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Abstract: Given the prevalence of dementia and the development of pathology-specific
disease modifying therapies, high-value biomarker strategies to inform medical decision
making are critical. In-vivo tau positron emission tomography (PET) is an ideal target as
a biomarker for Alzheimer’s disease diagnosis and treatment outcome measure.
However, tau PET is not currently widely accessible to patients compared to other
neuroimaging methods. In this study, we present a convolutional neural network (CNN)
model that impute tau PET images from more widely-available cross-modality imaging
inputs. Participants (n=1,192) with brain MRI, fluorodeoxyglucose (FDG) PET, amyloid
PET, and tau PET were included. We found that a CNN model can impute tau PET
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images with high accuracy, the highest being for the FDG-based model followed by
amyloid PET and MRI. In testing implications of Al-imputed tau PET, only the FDG-
based model showed a significant improvement of performance in classifying tau
positivity and diagnostic groups compared to the original input data, suggesting that
application of the model could enhance the utility of the metabolic images. The
interpretability experiment revealed that the FDG- and MRI-based models utilized the
non-local input from physically remote ROIs to estimate the tau PET, but this was not
the case for the PiB-based model. This implies that the model can learn the distinct
biological relationship between FDG PET, MRI, and tau PET from the relationship
between amyloid PET and tau PET. Our study suggests that extending neuroimaging’s
use with artificial intelligence to predict protein specific pathologies has great potential to

inform emerging care models.
INTRODUCTION

Misfolded tau neurofibrillary tangles (NFT) are the characteristic pathologic feature of
tauopathies, a group of progressive neurodegenerative disease entities. Together with
amyloid-p plaques, tau NFTs are the classic pathologic feature of the most common
etiology of dementia, Alzheimer’s disease (AD)."* Tau NFT burden is important
because it correlates with the degree of cognitive impairment in AD and neuropathologic
studies support a stronger correlation of tau pathology than amyloid-g plaques to

cognitive status.*®

Tau positron emission tomography (PET), which is a minimal invasive method to
quantify the extent and distribution of pathologic NFT in the brain,®® is therefore a
promising tool to assess response to therapy or changes over time.® Cross-sectional
studies show that tau PET uptake levels can be used effectively to support a clinical
diagnosis of AD dementia and to estimate disease severity.*>** Tau PET uptake
patterns in vitro have been associated with Braak tangle stage.®> Other studies show

that the tau PET signal is associated with aging™®*’

and with reduced glucose
metabolism.**8° Furthermore, tau PET uptake patterns have been correlated to
specific clinical phenotypes of AD, whereas amyloid PET has not, with distinct

distributions of tau pathology associated with posterior cortical atrophy, logopenic
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variant primary progressive aphasia, and other presentations of AD.*»?*%* PET studies
of tau accumulation show a close spatial relationship with gray matter volume reduction

in clinical variants of AD.1120:25:26

Accordingly, clinical interest in tau PET has grown as a tool to measure and visualize in
vivo tau pathology, for both AD and other tauopathies. Multiple tau PET agents have
been developed for this purpose.’ Recently, [*®F]flortaucipir ([*®F]JAV-1451) received
FDA approval for clinical use in the evaluation of AD.*’ This ligand has been shown to
have specificity for AD-like tau pathology in vivo?® and has been used to stratify
participants included in a recent clinical trial targeting amyloid pathology.”® However, at
present, tau PET is not widely accessible to patients compared to other neuroimaging
methods.*® Moreover, the addition of tau PET to the diagnostic evaluation of dementia,
which currently includes [*®F]fluorodeoxyglucose (FDG) PET and amyloid PET, creates
an additional burden on patients of undergoing the test and the exposure to multiple
radiopharmaceuticals. In addition, FDG-PET has wide application across all forms of
degenerative dementia because it contains useful features across the entire spectrum
of etiologies beyond amyloid and tau associated conditions.** Nevertheless, measuring
tau pathology is integral to the diagnosis and prognosis of the AD continuum, and
increasing the accessibility of tau PET has potential to enable a greater role in research

and clinical applications in the future.*

In this study, we developed a convolutional neural network (CNN) model which enables
a cross-modal tau PET synthesis using other neuroimaging data, including FDG PET,
structural T1-weighted magnetic resonance imaging (MRI) or amyloid PET, as input. A
relationship between tau PET and other modalities has been proposed and tau burden

11,18,22,33

has been correlated to regions of FDG hypometabolism, cortical

13.2034.35 and amyloid accumulation.?*2%38 Therefore, in the absence of tau PET,

atrophy,
it is plausible that valid information regarding tau pathology may be inferred from other
neuroimaging data, although the relationship is complex. We hypothesized that the
CNN model trained on a large neuroimaging sample might enable an accurate
estimation of tau PET images by learning the underlying biological relationship between
biomarkers. With recent advances in deep learning techniques, several works have

explored cross-modality synthesis that transforms images from one domain to another,
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including low-dose FDG PET to standard-dose FDG PET,* computed tomography (CT)
to MRI,*> MRI to FDG PET,**? and CT to FDG PET.” In the current work, we present a
3D dense-U-net model for the imputation of tau PET from either FDG PET, amyloid
PET, or structural MRI, evaluating the performance of the Al-imputed tau PET data

using ground-truth tau PET.
RESULTS
Participants and Data

Participants who underwent MRI, FDG PET, amyloid PET with Pittsburgh compound B
(PiB)* and tau PET with *®F-flortaucipir (AV-1451)* were included (n=1,192, number of
scans=1,505)(Table 1; see Fig.S1 for data inclusion/exclusion criteria). The participants
were categorized into major clinical subgroups based on clinical diagnosis including
cognitively unimpaired (CU; n=739), mild cognitive impairment (MCI; n=169), typical AD
(n=110), behavioral variant of frontotemporal dementia (bvFTD; n=25), dementia with
Lewy bodies (DLB; n=38) and other clinical syndromes (e.g., vascular cognitive
impairment, idiopathic REM sleep behavior disorder (RBD), posterior cortical atrophy
(PCA), semantic dementia (SD), logogenic variant of primary progressive aphasia
(IvPPA), non-fluent variant of primary progressive aphasia (nfvPPA) and progressive
supranuclear palsy (PSP); n=111) (Table 1). The clinical categories in these databases
were not used in training the algorithm, given that ground-truth was the tau PET scan
from these participants. However, we evaluated the implications of the trained models
using common clinical categories (CU, AD-spectrum, FTD-spectrum, and DLB-

spectrum).

The 3D Dense-U-Net architecture was utilized for the CNN model (Fig.1A),***” which
has dense interconnections between convolutional layers (dense block). The model
uses input volumes of size 128x128x128 to impute tau PET images with the same
dimensions. For the image preprocessing, scans were firstly normalized to Mayo Clinic
Adult Lifespan Template (MCALT) space®® using Unified Segmentation in SPM12.*° The
tau- and amyloid-PET standardized uptake value ratios (SUVR) were calculated by
dividing the median uptake in the cerebellar crus grey matter. FDG PET SUVR was

calculated by dividing the median uptake in the pons. For T1-weighted MRIs, voxels'
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intensities were normalized by dividing a mean intensity derived from individualized
white matter mask after spatial normalization. Cross-validation experiments were
conducted using 5-fold validations (60% training set, 20% validation set, and 20% test
set) (see the method section for details). Demographics for participants in the training,
validation, and testing data sets for each fold are summarized and compared in table S1
and S2 including pertinent clinical variables, measures of cognitive performance, and
tau PET meta-ROI SUVR as a ground-truth measure of model performance (Fig.S2).

The composition for each group was relatively similar.

Detailed images of tau pathology in the brain can be successfully imputed from

images of glucose utilization.

First, we tried to impute tau PET using glucose metabolism images obtained by FDG
PET. We found the dense-U-net model was able to successfully impute tau PET images
from standard FDG PET. Fig.2A shows eight representative example cases from the
test set, comparing the original FDG PET, ground-truth tau PET, and Al-imputed tau
PET. As illustrated in Fig.2A, the Al-imputed tau PET image showed good agreement
with ground-truth images in visual assessment. A high degree of similarity was
observed for cases with high tau burden (Case 6, 7, and 8) and cases with subtle tau
tracer activity (Case 1 and 2), demonstrating the range of tau activity the model is

capable of characterizing.

To quantify the model's performance, regional SUVRs and meta-region of interest (ROI)
SUVRs were extracted from both the ground-truth and Al-imputed tau PET scans
(Fig.1B). The regional SUVRs were calculated by measuring median uptake in each
ROI. The meta-ROI represents a set of temporal lobe ROIs and has previously been
shown to have a broad dynamic range across the normal to pathological aging to AD
dementia.>® The meta-ROI SUVR was formed from the average of the median uptake in
the amygdala, entorhinal cortex, fusiform, parahippocampal and inferior temporal and
middle temporal gyri.>® Then, the model’s performance was evaluated by Pearson’s
correlation and mean absolute percentage error (MAPE) between regional SUVRs
extracted from both the ground-truth and Al-imputed tau PET scans across participants.

The Al-imputed tau PET SUVR, when plotted against ground-truth tau PET using a real
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tau tracer, demonstrated that each regional SUVR showed a high correlation (r>0.8)
and low MAPE (~8%) as well as the meta-ROI (Fig.2B). The mean correlation
coefficient and MAPE of five-fold summarized for each anatomic ROI and the meta-ROI
reflect the performance of the model (Fig.2C). The mean correlation coefficient for the
meta-ROI was 0.79+0.06 and the MAPE was 8.24+0.64%. The regional SUVR of the
basal ganglia, a known region of off-target AV-1451 binding, showed relatively lower
performance (r=0.53~0.58 and MAPE=8.46~9.87). The thalamic ROI showed the lowest
correlation (r=0.19+0.07), which was part of a larger pattern where the Al-imputed
images had lower predicted signal in regions of off-target binding than the actual tau
PET images.

To examine whether the trained model presents a dataset-specific bias, we evaluated
the performance of the Mayo-trained models on the multi-site cross-modal data from the
Alzheimer’'s Disease Neuroimaging initiative (ADNI) for participants that had MRI, FDG
PET and tau PET (n=288; table S3). Using the ADNI scans, we observed that the
regional tau PET SUVR was predicted with high accuracy from FDG PET using the
dense-U-net model trained on the Mayo dataset (Fig.S3), although the overall
performance slightly decreased compared to the original result from the Mayo test set
(F(1,376)=386.6, p<0.001 for correlation coefficient and F(1,376)=1330, p<0.001 for
MAPE, using a two-way ANOVA). For the meta-ROlI, the correlation coefficient was
0.68+0.02 and the MAPE was 10.60+0.11% when derived from the ADNI dataset.

Dense-U-net can also Impute Tau PET using Structural MRl and Amyloid PET

Next, we used the same dense-U-net architecture to impute tau PET using structural
MRI. The model was initialized and separately trained from scratch. As a result, we
found that the MRI-based model was also able to impute the tau PET images, although
the accuracy was comparably lower than the FDG-based model (F(1,376)=424.1,
p<0.001 for correlation coefficient and F(1,376)=159.5, p<0.001 for MAPE, using a two-
way ANOVA,; Fig.3). In some ROIs such as the insula, anterior cingulate, medial
orbitofrontal, olfactory, and gyrus rectus, the correlation coefficient was considerably low
(r<0.3), however other ROI’s regional SUVR was relatively well predicted (Fig.3B and
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C). In the MRI-based model, the meta-ROI's mean correlation coefficient was 0.62+0.05

and mean MAPE was 10.16+0.82% across the 5-fold test sets.

The MRI-based model was also cross-evaluated using the ADNI dataset. As a result,
the performance of the MRI-based model on an external dataset was found to have
relatively low accuracy compared to the training (Mayo) dataset (F(1,376)=134.1,
p<0.001 for correlation coefficient and F(1,376)=208.0, p<0.001 for MAPE, using a two-
way ANOVA,; Fig.S4). In most ROIs, the correlation coefficient was very low (r<0.2) and
the MAPE was high (>10%), meaning that the MRI-based model trained on the training
dataset did not show a robust performance for images acquired in a multi-site external

dataset.

Next, we trained the Dense-U-net model to impute the tau PET images using amyloid
PET inputs (Fig.4) from the Pittsburgh compound B (PiB) radiotracer.** The PiB-based
model was also able to generate Al-imputed tau PET scans (Fig.4A and B), and the
mean correlation between ground-truth regional SUVR and Al-imputed regional SUVR
was found to be 0.41-0.76 and the MAPE range was around 7-11% (Fig.4C). The
general performance was significantly lower than the FDG-based model
(F(1,376)=96.76, p<0.001 for correlation coefficient and F(1,376)=30.77, p<0.001 for
MAPE, using a two-way ANOVA); however, the performance was significantly higher
than the MRI-based model (F(1,376)=137.7, p<0.001 for correlation coefficient and
F(1,376)=80.63, p<0.001 for MAPE, using a two-way ANOVA). The Mayo PiB-based
model was not applied to the ADNI dataset because different amyloid tracers

(Florbetapir®* and Florbetaben®?) are used in that study.

For additional evaluation of the model’s performance, voxel-wise error maps between
the Al-imputed tau and ground truth tau PET were calculated using a root mean
squared error (RMSE) (Fig.S5A-C). Overall, FDG-based model showed the lowest
RMSE across the cortical regions, followed by the PiB- and MRI-based model. For
additional voxel-based quantitative analysis, multi-scale structural similarity index (MS-
SSIM)*® was also computed (Fig.S5D). All modalities showed moderately high MS-
SSIM values (>0.9), and the performance of both the FDG- and PiB-based models was
significantly higher than the MRI-based model (p<0.001, Holm-Sidak test). Additional
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example images comparing ground-truth and Al-imputed tau PETs are shown in Fig.S6
and 7.

We further evaluated the accuracy of Al-imputed tau PET using postmortem
neuropathology data. Thirteen participants who had tau PET within 3 years of death and
complete neuropathologic assessments were eligible for evaluation. Using antibodies to

%657 \was assessed.

phospho-tau (AT8) immunostained sections,>**> Braak tangle stage
Then, correlations between SUVR in the meta-ROI and Braak tangle stage were
calculated. For the analysis, time between tau PET and death was not specified as a
covariate. As a result, the meta-ROI SUVR from the Al-imputed tau PET showed a
significant correlation with the Braak stage except for the MRI-based model (p<0.05,
Spearman’s correlation, Fig.S8). The correlation coefficient was not significantly
different with the association between actual tau PET and Braak stage (p>0.05, z-test

after Fisher’s r to z transformation, Fig.S8).

Evaluation of Synthesized Tau PET Images Accuracy in Prediction of Tau
Positivity

To assess the clinical implications of Al-imputed tau PET images, we performed ROC
analyses for predicting tau positivity. In dementia research and clinical practice,
although the biomarkers exist on a continuum, dichotomizing normal/abnormal tau using
specific cut points is useful and widely used.>® We tried to predict the tau positivity
obtained from the ground-truth tau PET data using four different meta-ROI cutoff
thresholds (SUVR=1.11, 1.21, 1.33, and 1.46) with the Al-imputed tau PET. The lowest
and highest cut points (SUVR=1.11 and 1.46) reflecting recent clinical trial
stratification®® and middle cut points reflecting 95% specificity (SUVR=1.21) and
discrimination between age-matched controls and cognitively impaired amyloid PET
positive individuals (SUVR=1.33).*° In addition, to evaluate the performance of Al-
imputed images relative to the input modalities, the ROC analysis was also performed
using the actual FDG PET, cortical thickness, or PiB PET as predictors. The cortical
thickness was measured with FreeSurfer software.® All variables were derived from the
tau PET meta-ROI for the analysis. For FDG PET, we found that applying the model
was more successful in predicting tau positivity than the actual FDG SUVR (for FDG,
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mean AUROC=0.70, 0.78, 0.83, and 0.85 for SUVR thresholds 1.11, 1.21, 1.33, and
1.46, respectively; for FDG-based Al-imputed tau-PET, mean AUROC= 0.70, 0.85,
0.93, and 0.96 for SUVR thresholds 1.11, 1.21, 1.33, and 1.46, respectively; Fig.5A-C).
The FDG-based Al-imputed tau PET showed significantly improved AUROC values
versus the actual FDG, except for at the lowest SUVR threshold (=1.11) (p=0.004 for
1.21, p<0.001 for 1.33 and 1.46, Holm-Sidak test, Fig.5C). A similar ROC analysis was
performed using cortical thickness directly measured from MRI examinations and MRI-
based Al-imputed tau PET scans to predict true tau positive participants (Fig.5D-F). As
the cortical thickness metric is not combinable across the different manufacturers, the
GE and Siemens cohorts were separately analyzed and the result for GE, which is
majority manufacturer of our dataset, was displayed in the main result. In contrast to the
FDG-based model, the MRI-based Al-imputed tau was not more successful than direct
measurement of cortical thickness (for cortical thickness, mean AUROC=0.62, 0.75,
0.82, and 0.88 for SUVR thresholds 1.11, 1.21, 1.33, and 1.46, respectively; for MRI-
based Al-imputed tau-PET, mean AUROC= 0.63, 0.78, 0.84, and 0.88 for SUVR
thresholds 1.11, 1.21, 1.33, and 1.46, respectively; Fig.5D-F). No significant differences
were found in the AUROC (p>0.05 for SUVR thresholds 1.11, 1.21, 1.33, and 1.46,
Holm-Sidak test). The Siemens cohort also showed a similar result (Fig.S9). The PiB-
based model also showed no significant improvement in the AUROC for tau prediction
compared to actual PiB PET SUVR (for PiB, mean AUROC=0.74, 0.83, 0.92, and 0.93
for SUVR thresholds 1.11, 1.21, 1.33, and 1.46, respectively; for PiB-based Al-imputed
tau-PET, mean AUROC=0.75, 0.86, 0.94, and 0.96 for SUVR thresholds 1.11, 1.21,
1.33, and 1.46, respectively; Fig.5G-I). This result implies that imputing tau PET scans
from MRI and PiB did not add predictive value for classifying tau positivity beyond
cortical thickness or PiB PET SUVR alone. In the pairwise comparison between the
predictors, FDG- and PiB-based Al-imputed tau PET outperformed the other methods in
classifying tau-positivity, except for the lowest cutoff value (Holm-Sidak test, Fig.S10).

For the ADNI dataset, a similar result was observed (Fig.S11-12). FDG-based Al-
imputed tau PET showed significantly improved AUROC values over the actual FDG
PET (p<0.001 for 1.11, 1.21, 1.33, and 1.46, Holm-Sidak test, Fig.S11A-C), while the
MRI-based model did not show an improved AUROC (p>0.05, for SUVR thresholds
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1.11, 1.21, 1.33, and 1.46, Holm-Sidak test, Fig.S12D-F). For all SUVR thresholds,
FDG-based Al-imputed tau PET showed the highest AUROC value for classifying tau
positivity.

We also trained a CNN model to predict only meta-ROI tau PET SUVR from the cross-

1°9€0 was utilized with a

modality inputs. For this regression task, a 3D-DenseNet mode
linear activation and mean absolute error as a loss function. As result, we found that the
two different approaches’ performances were not significantly different (Fig.S13A-C). In
the ROC analysis for tau positivity, the total volume imputation vs. meta-ROI only

imputation did not show a statistically significant difference for every cut off values in all

modalities (Fig.S13D-F, p>0.05, Holm-Sidak test).
Classification Performance of Al-imputed Tau PET for Clinical Diagnostic Group

ROC analysis was also performed to assess the diagnostic performance of Al-imputed
tau PET images. For this analysis, four different meta-ROI tau PET values were
extracted: actual tau, FDG-based Al-imputed tau, MRI-based Al-imputed tau, and PiB-
based Al-imputed tau (Fig.6). For comparison with the model-imputed tau PET, metrics
from each input modality were also calculated from tau PET meta-ROI: FDG PET
SUVR, cortical thickness, and PiB PET SUVR.

Fig.6A-D show the meta-ROI tau PET SUVR for each diagnostic subgroup. In general,
the pattern of distribution was similar across the modalities, while the MRI-based tau
PET showed relatively lower predicted SUVR than others (Fig.6C). For the analysis, the
diagnostic groups were defined as CU amyloid negative (CUA-) and CU amyloid
positive (CUA+), MCI, AD-spec (i.e., AD spectrum including typical AD, LPA, and PCA),
FTD-spec (i.e., FTD spectrum including PSP, bvFTD, SD, and nfvPPA), and DLB-spec
(i.e., DLB spectrum including RBD and DLB) and the classification was performed for
CU vs. AD-spec, AD-spec vs. FTD-spec, and AD-spec vs. DLB-spec (Fig.6E-G). We
performed a statistical test for comparisons of AUROC among the Al-imputed and
actual tau PET and pair-wise comparison between the Al-imputed tau PET and the
metric from the corresponding input data. For the CU vs. AD-spec comparison, the
FDG-based model showed the highest accuracy followed by the actual, PiB-based, and
MRI-based tau PET (Holm-Sidak test; Fig.6E and H). Interestingly, the classification
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performance of the FDG-based model was significantly higher than the actual tau PET
(p<0.001, Holm-Sidak test, Fig.6E). In comparison with input modality, FDG- and PiB-
based model showed improved accuracy (p<0.001, Holm-Sidak test, Fig.6E). For the
AD-spec vs. FTD-spec, the PiB-based model showed the best performance followed by
the actual, FDG-based, and MRI-based tau PET (Fig.6F); however, the PiB PET also
performed well and was not significantly different with the synthesized tau PET (p=0.65,
Holm-Sidak test, Fig.6F). The performance of FDG-based tau model was significantly
improved compared to the FDG PET (p<0.001, Holm-Sidak test, Fig.6F). In classifying
the AD-spec vs. DLB-spec, the actual tau performed the best, followed by the FDG-
based, PiB-based, and MRI-based Al-imputed tau PET (Fig.6G). FDG- and PiB-based
model showed an improvement upon the performance of the input data (p<0.001 and
p=0.007 for FDG-based model and PiB-based model, respectively, Holm-Sidak test,
Fig.6G).

Interpretability of 3D dense-U-net Model using Occlusion Sensitivity Analysis

To facilitate the interpretability of the dense-U-net model, saliency maps were estimated
through occlusion sensitivity analysis for three different input modalities.®®®* In the
occlusion method, a single ROI in the input space was occluded by setting these voxels
to zero, and their relevance in the decisions was indirectly estimated by calculating the
change of MAPE (i.e., AMAPE = MAPE ucciusion - MAPEriginal). An adjacency matrix
(Fig.7A, C, and E) plotting the regional AMAPE against each occluded ROI (vertical
axis) shows the contribution of each ROI to the performance of the model. The diagonal
line in each of these adjacency matrices is somewhat expected, representing the high
contribution of the voxel of source images to the same region of the synthesized tau,
observed for all three modalities (Fig.7A,C, and E). Notably, occlusion analysis revealed
multiple additional anatomic regions with a high contribution that are spatially remote
which differ according to the input images. For the FDG-based model, the sensorimotor
cortex and the frontal lobe were dominant contributors to the global accuracy of the tau
model, showing a high contribution to the MAPE for most of the brain (Fig.7A and B).
This implies that metabolism in the sensorimotor cortex and the frontal regions were
involved in the accurate imputation of tau PET for other brain regions. On the other

hand, for the MRI-based model, the temporal, parietal, and occipital lobes were found to
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be the dominant contributor to global accuracy (Fig.7C and D). The influence of remote
structures was less prominently observed in the PiB-based model (Fig.7E and F),
implying that this model generates the Al-imputed tau PET images using only relatively
local amyloid information. For every model tested, no interhemispheric effect was

convincingly observed.
DISCUSSION

We showed that 3D dense-U-net models can successfully impute tau PET using cross-
modality imaging input. Overall, FDG-based approaches showed the highest degree of
accuracy with good correlation to ground-truth tau PET and low error for regional
SUVRs, followed by the PiB-based model. The MRI-based model was marginally
accurate, but significantly inferior to the FDG- and PiB-based models. In addition, the
FDG-based model showed the most robust prediction capability, performing accurately
in an external cohort from the ADNI database where the MRI-based model did not. In
testing the clinically relevant application of Al-imputed tau PET to predict tau positivity
and classify diagnostic groups, only the FDG-based model showed significant
improvement upon the performance of the original input data, suggesting that the model
may enhance the utility of the metabolic images alone. The occlusion method,
employed in an attempt to allow interpretation of the model's mechanism of prediction,
revealed that the FDG- and MRI-based models utilized global input from physically
remote ROIs to impute the tau PET, whereas a relatively locoregional contribution was
predominantly observed in the PiB-model.

We speculate that the dense-U-Net models generated tau PET images using the
patterns of hypometabolism, cerebral atrophy, and amyloid burden captured by FDG
PET, structural MRI, and PiB PET, respectively. The possibility that FDG
hypometabolism, atrophy, and amyloid levels are important features of the model,
facilitating the successful imputation of tau PET images, is biologically plausible and
supported by previous literature. A strong correlation of the tau uptake on tau PET and
hypometabolism on FDG PET is well documented in prior studies.'**%3%%2 The regional

atrophy pattern identified on MRI correlates well with regional tau PET uptake,'®2%:343>63

Autopsy studies also support a strong correlation of tau burden and brain atrophy.®*®" A
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correlation between tau and amyloid distribution has been shown, although the
molecular relationship is complex, with a stronger relationship observed in the
temporoparietal regions to a greater degree for predominantly cognitively normal

cohorts3+36-38

and in the frontal, parietal, and occipital lobes in more advanced dementia
cohort.? These neuroimaging AD biomarkers become abnormal in a temporally ordered
manner.®® The amyloid PET tracer uptake increases earliest followed by tau PET and
FDG PET, then structural MRI, and finally clinical symptoms. The amyloid cascade
hypothesis suggested that accumulation of AR plaques is the primary cause of tau NFT
formation®®; however, it also has been suggested that the aggregation of toxic form of
AR and tau might be independent processes separately contributing to the development
of AD pathology.’ In addition, autopsy data has shown that the regional patterns of AB
differ from that of tau deposition.>® Meanwhile, hypometabolism and atrophy are more
closely related to tau accumulation as a downstream consequence of neuronal loss due
to tau NFTs. Abnormalities on FDG-PET may occur before structural changes in the

brain in AD"%"2

and hence potentially closer in time to the tau deposition, perhaps
relating to the better performance of the FDG-based imputation in our study. Whitwell et
al. also showed that FDG hypometabolism correlated with tau PET uptake better than
cortical thickness or PiB in both typical AD and atypical AD, implying that FDG
metabolism is most sensitive to the effects of tau pathology.®® This is concordant with
our observation that the FDG-based model was more successful than the MRI- and PiB-
based model in comparison to ground-truth tau PET. FDG has also been proposed as a
marker of other conditions of interest in clinical dementia populations beyond those
associated with AD-tau, such as hippocampal sclerosis and TDP-43,”® DLB,”*"® and is
currently approved and covered by Medicare for clinical use in the differential diagnosis
of FTD and AD.”” This wide applicability across the spectrum of clinical conditions
included in building our model is likely a key contributing factor in our models potential

to enhance the clinical utility of FDG.

Furthermore, occlusion analysis revealed that the model’s predictions of tau activity for
a given ROI depends not only on that same anatomic ROI but also on global input from
physically remote ROIs. This held true for both the FDG- and MRI-based model’s
predictions, whereas the PiB-based model demonstrated predominantly locoregional
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contributions to the tau prediction for each ROI. The result implies that local amyloid
levels alone may be sufficient for the PiB-model to predict accurate synthesized tau
images while the trained model did not simply impute tau PET using local FDG PET
activity or MRI features but relied on additional associations to inform the distribution of
tau in the model-imputed PET images. This also provides clues about the enhanced
performance of FDG-based model compared to the actual FDG in contrast to the other
models did not.

For the FDG-based model, one possible interpretation is that the model could predict
the tau level based on SUVR comparisons between ROIs. The primary sensorimotor
cortex and frontal lobe were dominant areas of influence on synthesized tau PET
accuracy from the FDG-based model revealed by occlusion analysis, surprising
because the sensorimotor cortex is typically spared from FDG hypometabolism and
frontal lobe involved in later stages of Alzheimer’'s dementia.”® Therefore, preserved
metabolism in these regions may be interpreted by the model as reference region,
modifying the model’'s prediction of tau uptake in remote locations of the brain. In this
context, it is important to note that sparing of the sensorimotor strip in AD is a feature
currently used by clinicians to inform expert visual interpretation of FDG PET images.”®
This clinically used feature is thought to be related to AD biology rather than image
intensity normalization. This feature, juxtaposed with heteromodal association cortex,
also characterizes principal patterns of functional connectivity® that are also observed
in modes of variation in FDG PET related to global functional architecture across
dementia syndromes.** Therefore, one biologically plausible alternative explanation is
that the model could utilize information related to the brain’s global functional
architecture in predicting the local tau uptake. Previous works have supported the
relationship between tau pathology and brain connectivity, based on study of tau PET
distribution and correlation to resting-state functional MRI (fMRI).*2?*88 Eranzmeier et
al., also reported that the higher functional connectivity observed by the resting-state
fMRI is associated with higher rates of tau accumulation.®* However, different functional
properties have been associated with amyloid®® which may potentially explain the
difference in learned features for these two modalities in predicting tau pathology in our

study. This is consistent with our recent study showing that the FDG-PET based global
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functional state space showed a much higher predictive accuracy for tau PET and
Braak NFT stage than amyloid PET.*! A key feature of the global functional state space
described in that study, is the juxtaposition of heteromodal association cortex with
primary sensorimotor cortex, and this feature is reflected in FDG occlusion analysis
(Fig.7A-B), but not in the amyloid occlusion analysis (Fig.7E-F) observed in the current

study.

For the MRI-based model, the dominant regions of influence on remote parts of the
brain were in the temporal, parietal, and occipital lobes, correlating to areas of
characteristic tau deposition and areas of significant regional volume loss in the AD
spectrum.’ Similar to the FDG-based model, the MRI model utilized the global
information to predict the tau level; however, applying the model did not improve the
performance compared to cortical thickness. The marginal predictive accuracy of the
MRI model, presumably hampered by the heterogeneity of structural changes, may not
be robust enough to improve upon the structural images which have higher spatial
resolution compared to the PET scans. Structural imaging is also less sensitive to
changes in functional networks than FDG PET and therefore potentially less likely to
contain the same level of functional network information on a single subject level that

could be used to predict tau PET.

Off-target binding of the tau tracer AV-1451 is an incompletely characterized
phenomenon, most frequently described in the substantia nigra, caudate, putamen, and
choroid plexus on the basis of post-mortem analysis and autoradiography studies.*>%>°
The literature on the topic has suggested non-specific binding to structurally similar
molecules such as MAO-A, MAO-B and potentially to mineralized or pigment-containing
structures such as neuromelanin. Because the off-target binding of AV-1451 is not
correlated to hypometabolism, atrophy, and amyloid-beta burden, we would expect the
off-target binding to be somewhat poorly predicted in the synthetic tau images and this
is what we observe. The common locations of off-target binding that were included in
the ROI analysis demonstrate relatively low correlation and high MAPE with the
imputed-tau PET scans and ground truth for all of the models (Fig.2-4). The basal
ganglia regions showed some association between ground-truth and Al-imputed SUVR

(Fig.S14). Previous studies have shown that the non-specific binding in the basal
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ganglia is associated with age, as the neuromelanin and iron increases with age.**®’

Thus, we speculate that the Al model may impute the off-target binding by learning age-
related changes of input.

The Al-imputed tau PET is also limited, to a certain extent, by the properties of true **F-
Flortaucipir PET. The model follows the behavior of AV-1451 PET, used as the ground-
truth, and not necessarily the distribution of tau that might be found at autopsy. This is
also a strength, in that the model generates a result that is analogues to a clinically
useful diagnostic procedure; however, this also has some complex implications. The
AV-1451 tracer varies in strength of binding to tau isoforms, binding less to 3R or 4R tau
than 3R+4R tau.'® This is also reflected in vivo suggesting more specificity of AV-1451
for AD-like tau than other tau isoforms.?® Numerous studies have confirmed the role of
AV-1451 in detecting non-Alzheimer's tauopathies is limited.®®®° Interestingly, the FDG-
based model's overall prediction error was slightly higher in the temporal region for the
FTD cohort and parietal region for the DLB cohort than the AD cohort (Fig.S15), which
are the regions with characteristic hypometabolism in each disease.”® This may in
part reflect a less direct relationship between areas impacted by these isoforms,
changes of FDG PET, and the predicted tau PET activity. Nonetheless, the diagnostic
performance of the model's meta-ROI for these groups of FTD and DLB participants
was generally accurate and significantly enhanced the performance of FDG PET alone.
The differences between the input and output of the model and the regional variation
with different types of tau-pathology support our speculation that the model is not
directly “translating” FDG uptake into tau for specific region but is more likely utilizing
global input from physically remote ROIs and broader pattern-recognition mechanisms
to predict tau activity for a given region.

The Al-imputed tau PET may allow clinicians and researchers to maximize the use of
neuroimaging biomarkers with a projection of tau pathology. Particularly, application of
the model would be most beneficial for FDG PET to enhance the utility of the metabolic
images that are being obtained in the evaluation of these patients currently. The high
correlation to ground-truth, including in an external dataset, implies that Al-imputed tau
PET may be a viable alternative of tau PET in scenarios where tau PET is not feasible,

or the tau radiotracer is unavailable. As outlined in the introduction, use of multiple
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radiopharmaceuticals for FDG, tau, and amyloid PET is an extremely expensive and
resource-intensive prospect, now emerging as an area of research and clinical need
with recent FDA accelerated approval of Alzheimer’s disease-modifying therapy®* and
the potential for additional targeted therapies in the future. In contrast to tau PET
agents, [*®F]JFDG PET is one of the most widely-utilized imaging biomarkers for AD,* is
clinically used to characterize multiple types of dementia.”* FDG PET has the support of
multiple professional societies in the diagnosis of dementia and is accessible at many
medical centers *'%. Our study demonstrates that FDG-imputed tau PET may provide
valuable information regarding tau pathology with a high correlation to real tau PET,
which could have applications in settings where only FDG PET is feasible, and potential
for use as a biomarker in the research setting. Ultimately, Al-imputed tau PET may
enable more efficient resource utilization and reduce patients’ exposure to multiple
radiopharmaceuticals and imaging tests by maximizing the information gleaned from
FDG PET.

One important limitation of the study is that the PiB-based model was not cross-
evaluated in the external dataset, as amyloid PET using the PiB radiotracer was not
available from the ADNI database. While the CNN model was tested in participants from
three different cohorts, and externally validated in the ADNI dataset for the FDG PET
and MRI-based input, it remains unknown how the model will perform using input from
more diverse imaging settings and patient populations. While the occlusion sensitivity
analysis provides some insight about which regions are important to the success of the
model, the mechanism of projecting tau uptake by the model remains unknown,
hindering our ability to make inferences about the relationships between brain structural
changes, tau and amyloid deposition, and glucose metabolism. We use the information
here to imply relationships between tau deposition and metabolism in other parts of the
brain which merit exploration with further research. We acknowledge that these
measurements include small regions, where measurements from PET images are
nosier than in larger regions, but this limitation is common to most published analyses of
tau PET.

In summary, a 3D Dense-U-Net architecture is presented which produced synthesized
tau PET brain scans from FDG PET, PiB PET, and MRI. The FDG-based model of Al-
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imputed tau PET demonstrated a high degree of correlation to ground-truth tau PET for
patients on the MCI-AD spectrum, distinguished tau-positive versus tau-negative
patients, and classified diagnostic groups with performance similar to the AV-1451 tau
PET exams. Al-imputed tau is feasible and has a potential to augment the value of FDG
PET for patient MCI and AD patients. Additional work to utilize multi-modality imaging
input simultaneously is also needed, as this may further enhance the accuracy of
model-imputed tau PET.

MATERIALS AND METHODS
Participants

Participants from the Mayo Clinic Study of Aging (MCSA) or the Alzheimer’s Disease
Research Center (ADRC) study who underwent MRI, FDG PET and Tau PET were
included (n=1,192, number of scans=1,505)(Table 1 and Fig.S1). All participants or
designees provided written consent with the approval of Mayo Clinic and Olmsted
Medical Center Institutional Review Boards. The participants were categorized into
major clinical sub-groups based on clinical diagnosis including CU (n=739, number of
scans=890), MCI (n=169, number of scans=208), typical AD (n=110, number of
scans=165), bvFTD (n=25 number of scans=32), DLB (n=38, number of scans=54) and
other clinical syndromes (e.g., vascular cognitive impairment, RBD, PCA, SD, IVPPA,
nfPPA and PSP; n=111, number of scans=156)(Table 1). To examine whether the
trained model presents a dataset-specific bias, we also utilized the Alzheimer’s Disease
Neuroimaging initiative (ADNI; adni.loni.usc.edu) dataset. For the ADNI cohort, we
pulled all visits with a 3T accelerated T1-MRI, FDG PET and Tau PET where available
(n=288; table S3). The ADNI dataset included normal controls (n=15), MCI (n=205) and
Dementia (n=68). Image IDs for the ADNI cohort used in this study can be downloaded
from the following link (https://github.com/Neurology-Al-Program/Al_imputed_tau PET/

ADNI_cohort_with_imagelDs.csv).
Neuroimaging

For the Mayo data, T1-weighted MRI scans were acquired using 3T GE and Siemens
scanners with MPRAGE sequences. FDG PET imaging was performed with **F-FDG,
amyloid PET with **C-PiB* and tau PET with *®F-Flortaucipir (AV-1451).* PET images
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were acquired 30-40 minutes after injection of F-18 FDG, 40-60 minutes after PiB
injection and 80-100 minutes after AV14151 injection. CT was obtained for attenuation
correction. Details of ADNI imaging protocols have been previously published.***1%2
PET images were analyzed with our in-house fully automated image processing
pipeline.’® Briefly, the PET scans were co-registered to the corresponding MRI for each
participant within each timepoint, and subsequently warped to Mayo Clinic Adult
Lifespan Template (MCALT) space which has dimensions 121x145x121 voxels*®
(https://www.nitrc.org/projects/mcalt/) using the nonlinear registration parameters from
SPM12 unified segmentation. The corresponding MRI was corrected for intensity
inhomogeneity and segmented using MCALT tissue priors and segmentation
parameters. FDG PET standardized uptake value ratio (SUVR) was calculated by
dividing the median uptake in the pons and the SUVR images were used for input data
to the CNN model. Tau PET SUVR was calculated by dividing the median uptake in the
cerebellar crus grey matter'® and the tau PET SUVR images were used for target label
data for CNN training. For each MRI volume, an intensity normalization was performed
by dividing a mean intensity derived from individualized white matter mask.*®® Cortical
thickness was measured with FreeSurfer software, version 5.3.°® The tau PET meta-
ROI used in this study included the amygdala, entorhinal cortex, fusiform,
parahippocampal and inferior temporal and middle temporal gyri.****°® The meta-ROI

SUVR was calculated as an average of the median uptake across regions of meta-ROI.
Network Architecture

A schematic of the 3D Dense-U-Net architecture used for this study is shown in Fig.1.%®
The network is a U-Net type architecture*’ with dense interconnections between
convolutional layers (dense block). The architecture is comprised of 4 down-sampling
(encoder) blocks for feature extraction and 4 up-sampling (decoder) blocks for image
reconstruction, which are connected by a bridge block. Each encoder block has two
padded convolutions (3x3x3) with a rectified linear unit (ReLU) as an activation
function, followed by a 2x2x2 max pooling with stride 2 for down-sampling. In the
decoding path, each block is comprised of a 2x2x2 up-convolution with stride 2 for up-
sampling,'®’ followed by two padded convolutions (3x3x3) with a ReLU activation

function. The output of the last convolutional layer, prior to the pooling operation of each
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encoder block, is concatenated with the output of the up-pooling layer in the associated
decoder block through a skip connection. The bridge block (in the lower part of the
network) is composed of two padded convolutions (3x3x3) with a ReLU activation
function. Within every block, the convolutional layers are densely interconnected in a
feed-forward manner (illustrated in the left dotted box in Fig. 1). The network doubles or
halves the number of filters (denoted above each block) along each successive encoder
and decoder path, respectively. After the last up-sampling dense block, a single 3x3x3

convolutional layer with linear activation is used to generate an output image.

The architecture takes input volumes of size 128x128x128 and outputs the images with
the same dimensions. For this, we resized the volume by cropping and zero padding so
that it is divisible by 2 until the bottom of the network for the max-pooling and up-
sampling procedure. Along the AP axis, 8 slices of anterior and 9 slices of posterior
were cropped. Then, 7 slices were padded on the left and bottom of the cropped
volume, forming a 3D data of size 128x128x128. The output volume of the network was

reconstructed as the original size (121x145x121) for the visualization.
Training and Testing

The neural network was implemented using Keras with Tensorflow as the backend.
Cross-validation experiments were conducted using 5-fold validations (60% training set,
20% validation set, and 20% test set). In order to prevent any possible data leakage
between the training and validation/testing datasets, we excluded any overlap of
participants among training, validation, and test sets. Within each set, multiple scans
per subject were included. During training, the model was optimized using Adam
optimizer'®® with parameters: 1=0:9 and f2=0.999. The training epoch used was 150.
The learning rate from training was set to 1x10™ and decreased by a factor of 2 for
every ten epochs. If the validation error did not improve in 7 epochs, the learning rate
was updated. We had used a mini-batch of size 2. The mean squared error was used
as the loss function. The training and testing are performed on Tesla P100 GPU. The
source code are available online: https://github.com/Neurology-Al-

Program/Al_imputed_tau_PET.

Occlusion analysis
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Occlusion sensitivity analysis was performed to identify regions of interest in the brain
contributing to the performance of the tau PET synthesis model.®* The analysis was
conducted for the test image data set for FDG-, MRI- and PiB-based models. For each
model, voxels from a single ROI in the original source images were occluded with zero
values one at a time, and their relevance in the tau PET synthesis was estimated as a
change of regional MAPE between the original and after occlusion (AMAPER;:_,r2=
MAPER:,r2 - MAPER,, where R1 is an occluded ROI and R2 is a region where the
MAPE is calculated).

Neuropathology methods

The neuropathologic assessment was performed as reported previously.? Briefly, brain
sampling and standardized neuropathologic examination were performed according to
the CERAD protocol.’®® Tissue samples were paraffin-embedded and 5 pm thick tissue
sections were routinely stained with hematoxylin and eosin, as well as a modified
Bielschowsky silver stain. Immunohistochemistry was performed using a phospho-
specific tau antibody (AT8; 1:1000; Endogen, Woburn, MA). The AT8 immunostained
sections were used to assess Braak tangle stage and neuritic plaque score.>*>°
Participants were assigned the neuropathologic diagnosis of AD if they had a Braak
tangle stage of = IV and had at least a moderate neuritic plaque score. Primary age-
related tauopathy (PART) was assigned if the case met published criteria — Braak
tangle stage I-IV and Thal amyloid phase 2 or less. Lewy body disorders were classified
neuropathologically based on the distribution and severity of Lewy bodies and

neurites.”
Statistical analysis

To evaluate the model's performance, regional SUVRs were extracted from both the
ground-truth and Al-imputed tau PET scans and the Pearson’s correlation and mean
absolute percentage error (MAPE) between tau images across participants were tested.
A difference of correlation coefficient and MAPE between the models was evaluated
using a two-way ANOVA. Receiver operator characteristic (ROC) analyses were
performed to compare the discriminatory power of Al-imputed tau PET for tau positivity.

The tau positivity was defined using four different meta-ROI cutoff thresholds (1.11,
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1.21, 1.33, and 1.46).2°°° Six different predictors were utilized: original FDG PET, FDG-
based Al-imputed tau PET, cortical thickness, MRI-based Al-imputed tau PET, original
PiB PET and PiB-based Al-imputed tau PET. Within the modality type, a pair-wise
comparison of the area under the ROC (AUROC) value was performed using two-way
ANOVA and Hold-Sidak post hoc test. These analyses were performed using the entire
cohort; however, the MRI-related variables (i.e., cortical thickness and MRI-based Al-
imputed tau) were separately analyzed by their manufacturer (GE and Siemens)
because combining the cortical thickness values across the manufacturer is not reliable.
For each cutoff value, a pair-wise comparison of the AUROC was performed using a
one-way ANOVA with Holm-Sidak post hoc test. The ROC analyses were also
performed to evaluate the classification performance of tau PET images for multiple
diagnostic groups. The diagnostic groups were defined as CU (CUA- and CUA+), AD-
spec (AD, LPA, PCA), FTD-spec (PSP, FTD, SD, nfvPPA), and DLB-spec (RBD and
DLB) and the analysis was performed for CU vs. AD-spec, AD-spec vs. FTD-spec, and
AD-spec vs. DLB-spec. A pair-wise comparison of the AUROC value was performed
using a two-way ANOVA and Holm-Sidak post hoc test. To document the transparency
of the trained model, we developed a model card accompanying benchmarked
evaluation in a variety of conditions, such as across different race, ethnicity, and
demographics. The model card can be downloaded from the following link
(https://github.com/Neurology-Al-Program/Al_imputed_tau_PET.qgit).
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Fig. 1. Dense-U-Net architecture and layout of analysis. (A) The architecture
receives input of size 128x128x128 and produces the Al-imputed tau-PET of the
same dimension with input data. Dense-U-net architecture is composed of
encoder (left), decoder (right) and bridge. Left dotted box illustrates a layout of
dense connection in dense block, when output from each rectified linear unit
(ReLU) layer is concatenated (circular C) to the input of the block before fed to
the next layer. The numbers denoted above the dense blocks indicate a number
of filters. (B) The similarity between ground-truth tau PET and Al-imputed tau
PET was assessed across total participants in test set using a regional SUVR
calculated from 46 ROIs and meta-ROI. Pearson’s correlation and mean
absolute percentage error (MAPE) were used as an evaluation metric.
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Fig. 2. FDG-PET based tau-PET synthesis results. (A) Eight representative cases
with original FDG-PET, ground-truth tau-PET and Al-imputed tau PET. (B)
Scatter plots of ground-truth tau-PET and Al-imputed tau PET from seven
representative ROIs and meta-ROI. r indicates Pearson’s correlation coefficient
and MAPE indicates mean absolute percentage error. Linear regression (black
line) and 95% confidence bands (dotted lines) are shown. (C) The mean of
correlation coefficient and MAPE of five folds from 46 ROls and the meta-ROI is
summarized in a box plot. The yellow-colored box depicts the meta-ROI result.
Open circles indicate different folds.
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Fig. 3. Structural MRI based tau PET synthesis results. (A) Eight representative
cases with original MRI, ground-truth tau PET and Al-imputed tau-PET. (B)
Scatter plots between ground-truth tau-PET and Al-imputed tau PET from seven
representative ROIs and meta-ROI. r indicates the Pearson’s correlation
coefficient and MAPE indicates mean absolute percentage error. Linear
regression (black line) and 95% confidence bands (dotted lines) are shown. (C)
The mean correlation coefficient and MAPE of five folds from 46 ROIs and meta-
ROI is summarized in the box plots. The yellow-colored box depicts the meta-
ROI result. Open circles indicate different folds.
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Fig. 4. Amyloid PET based tau PET synthesis results. (A) Eight representative cases
with actual PiB-PET, ground-truth tau PET and Al-imputed tau PET. (B) Scatter
plots between ground-truth tau PET and Al-imputed tau PET from seven
representative ROIs and meta-ROI. r indicates the Pearson’s correlation
coefficient and MAPE indicates mean absolute percentage error. Linear
regression (black line) and 95% confidence bands (dotted lines) are shown. (C)
The mean of correlation coefficient and MAPE of five folds from 46 ROIs and
meta-ROI is summarized in a box plot. The yellow-colored box depicts the meta-
ROI result. Open circles indicate different folds.


https://doi.org/10.1101/2022.09.07.507042
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.07.507042; this version posted September 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

I’ ‘\\
A Actual FDG B AlimputedTau(fDg) C = Acuairos
B Al-imputed Tau (FDG)
1.0 1.0 —— e
o o ’ Ly = | g
— ' 0.8 S 0.8- - )
ot o 0.94 Vi
TR v o P = A ¢
DI_ 2 067 2 061 & s ) : :
O] ‘g Cutoff 1.46 -g Cut off 1.46 BD: e 4 i )
0.44 — Cutoff 1. 0.4/ P == Cut off 1. o g y
0 t P Cutoff 1.33 t ‘ e Cutoff1.33 < 07 E®
i 2ozl ==t 21 So2d 4 — Cutoff1.21 :
= — Cutoff1.11 ~ — Cutoff 1.1 *
T o —— 0o :
00 02 04 06 08 10 00 02 04 06 08 10 141 121 133 146
k False Positive Rate False Positive Rate Tau-PET cut off I
{ D i i E i F =3 Cortical thickness Y
! Cortical thickness Al-imputed Tau (MRI)
i 0% i EE Alimputed Tau (MRI)
i g g
> 5 081 4 3 081
w w (7]
© > 054 5 > 06- g
3 4= 4 = 4
B 3 3 — Cutoff 1.46 =)
[&] E 0.4 S = Cutoff 1.46 & 0.4 L ut off 1. =
E w y Cutoff 1.33 o ’ Cut off 1.33 .’
- E 024 ’ Cutoff1.21 E 0.2 Cut off 1.21 Hg-»
w = — Cutoff1.11 - — Cutoff1.11 II
ot—++—+ 0w
00 02 04 06 08 1.0 00 02 04 06 08 10 111 121 133 146
. False Positive Rate False Positive Rate Tau-PET cut off J/
’f' h.\\
! . . . ; \
G Actual PiB H Al-imputed Tau (PiB) | =3 Actual PiB
= Al-imputed Tau (PiB) e
ns
@ 2 107 s [ i
& &
I : ol L
2 > Q M
o = . =] 8 0.8
¥ /
m 3 . — Cutoff1.46 8 — Cutoff1.46 =)
o t s Cutoff 1.33 = A cutofi13s T 0.7
> - Cutoff 121 g s Cutoff1.21
= 0.2 - 0.2+ . 0.6
= /’ = Cutoff 1.1 = /’ — Cutoff 1.11 -
0.0 F————— 00— .
00 02 04 06 08 10 00 02 04 06 08 10 111 121 133 146
N False Positive Rate False Positive Rate Tau-PET cut off L

Fig. 5. ROC analysis for tau PET positivity. Tau positivity predicted from the ground-
truth tau PET using four different meta-ROI cutoff thresholds (1.11, 1.21, 1.33,
and 1.46) were obtained using six different predictors: (A) Actual FDG PET and
(B) FDG-based synthesized tau PET with (C) AUROC comparison between the
original FDG and FDG-based Al-imputed tau PET; (D) Cortical thickness from
the cohort who had GE scans and (E) MRI-based Al-imputed tau PET from the
cohort who had GE scans with (F) AUROC comparison between the cortical
thickness and MRI-based Al-imputed tau PET, and (G) Actual PiB PET and (H)
PiB-based Al-imputed tau PET with (I) AUROC comparison between the PiB
PET and PiB-based Al-imputed tau PET. A pair-wise comparison was performed
between input data and the corresponding Al-imputed tau PET for each cutoff.
Statistical significance was tested by post hoc Holm-Sidak comparisons after
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two-way ANOVA. ** p<0.005, **** p<0.0001. Open circles in C,F and | indicate
different folds.
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Fig. 6. Diagnostic performance of Al-imputed tau PET. (A-D) Meta-ROI SUVRs from
the actual tau, FDG-, MRI-, and PiB-based Al-imputed tau PET were plotted for
each diagnostic group. Red, blue and gray colored dots show amyloid positive,
negative, and unknown, respectively. (E-G) ROC analysis was performed for
classifying the diagnostic groups using seven predictors. Open circles indicate
different folds. Statistical significance was assessed with two-way ANOVA and
Holm-Sidak post hoc comparison Abbreviations - CUA-: cognitively unimpaired
with normal amyloid; CUA+: cognitively unimpaired with abnormal amyloid level;
MCI: mild cognitively impaired; AD: Alzheimer’s disease; LPA: logopenic
progressive aphasia; PCA: posterior cortical atrophy; PSP: progressive
supranuclear palsy; FTD: frontotemporal dementia; SD: semantic dementia;
nfvPAA: non-fluent variant of progressive associative agnosia; RBD: REM sleep
behavior disorder; DLB: dementia with Lewy bodies. ** p<0.01, *** p<0.0001.
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Fig. 7. Occlusion analysis. ROI-wise occlusion analysis was performed to enhance
the interpretability of model. (A, C, and E) The adjacency matrix shows the
AMAPE in one ROI (horizontal axis) from occluding another ROI (vertical axis)
for FDG-, MRI-, and PiB-based model, respectively. AMAPE was calculated as
MAPER1,r2 - MAPER,, where R1 is an occluded ROI and R2 is the region where
the MAPE is calculated. The right panel in each matrix indicates the summation
of AMAPE along the horizontal axis. (B, D, and F) 3D rendering plots of the
adjacency matrix in A, C, and E for FDG-, MRI-, and PiB-based model,
respectively. Each edge’s color was illustrated by AMAPE value between nodes.
Each label denoted above the figure indicate the occluded regions. Abbreviations
- MTL: medial temporal lobe; TL: temporal lobe; CG: cingulate cortex; PL:
parietal lobe; FL: frontal lobe; OL: occipital lobe; SMC: sensorimotor cortex;
BG&Thal: basal ganglia and thalamus
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Table 1. Demographics for Mayo participants. {} Brackets in the characteristic
column indicate the number of participants missing this particular variable.

Clinical Diagnosis
Characteristic

Normal MCI AD FTD DLB Others

N (%) 739 (62) 169 (14.18) | 110 (9.23) 25 (2.10) 38 (3.19) 111 (9.31)

Age, median (min max), years 69 (30 94) 74 (26 98) 72 (53 92) 62 (43 75) 70 (45 89) 68 (33 85)

Male sex, n (%) 385 (52.10) 118 (69.82) 53 (48.18) 11 (44) 33 (86.84) 64 (57.66)
Education, median (IQR), years 16 (13.75 15.5 (14
16 (13 17) 16 (12 18) 16 (13 17) 16 (14 18)
{3} 18) 18)
Clinical Dementia Rating
. 4.25 (2.75
Scale-Sum of Boxes, median 0(00) 1(0.51.5) 45(257) 6.25) 4.5 (3 6) 1.5(0.54)
(IQR) {9} '

Meta-ROI FDG PET SUVR, 1.55 1.39 1.19 1.42 1.17 1.42
median (IQR) (1.46 1.64) (1.28 1.49) (1.05 1.30) (1.32 1.55) (1.08 1.27) (1.22 1.56)

Meta-ROI PiB PET SUVR, 1.39 1.55 2.49 1.34 1.61 1.43
median (IQR) {19} (1.311.52) (1.37 2.32) (2.232.72) (1.20 1.46) (1.36 2.22) (1.312.14)

Meta-ROI Tau PET SUVR, 1.18 1.24 191 1.25 121 1.26

median (IQR) (1.131.23) | (1.191.40) | (1.602.31) | (1.181.35) | (1.171.28) | (1.16 1.55)
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