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Overexpression of the human epidermal growth factor 2 (HER2) protein in breast cancer patients is a 13 
predictor of poor prognosis and resistance to therapies. Despite significant advances in the 14 
development of targeted therapies and improvements in the 5-year survival rate of metastatic 15 
HER2-positive breast cancer patients, a better understanding of the disease at an early stage is 16 
needed to prevent its progression. Here, we used an inducible breast cancer transformation system 17 
that allows investigation of early molecular changes at high temporal resolution. HER2 18 
overexpression to similar levels as those observed in a subtype of HER2 positive breast cancer 19 
patients induced transformation of MCF10A cells and resulted in gross morphological changes, 20 
increased anchorage-independent growth of cells, and altered transcriptional programme of genes 21 
associated with oncogenic transformation. Global phosphoproteomic analysis during the first few 22 
hours of HER2 induction predominantly detected an increase in protein phosphorylation. 23 
Intriguingly, this correlated with a wave of chromatin opening, as measured by ATAC-seq on acini 24 
isolated from 3D cell culture. We observed that HER2 overexpression leads to reprogramming of 25 
many distal regulatory regions and promotes reprogramming-associated heterogeneity. We found 26 
that a subset of cells acquired a dedifferentiated breast stem-like phenotype, making them likely 27 
candidates for malignant transformation. Our data show that this population of cells, which 28 
counterintuitively enriches for relatively low HER2 protein abundance and increased chromatin 29 
accessibility, possesses transformational drive, resulting in increased anchorage-independent growth 30 
in vitro compared to cells not displaying a stem-like phenotype. Our data provide a discovery 31 
platform for signalling to chromatin pathways in HER2-driven cancers, offering an opportunity for 32 
biomarker discovery and identification of novel drug targets. 33 

  34 
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Introduction 35 

Metastasis is the main cause of cancer deaths but understanding the root cause of malignant 36 

transformation remains poorly understood. Many questions remain unanswered as to what triggers 37 

cancer formation beyond DNA mutations in pre-cancerous tissue (Ciccarelli and DeGregori, 2020). 38 

Perturbed signalling due to dysregulated phosphorylation of oncogenic proteins is known to alter 39 

pathway activity and contributes to cellular transformation (Sever and Brugge, 2015; Hanahan and 40 

Weinberg, 2011). Similarly, cell identity and cellular plasticity are phenotypic outcomes of the 41 

signalling and epigenetic information in both healthy and disease states (Wainwright and Scaffidi, 42 

2017). Therefore, understanding how an altered signalling environment affects the epigenome and 43 

shifts cellular states is crucial in furthering our understanding of cancer formation. Integrating 44 

systematic analyses of phosphorylation sites (phosphosites) from global phosphoproteomics data 45 

with DNA/RNA sequencing data helps to better understand the functional significance of the 46 

signalling effects on chromatin changes. Phenotypic changes that occur during cancer development 47 

are driven by changes in the gene expression patterns, which are themselves governed by regulatory 48 

states encoded within the nucleoprotein structure of chromatin (Voss and Hager, 2014). The 49 

alterations in chromatin structure that lead to differential accessibility to transcription factor binding 50 

have been identified as perhaps some of the most relevant genomic characteristics correlated with 51 

biological activity at a specific locus (Thurman et al., 2012). Nevertheless, the specific regulatory 52 

changes driving the transition from normal to transformed cells remain largely unknown. 53 

HER2 positive breast cancer accounts for approximately 20% of all breast cancers (Wang and Xu, 54 

2019). The ability of HER2 positive breast cancer cells to leave the primary tumour site and establish 55 

inoperable metastasis is a major cause of death and a serious impediment to successful therapy. 56 

Molecular analysis of HER2 positive breast cancer progression is limited by the inability to 57 

characterise and catalogue early changes at the onset of transformation. Conventional in vitro 58 

models (Pradeep et al., 2012; Gangadhara et al., 2016) can recapitulate the genetics, morphology, 59 

therapeutic response and highly transformative nature of the disease. However, they do not allow 60 
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for the fine tuning and temporal control required to fully assess cellular events leading up to 61 

malignant transformation. To overcome this issue, we developed an inducible in vitro model of 62 

human breast cancer to investigate the mechanisms that drive early transformational changes in 63 

HER2 positive breast cancer. The strength of an inducible system lies in that it can recapitulate key 64 

transitional states in cancer progression in a controlled manner, permitting isolation of cancer-like 65 

cells at defined stages of transformation to catalogue early tumour promoting changes. 66 

 67 

Here, we analysed HER2 protein overexpression in a normal diploid, oestrogen, and progesterone 68 

negative breast epithelial cell line, MCF10A (Qu et al., 2015) to identify global cell signalling and 69 

chromatin accessibility changes in the first few hours and days of cellular transformation. In 70 

particular, we explored how cell signalling interacts with chromatin to induce transformation as a 71 

result of HER2 pathway activation.  72 

Conditional HER2 overexpression promotes in vitro transformation 73 

HER2 overexpression in non-tumourigenic MCF10A cells is a well-established breast cancer model 74 

and has been used in numerous in vitro studies (Muthuswamy et al., 2001; Imbalzano et al., 2009). 75 

To recapitulate the early transformational events and the stochastic nature of early breast cancer 76 

development, we generated a controllable in vitro model system by stably transducing a 77 

doxycycline-inducible HER2 construct in MCF10A cells (Carter et al., 2017). This model allows for the 78 

generation of transformed phenotypes in a synchronised and time-controlled manner and is useful 79 

for investigating early transformational events using multi-omic analysis (Fig 1A). To analyse the 80 

range of HER2 expression at the protein level, we cultured cells for 24 hours in five different 81 

concentrations of doxycycline, using ranges that have been used previously in inducible expression 82 

studies with other proteins (Baron et al., 1995; Leitner et al., 2014). In our model, a 24-hour 83 

induction with 1µg/ml doxycycline resulted in strong HER2 protein expression (Fig 1B). When grown 84 

in three-dimensional cell cultures, control MCF10A cells (MCF10ACTRL) formed regular, spherical acini, 85 
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whereas a majority of MCF10AHER2 acini were misshapen, with cells budding into the surrounding 86 

matrix (Fig 1C). HER2 overexpression resulted in significantly increased in vitro migratory and 87 

invasive potential, as measured by transwell assays (Fig 1D) (Xiang and Muthuswamy, 2006; Paszek 88 

and Weaver, 2004). Furthermore, MCF10AHER2 cells displayed a hallmark of in vitro transformation, 89 

with increased anchorage-independent growth as compared to control cells (Fig 1E). Collectively, 90 

these results show that HER2 overexpression in MCF10A cells results in phenotypes associated with 91 

in vitro transformation. Aberrant expression of HER2 is known to induce phenotypes associated with 92 

in vitro transformation (Seton-Rogers et al., 2004) and evokes aggressive tumorgenicity and 93 

metastasis in vivo (Alajati et al., 2013). 94 
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Figure 1 

(A) Schematic of multi-omics analysis and soft functional assays performed with their respective timelines as MCF10A cells undergo in 

vitro transformation. 

 

(B) HER2 protein expression analysis by western blot in MCF10A cells infected with inducible HER2 lentiviral particles and cultured in 

various concentration of doxycycline for 24 hours. GAPDH was used as a loading control. N=2. 

 

(C) MCF10AHER2 and control cells were cultured in 3D cell culture over 9 days. Control cells formed spherical acini which increased in 

size over time. MCF10AHER2 cells formed flat projecting cells of complex masses, typical of transformed cells. Images captured by 

confocal, LSM 510 microscope. Scare bars represent 50µm. N=3. 

 

(D) Cell migration and invasion was analysed through the 8µm pores of transwell membranes over 16-hour period of chemotactic 

migration towards full serum media. The ability of cell invasion was measured in collagen or matrigel coated transwells. Migration 

ability was measured in using uncoated wells. Statistical significance was calculated using student’s t-test. Significance is shown as * for 

p-value < 0.05, ** for p-value < 0.01. N=3. 

 

(E) Colony growth of MCF10AHER2 and control cells in 0.3% ultra-pure agarose over 3 weeks. ImageJ analysis of 5 different size colonies 

were quantified. Representative microscopic images of colonies stained with crystal violet after three weeks. Statistical significance 

was calculated using student’s t-test). Significance is shown as * for p-value < 0.05, ** for p-value < 0.01, *** for p-value < 0.001. 

Images are at 1.6x magnification. Scale bars represent 1000μm. N=3. 

 96 

Phosphoproteomic analysis following HER2 overexpression uncovers signalling changes associated 97 

with cancer  98 

HER2 is a tyrosine kinase known to activate a plethora of signalling pathways downstream. To 99 

investigate the dynamic changes in the phosphoproteome over time, and the order in which they 100 

occur during the phased progression from normal to transformed cells upon HER2 overexpression, 101 

we performed an unbiased phosphoproteomic analysis of the early phosphorylation events (at 0.5h, 102 

4h and 7h post HER2 protein induction). The experiment was carried out under standard growth 103 

conditions in 2D cell culture, and without serum starving, to be closer to physiological conditions. A 104 

GFP-transduced MCF10A cell line was used as a control for doxycycline-only induced changes 105 

(MCF10AGFP). As expected, we observed an increase in HER2 phosphorylation levels in HER2 at T701 106 
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phosphosite and its family member EGFR (HER1) at Y1110 phosphosite (Supplementary Fig 1A). To 107 

filter changes relevant to HER2 induction, we selected only those phosphosites that were 108 

significantly changed upon HER2 expression but were not significantly changed in the MCF10AGFP 109 

cells with a stringent cut-off at log2 fold change for HER2 > 1.5, p-value < 0.05, and log2 fold change 110 

for GFP < 5, p-value of > 0.05 (Fig 2A). From this refined dataset some potential novel HER2 targets 111 

include NUCKS1 (S73) and NUCKS1 (S75), a frequently phosphorylated protein at multiple sites, 112 

significantly downregulated at the 4-hour time point (Fig 2A) when HER2 protein levels are still quite 113 

low as measured by western blotting (Supplementary Fig 1B). This protein is known to play a 114 

significant role in modulating chromatin conformation (Parplys et al., 2015; Grundt et al., 2004), and 115 

regulates events such as replication, transcription, and chromatin condensation (Ostvold, Anne C., et 116 

al, 2001). NUCKS1 phosphorylation at various phosphosites is also known to correlate with breast 117 

cancer resistance to retinoic acid, known to have anti-proliferative capacity to several breast cancer 118 

cell lines (Carrier et al., 2016). Other novel candidates include DDX21, with multiple phosphorylation 119 

serine sites at (S164, S168, and S171), which were also significantly enriched in our 120 

phosphoproteomic analysis (Fig 2A). Since we aimed at investigating the link between signalling and 121 

chromatin, we observed that DDX21-bound promoters on average have increased enrichment of 122 

active chromatin marks (H3K4me3, H3K27ac, and H39Kac) but are depleted for repressive marks 123 

(H3K27me3 and H3K9me3) and promoter-distal (H3K4me1) marks (Calo et al., 2015). Some highly 124 

phosphorylated phosphosites, which have not been shown to be associated with HER2 protein 125 

expression include homeodomain-interacting protein kinase 1 (HIPK1), which is highly expressed in 126 

invasive breast cancers (Park et al., 2012). SHC1(S246), TTC7A(S182), CDC42EP3(S89), and 127 

RIPOR1(S351) were also significantly and stably activated in all the time-points screened, suggesting 128 

they may have important roles in the biology of HER2 expressing breast cancer cells (Fig 2A). The 129 

effect of HER2 overexpression on all proteins was also quantified (Fig 2B). Interestingly, of those 130 

changes, the 4h time-point showed the largest changes in phosphorylation when HER2 levels are still 131 
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quite low. Although HER2 protein expression is still low, some of these downstream changes might 132 

be present at later timepoints as part of the evolution process. 133 

 The low levels of HER2 activation at early time points may closely mimic, at least partially, the early 134 

signalling changes occurring in HER2 positive breast cancer patients. The signalling changes of low 135 

level HER2 induction has not been performed to date. We re-analysed this data by decreasing the 136 

significance threshold to log2fold change > 0.5, FDR corrected p-value of < 0.05 for HER2 expression, 137 

but not significantly changing for GFP (Phospho_supplementary_data). This analysis revealed 138 

significant changes in phosphorylation in 1045 phosphopeptides over all timepoints in MCF10AHER2 139 

cells, where the number of phosphosites increased in a time-dependent manner (Supplementary Fig 140 

1C).   141 

Using the DAVID Functional Annotation Tool (Huang da, Sherman and Lempicki, 2009), and filtering 142 

for all significant changes (log2 fold change > 0.5, FDR corrected p-value of < 0.05) in all the time-143 

points analysed, we identified that mitogen-activated protein kinase (MAPK) signalling pathway to 144 

be one of the most enriched cascades in our system (Supplementary Fig 1D). The idea that signalling 145 

has direct effects on chromatin has already been known, whereby receptor tyrosine kinases can 146 

relay extracellular signals by signal transduction pathways to the chromatin (Schreiber and 147 

Bernstein, 2002). Signalling pathways, particularly MAPK cascades, elicit modification of chromatin 148 

through various transcription factors and chromatin regulators (Clayton and Mahadevan, 2003; 149 

Pogna, Clayton and Mahadevan, 2010). Activation of the MAPK pathway ultimately leads to the 150 

phosphorylation of transcription factors, which is crucial for gene activation (Treisman, 1996). We 151 

hypothesised that the differentially regulated transcription factors and chromatin regulators 152 

identified in the phosphoproteomic screen are likely to contribute to chromatin changes mediating 153 

the transformed phenotypes. Indeed, our phosphoproteomic analysis revealed significant changes in 154 

various transcription factors known to affect chromatin dynamics (Supplementary Fig 1E). These 155 

chromatin regulators included SIRT1, SOX13, POU2F1, and multiple residues on POL2RA and NCOR1. 156 
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In particular, the phosphorylation of JUN at residue S73 could be reconciled by a model in which 157 

phosphorylation of JUN triggers dissociation of histone deacetylases (HDACs) and facilitates the 158 

rearrangement of chromatin structure (Wolter et al., 2008). Based on these results, we then set out 159 

to assess, in an unbiased manner, the effects that signalling changes have on the chromatin 160 

organisation. 161 
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Figure 2 

(A) Volcano plots depicting the phosphoproteome upon HER2 protein expression at 0.5-hour, 4 hours, and 7-hour time-points 

compared to control cells. The statistical significance is shown as (log2 fold change for HER2 > 1.5, p-value < 0.05, and log2 fold change 

for GFP < 5, p value of > 0.05).  The plot contains those phosphosites that are significantly changing upon HER2 protein induction but 

not significantly changing in the GFP cells at the same time. Those with the highest increase or decrease in fold change are labelled. 

N=3.  

 

(B) Bar graph depicting the number of detected phosphosites increasing or decreasing in phosphorylation in the phosphoproteomic 

analysis at the indicated time-points analysed. The statistical significance is shown as (log2 fold change for HER2 > 1.5, p-value < 0.05, 

and log2 fold change for GFP < 5, p value of > 0.05).   

 

(C) Differential accessibility (log2 fold change > 0.5, FDR corrected p-value of < 0.05) between MCF10AHER2 and control cells, plotted 

against the mean reads per region. Cells were grown in 3D cell culture from 0-48 hours and ATAC-seq performed on their acini. 

Heatmap shows chromatin accessibility across all time points for each replicate in cells expressing HER2 or GFP (controls). N=3. 

  

(D) Fraction of total regions that are differentially accessible (up peaks) or inaccessible (down peaks) in early or late type comparisons.  

“Early” time-points represents 0h, 1h, 4h, and 7h data combined. “Late” time point represents 24h and 48h time-points combined.  

Log2fold > 2, FDR corrected p-value < 0.05.  

 

(E) GO categories for biological process for differential peaks that are significantly up ((log2fold change > 0.5, FDR corrected p-value < 

0.05) for the Early MCF10AHER2 / Early MCF10ACTRL cells. 

 164 

  165 
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Identification of two distinct chromatin accessibility landscapes within HER2 induced 166 

transformation 167 

To investigate the interplay between signal transduction pathways and chromatin dynamics, we 168 

used an assay of transposase-accessible chromatin using sequencing (ATAC-seq) to determine the 169 

genome-wide chromatin accessibility landscape in the acini of MCF10A cells in a time-dependent 170 

manner (0-48 hours) by isolating cells from 3D cell culture. Principal component analysis (PCA) 171 

separated the samples into two groups, “early” (0h, 1h, 4h, and 7h time-points) and “late” (24h and 172 

48h time-points) (Supplementary Fig 1F). We selected these conditions with the aim to encompass 173 

time-points relevant to both types of analysis. The 0h, 4h and 7h time-points were chosen to 174 

characterise early chromatin changes triggered by signalling. The late conditions were selected to 175 

detect the resulting delayed chromatin changes occurring later in the process of transformation. We 176 

identified 17,868 significant changes between MCF10AHER2 cells relative to control cells (T0 starting 177 

population before HER2 protein induction) over the time course, which showed an increase in 178 

accessibility in MCF10AHER2 cells relative to controls (Fig 2C & supplementary Fig 2A). We assessed 179 

differential accessibility between early and late groups and observed that a much larger fraction of 180 

regions, with > 2-fold difference relative to T0, were enriched in the early group compared to in the 181 

late group (75% vs 44%, respectively, Fig 2D). Conversely, only ~2.9% of peaks were >4-fold more 182 

accessible in the early group and ~6.5% in the late group, which we define as “hyper-accessible” 183 

chromatin states (Supplementary Fig 2A). Even though the numbers of hyper-accessible versus 184 

hypo-accessible regions (which lose accessibility > 4-fold) did not show a stark difference, the overall 185 

number of accessible regions following HER2 expression outnumbered inaccessible regions. This 186 

shows that there is an increase in chromatin accessibility during the early stages of transformation 187 

(Fig 2D). Therefore, this might suggest that the first adaptive response to oncogenic HER2 signalling 188 

is altered chromatin accessibility to induce differential gene expression. Subsequently, the changes 189 

in chromatin accessibility even out in the later time points, with the number of hypo-accessible 190 
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regions even exceeding the hyper-accessible ones at late time points, which could indicate that cells 191 

have reached an equilibrium. (Supplementary Fig 2A).  192 

Next, we performed functional enrichment analyses [Gene Ontology (GO) terms] for upregulated 193 

peaks in the early HER2 signature (Fig 2E). The regions with increased chromatin accessibility at all 194 

times analysed were enriched for GO terms associated with response to transforming growth factor, 195 

cell-cell adhesion, epithelial cell proliferation, morphogenesis, and regulation of neural precursor 196 

cells. The differentially accessible regions upstream of the transcriptional start site (TSS) were largely 197 

gene distal, with relatively few promoter-proximal regions (Fig 3A). To probe how the observed 198 

changes in cell signalling can underlie transcriptional and/or epigenetic control during cellular 199 

transformation, we examined transcription factor binding motifs that were significantly enriched in 200 

relation to all differential ATAC-seq peaks. The most significantly enriched motifs in the accessible 201 

chromatin regions as a result of perturbed HER2 expression were CEBP, HLF, ATF4, and CHOP 202 

(Supplementary Fig 2B). We also observed significant enrichment of motifs for all the time-points 203 

analysed for inaccessible peaks corresponding to closed regions, which included ATF3, AP-1, BATF, 204 

FRA1, JUNB, FRA2, and NFkB (Fig 3B). Previously it has been shown that enrichment of AP-1 family 205 

member motifs is associated with increased accessibility (Hardy et al., 2016). There was some 206 

overlap between the family members of transcription factors identified in the phosphoproteomic 207 

screen and ATAC-seq motif analysis including NFkB, JUN, ATF1, JUND, and AP-1 (Supplementary Fig 208 

2C). The transcription factors found in our motif analysis associated with accessible chromatin are 209 

known to be involved in several cancer types including breast, lung, endometrial and prostate 210 

cancers with a more aggressive phenotype (Detry et al., 2008).  211 

We next examined whether peaks were shared between those that were opening (more accessible) 212 

and those that were closing (less accessible) between the early and late groups. We found that there 213 

was a small overlap between early and late inaccessible peaks but none between the accessible 214 

peaks (Fig 3C). This suggests that increasing accessibility is dynamic during transformation, and that 215 
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sites with early loss in accessibility relative to T0 could potentially have driving roles in the 216 

population drift. We further examined the genomic distribution of the differentially inaccessible 217 

chromatin of the overlapping regions, which showed most genomic regions were associated with 218 

two nearby genes (Supplementary Fig 2D). Namely, some of the common differential regions 219 

correlated with genomic location of FBN2, whose genomic chromosomal coordinates were found to 220 

be matching with the promoter region of the FBN2 gene. This gene was found to have aberrant 221 

promoter methylation in a number of cancers (Hibi et al., 2012) (Supplementary Fig 2E). Other 222 

regions included RIMS2, known to be associated with particularly aggressive breast cancers (Zhang, 223 

L., Liu and Zhu, 2021) and APIP, which binds HER3 receptor, leading to the heterodimerisation 224 

between HER2-HER3 and resulting in sustained activation of downstream signalling (Hong et al., 225 

2016). No differentially accessible region was found to be promoter proximal, as all the regions were 226 

at least 5 kb upstream of the transcriptional start site (TSS) (Supplementary Fig 2F).  227 

To elucidate the heterogeneity in gene expression between subpopulations of cells in light of the 228 

pervasive chromatin opening we identified, we performed single-cell RNA-seq following induction of 229 

HER2 overexpression over 72 hours. Cells were grouped according to their time-point by UMAP 230 

dimensional reduction. Although there is no distinct separation between the time-points, there is a 231 

trend in clustering of MCF10ACTRL versus HER2 expressing cells (Supplementary Fig 3A). Seurat 232 

clustering found differentially expressed features and separated them into four groups, with cluster 233 

0 enriching in the MCF10ACTRL population, wand cluster 1 associating with the highest HER2 234 

expression (Supplementary Fig 3B). As expected, we observed a time-dependent increase in HER2 235 

gene expression (Supplementary Fig 3C). There is a consensus that high HER2 expression is 236 

associated with stem-like phenotype (Oliveras-Ferraros et al., 2010), however, much controversy 237 

remains on whether stemness and high-grade tumours are highly correlated with each other. Some 238 

studies have suggested a strong correlation between stemness and high oncogene expression, while 239 

others reveal little relationship (Poli et al., 2018; Simeckova et al., 2019). We identified clear 240 

transcriptional signatures of oncogenes associated with breast cancer progression such as the time-241 
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dependent increase of ALDOA (a gene that increases in vitro spheroid formation and increases 242 

abundance of cancer stem cells) (Fig 3D and Supplementary Fig 3D); LAMB3, which mediates 243 

invasive and proliferative behaviours by PI3K-AKT signalling pathway (Zhang, H. et al., 2019), as well 244 

as the decrease of genes like MUC1 conversely upon HER2 overexpression, whose downregulation is 245 

linked to stem-like phenotype (Stingl, 2009a). While the expression of ID3 is also associated with 246 

stemness  (Huang et al., 2019) this pattern was not found in our data, suggesting that these 247 

processes overlap only partially. 248 

Genome browser tracks of early and late HER2 samples show the relative accessibility of some 249 

regions associated with the indicated gene, with arrow marked regions indicating differentially open 250 

regions (Fig 3E). Ferritin heavy chain (FTH1) gene, which displays sharp decline upon HER2 251 

expression (Fig 3E & supplementary Fig 3D) is also associated with inaccessible chromatin, as shown 252 

by the scRNA-seq and ATAC-seq datasets. Low FTH1 expression is known to make breast cancer cells 253 

radiosensitive, and its higher expression is correlated with radioresistance  (Tirinato et al., 2021). An 254 

in-depth analysis of FTH1 expression in HER2 positive clinical samples may improve the efficacy of 255 

radiation treatments.  256 
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Figure 3 
 
(A) Distance to closest transcriptional start sites (TSSs) of all differentially accessible regions in the early and late cell types. The graphs 
represents only those regions that are upstream of the TSS. “Open sea” refers to regions that are at least 50 kb or more upstream of 
the TSS. 
 
(B) Enrichment of transcription factor recognition sequences in differential ATAC-seq peaks comparing MCF10AHER2 and control cells 
based on HOMER analysis. Down peaks = log2fold < -2, FDR corrected p-value value < 0.05. 
 
(C) Venn diagram showing the number of differentially accessible regions that are shared between the up (open) and down (closed) 
peaks in the early and late samples. Up peaks = log2fold >2, FDR corrected p-value < 0.05. Down peaks = log2fold < -2, FDR corrected p-
value value < 0.05. 
 
(D) Single cell RNA sequencing was performed in 2D cell culture on MCF10A cells with HER2 induction from 0 to 72 hours (3 days). 
Heatmap summarises some of the most highly and lowly expressed genes with the induction of HER2 gene. 
 
(E) Insertion tracks of samples at example regions. This signal is an average signal of 3 replicates of combined time-points into either 
“early” samples or “late” samples. Differentially open regions are marked with arrows.
 258 
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Sustained low HER2 expression facilitates dedifferentiation and confers stem-like traits 260 

 261 

MCF10AHER2 cells exhibited heterogeneous capacity for anchorage-independent growth when 262 

measured by their ability to form colonies in semi-solid medium, in that a significant proportion of 263 

MCF10AHER2 cells were able to form cell aggregates, with a > 2-fold increase in colony forming units 264 

compared to control cells (Fig 1E). We hypothesised that cells possessing the ability to form colonies 265 

under anchorage-independent growth conditions are a selection of aggressive cells out of the total 266 

number of cells seeded. Conversely, the proliferative but non-malignant cells that often dominate 267 

any heterogeneous parental cell line would be selected against under these conditions.  We 268 

evaluated whether anchorage-independent growth correlated with reprogramming-associated 269 

heterogeneity by testing the expression of proteins found in mammary epithelial stem cell hierarchy 270 

by flow cytometry (Stingl, 2009b), in which it has been shown that breast stem cells are 271 

characterised by MUC1-ve, EpCAMlow, and CD24low expression (Fig 4A). We therefore evaluated 272 

whether HER2 overexpression could enrich for cells with functional stem-like properties based on 273 

these three markers and found that this stem-like phenotype is enriched in MCF10AHER2 cells, as a 274 

large proportion of cells lost the expression of MUC1, EpCAM, and CD24 (Fig 4B, Supplementary Fig 275 

3E, and supplementary Fig 4). Since our population is heterogeneous due to differing number of 276 

copies of the lentiviral HER2 construct, and we have the same amount of doxycycline used to induce 277 

the oncogene, the upper threshold of expression of HER2 will depend on the transgene copy 278 

number. We therefore hypothesised that stem-like markers would be positively correlated with 279 

HER2 levels in our heterogeneous population, i.e., cells having many HER2 copies would also be 280 

more likely to express stem-like markers. Surprisingly, we found that cells expressing relatively low 281 

HER2 levels had the most pronounced stem-like phenotype compared to other flow sorted 282 

populations of cells with increasing levels of HER2 (Fig 4B). We confirmed the different levels of 283 

HER2 protein expression after sorting cells into three compartments of low, medium, and high HER2 284 

expression by western blotting, which correlated as expected (Fig 4C). Next, to determine the 285 
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transformational potential of these cell types by measuring anchorage-independent growth, we flow 286 

sorted MCF10AHER2 cells into the three different cell populations and paradoxically found that low 287 

HER2 expressing cells had increased transformational potential relative to the other populations of 288 

sorted cells (Fig 4D). We thought that high HER2 cells may be undergoing oncogene-induced 289 

senescence (OIS), thus resulting in reduced colony formation compared to other cell types. To 290 

confirm this, we measured proteins implicated in OIS but found no significant increase in OIS 291 

markers in the high HER2 cells compared to other populations, indicating other biological effects 292 

being responsible for the lower capacity in anchorage-independent growth of high HER2 expressing 293 

cells (Supplementary Fig 3F). It is possible that high oncogene expression induces cancer cells to 294 

dormancy that is associated with loss of ability to self-replicate and differentiate (Bellovin, Das and 295 

Felsher, 2013). 296 

Since we found that chromatin opening was the feature associated with early signalling to chromatin 297 

response, we wanted to know if this was reflected in the phenotypic heterogeneity, in particular low 298 

versus high HER2 levels. To this end, we used ATAC-seq to determine the genome-wide chromatin 299 

accessibility landscape in the five different populations of cells (MCF10ACTRL, low HER2, medium 300 

HER2, high HER2 and MCF10AHER2 cells). We analysed these data by comparing each cell type to the 301 

control cells (MCF10ACTRL) and comparing the percentage of differentially accessible regions 302 

between the cell types. We found that low HER2 expressing cells exhibited the highest percentage of 303 

chromatin opening compared to other cell populations (Fig 4E), confirming that the phenotypes 304 

associated with invasiveness and anchorage independent growth were driven by molecular features 305 

in stem-like cells and opening of chromatin. To put the magnitude of these chromatin differences in 306 

context, i.e., the differential accessibility between low HER2 and high HER2 expressing cells, we 307 

found that a dramatic ~95% of peaks were accessible in low HER2 cells. Conversely, only ~42% of the 308 

peaks were open (accessible) in the high HER2 cells. Overall, these data indicate that a sharp 309 

increase in HER2, which may result in triggering cell intrinsic defensive systems, whereas a low-level 310 
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sustained presence of HER2 can shift cell identity, via chromatin remodelling, towards tumour-311 

promoting phenotypes. 312 

We found that a subset of these scRNAseq-unique differentially expressed genes that were either 313 

upregulated or downregulated in multiple time-points were also associated with heterogeneity of 314 

breast cancer, related to cancer progression and stem cells (Fig 4F). For example, expression of 315 

HMGA1, which is known to promote breast cancer angiogenesis through the transcriptional activity 316 

of FOXM1  (Zanin et al., 2019), increased in a time dependent manner (Fig 4F). On the other hand, 317 

expression of FOS, a pro-proliferative transcription factor, which has been validated in breast 318 

tumour samples and is highly expressed in relapse samples and treatment failures (Vendrell et al., 319 

2008) was found to be downregulated at all time points (Fig 4F). Intriguingly, high proliferation rates 320 

as a result of FOS expression can lead to improved outcomes for patients with breast cancer, as it 321 

could lead to higher apoptosis-effector gene expression (Fisler et al., 2018). Our data also show the 322 

time-dependent increase of EFHD2, a gene linked with EMT transition and metastasis (Fan et al., 323 

2017). MED24, a subunit for the mediator complex of RNA polymerase II, is known to be a 324 

downstream target of HER2 and may be a critical gene required for cancer development (Liu et al., 325 

2019). 326 
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Figure 4 

(A) Proposed simplified breast epithelial hierarchy present in human mammary glands. 

 

(B) Cells were analysed by flow cytometry and HER2 positive cells were separated into three subpopulations of low, medium, and high 

HER2 overexpression as indicated. The enrichment of stem markers is shown as a proportion of the total number of cells exhibiting 

MUC1 -ve and EpCAM -ve phenotype. The proportion of cells shown here show the overlap between MUC1 -ve and EpCAM -ve cells, all 

of which were subsequently 100% CD24 -ve. N=3. 

 

(C) MCF10AHER2 cells were flow sorted into the labelled subtypes and HER2 expression analysis by western blot in MCF10A cells. GAPDH 

was used as a loading control. The bottom 20% of HER2 expressing cells were labelled as “HER2 low” cells (blue), the top 20% of HER2 

expressing cells were labelled as “HER2 high” cells (red). The middle population of 35% were labelled as “HER2 med” (orange).  HER2 

negative cells are highlighted in green based on HER2 negative control cells. N=3. 

 

(D) HER2 expression was induced for 3 days, and cells were sorted based on HER2 expression into low, medium, and high HER2 

expression. 5000 cells from each condition were plated into ultra-pure agarose to investigate there in vitro transformative potential. 

Results are plotted as box plots from three biological replicates. Student t-test was performed to compare “HER2 med” and “HER2 

high” groups to the “HER2 low” group, p-values are displayed on the graph. One-way anova test was performed to show statistical 

significance. N=3. 

 

(E) MCF10AHER2 were sorted into the three subtypes. ATAC-seq libraries were prepared and sequenced. DiffBind was used to analyse 

the differentially accessible regions and plotted as percentage of open or close regions. N=3. 

 

(F) Heatmap shows genes of interest that are consistently differentially expressed in at least 3 of the 4 time-points analysed upon HER2 

overexpression. Blue rectangles show genes that are downregulated, red rectangles represent genes that are upregulated. The white 

rectangles show lack of differential expression for that specific time-point. Only those genes are listed here if the statistical significance 

had an FDR corrected p-value of < 0.05. Importance of genes highlighted in red are mentioned in the text.  

 328 

Discussion 329 

In this study we addressed the question of what the earliest molecular changes are at the interface 330 

between increasing oncogenic HER2 signalling and chromatin accessibility in a non-transformed 331 

breast epithelial cell line. Overexpression of the HER2 oncogene in breast epithelial cells resulted in 332 

some unexpected changes in cellular phenotypes. Namely, we observed an inverse relationship 333 
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between HER2 levels and tumourigenic properties in vitro, where cells expressing a sub-threshold 334 

amount of HER2 protein exhibited increased anchorage-independent growth. This was also 335 

associated with features of dedifferentiation towards breast stem cell identity. Among the expected 336 

features, MCF10AHER2 cells underwent in vitro transformation as evidenced by increased anchorage-337 

independent growth accompanied by the formation of spindle-like conformations in 3D cell culture 338 

(Fig 1B and D). These findings are concordant with other studies where loss of cell polarity following 339 

HER2 overexpression has been described (Ortega-Cava and et al, 2011; Hartman Z., 2012; Xiang and 340 

Muthuswamy, 2006b).  341 

We propose that a sub-threshold level of HER2 protein has the ability to elicit activation of signalling 342 

pathways that directly impact on chromatin to drive dedifferentiation and survival and to enhance 343 

transformation. Although high levels of oncogenic expression are an important biomarker in 344 

diagnosing HER2 positive breast cancer, our data support the hypothesis that even low levels of 345 

HER2 protein expression can be associated with disease aggressiveness, poor patient outcome and 346 

therapeutic resistance (Gilcrease et al., 2009). The mechanism of why low HER2 expressing cells can 347 

be aggressive and its prognostic value has not been sufficiently evaluated. Our data show that the 348 

subset of low HER2 expressing cells likely use changes in chromatin state as their route for cellular 349 

transformation (Fig 4E); the accessible chromatin induced by low level HER2 signalling may 350 

continuously predispose cells to secondary additional hits required for metastasis and therapeutic 351 

resistance (Denny et al., 2016). The resulting chromatin changes via low HER2 expression may create 352 

a lasting and highly transformative state. 353 

Across the different subtypes of breast cancers, and in particular HER2 positive breast cancer, loss of 354 

differentiation is associated with lower patient survival and aggressiveness (Margaryan et al., 2017; 355 

Pupa SM., et al. 2021, 2021). However, in low HER2 expressing cells the correlation between 356 

dedifferentiation and aggressiveness remains unclear. Stem marker signatures drive cancer growth, 357 

and their inhibition delays it (Rudin et al., 2012).  Several known stem markers, including the EpCAM, 358 
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MUC1 and CD44 signatures, promotes transformation and tumour progression (Stingl, 2009). Our 359 

data suggest an alternative model in which dedifferentiation is paradoxically driven by low levels of 360 

HER2 protein expression and creates a programme of stem cell marker expression that drives 361 

transformational ability (Fig 4B).  362 

We observed leucine aminopeptidase 3 (LAP3) to be significantly activated in our phosphoproteomic 363 

screen in all of the time-points analysed in MCF10AHER2 compared to MCF10AGFP cells (Fig 2A). 364 

LAP3 is known to play a critical role in breast cancer cells by regulating migration, invasion and is 365 

associated with metastasis  (Fang et al., 2019). In addition, we found that phosphorylation of 366 

nucleolar and coiled-body phosphoprotein 1 (NCOL1) at residue S622 was also significantly increased 367 

all time-points (Fig 2A). This protein is found to be highly expressed in nasopharyngeal carcinomas 368 

(NPC)  (Hwang et al., 2009) and in breast cancer cells  (Sacco et al., 2016). The consistent and highly 369 

stable activation of these two proteins may serve as potential biomarkers for late-stage disease and 370 

provide important targets for antimetastatic therapeutic targets. Furthermore, zinc finger protein 371 

(ZFP36) is correlated with lower tumour grade breast cancer. Interestingly, we find that ZFP36 (S188) 372 

is significantly activated in the 4- and 7-hour time-points but not in the earlier 30-minute time-points 373 

(Fig 2A), indicating that low HER2 expressing cells prefer a programme of signalling phosphosites 374 

associated with worse patient outcome (Canzoneri et al., 2020). 375 

The morphological changes in breast cancer models are often used to indicate the high 376 

transformational characteristics of those cells (Petsalaki E. et al., 2021). We found that proteins 377 

associated with aggressive basal-like phenotype were found to be increased in our 378 

phosphoproteomic screen, which included ADGRA2 (S1079) and DENND4C (S1250). This shows that 379 

the morphological changes observed in our system (Fig 1B) were likely due to HER2 induced 380 

transformation.  381 

It is possible that the intrinsic heterogeneity found within the tumour population may be preventing 382 

specific patterns from emerging in a bulk RNA-seq analysis. It is known that differential 383 
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downregulation of IFITM family members is associated with resistance maintenance following anti-384 

HER2 therapy, trastuzumab  (Wang et al., 2019). Our single cell RNA-seq data reveal downregulation 385 

of IFITM3 within 24 hours of HER2 overexpression, that is maintained until at least 72 hours, which 386 

could show that this does not decrease as a result of resistance but may predispose resistance to 387 

therapies at the very early stage of disease. Overall, our data show the power of combining genome-388 

wide molecular approaches using an in vitro transformation model system to uncover subtle but 389 

relevant variations in cellular states. Given the dramatic remodelling of the chromatin state driven 390 

by a single factor in HER2 positive breast cancer, we speculate that other cancer types may also 391 

feature similar mechanisms of cellular transformation through chromatin remodelling. Cataloguing 392 

early chromatin changes can emerge as a promising therapeutic target, with a particular focus on 393 

early and low HER2 induced alterations in breast cancer. 394 

Metastasis is multi-step, low probability process, in which primary cells must invade the local tissue 395 

and extravasate into a distant site. Our work shows that low HER2 expressing cells gain 396 

transformational ability through de-differentiation and dramatic chromatin remodelling. This model 397 

could be further extended to assess how low HER2-driven changes in chromatin state are used as a 398 

route for metastasis in in vivo models, and if low loss of differentiation correlates with 399 

aggressiveness in more physiologically relevant models.   400 
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Materials and Methods 401 

Cell culture 402 

The immortalised human mammary epithelial cell line MCF10A was obtained from the American 403 

Type Culture Collection (ATCC) and grown under recommended conditions. Briefly, MCF10A cell 404 

medium consists of Dulbecco’s Modified Eagle’s Medium (DMEM/F12) (SIGMA #D8347) 405 

supplemented with 5% Horse Serum (SIGMA #H1138), 0.5 µg/mL Hydrocortisone (SIGMA #H0888), 406 

20 ng/mL Epidermal Growth Factor (EGF) (SIGMA #E4127), 100 ng/mL Cholera Toxin (SIGMA 407 

#C8052), 10 µg/mL Insulin (SIGMA #i9278) and 1X Pen/Strep. 408 

HEK293T cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) (SIGMA#D5796) in 409 

10% foetal bovine serum (FBS) with 1X Pen/Strep. 410 

For 3D overlay cell cultures, cells were grown in chamber wells in a mixture of matrigel (CORNING 411 

#356230) and collagen (CORNING #11563550), which were mixed with 0.1M NaOH and 10X PBS, as 412 

previously described  (Xiang and Muthuswamy, 2006).  To collect cells from 3D cell cultures, cell 413 

recovery solution (CORNING #354253) was used at 4°C for 30 to 60 minutes according to the 414 

manufacturer’s instructions. Staining 3D acini were fixed with 4% paraformaldehyde (PFA). Acini 415 

were permeabilised with 0.5% Triton-X and blocked in 10% goat serum in PBS-Tween. Acini were 416 

stained with Phalloidin dye overnight at 4°C. The detachable chambers were removed, and acini 417 

mounted in mounting media reagent and allowed to dry in the dark at room temperature. Once 418 

dried, slides were visualised using a fluorescence microscope. 419 

Vectors and Viral infections 420 

To generate HER2 inducible MCF10A cell line (Carter et al., 2017), we first transiently transfected 421 

HEK293T cells using jetPRIME transfection reagent (POLYPLUS #114-15). The inducible HER2 422 

construct (ADDGENE #46948) alongside pMD2.G (ADDGENE #12259) [envelope plasmid], and of 423 

pCMV delta R8.2 (ADDGENE #12263) [packaging plasmid] were transfected into 90% confluent 424 

HEK293T cells for 24 hours. Lentiviral particles were harvested by centrifugation and early passage 425 
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MCF10A cells were infected for 48 hours. Cells were then flow sorted based on GFP expression to 426 

obtain a pure population. 427 

Western blotting 428 

Cells were harvested and lysed in RIPA buffer containing protease and phosphatase inhibitors. 429 

Lysates were mixed with sample loading buffer and proteins were resolved on sodium dodecyl 430 

sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred onto PVDF membranes. 431 

Membranes were blocked in 5% milk, and antibodies were incubated overnight in 5% BSA solution. 432 

Antibodies used include HER2 (CELLSIGNALLING #2165), GAPDH (CELLSIGNALLING #2118), p53 433 

(CELLSIGNALLING #2527), p27 (CELLSIGNALLING #3836), p21 (CELLSIGNALLING #2947), Tubulin 434 

(ABCAM #7291), Anti-rabbit secondary (Amersham ECL Rabbit IgG, HRP-linked whole Ab #NA934). 435 

Human samples were obtained from Barts Cancer Institute tissue bank, where human samples were 436 

used, informed consent was obtained from all individual participants included in the study. 437 

Flow cytometry and flow sorting 438 

Cultured cells were detached from plates with trypsin and stained with 2% horse serum. Cells were 439 

then stained with the following conjugated antibodies: HER2 (BD BIOSCIECNES #745299, 1:100), 440 

EpCAM (BD BIOSCIENCES #347200, 1:40), MUC1 (BD BIOSCIENCES #743410, 1:50), CD24 441 

(BIOLEGEND #311135, 1:50) for 20 minutes at room temperature. Cells were washed in 1 mL of 2% 442 

horse serum and then resuspended in DAPI buffer. Stained cells were analysed on LSR Fortessa. For 443 

cell sorting, cells were stained with the antibodies of interest and isolated using ARIA fusion cell 444 

sorter. 445 

ATAC-seq library preparation and differential analysis 446 

5x105 cells were directly recovered from cell culture by trypsin from 2D cell culture or by using the 447 

recovery solution (CORNING #354253) for cells grown in either 2D or 3D cell culture. ATAC-seq 448 

libraries were generated as described previously (Buenrostro et al., 2015), with minor amendments. 449 
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We performed 10 initial PCR amplification cycles followed by direct purification of the transposed 450 

DNA, without performing qPCR to calculate the additional numbers of required cycles. Sequencing 451 

data was aligned to the human genome (grch38) using bowtie2. Peaks were called on each biological 452 

replicate of all ATAC-seq reads using MACS2, and putative copy number and mitochondrial regions 453 

were removed. Peak dataset for differential analysis was generated by applying a threshold using a 454 

desired fold-change and a –log10 transformed FDR adjusted p-value. Differential accessibility was 455 

assessed using DiffBind and regions were called differentially accessible based on log2Fold change 456 

and FDR p-value. 457 

Phosphoproteomic sample preparation 458 

For phosphoproteomic experiments, cells were grown in 2D cell cultures. Cell pellets were lysed 459 

using 8M urea lysis buffer (containing phosphatase inhibitors). The amount of protein in the lysates 460 

was quantified by BCA assay. 250 µg from each sample were digested into peptides with 461 

immobilised TPCK-trypsin beads (Thermo Fisher Scientific #20230) at 37˚C overnight. Phosphorylated 462 

peptides were enriched from total peptides using TiO2 chromatography, as reported previously 463 

(Montoya et al., 2011; Larsen et al., 2005). Finally, peptides were snap frozen and dried in a 464 

SpeedVac. Dried peptides were dissolved in 0.1% TFA and analysed by LC-MS/MS on Q Exactive plus 465 

mass spectrometer (Thermo Fisher Scientific). Peptide identification was performed using the 466 

Mascot search engine (Casado and Cutillas, 2011). Allowed variable modifications were 467 

phosphorylation on Ser, Thr and Tyr, and oxidation of Met, and the Pescal software (Casado and 468 

Cutillas, 2011) and (Cutillas and Vanhaesebroeck, 2007) was used to quantify the peptides. Kinase-469 

substrate enrichment analysis (KSEA) (Casado et al., 2013) was used to determine kinase activities. 470 

The intensity values were calculated by determining the peak of each individual extracted ion 471 

chromatograms (XIC) and plotted as heatmaps. The resulting quantitative data were transferred and 472 

visualised in Microsoft Excel. The significance (log2 fold change < -0.5-fold, FDR corrected p-value of 473 

< 0.05 for downregulated phosphosites and log2 fold change > 0.5-fold, FDR corrected p- value of < 474 
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0.05 for the upregulated phosphosites) of each phosphosite was annotated by an asterisk; we used 475 

the “filter” function on excel to filter out those phosphosites that were not significant. All of the 476 

significant MCF10AGFP data was filtered out, whilst simultaneously filtering out non-significant data 477 

for the MCF10AHER2 cells, giving us significant changes in MCF10AHER2 cells that are not significantly 478 

changing in the MCF10AGFP cells. The number of phosphosites was determined by the number of 479 

columns as each column contains one phosphosite, unless overlapping sites were present, in which 480 

case they were manually counted. 481 

Migration/Invasion assays 482 

Chilled matrigel or collagen mixture was directly pipetted on the centre of 8 μm pore size transwell 483 

inserts (MILLICELL #MCEP12H48) that were placed into a 12-well plate, and allowed to solidify at 484 

37°C. Meanwhile, cells were trypsinised and pipetted onto the transwell inserts – which were either 485 

coated with matrix or left uncoated – and cultured for 16 hours. Highly migratory/invasive cells were 486 

stained with 0.05% of crystal violet dye. Images of random regions were taken using a standard light 487 

microscope and quantified using imageJ. 488 

Soft agar colony formation assays 489 

A 0.8% base layer was formed in plates using ultra-pure culture grade agarose (THERMOFISHER 490 

#16500500) allowed to settle at room temperature. 5000 cells per well were mixed with 0.3% 491 

agarose and plated evenly, drop-wise, on top of the base layer. Media was changed every 2 days for 492 

3 weeks. Colonies were fixed using 4% paraformaldehyde (PFA) and permeabilised using 100% 493 

methanol. Colonies were stained using 0.05% crystal violet dye and images were taken using a 494 

dissecting microscope. Binary masks were applied to each of the images and thresholding 495 

parameters for the diameter ranging from 10um 100μm were set on ImageJ. Colonies were counted 496 

using ImageJ only if they satisfied criteria above the threshold values, and colony counts were then 497 

manually checked and adjusted if necessary. 498 
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Single cell RNA seq 499 

MCF10A cells were induced with 1μg/ml of doxycycline 0, 7, 24, 48 and 72 hours in 2D cell cultures. 500 

Cells were then detached using TrypLE (Gibco) and collected in 1X DPBS (Gibco). After one wash in 501 

1X DPBS, cells were resuspended in 2% BSA-DPBS at a concentration of 10,000 cells/μl. 500 000 cells 502 

(50μl) were blocked with 10μl TruStain FcX blocking solution (BioLegend). Each treatment group was 503 

stained with 0.5μl of specific Totalseq-A Hashtag antibodies and 0.5μl of TotalSeq™-A0133 anti-504 

human CD340 (ERBB2/HER2) protein expression antibody. Cells were washed 3 times with 1 ml 2% 505 

BSA-DPBS and resuspended to a concentration of ~10,000 cells/µl. Equal volumes of each treatment 506 

group were pooled, and cell pool was assessed for cell concentration and viability. Single-cell cDNA, 507 

protein expression (ADT) and hashtag (HTO) libraries were generated using Chromium Single Cell 3′ 508 

version 2 reagents (10x genomics and Biolegend) per manufacturers’ protocols. Single-end 509 

sequencing of libraries was performed by Novogene Corporation Inc. on a Novaseq 6000 (Illumina) 510 

sequencer with HTO libraries constituting 5% of the sample. 511 

  512 

Single cell data was run through the 10X cellRanger pipeline to produce counts tables for gene 513 

expression counts, HTO counts for sample identification and ADT counts for HER2 expression. Cells 514 

were identified and assigned to a timepoint using the HTO counts table and the HTODemux method 515 

in Seurat. To exclude cells that did not respond to the doxycycline induction, treated cells with less 516 

than 35 counts of the ERBB2/HER2 expression tag were filtered out. The remaining gene expression 517 

data was run through Seurat’s basic data processing pipeline. The data was normalized, scaled, and 518 

the effects of cell cycle were regressed out using Seurat’s cell cycle regression strategy. The data was 519 

then run through principal component analysis (PCA). The principal components were used to 520 

identify clusters and UMAP was run for visualization. Two different differential expression analyses 521 

were run using Seurat’s FindAllMarkers function, one across the different clusters and one across the 522 

different timepoints. 523 

 524 
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 531 

Supplementary Figure 1 

 

(A) An internal quality control (QC) for phosphoproteomic analysis. HER2 phosphorylation modification (T701) increases in a time 

dependent manner. EGFR [HER1] (Y1110), a family member of HER2, also becomes marginally activated in a time dependent manner 

compared to control cells. [* FDR corrected p-value of < 0.05].  

 

(B) Western blot analysis of HER2 protein in a time-dependent manner in the early time-points upon induction with the same 

concentration of doxycycline (1µg/ml) from 0h to 7.5h. GAPDH was used as a loading control. N=1. 

 

(C) Bar graph depicting the number of detected phosphosites increasing or decreasing in phosphorylation in the phosphoproteomic 

analysis at the time-points analysed. Significance is shown to log2fold change > 0.5, FDR corrected p-value of < 0.05. This graph shows 

analysis performed using lower statistical threshold compared to figure 2B. 

 

(D) Signalling pathway analysis of the early immediate changes in transformation. Signalling pathway analysis using the DAVID 

Bioinformatics tool of the differentially phosphorylated events at all time points investigated upon HER2 protein induction is shown. 

Significance threshold applied here; log2fold change > 0.5, FDR corrected p-value of < 0.05. 

 

(E) Identification of transcription factors and chromatin regulators. A list of transcription factors and chromatin regulators becoming 

differentially phosphorylated upon HER2 expression in at least one time-point upon HER2 overexpression but are not significantly 

changing in GFP-transduced MCF10A cells. [* FDR corrected p-value of < 0.05, **FDR corrected p-value of < 0.001, *** FDR corrected 

p-value of < 0.001]. 

 

(F) Principal component analysis (PCA) of all samples used in this study. Samples are colour-coded by cell type. 

 532 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2022. ; https://doi.org/10.1101/2022.09.06.506760doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.06.506760
http://creativecommons.org/licenses/by/4.0/


34 
 

 533 

 534 

 535 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2022. ; https://doi.org/10.1101/2022.09.06.506760doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.06.506760
http://creativecommons.org/licenses/by/4.0/


35 
 

 536 

Supplementary Figure 2 

 

(A) Differential accessibility (log2fold change > 0.5, FDR corrected p-value of < 0.05) shown by MA plot between MCF10AHER2 and 

control cells, plotted against the mean reads per region. Cells were grown in 3D cell culture from 0-48 hours and ATAC-seq performed 

on their acini.  “Early” time-points represents 0h, 1h, 4h, and 7h data combined. “Late” time point represents 24h and 48h time-points 

combined. Each dot represents a region, with the blue dots representing a log2fold change of at least 0.5.  

 

(B) Enrichment of transcription factor recognition sequences in differential ATAC-seq peaks comparing MCF10AHER2 and control cells 

based on HOMER analysis using the accessible (up) peaks. 

 

(C) Motif analysis from ATAC-seq reveal shared transcription factors identified in the phosphoproteomic screen. A dot plot of the 

overrepresented motifs in differentially accessible regions with the size of the circle representing the % of differentially accessible 

regions that contain the motif in the accessible and inaccessible peaks. 

 

(D) GREAT database analysis showing the number/percentage of genes associated per region of the common regions found between 

the early down and late down peaks in the ATAC-seq data. 

 

(E) Integrative Genome Browser (IGV) panel displaying regions associated with the indicated genes. Red boxes show chromosomal 

coordinates (128,340,997-128,341,448) found in ATAC-seq data, which associates with the promoter region of FBN2. 

 

(F) Absolute distance to closest transcription start sites (TSSs) of the common differentially inaccessible regions. 
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Supplementary figure 3 

(A) UMAP plot showing clustering based on different time points. UMAP plot displaying clusters of genes with similar features. UMAP 

plot showing a range of HER2 gene expression. 

 

(B) Bar graph showing Seurat clustering which defines clustering via differential gene expression. 

 

(C) Violin plot shows HER2 levels increase in a time-dependent manner with HER2 expression. 

 

(D) Single cell RNA sequencing was performed on MCF10A cells with HER2 induction from 0 to 72 hours (3 days). Line graph shows R 

values as a measure of linear relationship between HER2 expression increase (with time) and some genes of interest that either 

increase in expression or decrease in with HER2 expression 

 

(E) Cells were analysed by flow cytometry and HER2 positive cells were separated into three subpopulations of low, medium, and high 

HER2 overexpression as indicated. The enrichment of stem markers is shown as a proportion of the total number of cells exhibiting 

MUC1 –ve, EpCAM –ve and CD24 -ve phenotype.  

 

(F) Western blot of the indicated proteins known to have higher expression in cells that have undergone OIS. Protein lysates were 

prepared from cells sorted based on HER2 expression. HER2 was induced in cells for 3 days (MCF10AHER2) and then FACS separated 

based on HER2 expression into three different subtypes (low, medium, and high HER2 expressing cells). GAPDH and Tubulin were used 

as loading controls. N=3. 
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Supplementary figure 4 
 
Cells were analysed by flow cytometry and HER2 positive cells were separated into three subpopulations of low, medium, and high 
HER2 overexpression as indicated.  The enrichment of stem markers is shown as a proportion of the total number of cells exhibiting 
MUC1 -ve and EpCAM -ve and CD24 -ve phenotype. The blue arrows indicate step-by-step analysis of the HER2 subpopulations, and the 
respective enrichment of breast stem markers in each subtype.
  545 
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ATAC-seq bioinformatics analysis pipeline 546 

 547 

The ATAC-seq data was provided as FASTQ files. Quality control of raw sequencing read files was 548 

performed using FastQC. Illumina adapter trimming was done using Cutadapt; settings: Cutadapt -a 549 

CTGTCTCTTATACACATCT -A CTGTCTCTTATACACATCT -o out.1.fastq -p out.2.fastq. Trimmed reads 550 

were aligned using the human genome, Genome Reference Consortium Human Build 38 patch 551 

release 13 (GRCh38.p13), using bowtie2, and a SAM file was obtained; setting: bowtie2 index -1 552 

trimmed FASTQ file -2 trimmed FASTQ file –S 1.sam. The resulting sam files were converted into 553 

binary bam files; setting: Samtools view –Sb in.samfile > out.bamfile and sorted; setting: Samtools 554 

sort in.bamfile -o out.bamfile and indexed; setting: Samtools index in.bamfile. To ensure an 555 

improved mapping quality, we removed mitochondrial DNA; setting: Samtools view –h in.bamfile | 556 

removeChrom - - chrM | Samtools view - b - > out.bamfile. PCR duplicates were removed from the 557 

files using Picard tools; setting: Java -jar picard.jar MarkDuplicates I=in.bamfile O= out.bamfile 558 

M=dups.txt REMOVE_DUPLICATES=true VALIDATION_STRIGENCY=LENIENT. 559 

For viewing samples on genome bowser or assessing reproducibility and data exploration, all 560 

samples were “down sampled” to the same number of reads; setting: samtools view -b -s 561 

[downsampling_ratio] in.bam > out.downsampled.bam. Peaks calling was done for each individual 562 

non-downsampled file with MACS2 “callpeak”; setting: MACS2 callpeak -t inbamfile -f BAMPE -n 563 

in.bamfile -g ce –keep-dup all. These files were then analysed using DiffBind for differential analysis 564 

on R. For each sample, a path to the peaks and the bam file were listed in Microsoft Excel and loaded 565 

in R; setting: db.object = dba(sampleSheet="name_of_sample_sheet"). Then, the next step was to 566 

take the alignment files and compute count information for each of the peaks/regions in the 567 

consensus set; setting: db.object = dba.contrast(db.object, categories=DBA_TREATMENT, 568 

block=DBA_CONDITION, minMembers = 2); setting: db.object = 569 

dba.analyze(db.object,bParallel=TRUE,method=DBA_ALL_METHODS). R was used to plot the 570 

differential changes such as MA plot with an appropriate threshold; setting: 571 
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dba.plotMA(db.object,th=”0.05”,method=DBA_DESEQ2). Significant changes could then be saved 572 

from up or down peaks e.g.; setting: up_peaks_db.object.SigChanges.0.05FDR <- 573 

db.object.SigChanges.”0.05FDR”[db.object.SigChanges.0.05FDR$Fold > 0,] and counted using the 574 

command line and can be plotted as percentage in Prism or Microsoft excel in the form of a 575 

chart/graph. 576 

  577 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2022. ; https://doi.org/10.1101/2022.09.06.506760doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.06.506760
http://creativecommons.org/licenses/by/4.0/


41 
 

Acknowledgements 578 

We thank Dr Salvatore Federico Pedicona and Dr Hemalvi Patani for critically reading the 579 
manuscript. We thank Kriszta Kovacs for her assistance in 3D morphology assays. This work was 580 
supported by a Leverhulme Trust grant. 581 

Competing interests 582 

The authors declare no competing interests.  583 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2022. ; https://doi.org/10.1101/2022.09.06.506760doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.06.506760
http://creativecommons.org/licenses/by/4.0/


42 
 

Reference List 584 

Alajati, A. et al. (2013) 'Mammary tumor formation and metastasis evoked by a HER2 splice variant', 585 

Cancer Research, 73(17), pp. 5320-5327. 586 

Bellovin, D. I., Das, B. and Felsher, D. W. (2013) 'Tumor dormancy, oncogene addiction, cellular 587 

senescence, and self-renewal programs', Advances in Experimental Medicine and Biology, 734, pp. 588 

91-107. 589 

Buenrostro, J. D. et al. (2015) 'ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-590 

Wide', Current Protocols in Molecular Biology, 109, pp. 21.29.1-21.29.9. 591 

Calo, E. et al. (2015) 'RNA helicase DDX21 coordinates transcription and ribosomal RNA processing', 592 

Nature, 518(7538), pp. 249-253. 593 

Canzoneri, R. et al. (2020) 'Identification of an AP1-ZFP36 Regulatory Network Associated with 594 

Breast Cancer Prognosis', Journal of Mammary Gland Biology and Neoplasia, 25(2), pp. 163-172. 595 

Carrier, M. et al. (2016) 'Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant 596 

Breast Cancer Cell Lines', PloS One, 11(6), pp. e0157290. 597 

Carter, E. P. et al. (2017) 'A 3D in vitro model of the human breast duct: a method to unravel 598 

myoepithelial-luminal interactions in the progression of breast cancer', Breast Cancer Research : 599 

BCR, 19(1), pp. 50-4. 600 

Casado, P. and Cutillas, P. R. (2011) 'A self-validating quantitative mass spectrometry method for 601 

assessing the accuracy of high-content phosphoproteomic experiments', Molecular & Cellular 602 

Proteomics : MCP, 10(1), pp. M110.003079. 603 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2022. ; https://doi.org/10.1101/2022.09.06.506760doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.06.506760
http://creativecommons.org/licenses/by/4.0/


43 
 

Casado, P. et al. (2013) 'Kinase-substrate enrichment analysis provides insights into the 604 

heterogeneity of signaling pathway activation in leukemia cells', Science Signaling, 6(268), pp. rs6. 605 

Ciccarelli, F. D. and DeGregori, J. (2020) 'Approaching Cancer Evolution from Different Angles', 606 

iScience, 23(11), pp. 101661. 607 

Clayton, A. L. and Mahadevan, L. C. (2003) 'MAP kinase-mediated phosphoacetylation of histone H3 608 

and inducible gene regulation', FEBS Letters, 546(1), pp. 51-58. 609 

Cutillas, P. R. and Vanhaesebroeck, B. (2007) 'Quantitative profile of five murine core proteomes 610 

using label-free functional proteomics', Molecular & Cellular Proteomics : MCP, 6(9), pp. 1560-1573. 611 

Denny, S. K. et al. (2016) 'Nfib Promotes Metastasis through a Widespread Increase in Chromatin 612 

Accessibility', Cell, 166(2), pp. 328-342. 613 

Detry, C. et al. (2008) 'CREB-1 and AP-1 transcription factors JunD and Fra-2 regulate bone 614 

sialoprotein gene expression in human breast cancer cells', Bone, 42(2), pp. 422-431. 615 

Fan, C. C. et al. (2017) 'EFHD2 promotes epithelial-to-mesenchymal transition and correlates with 616 

postsurgical recurrence of stage I lung adenocarcinoma', Scientific Reports, 7(1), pp. 14617-y. 617 

Fang, C. et al. (2019) 'Leucine aminopeptidase 3 promotes migration and invasion of breast cancer 618 

cells through upregulation of fascin and matrix metalloproteinases-2/9 expression', Journal of 619 

Cellular Biochemistry, 120(3), pp. 3611-3620. 620 

Fisler, D. A. et al. (2018) 'Elucidating feed-forward apoptosis signatures in breast cancer datasets: 621 

Higher FOS expression associated with a better outcome', Oncology Letters, 16(2), pp. 2757-2763. 622 

Gangadhara, S. et al. (2016) '3D culture of Her2+ breast cancer cells promotes AKT to MAPK 623 

switching and a loss of therapeutic response', BMC Cancer, 16, pp. 345-z. 624 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2022. ; https://doi.org/10.1101/2022.09.06.506760doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.06.506760
http://creativecommons.org/licenses/by/4.0/


44 
 

Gilcrease, M. Z. et al. (2009) 'Even low-level HER2 expression may be associated with worse outcome 625 

in node-positive breast cancer', The American Journal of Surgical Pathology, 33(5), pp. 759-767. 626 

Grundt, K. et al. (2004) 'Characterisation of the NUCKS gene on human chromosome 1q32.1 and the 627 

presence of a homologous gene in different species', Biochemical and Biophysical Research 628 

Communications, 323(3), pp. 796-801. 629 

Hanahan, D. and Weinberg, R. A. (2011) 'Hallmarks of cancer: the next generation', Cell, 144(5), pp. 630 

646-674. 631 

Hardy, K. et al. (2016) 'Identification of chromatin accessibility domains in human breast cancer stem 632 

cells', Nucleus (Austin, Tex.), 7(1), pp. 50-67. 633 

Hartman Z., e. a. (2012) 'HER2 stabilizes EGFR and itself by altering autophosphorylation patterns in 634 

a manner that overcomes regulatory mechanisms and promotes proliferative and transformation 635 

signaling.'. 636 

Hibi, K. et al. (2012) 'FBN2 methylation is detected in the serum of colorectal cancer patients with 637 

hepatic metastasis', Anticancer Research, 32(10), pp. 4371-4374. 638 

Hong, S. H. et al. (2016) 'APIP, an ERBB3-binding partner, stimulates erbB2-3 heterodimer formation 639 

to promote tumorigenesis', Oncotarget, 7(16), pp. 21601-21617. 640 

Huang da, W., Sherman, B. T. and Lempicki, R. A. (2009) 'Systematic and integrative analysis of large 641 

gene lists using DAVID bioinformatics resources', Nature Protocols, 4(1), pp. 44-57. 642 

Huang, L. et al. (2019) 'ID3 Promotes Stem Cell Features and Predicts Chemotherapeutic Response of 643 

Intrahepatic Cholangiocarcinoma', Hepatology (Baltimore, Md.), 69(5), pp. 1995-2012. 644 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2022. ; https://doi.org/10.1101/2022.09.06.506760doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.06.506760
http://creativecommons.org/licenses/by/4.0/


45 
 

Hwang, Y. C. et al. (2009) 'NOLC1, an enhancer of nasopharyngeal carcinoma progression, is essential 645 

for TP53 to regulate MDM2 expression', The American Journal of Pathology, 175(1), pp. 342-354. 646 

Imbalzano, K. M. et al. (2009) 'Increasingly transformed MCF-10A cells have a progressively tumor-647 

like phenotype in three-dimensional basement membrane culture', Cancer Cell International, 9, pp. 648 

7-7. 649 

Larsen, M. R. et al. (2005) 'Highly selective enrichment of phosphorylated peptides from peptide 650 

mixtures using titanium dioxide microcolumns', Molecular & Cellular Proteomics : MCP, 4(7), pp. 651 

873-886. 652 

Liu, J. et al. (2019) 'ERBB2 Regulates MED24 during Cancer Progression in Mice with Pten and Smad4 653 

Deletion in the Pulmonary Epithelium', Cells, 8(6), pp. 10.3390/cells8060615. 654 

Margaryan, N. V. et al. (2017) 'Targeting the Stem Cell Properties of Adult Breast Cancer Cells: Using 655 

Combinatorial Strategies to Overcome Drug Resistance', Current Molecular Biology Reports, 3(3), pp. 656 

159-164. 657 

Montoya, A. et al. (2011) 'Characterization of a TiO(2) enrichment method for label-free quantitative 658 

phosphoproteomics', Methods (San Diego, Calif.), 54(4), pp. 370-378. 659 

Muthuswamy, S. K. et al. (2001) 'ErbB2, but not ErbB1, reinitiates proliferation and induces luminal 660 

repopulation in epithelial acini', Nature Cell Biology, 3(9), pp. 785-792. 661 

Oliveras-Ferraros, C. et al. (2010) 'Dynamic emergence of the mesenchymal 662 

CD44(pos)CD24(neg/low) phenotype in HER2-gene amplified breast cancer cells with de novo 663 

resistance to trastuzumab (Herceptin)', Biochemical and Biophysical Research Communications, 664 

397(1), pp. 27-33. 665 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2022. ; https://doi.org/10.1101/2022.09.06.506760doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.06.506760
http://creativecommons.org/licenses/by/4.0/


46 
 

Ortega-Cava, C. F. and et al (2011) 'Continuous requirement of ErbB2 kinase activity for loss of cell 666 

polarity and lumen formation in a novel ErbB2/Neu-driven murine cell line model of metastatic 667 

breast cancer'. 668 

Ostvold, Anne C., et al (2001) 'Molecular cloning of a mammalian nuclear phosphoprotein NUCKS, 669 

which serves as a substrate for Cdk1 in vivo'. 670 

Park, B. W. et al. (2012) 'Homeodomain-interacting protein kinase 1 (HIPK1) expression in breast 671 

cancer tissues', Japanese Journal of Clinical Oncology, 42(12), pp. 1138-1145. 672 

Parplys, A. C. et al. (2015) 'NUCKS1 is a novel RAD51AP1 paralog important for homologous 673 

recombination and genome stability', Nucleic Acids Research, 43(20), pp. 9817-9834. 674 

Paszek, M. J. and Weaver, V. M. (2004) 'The tension mounts: mechanics meets morphogenesis and 675 

malignancy', Journal of Mammary Gland Biology and Neoplasia, 9(4), pp. 325-342. 676 

Petsalaki E. et al. (2021) 'Identification of phenotype-specific networks from paired gene expression-677 

cell shape imaging data'. 678 

Pogna, E. A., Clayton, A. L. and Mahadevan, L. C. (2010) 'Signalling to chromatin through post-679 

translational modifications of HMGN', Biochimica Et Biophysica Acta, 1799(1-2), pp. 93-100. 680 

Pradeep, C. R. et al. (2012) 'Modeling invasive breast cancer: growth factors propel progression of 681 

HER2-positive premalignant lesions', Oncogene, 31(31), pp. 3569-3583. 682 

Pupa SM., et al. 2021 (2021) 'HER2 Signaling and Breast Cancer Stem Cells: The Bridge behind HER2-683 

Positive Breast Cancer Aggressiveness and Therapy Refractoriness 684 

', Cancers (Basel), . 685 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2022. ; https://doi.org/10.1101/2022.09.06.506760doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.06.506760
http://creativecommons.org/licenses/by/4.0/


47 
 

Qu, Y. et al. (2015) 'Evaluation of MCF10A as a Reliable Model for Normal Human Mammary 686 

Epithelial Cells', PloS One, 10(7), pp. e0131285. 687 

Rudin, C. M. et al. (2012) 'Comprehensive genomic analysis identifies SOX2 as a frequently amplified 688 

gene in small-cell lung cancer', Nature Genetics, 44(10), pp. 1111-1116. 689 

Sacco, F. et al. (2016) 'Deep Proteomics of Breast Cancer Cells Reveals that Metformin Rewires 690 

Signaling Networks Away from a Pro-growth State', Cell Systems, 2(3), pp. 159-171. 691 

Schreiber, S. L. and Bernstein, B. E. (2002) 'Signaling network model of chromatin', Cell, 111(6), pp. 692 

771-778. 693 

Seton-Rogers, S. E. et al. (2004) 'Cooperation of the ErbB2 receptor and transforming growth factor 694 

beta in induction of migration and invasion in mammary epithelial cells', Proceedings of the National 695 

Academy of Sciences of the United States of America, 101(5), pp. 1257-1262. 696 

Sever, R. and Brugge, J. S. (2015) 'Signal transduction in cancer', Cold Spring Harbor Perspectives in 697 

Medicine, 5(4), pp. 10.1101/cshperspect.a006098. 698 

Stingl, J. (2009a) 'Detection and analysis of mammary gland stem cells', The Journal of Pathology, 699 

217(2), pp. 229-241. 700 

Stingl, J. (2009b) 'Detection and analysis of mammary gland stem cells', The Journal of Pathology, 701 

217(2), pp. 229-241. 702 

Tirinato, L. et al. (2021) 'Lipid droplets and ferritin heavy chain: a devilish liaison in human cancer cell 703 

radioresistance', eLife, 10, pp. 10.7554/eLife.72943. 704 

Treisman, R. (1996) 'Regulation of transcription by MAP kinase cascades', Current Opinion in Cell 705 

Biology, 8(2), pp. 205-215. 706 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2022. ; https://doi.org/10.1101/2022.09.06.506760doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.06.506760
http://creativecommons.org/licenses/by/4.0/


48 
 

Vendrell, J. A. et al. (2008) 'A candidate molecular signature associated with tamoxifen failure in 707 

primary breast cancer', Breast Cancer Research : BCR, 10(5), pp. R88. 708 

Voss, T. C. and Hager, G. L. (2014) 'Dynamic regulation of transcriptional states by chromatin and 709 

transcription factors', Nature Reviews.Genetics, 15(2), pp. 69-81. 710 

Wainwright, E. N. and Scaffidi, P. (2017) 'Epigenetics and Cancer Stem Cells: Unleashing, Hijacking, 711 

and Restricting Cellular Plasticity', Trends in Cancer, 3(5), pp. 372-386. 712 

Wang, J. and Xu, B. (2019) 'Targeted therapeutic options and future perspectives for HER2-positive 713 

breast cancer', Signal Transduction and Targeted Therapy, 4, pp. 34-2. eCollection 2019. 714 

Wang, J. et al. (2019) 'Single-cell RNA sequencing reveals novel gene expression signatures of 715 

trastuzumab treatment in HER2+ breast cancer: A pilot study', Medicine, 98(26), pp. e15872. 716 

Wolter, S. et al. (2008) 'c-Jun controls histone modifications, NF-kappaB recruitment, and RNA 717 

polymerase II function to activate the ccl2 gene', Molecular and Cellular Biology, 28(13), pp. 4407-718 

4423. 719 

Xiang, B. and Muthuswamy, S. K. (2006a) 'Using three-dimensional acinar structures for molecular 720 

and cell biological assays', Methods in Enzymology, 406, pp. 692-701. 721 

Xiang, B. and Muthuswamy, S. K. (2006b) 'Using three-dimensional acinar structures for molecular 722 

and cell biological assays', Methods in Enzymology, 406, pp. 692-701. 723 

Zanin, R. et al. (2019) 'HMGA1 promotes breast cancer angiogenesis supporting the stability, nuclear 724 

localization and transcriptional activity of FOXM1', Journal of Experimental & Clinical Cancer 725 

Research : CR, 38(1), pp. 313-8. 726 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2022. ; https://doi.org/10.1101/2022.09.06.506760doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.06.506760
http://creativecommons.org/licenses/by/4.0/


49 
 

Zhang, H. et al. (2019) 'LAMB3 mediates apoptotic, proliferative, invasive, and metastatic behaviors 727 

in pancreatic cancer by regulating the PI3K/Akt signaling pathway', Cell Death & Disease, 10(3), pp. 728 

230-z. 729 

Zhang, L., Liu, Z. and Zhu, J. (2021) 'In silico screening using bulk and single-cell RNA-seq data 730 

identifies RIMS2 as a prognostic marker in basal-like breast cancer: A retrospective study', Medicine, 731 

100(16), pp. e25414. 732 

 733 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2022. ; https://doi.org/10.1101/2022.09.06.506760doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.06.506760
http://creativecommons.org/licenses/by/4.0/

