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Abstract

INTRODUCTION: Both Alzheimer’s disease (AD) and ageing have a strong genetic
component. In each case, many associated variants have been discovered, but how much
missing heritability remains to be discovered is debated. Variability in the estimation of SNP-

based heritability could explain the differences in reported heritability.

METHODS: We compute heritability in five large independent cohorts (N=7,396, 1,566, 803,
12,528 and 3,963) to determine whether a consensus for the AD heritability estimate can be
reached. These cohorts vary by sample size, age of cases and controls and phenotype
definition. We compute heritability a) for all SNPs, b) excluding APOE region, c) excluding
both APOE and genome-wide association study hit regions, and d) SNPs overlapping a

microglia gene-set.

RESULTS: SNP-based heritability of Alzheimer’s disease is between 38 and 66% when age
and genetic disease architecture are correctly accounted for. The heritability estimates
decrease by 12% [SD=8%] on average when the APOE region is excluded and an additional
1% [SD=3%] when genome-wide significant regions were removed. A microglia gene-set
explains 69-84% of our estimates of SNP-based heritability using only 3% of total SNPs in all

cohorts.

CONCLUSION: The heritability of neurodegenerative disorders cannot be represented as a
single number, because it is dependent on the ages of cases and controls. Genome-wide
association studies pick up a large proportion of total AD heritability when age and genetic
architecture are correctly accounted for. Around 13% of SNP-based heritability can be
explained by known genetic loci and the remaining heritability likely resides around

microglial related genes.
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Author Summary

Estimates of heritability in Alzheimer’s disease, the proportion of phenotypic variance
explained by genetics, are very varied across different studies, therefore, the amount of
‘missing’ heritability not yet captured by current genome-wide association studies is
debated. We investigate this in five independent cohorts, provide estimates based on these
cohorts and detail necessary suggestions to accurately calculate heritability in age-related
disorders. We also confirm the importance of microglia relevant genetic markers in
Alzheimer’s disease. This manuscript provides suggestions for other researchers computing
heritability in late-onset disorders and the microglia gene-set used in this study will be
published alongside this manuscript and made available to other researchers. The correct
assessment of disease heritability will aid in better understanding the amount of 'missing

heritability’ in Alzheimer’s disease.


https://doi.org/10.1101/2022.09.07.506912
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.07.506912; this version posted September 8, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

101 1. Introduction

102  Autosomal dominant Alzheimer’s disease accounts for only ~1% of all cases, the remaining
103 AD cases are probably caused by a complex interplay of environmental and genetic factors.
104  The pathological changes of aggregation of amyloid plaques and formation of intracellular
105  neurofibrillary tangles begin in the brain long before manifestation of the first clinical

106  symptoms due to severe neuronal loss (1). AD can be diagnosed with certainty during life
107  using cerebrospinal fluid (CSF) biomarkers, amyloid PET imaging and definitely at autopsy (2,
108  3). However, the accuracy of clinical diagnosis, without the use of CSF or blood biomarkers

109  or PET imaging, is relatively low and includes up to 30% of misdiagnosed patients (4-6).

110  The heritability (the proportion of phenotypic variance explained by genetics (7)) of late
111  onset Alzheimer’s Disease liability is generally agreed to be around 60% from twin studies
112 (8). The largest contributor to genetic risk is the APOE gene and genome-wide association
113 studies (GWAS) have been successful in identifying over 80 common and rare loci

114  significantly associated with AD (9-16). APOE and these other variants do not explain all
115  genetic liability for AD. The hope is that with larger GWAS sample sizes, not only more risk
116  loci will be identified, but also a larger proportion of total heritability will be explained. The

117  amount of heritability still remaining to be found is under debate.

118  Heritability analyses were largely designed for the analysis of disorders of children and early
119  adulthood in which both case and control designations have some certainty due to early in
120  life onset and therefore were not influenced by age. Unfortunately, in AD these

121  characteristics do not apply. The clinical diagnosis of AD is not particularly accurate (4), and
122 the age dependence of the disease causes both obvious and subtle problems with analysis.
123 The most important problem in estimating heritability is that an individual’s genetic loading
124  for disease remains the same at any age, but the prevalence of AD is dependent on age.

125  Furthermore, the pathologic definition of both disease and controls is, to some extent,

126  different at different ages with a clear pathologic separation between cases and controls
127  when both are below 65 but almost no separation between cases and controls at the age of
128 90 (17). Thus, heritability estimates are age dependent (18) and for reliable assessment at
129  any individual age, it is necessary for cases and controls to be age matched. It is also

130  possible that there will be some differences in the heritability of disease between
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131  populations, related to different haplotype length and to the presence/absence of rare

132  mutations in the population e.g. the presenilin mutation (E280A) in Antioquia, Colombia
133 (18). All the above is reflected in widely different SNP-based heritability estimates across
134  different datasets in AD, from as high as 53% (19) to as low as 3% (15). The latter is

135  obviously not true as the APOE gene alone explains 4% of the variance when studying

136  incident AD (20).

137

138  The variability of the reported heritability estimates arise from various sources, related to
139  the populations studied and technical issues. The differences in heritability estimates may
140  either be on the observed scale i.e. for the proportion of cases and controls as in the

141  sample, or on the liability scale, i.e. assuming a disease prevalence in a particular

142 population, which varies depending on the age group and population where the prevalence
143 has been reported. For example, 2% lifetime prevalence was reported in the US in 2019
144 (21),3%in 2020 in individuals aged 65-74 in the US (22), 5% lifetime prevalence in

145  Europeans from a meta-analysis of multiple studies (23), 17% in 2020 in individuals aged 75-
146 84 inthe US (22), 32% in 2020 in individuals aged 85+ in the US (22). The technical issues are
147  related to the software used to compute estimates, sample size, SNP availability, imputation
148  procedures, quality-control analysis, age definition, selection criteria for studies (e.g.

149  whether controls are clinically assessed, pathologically confirmed or from a population

150  sample) and/or covariates used.

151

152  The main aim of this study is to determine AD heritability in a variety of AD data cohorts to
153  understand the variability introduced by the liability model and age and evaluate whether
154  consistent estimates can be determined for AD SNP-based heritability. Next, we sought to
155  utilise heritability estimates to give insights regarding where in the genome we should

156  search for missing heritability, by investigating a gene-set specific to microglia which are
157  known to be important in AD pathology. For this purpose, we investigate the proportion of
158  heritability which can be explained using SNPs overlapping a specific gene-set related to
159  microglia. We assess the proportion of heritability explained by this gene-set in comparison
160  to the total heritability in the sample and compare this to the proportion of SNPs which

161  explain this heritability.

162
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2. Results

2.1 Cohort heritability estimates

163
First we present results for the heritability estimates calculated on the liability threshold

164
165
166

167
168
169

A: ADC (Amyloid Confirmed) (Ncases=1,134, Ncontrols=1,978)
Mean age in cases = 65.4 (7.6)
Mean age in controls = 62.0 (14.5)
e4 proportion in cases = 0.67
e4 proportion in controls = 0.32

with AD prevalence of 2%, 5% and 15% in all datasets; for A) ADC with amyloid confirmed

AD cases, B) GR@ACE, C) KRONOS/Tgen, D) ADC with clinical AD cases, E)
ROSMAP/MSBB/MAYO and F) UKBB with controls aged 70+, see Figure 1.

B: GR@ACE (Ncases=4,113, Ncontrols=3,283)
Mean age in cases = 79 (7.5)
Mean age in controls = 55 (14.0)
e4 proportion in cases = 0.40
e4 proportion in controls = 0.21
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Figure 1- Heritability Estimates for AD prevalence of 2%, 5%, 15% in A) ADC with amyloid

confirmed AD cases, B) GR@ACE, C) KRONOS/Tgen, D) ADC with clinical AD cases, E)
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174  ROSMAP/MSBB/MAYO, F) UKBB AD cases with controls aged 70+. Two models are

175  considered: estimates adjusted for PCs and sex and PCs, sex and age.

176

177  The results presented in Figure 1 show great variability in the heritability estimates even
178  within the same liability threshold analyses (all estimates from all analyses can be observed
179  in Supplementary Tables 1-6). When age is added as a covariate to an age mis-matched

180  study (see e.g. Figure 1 (B)), the estimates of heritability drop substantially, whereas in age-
181  matched, pathologically confirmed cohorts of cases and controls, the heritability remains
182  almost unchanged (see e.g. Figure 1 (A,C)). Since age is a proxy of AD, adjusting for age in
183  age mis-matched cohorts is biasing analyses towards the null hypothesis.

184

185  The heritability estimates decrease by 12% on average when the APOE region is removed
186  and decrease ~1% further when the 0.5MB regions around GWAS index SNPs are

187  additionally excluded. The largest decrease of more than 25% is observed in the UK Biobank
188  cohort (Fig. 1 F) after removal of the APOE region.

189

190 In GR@ACE, the analysis was restricted to AD cases diagnosed with probable AD at both first
191 and second diagnoses (N=1,851). The heritability estimates increased for all prevalences by
192  10% [SD=3%] on average to 0.27, 0.35 and 0.49 for 2, 5 and 15% prevalences respectively,
193  when adjusted for PCs and sex. Thus making estimates in this sample more comparable to
194  the other cohorts.

195

196  We investigate the impact of the age of controls in UKBB by using four age bins for the

197  control subset (<60, 60-70, 70-80 and 80+ years old). It is seen from Supplementary Figure 1
198  that heritability estimates are fairly consistent for controls at all ages, with estimates being
199  slightly increased for the group with the youngest controls (<60 years old). The model

200  adjusted for PCs, sex and age did not converge in the two youngest control groups since
201  there was little overlap in age distributions between cases and controls.

202  The p-value of the heritability estimates were directly linked to the size of the cohorts (see
203  Supplementary Figure 2 and Supplementary Tables 1,4,5,6). In the KRONOS/Tgen dataset
204  (N=1,566) the significance reaches p=3.22x10-3 when all SNPs were included and p=0.02
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205  after exclusion of APOE and GWAS regions. In ADC (clinical) and ROSMAP/MSBB/MAYO all
206  heritability estimates are non-significant for all models, see Supplementary Tables 2 and 3.
207

208  The heritability estimates in cohorts with pathologically/amyloid confirmed diagnosis

209  (Figure 1, left plots) are higher (0.36-0.59) compared to cohorts with a clinical diagnosis only
210  (Figure 1, right plots) (h2=0.25-0.34). This is expected as a pathologically/amyloid confirmed
211  diagnosis is more accurate than a clinical diagnosis of AD which may contain up to 30% of
212  misdiagnosed individuals (4, 5). Heritability estimates adjusting for PCs only are very similar
213  to those adjusting for PCs and sex, see Supplementary Figure 3.

214

215  As noted above, the additional adjustment for age has little impact on heritability estimates
216  in the pathologically/amyloid confirmed data but reduces the estimates in the GR@ACE
217  data by more than 13%. This result suggests that the decrease in heritability estimate could
218  be mainly attributed to the difference in age distribution between cases and controls.

219  Although it is tempting to adjust for age by including it as a covariate, it is difficult to do this
220  effectively. If there is a systematic age difference between cases and controls, the age

221  covariate largely absorbs the disease status effect, and the analysis is biased towards the
222 null hypothesis. This suggests that the observed heritability should be estimated without
223 adjustment for age but accounted for when transforming to the liability scale. For example,
224  in GR@ACE data, the mean cases’ age (79 [SD=7.5]) is above the average onset of e44 and
225  e4 carriers (which is 68 and 76, respectively (24), whereas the controls are below this age
226  54.5[SD=14.0]. Therefore, if they live until their 80s, more than 15% of controls could

227  develop AD, indicating that they have genetic liability to the disease.

228

229 2.2 Gene-set Heritability Estimates
230
231  Table 2 demonstrates the proportion of heritability and number of SNPs in the microglia

232 gene-set compared to those including all SNPs for ADC with amyloid confirmed AD cases,
233  GR@ACE, KRONOS/Tgen, ADC with clinical AD cases, ROSMAP/MSBB/MAYO and UKBB with
234 controls aged 70+. The absolute heritability estimates adjusted for PCs and sex for each
235  cohort can be seen in Supplementary Figure 4.

236
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237 It can be seen that by selecting cell-type specific SNPs, a substantial proportion of

238  heritability is explained using fewer SNPs (approximately 3% of SNPs in the microglia gene-
239  set). The proportion of heritability explained for the microglia gene-set was 68-69% in

240  ROSMAP/MSBB/MAYO, 80-82% in UKBB, 64% in KRONOS/Tgen, 67-69% for amyloid

241  confirmed ADC and 91-93% for clinical cases ADC. The range of values represent the

242  proportions across all AD disease prevalences.

243

244  In general, the microglia gene-set has lower heritability estimates compared to all SNPs,
245  however, the reduction is not proportional to the reduction in the number of SNPs, see
246  Table 1. It can be seen in Supplementary Figure 4 that the microglia gene-set produces
247  comparable heritability estimates with the model excluding the APOE region. We also

248  present heritability estimates for the microglia gene-set with the same parameters as in
249  Supplementary Figure 4 but adjusted for PCs, sex and age in Supplementary Figure 5 and
250  Supplementary Tables 1-6. Thus, despite this gene-set utilising a much-reduced number of
251  SNPs, it is able to explain a substantial proportion of AD heritability.

252

253  Table 1- Proportion of heritability and SNPs explained by a microglia gene-set in all data
254  cohorts across all disease prevalences

Microglia
Data Cohort Sample Size
Proportion of h2 Proportion of SNPs
KRONOS/Tgen 1,566 0.64 0.028
ROSMAP/MSBB/MAYO 803 0.68-0.69 0.030
GR@ACE 7,396 0.50-0.53 0.032
UKBB (70+ controls) 12,528 0.80-0.82 0.032
ADC (amyloid confirmed) 3,112 0.67-0.69 0.032
ADC (clinical) 2,829 0.91-0.93 0.032

255  Heritability estimates adjusted for PCs and sex.

256
257

10
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258 3. Discussion

259  To date, reported SNP-based heritability estimates in AD have been very varied across

260  different datasets and methodologies. We studied five different cohorts and harmonized
261  analytical methods to estimate SNP-based heritability. We estimate that the SNP-based

262 heritability is between 36% and 59% in pathologically or CSF confirmed AD and 25% to 32%
263  inclinically assessed cohorts when assuming AD prevalence of 5%. The regions related to
264  microglial genes (only 3% of SNPs) explain between 50% and 93% of the SNP based

265  heritability. This shows the importance of further development of biologically relevant AD
266  gene-sets/pathways that could reduce the signal to noise ratio by highlighting the most

267  influential SNPs/genes in AD. Novel loci are most likely to be expected in these regions.

268  We studied the effects of age and APOE on heritability estimates. The results show that

269  heritability estimates are systematically reduced when the APOE region is excluded. The
270  reduction varies across cohorts with the largest decrease in UK Biobank, likely due to the
271  age of the UK Biobank cases which is ~76-77 which is the age at onset for e4 carriers (24).
272  When GWAS hits are additionally excluded, the heritability estimates reduce further but
273 only by a small amount.

274  The inclusion of age as a covariate clearly has a large impact on the heritability estimates for
275  data cohorts where the mean age of cases and controls differs substantially. Where there is
276 little difference in age between cases and controls, heritability estimates do not change.
277  Based on these observations we recommend that age should not be used as covariate, since
278  adifference in age distribution between cases and controls will lead to adjustment for

279  ‘caseness’ by biasing the analysis towards the null, and therefore reducing the heritability
280  estimates significantly. Instead, we suggest that the genetic architecture of AD is different
281  depending on age at clinical onset. Indeed, it is known that very early AD cases (aged 30-50)
282  are mostly attributed to rare highly penetrant mutations in APP and PSEN genes. The

283  disease prevalence at this age in the population is then close to the frequencies of these risk
284  alleles (<1%). APOE e44 carriers have age at onset of about 68, and the disease prevalence
285  atthis age is likely to be around or slightly larger than e44 frequency (~2-3%), due to the
286  variation in the age at onset of e4 heterozygotes and non-carriers. The mean age of clinical
287  onset of e4 non-carriers is ~84 years of age (24). The disease prevalence at this age is

288  reported as something between 17-32% (22). The disease at this age is likely to be

289  attributed to a large number of common SNPs associated with a variety of disease

11
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290  development mechanisms, including comorbid disorders. It is worth noting that the density
291  of AD pathology required for an AD diagnosis is less as age increases (17). Furthermore,

292  several studies have shown age dependent association of AD polygenic risk score (PRS) with
293  Alzheimer’s disease and cognitive function, with almost no association in those with age
294 below 50 years (25), with GWAS significant SNP-based PRS association in samples with mean
295  age 60-65 (16, 26), and with genome-wide PRS association in samples aged 65+ (25, 27-29).
296 In this circumstance it is perhaps not surprising that the architecture of genetic risk is

297  different at different ages. Therefore, we suggest that for neurodegenerative disorders, the
298 heritability estimates on the liability scale should be adjusted for the age-related prevalence
299  of cases. If the controls are not screened for the disease, the proportion of cases in the

300 sample needs to be uplifted to account for the genetic liability for the disease of individuals
301  who do not yet show symptoms, and the observed heritability adjusted accordingly before
302 transforming it to the liability scale. For example, the observed heritability in the GR@ACE
303  data was estimated h2=0.30 (see Supplementary Table 1) with the proportion of cases

304  P=0.56 with mean age 84 years. Assuming that 15% of controls (who are on average 54

305  years old) will develop the disease given time, the actual proportion of cases is P,c2=0.62,
306  and therefore h#=0.38, (see equation (23) in (30)), which is 2% higher than shown in Figure
307 1B (“All SNPs: 15% prev”). In contrast, in the ADC - amyloid confirmed sample (mean age in
308 cases 65.4), the observed heritability does not need to be adjusted (as ages of cases and
309  controls are similar), and the SNP-based heritability on the liability scale should be reported
310  as h?=0.45 (Figure 1B (“All SNPs: 2% prev”)).

311 It should be noted that although all cohorts investigated are Caucasian, the GR@ACE cohort
312  may have different genetic architecture compared to the other cohorts due to shorter LD
313  blocks in Spain as compared to North Caucasians (31). Therefore, the efficacy of

314 methodology to capture AD heritability will vary even among samples from Caucasian

315 populations.

316 In conclusion, for late onset diseases such as AD, the heritability cannot be represented as a
317  single number, but in fact depends upon the age of the cases and controls in the sample
318  where the heritability is to be determined.

319

320 4. Methods
321
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322  The cohorts which were investigated are 1) Genome Research at Fundacio ACE (GR@ACE)
323  (32), 2) KRONOS/Tgen (33-36), 3) Religious Orders Study and the Rush Memory and Aging
324  Project (ROSMAP) data (37-39), The Mount Sinai Brain Bank (MSBB), MAYO Clinic Brain Bank
325 (MAYO), 4) UK Biobank (UKBB) data (40) and 5) the Amsterdam Dementia Cohort (ADC) (41).
326  These data vary in terms of sample size, age, the definition of AD and control phenotypes
327  (e.g. pathologically confirmed or clinically defined AD cases; age-matched or population

328  cohort controls).

329  Heritability was computed in each series independently a) for all available SNPs in each data
330 cohort, b) for all SNPs excluding the APOE region (chr19: 44.4-46.5Mb), and c) for all SNPs
331  but with both APOE SNPs and SNPs within 0.5Mb of previously reported genome-wide

332  association study (GWAS) hits excluded. For comparability with other studies (e.g. (42)), the
333  estimates were adjusted to the liability scale based on AD disease prevalence in the

334  population (5% (23)). We however present and discuss the results for 2%, 5% and 15%

335  prevalence.

336
337 4.1 Population description

338
339 The GR@ACE data (32) consists of 4,113 cases and 3,283 controls. AD cases are classified as

340 individuals with dementia who were diagnosed with either possible or probable AD at any
341  time.

342
343  The KRONOS/Tgen dataset is obtained from 21 National Alzheimer’s Coordinating Center

344  (NACC) brain banks and from the Miami Brain Bank as previously described (33-36). The
345  cohort consists of 994 AD cases and 572 controls of European descent.

346
347  ROSMAP (37-39), MSBB (The Mount Sinai Brain Bank) and The Mayo Clinic Brain Bank

348  (MAYO) have been whole-genome sequenced, harmonised and analysed together. This

349  sample contains 803 individuals; 358 AD cases and 445 controls.

350
351 The UKBB is a large prospective cohort of individuals from the UK (40). Inclusion criteria was

352  for cases -all individuals who were diagnosed with AD based on ICD-10 code FOO or G30,
353 N=2,528 and for controls -a subset of 10,000 individuals with no AD or dementia diagnosis
354  who were aged over 70 (UKBB (controls 70+)).
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A secondary analysis to investigate the impact of the age of controls was carried out using

four different control subsets; 1) aged <60 years old, 2) aged 60-70 years old, 3) aged 70-80

years old and 4) aged 80+ years old.

The Amsterdam Dementia cohort (ADC) data (41, 43) is a cohort of AD cases and controls,

consisting of 1,985 cases (1,134 CSF confirmed and 851 clinically diagnosed) and 1,978

controls.

Detailed information and demographics for all the cohorts can be found in Table 2 and

Supplementary material.

Table 2- Summary of demographics for all cohorts

Data Demographics Cases Controls
GR@ACE N 4113 3283
Age at 79 [7.5] 54.5 [14.0]
onset/interview
[SD]
Sex [M/F/NA] 1256/2856/1 1676/1605/2
KRONOS/Tgen N 994 572
Age of death [SD] | 81.9 [8.7] 81 [8.8]
Sex [M/F] 361/633 355/217
ROSMAP/MSBB/MAYO N 358 445
Age of death [SD] | 85.9 [6.0] 84.5 [6.2]
Sex [M/F] 100/258 167/278
UKBB N 2528 7472
Age at interview 76.8 [4.3] 75.6 [3.1]
[SD]
Sex [M/F] 1227/1301 3604/3868
ADC N 1985 1978
(1134 CSF,
851 clinical)
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Age at interview 65.4 [7.6] (CSF) 62.0 [14.5]

[SD] 72.8 [10.3] (clinical)

Sex [M/F] 540/594 (CSF) 1031/947
373/478 (clinical)

367

368 4.2 Heritability Estimates

369  Heritability estimates are computed using the Genome-wide Complex Trait Analysis (GCTA)
370 (44, 45) software to estimate the proportion of phenotypic variance explained by SNPs.
371  GCTA software was chosen as the primary approach for calculation of heritability estimates
372  since a) individual genotypes were available to us, and b) when a large proportion of the
373  SNP-based heritability is explained by a single variant, the genome-based restricted

374  maximum likelihood, implemented in GCTA, is unbiased whereas the alternative approach
375  (LDScore regression (46)) in this case provides systematically lower estimates (47)).

376  The restricted maximum likelihood (GREML-LDMS) analysis was used to estimate SNP-based
377 heritability whilst correcting for LD bias, by splitting data into LD quartiles and stratifying
378  SNPs based on the segment-based LD score and MAF=0.05. For this analysis, a region of
379  200kb was used to compute the segment-based LD score. The heritability was estimated in
380  two scenarios 1) adjusting for principal components (PCs) and sex, and 2) for PCs, age and
381  sex. The GR@ACE and KRONOS/Tgen data were adjusted for 5 PCs; the

382 ROSMAP/MSBB/MAYO dataset is adjusted for 8 PCs, UKBB is adjusted for 15 PCs and the
383  ADCis adjusted for 10 PCs, determined from PC plots.

384

385  The GCTA software was applied to the five datasets separately, using a) all available SNPs, b)
386  excluding the APOE region (chr19:44.4-46.5Mb), and c) excluding SNPs in the APOE region
387  and those within 0.5Mb of known GWAS hits (48). Observed heritability estimates were re-
388  scaled to the liability threshold based on 2%, 5% and 15% prevalences which represent a

389  range of prevalences previously published (21-23).

390

391 4.3 Gene-sets
392 A number of biological gene-sets have been defined which may enable the AD genetic signal

393  to be focused to specific biological functions. We investigated the proportion of heritability

394  explained by SNPs in genes related to microglia. (49) defined microglia regions based on
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395  GWAS signatures and epigenetic/gene regulatory data. (50) have redefined the list of SNPs
396 toinclude established regulatory regions of the genes. We have used SNPs within these
397  regions and heritability based on these SNPs was computed to compare heritability in each

398  data cohort.
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673  Supporting Information Captions

674
675 Supplementary Figure 1- Heritability Estimates in UKBB with controls of different ages adjusted for PCs (red), PCs+sex (green)
676 and PCs+sex+age (blue).

677

678 Supplementary Figure 2- Relationship between sample size and p-values from heritability estimates. Based on heritability
679 analyses adjusted for PCs+sex, and including all SNPs.

680

681 Supplementary Figure 3- Heritability Estimates adjusted for PCs only (red), PCs+sex (green) and PCs+sex+age (blue) for A) ADC
682 with amyloid confirmed AD cases, B) GR@ACE, C) KRONOS/Tgen, D) ADC with clinical AD cases, E) ROSMAP/MSBB/MAYO, F)
683 UKBB with controls aged 70+.

684

685 Supplementary Figure 4- Heritability Estimates adjusted for PCs+sex in gene-sets for A) ADC with amyloid confirmed AD cases,
686  B) GR@ACE, C) KRONOS/Tgen, D) ADC with clinical AD cases, E) ROSMAP/MSBB/MAYO, F) UKBB with controls aged 70+.

687

688 Supplementary Figure 5- Heritability Estimates adjusted for PCs+sex+age in gene-sets for A) ADC with amyloid confirmed AD
689 cases, B) GR@ACE, C) KRONOS/Tgen, D) ADC with clinical AD cases, E) ROSMAP/MSBB/MAYO, F) UKBB with controls aged
690 70+

691
692 Supplementary Table 1- Heritability Estimates in GR@ACE

693
694  Supplementary Table 2- Heritability Estimates in ROSMAP/MSBB/MAYO

695
696 Supplementary Table 3- Heritability Estimates in KRONOS/Tgen

697
698 Supplementary Table 4- Heritability Estimates in UKBB

699
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700 Supplementary Table 5- Heritability Estimates in ADC with Amyloid Confirmed AD Cases

701
702 Supplementary Table 6- Heritability Estimates in ADC with Clinical AD Cases
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