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2 

Abstract 23 

Correcting for amplification biases in genetic metabarcoding data can yield quantitative 24 

estimates of template DNA concentrations. However, a major source of uncertainty in 25 

metabarcoding data is the presence of non-detections, where a technical PCR replicate fails to 26 

detect a species observed in other replicates. Such non-detections are an important special case 27 

of variability among technical replicates in metabarcoding data, particularly in environmental 28 

samples. While many sampling and amplification processes underlie observed variation in 29 

metabarcoding data, understanding the causes of non-detections is an important step in 30 

distinguishing signal from noise in metabarcoding studies. Here, we use both simulated and 31 

empirical data to 1) develop a qualitative understanding of how non-detections arise in 32 

metabarcoding data, 2) outline steps to recognize uninformative data in practice, and 3) identify 33 

the conditions under which amplicon sequence data can reliably detect underlying biological 34 

signals. We show in both simulations and empirical data that, for a given species, the rate of non-35 

detections among technical replicates is a function of both the template DNA concentration and 36 

species-specific amplification efficiency. Consequently, we conclude metabarcoding datasets are 37 

strongly affected by (1) deterministic amplification biases during PCR and (2) stochastic 38 

sampling of amplicons during sequencing — both of which we can model — but also by (3) 39 

stochastic sampling of rare molecules prior to PCR, which remains a frontier for quantitative 40 

metabarcoding. Our results highlight the importance of estimating species-specific amplification 41 

efficiencies and critically evaluating patterns of non-detection in metabarcoding datasets to better 42 

distinguish environmental signal from the noise inherent in molecular detections of rare targets. 43 

 44 

 45 
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Introduction 46 

Metabarcoding, or DNA amplicon sequencing, is a powerful tool that can characterize biological 47 

communities without the need to physically observe individual organisms. The rise of 48 

metabarcoding via high-throughput sequencing is rapidly advancing human and wildlife health, 49 

ecology, and conservation science [1–8].  50 

However, the power of metabarcoding applications lies in the ability to obtain reliable 51 

quantitative estimates of underlying communities [9–11]. In the case of metabarcoding and 52 

similar amplicon-based studies [12], it has become clear that 1) observations are non-linearly 53 

related to the underlying biology of interest [13,14], and 2) those observations are noisy, with 54 

many having relatively high variances as a function of expected values [11,15–17].  In order to 55 

make reliable quantitative estimates for any set of observations, we must be able to distinguish 56 

random variation from real signal. Thus, understanding the underlying signal-to-noise ratio is 57 

key to quantifying the power of detection for a given dataset [18]. 58 

Substantial efforts to correlate sequence reads and underlying community abundance 59 

have reported promising but largely equivocal results [10,15,19–23]. However, it is unsurprising 60 

that the application of simple linear correlations to non-linear and compositional datasets 61 

produce ambiguous results given the failure to model the underlying drivers of observed DNA 62 

sequence patterns and distributions. In response, recent mechanistic frameworks have begun to 63 

address the discrepancies between observed metabarcoding sequence counts and true underlying 64 

biological patterns by modeling the compounding processes that occur between DNA extraction 65 

and sequence observation [24–28]. These processes include DNA extraction, PCR, and multiple 66 

subsampling steps prior to sequencing [16,17,27,29,30]. Importantly, these mechanistic 67 

frameworks explicitly model the amplicon sequence-generating process by stating that observed 68 
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sequence reads are a function of both the species-specific amplification efficiency and the 69 

underlying abundance of each species’ DNA within a sample [26]. Such models also reflect the 70 

inherent compositional nature of metabarcoding, acknowledging that metabarcoding data can 71 

only provide proportional (not absolute) abundances of a given species’ DNA in a given sample 72 

[11]. This approach can reconstruct starting DNA proportions, prior to PCR (e.g. [16,25–27]) 73 

and, where metabarcoding data are combined with additional information on underlying DNA 74 

concentrations, can yield absolute abundance estimates of the sampled DNA concentrations (e.g. 75 

[31]). 76 

Despite these advances in modeling the amplicon sequence-generating process, it is clear 77 

that the sequential molecular steps required to generate metabarcoding data result in highly 78 

variable sequence-read counts among technical replicates derived from the same DNA extract 79 

[13,32–36]: replicate samples yield somewhat different results. Thus, in practice, it can be 80 

difficult to distinguish signal from noise in metabarcoding datasets. In particular, zeros are 81 

frequently over-represented in metabarcoding data, contributing substantially to among-replicate 82 

variability [16,24,34]. For example, in three technical replicates, a unique amplicon sequence 83 

variant (ASV) may be represented by 3,897; 165; and 0 reads across replicates (132,731, 84 

196,260, 55,400 read depth for each replicate respectively; [31]). This observed variability 85 

among technical replicates far exceeds the expected variability arising from binomial- or 86 

multinomial sampling, and so demands a different explanation [16]. 87 

Here we focus on the patterns and causes of non-detections (in which a species is 88 

unobserved in one technical replicate despite being observed in other replicates) in 89 

metabarcoding datasets. After first synthesizing previous research on patterns of sequence 90 

counts, we simulate the process of metabarcoding to develop a qualitative understanding of the 91 
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scenarios under which non-detections arise. We then use these results to generate predictions for 92 

the frequency of non-detections. Next, we use empirical observations to test these predictions 93 

using metabarcoding data derived from a set of ethanol-preserved fish larvae, in which both the 94 

underlying organismal abundances and the resulting metabarcoding dataset are well-95 

characterized. Our empirical findings closely match the predictions and suggest a mechanism for 96 

non-detections and stochastic variability in general. Given this understanding of the sources of 97 

variability, we can more confidently distinguish signal from noise in metabarcoding datasets. 98 

 99 

Methods 100 

Conceptual Model and Simulating Metabarcoding Data 101 

Our generating model for metabarcoding derives from Shelton et al. [27], building on the work 102 

of others [11,17,25,26,29]. Briefly, we envision a metabarcoding dataset as compositional, 103 

arising from a chain of sampling and amplification processes acting on individual DNA 104 

molecules.  105 

We start with a sample of extracted DNA containing sequences from multiple species.  106 

From this starting point, there are many different metabarcoding laboratory protocols that lead to 107 

observed sequences from a sequencing instrument [37,38]. Here, we approximate this using three 108 

main stochastic processes following the commonly used two-step PCR library generation process 109 

(e.g., a target PCR followed by an indexing PCR). First, we assume a sample of DNA is 110 

extracted and included in the multi-taxon PCR reaction. Second, PCR amplification using a 111 

specific primer and protocol occurs, replicating the DNA molecules for each taxon. This second 112 

step includes the various target PCR, cleaning, indexing PCR, and pooling steps that occur 113 

during or following the main PCR reaction. Finally, the resulting mix of DNA copies is sampled 114 
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to generate a compositional sample of amplicons that are observed through the sequencing 115 

instrument.  116 

Mathematically, we can write a simulation for this framework as a series of linked 117 

stochastic processes. Specifically, we start with a sample of extracted DNA containing �� copies 118 

���� DNA from the ith taxon, i = 1,2,...,I. Let ���  be the discrete number of DNA molecules for 119 

species i sampled (i.e., in the tube in which a given PCR reaction takes place) of technical 120 

replicate j at the beginning of PCR and  121 

���  �  ��	

�����
�               (1) 122 

Here, V is the volume (��) of template DNA sampled from the DNA extract. This equation 123 

assumes each taxon is sampled independently. Note that different technical replicates (e.g., j = 1 124 

and j = 2) arise from the same environmental sample but may contain different numbers of 125 

molecules for a given species due to sampling variability.  126 

Next, we model a three-step PCR process. Most importantly, we assume the amplicons 127 

produced during a PCR reaction are influenced by a species-specific amplification efficiency ai, 128 

which is characteristic of the interaction between the particular primer set, reaction chemistry, 129 

and template molecule of each species (i) being amplified [27]. For any species, ���  is the 130 

expected number of amplicons present in a technical replicate at the end of PCR. ���  is directly 131 

related to the efficiency of amplification and the starting number of DNA molecules, ����1 �132 

 �������  , where ���� is the number of PCR cycles and ��  is bounded on (0,1); ��  = 1 represents a 133 

perfect doubling of molecules with each PCR cycle. For the purpose of this paper, we assume a 134 

two-step PCR process with a sub-sampling and PCR cleaning process in between, and ���  can be 135 

modeled at each step as: 136 

���� �  ��	

�������1 � ���������                (2) 137 
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�	�� �  �	���	����, �����                (3) 138 

�
�� �  ��	

����	���1 � 0.9�������             (4) 139 

where � is the proportion of the first PCR product used in the second PCR amplification. Note 140 

that during the indexing reaction (equation 4) all taxa share a single amplification efficiency 141 

(��=0.9) as we assume all indexing primers anneal to the indexing adapter sequences with equal 142 

efficiency. Here �
 is the number of amplicons present after both PCR amplifications but before 143 

sequencing. Finally, the sequencing instrument generates a total number of reads within technical 144 

replicate j (����
��) and each replicate has a vector of observed read counts 145 

(�� , bolding indicates vectors) for I species. 146 

 147 

�� �  ����	���	��  !�, ����
�,�"               (5) 148 

where p is the proportion of reads from species i in technical replicate j, and #�� $
����

∑ ����
	
�
�

 . 149 

Thus, observed read counts (%��� are sampled stochastically based on their relative amplicon 150 

abundances, #�� . 151 

The above model provides a general framework for understanding the causes of 152 

variability in observed read counts (%���, specifically the probability of non-detections as a factor 153 

of 1) the initial DNA concentration �� and 2) the amount of species-specific variation in 154 

amplification efficiency ����. The simulation allows us to identify two distinct causes of non-155 

detection, #�%�� $ 0�. First, non-detection may occur because there were no molecules of species 156 

i in the initial PCR (��� $ 0, in which case we are interested in #���� $ 0� because #�%�� $157 

0|��� $ 0�  $  1). Second, zeros can arise due to PCR amplification and sequence-sampling 158 

processes; thus, we are interested in #�%�� $ 0|��� ' 0�. While #���� $ 0� is trivial to calculate 159 
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from equation 1, determining #�%�� $ 0) and #�%�� $ 0|��� ' 0� are not. We turn to simulations 160 

to understand the contributions of variation in �� and ��  to the probability of non-detection.  161 

We simulate four communities with different levels of richness (N = 4, 10, 30, and 50 162 

taxa). For simplicity, we assume all taxa start with identical DNA concentrations regardless of 163 

the richness. DNA concentrations, λi  are varied from 0.5 to 10,000 copies ���� (for simplicity 164 

we set V = 1 for all simulations). We further allow a range of amplification efficiencies (ai) 165 

among taxa where a ~ Beta(0.7γ, 0.3γ) with γ ranging from 5 (high variation among species) to 1 166 

million (no variation among species), but with a constant average amplification efficiency of 0.7 167 

for all scenarios. We simulated 50,000 realizations for each combination of richness (4 levels), � 168 

(18 levels), and ( (6 levels: 5, 10, 20, 100, 100, 1 million)), for a total of 432 scenarios.  For all 169 

the simulations, we allowed sequencing depth to vary among replicates �����
,� was uniformly 170 

drawn from discrete values between 60,000 and 140,000), used a fixed sampling fraction �� $171 

0.20�, and set ����	 $ 35 and  ����	 $ 10). We calculated a range of summary statistics for 172 

each scenario, including the overall probability of non-detection, #�%�� $ 0); the probability of 173 

non-detection due to the absence of the target molecule, #���� $ 0); and summaries of the reads 174 

both in absolute terms and in terms of relative abundance.  175 

Empirical Testing 176 

We test these hypotheses against a real metabarcoding data set making use of three data streams 177 

generated from a common set of biological samples: organismal abundance (as a proxy for input 178 

DNA molecules), metabarcoding data, and amplification-efficiency estimates for the relevant 179 

species. 180 

Study Design 181 
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As part of the California Cooperative Oceanic Fisheries Investigations (CalCOFI), Gold et al. 182 

[31] use morphological and molecular methods to analyze the response of ichthyoplankton in the 183 

California Current Large Marine Ecosystem to ocean warming. Ichthyoplankton samples were 184 

collected in oblique bongo net tows on CalCOFI research cruises over two decades (1996; 1998-185 

2019). Once a sampling tow concluded, ichthyoplankton present on one side of the net were 186 

preserved in Tris-buffered 95% ethanol and stored in the Pelagic Invertebrate Collection at 187 

Scripps Institution of Oceanography [39]. The paired ichthyoplankton were preserved in sodium 188 

borate-buffered 2% formaldehyde for microscopy-derived species identification and abundance 189 

(number of larvae per species per jar). This dataset yields paired samples for both metabarcoding 190 

analysis and absolute abundance counts from the same sampling event. 191 

Abundance Estimation from Microscopy 192 

Formalin-preserved larvae were identified and enumerated following the methods of Thompson 193 

et al. [40]. The majority of taxa were identified to species level. Here we assume that the 194 

relationship of absolute abundance (counts of individual species) is proportional to the amount of 195 

species-specific DNA in the extraction. See the discussion for the merits of this assumption. 196 

Metabarcoding Data Generation 197 

DNA sequences were generated from 84 ethanol-preserved samples as described in Gold et al. 198 

[31]. Briefly, ethanol samples were filtered onto 0.2 µm PVDF filters and were extracted using a 199 

Qiagen DNeasy Blood and Tissue kit. We then amplified three technical PCR replicates using a 200 

touchdown PCR and the MiFish Universal Teleost specific primer [41]. Both a negative control 201 

(molecular grade water instead of DNA extract) and two positive controls (DNA extract from 202 

non-native, non-target species) were included alongside samples. Libraries were prepared using 203 

Illumina Nextera indices following the methods of Curd et al. [42] and sequenced on a NextSeq 204 
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2x 150 bp mid output. Sequencing data was then processed using the Anacapa Toolkit [42] to 205 

conduct quality control, ASV dereplication, and taxonomic assignment. Sequences were 206 

annotated with the California fish specific reference database and a bootstrap confidence cutoff 207 

score of 60 following the methods of Gold et al. [43]. Eight technical replicates with either low 208 

sequencing depth (n<30,000) or high dissimilarity (Bray Curtis dissimilarity > 0.7) were 209 

removed. 210 

Amplification Efficiency Estimation from Mock Communities 211 

We used a subset of the mock communities generated for Shelton et al. [27] to estimate 212 

amplification efficiencies of relevant fish species. Mock communities included DNA from 57 213 

voucher fish tissue samples, 17 of which were detected in the CalCOFI metabarcoding data set, 214 

from the Scripps Institution of Oceanography Marine Vertebrate Collection. To accurately 215 

quantify input DNA for each species within the mock community, we used a nested PCR 216 

strategy in which mock communities were generated by pooling resultant longer fragment PCR 217 

products of each species rather than by pooling the total genomic DNA of each species (which 218 

includes variable amounts of nDNA as well as bacterial and other DNA sources). To implement 219 

our nested PCR strategy, we first amplified a 612 bp fragment of the 12S rRNA gene that 220 

contains the MiFish Universal Teleost 12S primer set [44], and quantified the resulting PCR 221 

products using the QuBit Broad Range dsDNA assay (Thermofisher Scientific, Inc.); this 222 

yielded measurements of species-specific, amplifiable DNA. Using this known-concentration 223 

DNA we generated 9 distinct mock communities by pooling long fragment PCR products 224 

comprising three distinct sets of species and three abundance distributions (See Table S1). 225 

Pooled mock communities were using the QuBit Broad Range dsDNA assay (estimated 226 

concentrations ranged from 8-12 ng µL-1) and then diluted serially by a 1:10 dilution down to 227 
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10-8 original concentration. We then converted ng µL-1 to copies µL-1 using the following 228 

equation:  229 

Copies µL-1 

= 
QuBit Concentration *ng µL-1+*6.022x10

23
 [molecules mol

-1
]

612 [bp] * 650 [g mol
-1

 bp
-1

] *(1x10
9
 [ng g-1])

 

Finally, input concentrations of 380-600 DNA copies µL-1 for each total community were loaded 230 

in the MiFish Universal Teleost 12S PCR step (Table S2). Given this design, each mock 231 

community had a different number of DNA molecules per species. We then amplified each of 232 

the mock communities in triplicate with the MiFish Universal Teleost 12S following the 233 

methods of Curd et al. [42], targeting a 185 bp fragment within the larger 612 bp PCR fragment 234 

used to generate the mock communities. Each triplicate PCR technical replicate was then treated 235 

as a unique library and sequenced separately. Metabarcoding libraries were then prepared and 236 

sequenced on a MiSeq platform using a v3 600 cartridge following the methods of Gold et al. 237 

[43]. We note that one set of mock communities were re-sequenced on a separate run to generate 238 

usable data. Resulting sequences were processed using the Anacapa Toolkit using the global 239 

CRUX generated reference database given the broad geographic distribution of species from 240 

Gold et al. [43]. We also used a taxonomic cutoff score of 60 as above. Taxonomic assignment 241 

of ASVs was confirmed with BLAST using default settings. For the two observed discrepancies, 242 

we chose to use BLAST assignments with greater than 99% identity and 100% query length 243 

match as they matched our known vouchered specimen identifications. 244 

We fit the model from Shelton et al. [27] to a third of the data (3 technical replicates of 245 

each evenly pooled mock community). Generated parameter estimates were then used to predict 246 

the starting proportions of DNA in the remaining two-thirds of the data, for an out-of-sample 247 

estimate of accuracy. We used the resulting model output to calculate the mean amplification 248 
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efficiency per species. The model, implementation, and code are detailed in Shelton et al. [27], 249 

but there are two particularly relevant points from the model for connecting the simulation and 250 

empirical results that we highlight here. While we simulate absolute amplification efficiencies 251 

(���, because metabarcoding data is compositional, the absolute amplification efficiency cannot 252 

be estimated from metabarcoding data. Instead, we estimate amplification efficiencies for each 253 

species relative to a reference efficiency (see also [25,26]). In our case we estimate ,�  as the 254 

amplification efficiency of species i, �� , relative to the efficiency of a reference species, ��, 255 

therefore ,� $ ��

��
.  Thus, for simulations we discuss � but for estimation, we discuss ,. Note 256 

while values of , can be directly calculated from �, values of � are not uniquely identifiable 257 

from ,.  258 

All data and code for conducting analyses will be made publicly available upon 259 

acceptance via NCBI SRA, Dryad, and GitHub 260 

(https://github.com/zjgold/Metabarcodings_Signal_from_Noise). 261 

Hypothesis Testing 262 

From the above outlined simulations and empirical data, we generate a series of hypotheses. 263 

First, we expect fewer non-detections for more abundant DNA molecules, given the same 264 

species (and therefore the same amplification efficiency). Second, we hypothesize that species 265 

with higher amplification efficiencies will have fewer non-detections and higher observed 266 

sequence read counts than species with lower amplification efficiencies, given the same 267 

abundance of template DNA molecules. Third, we expect species with low amplification 268 

efficiencies will have a high rate of non-detection regardless of the abundance of template DNA 269 

molecules. We test each of these hypotheses using both simulation and empirical results. 270 
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Results 271 

Simulation Results 272 

We found a strong correlation between the probability of non-detections and both the absolute 273 

abundance of template DNA molecules and amplification efficiencies (Figure 1). The probability 274 

of non-detections (p(Y=0)) dramatically declines when concentrations of template DNA are 275 

greater than ~10 copies µL-1 per species, given an average amplification efficiency of 0.7 276 

(Figures 1C & 1D). Likewise, our results demonstrate that species with low amplification 277 

efficiencies exhibit high probabilities of non-detections regardless of starting DNA 278 

concentrations (Figure 1A, B). Importantly, we demonstrate that even species with an 279 

amplification efficiency slightly below average (e.g., a = 0.7) exhibit high rates of non-detections 280 

at DNA concentrations far higher than from typical eDNA field samples (e.g.  � > 100 281 

copies/µL; [45]). Together these simulations indicate that the probability of non-detection is 282 

dominated by the subsampling process at low template DNA concentrations while the probability 283 

of non-detection is driven primarily by the PCR process (i.e., differences in amplification 284 

efficiencies) at higher template DNA concentrations.  285 
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 286 

Figure 1. Non-detections Driven By Both DNA Concentration and Amplification 287 

Efficiency.  288 

The probability of non-detection (p(Y=0)) is shown for a community of 50 equally 289 

abundant taxa with the amplification efficiency distribution shown inset in the upper left 290 

of each panel. The amount of among-taxa variation in amplification efficiency varies 291 

from high variation (A; γ=5) to moderate variation (B: γ=10) to low variation (C: γ=100) 292 

to effectively no variation (D: γ=1,000,000). Both subsampling and amplification 293 

efficiencies influence the rate of non-detection. The probability of observing no DNA in a 294 

given technical replicate is highest at low DNA concentrations (<10 copies /µL). 295 

However, non-detections are possible for species with below average amplification 296 
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efficiencies (in this case approximately ��  = 0.7) and very likely (p(Y=0) > 0.5) for 297 

amplification well below average ( ��  < 0.4). 298 

 299 

Empirical Results 300 

Microscopy Results 301 

Independent estimates of abundance were generated from sorting 9,610 larvae from 84 jars (min 302 

= 2, max =960). See Gold et al. [31] for a detailed description of the results. 303 

Metabarcoding Results 304 

The metabarcoding data set generated from ethanol-derived eDNA consisted of a total of 54.5 305 

million amplicon sequence reads that passed through the Anacapa Toolkit quality control, ASV 306 

dereplication, and decontamination processes. Sequencing depth ranged from 36,050 reads to 1.2 307 

million reads per technical replicate. For our integrated Bayesian model of the probability of 308 

non-detection in a technical replicate, we focused on the 17 species that had 1) sufficient 309 

representation across the metabarcoding data set (observed in > 10 technical PCR replicates) to 310 

achieve model convergence and 2) were represented in our mock communities. See Gold et al. 311 

[31] for the full description of model implementation and results. 312 

Mock Community Results 313 

The mock community data set consisted of 4.0 million amplicon sequence reads that passed 314 

through the Anacapa Toolkit quality control, ASV dereplication, and decontamination processes 315 

across a total of 36 unique samples comprising three distinct community assemblages each with 316 

three PCR technical replicates. Sequencing depth ranged from 9,872 reads to 206,900 reads per 317 

technical replicate. Of the 57 voucher species represented, we classified 56 unique species, and 318 
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used the Shelton et al. [27] model to estimate amplification efficiencies for each species. One 319 

species, Urobatis halleri, was not detected in any technical replicate. Citharichthys sordidus was 320 

present in all mock communities and was selected as the reference species for estimating relative 321 

amplification efficiencies. Across all species,  ,�  ranged from -0.30 to 0.03 with a mean of -0.06 322 

(Table S3). For presentation purposes, we label species with ,�  values below -0.07 as a low 323 

amplification efficiency group (n=15) and the remaining species as a high amplification (n=41). 324 

Hypothesis Testing 325 

As with the simulation results, we found that the probability of non-detections is strongly 326 

correlated with both the abundance of DNA molecules for a given species within a sample and 327 

the species-specific amplification efficiency (Figures 2b, 3b). Non-detections occur more 328 

frequently at low DNA concentrations regardless of amplification efficiency (Figures 2b, 3b). 329 

Species exhibiting lower amplification efficiencies (,�  < -0.07) had higher rates of non-330 

detections even at high input DNA concentrations (104 copies µL-1) and larval counts (9 larvae 331 

per jar; Figures 2b, 3b).  332 

Furthermore, from the mock community example, species with higher amplification 333 

efficiencies (,�  >-0.07) have higher observed sequence read counts for an equivalent template 334 

DNA concentration (Figure 2a). The 41 species with high amplification efficiencies have more 335 

reads sequenced per DNA molecule added (mean ± sd = 4.1 ± 6.31, range = 0.00-55.4) than the 336 

15 species with low amplification efficiencies (mean ± sd = 0.1 ± 0.47, range = 0.00-5.5). 337 

Likewise, species with higher larval counts in ethanol-preserved samples from plankton tows 338 

also have higher observed sequence read counts (Figure 3a). From the CalCOFI example, the 15 339 

species with high amplification efficiencies have more reads sequenced per larvae counted (mean 340 
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± sd = 6,689 ± 28,305, range = 0-79,454) than the two species in the low amplification efficiency341 

group (mean ± sd = 524 ± 1,080, range = 0-7,101).  342 

343 

 344 

Figure 2: Observed Reads and Non-detections are a function of Amplification 345 

Efficiency and Input DNA Concentration in the Mock Community example 346 

For species observed within a replicate, we find that species with higher amplification 347 

efficiencies (  >0.7) have a greater number of observed reads for an equivalent template 348 

DNA concentration (a). We also find no difference in the total number of observed reads 349 

and increased DNA concentration as expected for a compositional data set. Furthermore, 350 

we find a greater proportion of non-detections when both DNA concentration and 351 

amplification efficiencies are lower (b). These results align well with our simulated data. 352 

 353 
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354 

Figure 3. Observed Reads and Non-detections are a function of Amplification 355 

Efficiency and Larval Abundances in the CalCOFI example 356 

For species observed within a replicate, we find that species with higher amplification 357 

efficiencies (  >-0.07) have consistently greater numbers of observed reads for an 358 

equivalent template DNA concentration (a). We assume that the number of larvae in the 359 

jar is proportional to the number of DNA molecules present. We also find a greater 360 

proportion of non-detections when larvae are rare in the jars and have lower amplification361 

efficiencies (b).  362 

 363 

Discussion 364 

Using both simulated and empirical data, we demonstrate that observed sequence read counts 365 

from metabarcoding data are a function of species-specific input DNA concentrations, 366 

subsampling, and species-specific amplification efficiencies. Variability among replicates in 367 

8 
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detections of specific taxa – reflecting either rare targets or poor amplification efficiencies – are 368 

a substantial source of noise in these data. Consequently, it can be difficult to distinguish signal 369 

from noise in metabarcoding datasets. Our results illustrate several potential causes of non-370 

detections and suggest that metabarcoding data can provide reliable quantitative estimates for 371 

species with abundant input DNA (> ~50 copies µL-1) and high species-specific amplification 372 

efficiencies. By characterizing underlying sources of sequence read count variability in 373 

metabarcoding, we identify key sources of noise that impact our ability to derive quantitative 374 

estimates of source DNA. 375 

Subsampling Rare Targets Results in Non-detections  376 

Consistent with expectation, our framework strongly suggests that all else being equal in a 377 

metabarcoding assay (e.g., assuming even amplification efficiencies across species), rarer 378 

template DNA molecules have a higher probability of non-detection across technical replicates. 379 

These findings align well with observations of qPCR assays in which the probability of non-380 

detection increases as you approach the limit of detection, in terms of absolute copies of DNA 381 

per reaction volume [46,47]. High rates of non-detections in qPCR assays are commonly 382 

observed for input DNA concentrations between 1 and 10 copies [46,48,49] and are likely driven 383 

by subsampling errors in which too few or no physical DNA molecules are transferred into a 384 

given PCR reaction [36,50,51]. These observations from qPCR studies reflect the findings from 385 

both simulated and empirical metabarcoding results reported here.  386 

Importantly, subsampling rare target DNA molecules yields stark differences in observed 387 

per-species read counts among technical replicates, non-detections being the most obvious case 388 

of this phenomenon [15,16,34,46]. Together, these findings strongly support the hypothesis that 389 

the concentration of target DNA within a sample influences the observed patterns of amplicon 390 
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read counts, particularly increasing the probability of non-detections for species with low 391 

template DNA concentrations. Such observations of high rates of non-detections also justify the 392 

use of over dispersed multinomial sampling approaches within metabarcoding models [27]. 393 

Amplification Efficiencies Drive Sequence Counts and Non-detections 394 

While the relationship between template concentration and non-detections is well documented in 395 

the literature [10,12,16,24,34,46], the causes of non-detection among species with abundant 396 

DNA are not widely appreciated. Both simulation and empirical results demonstrate that species 397 

with higher amplification efficiencies have higher observed amplicon read counts, confirming 398 

the predictions of previous compositional modeling efforts [25–27]. Furthermore, we find a clear 399 

association between the probability of non-detections and amplification efficiencies, with species 400 

with higher amplification efficiencies exhibiting fewer non-detections. Here we observed an 401 

order of magnitude difference in average sequence reads per larvae collected in a given jar with a 402 

maximum observed difference in amplification efficiencies of 0.33 (n=17). Previous research 403 

using mock communities has similarly demonstrated that equal concentrations of DNA in a 404 

single extraction frequently results in amplicon read counts that differ by orders of magnitude 405 

[16,32,36,37,52]. Such dramatic differences in resulting read proportions are understandable 406 

given the exponential nature of PCR - even a subtle difference in amplification efficiency across 407 

30+ PCR cycles can result in stark differences in sequence counts [27].  408 

The observed variation in amplification efficiency among species in metabarcoding 409 

approaches arises from complex PCR processes, including primer specificity, DNA polymerase 410 

selectivity, annealing temperature, GC content, and higher-order dimensional structure of DNA, 411 

inhibition, and co-factors such as MgCl2, among others [53–59]. This complexity makes 412 

designing metabarcoding assays that are highly specific for only target taxa challenging [60,61], 413 
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resulting in the amplification of off-target taxa as well as a range of amplification efficiencies 414 

across target taxa [26,27,43,62,63]. As demonstrated by our simulations and empirical results, 415 

such a range of amplification efficiencies can result in substantial noise in metabarcoding data 416 

sets. 417 

Complex Relationship between Amplification Efficiencies and Abundance 418 

The above results highlight the cumulative importance of the variance in amplification efficiency 419 

among species, as well as the abundance of template DNA for understanding the patterns of 420 

metabarcoding non-detections. The interaction between these factors is key for disentangling the 421 

signal from the noise of metabarcoding data. Here, we demonstrate that there are two ways to 422 

obtain non-detections for a given species after sequencing: low initial DNA concentration or low 423 

amplification efficiency. Both of these results are clear from our empirical CalCOFI fish larvae 424 

dataset which captured the effects of species-specific amplification efficiency and DNA 425 

concentrations on both sequence read counts and frequency of non-detections (Figure 2). 426 

Importantly, our results demonstrate that noise in metabarcoding datasets, like signal, is non-427 

random and can be accounted for [16].  428 

Alone, metabarcoding data is insufficient to tease apart these complex interactions. 429 

However, distinguishing signal from noise in metabarcoding datasets is tractable using 430 

independent estimates of amplification efficiencies and underlying DNA concentrations. 431 

Amplification efficiencies can be estimated through either generating mock communities 432 

[26,27], by amplifying a subset of samples multiple times at various numbers of PCR cycles 433 

[25], or by including internal positive controls within each PCR [28]. Likewise, underlying DNA 434 

concentrations can be estimated using qPCR or dPCR assays of key taxa or the metabarcoding 435 

locus itself; or estimated using non-genetic independent abundance estimates such as the 436 
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microscopy counts presented above. As demonstrated here, and in Shelton et al. [27], McLaren et 437 

al. [26], and Silverman et al. [25], the inclusion of independent estimates of amplification 438 

efficiencies and DNA concentrations allow for the delineation of signal from noise from 439 

metabarcoding data sets. Further modeling efforts incorporating stochastic sampling of rare 440 

molecules prior to PCR will allow for accurate quantification and identification of true absences 441 

in metabarcoding data sets, greatly enhancing biological and ecological interpretation. 442 

Furthermore, our analysis also underscores the importance of technical PCR replicates to 443 

quantify sequence variance in metabarcoding studies [64–66]. Without technical replicates, we 444 

would not have been able to quantify the frequency of non-detections in our metabarcoding 445 

datasets [17]. We demonstrate that non-detections may indicate low-relative-abundance starting 446 

DNA concentrations regardless of observed read depth, and conversely, may indicate low 447 

amplification efficiency regardless of starting concentration [27]. Thus, our results strongly 448 

support the inclusion of technical replicates for metabarcoding studies, particularly for deriving 449 

quantitative estimates. 450 

Current best practices for qPCR and dPCR assays include numerous technical replicates 451 

to help distinguish signal from noise [46,48]. However, we recognize that technical replication 452 

dramatically increases the cost and effort of metabarcoding projects and may exhaust limited 453 

DNA extracts and resources. Alternatively, technical replicates could be performed on a subset 454 

of samples and the observed variance could be used to contextualize sequence read patterns in 455 

the whole dataset. However, such approaches come with a suite of assumptions, particularly 456 

whether the pattern of species’ sequence counts behaves similarly across all samples and 457 

environments/treatments. Future efforts to validate such approaches are clearly warranted. 458 
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In addition, given the importance of subsampling in driving non-detections, our results 459 

strongly suggest that field and laboratory processes that increase the absolute abundance of DNA 460 

molecules will reduce the noise in observed amplicon sequence reads [67]. For example, using a 461 

greater volume of DNA template for PCR reactions (3 µL vs. 1 µL) will reduce subsampling 462 

driven non-detections across samples. Likewise, increasing the total amount of water filtered for 463 

eDNA samples (3 L vs. 1 L) acts to concentrate DNA from the environment, similarly reducing 464 

subsampling driven non-detections [68]. These are two of many examples of laboratory 465 

protocols that may serve to increase the available number of DNA molecules and reduce the 466 

impacts of subsampling rare molecules, consequently improving quantitative estimates from 467 

amplicon sequence data.  468 

The above mechanistic frameworks focus on processes from DNA extraction through 469 

sequencing, but do not approach the myriad of factors that influence the amount of DNA 470 

collected from the environment, gut, or other starting communities for metabarcoding. 471 

Substantial efforts have focused on understanding the effects of gene copy number, patchiness, 472 

shedding and degradation rates, and the fate and transport of cellular DNA, among others, on the 473 

amount/types of DNA collected from the environment [26,51,69]. Linking such research to the 474 

growing body of work that quantifies sources of potential bias in the lab, including the present 475 

study, is an important next step in understanding the relationship between biological signals and 476 

observed sequence read counts. 477 

We recognize that incorporating the additional laboratory analyses and technical 478 

replicates to better characterize metabarcoding results may not be feasible for all metabarcoding 479 

applications. Many metabarcoding efforts are exploratory in nature, primarily focused on the 480 

characterization of biodiversity in under sampled habitats including the deep sea, polar regions, 481 
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remote alpine regions, etc. For such exploratory biodiversity surveys, the additional efforts 482 

needed to achieve quantitative metabarcoding outlined above may not be practicable given 483 

surveying and budget constraints. However, it is important to recognize that our framework 484 

extends not only to quantitative metabarcoding but detection rates of taxa from metabarcoding 485 

surveys. The expected detection rate (observed reads > 0) of a given taxon in metabarcoding data 486 

is a function of other species in the community, the amplification rate of the target species, the 487 

amplification rates of other species, the proportional abundance of the target species, and the 488 

absolute abundance of the target species as demonstrated in our empirical datasets above. Thus, 489 

estimating the probability of detection from metabarcoding data alone is difficult in the abstract, 490 

but is quite tractable given a set of estimated parameters for a particular sampled community. 491 

Conversely, interpreting metabarcoding results from exploratory applications within systems 492 

with limited ecological context is challenging as species detection rates are a function of multiple 493 

unsampled parameters.  494 

Undoubtedly, addressing this shortcoming of compositional metabarcoding data requires 495 

increased field and laboratory efforts. Such challenges are acute in under studied systems where 496 

the creation of mock communities is particularly difficult with limited access to vouchered DNA 497 

samples, let alone known species lists. However, exploratory metabarcoding studies do not 498 

preclude the revisiting of quantitative metabarcoding approaches in the future, especially since 499 

DNA extracts can be archived. For example, metabarcoding data can be generated first to 500 

provide an initial perspective into community assemblages that then allows for the identification 501 

and development of single species qPCR/dPCR assays and mock communities or variable PCR 502 

targets. In summary, we argue that all future best practices of metabarcoding results incorporate 503 

additional independent estimates of amplification efficiency, independent estimates of DNA 504 
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concentrations, and technical replicates to better contextualize metabarcoding efforts. Given the 505 

rapid decline in sequencing costs and steady improvement in the development and 506 

implementation of molecular assays, such additional work is tractable, opening the door to 507 

adoption for routine application across metabarcoding studies to generate characterization of 508 

underlying biological communities. 509 

Conclusion 510 

Ultimately, we demonstrate that variation in amplification efficiencies and underlying template 511 

DNA concentration are responsible for a substantial portion of observed noise in metabarcoding 512 

datasets. This study demonstrates the value of incorporating additional independent estimates of 513 

amplification efficiencies and DNA concentration along with amplicon sequence data, providing 514 

for the application of routine statistical approaches and straightforward interpretation of observed 515 

read patterns. Together with Shelton et al. [27], we provide a framework for establishing reliable 516 

estimates of abundance from amplicon sequence data that will be critical for extending the 517 

application of this method to health and ecological questions. 518 
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Supplement 1: A note on sampling depth and the probability of observing zeros. 737 

In the metabarcoding literature, it is often asserted that if more reads are sampled, it is more 738 

likely that rare variants will be observed.  While this is true, the magnitude of the effect is likely 739 

less than one would like and only meaningfully changes the probability for a relatively narrow 740 

range of rare things.  This supplement provides some simple examples for how to do that 741 

calculation.   742 

Let us focus on only the last step of the metabarcoding process: multinomial sampling. 743 

As we are interested in isolating the contribution of sampling depth we can assert that everything 744 

prior to the sampling of DNA strands is identical; only the sampling depth changes.  So for 745 

illustration, let’s discuss a single taxon (“A”) that comprises 0.0001% of the DNA (1 in 10,000 746 

sequences) of the post-PCR product. We will assume that multinomial sampling is a decent 747 

approximation to the process (i.e., there are so many DNA copies floating around removing a 748 

few doesn’t materially change the probability of observing a given taxon; for those who are 749 

uncomfortable with this assumption, the below can be reframed using the hypergeometric 750 

distribution in place of the multinomial).  For a single taxon, the multinomial collapses to the 751 

binomial (i.e., we can think of many taxa collapsing to two groups: taxon A and not taxon A).  752 

The probability mass function for the binomial is: 753 

#�-|�, ��  $  �!

�!�����!
 ���1 . �����               (1) 754 

where k is the number of “successes” (observations of taxon A by the sequencer) and n is the 755 

number of sequences read.  We are interested in a single value here: what is the probability of 756 

k=0 (i.e. taxon A was not observed) as the number of sequences examined (n) increases.  First, 757 

simplify for the case k=0 758 

#�- $ 0|�, ��  $ �1 . ���               (2) 759 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2022. ; https://doi.org/10.1101/2022.09.02.506420doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.02.506420
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 

then plug in � $ 0.0001 a range of values for sampling depth(below I use 10 thousand, 100 760 

thousand, and 1 million reads): 761 

#�- $ 0|� $ 0.0001, � $ 10,000�  $ �1 . 0.0001������ $ 0.367861         (3) 762 

#�- $ 0|� $ 0.0001, � $ 100,000�  $ �1 . 0.0001������� $ 0.00045377        763 

(4) 764 

#�- $ 0|� $ 0.0001, � $ 1,000,000�  $ �1 . 0.0001�������� $ 3.7 5  10���      765 

(5) 766 

So for a species  that is rare we go from seeing 1 or greater sequences with probability of 0.64   767 

(1-0.36) at 10,000 reads to seeing it with almost certainty at 100,000 or more reads.  Let’s do the 768 

calculation for a rarer sequence. 769 

#�- $ 0|� $ 0.000001, � $ 10,000�  $ �1 . 0.000001������ $ 0.99         (6) 770 

#�- $ 0|� $ 0.000001, � $ 100,000�  $ �1 . 0.000001������� $ 0.90        (7) 771 

#�- $ 0|� $ 0.000001, � $ 1,000,000�  $ �1 . 0.000001�������� $ 0.367         772 

(8) 773 

So for a sequence that occurs at a rate of 1 in a million you go from observing 0 99% of the time 774 

with a sampling depth of 10,000 reads to 90% at 100 thousand reads to only 36%  at 1 million 775 

reads. 776 

Going the other direction, let’s look at something that is more common, say 1 in 1,000: 777 

#�- $ 0|� $ 0.001, � $ 10,000�  $ �1 . 0.001������ $ 0.00045377                    (9) 778 

#�- $ 0|� $ 0.001, � $ 100,000�  $ �1 . 0.001������� $ 3.7 5  10���            (10) 779 

#�- $ 0|� $ 0.001, � $ 1,000,000�  $ �1 . 0.001�������� $ 0        (11) 780 

Thus, you are almost certain to see at least one copy at 10,000 or greater read depths. 781 
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So what does this mean in general? Basically, you will see rarer things at higher read 782 

depths but moving from a read depth of say 10,000 to 1 million will only meaningfully change 783 

non-detection of very rare sequence variants (sequences that make up somewhere between 1 in 784 

10,000 and 1 in 1 million copies).  If you think that there are a lot of taxa that you care about are 785 

in this very rare zone, it may make sense to do more sequencing. But things that are extremely 786 

rare (occur at a frequency of less than 1 in a million) still will not be detected.  Note that things 787 

can be rare after PCR because they are rare in the sample or because they are poor amplifiers, or 788 

both. One caveat to the description above is it only includes the probability of observing exactly 789 

zero. Many researchers use a higher threshold to determine presence (say k > 10, for example).  790 

Calculating k > K is not quite as easy as p(k=0) in that more terms are involved, but it is 791 

certainly not a hard calculation and involves summing the probability of k=0 to k=K, 792 

#�- 6 7|�, ��  $ 1 . ∑ �!

�!�����!
� ��1 . ��������

���                                 (12) 793 
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Supplemental 2 Alternate simulation results 805 

Changing N_pcr1 806 

It is important to understand how changing some of the parameters in the simulation affect the 807 

probability of non-detection.  In Fig. S3.1 we used ����� $ 20 rather than ����� $ 35 presented 808 

in the main text. As ����� declines, the probability of non-detects becomes more similar among 809 

species and only species with amplification efficiencies that are much lower than the average � 810 

(in this case �� 9 0.4) have increased non-detection probabilities (Fig. S3.1A). 811 

 812 

Figure S3.1. Non-detects Driven By Both DNA Concentration and Amplification 813 

Efficiency.  814 
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The probability of non-detection (p(Y=0)) is shown for a community of 50, equally 815 

abundant taxa with the amplification efficiency distribution shown inset in each panel. 816 

This simulation uses  ����� $ 20 (see Fig. 1 for the same simulation but with ����� $817 

35).  The amount of among-taxa variation in amplification efficiency varies from highly 818 

variable (A; γ=5) to moderate variation (B: γ=10) to low variation (C: γ=100) to 819 

effectively no variation (D: γ=1,000,000). Both subsampling and amplification 820 

efficiencies influence the rate of non-detection. The probability of observing no DNA in a 821 

given technical replicate is highest at low DNA concentrations (<10 copies /µL). 822 

However, non-detects are possible for species with low amplification efficiencies and 823 

very likely (p(Y=0) > 0.5) for amplification well below average (in this case 824 

approximately  �� 9 0.3 ). 825 

 826 

Simulating uneven DNA concentrations 827 

The base simulation presented in the main text assumes that the starting DNA concentration for 828 

each taxon is equivalent (i.e., for ten taxa, each comprises 10% of the DNA in a sample).  While 829 

this assumption makes it easier to visualize the simulation results, it clearly does not represent 830 

natural communities which have skewed abundance distributions (some taxa are common while 831 

others are rare).  To illustrate the consequences of a skewed abundance distribution we simulated 832 

a community of 20 taxa with 2 taxa each comprising 20% of the DNA, 8 taxa each with 5% of 833 

the DNA, and 10 taxa with 2% of the DNA. Otherwise, we followed the simulation parameters 834 

described in the main text. Figure S3.2 presents the patterns of non-detections for a single 835 

community of 20 taxa (Figure S3.2A) with large among-species variation in amplification 836 

efficiency (( $ 5� and for 20 communities of 20 taxa each overlaid on one figure (Fig. S3.2B).  837 
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Facets show the true starting proportion within each community (proportions of 0.02, 0.05, or 838 

0.20). 839 

As shown in the even community simulated in the main text, for all taxa non-detection 840 

increases as DNA concentration declines and taxa with lower amplification rates show higher 841 

probability of non-detection. But there is clearly an interaction between the community 842 

proportion and amplification efficiency which affects the probability of non-detection. 843 

Specifically, for two taxa with equivalent amplification efficiencies, the more abundant taxa 844 

(community proportion of 0.20) have a much lower probability of non-detection than a relatively 845 

rare species (community proportion of 0.02; Fig. S3.2B).  Indeed, for taxa with a community 846 

proportion of 0.02, at a constant DNA concentration,  #�% $ 0|�=10) > 0.5 when �� 9 0.45.  In 847 

contrast, for taxa with community proportions of 0.20, #�% $ 0|�=10) > 0.5 only occurred for 848 

one taxa in the 20 simulated communities with a very low amplificiation efficiency (�� $ 0.19).   849 

Thus both community proportion and amplification efficiency affect the probability of 850 

non-detection. In broad strokes, amplification efficiency will play a more important role in 851 

determining non-detection when taxa are rare relative to other species in a sample.  The 852 

importance of amplification efficiency increases with PCR protocols that use a large number of 853 

PCR cycles.  Non-detection of relatively common taxa in a community will generally be less 854 

influenced by relative amplification efficiency, but non-detection can still occur if amplification 855 

efficiency is sufficiently low. 856 
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 857 

 858 

Figure S3.2. Non-detects Driven By Both DNA Concentration and Amplification 859 

Efficiency. 860 

The probability of non-detection (p(Y=0)) is shown for a community of 20 taxa with 4 861 

taxa comprising 0.20 of the initial DNA, 8 with 0.05 of the DNA, and 10 species 862 

comprising 2% of the DNA across a range of initial DNA concentrations. A: Presents 863 

results for a single 20 taxa community with facets representing the three abundance 864 

categories. B shows results for 20 communities of 20 taxa each to illustrate general 865 

patterns.  For all simulations we use ����� $ 35 and a fixed amount of among-taxa 866 

variation in amplification efficiency (γ = 5). Clearly, relative abundance influence the rate 867 
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of non-detection with relatively rare taxa (those with 0.02 having larger probabilities of 868 

non-detection than common taxa (0.2) with equivalent amplification efficiencies (colors). 869 
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