

1 **Estrogen signaling in the dorsal raphe regulates binge-like drinking in mice.**

2
3 Valeria C. Torres Irizarry^{1,2,7}, Bing Feng^{3,7}, Xiaohua Yang^{1,4}, Patel Nirali¹, Sarah Schaul¹, Lucas
4 Ibrahimi¹, Hui Ye¹, Pei Luo^{1,4}, Leslie Carrillo-Sáenz^{1,2}, Penghua Lai¹, Maya Kota¹, Devin Dixit¹,
5 Chunmei Wang⁵, Amy W. Lasek^{6#}, Yanlin He^{3,*}, and Pingwen Xu^{1,2, *†}

6
7 ¹Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago,
8 Chicago, Illinois, 60612, USA

9 ²Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago,
10 Illinois, 60612, USA

11 ³Pennington Biomedical Research Center, Louisiana State University, Baton Rouge,
12 Louisiana, 70808, USA

13 ⁴Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key
14 Laboratory of Animal Nutritional Regulation, National Engineering Research Center for
15 Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483
16 Wushan Road, Tianhe District, Guangzhou, Guangdong, 510642, China

17 ⁵Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine,
18 One Baylor Plaza, Houston, TX 77030, USA.

19 ⁶Center for Alcohol Research in Epigenetics and Department of Psychiatry, University of
20 Illinois at Chicago, Chicago, Illinois, 60612, USA

21 ⁷Co-first author

22

23 [†]Lead contact

24

25 [#]Current affiliation: Department of Pharmacology and Toxicology, Virginia Commonwealth
26 University, Richmond, Virginia, 23298, USA

27

28 *To whom correspondence should be addressed:

29

30 Yanlin He, Ph.D.

31 Email: Yanlin.He@pbrc.edu,

32 Address: 6400 Perkins Road, Basic Science Building, L2024, Baton Rouge, LA 70808-4124,

33 Phone: (225)-763-2815,

34 Fax: (225)-763-2525

35

36 Pingwen Xu, Ph.D.

37 Email: pingwenx@uic.edu,

38 Address: 835 S Wolcott Ave, MC 613, Chicago, IL 60612,

39 Phone: (312)-355-4918,

40 Fax: (312)-413-0437

41

42

43 **Conflict of interest statement**

44 The authors have declared that no conflict of interest exists.

45

46

47

48

49

50

51

52

53

54

55 **Summary:** The ovarian hormone estrogens promote binge alcohol drinking and contribute to
56 sex differences in alcohol use disorder. However, the mechanisms for estrogen-induced binge
57 drinking are largely unknown. This study aims to test if estrogens act on 5-hydroxytryptamine
58 neurons in the dorsal raphe nucleus (5-HT^{DRN}) to promote binge drinking. We used the drinking
59 in the dark (DID) behavioral test in mice to mimic binge drinking in humans. We found that
60 female mice drank more alcohol than male mice in chronic DID tests. This sex difference was
61 associated with distinct alterations in mRNA expression of estrogen receptor α (ER α) and 5-
62 HT-related genes in the DRN, suggesting a potential role of estrogen/ERs/5-HT signaling in
63 binge alcohol drinking. In supporting this view, 5-HT^{DRN} neurons from naïve male mice had
64 lower baseline neuronal firing activity but higher sensitivity to alcohol-induced excitation
65 compared to 5-HT^{DRN} neurons from naïve female mice. Notably, this higher sensitivity was
66 blunted by 17 β -estradiol treatment in males, indicating an estrogen-dependent mechanism.
67 We further showed that both ER α and ER β are expressed in 5-HT^{DRN} neurons, whereas ER α
68 agonist propyl pyrazole triol (PPT) depolarizes 5-HT^{DRN} neurons and ER β agonist
69 diarylpropionitrile (DPN) hyperpolarizes 5-HT^{DRN} neurons. Notably, both PPT and DPN
70 treatments blocked the stimulatory effects of alcohol on 5-HT^{DRN} neurons in males, despite the
71 fact that they have antagonistic effects on the activity dynamics of 5-HT^{DRN} neurons. These
72 results suggest that ERs' inhibitory effects on ethanol-induced burst firing of 5-HT^{DRN} neurons
73 may contribute to higher levels of binge drinking in females. Consistently, chemogenetic
74 activation of ER α - or ER β -expressing neurons in the DRN reduced binge alcohol drinking.
75 These results support a model in which estrogens act on ER α / β to prevent alcohol-induced
76 activation of 5-HT^{DRN} neurons, which in return leads to higher binge alcohol drinking.

77
78 **Keywords:** Estrogen, binge alcohol drinking, DRN, ER α , ER β , 5-HT.

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

109 **Introduction**

110 Binge drinking, defined as the consumption of a significant amount of alcohol in a single
111 setting^{1,2}, is the most common pattern of excessive alcohol use in the US³ and contributes to
112 the development of alcohol use disorder (AUD). Like many other psychiatric disorders, there
113 are sex differences in the trajectory of AUD and its consequences. Binge drinking by women
114 has increased faster than by men in recent decades⁴ and women show more vulnerability to
115 alcohol-induced cognitive impairment and peripheral neuropathy than men⁵⁻⁹. While more
116 effective treatments to reduce alcohol misuse in both sexes are urgently needed, our
117 understanding of the pathophysiology of female binge drinking is limited.

118
119 A large body of evidence indicates that the ovarian hormone estrogens play a role in sex
120 differences in alcohol consumption behavior. Human clinical studies support the association
121 of increased estrogen levels and increased alcohol use¹⁰⁻¹³. Consistently, numerous animal
122 studies have demonstrated the stimulatory effects of 17 β -estradiol (E2) on ethanol drinking
123 under various access conditions, including those that promote binge drinking¹⁴⁻¹⁹. Overall,
124 human and animal studies implicate estrogens in increased alcohol drinking. However, little is
125 known about the central mechanisms mediating estrogenic regulation of behaviors related to
126 alcohol drinking. Only a handful of studies have shown that ERs in the ventral tegmental area
127 mediate estrogen's effects on the dopamine system and increase alcohol binge-like drinking
128 behavior in female mice²⁰⁻²². Nevertheless, the other potential ERs sites in the brain mediating
129 estrogenic effects on alcohol binge drinking have not been identified.

130
131 The brain serotonin (5-hydroxytryptamine, 5-HT) system is a critical modular of alcohol intake
132 and critically involved in alcohol's effects on the brain and the development of alcohol misuse
133 23-25. It has been reported that binge drinking induces a burst release of central 5-HT, and
134 increased brain 5-HT content inhibits alcohol consumption in both humans and rodents²³⁻²⁶.
135 Interestingly, estrogens have a potent modulatory impact on this system. For example,
136 estrogens have been shown to increase serotonergic tone by regulating the synthesis and
137 degradation of serotonin²⁷⁻²⁹. In line with these findings, both estrogen receptor α (ER α) and
138 β (ER β) are highly expressed in the dorsal raphe (DRN)³⁰, the largest serotonergic nucleus
139 and a major source of 5-HT. It has been shown that the ER α agonist propyl pyrazole triol (PPT)
140 increases^{31,32} whereas the ER β agonist diarylpropionitrile (DPN) decreases the spontaneous
141 firing of the serotonergic neurons in the DRN³³. These studies demonstrate a potential
142 mediating role of DRN 5-HT neurons (5-HT^{DRN}) in the regulatory effects of estrogen on binge
143 drinking.

144
145 In this study, we first used a chronic drinking in the dark (DID) behavioral test to examine the
146 effects of long-term binge drinking on estrogen and 5-HT signaling in the DRN. Furthermore,
147 the *ex vivo* responsiveness of 5-HT^{DRN} neurons to ethanol treatment was compared between
148 male and female mice using whole-cell patch-clamp electrophysiology recording. We further
149 tested whether E2, PPT, and DPN treatments attenuate the sex difference in ethanol-induced
150 activity changes of 5-HT^{DRN} neurons. Finally, we used the designer receptors exclusively
151 activated by designer drugs (DREADD) approach to examine the effects of DRN neural activity
152 on binge drinking in mice. Our results provide compelling evidence to support a model in which
153 estrogens act on ER α/β to prevent alcohol-induced activation of 5-HT^{DRN} neurons that inhibit
154 binge drinking.

155 **Results**

156 **Sex-specific gene changes in the DRN induced by chronic DID**

157 Both male and female C57BL/6J mice were subjected to 9-week water or ethanol DID. We
158 found females consumed more alcohol than males in the ethanol, but not water DID test (Fig.
159 1A-D). Notably, 9-week binge-like ethanol drinking leads to increases in the mRNA expression
160 of estrogen receptor 1 (*Esr1*, the gene encoding ER α protein), serotonin transporter (*Sert*,
161 serotonin reuptake enzyme), and plasmacytoma expressed transcript 1 (*Pet1*, a crucial
162 transcription factor for the metabolism and the reuptake of serotonin) in males. Conversely,
163 chronic binge-like drinking decreased the mRNA expression of *Esr1* but not 5-HT-related
164 genes in females (Fig. 1E-J), suggesting a sexually dimorphic response in the DRN to chronic
165 binge-like ethanol drinking.

166

167 **5-HT^{DRN} neurons co-express ER α /ER β**

168 To examine the expression pattern of ER α and ER β on serotonergic neurons in the DRN, we
169 did dual immunofluorescent (IF) staining of ER α and tryptophan hydroxylase (TPH) in the
170 *Esr2-Cre/Rosa26-LSL-tdTOMATO* mice, in which all ER β positive neurons were labeled with
171 red TOMATO fluorescence. We found that about 80-90% of 5-HT^{DRN} neurons co-express ER α
172 or ER β (83.63% in M vs. 89.33% in F); about 40-50% of 5-HT^{DRN} neurons are positive for both
173 ER α and ER β (41.61% in M vs. 53% in F, Fig. 2A-C). Notably, there are more ER α (+) 5-HT^{DRN}
174 neurons than ER β (+) 5-HT^{DRN} neurons in both males and females (77.4% vs. 47.84% in M;
175 79.2% vs. 63.13% in F, Fig. 2C). We also found that around 80% of ER α ^{DRN} neurons (85.28%
176 in M vs. 79.48% in F) and 70% of ER β ^{DRN} neurons (70.26% in M vs. 73.02% in F; Fig. 2D-E)
177 are serotonergic. Consistently, we found abundant ER α and ER β expression in 5-HT neurons
178 in the DRN of ER β -EGFP mice, as indicated by white arrow-pointed triple color-positive
179 neurons (Fig. 2F-G). These provide the anatomic basis that estrogen acts through both ER α / β
180 expressed by 5-HT^{DRN} neurons to regulate binge drinking behavior.

181

182 **Sexually dimorphic responses to ethanol in ER α ^{DRN} neurons**

183 To determine the baseline characteristics of ER α ^{DRN} neurons, we recorded DRN ZsGreen(+)
184 neurons in *ex vivo* brain slices from ER α -ZsGreen mice (Fig. 3A). We found that ER α ^{DRN}
185 neurons from female mice showed higher firing frequency and depolarized resting membrane
186 potential compared to ER α ^{DRN} neurons from male mice (Fig. 3B-D), indicating a higher
187 spontaneous neural activity in ER α ^{DRN} neurons. We further tested the dose responses of
188 ER α ^{DRN} neurons to ethanol treatment in both sexes. ER α ^{DRN} neurons from males were more
189 sensitive to ethanol-induced excitation compared to ER α ^{DRN} neurons from females (Fig. 3E-
190 J). Specifically, while a low dose of 0.5 mM ethanol treatment failed to increase the firing
191 frequency of female ER α ^{DRN} neurons (Fig. 3F), it significantly raised the firing rate of male
192 ER α ^{DRN} neurons (Fig. 3E). Consistently, the ethanol-induced increases in firing frequency
193 were substantially more significant in males than in females at 0.5 and 50 mM doses (Fig. 3G).
194 The changes in resting membrane potential were also greater in males at a dose of 1 mM
195 ethanol treatment compared to female mice (Fig. 3J). Since a majority of ER α -expressing cells
196 within the DRN are 5-HT neurons (Fig. 2D)³², we speculate that ER α -expressing 5-HT^{DRN}
197 neurons exhibit a sexually dimorphic response to ethanol treatment.

198

199 **Estrogen attenuates ethanol-induced excitation of 5-HT^{DRN} neurons in males**

200 To compare the baseline characteristics of 5-HT^{DRN} neurons from different sexes, we recorded
201 DRN tdTOMATO(+) neurons in *ex vivo* brain slices from TPH2-iCreER/Rosa26-LSL-
202 tdTOMATO mice (Fig. 4A). Similar to what we observed in ER α ^{DRN} neurons, female 5-HT^{DRN}
203 neurons had a higher spontaneous activity, as indicated by increased firing frequency and
204 depolarized resting membrane potential (Fig. 4B-D). To further test if estrogens contribute to
205 sex differences in ethanol's regulation of DRN neuron firing, we recorded the responses of 5-
206 HT^{DRN} neurons to 1s puff treatment of 1 mM ethanol in the presence of vehicle or E2.
207 Consistent with ethanol's dose-dependent stimulatory effects on ER α ^{DRN} neurons (Fig. 3E-J),
208 1 mM ethanol puff significantly increased firing frequency and depolarized resting membrane

209 potential of 5-HT^{DRN} neurons regardless of sex or E2 treatment (Fig. 4E-F and I-J). Notably, at
210 a baseline level without ethanol treatment, E2 incubation did not affect the firing rate or resting
211 membrane potential of 5-HT^{DRN} neurons in both sexes (Fig. 4G and K). However, the ethanol-
212 induced increases in firing frequency and resting membrane potentials were significantly
213 reduced in males but not in females by E2 treatment (Fig. 4H and L), suggesting an attenuation
214 in ethanol-induced activation of 5-HT^{DRN} neurons.

215
216 **ER α agonist stimulates ER α ^{DRN} neurons while ER β agonist inhibits 5-HT^{DRN} neurons**
217 To explore the intracellular mechanism for estrogenic action on 5-HT^{DRN} neurons, we recorded
218 the responses of ER α ^{DRN} or 5-HT^{DRN} neurons to treatment with the ER α agonist, propyl
219 pyrazole triol (PPT), or the ER β agonist, diarylpropionitrile (DPN), respectively. In both male
220 and female mice, we found that PPT significantly increased firing frequency and depolarized
221 resting membrane potential of ER α ^{DRN} neurons (Fig. 5A-B), which is consistent with our
222 previous report on the ER α -mediated stimulatory effects of PPT on 5-HT^{DRN} neurons³⁴. This is
223 also in line with the observations that most ER α -expressing neurons are 5-HT positive neurons
224 (Fig. 2D). Conversely, DPN significantly decreased firing frequency and hyperpolarized resting
225 membrane potential of 5-HT^{DRN} neurons (Fig. 5C-D), suggesting ER β -mediated inhibition on
226 5-HT^{DRN} neurons³³. Notably, around 70-77% of 5-HT^{DRN} neurons responded to DPN treatment
227 (Fig. 5E), consistent with the observation that 70-73% of 5-HT^{DRN} neurons co-express ER β
228 (Fig. 2E). These results suggest antagonistic roles for ER α and ER β expressed by 5-HT^{DRN}
229 neurons in neural activity regulation.

230
231 **Both ER α and ER β agonists attenuate EtOH-induced excitation of 5-HT^{DRN} neurons**
232 To identify the primary mediating receptor for E2's inhibitory effects on ethanol-induced
233 activation of 5-HT^{DRN} neurons, we pre-incubated DRN-containing brain slices from TPH2-
234 CreER/Rosa26-tdTOMATO mice with either PPT or DPN. Subsequently, we tested the
235 response of 5-HT^{DRN} neurons to ethanol treatment. We found that 1 mM ethanol puff
236 significantly increased the firing frequency and depolarized resting membrane potential in 5-
237 HT^{DRN} neurons regardless of sex or agonist treatment (Fig. 5F-G and L-M). At a baseline level
238 without ethanol treatment, PPT bath incubation significantly increased the firing rate of 5-
239 HT^{DRN} neurons in male but not in female mice (Fig. 5H-I), without changing resting membrane
240 potential in both sexes (Fig. 5N-O). On the other hand, DPN failed to affect either firing
241 frequency or resting membrane potential in both sexes (Fig. 5H-I and N-O). Notably, unlike
242 puff treatment, in the current-clamp recording settings, 5-HT^{DRN} neurons were pre-incubated
243 with PPT and DPN in the bath solutions, contributing to much more modest changes in
244 baseline firing frequency and resting membrane potential. Importantly, the 5-HT^{DRN} neurons
245 from males were unresponsive to ethanol in the presence of PPT or DPN (Fig. 5J and P).
246 Conversely, in females, only DPN showed inhibitory effects on ethanol-induced changes in
247 resting membrane potential (Fig. 5K and Q). These results suggest that both ER α and ER β
248 contribute to E2's inhibitory effects on ethanol-induced activation of 5-HT^{DRN} neurons.

249
250 **Chemogenetic activation of ER α ^{DRN} or ER β ^{DRN} neurons attenuates binge drinking in
251 females.**

252 To directly test the regulatory effects of ER α ^{DRN} neurons on binge drinking, we employed the
253 DREADD method to selectively activate ER α ^{DRN} neurons by stereotaxic injection of AAV-DIO-
254 hM3Dq-mCherry into the DRN of *Esr1*-Cre mice (ER α -Dq^{DRN}, Fig. 6A). To exclude the possible
255 off-target effects of clozapine N-oxide (CNO) or its metabolites³⁵, we included *Esr1*-Cre mice
256 receiving the AAV-DIO-mCherry virus injections as controls (ER α -mCherry^{DRN}). We observed
257 specific expression of hM3Dq-mCherry in female ER α -Dq^{DRN} mice (Fig. 6B). Notably, the
258 mCherry-positive neurons in the DRN were identified to be TPH neurons (Fig. 6C-E), and CNO
259 treatment increased firing frequency and resting membrane potential of these neurons (Fig.
260 6F-J), validating the successful activation of ER α -expressing 5-HT^{DRN} neurons. We found that
261 CNO-induced activation of ER α ^{DRN} neurons reduced alcohol consumption in both 2-hour and
262 4-hour binge drinking sessions (Fig. 6K-L), suggesting an essential role of the ER α →5-HT

263 pathway in binge drinking.

264

265 To determine whether the effects of activation of ER α ^{DRN} neurons on binge-like drinking were
266 specific to ethanol or might extend to other rewarding substances, we performed the DID using
267 2% sucrose (instead of ethanol). There were no significant effects of ER α ^{DRN} activation for
268 sucrose consumption during the 2-hour sessions or during the final 4-hour session (Fig. 6M-
269 N), demonstrating that activation of ER α ^{DRN} neurons in female mice does not affect sucrose-
270 induced reward effects. Finally, to determine whether the inhibitory effect of ER α ^{DRN} activation
271 on alcohol consumption is ER α -specific, we injected AAV-DIO-hM3Dq-mCherry into the DRN
272 of Esr2-Cre mice (Fig. 6O) and tested the effects of ER β ^{DRN} activation on the ethanol drinking
273 in the DID. We found that activation of ER β ^{DRN} neurons in female mice also significantly
274 decreased alcohol consumption during the 2-hour sessions and tended to reduce ethanol
275 drinking during the final 4-hour session (Fig. 6P-O). These results suggest a regulatory role
276 for ER α - and ER β -expression neurons in the DRN in ethanol binge drinking.

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317 **Discussion**

318 Our findings demonstrate a regulatory role of estrogen/ERs/5-HT^{DRN} signaling in binge
319 drinking. To our knowledge, this is the first report regarding the role of estrogenic serotonin
320 system in controlling alcohol binge drinking. The essential function of this signaling is first
321 supported by the sex-specific alterations in mRNA expression of ER α and 5-HT-related genes
322 in the DRN induced by chronic alcohol DID tests. We further provided *ex vivo* patch-clamp
323 evidence that ethanol sex dimorphically depolarizes 5-HT^{DRN} neurons and that
324 pharmacological activation of ER α or ER β attenuates ethanol-induced activation of 5-HT
325 neurons. Finally, we showed that DREADD stimulation of ER α ^{DRN} or ER β ^{DRN} neurons reduces
326 binge-like ethanol drinking. These findings implicate a potential role of estrogen signaling in
327 5-HT^{DRN} neurons in sex dimorphism in binge-like alcohol drinking.

328

329 Although many studies have shown an association between estrogen signaling and the brain's
330 5-HT system, a key modulator of alcohol intake²³⁻²⁵, the potential regulatory role of estrogenic
331 5-HT signaling in alcohol drinking has not been thoroughly studied. Anatomically, ER α and
332 ER β are expressed in the 5-HT^{DRN} neurons of male and female mice³⁰. We further quantified
333 the expression pattern of ER α , ER β , and TPH in the DRN and found most 5-HT^{DRN} neurons
334 are positive for ER α or ER β . Notably, a large portion of the 5-HT^{DRN} neurons co-express both
335 ER α and ER β . This drove us to separately test the electrophysiological function of ER α or ER β
336 expressed by 5-HT^{DRN} neurons. In line with our previous reports^{32,33}, we found that estrogens
337 stimulate 5-HT^{DRN} neurons through ER α while inhibiting 5-HT^{DRN} neurons through ER β ,
338 suggesting antagonistic effects of ER α and ER β expressed by 5-HT^{DRN} neurons. It is puzzling
339 that two receptors with opposite regulatory effects on neural activity are expressed in the same
340 neurons. Interestingly, several previous studies have consistently observed that neurons in
341 different brain regions, including the medial amygdala (MeA), the bed nucleus of the stria
342 terminalis (BNST), and the preoptic area of the hypothalamus (POAH), co-express both ER α
343 and ER β ^{36,37}. It has been proposed that the presence of both ERs may allow the neurons to
344 accommodate different physiological/pathological conditions by changing ER α /ER β ratio and
345 responding differentially to the actions of estrogen³⁷.

346

347 Consistent with this point of view, in male mice, expression of *Esr1* was significantly increased
348 by chronic alcohol DID, resulting in a much lower *Esr2/Esr1* ratio in the DRN. This alcohol-
349 induced lower ratio was associated with higher 5-HT synthesis and reuptake, as indicated by
350 higher mRNA expression of *Sert* and *Pet1* in the DRN of males induced by chronic alcohol
351 DID. These findings suggest that during the transition from alcohol-naïve to chronic alcohol
352 DID condition, estrogens/ER α -mediated activation may override estrogens/ER β -mediated
353 inhibition in 5-HT^{DRN} neurons, contributing to the higher 5-HT transmission induced by chronic
354 alcohol DID in males.

355

356 Notably, aromatase, the key enzyme for estrogen synthesis, is highly expressed in several
357 male brain regions, including MeA, BNST, and POAH³⁸. These brain regions could project and
358 release estrogen in the DRN. Aromatase can transform testosterone into E2, which means
359 that even in the male brain, the DRN could be exposed to high levels of E2 produced locally
360 from testosterone. Consistently, it has been shown that 5-HT secretion from 5-HT^{DRN} neurons
361 in males is remarkably decreased by aromatase inhibition³⁹. Male estrogen signaling may play
362 an essential role in the serotonergic adaptation induced by chronic alcohol DID in males.

363

364 Another interesting observation is the sex difference in the *Esr2/Esr1* ratio in the DRN of
365 alcohol-naïve mice. Compared to males, female naïve mice have a much lower *Esr2/Esr1*
366 ratio and higher mRNA expression of key enzymes for 5-HT synthesis and reuptake in the
367 DRN. Consistently, we also observe sex differences in the intrinsic electrophysiological
368 properties of 5-HT^{DRN} neurons in the baseline condition without alcohol exposure. Female 5-
369 HT^{DRN} neurons showed much higher firing rate and depolarized resting membrane potential,
370 indicating a higher baseline activity in female 5-HT^{DRN} neurons compared to that in males.

371 After chronic alcohol DID, the difference in *Esr2/Esr1* ratio between males and females was
372 diminished, associated with abolished sex differences in mRNA expression of *Sert*, *Pet1*, and
373 *Tph2*. These findings support that the dynamic counterbalance of ER α and ER β in the 5-HT $^{\text{DRN}}$
374 neurons may play a physiological role in the regulation of serotonergic tone in the DRN during
375 chronic alcohol DID exposure.

376

377 Notably, acute binge drinking causes a burst release of central 5-HT, and increased brain 5-
378 HT inhibits alcohol consumption in humans and rodents²³⁻²⁶. These findings suggest that the
379 alcohol-induced activation of 5-HT neurons may be an essential component of a negative
380 feedback loop to decrease acute alcohol consumption. We speculate that the rapid responses
381 of 5-HT $^{\text{DRN}}$ neurons to alcohol are distinct in males and females. These differences may
382 contribute to the sex dimorphism in the alcohol binge-like drinking behavior. To test this
383 hypothesis, we compared the acute electrophysiological response of male and female ER α $^{\text{DRN}}$
384 neurons to ethanol treatment. Consistent with our previous findings³⁴, we confirm that most
385 ER α -expressing cells within the DRN are 5-HT neurons. Like 5-HT $^{\text{DRN}}$ neurons, female ER α $^{\text{DRN}}$
386 neurons also showed high baseline neuronal firing activity dynamics than male ER α $^{\text{DRN}}$
387 neurons. Importantly, we found that male 5-HT $^{\text{DRN}}$ neurons showed a lower threshold
388 responding dose (0.5 mM in males vs. 1 mM in females) and higher percentage changes in
389 firing frequency and resting membrane potential when incubated with the same amount of
390 ethanol. These results suggest that male ER α $^{\text{DRN}}$ neurons are more sensitive to ethanol
391 treatment compared to female ER α $^{\text{DRN}}$ neurons. We postulate that lower baseline neuronal
392 firing activity of male ER α $^{\text{DRN}}$ neurons leads to higher burst increases of 5-HT release,
393 contributing to earlier ethanol drinking termination.

394

395 Sex differences in the 5-HT system and the regulatory effects of estrogens on 5-HT neuron
396 activity have been demonstrated for decades^{31,40-42}. It has been shown that estrogen-mediated
397 sex differences in the 5-HT system contribute to the greater susceptibility of women to many
398 affective behavior disorders, such as premenstrual syndrome, postpartum depression, and
399 postmenopausal depression^{31,41}. We speculate that estrogen signaling may partially mediate
400 the sex difference in ethanol-induced excitation of 5-HT $^{\text{DRN}}$ neurons. In supporting this view,
401 we observed that E2 treatment significantly attenuated the ethanol-induced excitation of 5-
402 HT $^{\text{DRN}}$ neurons in males but not in females, suggesting an estrogen-mediated attenuation of
403 ethanol-induced 5-HT burst release. We further demonstrated that both ER α and ER β
404 agonists consistently produced similar inhibitory effects on ethanol-induced firing activity
405 changes of 5-HT $^{\text{DRN}}$ neurons, despite antagonistic effects on activity dynamics of 5-HT $^{\text{DRN}}$
406 neurons. These results suggest distinct mechanisms for ERs' effects on baseline activity and
407 ethanol-induced burst firing. These findings support the notion that estrogens acutely increase
408 alcohol binge drinking by reducing the responsiveness of 5-HT neurons to ethanol.

409

410 Another critical observation supporting our models is that chemogenetic activation of ER α -
411 expressing 5-HT $^{\text{DRN}}$ neurons in females resulted in a significant decrease in alcohol
412 consumption without affecting sucrose intake in the DID tests. Notably, activation of ER β $^{\text{DRN}}$
413 neurons also induced similar inhibition on ethanol intake, consistent with the observation that
414 a subpopulation of 5-HT $^{\text{DRN}}$ neurons co-expressing ER α and ER β . These findings indicate that
415 alcohol-induced acute stimulation of 5-HT $^{\text{DRN}}$ neurons may serve as a defense mechanism to
416 limit alcohol drinking. Estrogens-mediated sex differences in excitation of 5-HT $^{\text{DRN}}$ neurons
417 induced by ethanol may partially contribute to the sex dimorphism in binge-like drinking
418 behavior in mice.

419

420 In conclusion, we demonstrated that the DRN 5-HT system differs significantly between sexes
421 and undergoes profound sex-specific changes during chronic alcohol DID. Furthermore,
422 estrogens may inhibit ethanol-induced acute excitation of 5-HT $^{\text{DRN}}$ neurons, resulting in higher
423 levels of binge drinking in females. Notably, different neuroactive mechanisms seem to be
424 involved in the regulatory effects of estrogens on baseline activity and ethanol-induced burst

425 firing. Additional studies are warranted to know what afferent or intracellular channels
426 modulate the responsiveness of 5-HT^{DRN} neurons to ethanol. Whatever the exact mechanism,
427 the significantly lower responses of female 5-HT^{DRN} neurons to ethanol may reduce a burst of
428 5-HT-mediated neurotransmission during alcohol binge drinking, thus diminishing a protective
429 mechanism for alcohol overconsumption. In particular, it could partially explain the higher
430 binge-like drinking behavior in female mice and sex differences in human alcohol drinking
431 behavior.

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479 **Materials and methods**

480 **Animals**

481 Several transgenic mouse lines were maintained on a C57BL/6J background. These lines
482 include *Esr1*-Cre mice (#017911, Jackson Laboratory, Bar Harbor, ME), *Esr2*-Cre mice
483 (#30158, Jackson Laboratory), TPH2-iCreER (#016584, Jackson Laboratory), Rosa26-LSL-
484 tdTOMATO (#007914, Jackson Laboratory), ER β -EGFP (#030078-UCD, MMRRC at UC
485 Davis), and ER α -ZsGreen⁴³. C57BL/6J male and female mice were purchased from The
486 Jackson Laboratory. TPH2-iCreER and Rosa26-LSL-tdTOMATO were crossed to generate
487 TPH2-iCreER/Rosa26-LSL-tdTOMATO for electrophysiological recording. *Esr2*-Cre and
488 Rosa26-LSL-tdTOMATO were crossed to generate *Esr2*-Cre/Rosa26-LSL-tdTOMATO for
489 immunofluorescent staining. Mice were housed in a temperature-controlled environment at
490 22 °C-24 °C on a 12-hour light/dark cycle (light off at 6 pm) or a 12-hour reversed light/dark
491 cycle (light off at 10 am). Unless otherwise stated, the mice were fed ad libitum with standard
492 mouse chow (6.5 % fat, #2920, Harlan-Teklad, Madison, WI) and water. Care of all animals
493 and procedures were approved by Pennington Biomedical Research Center (PBRC) and The
494 University of Illinois at Chicago Institutional Animal Care and Use Committees.
495

496 **Chronic Drinking in the dark (DID)**

497 Both male and female C57BL/6J mice were subjected to 9-week long water or ethanol DID.
498 The 4-day DID test was performed as described previously with minor modification⁴⁴. Briefly,
499 mice were individually housed in a 12-hour reversed light/dark cycle room (lights off at 10 AM
500 and on at 10 PM) for two weeks before behavioral testing. For water DID group, water
501 consumption was measured by replacing the water bottle 3 hours into the dark cycle with a
502 single-sipper tube containing only water. On the first three days (Monday, Tuesday, and
503 Wednesday), mice were given access to the sipper tube for 2 hours. On the fourth day, mice
504 were given access to the sipper tube for 4 hours. Total consumption of water over the 2-hour
505 (1st-4th days) and 4-hour (4th day) period was measured in each individual. Similarly, for ethanol
506 DID group, ethanol consumption was measured by the ethanol DID test. Mice underwent a
507 DID test identical to the water consumption test, except the sipper tube contained 20% ethanol
508 in water instead of only water. The water or ethanol DID was performed on Mon-Thurs each
509 week for 9 weeks, with no ethanol access on Fri-Sun. Sixteen hours after the last drinking
510 session (9 AM), mice were euthanized via cardiac puncture under anesthesia. The dorsal
511 raphe nucleus (DRN) was punched out and stored in -80°C for further analysis.
512

513 **DREADD stimulation of ER α ^{DRN} or ER β ^{DRN} neuron**

514 Female *Esr1*-Cre or *Esr2*-Cre were stereotactically injected with 400 nL AAV-DIO-hM3Dq-
515 mCherry (#GVVC-AAV-130, Stanford Virus Core) or AAV-DIO-mCherry (UNC Vector Core)
516 into the DRN (4.65 mm posterior, 0 mm lateral and 3.60 mm ventral to the Bregma, based on
517 Franklin & Paxinos Mouse Brain Atlas) at eight weeks of age. Four weeks after the surgery,
518 all mice were singly housed and acclimated into a 12-hour reversed light/dark cycle room. Two
519 weeks after, ethanol DID was performed as described above. Clozapine N-oxide (CNO, 3
520 mg/kg) was intraperitoneal (i.p.) injected 2 hours into the dark cycle in each drinking session
521 day. One week later, sucrose consumption was measured by the sucrose DID test. All the
522 procedures were identical to the ethanol DID test, except the sipper tube contained 2 percent
523 sucrose in water. After studies, all mice were perfused with 10% formalin, and the brains were
524 collected and sliced. Sections were collected for immunohistochemistry of mCherry. Briefly,
525 brain sections were incubated with rabbit anti-DsRed antibody (1:1,000; #632496, Takara Bio.,
526 Mountain View, CA) at room temperature overnight, followed by the biotinylated donkey anti-
527 rabbit secondary antibody (1:1000, #711-067-003, Jackson ImmunoResearch, West Grove,
528 PA) for 1 hour. Sections were then incubated in the avidin-biotin complex (1:1000, PK-6100,
529 Vector Laboratories) and followed by 0.04% 3, 3'-diaminobenzidine in 0.01% hydrogen
530 peroxide. After dehydration through graded ethanol, the slides were immersed in xylene and
531 cover slipped. Bright-field images were analyzed.
532

533 Another aliquot of sections from *Esr1*-Cre mice injected with AAV-DIO-hM3Dq-mCherry were
534 used for immunofluorescent staining of TPH. Briefly, brain sections were incubated with sheep
535 anti-TPH antibody (1:1000, #AB1541, Millipore) at room temperature overnight, followed by
536 the Alexa Fluor 488-conjugated donkey anti-sheep (1:500; #713-545-003, Jackson
537 ImmunoResearch) for 2 hours. Fluorescent images were obtained using a Leica DM5500
538 fluorescence microscope with OptiGrid structured illumination configuration.
539

540 **Real-time RT-PCR in DRN**

541 Total mRNAs were extracted using TRIzol (#15596018, Invitrogen, Carlsbad, CA). SYBR
542 Green quantitative PCR (qPCR) was performed, as described previously^{45,46}. Primer
543 sequences were listed in Table 1. Results were normalized by the expression of *Gapdh* as the
544 reference gene.
545

546 **Co-staining of ER α , ER β , and TPH in the DRN**

547 Both male and female *Esr2*-Cre/Rosa26-LSL-tdTOMATO mice were perfused with 10%
548 formalin at 8 weeks of age. Female mice were perfused at diestrus when circulating estrogens
549 were low⁴⁷. The brains were collected and sliced. Sections were collected for double staining
550 of ER α and TPH. Briefly, brain sections were incubated with rabbit anti-ER α antibody (1:5,000;
551 #06-935, Millipore, Burlington, MA) at room temperature overnight, followed by the Alexa Fluor
552 647-conjugated donkey anti-rabbit secondary antibody (1:500, #711-605-152, Jackson
553 ImmunoResearch) for 2 hours. Sections were then incubated in sheep anti-TPH antibody
554 (1:1000, #AB1541, Millipore) overnight, followed by the Alexa Fluor 488-conjugated donkey
555 anti-sheep (1:500; #713-545-003, Jackson ImmunoResearch) for 2 hours. Fluorescent images
556 were obtained using a Leica DM5500 fluorescence microscope with OptiGrid structured
557 illumination configuration.
558

559 Similarly, double immunofluorescent staining of ER α and TPH was performed in DRN sections
560 from a female ER β -EGFP mouse. All staining procedures are identical except using the Alexa
561 Fluor 594-conjugated donkey anti-sheep (1:500; #713-585-003, Jackson ImmunoResearch)
562 as the secondary antibody for TPH.
563

564 **Electrophysiology**

565 The electrophysiological responses of identified ER α neurons in the DRN to ethanol treatment
566 were investigated in ER α -ZsGreen mice as previously described³⁴. Briefly, whole-cell patch-
567 clamp recordings were performed on identified green fluorescent neurons in the brain slices
568 containing DRN from ER α -ZsGreen mice. Six to twelve-week-old mice were deeply
569 anesthetized with isoflurane and transcardially perfused with an ice-cold, carbogen-saturated
570 (95% O₂, 5% CO₂) sucrose-based cutting solution (pH 7.3), containing 10 mM NaCl, 25 mM
571 NaHCO₃, 195 mM Sucrose, 5 mM Glucose, 2.5 mM KCl, 1.25 mM NaH₂PO₄, 2 mM Na
572 pyruvate, 0.5 mM CaCl₂, 7 mM MgCl₂. The entire brain was removed and coronally cut into
573 slices (250 μ m) with a Microm HM 650V vibratome (Thermo Fisher Scientific, Waltham, MA).
574 Then, the DRN-containing slices were incubated in oxygenated aCSF (adjusted to pH7.3)
575 containing (in mM) 126 NaCl, 2.5 KCl, 2.4 CaCl₂, 1.2 NaH₂PO₄, 1.2 MgCl₂, 11.1 glucose,
576 and 21.4 NaHCO₃ for one hour at 34°C.
577

578 Slices were transferred to the recording chamber and perfused at 34°C in oxygenated aCSF
579 at a flow rate of 1.8-2 mL/min. ZsGreen-labeled ER α ^{DRN} neurons were visualized using
580 epifluorescence and IR-DIC imaging. The intracellular solution (adjusted to pH 7.3) contained
581 the following (in mM): 128 K gluconate, 10 KCl, 10 HEPES, 0.1 EGTA, 2 MgCl₂, 0.05 Na-GTP
582 and 0.05 Mg-ATP. Recordings were made using a MultiClamp 700B amplifier (Molecular
583 Devices, Sunnyvale, CA, United States), sampled using Digidata 1440A, and analyzed offline
584 with pClamp 10.3 software (Molecular Devices). Series resistance was monitored during the
585 recording, and the values were generally < 10 M Ω and were not compensated. The liquid
586 junction potential (LJP) was +12.5 mV and was corrected after the experiment. Data was

587 excluded if the series resistance increased dramatically during the experiment or without
588 overshoot for the action potential. Currents were amplified, filtered at 1 kHz, and digitized at
589 20 kHz. The current clamp was engaged in testing neuronal firing and resting membrane
590 potential before and after a 1s puff of aCSF containing vehicle or ethanol (0.1, 0.5, 1, 10, or
591 50 mM).

592

593 To study the effect of a selective ER β agonist, diarylpropionitrile (DPN), on the activity of 5-HT
594 neurons, a cohort of both male and female TPH2-iCreER/Rosa26-LSL-tdTOMATO mice were
595 generated. Tamoxifen (0.2 mg/g body weight) was i.p. injected to induce expression of
596 tdTOMATO in 5-HT neurons four weeks before the brain slice recording. The current clamp
597 was engaged in testing neural firing and resting membrane potential of tdTOMATO-labeled 5-
598 HT neurons in the DRN before and after a 1s puff of aCSF containing a vehicle or 100 nM
599 DPN.

600

601 In a different cohort of TPH2-iCreER/Rosa26-LSL-tdTOMATO mice, the brain slices were pre-
602 incubated with aCSF containing vehicle, 17 β -estradiol (E2, 500 μ M), propyl pyrazole triol (PPT,
603 300nM), or DPN (300nM). PPT is a selective ER α agonist, while DPN is a selective ER β
604 agonist. The current clamp was engaged in testing neural firing and resting membrane
605 potential before and after a 1s puff of aCSF containing a vehicle or 1 mM ethanol in the
606 presence of vehicle, E2, PPT, or DPN.

607

608 To assess the effect of CNO on ER α neurons, 8- to 10-week-old Esr1-Cre mice were injected
609 with AAV-DIO-hM3Dq-mCherry into the DRN 2-3 weeks before recording. Brain slices were
610 prepared and CNO was applied to the bath solution through perfusion as previously
611 described⁴⁸. Effects of CNO (10 μ M) on membrane potential and firing frequency of mCherry-
612 labeled ER α in the DRNA were electrophysiologically recorded.

613

614 **Statistics**

615 Statistical analyses were performed using GraphPad Prism 7.0 statistics software (San Diego,
616 CA USA). Statistical analyses methods were chosen based on the design of each experiment
617 and indicated in the figure legends. The data were presented as mean \pm SEM. P \leq 0.05 was
618 considered statistically significant.

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

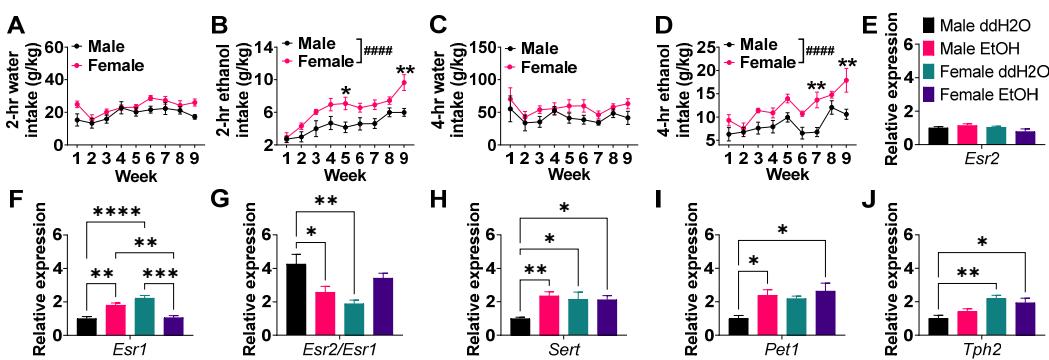
638

639

640

641 **Author Contributions**

642 VT and BF are the main contributors in the conduct of the study, data collection and analysis,
643 data interpretation, and manuscript writing. XY, PN, SS, LI, HY, PL, LC, PL, MK, and DD
644 contributed to the conduct of the study. CW, AWL, YH, and PX contributed to the study design,
645 data interpretation, and manuscript writing.

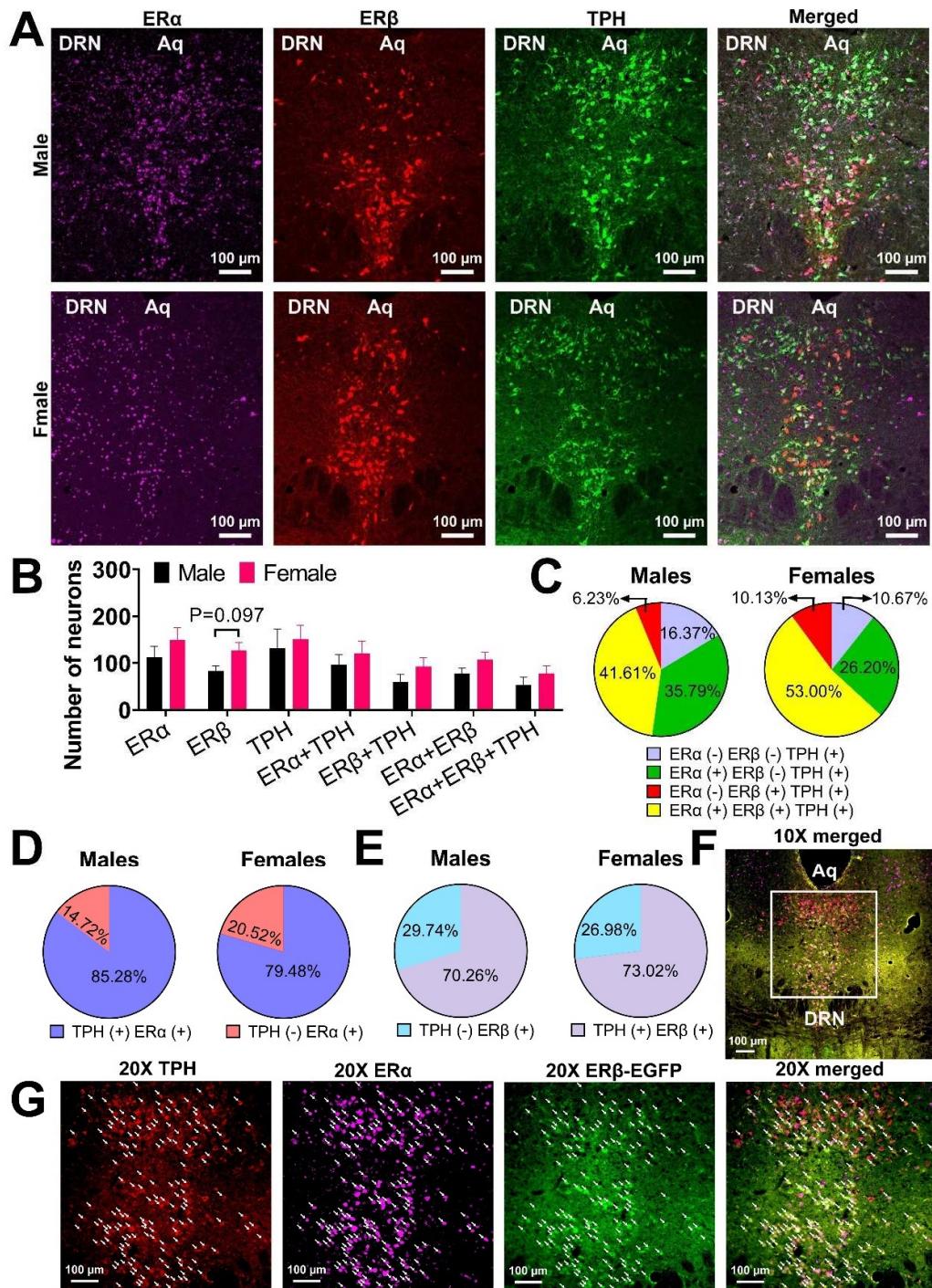

646

647 **Acknowledgments**

648 This work was supported by grants from NIH (R01 DK123098, P30 DK020595 to PX; P20
649 GM135002, R01 DK129548 to YH; T32 AA026577 to VT; P50 AA022538, U01 AA020912, and
650 R01 AA027231 to AWL; K01 DK119471 to CW), USDA/CRIS (3092-51000-062-04(B)S to CW),
651 AHA (915789 to VT; 19CDA34660335 to CW; 20POST35120600 to YH), and DOD (Innovative
652 Grant W81XWH-20-1-0075 to PX). The authors wish to thank the Laboratory of Animal Center
653 of Pennington Biomedical Research Center at Louisiana State University, and The University
654 of Illinois at Chicago for invaluable help in mouse colony maintenance.

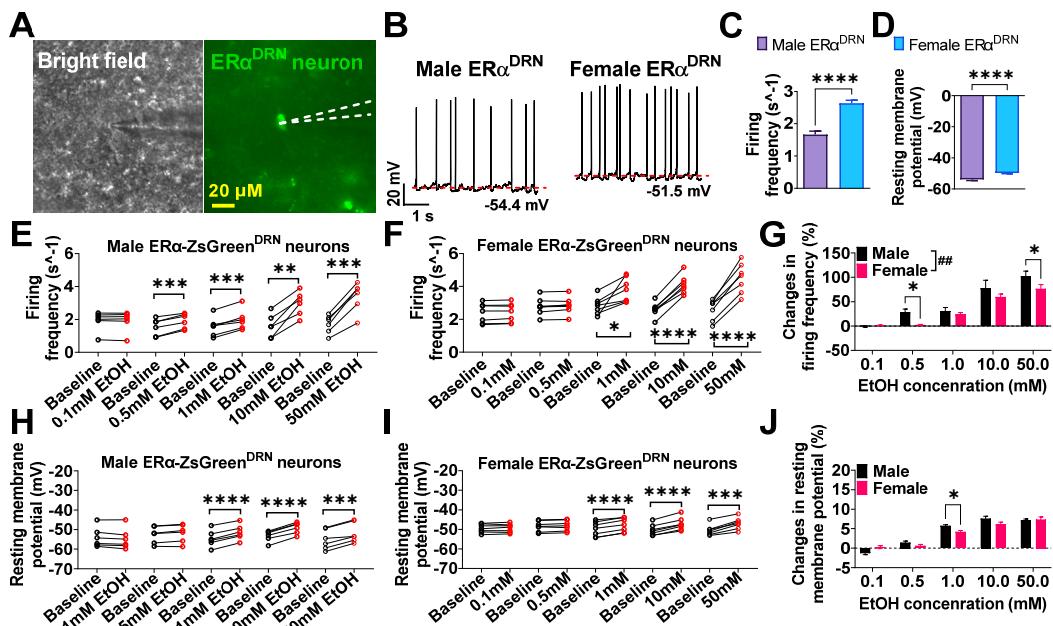
655

656 **Figure 1.**



657
658 **Fig. 1. Chronic binge-like ethanol drinking leads to sex-specific alterations in Esr1 and**
659 **5-HT-related genes in the DRN of mice. (A-B)** Average water (A) or EtOH (B) consumed
660 during 2-hr drinking sessions on days 1 to 4 each week (n = 5 or 7). (C-D) Average water (C)
661 or EtOH (D) consumed during 4-hr drinking sessions on day 4 each week (n = 5 or 7). (E-J)

662 Relative mRNA expression of estrogen receptor 2 (*Esr2*, E), estrogen receptor 1 (*Esr1*, F),
663 *Esr1/Esr2* (G), serotonin transporter (*Sert*, H), plasmacytoma expressed transcript 1 (*Pet1*, I),
664 and tryptophan hydroxylase 2 (*Tph2*, J) in the DRN (n = 4-6). Mean \pm SEM. (A-D)
665 #####p<0.0001 in two-way ANOVA analysis, *p<0.05, **p<0.01 in the following post hoc Sidak
666 tests. (E-J) *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 in one-way ANOVA analysis followed
667 by post hoc Tukey tests.


668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698

699 **Figure 2.**

700
 701
 702 **Fig. 2. ER α & β are expressed in 5-HT $^{\text{DRN}}$ neurons.** (A) Double immunofluorescent staining
 703 for ER α (purple) and TPH (green) in the DRN of *Esr2-Cre/Rosa26-tdTOMATO* mice. (B)
 704 Summary of quantification per section (n = 3 and 3). (C) Percentage of ER α and ER β positivity
 705 in TPH $^{\text{DRN}}$ neurons. (D-E) Percentage of TPH positivity in ER α^{DRN} (D) or ER β^{DRN} (E) neurons.
 706 (F-G) Low (F) and high magnification of TPH (red, G), ER α (purple), ER β -EGFP (green), and
 707 merged (triple) in the DRN of a female ER β -EGFP mouse. White arrows point to triple positive
 708 TPH (+) ER α (+) ER β (+) neurons. Mean \pm SEM.

709 **Figure 3.**

710
711 **Fig. 3. Sex difference in the responses of $\text{ER}\alpha^{\text{DRN}}$ neurons to ethanol.** (A) Micrographic
712 images showing a recorded $\text{ER}\alpha\text{-ZsGreen}$ (+) neurons in the DRN of female mice. (B-
713 D) Representative electrophysiological trace (B), baseline firing frequency (C), and resting
714 membrane potential (D) of $\text{ER}\alpha\text{-ZsGreen}$ (+) neurons in the DRN of male and female $\text{ER}\alpha$ -
715 ZsGreen mice ($n = 30$ or 35). (E-J) The dose-dependent responses of firing frequency and
716 resting membrane potential ($n = 6$ or 7) before and after a 1s puff of aCSF containing different
717 doses of EtOH. Mean \pm SEM. (C-D) $****p < 0.0001$ in unpaired t-tests. (E-F and H-I) $*p < 0.05$,
718 $**p < 0.01$, $***p < 0.001$, $****p < 0.0001$ in paired t-tests. (G and J) $##p < 0.01$ in two-way ANOVA
719 analysis, $*p < 0.05$ in the following post hoc Sidak tests.

720

721

722

723

724

725

726

727

728

729

730

731

732

733

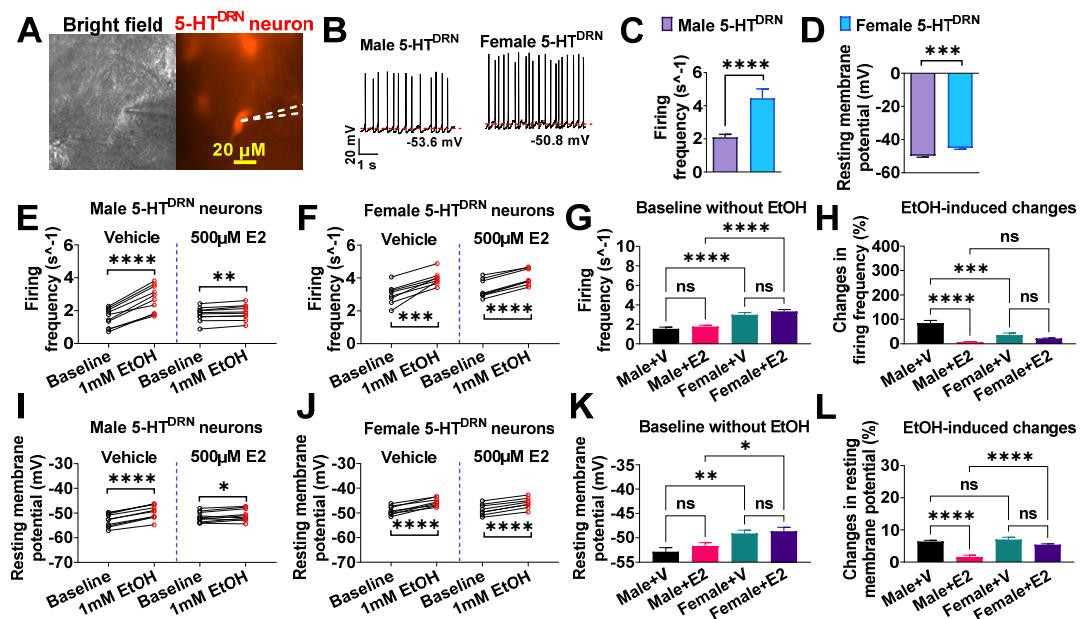
734

735

736

737

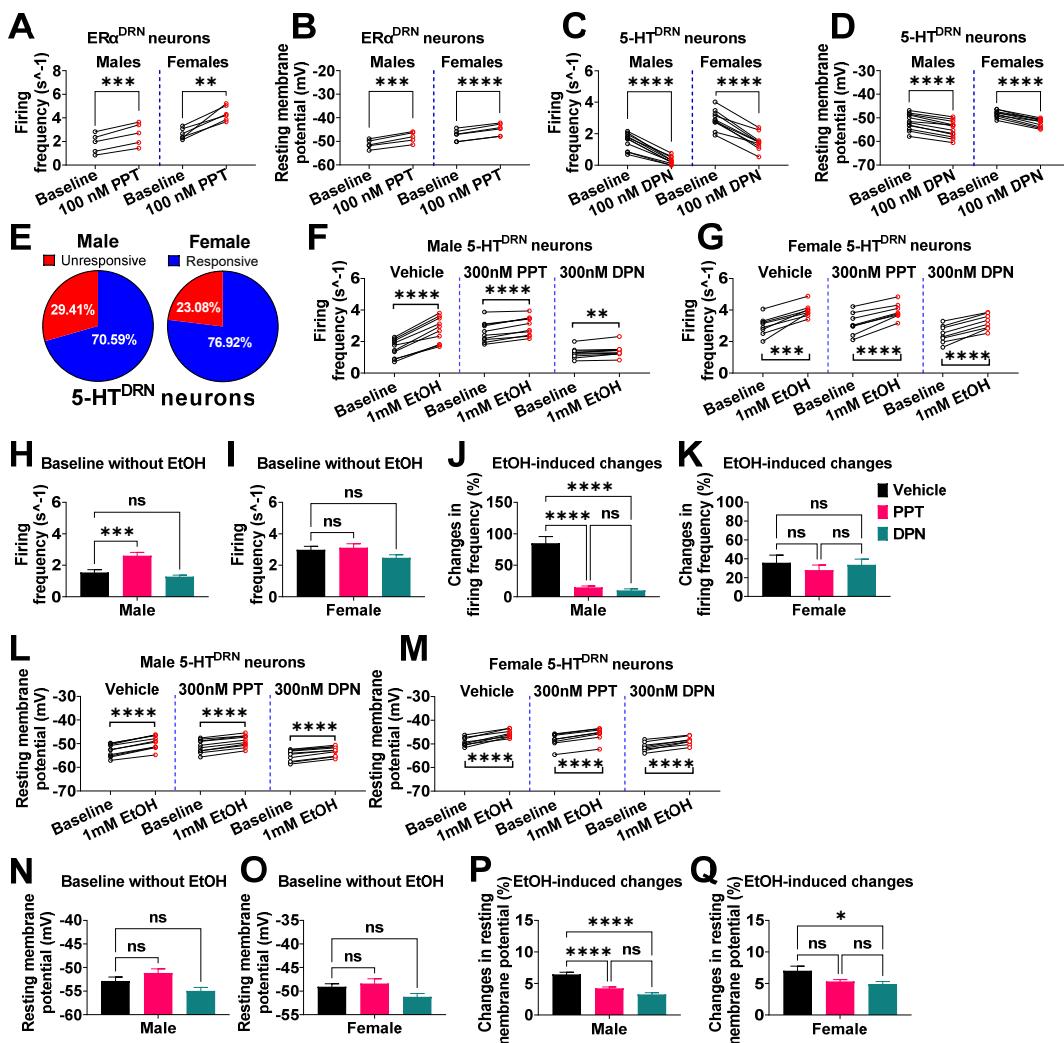
738


739

740

741

742


743 **Figure 4.**

744
745 **Fig. 4. Estrogen attenuates EtOH-induced activation of 5-HT^{DRN} neurons.**
746 (A) Micrographic images showing a recorded TPH2 (+) neuron in the DRN of female TPH2-
747 CreER/Rosa26-tdTOMATO mice. (B-D) Representative electrophysiological trace
748 (B), baseline firing frequency (C), and resting membrane potential (D) of TPH2 (+) neurons in
749 the DRN of male and female mice (n = 26 or 38). (E-L) The responses of firing frequency and
750 resting membrane potential to EtOH treatment in the presence of vehicle or 500 μ M 17 β -
751 Estradiol (n = 8 or 10). Mean \pm SEM. (C-D) ***p<0.001, ****p<0.0001 in unpaired t-tests. (E-
752 F and I-J) *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 in paired t-tests. (G-H and K-L) *p<0.05,
753 ***p<0.001, ****p<0.0001 in one-way ANOVA analysis followed by post hoc Tukey tests.

754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777

778 **Figure 5.**

779

780

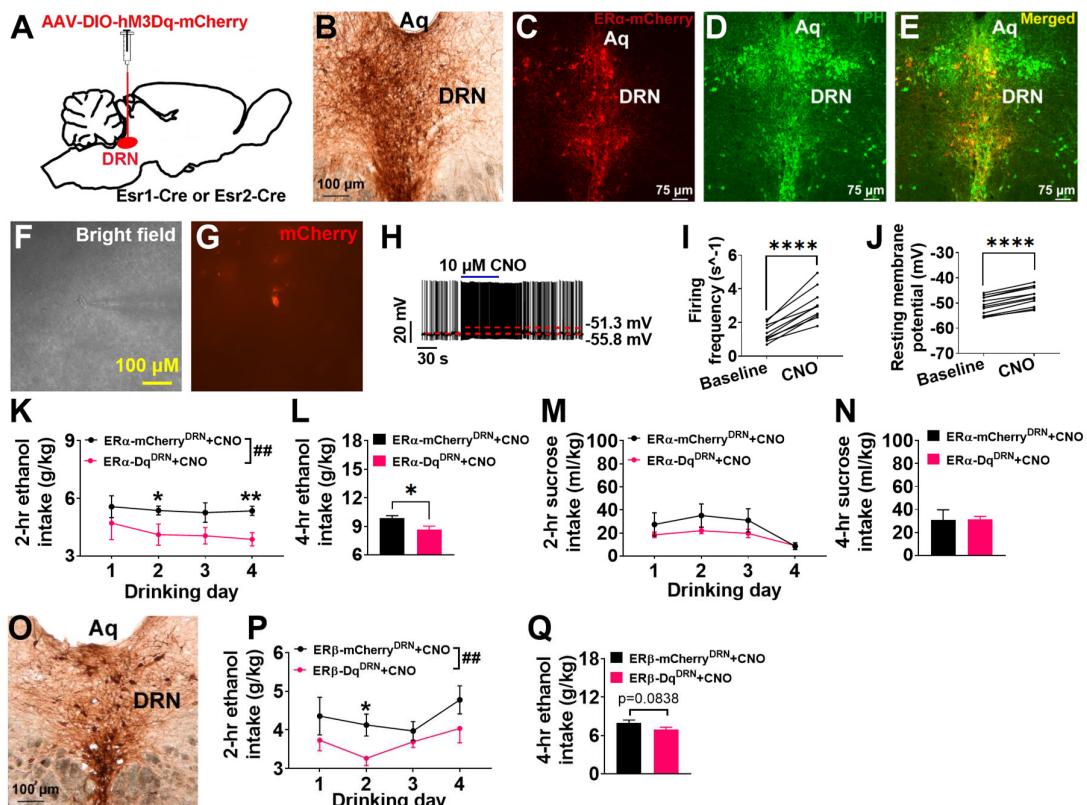
Fig. 5. A selective agonist for ER α or ER β attenuates EtOH-induced activation of 5-HT $^{\text{DRN}}$ neurons. (A-B) The firing frequency (A) and resting membrane potential (B) of ER α (+) neurons in the DRN of ER α -ZsGreen mice before and after a 1s puff of aCSF containing 100 nM PPT (n = 5 or 6). (C-E) The firing frequency (C), resting membrane potential (D), and responsive rate (E) of TPH2 (+) neurons in the DRN of TPH2-CreER/Rosa26-tdTOMATO mice before and after a 1s puff of aCSF containing 100 nM DPN (n = 10 or 11). (F-Q) The responses of firing frequency and resting membrane potential to EtOH treatment in the presence of vehicle, 300 nM PPT, or 300 nM DPN in TPH2 (+) neurons in the DRN of male and female TPH2-CreER/Rosa26-tdTOMATO mice (n = 8 or 10). Mean \pm SEM. (A-B and D-E) **p<0.01, ***p<0.001, ****p<0.0001 in paired t-tests. (C and F) *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 in one-way ANOVA analysis followed by post hoc Tukey tests within each sex.

791

792

793

794


795

796

797

798

799 **Figure 6.**

800
801 **Fig. 6. Activation of ER α ^{DRN} or ER β ^{DRN} neurons decrease ethanol drinking.** (A) Schematic
802 of the experimental strategy using the AAV-DIO-hM3Dq-mCherry virus to selectively activate
803 ER α ^{DRN} or ER β ^{DRN} neurons in Esr1-Cre or Ers2-Cre female mice (ER α -Dq^{DRN} or ER β -Dq^{DRN});
804 Esr1-Cre or Esr2-Cre mice receiving the AAV-DIO-mCherry virus injections were used as
805 controls (ER α -mCherry^{DRN} or ER β -mCherry^{DRN}). (B) Immunostaining of ER α -hM3Dq-mCherry
806 in the DRN of female ER α -Dq^{DRN} mice. (C-E) Immunofluorescence staining of ER α -hM3Dq-
807 mCherry (C), TPH (D), and merger (E) in the DRN of female ER α -Dq^{DRN} mice. (F-G)
808 Micrographic images showing a recorded ER α -hM3Dq-mCherry (+) neurons in the DRN. (H-
809 J) Representative traces and statistical analysis before and after CNO treatment. (K-L) Ethanol
810 intake in g/kg over 2 hrs during 4 days of drinking (K) or during the final 4-hrs drinking session
811 (L) after i.p. injection of CNO in female ER α -Dq^{DRN} or ER α -mCherry^{DRN} mice. (M-N)
812 Sucrose intake in ml/kg over 2 hrs during 4 days of drinking (M) or during the final 4-hrs
813 drinking session (N) after i.p. injection of CNO in female ER α -Dq^{DRN} or ER α -
814 mCherry^{DRN} mice. (O) Immunostaining of ER β -hM3Dq-mCherry in the DRN of female ER β -
815 Dq^{DRN} mice. (P-Q) Ethanol intake over 2 hrs during 4 days of drinking (P) or during the final 4-
816 hrs drinking session (M) after i.p. injection of CNO in female ER β -Dq^{DRN} or ER β -
817 mCherry^{DRN} mice. Mean \pm SEM. (E-F) ***p<0.0001 in paired t-tests. (G) ##P<0.01 in two way
818 ANOVA analyses; *P<0.05, **P<0.01 in the following post hoc Bonferroni tests. (H) *P<0.05 in
819 non-paired T-tests.

820
821
822
823
824
825
826

827

Table 1. qPCR primer sequences of related genes

Gene abbreviation	Forward Primer (5'-3')	Reverse Primer (5'-3')
<i>Esr1</i>	CCCGCCTTCTACAGGTCTAAT	CTTTCTCGTTACTGCTGGACAG
<i>Esr2</i>	CTGTGATGAAC TACAGTGTCC C	CACATTGGGCTTGCAGTCTG
<i>Sert</i>	TGGATAGTACGTTCGCAGGC	AGATGCAAGTGTGATGACCACGAT
<i>Pet1</i>	CTGCTGATCAACATGTACCTGC	GGAGAAACTGCCACAACTGGA
<i>Tph2</i>	GCAAGACAGCGGTAGTGTCT	CAGTCCACGAAGATTCGACTT
<i>Gapdh</i>	AGGTCGGTGTGAACGGATTG	TGTAGACCATGTAGTTGAGGTC A

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867 **References**

- 868 1. Kanny, D., Naimi, T.S., Liu, Y., Lu, H. & Brewer, R.D. Annual Total Binge Drinks Consumed by U.S. Adults, 869 2015. *Am J Prev Med* **54**, 486-496 (2018).
- 870 2. Esser, M.B., *et al.* Prevalence of alcohol dependence among US adult drinkers, 2009-2011. *Prev Chronic 871 Dis* **11**, E206 (2014).
- 872 3. Kanny, D., *et al.* Binge drinking - United States, 2011. *MMWR Suppl* **62**, 77-80 (2013).
- 873 4. White, A., *et al.* Converging Patterns of Alcohol Use and Related Outcomes Among Females and Males 874 in the United States, 2002 to 2012. *Alcohol Clin Exp Res* **39**, 1712-1726 (2015).
- 875 5. O'Keefe, J.H., Bybee, K.A. & Lavie, C.J. Alcohol and cardiovascular health: the razor-sharp double-edged 876 sword. *J Am Coll Cardiol* **50**, 1009-1014 (2007).
- 877 6. Zakhari, S. & Li, T.K. Determinants of alcohol use and abuse: Impact of quantity and frequency patterns 878 on liver disease. *Hepatology* **46**, 2032-2039 (2007).
- 879 7. Wilsnack, S.C., Wilsnack, R.W. & Kantor, L.W. Focus on: women and the costs of alcohol use. *Alcohol Res* 880 **35**, 219-228 (2013).
- 881 8. Petit, G., Maurage, P., Kornreich, C., Verbanck, P. & Campanella, S. Binge drinking in adolescents: a 882 review of neurophysiological and neuroimaging research. *Alcohol Alcohol* **49**, 198-206 (2014).
- 883 9. Wilhelm, C.J., *et al.* Astrocyte Dysfunction Induced by Alcohol in Females but Not Males. *Brain Pathol* 884 **26**, 433-451 (2016).
- 885 10. Muti, P., *et al.* Alcohol consumption and total estradiol in premenopausal women. *Cancer Epidemiol 886 Biomarkers Prev* **7**, 189-193 (1998).
- 887 11. Frydenberg, H., *et al.* Alcohol consumption, endogenous estrogen and mammographic density among 888 premenopausal women. *Breast Cancer Res* **17**, 103 (2015).
- 889 12. Hartman, T.J., *et al.* Alcohol Consumption and Urinary Estrogens and Estrogen Metabolites in 890 Premenopausal Women. *Horm Cancer* **7**, 65-74 (2016).
- 891 13. Martin, C.A., Mainous, A.G., 3rd, Curry, T. & Martin, D. Alcohol use in adolescent females: correlates 892 with estradiol and testosterone. *Am J Addict* **8**, 9-14 (1999).
- 893 14. Reid, M.L., Hubbell, C.L. & Reid, L.D. A pharmacological dose of estradiol can enhance appetites for 894 alcoholic beverages. *Pharmacol Biochem Behav* **74**, 381-388 (2003).
- 895 15. Mackie, A.R., *et al.* Alcohol consumption negates estrogen-mediated myocardial repair in 896 ovariectomized mice by inhibiting endothelial progenitor cell mobilization and function. *J Biol Chem* **288**, 897 18022-18034 (2013).
- 898 16. Satta, R., Hilderbrand, E.R. & Lasek, A.W. Ovarian Hormones Contribute to High Levels of Binge-Like 899 Drinking by Female Mice. *Alcohol Clin Exp Res* **42**, 286-294 (2018).
- 900 17. Becker, H.C., Anton, R.F., De Trana, C. & Randall, C.L. Sensitivity to ethanol in female mice: effects of 901 ovariectomy and strain. *Life Sci* **37**, 1293-1300 (1985).
- 902 18. Ford, M.M., Eldridge, J.C. & Samson, H.H. Ethanol consumption in the female Long-Evans rat: a 903 modulatory role of estradiol. *Alcohol* **26**, 103-113 (2002).
- 904 19. Mello, N.K., Bree, M.P. & Mendelson, J.H. Alcohol and food self-administration by female Macaque 905 monkeys as a function of menstrual cycle phase. *Physiol Behav* **36**, 959-966 (1986).
- 906 20. Vandegrift, B.J., *et al.* Estrogen Receptor alpha Regulates Ethanol Excitation of Ventral Tegmental Area 907 Neurons and Binge Drinking in Female Mice. *J Neurosci* **40**, 5196-5207 (2020).
- 908 21. Vandegrift, B.J., You, C., Satta, R., Brodie, M.S. & Lasek, A.W. Estradiol increases the sensitivity of ventral 909 tegmental area dopamine neurons to dopamine and ethanol. *PLoS One* **12**, e0187698 (2017).
- 910 22. You, C., Vandegrift, B. & Brodie, M.S. Ethanol actions on the ventral tegmental area: novel potential

911 targets on reward pathway neurons. *Psychopharmacology (Berl)* **235**, 1711-1726 (2018).

912 23. LeMarquand, D., Pihl, R.O. & Benkelfat, C. Serotonin and alcohol intake, abuse, and dependence: clinical
913 evidence. *Biol Psychiatry* **36**, 326-337 (1994).

914 24. LeMarquand, D., Pihl, R.O. & Benkelfat, C. Serotonin and alcohol intake, abuse, and dependence: findings of animal studies. *Biol Psychiatry* **36**, 395-421 (1994).

915 25. Pettinati, H.M. Use of serotonin selective pharmacotherapy in the treatment of alcohol dependence. *Alcohol Clin Exp Res* **20**, 23A-29A (1996).

916 26. Litten, R.Z., Allen, J. & Fertig, J. Pharmacotherapies for alcohol problems: a review of research with focus
917 on developments since 1991. *Alcohol Clin Exp Res* **20**, 859-876 (1996).

918 27. Gundlah, C., et al. Estrogen receptor-beta regulates tryptophan hydroxylase-1 expression in the murine
919 midbrain raphe. *Biol Psychiatry* **57**, 938-942 (2005).

920 28. Osterlund, M.K. Underlying mechanisms mediating the antidepressant effects of estrogens. *Biochim
921 Biophys Acta* **1800**, 1136-1144 (2010).

922 29. Donner, N. & Handa, R.J. Estrogen receptor beta regulates the expression of tryptophan-hydroxylase 2
923 mRNA within serotonergic neurons of the rat dorsal raphe nuclei. *Neuroscience* **163**, 705-718 (2009).

924 30. Mitra, S.W., et al. Immunolocalization of estrogen receptor beta in the mouse brain: comparison with
925 estrogen receptor alpha. *Endocrinology* **144**, 2055-2067 (2003).

926 31. Robichaud, M. & Debonnel, G. Oestrogen and testosterone modulate the firing activity of dorsal raphe
927 nucleus serotonergic neurones in both male and female rats. *J Neuroendocrinol* **17**, 179-185 (2005).

928 32. Cao, X., et al. Estrogens stimulate serotonin neurons to inhibit binge-like eating in mice. *J Clin Invest* **124**,
929 4351-4362 (2014).

930 33. Saito, K., Cao, X., He, Y. & Xu, Y. Progress in the molecular understanding of central regulation of body
931 weight by estrogens. *Obesity (Silver Spring)* **23**, 919-926 (2015).

932 34. Cao, X., et al. Estrogens stimulate serotonin neurons to inhibit binge-like eating in mice. *J Clin Invest* **124**,
933 4351-4362 (2014).

934 35. Gomez, J.L., et al. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine.
935 *Science* **357**, 503-507 (2017).

936 36. Shughrue, P.J., Lane, M.V. & Merchenthaler, I. Comparative distribution of estrogen receptor-alpha and
937 -beta mRNA in the rat central nervous system. *J Comp Neurol* **388**, 507-525 (1997).

938 37. Shughrue, P.J., Scrimo, P.J. & Merchenthaler, I. Evidence for the colocalization of estrogen receptor-beta
939 mRNA and estrogen receptor-alpha immunoreactivity in neurons of the rat forebrain. *Endocrinology*
940 **139**, 5267-5270 (1998).

941 38. Wu, M.V., et al. Estrogen masculinizes neural pathways and sex-specific behaviors. *Cell* **139**, 61-72 (2009).

942 39. Bethea, C.L., Reddy, A.P., Robertson, N. & Coleman, K. Effects of aromatase inhibition and androgen
943 activity on serotonin and behavior in male macaques. *Behav Neurosci* **127**, 400-414 (2013).

944 40. Klink, R., Robichaud, M. & Debonnel, G. Gender and gonadal status modulation of dorsal raphe nucleus
945 serotonergic neurons. Part I: effects of gender and pregnancy. *Neuropharmacology* **43**, 1119-1128
946 (2002).

947 41. Dominguez, R., Cruz-Morales, S.E., Carvalho, M.C., Xavier, M. & Branda, M.L. Sex differences in
948 serotonergic activity in dorsal and median raphe nucleus. *Physiol Behav* **80**, 203-210 (2003).

949 42. Nishizawa, S., et al. Differences between males and females in rates of serotonin synthesis in human
950 brain. *Proc Natl Acad Sci U S A* **94**, 5308-5313 (1997).

951 43. Saito, K., et al. Visualizing estrogen receptor-alpha-expressing neurons using a new ERalpha-ZsGreen
952 reporter mouse line. *Metabolism* **65**, 522-532 (2016).

953

954

955 44. Rhodes, J.S., Best, K., Belknap, J.K., Finn, D.A. & Crabbe, J.C. Evaluation of a simple model of ethanol
956 drinking to intoxication in C57BL/6J mice. *Physiol Behav* **84**, 53-63 (2005).

957 45. Xu, Y., *et al.* Distinct hypothalamic neurons mediate estrogenic effects on energy homeostasis and
958 reproduction. *Cell Metab* **14**, 453-465 (2011).

959 46. Wang, C., *et al.* TAp63 contributes to sexual dimorphism in POMC neuron functions and energy
960 homeostasis. *Nat Commun* **9**, 1544 (2018).

961 47. Hong, K. & Choi, Y. Role of estrogen and RAS signaling in repeated implantation failure. *BMB Rep* **51**,
962 225-229 (2018).

963 48. Zhu, C., *et al.* Heparin Increases Food Intake through AgRP Neurons. *Cell Rep* **20**, 2455-2467 (2017).

964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980