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54 Abstract 
55

56 INTRODUCTION: Both Alzheimer�s disease (AD) and ageing have a strong genetic 

57 component. In each case, many associated variants have been discovered, but how much 

58 missing heritability remains to be discovered is debated. Variability in the estimation of SNP-

59 based heritability could explain the differences in reported heritability. 

60

61 METHODS: We compute heritability in five large independent cohorts (N=7,396, 1,566, 803, 

62 12,528 and 3,963) to determine whether a consensus for the AD heritability estimate can be 

63 reached. These cohorts vary by sample size, age of cases and controls and phenotype 

64 definition. We compute heritability a) for all SNPs, b) excluding APOE region, c) excluding 

65 both APOE and genome-wide association study hit regions, and d) SNPs overlapping a 

66 microglia gene-set.

67

68 RESULTS: SNP-based heritability of Alzheimer�s disease is between 38 and 66% when age 

69 and genetic disease architecture are correctly accounted for. The heritability estimates 

70 decrease by 12% [SD=8%] on average when the APOE region is excluded and an additional 

71 1% [SD=3%] when genome-wide significant regions were removed. A microglia gene-set 

72 explains 69-84% of our estimates of SNP-based heritability using only 3% of total SNPs in all 

73 cohorts. 

74

75 CONCLUSION: The heritability of neurodegenerative disorders cannot be represented as a 

76 single number, because it is dependent on the ages of cases and controls. Genome-wide 

77 association studies pick up a large proportion of total AD heritability when age and genetic 

78 architecture are correctly accounted for. Around 13% of SNP-based heritability can be 

79 explained by known genetic loci and the remaining heritability likely resides around 

80 microglial related genes.

81   

82

83

84

85
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86 Author Summary
87

88 Estimates of heritability in Alzheimer�s disease, the proportion of phenotypic variance 

89 explained by genetics, are very varied across different studies, therefore, the amount of 

90 �missing� heritability not yet captured by current genome-wide association studies is 

91 debated. We investigate this in five independent cohorts, provide estimates based on these 

92 cohorts and detail necessary suggestions to accurately calculate heritability in age-related 

93 disorders. We also confirm the importance of microglia relevant genetic markers in 

94 Alzheimer�s disease. This manuscript provides suggestions for other researchers computing 

95 heritability in late-onset disorders and the microglia gene-set used in this study will be 

96 published alongside this manuscript and made available to other researchers. The correct 

97 assessment of disease heritability will aid in better understanding the amount of �missing 

98 heritability� in Alzheimer�s disease.

99

100
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101 1. Introduction

102 Autosomal dominant Alzheimer�s disease accounts for only ~1% of all cases, the remaining 

103 AD cases are probably caused by a complex interplay of environmental and genetic factors. 

104 The pathological changes of aggregation of amyloid plaques and formation of intracellular 

105 neurofibrillary tangles begin in the brain long before manifestation of the first clinical 

106 symptoms due to severe neuronal loss (1). AD can be diagnosed with certainty during life 

107 using cerebrospinal fluid (CSF) biomarkers, amyloid PET imaging and definitely at autopsy (2, 

108 3). However, the accuracy of clinical diagnosis, without the use of CSF or blood biomarkers 

109 or PET imaging, is relatively low and includes up to 30% of misdiagnosed patients (4-6). 

110 The heritability (the proportion of phenotypic variance explained by genetics (7)) of late 

111 onset Alzheimer�s Disease liability is generally agreed to be around 60% from twin studies 

112 (8). The largest contributor to genetic risk is the APOE gene and genome-wide association 

113 studies (GWAS) have been successful in identifying over 80 common and rare loci 

114 significantly associated with AD (9-16). APOE and these other variants do not explain all 

115 genetic liability for AD. The hope is that with larger GWAS sample sizes, not only more risk 

116 loci will be identified, but also a larger proportion of total heritability will be explained. The 

117 amount of heritability still remaining to be found is under debate. 

118 Heritability analyses were largely designed for the analysis of disorders of children and early 

119 adulthood in which both case and control designations have some certainty due to early in 

120 life onset and therefore were not influenced by age. Unfortunately, in AD these 

121 characteristics do not apply. The clinical diagnosis of AD is not particularly accurate (4), and 

122 the age dependence of the disease causes both obvious and subtle problems with analysis. 

123 The most important problem in estimating heritability is that an individual�s genetic loading 

124 for disease remains the same at any age, but the prevalence of AD is dependent on age. 

125 Furthermore, the pathologic definition of both disease and controls is, to some extent, 

126 different at different ages with a clear pathologic separation between cases and controls 

127 when both are below 65 but almost no separation between cases and controls at the age of 

128 90 (17).  Thus, heritability estimates are age dependent (18) and for reliable assessment at 

129 any individual age, it is necessary for cases and controls to be age matched. It is also 

130 possible that there will be some differences in the heritability of disease between 
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131 populations, related to different haplotype length and to the presence/absence of rare 

132 mutations in the population e.g. the presenilin mutation (E280A) in Antioquia, Colombia 

133 (18). All the above is reflected in widely different SNP-based heritability estimates across 

134 different datasets in AD, from as high as 53% (19) to as low as 3% (15). The latter is 

135 obviously not true as the APOE gene alone explains 4% of the variance when studying 

136 incident AD (20).

137

138 The variability of the reported heritability estimates arise from various sources, related to 

139 the populations studied and technical issues. The differences in heritability estimates may 

140 either be on the observed scale i.e. for the proportion of cases and controls as in the 

141 sample, or on the liability scale, i.e. assuming a disease prevalence in a particular 

142 population, which varies depending on the age group and population where the prevalence 

143 has been reported. For example, 2% lifetime prevalence was reported in the US in 2019 

144 (21), 3% in 2020 in individuals aged 65-74 in the US (22), 5% lifetime prevalence in 

145 Europeans from a meta-analysis of multiple studies (23), 17% in 2020 in individuals aged 75-

146 84 in the US (22), 32% in 2020 in individuals aged 85+ in the US (22). The technical issues are 

147 related to the software used to compute estimates, sample size, SNP availability, imputation 

148 procedures, quality-control analysis, age definition, selection criteria for studies (e.g. 

149 whether controls are clinically assessed, pathologically confirmed or from a population 

150 sample) and/or covariates used. 

151

152 The main aim of this study is to determine AD heritability in a variety of AD data cohorts to 

153 understand the variability introduced by the liability model and age and evaluate whether 

154 consistent estimates can be determined for AD SNP-based heritability. Next, we sought to 

155 utilise heritability estimates to give insights regarding where in the genome we should 

156 search for missing heritability, by investigating a gene-set specific to microglia which are 

157 known to be important in AD pathology. For this purpose, we investigate the proportion of 

158 heritability which can be explained using SNPs overlapping a specific gene-set related to 

159 microglia. We assess the proportion of heritability explained by this gene-set in comparison 

160 to the total heritability in the sample and compare this to the proportion of SNPs which 

161 explain this heritability. 

162
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163 2. Results

164 2.1 Cohort heritability estimates
165

166 First we present results for the heritability estimates calculated on the liability threshold 

167 with AD prevalence of 2%, 5% and 15% in all datasets; for A) ADC with amyloid confirmed 

168 AD cases, B) GR@ACE, C) KRONOS/Tgen, D) ADC with clinical AD cases, E) 

169 ROSMAP/MSBB/MAYO and F) UKBB with controls aged 70+, see Figure 1. 

170

171

172 Figure 1- Heritability Estimates for AD prevalence of 2%, 5%, 15% in A) ADC with amyloid 

173 confirmed AD cases, B) GR@ACE, C) KRONOS/Tgen, D) ADC with clinical AD cases, E) 
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174 ROSMAP/MSBB/MAYO, F) UKBB AD cases with controls aged 70+. Two models are 

175 considered: estimates adjusted for PCs and sex and PCs, sex and age.

176

177 The results presented in Figure 1 show great variability in the heritability estimates even 

178 within the same liability threshold analyses (all estimates from all analyses can be observed 

179 in Supplementary Tables 1-6). When age is added as a covariate to an age mis-matched 

180 study (see e.g. Figure 1 (B)), the estimates of heritability drop substantially, whereas in age-

181 matched, pathologically confirmed cohorts of cases and controls, the heritability remains 

182 almost unchanged (see e.g. Figure 1 (A,C)). Since age is a proxy of AD, adjusting for age in 

183 age mis-matched cohorts is biasing analyses towards the null hypothesis.

184

185 The heritability estimates decrease by 12% on average when the APOE region is removed 

186 and decrease ~1% further when the 0.5MB regions around GWAS index SNPs are 

187 additionally excluded. The largest decrease of more than 25% is observed in the UK Biobank 

188 cohort (Fig. 1 F) after removal of the APOE region. 

189

190 In GR@ACE, the analysis was restricted to AD cases diagnosed with probable AD at both first 

191 and second diagnoses (N=1,851). The heritability estimates increased for all prevalences by 

192 10% [SD=3%] on average to 0.27, 0.35 and 0.49 for 2, 5 and 15% prevalences respectively, 

193 when adjusted for PCs and sex. Thus making estimates in this sample more comparable to 

194 the other cohorts.

195

196 We investigate the impact of the age of controls in UKBB by using four age bins for the 

197 control subset (60, 60-70, 70-80 and 80+ years old). It is seen from Supplementary Figure 1 

198 that heritability estimates are fairly consistent for controls at all ages, with estimates being 

199 slightly increased for the group with the youngest controls (60 years old). The model 

200 adjusted for PCs, sex and age did not converge in the two youngest control groups since 

201 there was little overlap in age distributions between cases and controls.

202 The p-value of the heritability estimates were directly linked to the size of the cohorts (see 

203 Supplementary Figure 2 and Supplementary Tables 1,4,5,6). In the KRONOS/Tgen dataset 

204 (N=1,566) the significance reaches p=3.22×10-3 when all SNPs were included and p=0.02 
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205 after exclusion of APOE and GWAS regions. In ADC (clinical) and ROSMAP/MSBB/MAYO all 

206 heritability estimates are non-significant for all models, see Supplementary Tables 2 and 3.

207

208 The heritability estimates in cohorts with pathologically/amyloid confirmed diagnosis 

209 (Figure 1, left plots) are higher (0.36-0.59) compared to cohorts with a clinical diagnosis only 

210 (Figure 1, right plots) (h2=0.25-0.34). This is expected as a pathologically/amyloid confirmed 

211 diagnosis is more accurate than a clinical diagnosis of AD which may contain up to 30% of 

212 misdiagnosed individuals (4, 5). Heritability estimates adjusting for PCs only are very similar 

213 to those adjusting for PCs and sex, see Supplementary Figure 3.

214

215 As noted above, the additional adjustment for age has little impact on heritability estimates 

216 in the pathologically/amyloid confirmed data but reduces the estimates in the GR@ACE 

217 data by more than 13%.  This result suggests that the decrease in heritability estimate could 

218 be mainly attributed to the difference in age distribution between cases and controls. 

219 Although it is tempting to adjust for age by including it as a covariate, it is difficult to do this 

220 effectively. If there is a systematic age difference between cases and controls, the age 

221 covariate largely absorbs the disease status effect, and the analysis is biased towards the 

222 null hypothesis. This suggests that the observed heritability should be estimated without 

223 adjustment for age but accounted for when transforming to the liability scale. For example, 

224 in GR@ACE data, the mean cases� age (79 [SD=7.5]) is above the average onset of e44 and 

225 e4 carriers (which is 68 and 76, respectively (24), whereas the controls are below this age 

226 54.5 [SD=14.0]. Therefore, if they live until their 80s, more than 15% of controls could 

227 develop AD, indicating that they have genetic liability to the disease.  

228

229 2.2 Gene-set Heritability Estimates
230

231 Table 2 demonstrates the proportion of heritability and number of SNPs in the microglia 

232 gene-set compared to those including all SNPs for ADC with amyloid confirmed AD cases, 

233 GR@ACE, KRONOS/Tgen, ADC with clinical AD cases, ROSMAP/MSBB/MAYO and UKBB with 

234 controls aged 70+. The absolute heritability estimates adjusted for PCs and sex for each 

235 cohort can be seen in Supplementary Figure 4.

236
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237 It can be seen that by selecting cell-type specific SNPs, a substantial proportion of 

238 heritability is explained using fewer SNPs (approximately 3% of SNPs in the microglia gene-

239 set). The proportion of heritability explained for the microglia gene-set was 68-69% in 

240 ROSMAP/MSBB/MAYO, 80-82% in UKBB, 64% in KRONOS/Tgen, 67-69% for amyloid 

241 confirmed ADC and 91-93% for clinical cases ADC. The range of values represent the 

242 proportions across all AD disease prevalences.

243

244 In general, the microglia gene-set has lower heritability estimates compared to all SNPs, 

245 however, the reduction is not proportional to the reduction in the number of SNPs, see 

246 Table 1. It can be seen in Supplementary Figure 4 that the microglia gene-set produces 

247 comparable heritability estimates with the model excluding the APOE region. We also 

248 present heritability estimates for the microglia gene-set with the same parameters as in 

249 Supplementary Figure 4 but adjusted for PCs, sex and age in Supplementary Figure 5 and 

250 Supplementary Tables 1-6. Thus, despite this gene-set utilising a much-reduced number of 

251 SNPs, it is able to explain a substantial proportion of AD heritability. 

252

253 Table 1- Proportion of heritability and SNPs explained by a microglia gene-set in all data 

254 cohorts across all disease prevalences

Microglia
Data Cohort Sample Size

Proportion of h2 Proportion of SNPs

KRONOS/Tgen 1,566 0.64 0.028

ROSMAP/MSBB/MAYO 803 0.68-0.69 0.030

GR@ACE 7,396 0.50-0.53 0.032

UKBB (70+ controls) 12,528 0.80-0.82 0.032

ADC (amyloid confirmed) 3,112 0.67-0.69 0.032

ADC (clinical) 2,829 0.91-0.93 0.032

255 Heritability estimates adjusted for PCs and sex.

256

257
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258 3. Discussion

259 To date, reported SNP-based heritability estimates in AD have been very varied across 

260 different datasets and methodologies. We studied five different cohorts and harmonized 

261 analytical methods to estimate SNP-based heritability. We estimate that the SNP-based 

262 heritability is between 36% and 59% in pathologically or CSF confirmed AD and 25% to 32% 

263 in clinically assessed cohorts when assuming AD prevalence of 5%. The regions related to 

264 microglial genes (only 3% of SNPs) explain between 50% and 93% of the SNP based 

265 heritability. This shows the importance of further development of biologically relevant AD 

266 gene-sets/pathways that could reduce the signal to noise ratio by highlighting the most 

267 influential SNPs/genes in AD. Novel loci are most likely to be expected in these regions. 

268 We studied the effects of age and APOE on heritability estimates. The results show that 

269 heritability estimates are systematically reduced when the APOE region is excluded. The 

270 reduction varies across cohorts with the largest decrease in UK Biobank, likely due to the 

271 age of the UK Biobank cases which is ~76-77 which is the age at onset for e4 carriers (24).  

272 When GWAS hits are additionally excluded, the heritability estimates reduce further but 

273 only by a small amount. 

274 The inclusion of age as a covariate clearly has a large impact on the heritability estimates for 

275 data cohorts where the mean age of cases and controls differs substantially. Where there is 

276 little difference in age between cases and controls, heritability estimates do not change. 

277 Based on these observations we recommend that age should not be used as covariate, since 

278 a difference in age distribution between cases and controls will lead to adjustment for 

279 �caseness� by biasing the analysis towards the null, and therefore reducing the heritability 

280 estimates significantly. Instead, we suggest that the genetic architecture of AD is different 

281 depending on age at clinical onset. Indeed, it is known that very early AD cases (aged 30-50) 

282 are mostly attributed to rare highly penetrant mutations in APP and PSEN genes. The 

283 disease prevalence at this age in the population is then close to the frequencies of these risk 

284 alleles (<1%). APOE e44 carriers have age at onset of about 68, and the disease prevalence 

285 at this age is likely to be around or slightly larger than e44 frequency (~2-3%), due to the 

286 variation in the age at onset of e4 heterozygotes and non-carriers. The mean age of clinical 

287 onset of e4 non-carriers is ~84 years of age (24). The disease prevalence at this age is 

288 reported as something between 17-32% (22). The disease at this age is likely to be 

289 attributed to a large number of common SNPs associated with a variety of disease 
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290 development mechanisms, including comorbid disorders. It is worth noting that the density 

291 of AD pathology required for an AD diagnosis is less as age increases (17). Furthermore, 

292 several studies have shown age dependent association of AD polygenic risk score (PRS) with 

293 Alzheimer�s disease and cognitive function, with almost no association in those with age 

294 below 50 years (25), with GWAS significant SNP-based PRS association in samples with mean 

295 age 60-65 (16, 26), and with genome-wide PRS association in samples aged 65+ (25, 27-29). 

296 In this circumstance it is perhaps not surprising that the architecture of genetic risk is 

297 different at different ages. Therefore, we suggest that for neurodegenerative disorders, the 

298 heritability estimates on the liability scale should be adjusted for the age-related prevalence 

299 of cases. If the controls are not screened for the disease, the proportion of cases in the 

300 sample needs to be uplifted to account for the genetic liability for the disease of individuals 

301 who do not yet show symptoms, and the observed heritability adjusted accordingly before 

302 transforming it to the liability scale. For example, the observed heritability in the GR@ACE 

303 data was estimated ℎ2�=0.30 (see Supplementary Table 1) with the proportion of cases 

304 P=0.56 with mean age 84 years. Assuming that 15% of controls (who are on average 54 

305 years old) will develop the disease given time, the actual proportion of cases is Pactual=0.62, 

306 and therefore ℎ2� =0.38, (see equation (23) in (30)), which is 2% higher than shown in Figure 

307 1B (�All SNPs: 15% prev�). In contrast, in the ADC - amyloid confirmed sample (mean age in 

308 cases 65.4), the observed heritability does not need to be adjusted (as ages of cases and 

309 controls are similar), and the SNP-based heritability on the liability scale should be reported 

310 as ℎ2� =0.45 (Figure 1B (�All SNPs: 2% prev�)).

311 It should be noted that although all cohorts investigated are Caucasian, the GR@ACE cohort 

312 may have different genetic architecture compared to the other cohorts due to shorter LD 

313 blocks in Spain as compared to North Caucasians (31). Therefore, the efficacy of 

314 methodology to capture AD heritability will vary even among samples from Caucasian 

315 populations.

316 In conclusion, for late onset diseases such as AD, the heritability cannot be represented as a 

317 single number, but in fact depends upon the age of the cases and controls in the sample 

318 where the heritability is to be determined.

319  

320 4. Methods
321
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322 The cohorts which were investigated are 1) Genome Research at Fundacio ACE (GR@ACE) 

323 (32), 2) KRONOS/Tgen (33-36), 3) Religious Orders Study and the Rush Memory and Aging 

324 Project (ROSMAP) data (37-39), The Mount Sinai Brain Bank (MSBB), MAYO Clinic Brain Bank 

325 (MAYO), 4) UK Biobank (UKBB) data (40) and 5) the Amsterdam Dementia Cohort (ADC) (41).  

326 These data vary in terms of sample size, age, the definition of AD and control phenotypes 

327 (e.g. pathologically confirmed or clinically defined AD cases; age-matched or population 

328 cohort controls). 

329 Heritability was computed in each series independently a) for all available SNPs in each data 

330 cohort, b) for all SNPs excluding the APOE region (chr19: 44.4-46.5Mb), and c) for all SNPs 

331 but with both APOE SNPs and SNPs within 0.5Mb of previously reported genome-wide 

332 association study (GWAS) hits excluded. For comparability with other studies (e.g. (42)), the 

333 estimates were adjusted to the liability scale based on AD disease prevalence in the 

334 population (5% (23)). We however present and discuss the results for 2%, 5% and 15% 

335 prevalence.

336

337 4.1 Population description

338

339 The GR@ACE data (32) consists of 4,113 cases and 3,283 controls. AD cases are classified as 

340 individuals with dementia who were diagnosed with either possible or probable AD at any 

341 time. 

342

343 The KRONOS/Tgen dataset is obtained from 21 National Alzheimer�s Coordinating Center 

344 (NACC) brain banks and from the Miami Brain Bank as previously described (33-36). The 

345 cohort consists of 994 AD cases and 572 controls of European descent. 

346

347 ROSMAP (37-39), MSBB (The Mount Sinai Brain Bank) and The Mayo Clinic Brain Bank 

348 (MAYO) have been whole-genome sequenced, harmonised and analysed together. This 

349 sample contains 803 individuals; 358 AD cases and 445 controls. 

350

351 The UKBB is a large prospective cohort of individuals from the UK (40). Inclusion criteria was 

352 for cases -all individuals who were diagnosed with AD based on ICD-10 code F00 or G30, 

353 N=2,528 and for controls -a subset of 10,000 individuals with no AD or dementia diagnosis 

354 who were aged over 70 (UKBB (controls 70+)). 
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355 A secondary analysis to investigate the impact of the age of controls was carried out using 

356 four different control subsets; 1) aged 60 years old, 2) aged 60-70 years old, 3) aged 70-80 

357 years old and 4) aged 80+ years old. 

358

359 The Amsterdam Dementia cohort (ADC) data (41, 43) is a cohort of AD cases and controls, 

360 consisting of 1,985 cases (1,134 CSF confirmed and 851 clinically diagnosed) and 1,978 

361 controls. 

362

363 Detailed information and demographics for all the cohorts can be found in Table 2 and 

364 Supplementary material.

365

366 Table 2- Summary of demographics for all cohorts

Data Demographics Cases Controls

N 4113 3283

Age at 

onset/interview 

[SD]

79 [7.5] 54.5 [14.0]

GR@ACE

Sex [M/F/NA] 1256/2856/1 1676/1605/2

N 994 572

Age of death [SD] 81.9 [8.7] 81 [8.8]

KRONOS/Tgen

Sex [M/F] 361/633 355/217

N 358 445

Age of death [SD] 85.9 [6.0] 84.5 [6.2]

ROSMAP/MSBB/MAYO

Sex [M/F] 100/258 167/278

N 2528 7472

Age at interview 

[SD]

76.8 [4.3] 75.6 [3.1]

UKBB

Sex [M/F] 1227/1301 3604/3868

ADC N 1985 

(1134 CSF, 

851 clinical)

1978
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Age at interview 

[SD]

65.4 [7.6] (CSF)

72.8 [10.3] (clinical)

62.0 [14.5]

Sex [M/F] 540/594 (CSF)

373/478 (clinical)

1031/947

367

368 4.2 Heritability Estimates

369 Heritability estimates are computed using the Genome-wide Complex Trait Analysis (GCTA) 

370 (44, 45) software to estimate the proportion of phenotypic variance explained by SNPs. 

371 GCTA software was chosen as the primary approach for calculation of heritability estimates 

372 since a) individual genotypes were available to us, and b) when a large proportion of the 

373 SNP-based heritability is explained by a single variant, the genome-based restricted 

374 maximum likelihood, implemented in GCTA, is unbiased whereas the alternative approach 

375 (LDScore regression (46)) in this case provides systematically lower estimates (47)).

376 The restricted maximum likelihood (GREML-LDMS) analysis was used to estimate SNP-based 

377 heritability whilst correcting for LD bias, by splitting data into LD quartiles and stratifying 

378 SNPs based on the segment-based LD score and MAF=0.05. For this analysis, a region of 

379 200kb was used to compute the segment-based LD score. The heritability was estimated in 

380 two scenarios 1) adjusting for principal components (PCs) and sex, and 2) for PCs, age and 

381 sex. The GR@ACE and KRONOS/Tgen data were adjusted for 5 PCs; the 

382 ROSMAP/MSBB/MAYO dataset is adjusted for 8 PCs, UKBB is adjusted for 15 PCs and the 

383 ADC is adjusted for 10 PCs, determined from PC plots.

384

385 The GCTA software was applied to the five datasets separately, using a) all available SNPs, b) 

386 excluding the APOE region (chr19:44.4-46.5Mb), and c) excluding SNPs in the APOE region 

387 and those within 0.5Mb of known GWAS hits (48). Observed heritability estimates were re-

388 scaled to the liability threshold based on 2%, 5% and 15% prevalences which represent a 

389 range of prevalences previously published (21-23). 

390

391 4.3 Gene-sets
392 A number of biological gene-sets have been defined which may enable the AD genetic signal 

393 to be focused to specific biological functions. We investigated the proportion of heritability 

394 explained by SNPs in genes related to microglia. (49) defined microglia regions based on 
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395 GWAS signatures and epigenetic/gene regulatory data. (50) have redefined the list of SNPs 

396 to include established regulatory regions of the genes.  We have used SNPs within these 

397 regions and heritability based on these SNPs was computed to compare heritability in each 

398 data cohort. 
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673 Supporting Information Captions
674

675 Supplementary Figure 1- Heritability Estimates in UKBB with controls of different ages adjusted for PCs (red), PCs+sex (green) 

676 and PCs+sex+age (blue).

677

678 Supplementary Figure 2- Relationship between sample size and p-values from heritability estimates. Based on heritability 

679 analyses adjusted for PCs+sex, and including all SNPs.

680

681 Supplementary Figure 3- Heritability Estimates adjusted for PCs only (red), PCs+sex (green) and PCs+sex+age (blue) for A) ADC 

682 with amyloid confirmed AD cases, B) GR@ACE, C) KRONOS/Tgen,  D) ADC with clinical AD cases, E) ROSMAP/MSBB/MAYO, F) 

683 UKBB with controls aged 70+.

684

685 Supplementary Figure 4- Heritability Estimates adjusted for PCs+sex in gene-sets for A) ADC with amyloid confirmed AD cases, 

686 B) GR@ACE, C) KRONOS/Tgen,  D) ADC with clinical AD cases, E) ROSMAP/MSBB/MAYO, F) UKBB with controls aged 70+.

687

688 Supplementary Figure 5- Heritability Estimates adjusted for PCs+sex+age in gene-sets for A) ADC with amyloid confirmed AD 

689 cases, B) GR@ACE, C) KRONOS/Tgen,  D) ADC with clinical AD cases, E) ROSMAP/MSBB/MAYO, F) UKBB with controls aged 

690 70+.

691

692 Supplementary Table 1- Heritability Estimates in GR@ACE

693

694 Supplementary Table 2- Heritability Estimates in ROSMAP/MSBB/MAYO

695

696 Supplementary Table 3- Heritability Estimates in KRONOS/Tgen

697

698 Supplementary Table 4- Heritability Estimates in UKBB

699
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700 Supplementary Table 5- Heritability Estimates in ADC with Amyloid Confirmed AD Cases

701

702 Supplementary Table 6- Heritability Estimates in ADC with Clinical AD Cases
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.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 8, 2022. ; https://doi.org/10.1101/2022.09.07.506912doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.07.506912
http://creativecommons.org/licenses/by/4.0/

