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13 Overexpression of the human epidermal growth factor 2 (HER2) protein in breast cancer patients is a
14 predictor of poor prognosis and resistance to therapies. Despite significant advances in the
15  development of targeted therapies and improvements in the 5-year survival rate of metastatic
16 HER2-positive breast cancer patients, a better understanding of the disease at an early stage is
17  needed to prevent its progression. Here, we used an inducible breast cancer transformation system
18 that allows investigation of early molecular changes at high temporal resolution. HER2
19  overexpression to similar levels as those observed in a subtype of HER2 positive breast cancer
20 patients induced transformation of MCF10A cells and resulted in gross morphological changes,
21 increased anchorage-independent growth of cells, and altered transcriptional programme of genes
22  associated with oncogenic transformation. Global phosphoproteomic analysis during the first few
23 hours of HER2 induction predominantly detected an increase in protein phosphorylation.
24 Intriguingly, this correlated with a wave of chromatin opening, as measured by ATAC-seq on acini
25 isolated from 3D cell culture. We observed that HER2 overexpression leads to reprogramming of
26 many distal regulatory regions and promotes reprogramming-associated heterogeneity. We found
27  that a subset of cells acquired a dedifferentiated breast stem-like phenotype, making them likely
28  candidates for malignant transformation. Our data show that this population of cells, which
29  counterintuitively enriches for relatively low HER2 protein abundance and increased chromatin
30 accessibility, possesses transformational drive, resulting in increased anchorage-independent growth
31 in vitro compared to cells not displaying a stem-like phenotype. Our data provide a discovery
32 platform for signalling to chromatin pathways in HER2-driven cancers, offering an opportunity for
33 biomarker discovery and identification of novel drug targets.
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35 Introduction

36 Metastasis is the main cause of cancer deaths but understanding the root cause of malignant

37  transformation remains poorly understood. Many questions remain unanswered as to what triggers
38 cancer formation beyond DNA mutations in pre-cancerous tissue (Ciccarelli and DeGregori, 2020).
39 Perturbed signalling due to dysregulated phosphorylation of oncogenic proteins is known to alter

40 pathway activity and contributes to cellular transformation (Sever and Brugge, 2015; Hanahan and
41  Weinberg, 2011). Similarly, cell identity and cellular plasticity are phenotypic outcomes of the

42  signalling and epigenetic information in both healthy and disease states (Wainwright and Scaffidi,

43 2017). Therefore, understanding how an altered signalling environment affects the epigenome and
44  shifts cellular states is crucial in furthering our understanding of cancer formation. Integrating

45  systematic analyses of phosphorylation sites (phosphosites) from global phosphoproteomics data

46 with DNA/RNA sequencing data helps to better understand the functional significance of the

47  signalling effects on chromatin changes. Phenotypic changes that occur during cancer development
48  aredriven by changes in the gene expression patterns, which are themselves governed by regulatory
49  states encoded within the nucleoprotein structure of chromatin (Voss and Hager, 2014). The

50 alterations in chromatin structure that lead to differential accessibility to transcription factor binding
51 have been identified as perhaps some of the most relevant genomic characteristics correlated with
52 biological activity at a specific locus (Thurman et al., 2012). Nevertheless, the specific regulatory

53 changes driving the transition from normal to transformed cells remain largely unknown.

54 HER2 positive breast cancer accounts for approximately 20% of all breast cancers (Wang and Xu,

55 2019). The ability of HER2 positive breast cancer cells to leave the primary tumour site and establish
56 inoperable metastasis is a major cause of death and a serious impediment to successful therapy.

57 Molecular analysis of HER2 positive breast cancer progression is limited by the inability to

58 characterise and catalogue early changes at the onset of transformation. Conventional in vitro

59 models (Pradeep et al., 2012; Gangadhara et al., 2016) can recapitulate the genetics, morphology,

60 therapeutic response and highly transformative nature of the disease. However, they do not allow
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3
for the fine tuning and temporal control required to fully assess cellular events leading up to
malignant transformation. To overcome this issue, we developed an inducible in vitro model of
human breast cancer to investigate the mechanisms that drive early transformational changes in
HER2 positive breast cancer. The strength of an inducible system lies in that it can recapitulate key
transitional states in cancer progression in a controlled manner, permitting isolation of cancer-like

cells at defined stages of transformation to catalogue early tumour promoting changes.

Here, we analysed HER2 protein overexpression in a normal diploid, oestrogen, and progesterone
negative breast epithelial cell line, MCF10A (Qu et al., 2015) to identify global cell signalling and
chromatin accessibility changes in the first few hours and days of cellular transformation. In
particular, we explored how cell signalling interacts with chromatin to induce transformation as a

result of HER2 pathway activation.

Conditional HER2 overexpression promotes in vitro transformation

HER2 overexpression in non-tumourigenic MCF10A cells is a well-established breast cancer model
and has been used in numerous in vitro studies (Muthuswamy et al., 2001; Imbalzano et al., 2009).
To recapitulate the early transformational events and the stochastic nature of early breast cancer
development, we generated a controllable in vitro model system by stably transducing a
doxycycline-inducible HER2 construct in MCF10A cells (Carter et al., 2017). This model allows for the
generation of transformed phenotypes in a synchronised and time-controlled manner and is useful
for investigating early transformational events using multi-omic analysis (Fig 1A). To analyse the
range of HER2 expression at the protein level, we cultured cells for 24 hours in five different
concentrations of doxycycline, using ranges that have been used previously in inducible expression
studies with other proteins (Baron et al., 1995; Leitner et al., 2014). In our model, a 24-hour
induction with 1ug/ml doxycycline resulted in strong HER2 protein expression (Fig 1B). When grown

CTRL

in three-dimensional cell cultures, control MCF10A cells (MCF10A~"™) formed regular, spherical acini,
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4
whereas a majority of MCF10A"E®? acini were misshapen, with cells budding into the surrounding
matrix (Fig 1C). HER2 overexpression resulted in significantly increased in vitro migratory and
invasive potential, as measured by transwell assays (Fig 1D) (Xiang and Muthuswamy, 2006; Paszek

and Weaver, 2004). Furthermore, MCF10A"ER?

cells displayed a hallmark of in vitro transformation,
with increased anchorage-independent growth as compared to control cells (Fig 1E). Collectively,
these results show that HER2 overexpression in MCF10A cells results in phenotypes associated with
in vitro transformation. Aberrant expression of HER2 is known to induce phenotypes associated with

in vitro transformation (Seton-Rogers et al., 2004) and evokes aggressive tumorgenicity and

metastasis in vivo (Alajati et al., 2013).
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Figure 1
(A) Schematic of multi-omics analysis and soft functional assays performed with their respective timelines as MCF10A cells undergo in

vitro transformation.

(B) HER2 protein expression analysis by western blot in MCF10A cells infected with inducible HER2 lentiviral particles and cultured in

various concentration of doxycycline for 24 hours. GAPDH was used as a loading control. N=2.

HER2

(C) MCF10A™"™ and control cells were cultured in 3D cell culture over 9 days. Control cells formed spherical acini which increased in

HER2

size over time. MCF10A™ "™ cells formed flat projecting cells of complex masses, typical of transformed cells. Images captured by

confocal, LSM 510 microscope. Scare bars represent 50um. N=3.

(D) Cell migration and invasion was analysed through the 8um pores of transwell membranes over 16-hour period of chemotactic

migration towards full serum media. The ability of cell invasion was measured in collagen or matrigel coated transwells. Migration

ability was measured in using uncoated wells. Statistical significance was calculated using student’s t-test. Significance is shown as * for

p-value < 0.05, ** for p-value < 0.01. N=3.

HER2

(E) Colony growth of MCF10A™" and control cells in 0.3% ultra-pure agarose over 3 weeks. Image) analysis of 5 different size colonies
were quantified. Representative microscopic images of colonies stained with crystal violet after three weeks. Statistical significance

was calculated using student’s t-test). Significance is shown as * for p-value < 0.05, ** for p-value < 0.01, *** for p-value < 0.001.

Images are at 1.6x magnification. Scale bars represent 1000pum. N=3.

96

97  Phosphoproteomic analysis following HER2 overexpression uncovers signalling changes associated

98 with cancer

99 HER2 is a tyrosine kinase known to activate a plethora of signalling pathways downstream. To
100 investigate the dynamic changes in the phosphoproteome over time, and the order in which they
101  occur during the phased progression from normal to transformed cells upon HER2 overexpression,
102  we performed an unbiased phosphoproteomic analysis of the early phosphorylation events (at 0.5h,
103  4h and 7h post HER2 protein induction). The experiment was carried out under standard growth
104  conditions in 2D cell culture, and without serum starving, to be closer to physiological conditions. A
105  GFP-transduced MCF10A cell line was used as a control for doxycycline-only induced changes

GFP

106 (MCF10A™""). As expected, we observed an increase in HER2 phosphorylation levels in HER2 at T701
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107 phosphosite and its family member EGFR (HER1) at Y1110 phosphosite (Supplementary Fig 1A). To
108 filter changes relevant to HER2 induction, we selected only those phosphosites that were

109  significantly changed upon HER2 expression but were not significantly changed in the MCF10A%F
110  cells with a stringent cut-off at log2 fold change for HER2 > 1.5, p-value < 0.05, and log2 fold change
111  for GFP <5, p-value of > 0.05 (Fig 2A). From this refined dataset some potential novel HER2 targets
112 include NUCKS1 (S73) and NUCKS1 (S75), a frequently phosphorylated protein at multiple sites,

113  significantly downregulated at the 4-hour time point (Fig 2A) when HER2 protein levels are still quite
114 low as measured by western blotting (Supplementary Fig 1B). This protein is known to play a

115  significant role in modulating chromatin conformation (Parplys et al., 2015; Grundt et al., 2004), and
116 regulates events such as replication, transcription, and chromatin condensation (Ostvold, Anne C., et
117  al, 2001). NUCKS1 phosphorylation at various phosphosites is also known to correlate with breast
118  cancer resistance to retinoic acid, known to have anti-proliferative capacity to several breast cancer
119  cell lines (Carrier et al., 2016). Other novel candidates include DDX21, with multiple phosphorylation
120  serine sites at (5164, S168, and S171), which were also significantly enriched in our

121 phosphoproteomic analysis (Fig 2A). Since we aimed at investigating the link between signalling and
122 chromatin, we observed that DDX21-bound promoters on average have increased enrichment of
123 active chromatin marks (H3K4me3, H3K27ac, and H39Kac) but are depleted for repressive marks
124  (H3K27me3 and H3K9me3) and promoter-distal (H3K4mel) marks (Calo et al., 2015). Some highly
125 phosphorylated phosphosites, which have not been shown to be associated with HER2 protein

126  expression include homeodomain-interacting protein kinase 1 (HIPK1), which is highly expressed in
127 invasive breast cancers (Park et al., 2012). SHC1(S246), TTC7A(S182), CDC42EP3(S89), and

128 RIPOR1(S351) were also significantly and stably activated in all the time-points screened, suggesting
129  they may have important roles in the biology of HER2 expressing breast cancer cells (Fig 2A). The
130 effect of HER2 overexpression on all proteins was also quantified (Fig 2B). Interestingly, of those

131  changes, the 4h time-point showed the largest changes in phosphorylation when HER2 levels are still
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8
quite low. Although HER2 protein expression is still low, some of these downstream changes might

be present at later timepoints as part of the evolution process.

The low levels of HER2 activation at early time points may closely mimic, at least partially, the early
signalling changes occurring in HER2 positive breast cancer patients. The signalling changes of low
level HER2 induction has not been performed to date. We re-analysed this data by decreasing the
significance threshold to log2fold change > 0.5, FDR corrected p-value of < 0.05 for HER2 expression,
but not significantly changing for GFP (Phospho_supplementary_data). This analysis revealed

HER2

significant changes in phosphorylation in 1045 phosphopeptides over all timepoints in MCF10A

cells, where the number of phosphosites increased in a time-dependent manner (Supplementary Fig

1C).

Using the DAVID Functional Annotation Tool (Huang da, Sherman and Lempicki, 2009), and filtering
for all significant changes (log2 fold change > 0.5, FDR corrected p-value of < 0.05) in all the time-
points analysed, we identified that mitogen-activated protein kinase (MAPK) signalling pathway to
be one of the most enriched cascades in our system (Supplementary Fig 1D). The idea that signalling
has direct effects on chromatin has already been known, whereby receptor tyrosine kinases can
relay extracellular signals by signal transduction pathways to the chromatin (Schreiber and
Bernstein, 2002). Signalling pathways, particularly MAPK cascades, elicit modification of chromatin
through various transcription factors and chromatin regulators (Clayton and Mahadevan, 2003;
Pogna, Clayton and Mahadevan, 2010). Activation of the MAPK pathway ultimately leads to the
phosphorylation of transcription factors, which is crucial for gene activation (Treisman, 1996). We
hypothesised that the differentially regulated transcription factors and chromatin regulators
identified in the phosphoproteomic screen are likely to contribute to chromatin changes mediating
the transformed phenotypes. Indeed, our phosphoproteomic analysis revealed significant changes in
various transcription factors known to affect chromatin dynamics (Supplementary Fig 1E). These

chromatin regulators included SIRT1, SOX13, POU2F1, and multiple residues on POL2RA and NCOR1.
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9
In particular, the phosphorylation of JUN at residue S73 could be reconciled by a model in which
phosphorylation of JUN triggers dissociation of histone deacetylases (HDACs) and facilitates the
rearrangement of chromatin structure (Wolter et al., 2008). Based on these results, we then set out
to assess, in an unbiased manner, the effects that signalling changes have on the chromatin

organisation.
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Figure 2

(A) Volcano plots depicting the phosphoproteome upon HER2 protein expression at 0.5-hour, 4 hours, and 7-hour time-points
compared to control cells. The statistical significance is shown as (log2 fold change for HER2 > 1.5, p-value < 0.05, and log2 fold change
for GFP < 5, p value of > 0.05). The plot contains those phosphosites that are significantly changing upon HER2 protein induction but
not significantly changing in the GFP cells at the same time. Those with the highest increase or decrease in fold change are labelled.

N=3.

(B) Bar graph depicting the number of detected phosphosites increasing or decreasing in phosphorylation in the phosphoproteomic

analysis at the indicated time-points analysed. The statistical significance is shown as (log2 fold change for HER2 > 1.5, p-value < 0.05,

and log2 fold change for GFP < 5, p value of > 0.05).

HER2

(C) Differential accessibility (log2 fold change > 0.5, FDR corrected p-value of < 0.05) between MCF10A™"* and control cells, plotted
against the mean reads per region. Cells were grown in 3D cell culture from 0-48 hours and ATAC-seq performed on their acini.

Heatmap shows chromatin accessibility across all time points for each replicate in cells expressing HER2 or GFP (controls). N=3.

(D) Fraction of total regions that are differentially accessible (up peaks) or inaccessible (down peaks) in early or late type comparisons.
“Early” time-points represents Oh, 1h, 4h, and 7h data combined. “Late” time point represents 24h and 48h time-points combined.

Log2fold > 2, FDR corrected p-value < 0.05.

(E) GO categories for biological process for differential peaks that are significantly up ((log2fold change > 0.5, FDR corrected p-value <

HER2 CTRL

0.05) for the Early MCF10A™" / Early MCF10A™ ™ cells.

164

165
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12
Identification of two distinct chromatin accessibility landscapes within HER2 induced

transformation

To investigate the interplay between signal transduction pathways and chromatin dynamics, we
used an assay of transposase-accessible chromatin using sequencing (ATAC-seq) to determine the
genome-wide chromatin accessibility landscape in the acini of MCF10A cells in a time-dependent
manner (0-48 hours) by isolating cells from 3D cell culture. Principal component analysis (PCA)
separated the samples into two groups, “early” (Oh, 1h, 4h, and 7h time-points) and “late” (24h and
48h time-points) (Supplementary Fig 1F). We selected these conditions with the aim to encompass
time-points relevant to both types of analysis. The Oh, 4h and 7h time-points were chosen to
characterise early chromatin changes triggered by signalling. The late conditions were selected to
detect the resulting delayed chromatin changes occurring later in the process of transformation. We

identified 17,868 significant changes between MCF10AHER?

cells relative to control cells (TO starting
population before HER2 protein induction) over the time course, which showed an increase in
accessibility in MCF10A"®®? cells relative to controls (Fig 2C & supplementary Fig 2A). We assessed
differential accessibility between early and late groups and observed that a much larger fraction of
regions, with > 2-fold difference relative to TO, were enriched in the early group compared to in the
late group (75% vs 44%, respectively, Fig 2D). Conversely, only ~2.9% of peaks were >4-fold more
accessible in the early group and ~6.5% in the late group, which we define as “hyper-accessible”
chromatin states (Supplementary Fig 2A). Even though the numbers of hyper-accessible versus
hypo-accessible regions (which lose accessibility > 4-fold) did not show a stark difference, the overall
number of accessible regions following HER2 expression outnumbered inaccessible regions. This
shows that there is an increase in chromatin accessibility during the early stages of transformation
(Fig 2D). Therefore, this might suggest that the first adaptive response to oncogenic HER2 signalling

is altered chromatin accessibility to induce differential gene expression. Subsequently, the changes

in chromatin accessibility even out in the later time points, with the number of hypo-accessible
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191 regions even exceeding the hyper-accessible ones at late time points, which could indicate that cells

192 have reached an equilibrium. (Supplementary Fig 2A).

193 Next, we performed functional enrichment analyses [Gene Ontology (GO) terms] for upregulated
194 peaks in the early HER2 signature (Fig 2E). The regions with increased chromatin accessibility at all
195 times analysed were enriched for GO terms associated with response to transforming growth factor,
196  cell-cell adhesion, epithelial cell proliferation, morphogenesis, and regulation of neural precursor
197  cells. The differentially accessible regions upstream of the transcriptional start site (TSS) were largely
198  gene distal, with relatively few promoter-proximal regions (Fig 3A). To probe how the observed

199  changes in cell signalling can underlie transcriptional and/or epigenetic control during cellular

200 transformation, we examined transcription factor binding motifs that were significantly enriched in
201  relation to all differential ATAC-seq peaks. The most significantly enriched motifs in the accessible
202  chromatin regions as a result of perturbed HER2 expression were CEBP, HLF, ATF4, and CHOP

203 (Supplementary Fig 2B). We also observed significant enrichment of motifs for all the time-points
204  analysed for inaccessible peaks corresponding to closed regions, which included ATF3, AP-1, BATF,
205 FRA1, JUNB, FRA2, and NFkB (Fig 3B). Previously it has been shown that enrichment of AP-1 family
206 member motifs is associated with increased accessibility (Hardy et al., 2016). There was some

207  overlap between the family members of transcription factors identified in the phosphoproteomic
208  screen and ATAC-seq motif analysis including NFkB, JUN, ATF1, JUND, and AP-1 (Supplementary Fig
209  2C). The transcription factors found in our motif analysis associated with accessible chromatin are
210 known to be involved in several cancer types including breast, lung, endometrial and prostate

211  cancers with a more aggressive phenotype (Detry et al., 2008).

212  We next examined whether peaks were shared between those that were opening (more accessible)
213  and those that were closing (less accessible) between the early and late groups. We found that there
214  was a small overlap between early and late inaccessible peaks but none between the accessible

215 peaks (Fig 3C). This suggests that increasing accessibility is dynamic during transformation, and that
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sites with early loss in accessibility relative to TO could potentially have driving roles in the
population drift. We further examined the genomic distribution of the differentially inaccessible
chromatin of the overlapping regions, which showed most genomic regions were associated with
two nearby genes (Supplementary Fig 2D). Namely, some of the common differential regions
correlated with genomic location of FBN2, whose genomic chromosomal coordinates were found to
be matching with the promoter region of the FBN2 gene. This gene was found to have aberrant
promoter methylation in a number of cancers (Hibi et al., 2012) (Supplementary Fig 2E). Other
regions included RIMS2, known to be associated with particularly aggressive breast cancers (Zhang,
L., Liu and Zhu, 2021) and APIP, which binds HER3 receptor, leading to the heterodimerisation
between HER2-HER3 and resulting in sustained activation of downstream signalling (Hong et al.,
2016). No differentially accessible region was found to be promoter proximal, as all the regions were

at least 5 kb upstream of the transcriptional start site (TSS) (Supplementary Fig 2F).

To elucidate the heterogeneity in gene expression between subpopulations of cells in light of the
pervasive chromatin opening we identified, we performed single-cell RNA-seq following induction of
HER2 overexpression over 72 hours. Cells were grouped according to their time-point by UMAP
dimensional reduction. Although there is no distinct separation between the time-points, there is a

trend in clustering of MCF10A“™"

versus HER2 expressing cells (Supplementary Fig 3A). Seurat
clustering found differentially expressed features and separated them into four groups, with cluster
0 enriching in the MCF10A“™" population, wand cluster 1 associating with the highest HER2
expression (Supplementary Fig 3B). As expected, we observed a time-dependent increase in HER2
gene expression (Supplementary Fig 3C). There is a consensus that high HER2 expression is
associated with stem-like phenotype (Oliveras-Ferraros et al., 2010), however, much controversy
remains on whether stemness and high-grade tumours are highly correlated with each other. Some
studies have suggested a strong correlation between stemness and high oncogene expression, while

others reveal little relationship (Poli et al., 2018; Simeckova et al., 2019). We identified clear

transcriptional signatures of oncogenes associated with breast cancer progression such as the time-
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242  dependent increase of ALDOA (a gene that increases in vitro spheroid formation and increases
243 abundance of cancer stem cells) (Fig 3D and Supplementary Fig 3D); LAMB3, which mediates
244  invasive and proliferative behaviours by PI3K-AKT signalling pathway (Zhang, H. et al., 2019), as well
245  asthe decrease of genes like MUC1 conversely upon HER2 overexpression, whose downregulation is
246  linked to stem-like phenotype (Stingl, 2009a). While the expression of ID3 is also associated with
247  stemness (Huang et al., 2019) this pattern was not found in our data, suggesting that these

248 processes overlap only partially.

249  Genome browser tracks of early and late HER2 samples show the relative accessibility of some

250 regions associated with the indicated gene, with arrow marked regions indicating differentially open
251  regions (Fig 3E). Ferritin heavy chain (FTH1) gene, which displays sharp decline upon HER2

252  expression (Fig 3E & supplementary Fig 3D) is also associated with inaccessible chromatin, as shown
253 by the scRNA-seq and ATAC-seq datasets. Low FTH1 expression is known to make breast cancer cells
254 radiosensitive, and its higher expression is correlated with radioresistance (Tirinato et al., 2021). An
255 in-depth analysis of FTH1 expression in HER2 positive clinical samples may improve the efficacy of

256 radiation treatments.
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Figure 3

(A) Distance to closest transcriptional start sites (TSSs) of all differentially accessible regions in the early and late cell types. The graphs
represents only those regions that are upstream of the TSS. “Open sea” refers to regions that are at least 50 kb or more upstream of
the TSS.

HER2

(B) Enrichment of transcription factor recognition sequences in differential ATAC-seq peaks comparing MCF10A™" and control cells

based on HOMER analysis. Down peaks = log2fold < -2, FDR corrected p-value value < 0.05.

(C) Venn diagram showing the number of differentially accessible regions that are shared between the up (open) and down (closed)
peaks in the early and late samples. Up peaks = log2fold >2, FDR corrected p-value < 0.05. Down peaks = log2fold < -2, FDR corrected p-
value value < 0.05.

(D) Single cell RNA sequencing was performed in 2D cell culture on MCF10A cells with HER2 induction from 0 to 72 hours (3 days).
Heatmap summarises some of the most highly and lowly expressed genes with the induction of HER2 gene.

(E) Insertion tracks of samples at example regions. This signal is an average signal of 3 replicates of combined time-points into either
“early” samples or “late” samples. Differentially open regions are marked with arrows.
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Sustained low HER2 expression facilitates dedifferentiation and confers stem-like traits

HER2

MCF10A cells exhibited heterogeneous capacity for anchorage-independent growth when

measured by their ability to form colonies in semi-solid medium, in that a significant proportion of

HER2

MCF10A cells were able to form cell aggregates, with a > 2-fold increase in colony forming units

compared to control cells (Fig 1E). We hypothesised that cells possessing the ability to form colonies
under anchorage-independent growth conditions are a selection of aggressive cells out of the total
number of cells seeded. Conversely, the proliferative but non-malignant cells that often dominate
any heterogeneous parental cell line would be selected against under these conditions. We
evaluated whether anchorage-independent growth correlated with reprogramming-associated
heterogeneity by testing the expression of proteins found in mammary epithelial stem cell hierarchy
by flow cytometry (Stingl, 2009b), in which it has been shown that breast stem cells are
characterised by MUC1™®, EpCAM'®", and CD24"" expression (Fig 4A). We therefore evaluated
whether HER2 overexpression could enrich for cells with functional stem-like properties based on

HER2
cells, as a

these three markers and found that this stem-like phenotype is enriched in MCF10A
large proportion of cells lost the expression of MUC1, EpCAM, and CD24 (Fig 4B, Supplementary Fig
3E, and supplementary Fig 4). Since our population is heterogeneous due to differing number of
copies of the lentiviral HER2 construct, and we have the same amount of doxycycline used to induce
the oncogene, the upper threshold of expression of HER2 will depend on the transgene copy
number. We therefore hypothesised that stem-like markers would be positively correlated with
HER2 levels in our heterogeneous population, i.e., cells having many HER2 copies would also be
more likely to express stem-like markers. Surprisingly, we found that cells expressing relatively low
HER2 levels had the most pronounced stem-like phenotype compared to other flow sorted
populations of cells with increasing levels of HER2 (Fig 4B). We confirmed the different levels of

HER2 protein expression after sorting cells into three compartments of low, medium, and high HER2

expression by western blotting, which correlated as expected (Fig 4C). Next, to determine the
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286  transformational potential of these cell types by measuring anchorage-independent growth, we flow

HER2

287  sorted MCF10A cells into the three different cell populations and paradoxically found that low

288 HER2 expressing cells had increased transformational potential relative to the other populations of
289  sorted cells (Fig 4D). We thought that high HER2 cells may be undergoing oncogene-induced

290 senescence (OIS), thus resulting in reduced colony formation compared to other cell types. To

291  confirm this, we measured proteins implicated in OIS but found no significant increase in OIS

292 markers in the high HER2 cells compared to other populations, indicating other biological effects
293 being responsible for the lower capacity in anchorage-independent growth of high HER2 expressing
294  cells (Supplementary Fig 3F). It is possible that high oncogene expression induces cancer cells to
295  dormancy that is associated with loss of ability to self-replicate and differentiate (Bellovin, Das and

296 Felsher, 2013).

297  Since we found that chromatin opening was the feature associated with early signalling to chromatin
298 response, we wanted to know if this was reflected in the phenotypic heterogeneity, in particular low
299  versus high HER2 levels. To this end, we used ATAC-seq to determine the genome-wide chromatin

CTRL

300  accessibility landscape in the five different populations of cells (MCF10A™ ™, low HER2, medium

301 HER2, high HER2 and MCF10A"ER? cells). We analysed these data by comparing each cell type to the

302 control cells (MCF10AS™"

) and comparing the percentage of differentially accessible regions

303 between the cell types. We found that low HER2 expressing cells exhibited the highest percentage of
304 chromatin opening compared to other cell populations (Fig 4E), confirming that the phenotypes

305  associated with invasiveness and anchorage independent growth were driven by molecular features
306 in stem-like cells and opening of chromatin. To put the magnitude of these chromatin differences in
307 context, i.e., the differential accessibility between low HER2 and high HER2 expressing cells, we

308 found that a dramatic ~95% of peaks were accessible in low HER2 cells. Conversely, only ~42% of the

309 peaks were open (accessible) in the high HER2 cells. Overall, these data indicate that a sharp

310 increase in HER2, which may result in triggering cell intrinsic defensive systems, whereas a low-level
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sustained presence of HER2 can shift cell identity, via chromatin remodelling, towards tumour-

promoting phenotypes.

We found that a subset of these scRNAseg-unique differentially expressed genes that were either
upregulated or downregulated in multiple time-points were also associated with heterogeneity of
breast cancer, related to cancer progression and stem cells (Fig 4F). For example, expression of
HMGAI1, which is known to promote breast cancer angiogenesis through the transcriptional activity
of FOXM1 (Zanin et al., 2019), increased in a time dependent manner (Fig 4F). On the other hand,
expression of FOS, a pro-proliferative transcription factor, which has been validated in breast
tumour samples and is highly expressed in relapse samples and treatment failures (Vendrell et al.,
2008) was found to be downregulated at all time points (Fig 4F). Intriguingly, high proliferation rates
as a result of FOS expression can lead to improved outcomes for patients with breast cancer, as it
could lead to higher apoptosis-effector gene expression (Fisler et al., 2018). Our data also show the
time-dependent increase of EFHD2, a gene linked with EMT transition and metastasis (Fan et al.,
2017). MED24, a subunit for the mediator complex of RNA polymerase Il, is known to be a
downstream target of HER2 and may be a critical gene required for cancer development (Liu et al.,

2019).
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Figure 4

(A) Proposed simplified breast epithelial hierarchy present in human mammary glands.

(B) Cells were analysed by flow cytometry and HER2 positive cells were separated into three subpopulations of low, medium, and high
HER2 overexpression as indicated. The enrichment of stem markers is shown as a proportion of the total number of cells exhibiting
MUC1 “® and EpCAM ™ phenotype. The proportion of cells shown here show the overlap between MUC1 -ve and EpCAM -ve cells, all

of which were subsequently 100% CD24 -ve. N=3.

(C) MCF10A"™*? cells were flow sorted into the labelled subtypes and HER2 expression analysis by western blot in MCF10A cells. GAPDH
was used as a loading control. The bottom 20% of HER2 expressing cells were labelled as “HER2 low” cells (blue), the top 20% of HER2
expressing cells were labelled as “HER2 high” cells (red). The middle population of 35% were labelled as “HER2 med” (orange). HER2

negative cells are highlighted in green based on HER2 negative control cells. N=3.

(D) HER2 expression was induced for 3 days, and cells were sorted based on HER2 expression into low, medium, and high HER2
expression. 5000 cells from each condition were plated into ultra-pure agarose to investigate there in vitro transformative potential.
Results are plotted as box plots from three biological replicates. Student t-test was performed to compare “HER2 med” and “HER2
high” groups to the “HER2 low” group, p-values are displayed on the graph. One-way anova test was performed to show statistical

significance. N=3.

(E) MCF10A"™" were sorted into the three subtypes. ATAC-seq libraries were prepared and sequenced. DiffBind was used to analyse

the differentially accessible regions and plotted as percentage of open or close regions. N=3.

(F) Heatmap shows genes of interest that are consistently differentially expressed in at least 3 of the 4 time-points analysed upon HER2
overexpression. Blue rectangles show genes that are downregulated, red rectangles represent genes that are upregulated. The white
rectangles show lack of differential expression for that specific time-point. Only those genes are listed here if the statistical significance

had an FDR corrected p-value of < 0.05. Importance of genes highlighted in red are mentioned in the text.

328

329 Discussion

330 In this study we addressed the question of what the earliest molecular changes are at the interface
331 between increasing oncogenic HER2 signalling and chromatin accessibility in a non-transformed
332 breast epithelial cell line. Overexpression of the HER2 oncogene in breast epithelial cells resulted in

333  some unexpected changes in cellular phenotypes. Namely, we observed an inverse relationship
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between HER2 levels and tumourigenic properties in vitro, where cells expressing a sub-threshold
amount of HER2 protein exhibited increased anchorage-independent growth. This was also
associated with features of dedifferentiation towards breast stem cell identity. Among the expected

features, MCF10AMER?

cells underwent in vitro transformation as evidenced by increased anchorage-
independent growth accompanied by the formation of spindle-like conformations in 3D cell culture
(Fig 1B and D). These findings are concordant with other studies where loss of cell polarity following

HER2 overexpression has been described (Ortega-Cava and et al, 2011; Hartman Z., 2012; Xiang and

Muthuswamy, 2006b).

We propose that a sub-threshold level of HER2 protein has the ability to elicit activation of signalling
pathways that directly impact on chromatin to drive dedifferentiation and survival and to enhance
transformation. Although high levels of oncogenic expression are an important biomarker in
diagnosing HER2 positive breast cancer, our data support the hypothesis that even low levels of
HER2 protein expression can be associated with disease aggressiveness, poor patient outcome and
therapeutic resistance (Gilcrease et al., 2009). The mechanism of why low HER2 expressing cells can
be aggressive and its prognostic value has not been sufficiently evaluated. Our data show that the
subset of low HER2 expressing cells likely use changes in chromatin state as their route for cellular
transformation (Fig 4E); the accessible chromatin induced by low level HER2 signalling may
continuously predispose cells to secondary additional hits required for metastasis and therapeutic
resistance (Denny et al., 2016). The resulting chromatin changes via low HER2 expression may create

a lasting and highly transformative state.

Across the different subtypes of breast cancers, and in particular HER2 positive breast cancer, loss of
differentiation is associated with lower patient survival and aggressiveness (Margaryan et al., 2017,
Pupa SM.,, et al. 2021, 2021). However, in low HER2 expressing cells the correlation between
dedifferentiation and aggressiveness remains unclear. Stem marker signatures drive cancer growth,

and their inhibition delays it (Rudin et al., 2012). Several known stem markers, including the EpCAM,
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359 MUC1 and CD44 signatures, promotes transformation and tumour progression (Stingl, 2009). Our
360 data suggest an alternative model in which dedifferentiation is paradoxically driven by low levels of
361 HER2 protein expression and creates a programme of stem cell marker expression that drives

362  transformational ability (Fig 4B).

363 We observed leucine aminopeptidase 3 (LAP3) to be significantly activated in our phosphoproteomic

HER2

364  screen in all of the time-points analysed in MCF10A compared to MCF10A®%% cells (Fig 2A).

365 LAP3 is known to play a critical role in breast cancer cells by regulating migration, invasion and is

366  associated with metastasis (Fang et al., 2019). In addition, we found that phosphorylation of

367 nucleolar and coiled-body phosphoprotein 1 (NCOL1) at residue S622 was also significantly increased
368 all time-points (Fig 2A). This protein is found to be highly expressed in nasopharyngeal carcinomas
369 (NPC) (Hwang et al., 2009) and in breast cancer cells (Sacco et al., 2016). The consistent and highly
370  stable activation of these two proteins may serve as potential biomarkers for late-stage disease and
371 provide important targets for antimetastatic therapeutic targets. Furthermore, zinc finger protein
372 (ZFP36) is correlated with lower tumour grade breast cancer. Interestingly, we find that ZFP36 (5188)
373 is significantly activated in the 4- and 7-hour time-points but not in the earlier 30-minute time-points
374  (Fig 2A), indicating that low HER2 expressing cells prefer a programme of signalling phosphosites

375  associated with worse patient outcome (Canzoneri et al., 2020).

376  The morphological changes in breast cancer models are often used to indicate the high

377  transformational characteristics of those cells (Petsalaki E. et al., 2021). We found that proteins
378  associated with aggressive basal-like phenotype were found to be increased in our

379 phosphoproteomic screen, which included ADGRA2 (51079) and DENNDA4C (S1250). This shows that
380 the morphological changes observed in our system (Fig 1B) were likely due to HER2 induced

381 transformation.

382  ltis possible that the intrinsic heterogeneity found within the tumour population may be preventing

383 specific patterns from emerging in a bulk RNA-seq analysis. It is known that differential
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downregulation of IFITM family members is associated with resistance maintenance following anti-
HER2 therapy, trastuzumab (Wang et al., 2019). Our single cell RNA-seq data reveal downregulation
of IFITM3 within 24 hours of HER2 overexpression, that is maintained until at least 72 hours, which
could show that this does not decrease as a result of resistance but may predispose resistance to
therapies at the very early stage of disease. Overall, our data show the power of combining genome-
wide molecular approaches using an in vitro transformation model system to uncover subtle but
relevant variations in cellular states. Given the dramatic remodelling of the chromatin state driven
by a single factor in HER2 positive breast cancer, we speculate that other cancer types may also
feature similar mechanisms of cellular transformation through chromatin remodelling. Cataloguing
early chromatin changes can emerge as a promising therapeutic target, with a particular focus on

early and low HER2 induced alterations in breast cancer.

Metastasis is multi-step, low probability process, in which primary cells must invade the local tissue
and extravasate into a distant site. Our work shows that low HER2 expressing cells gain
transformational ability through de-differentiation and dramatic chromatin remodelling. This model
could be further extended to assess how low HER2-driven changes in chromatin state are used as a
route for metastasis in in vivo models, and if low loss of differentiation correlates with

aggressiveness in more physiologically relevant models.


https://doi.org/10.1101/2022.09.06.506760
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.06.506760; this version posted September 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

available under aCC-BY 4.0 International license.

26

Materials and Methods

Cell culture

The immortalised human mammary epithelial cell line MCF10A was obtained from the American
Type Culture Collection (ATCC) and grown under recommended conditions. Briefly, MCF10A cell
medium consists of Dulbecco’s Modified Eagle’s Medium (DMEM/F12) (SIGMA #D8347)
supplemented with 5% Horse Serum (SIGMA #H1138), 0.5 pug/mL Hydrocortisone (SIGMA #H0888),
20 ng/mL Epidermal Growth Factor (EGF) (SIGMA #E4127), 100 ng/mL Cholera Toxin (SIGMA

#C8052), 10 pg/mL Insulin (SIGMA #i9278) and 1X Pen/Strep.

HEK293T cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) (SIGMA#D5796) in

10% foetal bovine serum (FBS) with 1X Pen/Strep.

For 3D overlay cell cultures, cells were grown in chamber wells in a mixture of matrigel (CORNING
#356230) and collagen (CORNING #11563550), which were mixed with 0.1M NaOH and 10X PBS, as
previously described (Xiang and Muthuswamy, 2006). To collect cells from 3D cell cultures, cell
recovery solution (CORNING #354253) was used at 4°C for 30 to 60 minutes according to the
manufacturer’s instructions. Staining 3D acini were fixed with 4% paraformaldehyde (PFA). Acini
were permeabilised with 0.5% Triton-X and blocked in 10% goat serum in PBS-Tween. Acini were
stained with Phalloidin dye overnight at 4°C. The detachable chambers were removed, and acini
mounted in mounting media reagent and allowed to dry in the dark at room temperature. Once

dried, slides were visualised using a fluorescence microscope.

Vectors and Viral infections

To generate HER2 inducible MCF10A cell line (Carter et al., 2017), we first transiently transfected
HEK293T cells using jetPRIME transfection reagent (POLYPLUS #114-15). The inducible HER2
construct (ADDGENE #46948) alongside pMD2.G (ADDGENE #12259) [envelope plasmid], and of
pCMV delta R8.2 (ADDGENE #12263) [packaging plasmid] were transfected into 90% confluent

HEK293T cells for 24 hours. Lentiviral particles were harvested by centrifugation and early passage
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MCF10A cells were infected for 48 hours. Cells were then flow sorted based on GFP expression to

obtain a pure population.

Western blotting

Cells were harvested and lysed in RIPA buffer containing protease and phosphatase inhibitors.
Lysates were mixed with sample loading buffer and proteins were resolved on sodium dodecyl
sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred onto PVDF membranes.
Membranes were blocked in 5% milk, and antibodies were incubated overnight in 5% BSA solution.
Antibodies used include HER2 (CELLSIGNALLING #2165), GAPDH (CELLSIGNALLING #2118), p53
(CELLSIGNALLING #2527), p27 (CELLSIGNALLING #3836), p21 (CELLSIGNALLING #2947), Tubulin

(ABCAM #7291), Anti-rabbit secondary (Amersham ECL Rabbit IgG, HRP-linked whole Ab #NA934).

Human samples were obtained from Barts Cancer Institute tissue bank, where human samples were

used, informed consent was obtained from all individual participants included in the study.

Flow cytometry and flow sorting

Cultured cells were detached from plates with trypsin and stained with 2% horse serum. Cells were
then stained with the following conjugated antibodies: HER2 (BD BIOSCIECNES #745299, 1:100),
EpCAM (BD BIOSCIENCES #347200, 1:40), MUC1 (BD BIOSCIENCES #743410, 1:50), CD24
(BIOLEGEND #311135, 1:50) for 20 minutes at room temperature. Cells were washed in 1 mL of 2%
horse serum and then resuspended in DAPI buffer. Stained cells were analysed on LSR Fortessa. For
cell sorting, cells were stained with the antibodies of interest and isolated using ARIA fusion cell

sorter.

ATAC-seq library preparation and differential analysis

5x10° cells were directly recovered from cell culture by trypsin from 2D cell culture or by using the
recovery solution (CORNING #354253) for cells grown in either 2D or 3D cell culture. ATAC-seq

libraries were generated as described previously (Buenrostro et al., 2015), with minor amendments.
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We performed 10 initial PCR amplification cycles followed by direct purification of the transposed
DNA, without performing qPCR to calculate the additional numbers of required cycles. Sequencing
data was aligned to the human genome (grch38) using bowtie2. Peaks were called on each biological
replicate of all ATAC-seq reads using MACS2, and putative copy number and mitochondrial regions
were removed. Peak dataset for differential analysis was generated by applying a threshold using a
desired fold-change and a —log10 transformed FDR adjusted p-value. Differential accessibility was
assessed using DiffBind and regions were called differentially accessible based on log2Fold change

and FDR p-value.

Phosphoproteomic sample preparation

For phosphoproteomic experiments, cells were grown in 2D cell cultures. Cell pellets were lysed
using 8M urea lysis buffer (containing phosphatase inhibitors). The amount of protein in the lysates
was quantified by BCA assay. 250 pg from each sample were digested into peptides with
immobilised TPCK-trypsin beads (Thermo Fisher Scientific #20230) at 37°C overnight. Phosphorylated
peptides were enriched from total peptides using TiO2 chromatography, as reported previously
(Montoya et al., 2011; Larsen et al., 2005). Finally, peptides were snap frozen and dried in a
SpeedVac. Dried peptides were dissolved in 0.1% TFA and analysed by LC-MS/MS on Q Exactive plus
mass spectrometer (Thermo Fisher Scientific). Peptide identification was performed using the
Mascot search engine (Casado and Cutillas, 2011). Allowed variable modifications were
phosphorylation on Ser, Thr and Tyr, and oxidation of Met, and the Pescal software (Casado and
Cutillas, 2011) and (Cutillas and Vanhaesebroeck, 2007) was used to quantify the peptides. Kinase-
substrate enrichment analysis (KSEA) (Casado et al., 2013) was used to determine kinase activities.
The intensity values were calculated by determining the peak of each individual extracted ion
chromatograms (XIC) and plotted as heatmaps. The resulting quantitative data were transferred and
visualised in Microsoft Excel. The significance (log2 fold change < -0.5-fold, FDR corrected p-value of

< 0.05 for downregulated phosphosites and log2 fold change > 0.5-fold, FDR corrected p- value of <
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0.05 for the upregulated phosphosites) of each phosphosite was annotated by an asterisk; we used
the “filter” function on excel to filter out those phosphosites that were not significant. All of the
significant MCF10A® data was filtered out, whilst simultaneously filtering out non-significant data
for the MCF10A" " cells, giving us significant changes in MCF10A"®*? cells that are not significantly
changing in the MCF10A®" cells. The number of phosphosites was determined by the number of
columns as each column contains one phosphosite, unless overlapping sites were present, in which

case they were manually counted.

Migration/Invasion assays

Chilled matrigel or collagen mixture was directly pipetted on the centre of 8 um pore size transwell
inserts (MILLICELL #MCEP12H48) that were placed into a 12-well plate, and allowed to solidify at
37°C. Meanwhile, cells were trypsinised and pipetted onto the transwell inserts — which were either
coated with matrix or left uncoated — and cultured for 16 hours. Highly migratory/invasive cells were
stained with 0.05% of crystal violet dye. Images of random regions were taken using a standard light

microscope and quantified using imageJ.

Soft agar colony formation assays

A 0.8% base layer was formed in plates using ultra-pure culture grade agarose (THERMOFISHER
#16500500) allowed to settle at room temperature. 5000 cells per well were mixed with 0.3%
agarose and plated evenly, drop-wise, on top of the base layer. Media was changed every 2 days for
3 weeks. Colonies were fixed using 4% paraformaldehyde (PFA) and permeabilised using 100%
methanol. Colonies were stained using 0.05% crystal violet dye and images were taken using a
dissecting microscope. Binary masks were applied to each of the images and thresholding
parameters for the diameter ranging from 10um 100um were set on Imagel. Colonies were counted
using Imagel only if they satisfied criteria above the threshold values, and colony counts were then

manually checked and adjusted if necessary.
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Single cell RNA seq

MCF10A cells were induced with 1ug/ml of doxycycline 0, 7, 24, 48 and 72 hours in 2D cell cultures.
Cells were then detached using TrypLE (Gibco) and collected in 1X DPBS (Gibco). After one wash in
1X DPBS, cells were resuspended in 2% BSA-DPBS at a concentration of 10,000 cells/pl. 500 000 cells
(50ul) were blocked with 10l TruStain FcX blocking solution (BioLegend). Each treatment group was
stained with 0.5ul of specific Totalseg-A Hashtag antibodies and 0.5ul of TotalSeq™-A0133 anti-
human CD340 (ERBB2/HER2) protein expression antibody. Cells were washed 3 times with 1 ml 2%
BSA-DPBS and resuspended to a concentration of ~10,000 cells/ul. Equal volumes of each treatment
group were pooled, and cell pool was assessed for cell concentration and viability. Single-cell cDNA,
protein expression (ADT) and hashtag (HTO) libraries were generated using Chromium Single Cell 3’
version 2 reagents (10x genomics and Biolegend) per manufacturers’ protocols. Single-end
sequencing of libraries was performed by Novogene Corporation Inc. on a Novaseq 6000 (lllumina)

sequencer with HTO libraries constituting 5% of the sample.

Single cell data was run through the 10X cellRanger pipeline to produce counts tables for gene
expression counts, HTO counts for sample identification and ADT counts for HER2 expression. Cells
were identified and assigned to a timepoint using the HTO counts table and the HTODemux method
in Seurat. To exclude cells that did not respond to the doxycycline induction, treated cells with less
than 35 counts of the ERBB2/HER2 expression tag were filtered out. The remaining gene expression
data was run through Seurat’s basic data processing pipeline. The data was normalized, scaled, and
the effects of cell cycle were regressed out using Seurat’s cell cycle regression strategy. The data was
then run through principal component analysis (PCA). The principal components were used to
identify clusters and UMAP was run for visualization. Two different differential expression analyses
were run using Seurat’s FindAllIMarkers function, one across the different clusters and one across the

different timepoints.
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Supplementary Figure 1

(A) An internal quality control (QC) for phosphoproteomic analysis. HER2 phosphorylation modification (T701) increases in a time
dependent manner. EGFR [HER1] (Y1110), a family member of HER2, also becomes marginally activated in a time dependent manner

compared to control cells. [* FDR corrected p-value of < 0.05].

(B) Western blot analysis of HER2 protein in a time-dependent manner in the early time-points upon induction with the same

concentration of doxycycline (1ug/ml) from Oh to 7.5h. GAPDH was used as a loading control. N=1.

(C) Bar graph depicting the number of detected phosphosites increasing or decreasing in phosphorylation in the phosphoproteomic
analysis at the time-points analysed. Significance is shown to log2fold change > 0.5, FDR corrected p-value of < 0.05. This graph shows

analysis performed using lower statistical threshold compared to figure 2B.

(D) Signalling pathway analysis of the early immediate changes in transformation. Signalling pathway analysis using the DAVID
Bioinformatics tool of the differentially phosphorylated events at all time points investigated upon HER2 protein induction is shown.

Significance threshold applied here; log2fold change > 0.5, FDR corrected p-value of < 0.05.

(E) Identification of transcription factors and chromatin regulators. A list of transcription factors and chromatin regulators becoming
differentially phosphorylated upon HER2 expression in at least one time-point upon HER2 overexpression but are not significantly
changing in GFP-transduced MCF10A cells. [* FDR corrected p-value of < 0.05, **FDR corrected p-value of < 0.001, *** FDR corrected

p-value of < 0.001].

(F) Principal component analysis (PCA) of all samples used in this study. Samples are colour-coded by cell type.
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Supplementary Figure 2

(A) Differential accessibility (log2fold change > 0.5, FDR corrected p-value of < 0.05) shown by MA plot between MCF10A"* and
control cells, plotted against the mean reads per region. Cells were grown in 3D cell culture from 0-48 hours and ATAC-seq performed
on their acini. “Early” time-points represents Oh, 1h, 4h, and 7h data combined. “Late” time point represents 24h and 48h time-points
combined. Each dot represents a region, with the blue dots representing a log2fold change of at least 0.5.

HER2

(B) Enrichment of transcription factor recognition sequences in differential ATAC-seq peaks comparing MCF10A™ " and control cells

based on HOMER analysis using the accessible (up) peaks.

(C) Motif analysis from ATAC-seq reveal shared transcription factors identified in the phosphoproteomic screen. A dot plot of the

overrepresented motifs in differentially accessible regions with the size of the circle representing the % of differentially accessible

regions that contain the motif in the accessible and inaccessible peaks.

(D) GREAT database analysis showing the number/percentage of genes associated per region of the common regions found between

the early down and late down peaks in the ATAC-seq data.

(E) Integrative Genome Browser (IGV) panel displaying regions associated with the indicated genes. Red boxes show chromosomal

coordinates (128,340,997-128,341,448) found in ATAC-seq data, which associates with the promoter region of FBN2.

(F) Absolute distance to closest transcription start sites (TSSs) of the common differentially inaccessible regions.
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Supplementary figure 3
(A) UMAP plot showing clustering based on different time points. UMAP plot displaying clusters of genes with similar features. UMAP

plot showing a range of HER2 gene expression.

(B) Bar graph showing Seurat clustering which defines clustering via differential gene expression.

(C) Violin plot shows HER2 levels increase in a time-dependent manner with HER2 expression.

(D) Single cell RNA sequencing was performed on MCF10A cells with HER2 induction from 0 to 72 hours (3 days). Line graph shows R
values as a measure of linear relationship between HER2 expression increase (with time) and some genes of interest that either

increase in expression or decrease in with HER2 expression

(E) Cells were analysed by flow cytometry and HER2 positive cells were separated into three subpopulations of low, medium, and high
HER2 overexpression as indicated. The enrichment of stem markers is shown as a proportion of the total number of cells exhibiting

MUC1 ™¢, EpCAM " and CD24 " phenotype.

(F) Western blot of the indicated proteins known to have higher expression in cells that have undergone OIS. Protein lysates were

prepared from cells sorted based on HER2 expression. HER2 was induced in cells for 3 days (MCF10A"

) and then FACS separated
based on HER2 expression into three different subtypes (low, medium, and high HER2 expressing cells). GAPDH and Tubulin were used

as loading controls. N=3.
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Supplementary figure 4

Cells were analysed by flow cytometry and HER2 positive cells were separated into three subpopulations of low, medium, and high
HER2 overexpression as indicated. The enrichment of stem markers is shown as a proportion of the total number of cells exhibiting

MUC1 -ve and EpCAM -ve and CD24 -ve phenotype. The blue arrows indicate step-by-step analysis of the HER2 subpopulations, and the

respective enrichment of breast stem markers in each subtype.
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ATAC-seq bioinformatics analysis pipeline

The ATAC-seq data was provided as FASTQ files. Quality control of raw sequencing read files was
performed using FastQC. lllumina adapter trimming was done using Cutadapt; settings: Cutadapt -a
CTGTCTCTTATACACATCT -A CTGTCTCTTATACACATCT -o out.1.fastq -p out.2.fastg. Trimmed reads
were aligned using the human genome, Genome Reference Consortium Human Build 38 patch
release 13 (GRCh38.p13), using bowtie2, and a SAM file was obtained; setting: bowtie2 index -1
trimmed FASTQ file -2 trimmed FASTQ file =S 1.sam. The resulting sam files were converted into
binary bam files; setting: Samtools view —Sb in.samfile > out.bamfile and sorted; setting: Samtools
sort in.bamfile -o out.bamfile and indexed; setting: Samtools index in.bamfile. To ensure an
improved mapping quality, we removed mitochondrial DNA; setting: Samtools view —h in.bamfile |
removeChrom - - chrM | Samtools view - b - > out.bamfile. PCR duplicates were removed from the
files using Picard tools; setting: Java -jar picard.jar MarkDuplicates I=in.bamfile O= out.bamfile

M=dups.txt REMOVE_DUPLICATES=true VALIDATION_STRIGENCY=LENIENT.

For viewing samples on genome bowser or assessing reproducibility and data exploration, all
samples were “down sampled” to the same number of reads; setting: samtools view -b -s
[downsampling_ratio] in.bam > out.downsampled.bam. Peaks calling was done for each individual
non-downsampled file with MACS2 “callpeak”; setting: MACS2 callpeak -t inbamfile -f BAMPE -n
in.bamfile -g ce —keep-dup all. These files were then analysed using DiffBind for differential analysis
on R. For each sample, a path to the peaks and the bam file were listed in Microsoft Excel and loaded
in R; setting: db.object = dba(sampleSheet="name_of_sample_sheet"). Then, the next step was to
take the alignment files and compute count information for each of the peaks/regions in the
consensus set; setting: db.object = dba.contrast(db.object, categories=DBA_TREATMENT,
block=DBA_CONDITION, minMembers = 2); setting: db.object =
dba.analyze(db.object,bParallel=TRUE,method=DBA_ALL_METHODS). R was used to plot the

differential changes such as MA plot with an appropriate threshold; setting:
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dba.plotMA(db.object,th="0.05",method=DBA_DESEQ?2). Significant changes could then be saved
from up or down peaks e.g.; setting: up_peaks_db.object.SigChanges.0.05FDR <-
db.object.SigChanges.”0.05FDR”[db.object.SigChanges.0.05FDRSFold > 0,] and counted using the
command line and can be plotted as percentage in Prism or Microsoft excel in the form of a

chart/graph.
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