011.06.007.

704 Landrigan PJ, Fuller R, Acosta NJR, et al. The Lancet Commission on pollution and health.
705 *Lancet* 2018;391(10119):462-512; doi: 10.1016/s0140-6736(17)32345-0.

706 Li Q, Gao Z, Chen Y, et al. The role of mitochondria in osteogenic, adipogenic and
707 chondrogenic differentiation of mesenchymal stem cells. *Protein Cell* 2017;8(6):439-445; doi:
708 10.1007/s13238-017-0385-7.

709 Liu J, Wattar N, Field CJ, et al. Exposure and dietary sources of bisphenol A (BPA) and BPA-
710 alternatives among mothers in the APrON cohort study. *Environ Int* 2018;119:319-326; doi:
711 10.1016/j.envint.2018.07.001.

Singh et al.

712 Naidu R, Biswas B, Willett IR, et al. Chemical pollution: A growing peril and potential
713 catastrophic risk to humanity. *Environ Int* 2021;156:106616; doi: 10.1016/j.envint.2021.106616.

714 Ohlstein JF, Strong AL, McLachlan JA, et al. Bisphenol A enhances adipogenic differentiation
715 of human adipose stromal/stem cells. *J Mol Endocrinol* 2014;53(3):345-353; doi: 10.1530/jme-
716 14-0052.

717 Pimentel H, Bray NL, Puente S, et al. Differential analysis of RNA-seq incorporating
718 quantification uncertainty. *Nat Methods* 2017;14(7):687-690; doi: 10.1038/nmeth.4324.

719 Ramskov Tetzlaff CN, Svingen T, Vinggaard AM, et al. Bisphenols B, E, F, and S and 4-
720 cumylphenol induce lipid accumulation in mouse adipocytes similarly to bisphenol A. *Environ*
721 *Toxicol* 2020;35(5):543-552; doi: 10.1002/tox.22889.

722 Rubin BS, Schaeberle CM, Soto AM. The Case for BPA as an Obesogen: Contributors to the
723 Controversy. *Front Endocrinol (Lausanne)* 2019;10:30; doi: 10.3389/fendo.2019.00030.

724 Schröder K, Wandzioch K, Helmcke I, et al. Nox4 acts as a switch between differentiation and
725 proliferation in preadipocytes. *Arterioscler Thromb Vasc Biol* 2009;29(2):239-245; doi:
726 10.1161/atvaha.108.174219.

727 Špačková J, Oliveira D, Puškár M, et al. Endocrine-Independent Cytotoxicity of Bisphenol A Is
728 Mediated by Increased Levels of Reactive Oxygen Species and Affects Cell Cycle Progression. *J*
729 *Agric Food Chem* 2020;68(3):869-875; doi: 10.1021/acs.jafc.9b06853.

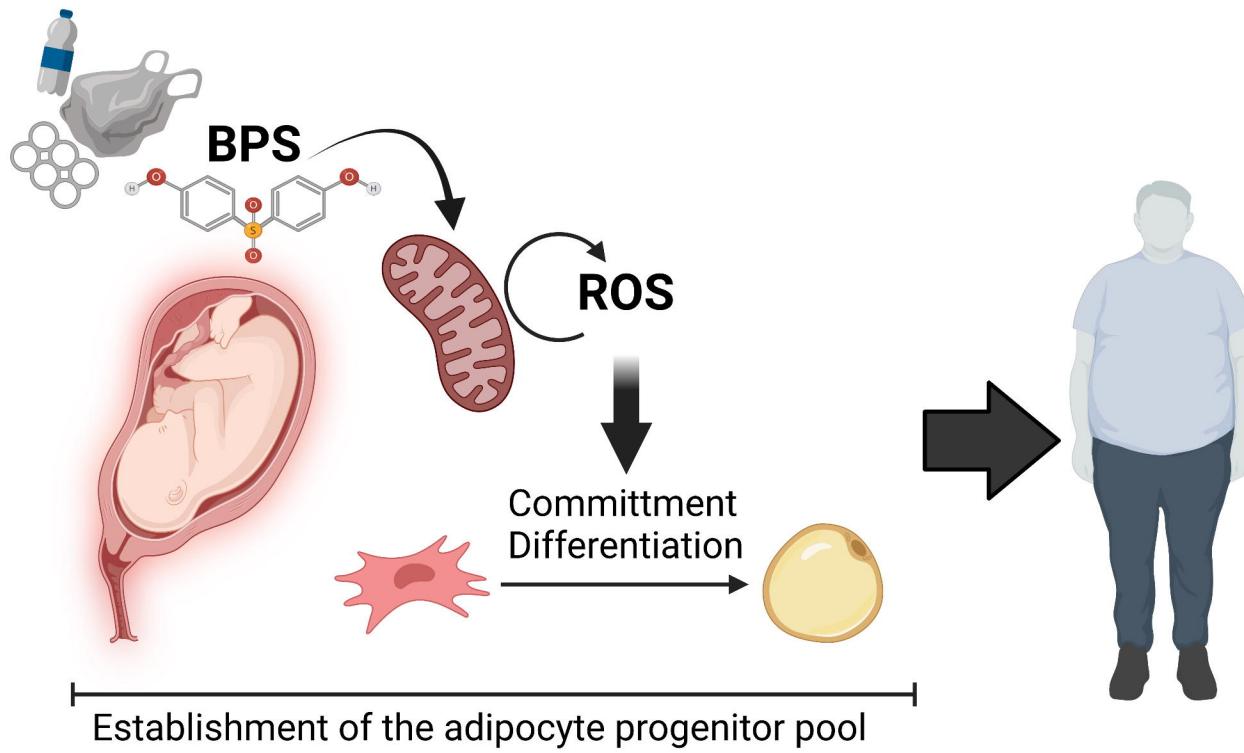
730 Tormos KV, Anso E, Hamanaka RB, et al. Mitochondrial complex III ROS regulate adipocyte
731 differentiation. *Cell Metab* 2011;14(4):537-544; doi: 10.1016/j.cmet.2011.08.007.

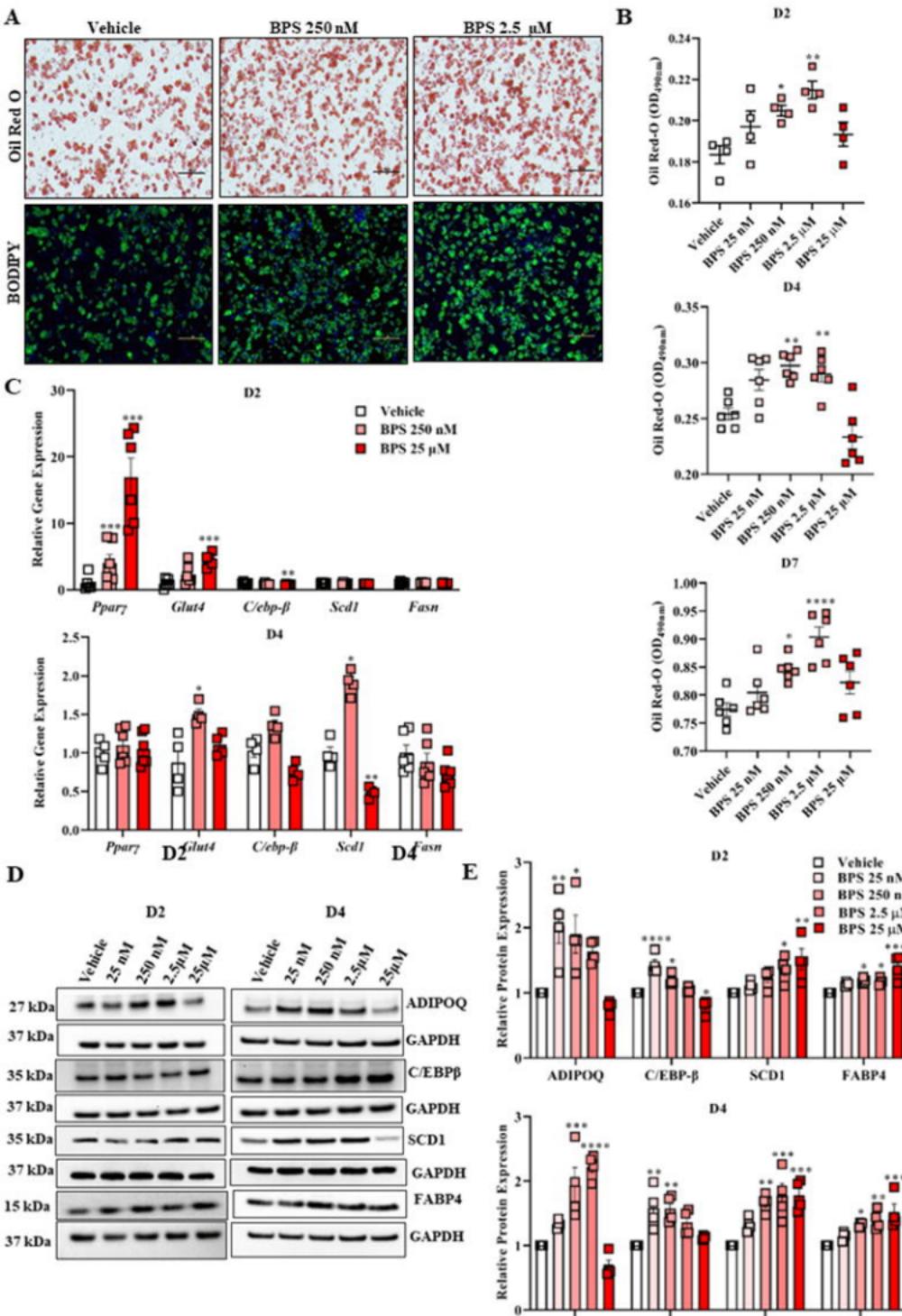
732 Vyssokikh MY, Holtze S, Averina OA, et al. Mild depolarization of the inner mitochondrial
733 membrane is a crucial component of an anti-aging program. *Proc Natl Acad Sci U S A*
734 2020;117(12):6491-6501; doi: 10.1073/pnas.1916414117.

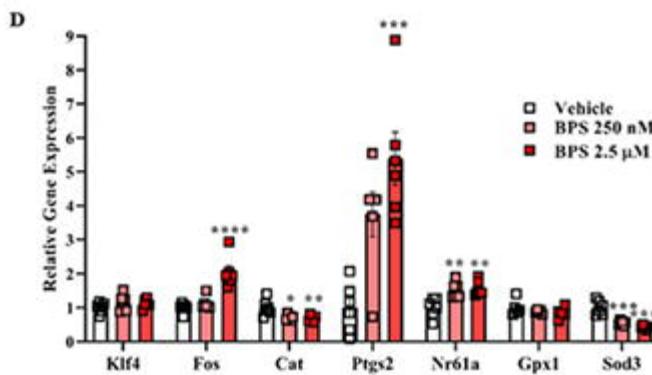
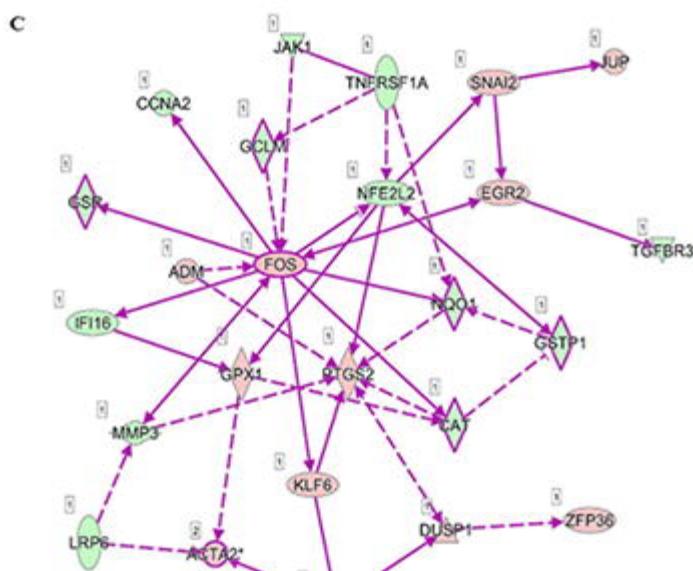
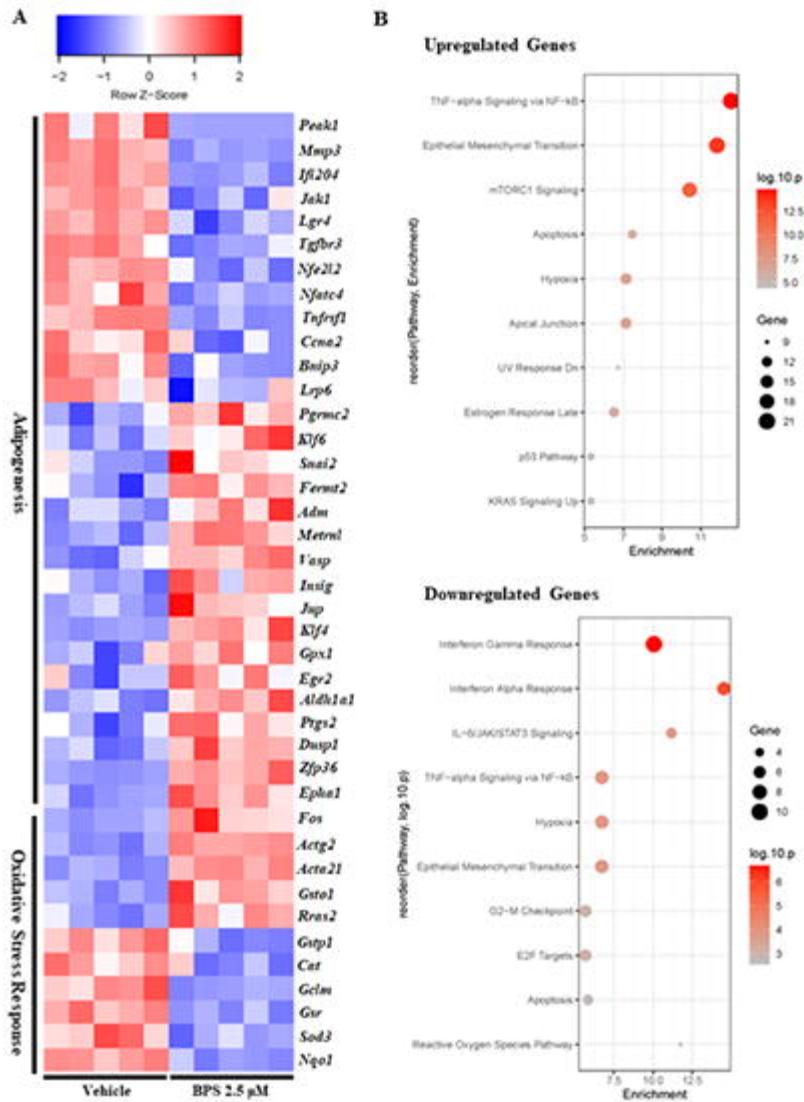
735 Wang H, Liu ZH, Zhang J, et al. Human exposure of bisphenol A and its analogues:
736 understandings from human urinary excretion data and wastewater-based epidemiology. *Environ*
737 *Sci Pollut Res Int* 2020;27(3):3247-3256; doi: 10.1007/s11356-019-07111-9.

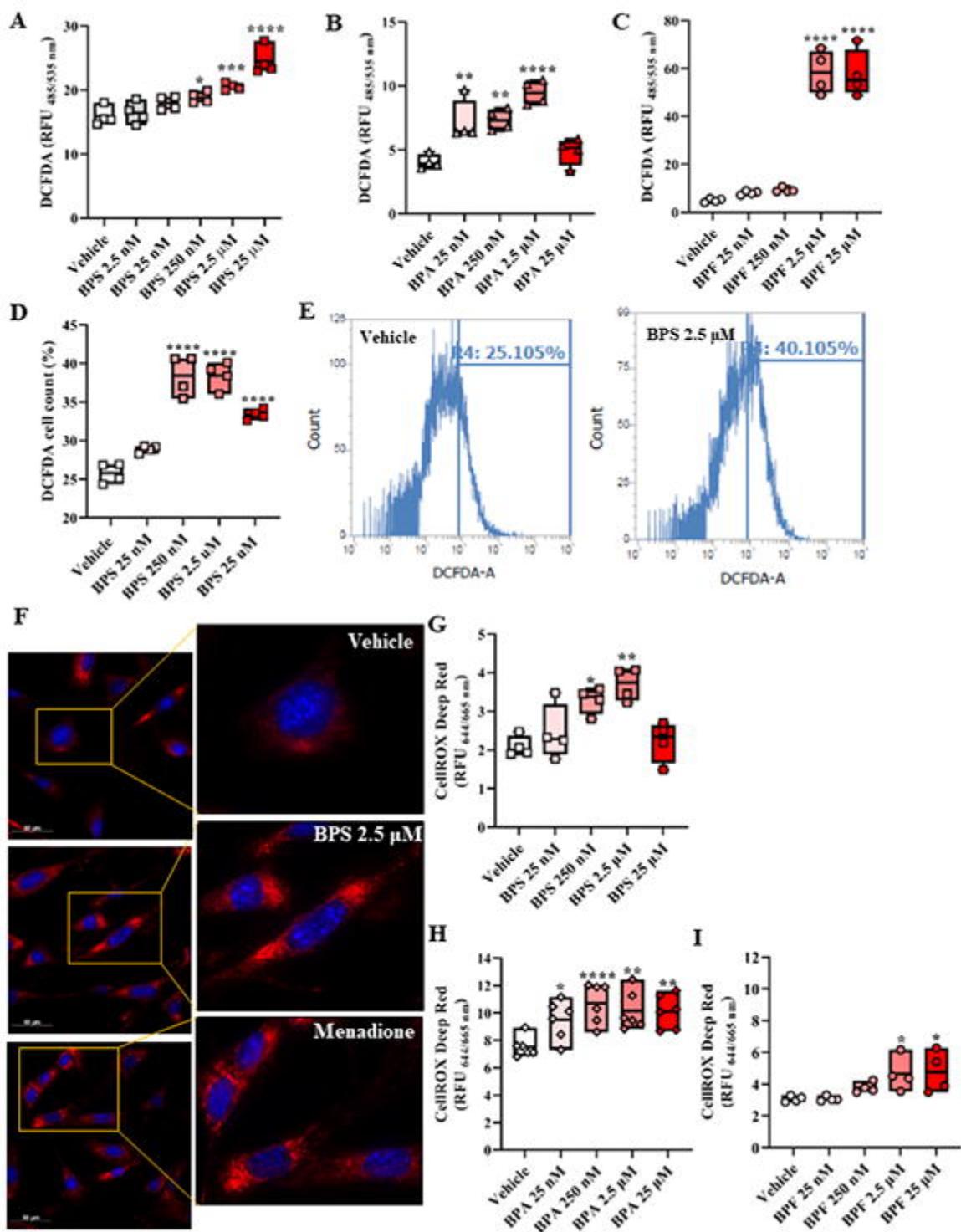
738 Wang QA, Tao C, Gupta RK, et al. Tracking adipogenesis during white adipose tissue
739 development, expansion and regeneration. *Nat Med* 2013;19(10):1338-1344; doi:
740 10.1038/nm.3324.

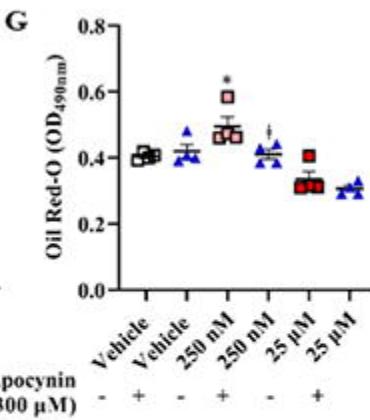
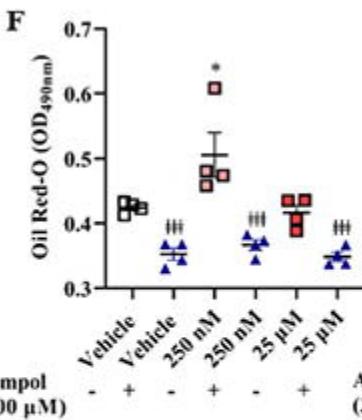
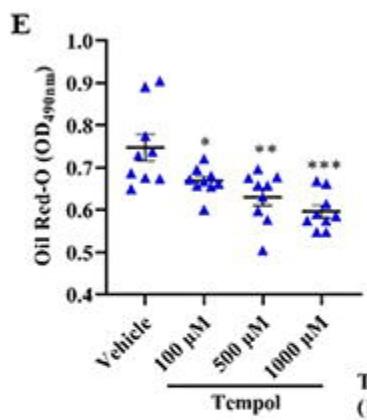
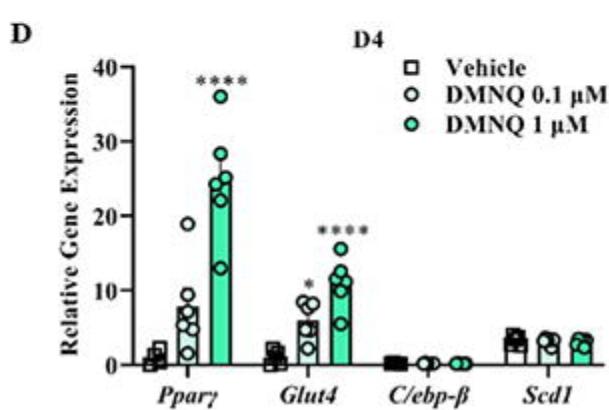
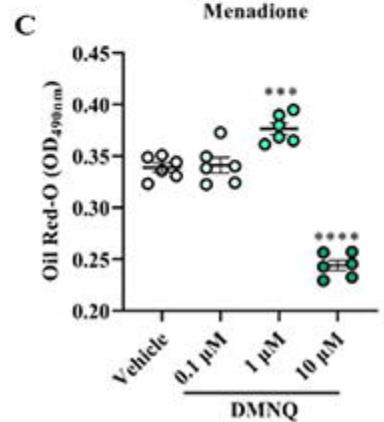
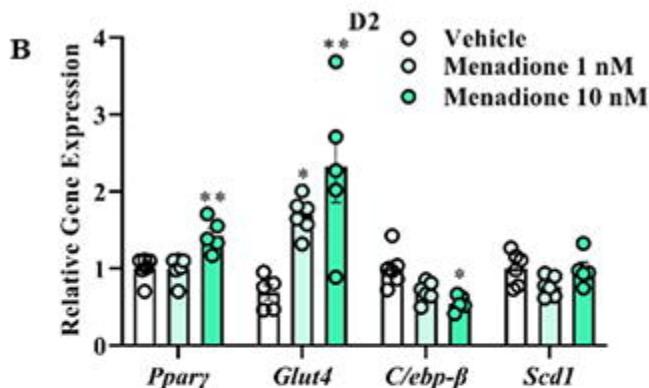
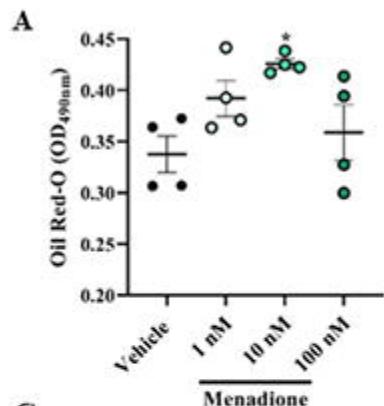
741 Wang QA, Tao C, Jiang L, et al. Distinct regulatory mechanisms governing embryonic versus
742 adult adipocyte maturation. *Nat Cell Biol* 2015;17(9):1099-1111; doi: 10.1038/ncb3217.

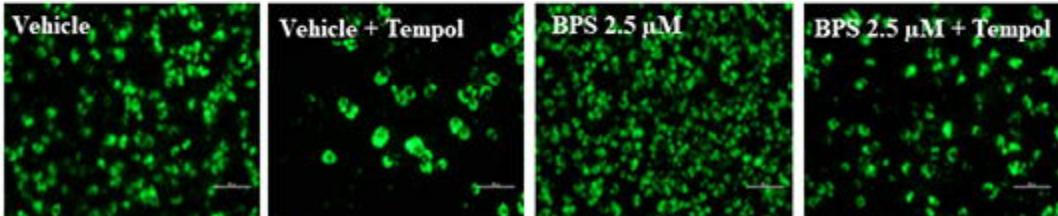

743 White U, Ravussin E. Dynamics of adipose tissue turnover in human metabolic health and
744 disease. *Diabetologia* 2019;62(1):17-23; doi: 10.1007/s00125-018-4732-x.

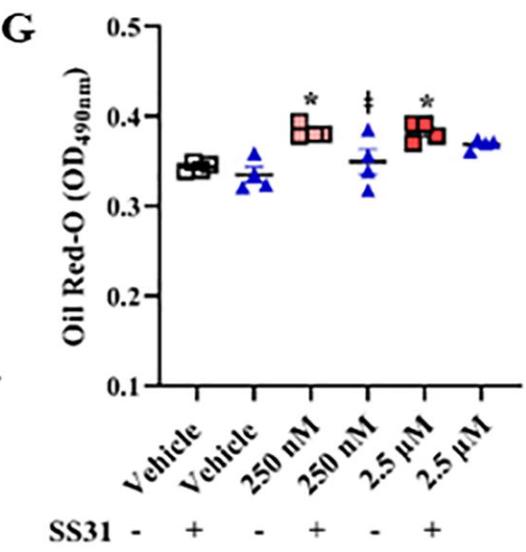
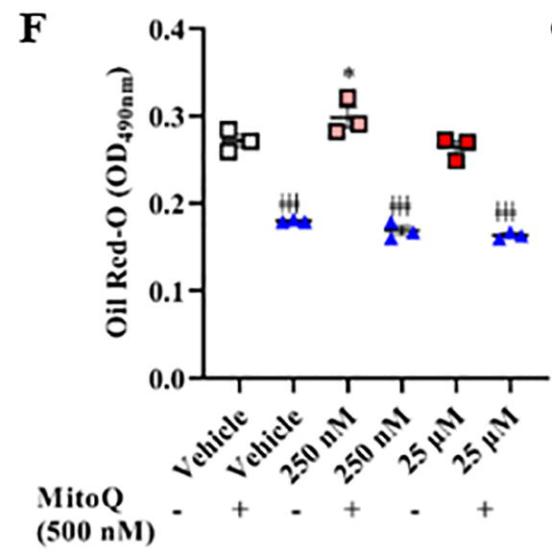
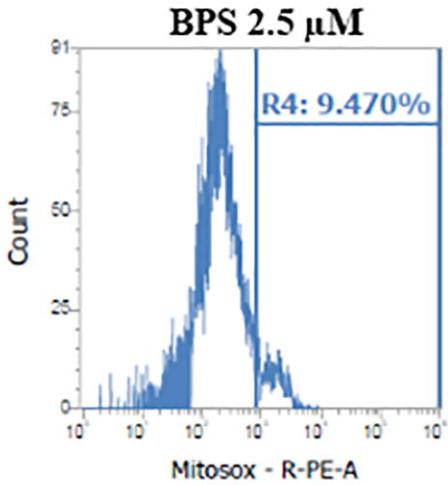
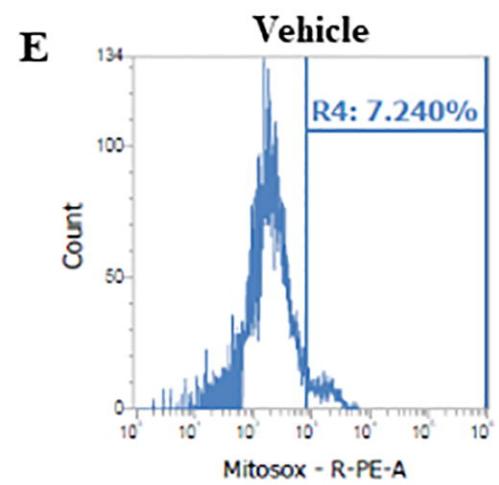
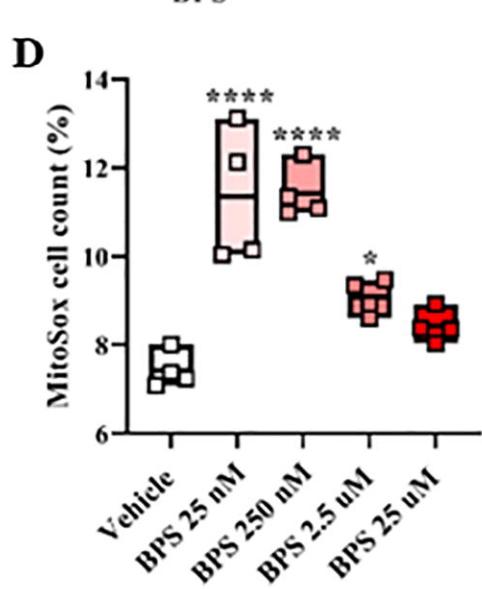
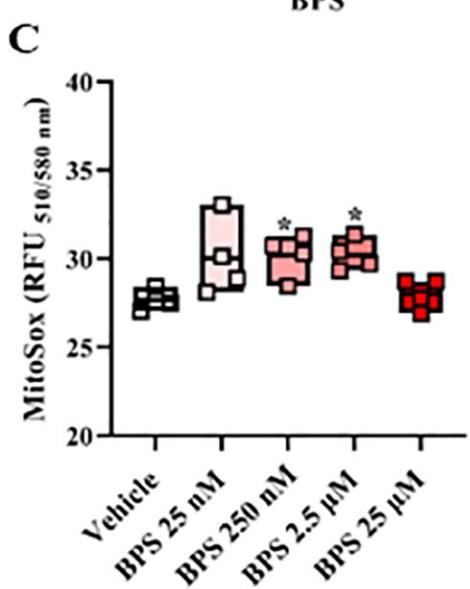
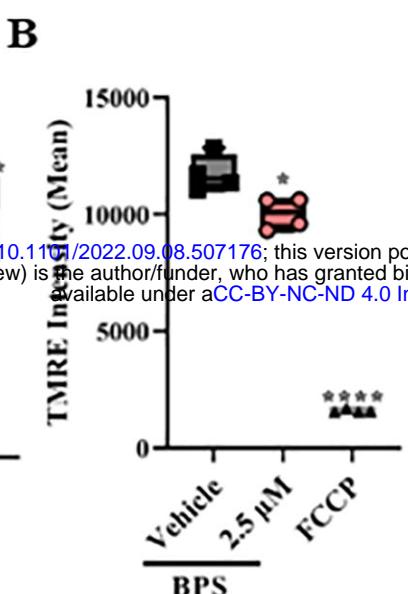
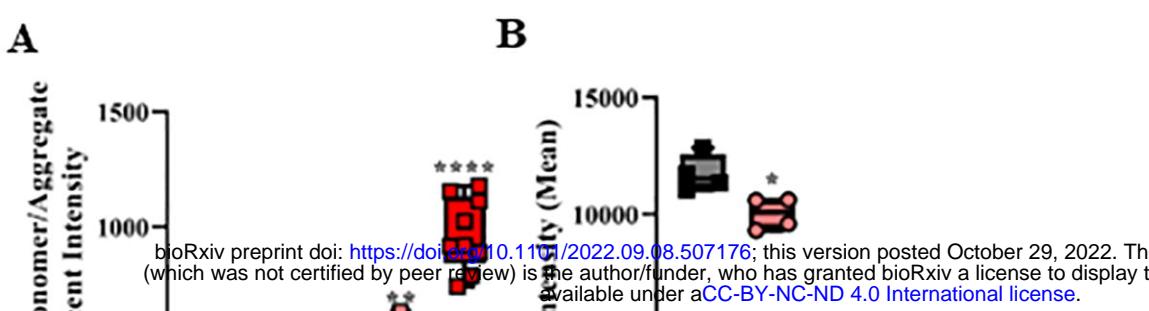

745 Xie C, Ge M, Jin J, et al. Mechanism investigation on Bisphenol S-induced oxidative stress and
746 inflammation in murine RAW264.7 cells: The role of NLRP3 inflammasome, TLR4, Nrf2 and
747 MAPK. *J Hazard Mater* 2020;394:122549; doi: 10.1016/j.jhazmat.2020.122549.

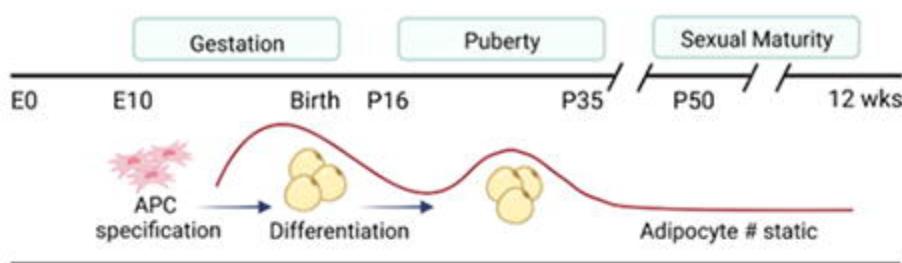
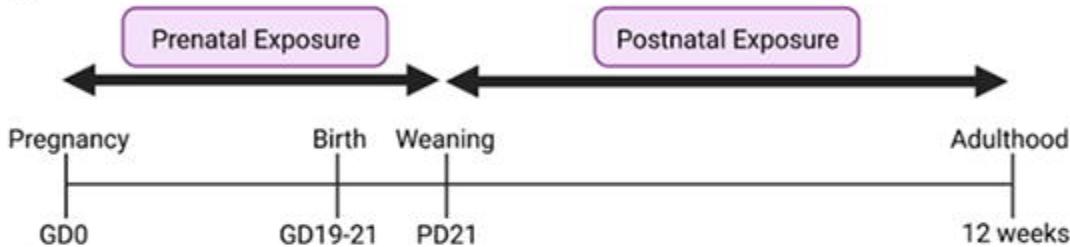
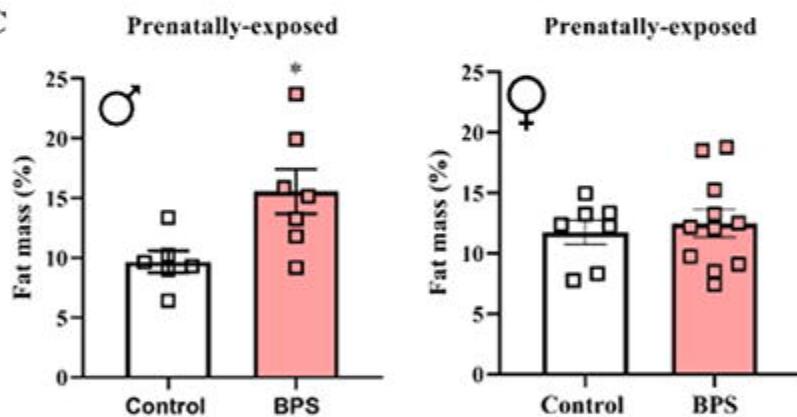
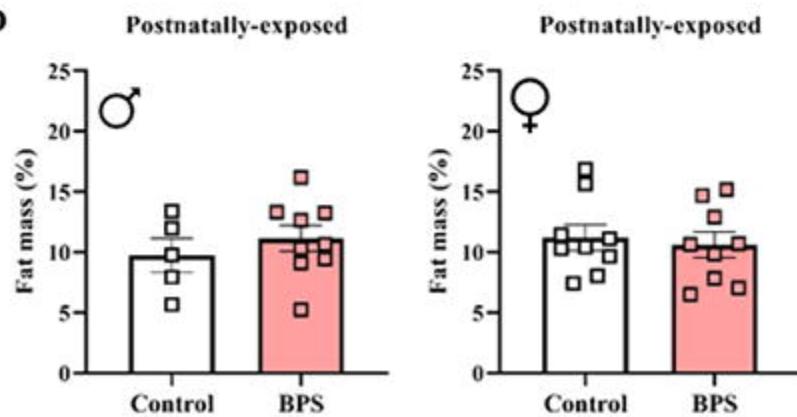



748 Zhang J, Yao K, Yin J, et al. Exposure to Bisphenolic Analogues in the Sixth Total Diet Study -
749 China, 2016-2019. *China CDC Wkly* 2022;4(9):180-184; doi: 10.46234/ccdcw2022.044.


750 Zhang Y, Marsboom G, Toth PT, et al. Mitochondrial respiration regulates adipogenic
751 differentiation of human mesenchymal stem cells. *PLoS One* 2013;8(10):e77077; doi:
752 10.1371/journal.pone.0077077.








753 Zimmerman JB, Anastas PT. Chemistry. Toward substitution with no regrets. *Science*
754 2015;347(6227):1198-1199; doi: 10.1126/science.aaa0812.



H

A**B****C****D**