

1 **Low HER2 enables dedifferentiation and transformation of normal breast epithelial cells via**
2 **chromatin opening**

3 *Hayat A^{1,2,*}, Carter EP³, King HW⁴, Ors A⁵, Doe A⁵ Teijeiro SA¹, Charrot S¹, Godinho S⁶, Cutillas P¹,*
4 *Mohammed H⁵, Grose RP³, Ficz G^{1*}*

5 ¹*Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK, EC1M 6BQ*

6 ²*Institute of Medical and Biomedical Education, St George's, University of London, Cranmer Terrace, Tooting, London, SW17 0RE*

7 ³*Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK, EC1M 6BQ*

8 ⁴*Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Royal Parade, Parkville VIC 3052*

9 ⁵*Knight Cancer Institute, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road Portland, OR 97239-3098*

10 ⁶*Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK, EC1M 6BQ*

11 **Corresponding author*

12
13 Overexpression of the human epidermal growth factor 2 (HER2) protein in breast cancer patients is a
14 predictor of poor prognosis and resistance to therapies. Despite significant advances in the
15 development of targeted therapies and improvements in the 5-year survival rate of metastatic
16 HER2-positive breast cancer patients, a better understanding of the disease at an early stage is
17 needed to prevent its progression. Here, we used an inducible breast cancer transformation system
18 that allows investigation of early molecular changes at high temporal resolution. HER2
19 overexpression to similar levels as those observed in a subtype of HER2 positive breast cancer
20 patients induced transformation of MCF10A cells and resulted in gross morphological changes,
21 increased anchorage-independent growth of cells, and altered transcriptional programme of genes
22 associated with oncogenic transformation. Global phosphoproteomic analysis during the first few
23 hours of HER2 induction predominantly detected an increase in protein phosphorylation.
24 Intriguingly, this correlated with a wave of chromatin opening, as measured by ATAC-seq on acini
25 isolated from 3D cell culture. We observed that HER2 overexpression leads to reprogramming of
26 many distal regulatory regions and promotes reprogramming-associated heterogeneity. We found
27 that a subset of cells acquired a dedifferentiated breast stem-like phenotype, making them likely
28 candidates for malignant transformation. Our data show that this population of cells, which
29 counterintuitively enriches for relatively low HER2 protein abundance and increased chromatin
30 accessibility, possesses transformational drive, resulting in increased anchorage-independent growth
31 *in vitro* compared to cells not displaying a stem-like phenotype. Our data provide a discovery
32 platform for signalling to chromatin pathways in HER2-driven cancers, offering an opportunity for
33 biomarker discovery and identification of novel drug targets.

35 **Introduction**

36 Metastasis is the main cause of cancer deaths but understanding the root cause of malignant
37 transformation remains poorly understood. Many questions remain unanswered as to what triggers
38 cancer formation beyond DNA mutations in pre-cancerous tissue (Ciccarelli and DeGregori, 2020).
39 Perturbed signalling due to dysregulated phosphorylation of oncogenic proteins is known to alter
40 pathway activity and contributes to cellular transformation (Sever and Brugge, 2015; Hanahan and
41 Weinberg, 2011). Similarly, cell identity and cellular plasticity are phenotypic outcomes of the
42 signalling and epigenetic information in both healthy and disease states (Wainwright and Scaffidi,
43 2017). Therefore, understanding how an altered signalling environment affects the epigenome and
44 shifts cellular states is crucial in furthering our understanding of cancer formation. Integrating
45 systematic analyses of phosphorylation sites (phosphosites) from global phosphoproteomics data
46 with DNA/RNA sequencing data helps to better understand the functional significance of the
47 signalling effects on chromatin changes. Phenotypic changes that occur during cancer development
48 are driven by changes in the gene expression patterns, which are themselves governed by regulatory
49 states encoded within the nucleoprotein structure of chromatin (Voss and Hager, 2014). The
50 alterations in chromatin structure that lead to differential accessibility to transcription factor binding
51 have been identified as perhaps some of the most relevant genomic characteristics correlated with
52 biological activity at a specific locus (Thurman *et al.*, 2012). Nevertheless, the specific regulatory
53 changes driving the transition from normal to transformed cells remain largely unknown.

54 HER2 positive breast cancer accounts for approximately 20% of all breast cancers (Wang and Xu,
55 2019). The ability of HER2 positive breast cancer cells to leave the primary tumour site and establish
56 inoperable metastasis is a major cause of death and a serious impediment to successful therapy.
57 Molecular analysis of HER2 positive breast cancer progression is limited by the inability to
58 characterise and catalogue early changes at the onset of transformation. Conventional *in vitro*
59 models (Pradeep *et al.*, 2012; Gangadhara *et al.*, 2016) can recapitulate the genetics, morphology,
60 therapeutic response and highly transformative nature of the disease. However, they do not allow

61 for the fine tuning and temporal control required to fully assess cellular events leading up to
62 malignant transformation. To overcome this issue, we developed an inducible *in vitro* model of
63 human breast cancer to investigate the mechanisms that drive early transformational changes in
64 HER2 positive breast cancer. The strength of an inducible system lies in that it can recapitulate key
65 transitional states in cancer progression in a controlled manner, permitting isolation of cancer-like
66 cells at defined stages of transformation to catalogue early tumour promoting changes.

67

68 Here, we analysed HER2 protein overexpression in a normal diploid, oestrogen, and progesterone
69 negative breast epithelial cell line, MCF10A (Qu *et al.*, 2015) to identify global cell signalling and
70 chromatin accessibility changes in the first few hours and days of cellular transformation. In
71 particular, we explored how cell signalling interacts with chromatin to induce transformation as a
72 result of HER2 pathway activation.

73 **Conditional HER2 overexpression promotes *in vitro* transformation**

74 HER2 overexpression in non-tumourigenic MCF10A cells is a well-established breast cancer model
75 and has been used in numerous *in vitro* studies (Muthuswamy *et al.*, 2001; Imbalzano *et al.*, 2009).
76 To recapitulate the early transformational events and the stochastic nature of early breast cancer
77 development, we generated a controllable *in vitro* model system by stably transducing a
78 doxycycline-inducible HER2 construct in MCF10A cells (Carter *et al.*, 2017). This model allows for the
79 generation of transformed phenotypes in a synchronised and time-controlled manner and is useful
80 for investigating early transformational events using multi-omic analysis (**Fig 1A**). To analyse the
81 range of HER2 expression at the protein level, we cultured cells for 24 hours in five different
82 concentrations of doxycycline, using ranges that have been used previously in inducible expression
83 studies with other proteins (Baron *et al.*, 1995; Leitner *et al.*, 2014). In our model, a 24-hour
84 induction with 1 μ g/ml doxycycline resulted in strong HER2 protein expression (**Fig 1B**). When grown
85 in three-dimensional cell cultures, control MCF10A cells (MCF10A^{CTRL}) formed regular, spherical acini,

86 whereas a majority of MCF10A^{HER2} acini were misshapen, with cells budding into the surrounding
87 matrix (**Fig 1C**). HER2 overexpression resulted in significantly increased *in vitro* migratory and
88 invasive potential, as measured by transwell assays (**Fig 1D**) (Xiang and Muthuswamy, 2006; Paszek
89 and Weaver, 2004). Furthermore, MCF10A^{HER2} cells displayed a hallmark of *in vitro* transformation,
90 with increased anchorage-independent growth as compared to control cells (**Fig 1E**). Collectively,
91 these results show that HER2 overexpression in MCF10A cells results in phenotypes associated with
92 *in vitro* transformation. Aberrant expression of HER2 is known to induce phenotypes associated with
93 *in vitro* transformation (Seton-Rogers *et al.*, 2004) and evokes aggressive tumorigenicity and
94 metastasis *in vivo* (Alajati *et al.*, 2013).

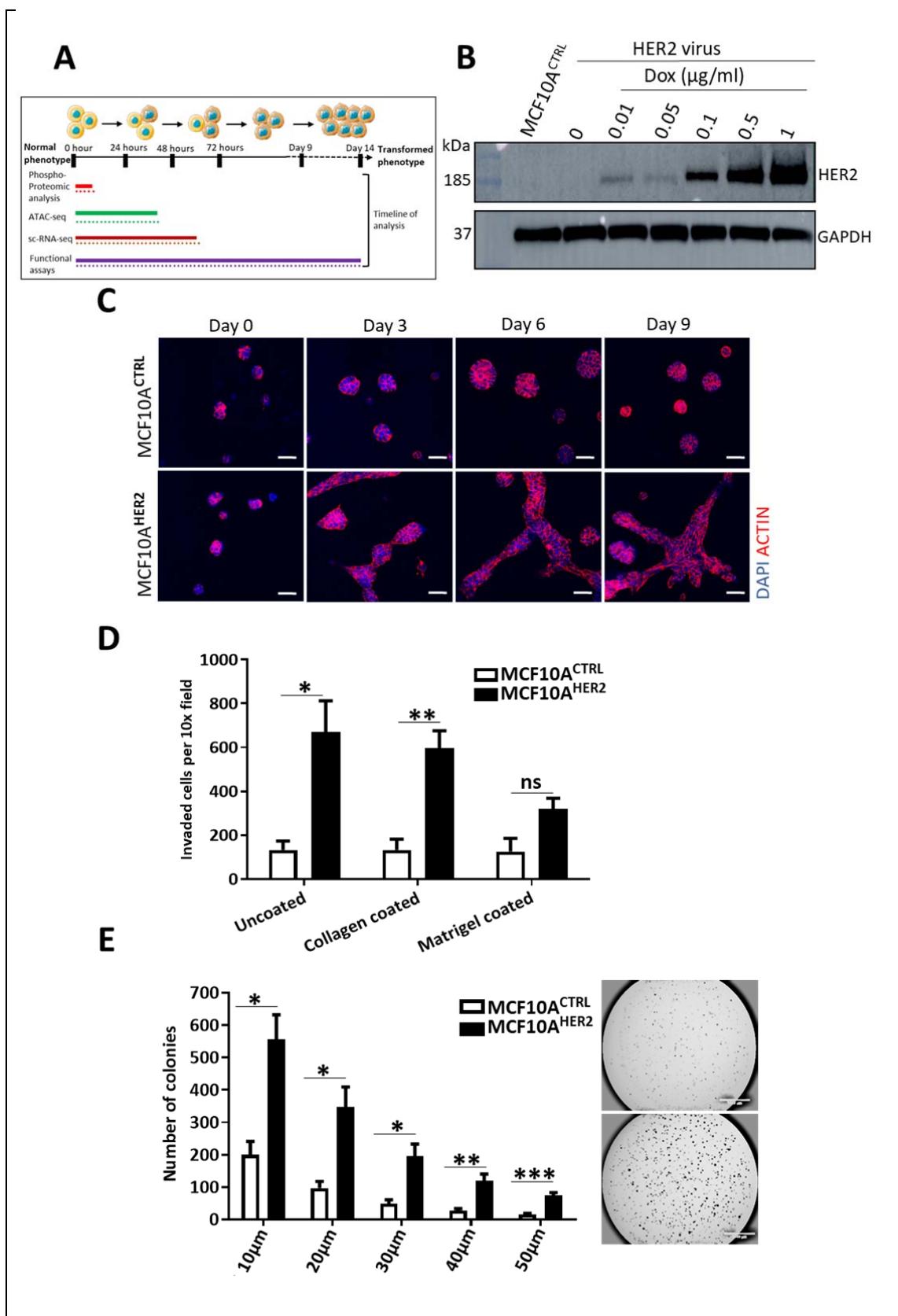


Figure 1

(A) Schematic of multi-omics analysis and soft functional assays performed with their respective timelines as MCF10A cells undergo *in vitro* transformation.

(B) HER2 protein expression analysis by western blot in MCF10A cells infected with inducible HER2 lentiviral particles and cultured in various concentration of doxycycline for 24 hours. GAPDH was used as a loading control. N=2.

(C) MCF10A^{HER2} and control cells were cultured in 3D cell culture over 9 days. Control cells formed spherical acini which increased in size over time. MCF10A^{HER2} cells formed flat projecting cells of complex masses, typical of transformed cells. Images captured by confocal, LSM 510 microscope. Scale bars represent 50μm. N=3.

(D) Cell migration and invasion was analysed through the 8μm pores of transwell membranes over 16-hour period of chemotactic migration towards full serum media. The ability of cell invasion was measured in collagen or matrigel coated transwells. Migration ability was measured in using uncoated wells. Statistical significance was calculated using student's t-test. Significance is shown as * for p-value < 0.05, ** for p-value < 0.01. N=3.

(E) Colony growth of MCF10A^{HER2} and control cells in 0.3% ultra-pure agarose over 3 weeks. ImageJ analysis of 5 different size colonies were quantified. Representative microscopic images of colonies stained with crystal violet after three weeks. Statistical significance was calculated using student's t-test. Significance is shown as * for p-value < 0.05, ** for p-value < 0.01, *** for p-value < 0.001. Images are at 1.6x magnification. Scale bars represent 1000μm. N=3.

96

97 **Phosphoproteomic analysis following HER2 overexpression uncovers signalling changes associated**
98 **with cancer**

99 HER2 is a tyrosine kinase known to activate a plethora of signalling pathways downstream. To
100 investigate the dynamic changes in the phosphoproteome over time, and the order in which they
101 occur during the phased progression from normal to transformed cells upon HER2 overexpression,
102 we performed an unbiased phosphoproteomic analysis of the early phosphorylation events (at 0.5h,
103 4h and 7h post HER2 protein induction). The experiment was carried out under standard growth
104 conditions in 2D cell culture, and without serum starving, to be closer to physiological conditions. A
105 GFP-transduced MCF10A cell line was used as a control for doxycycline-only induced changes
106 (MCF10A^{GFP}). As expected, we observed an increase in HER2 phosphorylation levels in HER2 at T701

107 phosphosite and its family member EGFR (HER1) at Y1110 phosphosite (**Supplementary Fig 1A**). To
108 filter changes relevant to HER2 induction, we selected only those phosphosites that were
109 significantly changed upon HER2 expression but were not significantly changed in the MCF10A^{GFP}
110 cells with a stringent cut-off at log2 fold change for HER2 > 1.5, p-value < 0.05, and log2 fold change
111 for GFP < 5, p-value of > 0.05 (**Fig 2A**). From this refined dataset some potential novel HER2 targets
112 include NUCKS1 (S73) and NUCKS1 (S75), a frequently phosphorylated protein at multiple sites,
113 significantly downregulated at the 4-hour time point (**Fig 2A**) when HER2 protein levels are still quite
114 low as measured by western blotting (**Supplementary Fig 1B**). This protein is known to play a
115 significant role in modulating chromatin conformation (Parplys *et al.*, 2015; Grundt *et al.*, 2004), and
116 regulates events such as replication, transcription, and chromatin condensation (Ostvold, Anne C., et
117 al, 2001). NUCKS1 phosphorylation at various phosphosites is also known to correlate with breast
118 cancer resistance to retinoic acid, known to have anti-proliferative capacity to several breast cancer
119 cell lines (Carrier *et al.*, 2016). Other novel candidates include DDX21, with multiple phosphorylation
120 serine sites at (S164, S168, and S171), which were also significantly enriched in our
121 phosphoproteomic analysis (**Fig 2A**). Since we aimed at investigating the link between signalling and
122 chromatin, we observed that DDX21-bound promoters on average have increased enrichment of
123 active chromatin marks (H3K4me3, H3K27ac, and H39Kac) but are depleted for repressive marks
124 (H3K27me3 and H3K9me3) and promoter-distal (H3K4me1) marks (Calo *et al.*, 2015). Some highly
125 phosphorylated phosphosites, which have not been shown to be associated with HER2 protein
126 expression include homeodomain-interacting protein kinase 1 (HIPK1), which is highly expressed in
127 invasive breast cancers (Park *et al.*, 2012). SHC1(S246), TTC7A(S182), CDC42EP3(S89), and
128 RIPOR1(S351) were also significantly and stably activated in all the time-points screened, suggesting
129 they may have important roles in the biology of HER2 expressing breast cancer cells (**Fig 2A**). The
130 effect of HER2 overexpression on all proteins was also quantified (**Fig 2B**). Interestingly, of those
131 changes, the 4h time-point showed the largest changes in phosphorylation when HER2 levels are still

132 quite low. Although HER2 protein expression is still low, some of these downstream changes might
133 be present at later timepoints as part of the evolution process.

134 The low levels of HER2 activation at early time points may closely mimic, at least partially, the early
135 signalling changes occurring in HER2 positive breast cancer patients. The signalling changes of low
136 level HER2 induction has not been performed to date. We re-analysed this data by decreasing the
137 significance threshold to log2fold change > 0.5 , FDR corrected p-value of < 0.05 for HER2 expression,
138 but not significantly changing for GFP (Phospho_supplementary_data). This analysis revealed
139 significant changes in phosphorylation in 1045 phosphopeptides over all timepoints in MCF10A^{HER2}
140 cells, where the number of phosphosites increased in a time-dependent manner (**Supplementary Fig**
141 **1C**).

142 Using the DAVID Functional Annotation Tool (Huang da, Sherman and Lempicki, 2009), and filtering
143 for all significant changes (log2 fold change > 0.5 , FDR corrected p-value of < 0.05) in all the time-
144 points analysed, we identified that mitogen-activated protein kinase (MAPK) signalling pathway to
145 be one of the most enriched cascades in our system (**Supplementary Fig 1D**). The idea that signalling
146 has direct effects on chromatin has already been known, whereby receptor tyrosine kinases can
147 relay extracellular signals by signal transduction pathways to the chromatin (Schreiber and
148 Bernstein, 2002). Signalling pathways, particularly MAPK cascades, elicit modification of chromatin
149 through various transcription factors and chromatin regulators (Clayton and Mahadevan, 2003;
150 Pogna, Clayton and Mahadevan, 2010). Activation of the MAPK pathway ultimately leads to the
151 phosphorylation of transcription factors, which is crucial for gene activation (Treisman, 1996). We
152 hypothesised that the differentially regulated transcription factors and chromatin regulators
153 identified in the phosphoproteomic screen are likely to contribute to chromatin changes mediating
154 the transformed phenotypes. Indeed, our phosphoproteomic analysis revealed significant changes in
155 various transcription factors known to affect chromatin dynamics (**Supplementary Fig 1E**). These
156 chromatin regulators included SIRT1, SOX13, POU2F1, and multiple residues on POL2RA and NCOR1.

157 In particular, the phosphorylation of JUN at residue S73 could be reconciled by a model in which
158 phosphorylation of JUN triggers dissociation of histone deacetylases (HDACs) and facilitates the
159 rearrangement of chromatin structure (Wolter *et al.*, 2008). Based on these results, we then set out
160 to assess, in an unbiased manner, the effects that signalling changes have on the chromatin
161 organisation.

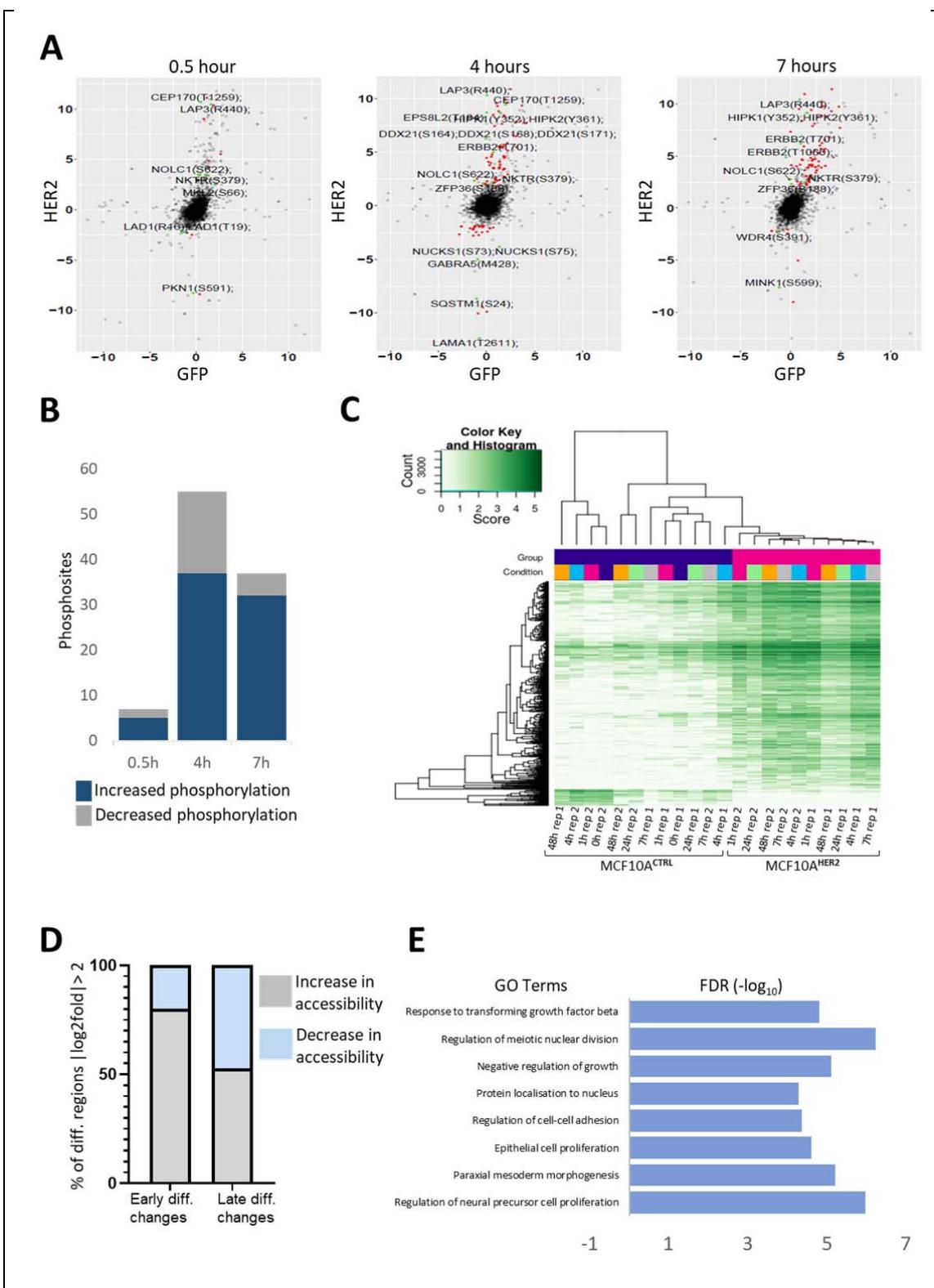


Figure 2

(A) Volcano plots depicting the phosphoproteome upon HER2 protein expression at 0.5-hour, 4 hours, and 7-hour time-points compared to control cells. The statistical significance is shown as (log2 fold change for HER2 > 1.5, p-value < 0.05, and log2 fold change for GFP < 5, p value of > 0.05). The plot contains those phosphosites that are significantly changing upon HER2 protein induction but not significantly changing in the GFP cells at the same time. Those with the highest increase or decrease in fold change are labelled.

N=3.

(B) Bar graph depicting the number of detected phosphosites increasing or decreasing in phosphorylation in the phosphoproteomic analysis at the indicated time-points analysed. The statistical significance is shown as (log2 fold change for HER2 > 1.5, p-value < 0.05, and log2 fold change for GFP < 5, p value of > 0.05).

(C) Differential accessibility (log2 fold change > 0.5, FDR corrected p-value of < 0.05) between MCF10A^{HER2} and control cells, plotted against the mean reads per region. Cells were grown in 3D cell culture from 0-48 hours and ATAC-seq performed on their acini. Heatmap shows chromatin accessibility across all time points for each replicate in cells expressing HER2 or GFP (controls). N=3.

(D) Fraction of total regions that are differentially accessible (up peaks) or inaccessible (down peaks) in early or late type comparisons. “Early” time-points represents 0h, 1h, 4h, and 7h data combined. “Late” time point represents 24h and 48h time-points combined. Log2fold > 2, FDR corrected p-value < 0.05.

(E) GO categories for biological process for differential peaks that are significantly up ((log2fold change > 0.5, FDR corrected p-value < 0.05) for the Early MCF10A^{HER2} / Early MCF10A^{CTRL} cells.

164

165

166 **Identification of two distinct chromatin accessibility landscapes within HER2 induced
167 transformation**

168 To investigate the interplay between signal transduction pathways and chromatin dynamics, we
169 used an assay of transposase-accessible chromatin using sequencing (ATAC-seq) to determine the
170 genome-wide chromatin accessibility landscape in the acini of MCF10A cells in a time-dependent
171 manner (0-48 hours) by isolating cells from 3D cell culture. Principal component analysis (PCA)
172 separated the samples into two groups, “early” (0h, 1h, 4h, and 7h time-points) and “late” (24h and
173 48h time-points) (**Supplementary Fig 1F**). We selected these conditions with the aim to encompass
174 time-points relevant to both types of analysis. The 0h, 4h and 7h time-points were chosen to
175 characterise early chromatin changes triggered by signalling. The late conditions were selected to
176 detect the resulting delayed chromatin changes occurring later in the process of transformation. We
177 identified 17,868 significant changes between MCF10A^{HER2} cells relative to control cells (T0 starting
178 population before HER2 protein induction) over the time course, which showed an increase in
179 accessibility in MCF10A^{HER2} cells relative to controls (**Fig 2C & supplementary Fig 2A**). We assessed
180 differential accessibility between early and late groups and observed that a much larger fraction of
181 regions, with > 2-fold difference relative to T0, were enriched in the early group compared to in the
182 late group (75% vs 44%, respectively, **Fig 2D**). Conversely, only ~2.9% of peaks were >4-fold more
183 accessible in the early group and ~6.5% in the late group, which we define as “hyper-accessible”
184 chromatin states (**Supplementary Fig 2A**). Even though the numbers of hyper-accessible versus
185 hypo-accessible regions (which lose accessibility > 4-fold) did not show a stark difference, the overall
186 number of accessible regions following HER2 expression outnumbered inaccessible regions. This
187 shows that there is an increase in chromatin accessibility during the early stages of transformation
188 (**Fig 2D**). Therefore, this might suggest that the first adaptive response to oncogenic HER2 signalling
189 is altered chromatin accessibility to induce differential gene expression. Subsequently, the changes
190 in chromatin accessibility even out in the later time points, with the number of hypo-accessible

191 regions even exceeding the hyper-accessible ones at late time points, which could indicate that cells
192 have reached an equilibrium. (**Supplementary Fig 2A**).

193 Next, we performed functional enrichment analyses [Gene Ontology (GO) terms] for upregulated
194 peaks in the early HER2 signature (**Fig 2E**). The regions with increased chromatin accessibility at all
195 times analysed were enriched for GO terms associated with response to transforming growth factor,
196 cell-cell adhesion, epithelial cell proliferation, morphogenesis, and regulation of neural precursor
197 cells. The differentially accessible regions upstream of the transcriptional start site (TSS) were largely
198 gene distal, with relatively few promoter-proximal regions (**Fig 3A**). To probe how the observed
199 changes in cell signalling can underlie transcriptional and/or epigenetic control during cellular
200 transformation, we examined transcription factor binding motifs that were significantly enriched in
201 relation to all differential ATAC-seq peaks. The most significantly enriched motifs in the accessible
202 chromatin regions as a result of perturbed HER2 expression were CEBP, HLF, ATF4, and CHOP
203 (**Supplementary Fig 2B**). We also observed significant enrichment of motifs for all the time-points
204 analysed for inaccessible peaks corresponding to closed regions, which included ATF3, AP-1, BATF,
205 FRA1, JUNB, FRA2, and NFkB (**Fig 3B**). Previously it has been shown that enrichment of AP-1 family
206 member motifs is associated with increased accessibility (Hardy *et al.*, 2016). There was some
207 overlap between the family members of transcription factors identified in the phosphoproteomic
208 screen and ATAC-seq motif analysis including NFkB, JUN, ATF1, JUND, and AP-1 (**Supplementary Fig**
209 **2C**). The transcription factors found in our motif analysis associated with accessible chromatin are
210 known to be involved in several cancer types including breast, lung, endometrial and prostate
211 cancers with a more aggressive phenotype (Detry *et al.*, 2008).

212 We next examined whether peaks were shared between those that were opening (more accessible)
213 and those that were closing (less accessible) between the early and late groups. We found that there
214 was a small overlap between early and late inaccessible peaks but none between the accessible
215 peaks (**Fig 3C**). This suggests that increasing accessibility is dynamic during transformation, and that

216 sites with early loss in accessibility relative to T0 could potentially have driving roles in the
217 population drift. We further examined the genomic distribution of the differentially inaccessible
218 chromatin of the overlapping regions, which showed most genomic regions were associated with
219 two nearby genes (**Supplementary Fig 2D**). Namely, some of the common differential regions
220 correlated with genomic location of FBN2, whose genomic chromosomal coordinates were found to
221 be matching with the promoter region of the FBN2 gene. This gene was found to have aberrant
222 promoter methylation in a number of cancers (Hibi *et al.*, 2012) (**Supplementary Fig 2E**). Other
223 regions included RIMS2, known to be associated with particularly aggressive breast cancers (Zhang,
224 L., Liu and Zhu, 2021) and APIP, which binds HER3 receptor, leading to the heterodimerisation
225 between HER2-HER3 and resulting in sustained activation of downstream signalling (Hong *et al.*,
226 2016). No differentially accessible region was found to be promoter proximal, as all the regions were
227 at least 5 kb upstream of the transcriptional start site (TSS) (**Supplementary Fig 2F**).

228 To elucidate the heterogeneity in gene expression between subpopulations of cells in light of the
229 pervasive chromatin opening we identified, we performed single-cell RNA-seq following induction of
230 HER2 overexpression over 72 hours. Cells were grouped according to their time-point by UMAP
231 dimensional reduction. Although there is no distinct separation between the time-points, there is a
232 trend in clustering of MCF10A^{CTRL} versus HER2 expressing cells (**Supplementary Fig 3A**). Seurat
233 clustering found differentially expressed features and separated them into four groups, with cluster
234 0 enriching in the MCF10A^{CTRL} population, and cluster 1 associating with the highest HER2
235 expression (**Supplementary Fig 3B**). As expected, we observed a time-dependent increase in HER2
236 gene expression (**Supplementary Fig 3C**). There is a consensus that high HER2 expression is
237 associated with stem-like phenotype (Oliveras-Ferraros *et al.*, 2010), however, much controversy
238 remains on whether stemness and high-grade tumours are highly correlated with each other. Some
239 studies have suggested a strong correlation between stemness and high oncogene expression, while
240 others reveal little relationship (Poli *et al.*, 2018; Simeckova *et al.*, 2019). We identified clear
241 transcriptional signatures of oncogenes associated with breast cancer progression such as the time-

242 dependent increase of *ALDOA* (a gene that increases *in vitro* spheroid formation and increases
243 abundance of cancer stem cells) (**Fig 3D and Supplementary Fig 3D**); *LAMB3*, which mediates
244 invasive and proliferative behaviours by PI3K-AKT signalling pathway (Zhang, H. *et al.*, 2019), as well
245 as the decrease of genes like *MUC1* conversely upon HER2 overexpression, whose downregulation is
246 linked to stem-like phenotype (Stingl, 2009a). While the expression of *ID3* is also associated with
247 stemness (Huang *et al.*, 2019) this pattern was not found in our data, suggesting that these
248 processes overlap only partially.

249 Genome browser tracks of early and late HER2 samples show the relative accessibility of some
250 regions associated with the indicated gene, with arrow marked regions indicating differentially open
251 regions (**Fig 3E**). Ferritin heavy chain (*FTH1*) gene, which displays sharp decline upon HER2
252 expression (**Fig 3E & supplementary Fig 3D**) is also associated with inaccessible chromatin, as shown
253 by the scRNA-seq and ATAC-seq datasets. Low *FTH1* expression is known to make breast cancer cells
254 radiosensitive, and its higher expression is correlated with radioresistance (Tirinato *et al.*, 2021). An
255 in-depth analysis of *FTH1* expression in HER2 positive clinical samples may improve the efficacy of
256 radiation treatments.

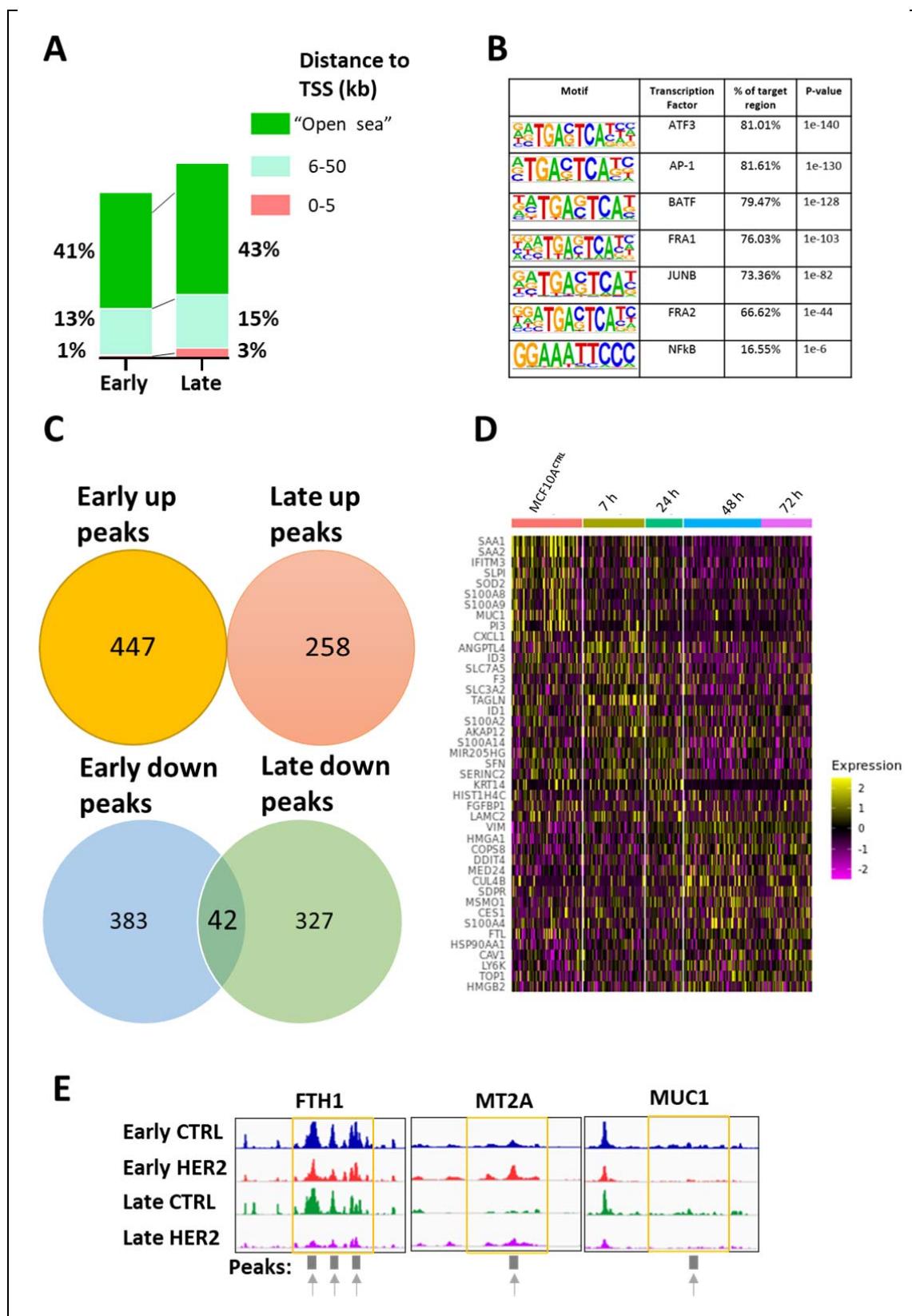


Figure 3

(A) Distance to closest transcriptional start sites (TSSs) of all differentially accessible regions in the early and late cell types. The graphs represents only those regions that are upstream of the TSS. “Open sea” refers to regions that are at least 50 kb or more upstream of the TSS.

(B) Enrichment of transcription factor recognition sequences in differential ATAC-seq peaks comparing MCF10A^{HER2} and control cells based on HOMER analysis. Down peaks = $\log_{2}\text{fold} < -2$, FDR corrected p-value value < 0.05 .

(C) Venn diagram showing the number of differentially accessible regions that are shared between the up (open) and down (closed) peaks in the early and late samples. Up peaks = $\log_{2}\text{fold} > 2$, FDR corrected p-value < 0.05 . Down peaks = $\log_{2}\text{fold} < -2$, FDR corrected p-value value < 0.05 .

(D) Single cell RNA sequencing was performed in 2D cell culture on MCF10A cells with HER2 induction from 0 to 72 hours (3 days). Heatmap summarises some of the most highly and lowly expressed genes with the induction of HER2 gene.

(E) Insertion tracks of samples at example regions. This signal is an average signal of 3 replicates of combined time-points into either “early” samples or “late” samples. Differentially open regions are marked with arrows.

258

259

260 **Sustained low HER2 expression facilitates dedifferentiation and confers stem-like traits**

261

262 MCF10A^{HER2} cells exhibited heterogeneous capacity for anchorage-independent growth when
263 measured by their ability to form colonies in semi-solid medium, in that a significant proportion of
264 MCF10A^{HER2} cells were able to form cell aggregates, with a > 2-fold increase in colony forming units
265 compared to control cells (**Fig 1E**). We hypothesised that cells possessing the ability to form colonies
266 under anchorage-independent growth conditions are a selection of aggressive cells out of the total
267 number of cells seeded. Conversely, the proliferative but non-malignant cells that often dominate
268 any heterogeneous parental cell line would be selected against under these conditions. We
269 evaluated whether anchorage-independent growth correlated with reprogramming-associated
270 heterogeneity by testing the expression of proteins found in mammary epithelial stem cell hierarchy
271 by flow cytometry (Stingl, 2009b), in which it has been shown that breast stem cells are
272 characterised by MUC1^{-ve}, EpCAM^{low}, and CD24^{low} expression (**Fig 4A**). We therefore evaluated
273 whether HER2 overexpression could enrich for cells with functional stem-like properties based on
274 these three markers and found that this stem-like phenotype is enriched in MCF10A^{HER2} cells, as a
275 large proportion of cells lost the expression of MUC1, EpCAM, and CD24 (**Fig 4B, Supplementary Fig**
276 **3E, and supplementary Fig 4**). Since our population is heterogeneous due to differing number of
277 copies of the lentiviral HER2 construct, and we have the same amount of doxycycline used to induce
278 the oncogene, the upper threshold of expression of HER2 will depend on the transgene copy
279 number. We therefore hypothesised that stem-like markers would be positively correlated with
280 HER2 levels in our heterogeneous population, i.e., cells having many HER2 copies would also be
281 more likely to express stem-like markers. Surprisingly, we found that cells expressing relatively low
282 HER2 levels had the most pronounced stem-like phenotype compared to other flow sorted
283 populations of cells with increasing levels of HER2 (**Fig 4B**). We confirmed the different levels of
284 HER2 protein expression after sorting cells into three compartments of low, medium, and high HER2
285 expression by western blotting, which correlated as expected (**Fig 4C**). Next, to determine the

286 transformational potential of these cell types by measuring anchorage-independent growth, we flow
287 sorted MCF10A^{HER2} cells into the three different cell populations and paradoxically found that low
288 HER2 expressing cells had increased transformational potential relative to the other populations of
289 sorted cells (**Fig 4D**). We thought that high HER2 cells may be undergoing oncogene-induced
290 senescence (OIS), thus resulting in reduced colony formation compared to other cell types. To
291 confirm this, we measured proteins implicated in OIS but found no significant increase in OIS
292 markers in the high HER2 cells compared to other populations, indicating other biological effects
293 being responsible for the lower capacity in anchorage-independent growth of high HER2 expressing
294 cells (**Supplementary Fig 3F**). It is possible that high oncogene expression induces cancer cells to
295 dormancy that is associated with loss of ability to self-replicate and differentiate (Bellovin, Das and
296 Felsher, 2013).

297 Since we found that chromatin opening was the feature associated with early signalling to chromatin
298 response, we wanted to know if this was reflected in the phenotypic heterogeneity, in particular low
299 versus high HER2 levels. To this end, we used ATAC-seq to determine the genome-wide chromatin
300 accessibility landscape in the five different populations of cells (MCF10A^{CTRL}, low HER2, medium
301 HER2, high HER2 and MCF10A^{HER2} cells). We analysed these data by comparing each cell type to the
302 control cells (MCF10A^{CTRL}) and comparing the percentage of differentially accessible regions
303 between the cell types. We found that low HER2 expressing cells exhibited the highest percentage of
304 chromatin opening compared to other cell populations (**Fig 4E**), confirming that the phenotypes
305 associated with invasiveness and anchorage independent growth were driven by molecular features
306 in stem-like cells and opening of chromatin. To put the magnitude of these chromatin differences in
307 context, i.e., the differential accessibility between low HER2 and high HER2 expressing cells, we
308 found that a dramatic ~95% of peaks were accessible in low HER2 cells. Conversely, only ~42% of the
309 peaks were open (accessible) in the high HER2 cells. Overall, these data indicate that a sharp
310 increase in HER2, which may result in triggering cell intrinsic defensive systems, whereas a low-level

311 sustained presence of HER2 can shift cell identity, via chromatin remodelling, towards tumour-
312 promoting phenotypes.

313 We found that a subset of these scRNAseq-unique differentially expressed genes that were either
314 upregulated or downregulated in multiple time-points were also associated with heterogeneity of
315 breast cancer, related to cancer progression and stem cells (**Fig 4F**). For example, expression of
316 *HMGA1*, which is known to promote breast cancer angiogenesis through the transcriptional activity
317 of *FOXM1* (Zanin *et al.*, 2019), increased in a time dependent manner (**Fig 4F**). On the other hand,
318 expression of *FOS*, a pro-proliferative transcription factor, which has been validated in breast
319 tumour samples and is highly expressed in relapse samples and treatment failures (Vendrell *et al.*,
320 2008) was found to be downregulated at all time points (**Fig 4F**). Intriguingly, high proliferation rates
321 as a result of *FOS* expression can lead to improved outcomes for patients with breast cancer, as it
322 could lead to higher apoptosis-effector gene expression (Fisler *et al.*, 2018). Our data also show the
323 time-dependent increase of *EFHD2*, a gene linked with EMT transition and metastasis (Fan *et al.*,
324 2017). *MED24*, a subunit for the mediator complex of RNA polymerase II, is known to be a
325 downstream target of HER2 and may be a critical gene required for cancer development (Liu *et al.*,
326 2019).

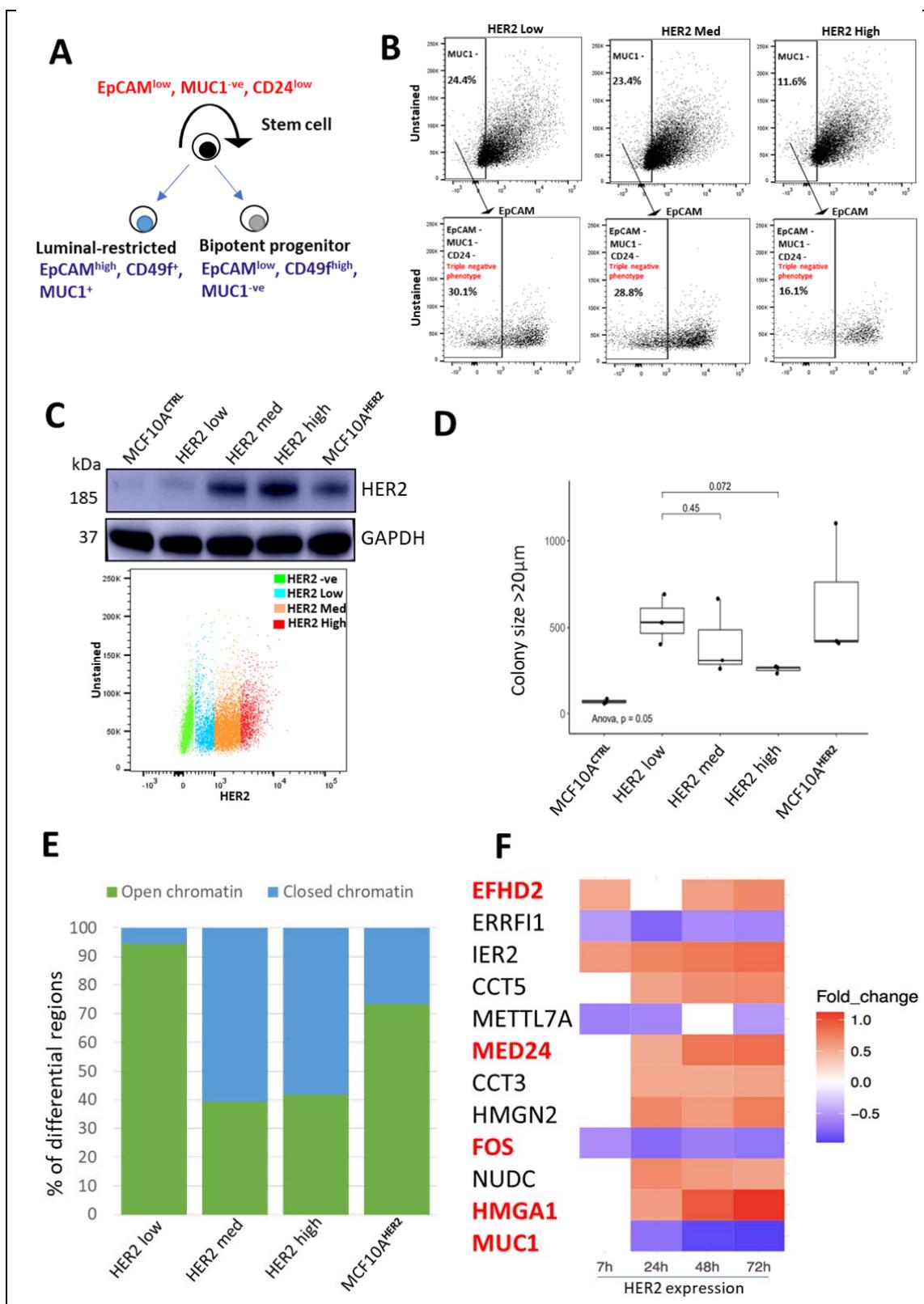


Figure 4

(A) Proposed simplified breast epithelial hierarchy present in human mammary glands.

(B) Cells were analysed by flow cytometry and HER2 positive cells were separated into three subpopulations of low, medium, and high HER2 overexpression as indicated. The enrichment of stem markers is shown as a proportion of the total number of cells exhibiting MUC1 ^{-ve} and EpCAM ^{-ve} phenotype. The proportion of cells shown here show the overlap between MUC1 -ve and EpCAM -ve cells, all of which were subsequently 100% CD24 -ve. N=3.

(C) MCF10A^{HER2} cells were flow sorted into the labelled subtypes and HER2 expression analysis by western blot in MCF10A cells. GAPDH was used as a loading control. The bottom 20% of HER2 expressing cells were labelled as “HER2 low” cells (blue), the top 20% of HER2 expressing cells were labelled as “HER2 high” cells (red). The middle population of 35% were labelled as “HER2 med” (orange). HER2 negative cells are highlighted in green based on HER2 negative control cells. N=3.

(D) HER2 expression was induced for 3 days, and cells were sorted based on HER2 expression into low, medium, and high HER2 expression. 5000 cells from each condition were plated into ultra-pure agarose to investigate there *in vitro* transformative potential. Results are plotted as box plots from three biological replicates. Student t-test was performed to compare “HER2 med” and “HER2 high” groups to the “HER2 low” group, p-values are displayed on the graph. One-way anova test was performed to show statistical significance. N=3.

(E) MCF10A^{HER2} were sorted into the three subtypes. ATAC-seq libraries were prepared and sequenced. DiffBind was used to analyse the differentially accessible regions and plotted as percentage of open or close regions. N=3.

(F) Heatmap shows genes of interest that are consistently differentially expressed in at least 3 of the 4 time-points analysed upon HER2 overexpression. Blue rectangles show genes that are downregulated, red rectangles represent genes that are upregulated. The white rectangles show lack of differential expression for that specific time-point. Only those genes are listed here if the statistical significance had an FDR corrected p-value of < 0.05. Importance of genes highlighted in red are mentioned in the text.

328

329 **Discussion**

330 In this study we addressed the question of what the earliest molecular changes are at the interface
331 between increasing oncogenic HER2 signalling and chromatin accessibility in a non-transformed
332 breast epithelial cell line. Overexpression of the HER2 oncogene in breast epithelial cells resulted in
333 some unexpected changes in cellular phenotypes. Namely, we observed an inverse relationship

334 between HER2 levels and tumourigenic properties *in vitro*, where cells expressing a sub-threshold
335 amount of HER2 protein exhibited increased anchorage-independent growth. This was also
336 associated with features of dedifferentiation towards breast stem cell identity. Among the expected
337 features, MCF10A^{HER2} cells underwent *in vitro* transformation as evidenced by increased anchorage-
338 independent growth accompanied by the formation of spindle-like conformations in 3D cell culture
339 (**Fig 1B and D**). These findings are concordant with other studies where loss of cell polarity following
340 HER2 overexpression has been described (Ortega-Cava and et al, 2011; Hartman Z., 2012; Xiang and
341 Muthuswamy, 2006b).

342 We propose that a sub-threshold level of HER2 protein has the ability to elicit activation of signalling
343 pathways that directly impact on chromatin to drive dedifferentiation and survival and to enhance
344 transformation. Although high levels of oncogenic expression are an important biomarker in
345 diagnosing HER2 positive breast cancer, our data support the hypothesis that even low levels of
346 HER2 protein expression can be associated with disease aggressiveness, poor patient outcome and
347 therapeutic resistance (Gilcrease *et al.*, 2009). The mechanism of why low HER2 expressing cells can
348 be aggressive and its prognostic value has not been sufficiently evaluated. Our data show that the
349 subset of low HER2 expressing cells likely use changes in chromatin state as their route for cellular
350 transformation (**Fig 4E**); the accessible chromatin induced by low level HER2 signalling may
351 continuously predispose cells to secondary additional hits required for metastasis and therapeutic
352 resistance (Denny *et al.*, 2016). The resulting chromatin changes via low HER2 expression may create
353 a lasting and highly transformative state.

354 Across the different subtypes of breast cancers, and in particular HER2 positive breast cancer, loss of
355 differentiation is associated with lower patient survival and aggressiveness (Margaryan *et al.*, 2017;
356 Pupa SM., et al. 2021, 2021). However, in low HER2 expressing cells the correlation between
357 dedifferentiation and aggressiveness remains unclear. Stem marker signatures drive cancer growth,
358 and their inhibition delays it (Rudin *et al.*, 2012). Several known stem markers, including the EpCAM,

359 MUC1 and CD44 signatures, promotes transformation and tumour progression (Stingl, 2009). Our
360 data suggest an alternative model in which dedifferentiation is paradoxically driven by low levels of
361 HER2 protein expression and creates a programme of stem cell marker expression that drives
362 transformational ability (**Fig 4B**).

363 We observed leucine aminopeptidase 3 (LAP3) to be significantly activated in our phosphoproteomic
364 screen in all of the time-points analysed in MCF10A^{HER2} compared to MCF10A^{GFP} cells (**Fig 2A**).

365 LAP3 is known to play a critical role in breast cancer cells by regulating migration, invasion and is
366 associated with metastasis (Fang *et al.*, 2019). In addition, we found that phosphorylation of
367 nucleolar and coiled-body phosphoprotein 1 (NCOL1) at residue S622 was also significantly increased
368 all time-points (**Fig 2A**). This protein is found to be highly expressed in nasopharyngeal carcinomas
369 (NPC) (Hwang *et al.*, 2009) and in breast cancer cells (Sacco *et al.*, 2016). The consistent and highly
370 stable activation of these two proteins may serve as potential biomarkers for late-stage disease and
371 provide important targets for antimetastatic therapeutic targets. Furthermore, zinc finger protein
372 (ZFP36) is correlated with lower tumour grade breast cancer. Interestingly, we find that ZFP36 (S188)
373 is significantly activated in the 4- and 7-hour time-points but not in the earlier 30-minute time-points
374 (**Fig 2A**), indicating that low HER2 expressing cells prefer a programme of signalling phosphosites
375 associated with worse patient outcome (Canzoneri *et al.*, 2020).

376 The morphological changes in breast cancer models are often used to indicate the high
377 transformational characteristics of those cells (Petsalaki E. *et al.*, 2021). We found that proteins
378 associated with aggressive basal-like phenotype were found to be increased in our
379 phosphoproteomic screen, which included ADGRA2 (S1079) and DENND4C (S1250). This shows that
380 the morphological changes observed in our system (**Fig 1B**) were likely due to HER2 induced
381 transformation.

382 It is possible that the intrinsic heterogeneity found within the tumour population may be preventing
383 specific patterns from emerging in a bulk RNA-seq analysis. It is known that differential

384 downregulation of IFITM family members is associated with resistance maintenance following anti-
385 HER2 therapy, trastuzumab (Wang *et al.*, 2019). Our single cell RNA-seq data reveal downregulation
386 of IFITM3 within 24 hours of HER2 overexpression, that is maintained until at least 72 hours, which
387 could show that this does not decrease as a result of resistance but may predispose resistance to
388 therapies at the very early stage of disease. Overall, our data show the power of combining genome-
389 wide molecular approaches using an *in vitro* transformation model system to uncover subtle but
390 relevant variations in cellular states. Given the dramatic remodelling of the chromatin state driven
391 by a single factor in HER2 positive breast cancer, we speculate that other cancer types may also
392 feature similar mechanisms of cellular transformation through chromatin remodelling. Cataloguing
393 early chromatin changes can emerge as a promising therapeutic target, with a particular focus on
394 early and low HER2 induced alterations in breast cancer.

395 Metastasis is multi-step, low probability process, in which primary cells must invade the local tissue
396 and extravasate into a distant site. Our work shows that low HER2 expressing cells gain
397 transformational ability through de-differentiation and dramatic chromatin remodelling. This model
398 could be further extended to assess how low HER2-driven changes in chromatin state are used as a
399 route for metastasis in *in vivo* models, and if low loss of differentiation correlates with
400 aggressiveness in more physiologically relevant models.

401 **Materials and Methods**

402 Cell culture

403 The immortalised human mammary epithelial cell line MCF10A was obtained from the American
404 Type Culture Collection (ATCC) and grown under recommended conditions. Briefly, MCF10A cell
405 medium consists of Dulbecco's Modified Eagle's Medium (DMEM/F12) (SIGMA #D8347)
406 supplemented with 5% Horse Serum (SIGMA #H1138), 0.5 µg/mL Hydrocortisone (SIGMA #H0888),
407 20 ng/mL Epidermal Growth Factor (EGF) (SIGMA #E4127), 100 ng/mL Cholera Toxin (SIGMA
408 #C8052), 10 µg/mL Insulin (SIGMA #i9278) and 1X Pen/Strep.

409 HEK293T cells were cultured in Dulbecco's Modified Eagle's Medium (DMEM) (SIGMA#D5796) in
410 10% foetal bovine serum (FBS) with 1X Pen/Strep.

411 For 3D overlay cell cultures, cells were grown in chamber wells in a mixture of matrigel (CORNING
412 #356230) and collagen (CORNING #11563550), which were mixed with 0.1M NaOH and 10X PBS, as
413 previously described (Xiang and Muthuswamy, 2006). To collect cells from 3D cell cultures, cell
414 recovery solution (CORNING #354253) was used at 4°C for 30 to 60 minutes according to the
415 manufacturer's instructions. Staining 3D acini were fixed with 4% paraformaldehyde (PFA). Acini
416 were permeabilised with 0.5% Triton-X and blocked in 10% goat serum in PBS-Tween. Acini were
417 stained with Phalloidin dye overnight at 4°C. The detachable chambers were removed, and acini
418 mounted in mounting media reagent and allowed to dry in the dark at room temperature. Once
419 dried, slides were visualised using a fluorescence microscope.

420 Vectors and Viral infections

421 To generate HER2 inducible MCF10A cell line (Carter *et al.*, 2017), we first transiently transfected
422 HEK293T cells using jetPRIME transfection reagent (POLYPLUS #114-15). The inducible HER2
423 construct (ADDGENE #46948) alongside pMD2.G (ADDGENE #12259) [envelope plasmid], and of
424 pCMV delta R8.2 (ADDGENE #12263) [packaging plasmid] were transfected into 90% confluent
425 HEK293T cells for 24 hours. Lentiviral particles were harvested by centrifugation and early passage

426 MCF10A cells were infected for 48 hours. Cells were then flow sorted based on GFP expression to
427 obtain a pure population.

428 Western blotting

429 Cells were harvested and lysed in RIPA buffer containing protease and phosphatase inhibitors.
430 Lysates were mixed with sample loading buffer and proteins were resolved on sodium dodecyl
431 sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred onto PVDF membranes.
432 Membranes were blocked in 5% milk, and antibodies were incubated overnight in 5% BSA solution.
433 Antibodies used include HER2 (CELLSIGNALLING #2165), GAPDH (CELLSIGNALLING #2118), p53
434 (CELLSIGNALLING #2527), p27 (CELLSIGNALLING #3836), p21 (CELLSIGNALLING #2947), Tubulin
435 (ABCAM #7291), Anti-rabbit secondary (Amersham ECL Rabbit IgG, HRP-linked whole Ab #NA934).

436 Human samples were obtained from Barts Cancer Institute tissue bank, where human samples were
437 used, informed consent was obtained from all individual participants included in the study.

438 Flow cytometry and flow sorting

439 Cultured cells were detached from plates with trypsin and stained with 2% horse serum. Cells were
440 then stained with the following conjugated antibodies: HER2 (BD BIOSCIENCES #745299, 1:100),
441 EpCAM (BD BIOSCIENCES #347200, 1:40), MUC1 (BD BIOSCIENCES #743410, 1:50), CD24
442 (BIOLEGEND #311135, 1:50) for 20 minutes at room temperature. Cells were washed in 1 mL of 2%
443 horse serum and then resuspended in DAPI buffer. Stained cells were analysed on LSR Fortessa. For
444 cell sorting, cells were stained with the antibodies of interest and isolated using ARIA fusion cell
445 sorter.

446 ATAC-seq library preparation and differential analysis

447 5×10^5 cells were directly recovered from cell culture by trypsin from 2D cell culture or by using the
448 recovery solution (CORNING #354253) for cells grown in either 2D or 3D cell culture. ATAC-seq
449 libraries were generated as described previously (Buenrostro *et al.*, 2015), with minor amendments.

450 We performed 10 initial PCR amplification cycles followed by direct purification of the transposed
451 DNA, without performing qPCR to calculate the additional numbers of required cycles. Sequencing
452 data was aligned to the human genome (grch38) using bowtie2. Peaks were called on each biological
453 replicate of all ATAC-seq reads using MACS2, and putative copy number and mitochondrial regions
454 were removed. Peak dataset for differential analysis was generated by applying a threshold using a
455 desired fold-change and a $-\log_{10}$ transformed FDR adjusted *p*-value. Differential accessibility was
456 assessed using DiffBind and regions were called differentially accessible based on log2Fold change
457 and FDR *p*-value.

458 Phosphoproteomic sample preparation

459 For phosphoproteomic experiments, cells were grown in 2D cell cultures. Cell pellets were lysed
460 using 8M urea lysis buffer (containing phosphatase inhibitors). The amount of protein in the lysates
461 was quantified by BCA assay. 250 μ g from each sample were digested into peptides with
462 immobilised TPCK-trypsin beads (Thermo Fisher Scientific #20230) at 37°C overnight. Phosphorylated
463 peptides were enriched from total peptides using TiO₂ chromatography, as reported previously
464 (Montoya *et al.*, 2011; Larsen *et al.*, 2005). Finally, peptides were snap frozen and dried in a
465 SpeedVac. Dried peptides were dissolved in 0.1% TFA and analysed by LC-MS/MS on Q Exactive plus
466 mass spectrometer (Thermo Fisher Scientific). Peptide identification was performed using the
467 Mascot search engine (Casado and Cutillas, 2011). Allowed variable modifications were
468 phosphorylation on Ser, Thr and Tyr, and oxidation of Met, and the Pescal software (Casado and
469 Cutillas, 2011) and (Cutillas and Vanhaesebroeck, 2007) was used to quantify the peptides. Kinase-
470 substrate enrichment analysis (KSEA) (Casado *et al.*, 2013) was used to determine kinase activities.
471 The intensity values were calculated by determining the peak of each individual extracted ion
472 chromatograms (XIC) and plotted as heatmaps. The resulting quantitative data were transferred and
473 visualised in Microsoft Excel. The significance (log2 fold change < -0.5-fold, FDR corrected *p*-value of
474 < 0.05 for downregulated phosphosites and log2 fold change > 0.5-fold, FDR corrected *p*-value of <

475 0.05 for the upregulated phosphosites) of each phosphosite was annotated by an asterisk; we used
476 the “filter” function on excel to filter out those phosphosites that were not significant. All of the
477 significant MCF10A^{GFP} data was filtered out, whilst simultaneously filtering out non-significant data
478 for the MCF10A^{HER2} cells, giving us significant changes in MCF10A^{HER2} cells that are not significantly
479 changing in the MCF10A^{GFP} cells. The number of phosphosites was determined by the number of
480 columns as each column contains one phosphosite, unless overlapping sites were present, in which
481 case they were manually counted.

482 Migration/Invasion assays

483 Chilled matrigel or collagen mixture was directly pipetted on the centre of 8 μ m pore size transwell
484 inserts (MILLICELL #MCEP12H48) that were placed into a 12-well plate, and allowed to solidify at
485 37°C. Meanwhile, cells were trypsinised and pipetted onto the transwell inserts – which were either
486 coated with matrix or left uncoated – and cultured for 16 hours. Highly migratory/invasive cells were
487 stained with 0.05% of crystal violet dye. Images of random regions were taken using a standard light
488 microscope and quantified using imageJ.

489 Soft agar colony formation assays

490 A 0.8% base layer was formed in plates using ultra-pure culture grade agarose (THERMOFISHER
491 #16500500) allowed to settle at room temperature. 5000 cells per well were mixed with 0.3%
492 agarose and plated evenly, drop-wise, on top of the base layer. Media was changed every 2 days for
493 3 weeks. Colonies were fixed using 4% paraformaldehyde (PFA) and permeabilised using 100%
494 methanol. Colonies were stained using 0.05% crystal violet dye and images were taken using a
495 dissecting microscope. Binary masks were applied to each of the images and thresholding
496 parameters for the diameter ranging from 10um 100 μ m were set on ImageJ. Colonies were counted
497 using ImageJ only if they satisfied criteria above the threshold values, and colony counts were then
498 manually checked and adjusted if necessary.

499 Single cell RNA seq

500 MCF10A cells were induced with 1µg/ml of doxycycline 0, 7, 24, 48 and 72 hours in 2D cell cultures.

501 Cells were then detached using TrypLE (Gibco) and collected in 1X DPBS (Gibco). After one wash in

502 1X DPBS, cells were resuspended in 2% BSA-DPBS at a concentration of 10,000 cells/µl. 500 000 cells

503 (50µl) were blocked with 10µl TruStain FcX blocking solution (BioLegend). Each treatment group was

504 stained with 0.5µl of specific Totalseq-A Hashtag antibodies and 0.5µl of TotalSeq™-A0133 anti-

505 human CD340 (ERBB2/HER2) protein expression antibody. Cells were washed 3 times with 1 ml 2%

506 BSA-DPBS and resuspended to a concentration of ~10,000 cells/µl. Equal volumes of each treatment

507 group were pooled, and cell pool was assessed for cell concentration and viability. Single-cell cDNA,

508 protein expression (ADT) and hashtag (HTO) libraries were generated using Chromium Single Cell 3'

509 version 2 reagents (10x genomics and Biolegend) per manufacturers' protocols. Single-end

510 sequencing of libraries was performed by Novogene Corporation Inc. on a Novaseq 6000 (Illumina)

511 sequencer with HTO libraries constituting 5% of the sample.

512

513 Single cell data was run through the 10X cellRanger pipeline to produce counts tables for gene

514 expression counts, HTO counts for sample identification and ADT counts for HER2 expression. Cells

515 were identified and assigned to a timepoint using the HTO counts table and the HTODemux method

516 in Seurat. To exclude cells that did not respond to the doxycycline induction, treated cells with less

517 than 35 counts of the ERBB2/HER2 expression tag were filtered out. The remaining gene expression

518 data was run through Seurat's basic data processing pipeline. The data was normalized, scaled, and

519 the effects of cell cycle were regressed out using Seurat's cell cycle regression strategy. The data was

520 then run through principal component analysis (PCA). The principal components were used to

521 identify clusters and UMAP was run for visualization. Two different differential expression analyses

522 were run using Seurat's FindAllMarkers function, one across the different clusters and one across the

523 different timepoints.

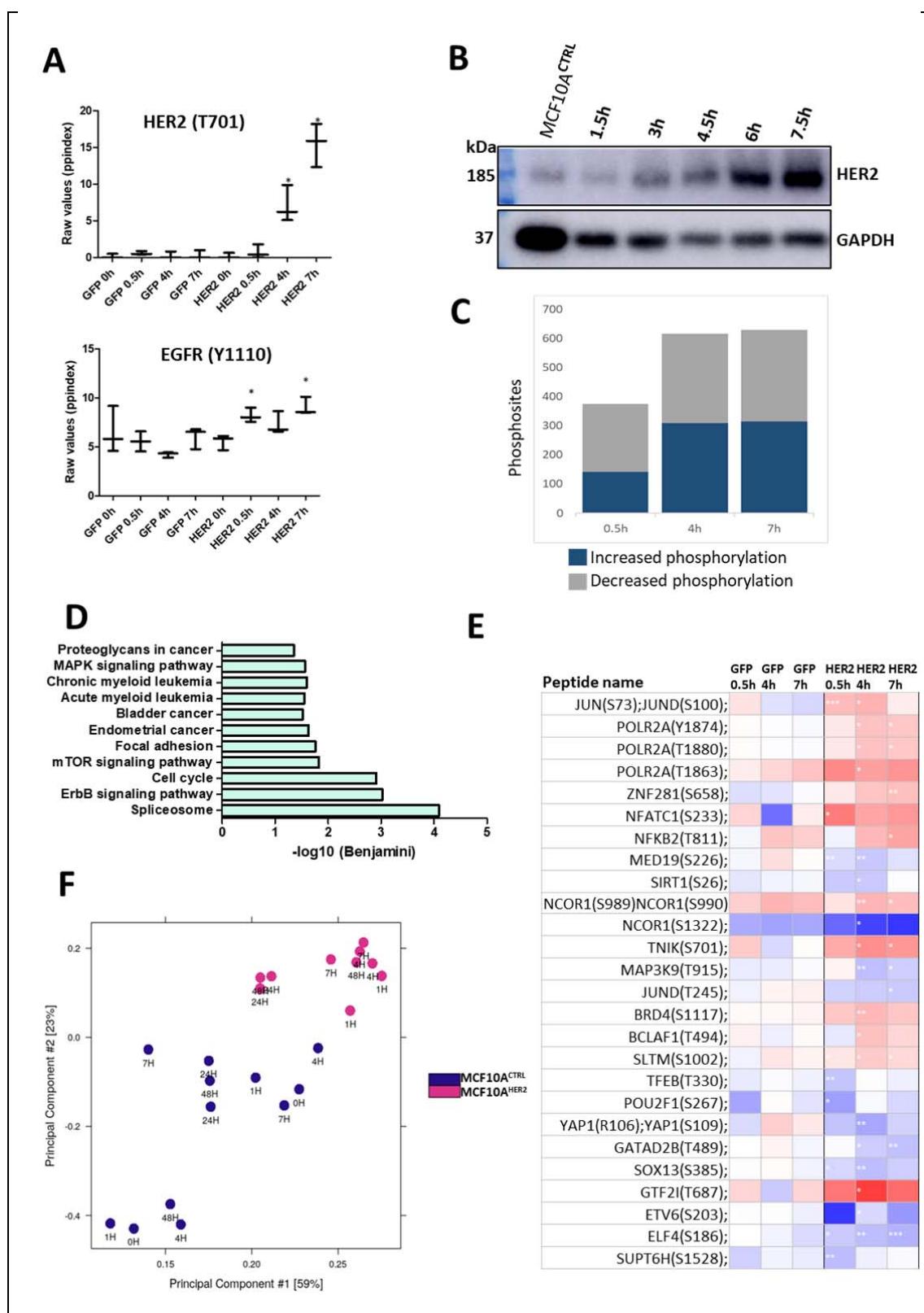
524

525

526

527

528 **Supplementary material**



529

530

531

Supplementary Figure 1

(A) An internal quality control (QC) for phosphoproteomic analysis. HER2 phosphorylation modification (T701) increases in a time dependent manner. EGFR [HER1] (Y1110), a family member of HER2, also becomes marginally activated in a time dependent manner compared to control cells. [* FDR corrected p-value of < 0.05].

(B) Western blot analysis of HER2 protein in a time-dependent manner in the early time-points upon induction with the same concentration of doxycycline (1 μ g/ml) from 0h to 7.5h. GAPDH was used as a loading control. N=1.

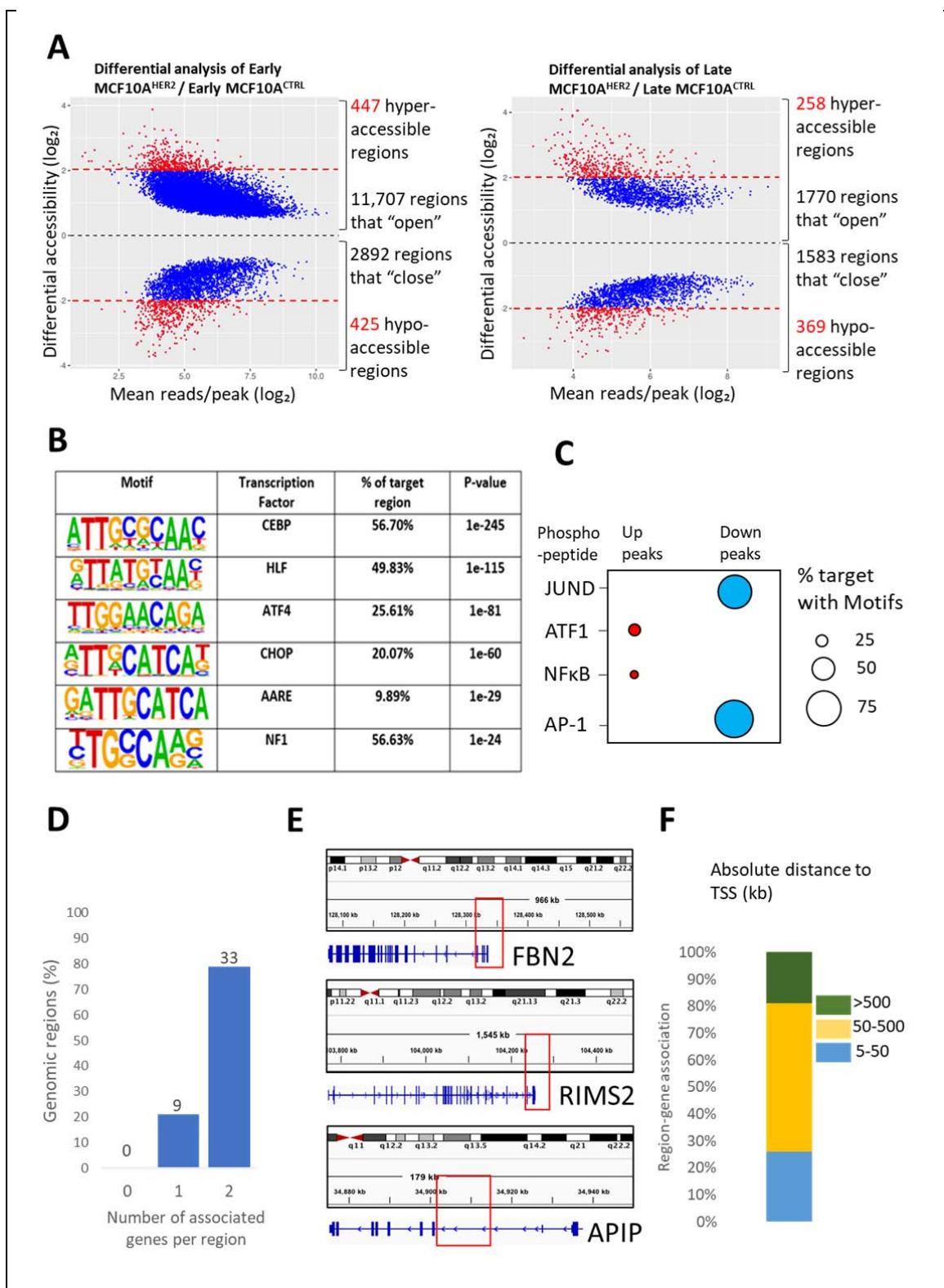
(C) Bar graph depicting the number of detected phosphosites increasing or decreasing in phosphorylation in the phosphoproteomic analysis at the time-points analysed. Significance is shown to log2fold change > 0.5, FDR corrected p-value of < 0.05. This graph shows analysis performed using lower statistical threshold compared to figure 2B.

(D) Signalling pathway analysis of the early immediate changes in transformation. Signalling pathway analysis using the DAVID Bioinformatics tool of the differentially phosphorylated events at all time points investigated upon HER2 protein induction is shown. Significance threshold applied here; log2fold change > 0.5, FDR corrected p-value of < 0.05.

(E) Identification of transcription factors and chromatin regulators. A list of transcription factors and chromatin regulators becoming differentially phosphorylated upon HER2 expression in at least one time-point upon HER2 overexpression but are not significantly changing in GFP-transduced MCF10A cells. [* FDR corrected p-value of < 0.05, **FDR corrected p-value of < 0.001, *** FDR corrected p-value of < 0.001].

(F) Principal component analysis (PCA) of all samples used in this study. Samples are colour-coded by cell type.

532



533

534

535

536

Supplementary Figure 2

(A) Differential accessibility (log2fold change > 0.5, FDR corrected p-value of < 0.05) shown by MA plot between MCF10A^{HER2} and control cells, plotted against the mean reads per region. Cells were grown in 3D cell culture from 0-48 hours and ATAC-seq performed on their acini. “Early” time-points represents 0h, 1h, 4h, and 7h data combined. “Late” time point represents 24h and 48h time-points combined. Each dot represents a region, with the blue dots representing a log2fold change of at least 0.5.

(B) Enrichment of transcription factor recognition sequences in differential ATAC-seq peaks comparing MCF10A^{HER2} and control cells based on HOMER analysis using the accessible (up) peaks.

(C) Motif analysis from ATAC-seq reveal shared transcription factors identified in the phosphoproteomic screen. A dot plot of the overrepresented motifs in differentially accessible regions with the size of the circle representing the % of differentially accessible regions that contain the motif in the accessible and inaccessible peaks.

(D) GREAT database analysis showing the number/percentage of genes associated per region of the common regions found between the early down and late down peaks in the ATAC-seq data.

(E) Integrative Genome Browser (IGV) panel displaying regions associated with the indicated genes. Red boxes show chromosomal coordinates (128,340,997-128,341,448) found in ATAC-seq data, which associates with the promoter region of FBN2.

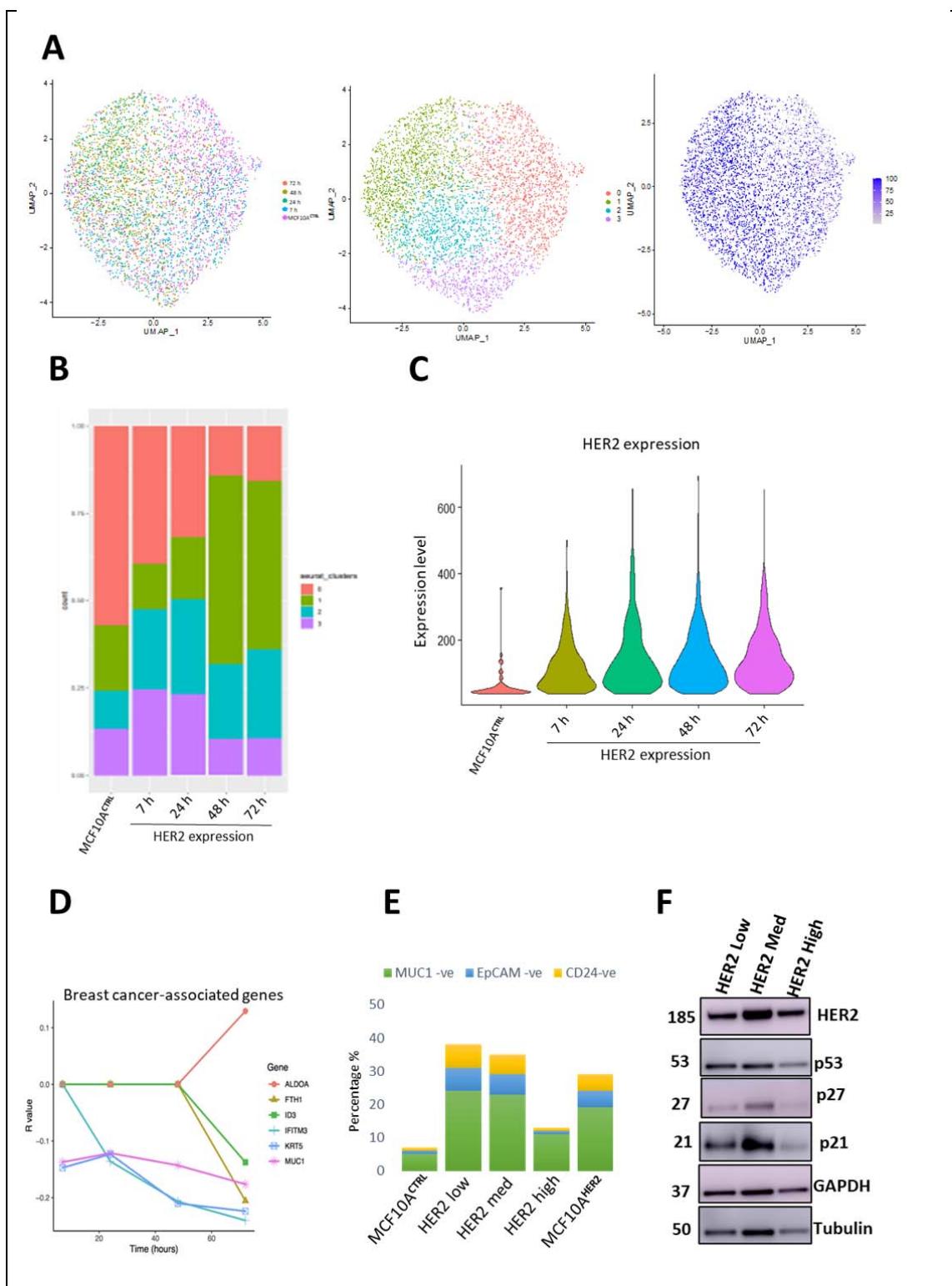
(F) Absolute distance to closest transcription start sites (TSSs) of the common differentially inaccessible regions.

537

538

539

540



541

542

543

Supplementary figure 3

(A) UMAP plot showing clustering based on different time points. UMAP plot displaying clusters of genes with similar features. UMAP plot showing a range of HER2 gene expression.

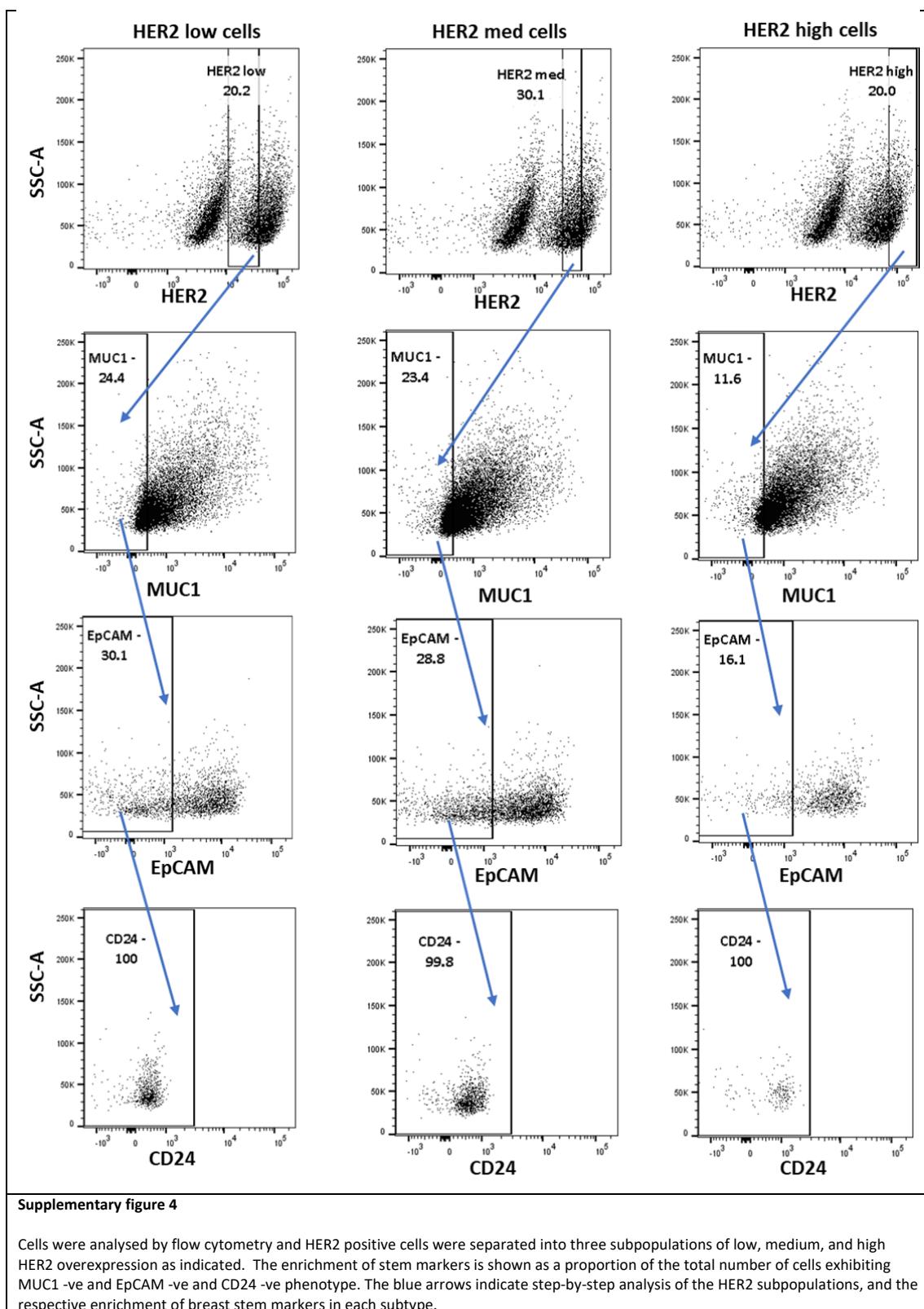
(B) Bar graph showing Seurat clustering which defines clustering via differential gene expression.

(C) Violin plot shows HER2 levels increase in a time-dependent manner with HER2 expression.

(D) Single cell RNA sequencing was performed on MCF10A cells with HER2 induction from 0 to 72 hours (3 days). Line graph shows R values as a measure of linear relationship between HER2 expression increase (with time) and some genes of interest that either increase in expression or decrease in with HER2 expression

(E) Cells were analysed by flow cytometry and HER2 positive cells were separated into three subpopulations of low, medium, and high HER2 overexpression as indicated. The enrichment of stem markers is shown as a proportion of the total number of cells exhibiting MUC1^{-ve}, EpCAM^{-ve} and CD24^{-ve} phenotype.

(F) Western blot of the indicated proteins known to have higher expression in cells that have undergone OIS. Protein lysates were prepared from cells sorted based on HER2 expression. HER2 was induced in cells for 3 days (MCF10A^{HER2}) and then FACS separated based on HER2 expression into three different subtypes (low, medium, and high HER2 expressing cells). GAPDH and Tubulin were used as loading controls. N=3.



546 **ATAC-seq bioinformatics analysis pipeline**

547

548 The ATAC-seq data was provided as FASTQ files. Quality control of raw sequencing read files was
549 performed using FastQC. Illumina adapter trimming was done using Cutadapt; settings: Cutadapt -a
550 CTGTCTTATACACATCT -A CTGTCTTATACACATCT -o out.1.fastq -p out.2.fastq. Trimmed reads
551 were aligned using the human genome, Genome Reference Consortium Human Build 38 patch
552 release 13 (GRCh38.p13), using bowtie2, and a SAM file was obtained; setting: bowtie2 index -1
553 trimmed FASTQ file -2 trimmed FASTQ file –S 1.sam. The resulting sam files were converted into
554 binary bam files; setting: Samtools view –Sb in.samfile > out.bamfile and sorted; setting: Samtools
555 sort in.bamfile -o out.bamfile and indexed; setting: Samtools index in.bamfile. To ensure an
556 improved mapping quality, we removed mitochondrial DNA; setting: Samtools view –h in.bamfile |
557 removeChrom -- chrM | Samtools view -b - > out.bamfile. PCR duplicates were removed from the
558 files using Picard tools; setting: Java -jar picard.jar MarkDuplicates I=in.bamfile O=out.bamfile
559 M=dups.txt REMOVE_DUPLICATES=true VALIDATION_STRICTNESS=LENIENT.

560 For viewing samples on genome bowser or assessing reproducibility and data exploration, all
561 samples were “down sampled” to the same number of reads; setting: samtools view -b -s
562 [downsampling_ratio] in.bam > out.downsampled.bam. Peaks calling was done for each individual
563 non-downsampled file with MACS2 “callpeak”; setting: MACS2 callpeak -t inbamfile -f BAMPE -n
564 in.bamfile -g ce –keep-dup all. These files were then analysed using DiffBind for differential analysis
565 on R. For each sample, a path to the peaks and the bam file were listed in Microsoft Excel and loaded
566 in R; setting: db.object = dba(sampleSheet="name_of_sample_sheet"). Then, the next step was to
567 take the alignment files and compute count information for each of the peaks/regions in the
568 consensus set; setting: db.object = dba.contrast(db.object, categories=DBA_TREATMENT,
569 block=DBA_CONDITION, minMembers = 2); setting: db.object =
570 dba.analyze(db.object, bParallel=TRUE, method=DBA_ALL_METHODS). R was used to plot the
571 differential changes such as MA plot with an appropriate threshold; setting:

572 dba.plotMA(db.object,th="0.05",method=DBA_DESEQ2). Significant changes could then be saved
573 from up or down peaks e.g.; setting: up_peaks_db.object.SigChanges.0.05FDR <-
574 db.object.SigChanges."0.05FDR"[db.object.SigChanges.0.05FDR\$Fold > 0,] and counted using the
575 command line and can be plotted as percentage in Prism or Microsoft excel in the form of a
576 chart/graph.

577

578 **Acknowledgements**

579 We thank Dr Salvatore Federico Pedicona and Dr Hemalvi Patani for critically reading the
580 manuscript. We thank Kriszta Kovacs for her assistance in 3D morphology assays. This work was
581 supported by a Leverhulme Trust grant.

582 **Competing interests**

583 The authors declare no competing interests.

584

Reference List

585 Alajati, A. *et al.* (2013) 'Mammary tumor formation and metastasis evoked by a HER2 splice variant',

586 *Cancer Research*, 73(17), pp. 5320-5327.

587 Bellovin, D. I., Das, B. and Felsher, D. W. (2013) 'Tumor dormancy, oncogene addiction, cellular

588 senescence, and self-renewal programs', *Advances in Experimental Medicine and Biology*, 734, pp.

589 91-107.

590 Buenrostro, J. D. *et al.* (2015) 'ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-

591 Wide', *Current Protocols in Molecular Biology*, 109, pp. 21.29.1-21.29.9.

592 Calo, E. *et al.* (2015) 'RNA helicase DDX21 coordinates transcription and ribosomal RNA processing',

593 *Nature*, 518(7538), pp. 249-253.

594 Canzoneri, R. *et al.* (2020) 'Identification of an AP1-ZFP36 Regulatory Network Associated with

595 Breast Cancer Prognosis', *Journal of Mammary Gland Biology and Neoplasia*, 25(2), pp. 163-172.

596 Carrier, M. *et al.* (2016) 'Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant

597 Breast Cancer Cell Lines', *PLoS One*, 11(6), pp. e0157290.

598 Carter, E. P. *et al.* (2017) 'A 3D in vitro model of the human breast duct: a method to unravel

599 myoepithelial-luminal interactions in the progression of breast cancer', *Breast Cancer Research : BCR*, 19(1), pp. 50-4.

601 Casado, P. and Cutillas, P. R. (2011) 'A self-validating quantitative mass spectrometry method for

602 assessing the accuracy of high-content phosphoproteomic experiments', *Molecular & Cellular*

603 *Proteomics : MCP*, 10(1), pp. M110.003079.

604 Casado, P. *et al.* (2013) 'Kinase-substrate enrichment analysis provides insights into the
605 heterogeneity of signaling pathway activation in leukemia cells', *Science Signaling*, 6(268), pp. rs6.

606 Ciccarelli, F. D. and DeGregori, J. (2020) 'Approaching Cancer Evolution from Different Angles',
607 *iScience*, 23(11), pp. 101661.

608 Clayton, A. L. and Mahadevan, L. C. (2003) 'MAP kinase-mediated phosphoacetylation of histone H3
609 and inducible gene regulation', *FEBS Letters*, 546(1), pp. 51-58.

610 Cutillas, P. R. and Vanhaesebroeck, B. (2007) 'Quantitative profile of five murine core proteomes
611 using label-free functional proteomics', *Molecular & Cellular Proteomics : MCP*, 6(9), pp. 1560-1573.

612 Denny, S. K. *et al.* (2016) 'Nfib Promotes Metastasis through a Widespread Increase in Chromatin
613 Accessibility', *Cell*, 166(2), pp. 328-342.

614 Detry, C. *et al.* (2008) 'CREB-1 and AP-1 transcription factors JunD and Fra-2 regulate bone
615 sialoprotein gene expression in human breast cancer cells', *Bone*, 42(2), pp. 422-431.

616 Fan, C. C. *et al.* (2017) 'EFHD2 promotes epithelial-to-mesenchymal transition and correlates with
617 postsurgical recurrence of stage I lung adenocarcinoma', *Scientific Reports*, 7(1), pp. 14617-y.

618 Fang, C. *et al.* (2019) 'Leucine aminopeptidase 3 promotes migration and invasion of breast cancer
619 cells through upregulation of fascin and matrix metalloproteinases-2/9 expression', *Journal of
620 Cellular Biochemistry*, 120(3), pp. 3611-3620.

621 Fisler, D. A. *et al.* (2018) 'Elucidating feed-forward apoptosis signatures in breast cancer datasets:
622 Higher FOS expression associated with a better outcome', *Oncology Letters*, 16(2), pp. 2757-2763.

623 Gangadhara, S. *et al.* (2016) '3D culture of Her2+ breast cancer cells promotes AKT to MAPK
624 switching and a loss of therapeutic response', *BMC Cancer*, 16, pp. 345-z.

625 Gilcrease, M. Z. *et al.* (2009) 'Even low-level HER2 expression may be associated with worse outcome
626 in node-positive breast cancer', *The American Journal of Surgical Pathology*, 33(5), pp. 759-767.

627 Grundt, K. *et al.* (2004) 'Characterisation of the NUCKS gene on human chromosome 1q32.1 and the
628 presence of a homologous gene in different species', *Biochemical and Biophysical Research
629 Communications*, 323(3), pp. 796-801.

630 Hanahan, D. and Weinberg, R. A. (2011) 'Hallmarks of cancer: the next generation', *Cell*, 144(5), pp.
631 646-674.

632 Hardy, K. *et al.* (2016) 'Identification of chromatin accessibility domains in human breast cancer stem
633 cells', *Nucleus (Austin, Tex.)*, 7(1), pp. 50-67.

634 Hartman Z., e. a. (2012) 'HER2 stabilizes EGFR and itself by altering autophosphorylation patterns in
635 a manner that overcomes regulatory mechanisms and promotes proliferative and transformation
636 signaling.'

637 Hibi, K. *et al.* (2012) 'FBN2 methylation is detected in the serum of colorectal cancer patients with
638 hepatic metastasis', *Anticancer Research*, 32(10), pp. 4371-4374.

639 Hong, S. H. *et al.* (2016) 'APIP, an ERBB3-binding partner, stimulates erbB2-3 heterodimer formation
640 to promote tumorigenesis', *Oncotarget*, 7(16), pp. 21601-21617.

641 Huang da, W., Sherman, B. T. and Lempicki, R. A. (2009) 'Systematic and integrative analysis of large
642 gene lists using DAVID bioinformatics resources', *Nature Protocols*, 4(1), pp. 44-57.

643 Huang, L. *et al.* (2019) 'ID3 Promotes Stem Cell Features and Predicts Chemotherapeutic Response of
644 Intrahepatic Cholangiocarcinoma', *Hepatology (Baltimore, Md.)*, 69(5), pp. 1995-2012.

645 Hwang, Y. C. *et al.* (2009) 'NOLC1, an enhancer of nasopharyngeal carcinoma progression, is essential
646 for TP53 to regulate MDM2 expression', *The American Journal of Pathology*, 175(1), pp. 342-354.

647 Imbalzano, K. M. *et al.* (2009) 'Increasingly transformed MCF-10A cells have a progressively tumor-
648 like phenotype in three-dimensional basement membrane culture', *Cancer Cell International*, 9, pp.
649 7-7.

650 Larsen, M. R. *et al.* (2005) 'Highly selective enrichment of phosphorylated peptides from peptide
651 mixtures using titanium dioxide microcolumns', *Molecular & Cellular Proteomics : MCP*, 4(7), pp.
652 873-886.

653 Liu, J. *et al.* (2019) 'ERBB2 Regulates MED24 during Cancer Progression in Mice with Pten and Smad4
654 Deletion in the Pulmonary Epithelium', *Cells*, 8(6), pp. 10.3390/cells8060615.

655 Margaryan, N. V. *et al.* (2017) 'Targeting the Stem Cell Properties of Adult Breast Cancer Cells: Using
656 Combinatorial Strategies to Overcome Drug Resistance', *Current Molecular Biology Reports*, 3(3), pp.
657 159-164.

658 Montoya, A. *et al.* (2011) 'Characterization of a TiO(2) enrichment method for label-free quantitative
659 phosphoproteomics', *Methods (San Diego, Calif.)*, 54(4), pp. 370-378.

660 Muthuswamy, S. K. *et al.* (2001) 'ErbB2, but not ErbB1, reinitiates proliferation and induces luminal
661 repopulation in epithelial acini', *Nature Cell Biology*, 3(9), pp. 785-792.

662 Oliveras-Ferraros, C. *et al.* (2010) 'Dynamic emergence of the mesenchymal
663 CD44(pos)CD24(neg/low) phenotype in HER2-gene amplified breast cancer cells with de novo
664 resistance to trastuzumab (Herceptin)', *Biochemical and Biophysical Research Communications*,
665 397(1), pp. 27-33.

666 Ortega-Cava, C. F. and et al (2011) 'Continuous requirement of ErbB2 kinase activity for loss of cell
667 polarity and lumen formation in a novel ErbB2/Neu-driven murine cell line model of metastatic
668 breast cancer'.

669 Ostvold, Anne C., et al (2001) 'Molecular cloning of a mammalian nuclear phosphoprotein NUCKS,
670 which serves as a substrate for Cdk1 in vivo'.

671 Park, B. W. *et al.* (2012) 'Homeodomain-interacting protein kinase 1 (HIPK1) expression in breast
672 cancer tissues', *Japanese Journal of Clinical Oncology*, 42(12), pp. 1138-1145.

673 Parplys, A. C. *et al.* (2015) 'NUCKS1 is a novel RAD51AP1 paralog important for homologous
674 recombination and genome stability', *Nucleic Acids Research*, 43(20), pp. 9817-9834.

675 Paszek, M. J. and Weaver, V. M. (2004) 'The tension mounts: mechanics meets morphogenesis and
676 malignancy', *Journal of Mammary Gland Biology and Neoplasia*, 9(4), pp. 325-342.

677 Petsalaki E. *et al.* (2021) 'Identification of phenotype-specific networks from paired gene expression-
678 cell shape imaging data'.

679 Pogna, E. A., Clayton, A. L. and Mahadevan, L. C. (2010) 'Signalling to chromatin through post-
680 translational modifications of HMGN', *Biochimica Et Biophysica Acta*, 1799(1-2), pp. 93-100.

681 Pradeep, C. R. *et al.* (2012) 'Modeling invasive breast cancer: growth factors propel progression of
682 HER2-positive premalignant lesions', *Oncogene*, 31(31), pp. 3569-3583.

683 Pupa SM., et al. 2021 (2021) 'HER2 Signaling and Breast Cancer Stem Cells: The Bridge behind HER2-
684 Positive Breast Cancer Aggressiveness and Therapy Refractoriness
685 ', *Cancers (Basel)*, .

686 Qu, Y. *et al.* (2015) 'Evaluation of MCF10A as a Reliable Model for Normal Human Mammary
687 Epithelial Cells', *PLoS One*, 10(7), pp. e0131285.

688 Rudin, C. M. *et al.* (2012) 'Comprehensive genomic analysis identifies SOX2 as a frequently amplified
689 gene in small-cell lung cancer', *Nature Genetics*, 44(10), pp. 1111-1116.

690 Sacco, F. *et al.* (2016) 'Deep Proteomics of Breast Cancer Cells Reveals that Metformin Rewires
691 Signaling Networks Away from a Pro-growth State', *Cell Systems*, 2(3), pp. 159-171.

692 Schreiber, S. L. and Bernstein, B. E. (2002) 'Signaling network model of chromatin', *Cell*, 111(6), pp.
693 771-778.

694 Seton-Rogers, S. E. *et al.* (2004) 'Cooperation of the ErbB2 receptor and transforming growth factor
695 beta in induction of migration and invasion in mammary epithelial cells', *Proceedings of the National
696 Academy of Sciences of the United States of America*, 101(5), pp. 1257-1262.

697 Sever, R. and Brugge, J. S. (2015) 'Signal transduction in cancer', *Cold Spring Harbor Perspectives in
698 Medicine*, 5(4), pp. 10.1101/cshperspect.a006098.

699 Stingl, J. (2009a) 'Detection and analysis of mammary gland stem cells', *The Journal of Pathology*,
700 217(2), pp. 229-241.

701 Stingl, J. (2009b) 'Detection and analysis of mammary gland stem cells', *The Journal of Pathology*,
702 217(2), pp. 229-241.

703 Tirinato, L. *et al.* (2021) 'Lipid droplets and ferritin heavy chain: a devilish liaison in human cancer cell
704 radioresistance', *eLife*, 10, pp. 10.7554/eLife.72943.

705 Treisman, R. (1996) 'Regulation of transcription by MAP kinase cascades', *Current Opinion in Cell
706 Biology*, 8(2), pp. 205-215.

707 Vendrell, J. A. *et al.* (2008) 'A candidate molecular signature associated with tamoxifen failure in
708 primary breast cancer', *Breast Cancer Research : BCR*, 10(5), pp. R88.

709 Voss, T. C. and Hager, G. L. (2014) 'Dynamic regulation of transcriptional states by chromatin and
710 transcription factors', *Nature Reviews.Genetics*, 15(2), pp. 69-81.

711 Wainwright, E. N. and Scaffidi, P. (2017) 'Epigenetics and Cancer Stem Cells: Unleashing, Hijacking,
712 and Restricting Cellular Plasticity', *Trends in Cancer*, 3(5), pp. 372-386.

713 Wang, J. and Xu, B. (2019) 'Targeted therapeutic options and future perspectives for HER2-positive
714 breast cancer', *Signal Transduction and Targeted Therapy*, 4, pp. 34-2. eCollection 2019.

715 Wang, J. *et al.* (2019) 'Single-cell RNA sequencing reveals novel gene expression signatures of
716 trastuzumab treatment in HER2+ breast cancer: A pilot study', *Medicine*, 98(26), pp. e15872.

717 Wolter, S. *et al.* (2008) 'c-Jun controls histone modifications, NF-kappaB recruitment, and RNA
718 polymerase II function to activate the ccl2 gene', *Molecular and Cellular Biology*, 28(13), pp. 4407-
719 4423.

720 Xiang, B. and Muthuswamy, S. K. (2006a) 'Using three-dimensional acinar structures for molecular
721 and cell biological assays', *Methods in Enzymology*, 406, pp. 692-701.

722 Xiang, B. and Muthuswamy, S. K. (2006b) 'Using three-dimensional acinar structures for molecular
723 and cell biological assays', *Methods in Enzymology*, 406, pp. 692-701.

724 Zanin, R. *et al.* (2019) 'HMGA1 promotes breast cancer angiogenesis supporting the stability, nuclear
725 localization and transcriptional activity of FOXM1', *Journal of Experimental & Clinical Cancer
726 Research : CR*, 38(1), pp. 313-8.

727 Zhang, H. *et al.* (2019) 'LAMB3 mediates apoptotic, proliferative, invasive, and metastatic behaviors
728 in pancreatic cancer by regulating the PI3K/Akt signaling pathway', *Cell Death & Disease*, 10(3), pp.
729 230-z.

730 Zhang, L., Liu, Z. and Zhu, J. (2021) 'In silico screening using bulk and single-cell RNA-seq data
731 identifies RIMS2 as a prognostic marker in basal-like breast cancer: A retrospective study', *Medicine*,
732 100(16), pp. e25414.

733