

1 Distinguishing Signal from Noise: Understanding Patterns of

2 Non-Detections to Inform Accurate Quantitative

3 Metabarcoding

4

5

6 Zachary Gold^{1,2*}, Andrew Olaf Shelton², Helen R. Casendino³, Joe Duprey³, Ramón Gallego²,
7 Amy Van Cise², Mary Fisher⁴, Alexander J. Jensen², Erin D’Agnese³, Elizabeth Andruszkiewicz
8 Allan³, Ana Ramón-Laca², Maya Garber-Yonts³, Michaela Labare⁵, Kim M. Parsons², Ryan P.
9 Kelly³

10

11 ¹ Cooperative Institute for Climate, Ocean, & Ecosystem Studies, UW, Seattle, WA

12 ² Northwest Fisheries Science Center, NMFS/NOAA, Seattle, WA

13 ³ School of Marine and Environmental Affairs, UW, Seattle, WA

14 ⁴ School of Aquatic Fisheries Science, UW, Seattle, WA

15 ⁵ Scripps Institution of Oceanography, UCSD, La Jolla

16

17

18 *Corresponding author email: Zachary.gold@noaa.gov

19

20 Conflicts of Interest: The authors have no conflicts of interest to report.

21 Key Words: quantitative metabarcoding, eDNA, amplicon sequencing, non-detection, zero

22 inflation

23 **Abstract**

24 Correcting for amplification biases in genetic metabarcoding data can yield quantitative
25 estimates of template DNA concentrations. However, a major source of uncertainty in
26 metabarcoding data is the presence of non-detections, where a technical PCR replicate fails to
27 detect a species observed in other replicates. Such non-detections are an important special case
28 of variability among technical replicates in metabarcoding data, particularly in environmental
29 samples. While many sampling and amplification processes underlie observed variation in
30 metabarcoding data, understanding the causes of non-detections is an important step in
31 distinguishing signal from noise in metabarcoding studies. Here, we use both simulated and
32 empirical data to 1) develop a qualitative understanding of how non-detections arise in
33 metabarcoding data, 2) outline steps to recognize uninformative data in practice, and 3) identify
34 the conditions under which amplicon sequence data can reliably detect underlying biological
35 signals. We show in both simulations and empirical data that, for a given species, the rate of non-
36 detections among technical replicates is a function of both the template DNA concentration and
37 species-specific amplification efficiency. Consequently, we conclude metabarcoding datasets are
38 strongly affected by (1) deterministic amplification biases during PCR and (2) stochastic
39 sampling of amplicons during sequencing — both of which we can model — but also by (3)
40 stochastic sampling of rare molecules prior to PCR, which remains a frontier for quantitative
41 metabarcoding. Our results highlight the importance of estimating species-specific amplification
42 efficiencies and critically evaluating patterns of non-detection in metabarcoding datasets to better
43 distinguish environmental signal from the noise inherent in molecular detections of rare targets.

44

45

46 **Introduction**

47 Metabarcoding, or DNA amplicon sequencing, is a powerful tool that can characterize biological
48 communities without the need to physically observe individual organisms. The rise of
49 metabarcoding via high-throughput sequencing is rapidly advancing human and wildlife health,
50 ecology, and conservation science [1–8].

51 However, the power of metabarcoding applications lies in the ability to obtain reliable
52 quantitative estimates of underlying communities [9–11]. In the case of metabarcoding and
53 similar amplicon-based studies [12], it has become clear that 1) observations are non-linearly
54 related to the underlying biology of interest [13,14], and 2) those observations are noisy, with
55 many having relatively high variances as a function of expected values [11,15–17]. In order to
56 make reliable quantitative estimates for any set of observations, we must be able to distinguish
57 random variation from real signal. Thus, understanding the underlying signal-to-noise ratio is
58 key to quantifying the power of detection for a given dataset [18].

59 Substantial efforts to correlate sequence reads and underlying community abundance
60 have reported promising but largely equivocal results [10,15,19–23]. However, it is unsurprising
61 that the application of simple linear correlations to non-linear and compositional datasets
62 produce ambiguous results given the failure to model the underlying drivers of observed DNA
63 sequence patterns and distributions. In response, recent mechanistic frameworks have begun to
64 address the discrepancies between observed metabarcoding sequence counts and true underlying
65 biological patterns by modeling the compounding processes that occur between DNA extraction
66 and sequence observation [24–28]. These processes include DNA extraction, PCR, and multiple
67 subsampling steps prior to sequencing [16,17,27,29,30]. Importantly, these mechanistic
68 frameworks explicitly model the amplicon sequence-generating process by stating that observed

69 sequence reads are a function of both the species-specific amplification efficiency and the
70 underlying abundance of each species' DNA within a sample [26]. Such models also reflect the
71 inherent compositional nature of metabarcoding, acknowledging that metabarcoding data can
72 only provide proportional (not absolute) abundances of a given species' DNA in a given sample
73 [11]. This approach can reconstruct starting DNA proportions, prior to PCR (e.g. [16,25–27])
74 and, where metabarcoding data are combined with additional information on underlying DNA
75 concentrations, can yield absolute abundance estimates of the sampled DNA concentrations (e.g.
76 [31]).

77 Despite these advances in modeling the amplicon sequence-generating process, it is clear
78 that the sequential molecular steps required to generate metabarcoding data result in highly
79 variable sequence-read counts among technical replicates derived from the same DNA extract
80 [13,32–36]: replicate samples yield somewhat different results. Thus, in practice, it can be
81 difficult to distinguish signal from noise in metabarcoding datasets. In particular, zeros are
82 frequently over-represented in metabarcoding data, contributing substantially to among-replicate
83 variability [16,24,34]. For example, in three technical replicates, a unique amplicon sequence
84 variant (ASV) may be represented by 3,897; 165; and 0 reads across replicates (132,731,
85 196,260, 55,400 read depth for each replicate respectively; [31]). This observed variability
86 among technical replicates far exceeds the expected variability arising from binomial- or
87 multinomial sampling, and so demands a different explanation [16].

88 Here we focus on the patterns and causes of non-detections (in which a species is
89 unobserved in one technical replicate despite being observed in other replicates) in
90 metabarcoding datasets. After first synthesizing previous research on patterns of sequence
91 counts, we simulate the process of metabarcoding to develop a qualitative understanding of the

92 scenarios under which non-detections arise. We then use these results to generate predictions for
93 the frequency of non-detections. Next, we use empirical observations to test these predictions
94 using metabarcoding data derived from a set of ethanol-preserved fish larvae, in which both the
95 underlying organismal abundances and the resulting metabarcoding dataset are well-
96 characterized. Our empirical findings closely match the predictions and suggest a mechanism for
97 non-detections and stochastic variability in general. Given this understanding of the sources of
98 variability, we can more confidently distinguish signal from noise in metabarcoding datasets.

99

100 **Methods**

101 *Conceptual Model and Simulating Metabarcoding Data*

102 Our generating model for metabarcoding derives from Shelton et al. [27], building on the work
103 of others [11,17,25,26,29]. Briefly, we envision a metabarcoding dataset as compositional,
104 arising from a chain of sampling and amplification processes acting on individual DNA
105 molecules.

106 We start with a sample of extracted DNA containing sequences from multiple species.
107 From this starting point, there are many different metabarcoding laboratory protocols that lead to
108 observed sequences from a sequencing instrument [37,38]. Here, we approximate this using three
109 main stochastic processes following the commonly used two-step PCR library generation process
110 (e.g., a target PCR followed by an indexing PCR). First, we assume a sample of DNA is
111 extracted and included in the multi-taxon PCR reaction. Second, PCR amplification using a
112 specific primer and protocol occurs, replicating the DNA molecules for each taxon. This second
113 step includes the various target PCR, cleaning, indexing PCR, and pooling steps that occur
114 during or following the main PCR reaction. Finally, the resulting mix of DNA copies is sampled

115 to generate a compositional sample of amplicons that are observed through the sequencing
116 instrument.

117 Mathematically, we can write a simulation for this framework as a series of linked
118 stochastic processes. Specifically, we start with a sample of extracted DNA containing λ_i copies
119 μL^{-1} DNA from the i th taxon, $i = 1, 2, \dots, I$. Let W_{ij} be the discrete number of DNA molecules for
120 species i sampled (i.e., in the tube in which a given PCR reaction takes place) of technical
121 replicate j at the beginning of PCR and

$$122 \quad W_{ij} \sim \text{Poisson}(\lambda_i V) \quad (1)$$

123 Here, V is the volume (μL) of template DNA sampled from the DNA extract. This equation
124 assumes each taxon is sampled independently. Note that different technical replicates (e.g., $j = 1$
125 and $j = 2$) arise from the same environmental sample but may contain different numbers of
126 molecules for a given species due to sampling variability.

127 Next, we model a three-step PCR process. Most importantly, we assume the amplicons
128 produced during a PCR reaction are influenced by a species-specific amplification efficiency a_i ,
129 which is characteristic of the interaction between the particular primer set, reaction chemistry,
130 and template molecule of each species (i) being amplified [27]. For any species, X_{ij} is the
131 expected number of amplicons present in a technical replicate at the end of PCR. X_{ij} is directly
132 related to the efficiency of amplification and the starting number of DNA molecules, $W_{ij}(1 +
133 a_i)^{N_{pcr}}$, where N_{pcr} is the number of PCR cycles and a_i is bounded on $(0, 1)$; $a_i = 1$ represents a
134 perfect doubling of molecules with each PCR cycle. For the purpose of this paper, we assume a
135 two-step PCR process with a sub-sampling and PCR cleaning process in between, and X_{ij} can be
136 modeled at each step as:

$$137 \quad X_{1ij} \sim \text{Poisson}(W_{ij}(1 + a_i)^{N_{pcr1}}) \quad (2)$$

138 $X_{2ij} \sim \text{Binomial}(\pi, X_{1ij})$ (3)

139 $X_{3ij} \sim \text{Poisson}(X_{2ij}(1 + 0.9)^{N_{pcr2}})$ (4)

140 where π is the proportion of the first PCR product used in the second PCR amplification. Note
141 that during the indexing reaction (equation 4) all taxa share a single amplification efficiency
142 ($a_i=0.9$) as we assume all indexing primers anneal to the indexing adapter sequences with equal
143 efficiency. Here X_3 is the number of amplicons present after both PCR amplifications but before
144 sequencing. Finally, the sequencing instrument generates a total number of reads within technical
145 replicate j ($N_{reads,j}$) and each replicate has a vector of observed read counts
146 (\mathbf{Y}_j , bolding indicates vectors) for I species.

147

148 $\mathbf{Y}_j \sim \text{Multinomial}(\mathbf{p}_j, N_{reads,j})$ (5)

149 where p is the proportion of reads from species i in technical replicate j , and $p_{ij} = \frac{X_{3ij}}{\sum_{i=1}^I X_{3ij}}$.

150 Thus, observed read counts (Y_{ij}) are sampled stochastically based on their relative amplicon
151 abundances, p_{ij} .

152 The above model provides a general framework for understanding the causes of
153 variability in observed read counts (Y_{ij}), specifically the probability of non-detections as a factor
154 of 1) the initial DNA concentration λ_i and 2) the amount of species-specific variation in
155 amplification efficiency (a_i). The simulation allows us to identify two distinct causes of non-
156 detection, $p(Y_{ij} = 0)$. First, non-detection may occur because there were no molecules of species
157 i in the initial PCR ($W_{ij} = 0$, in which case we are interested in $p(W_{ij} = 0)$ because $p(Y_{ij} =$
158 $0|W_{ij} = 0) = 1$). Second, zeros can arise due to PCR amplification and sequence-sampling
159 processes; thus, we are interested in $p(Y_{ij} = 0|W_{ij} > 0)$. While $p(W_{ij} = 0)$ is trivial to calculate

160 from equation 1, determining $p(Y_{ij} = 0)$ and $p(Y_{ij} = 0|W_{ij} > 0)$ are not. We turn to simulations
161 to understand the contributions of variation in λ_i and a_i to the probability of non-detection.

162 We simulate four communities with different levels of richness ($N = 4, 10, 30$, and 50
163 taxa). For simplicity, we assume all taxa start with identical DNA concentrations regardless of
164 the richness. DNA concentrations, λ_i are varied from 0.5 to $10,000$ copies μL^{-1} (for simplicity
165 we set $V = 1$ for all simulations). We further allow a range of amplification efficiencies (a_i)
166 among taxa where $a \sim Beta(0.7\gamma, 0.3\gamma)$ with γ ranging from 5 (high variation among species) to 1
167 million (no variation among species), but with a constant average amplification efficiency of 0.7
168 for all scenarios. We simulated $50,000$ realizations for each combination of richness (4 levels), λ
169 (18 levels), and γ (6 levels: $5, 10, 20, 100, 100, 1$ million)), for a total of 432 scenarios. For all
170 the simulations, we allowed sequencing depth to vary among replicates ($N_{read,j}$ was uniformly
171 drawn from discrete values between $60,000$ and $140,000$), used a fixed sampling fraction ($\pi =$
172 0.20), and set $N_{pcr2} = 35$ and $N_{pcr2} = 10$). We calculated a range of summary statistics for
173 each scenario, including the overall probability of non-detection, $p(Y_{ij} = 0)$; the probability of
174 non-detection due to the absence of the target molecule, $p(W_{ij} = 0)$; and summaries of the reads
175 both in absolute terms and in terms of relative abundance.

176 ***Empirical Testing***

177 We test these hypotheses against a real metabarcoding data set making use of three data streams
178 generated from a common set of biological samples: organismal abundance (as a proxy for input
179 DNA molecules), metabarcoding data, and amplification-efficiency estimates for the relevant
180 species.

181 ***Study Design***

182 As part of the California Cooperative Oceanic Fisheries Investigations (CalCOFI), Gold et al.
183 [31] use morphological and molecular methods to analyze the response of ichthyoplankton in the
184 California Current Large Marine Ecosystem to ocean warming. Ichthyoplankton samples were
185 collected in oblique bongo net tows on CalCOFI research cruises over two decades (1996; 1998-
186 2019). Once a sampling tow concluded, ichthyoplankton present on one side of the net were
187 preserved in Tris-buffered 95% ethanol and stored in the Pelagic Invertebrate Collection at
188 Scripps Institution of Oceanography [39]. The paired ichthyoplankton were preserved in sodium
189 borate-buffered 2% formaldehyde for microscopy-derived species identification and abundance
190 (number of larvae per species per jar). This dataset yields paired samples for both metabarcoding
191 analysis and absolute abundance counts from the same sampling event.

192 *Abundance Estimation from Microscopy*

193 Formalin-preserved larvae were identified and enumerated following the methods of Thompson
194 et al. [40]. The majority of taxa were identified to species level. Here we assume that the
195 relationship of absolute abundance (counts of individual species) is proportional to the amount of
196 species-specific DNA in the extraction. See the discussion for the merits of this assumption.

197 *Metabarcoding Data Generation*

198 DNA sequences were generated from 84 ethanol-preserved samples as described in Gold et al.
199 [31]. Briefly, ethanol samples were filtered onto 0.2 μ m PVDF filters and were extracted using a
200 Qiagen DNeasy Blood and Tissue kit. We then amplified three technical PCR replicates using a
201 touchdown PCR and the MiFish Universal Teleost specific primer [41]. Both a negative control
202 (molecular grade water instead of DNA extract) and two positive controls (DNA extract from
203 non-native, non-target species) were included alongside samples. Libraries were prepared using
204 Illumina Nextera indices following the methods of Curd et al. [42] and sequenced on a NextSeq

205 2x 150 bp mid output. Sequencing data was then processed using the *Anacapa Toolkit* [42] to
206 conduct quality control, ASV dereplication, and taxonomic assignment. Sequences were
207 annotated with the California fish specific reference database and a bootstrap confidence cutoff
208 score of 60 following the methods of Gold et al. [43]. Eight technical replicates with either low
209 sequencing depth ($n < 30,000$) or high dissimilarity (Bray Curtis dissimilarity > 0.7) were
210 removed.

211 *Amplification Efficiency Estimation from Mock Communities*

212 We used a subset of the mock communities generated for Shelton et al. [27] to estimate
213 amplification efficiencies of relevant fish species. Mock communities included DNA from 57
214 voucher fish tissue samples, 17 of which were detected in the CalCOFI metabarcoding data set,
215 from the Scripps Institution of Oceanography Marine Vertebrate Collection. To accurately
216 quantify input DNA for each species within the mock community, we used a nested PCR
217 strategy in which mock communities were generated by pooling resultant longer fragment PCR
218 products of each species rather than by pooling the total genomic DNA of each species (which
219 includes variable amounts of nDNA as well as bacterial and other DNA sources). To implement
220 our nested PCR strategy, we first amplified a 612 bp fragment of the *12S* rRNA gene that
221 contains the MiFish Universal Teleost *12S* primer set [44], and quantified the resulting PCR
222 products using the QuBit Broad Range dsDNA assay (Thermofisher Scientific, Inc.); this
223 yielded measurements of species-specific, amplifiable DNA. Using this known-concentration
224 DNA we generated 9 distinct mock communities by pooling long fragment PCR products
225 comprising three distinct sets of species and three abundance distributions (See Table S1).
226 Pooled mock communities were using the QuBit Broad Range dsDNA assay (estimated
227 concentrations ranged from 8-12 ng μL^{-1}) and then diluted serially by a 1:10 dilution down to

228 10^{-8} original concentration. We then converted ng μL^{-1} to copies μL^{-1} using the following
229 equation:

$$\text{Copies } \mu\text{L}^{-1} = \frac{\text{QuBit Concentration } [\text{ng } \mu\text{L}^{-1}] * 6.022 \times 10^{23} \text{ [molecules mol}^{-1}\text{]}}{612 \text{ [bp]} * 650 \text{ [g mol}^{-1} \text{ bp}^{-1}\text{]} * (1 \times 10^9 \text{ [ng g}^{-1}\text{]})}$$

230 Finally, input concentrations of 380-600 DNA copies μL^{-1} for each total community were loaded
231 in the MiFish Universal Teleost *12S* PCR step (Table S2). Given this design, each mock
232 community had a different number of DNA molecules per species. We then amplified each of
233 the mock communities in triplicate with the MiFish Universal Teleost *12S* following the
234 methods of Curd et al. [42], targeting a 185 bp fragment within the larger 612 bp PCR fragment
235 used to generate the mock communities. Each triplicate PCR technical replicate was then treated
236 as a unique library and sequenced separately. Metabarcoding libraries were then prepared and
237 sequenced on a MiSeq platform using a v3 600 cartridge following the methods of Gold et al.
238 [43]. We note that one set of mock communities were re-sequenced on a separate run to generate
239 usable data. Resulting sequences were processed using the *Anacapa Toolkit* using the global
240 *CRUX* generated reference database given the broad geographic distribution of species from
241 Gold et al. [43]. We also used a taxonomic cutoff score of 60 as above. Taxonomic assignment
242 of ASVs was confirmed with BLAST using default settings. For the two observed discrepancies,
243 we chose to use BLAST assignments with greater than 99% identity and 100% query length
244 match as they matched our known vouchered specimen identifications.

245 We fit the model from Shelton et al. [27] to a third of the data (3 technical replicates of
246 each evenly pooled mock community). Generated parameter estimates were then used to predict
247 the starting proportions of DNA in the remaining two-thirds of the data, for an out-of-sample
248 estimate of accuracy. We used the resulting model output to calculate the mean amplification

249 efficiency per species. The model, implementation, and code are detailed in Shelton et al. [27],
250 but there are two particularly relevant points from the model for connecting the simulation and
251 empirical results that we highlight here. While we simulate absolute amplification efficiencies
252 (a_i), because metabarcoding data is compositional, the absolute amplification efficiency cannot
253 be estimated from metabarcoding data. Instead, we estimate amplification efficiencies for each
254 species relative to a reference efficiency (see also [25,26]). In our case we estimate α_i as the
255 amplification efficiency of species i , a_i , relative to the efficiency of a reference species, a_R ,
256 therefore $\alpha_i = \frac{a_i}{a_R}$. Thus, for simulations we discuss α but for estimation, we discuss α . Note
257 while values of α can be directly calculated from a , values of a are not uniquely identifiable
258 from α .

259 All data and code for conducting analyses will be made publicly available upon
260 acceptance via NCBI SRA, Dryad, and GitHub
261 (https://github.com/zjgold/Metabarcodings_Signal_from_Noise).

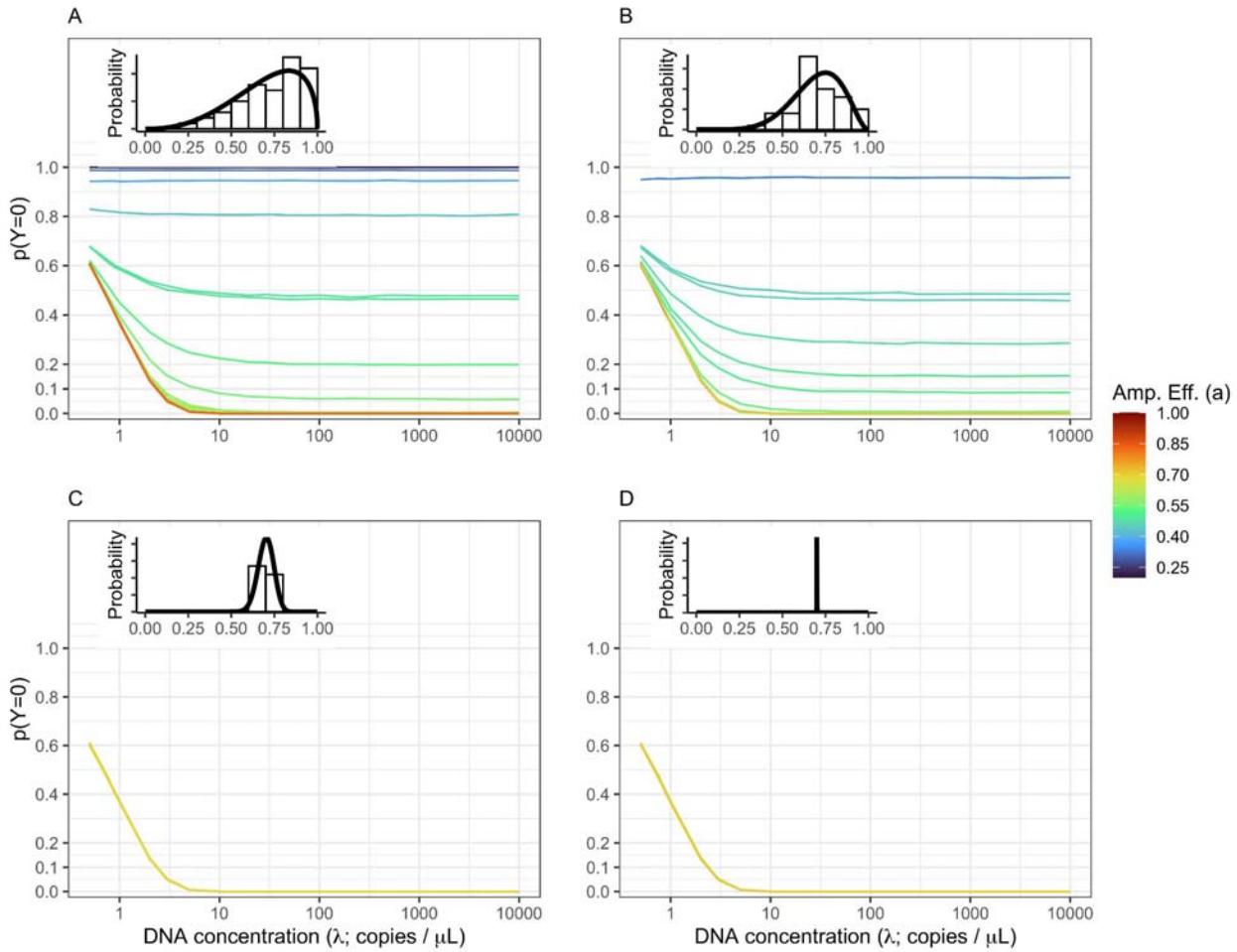
262 *Hypothesis Testing*

263 From the above outlined simulations and empirical data, we generate a series of hypotheses.
264 First, we expect fewer non-detections for more abundant DNA molecules, given the same
265 species (and therefore the same amplification efficiency). Second, we hypothesize that species
266 with higher amplification efficiencies will have fewer non-detections and higher observed
267 sequence read counts than species with lower amplification efficiencies, given the same
268 abundance of template DNA molecules. Third, we expect species with low amplification
269 efficiencies will have a high rate of non-detection regardless of the abundance of template DNA
270 molecules. We test each of these hypotheses using both simulation and empirical results.

271 **Results**

272 ***Simulation Results***

273 We found a strong correlation between the probability of non-detections and both the absolute
274 abundance of template DNA molecules and amplification efficiencies (Figure 1). The probability
275 of non-detections ($p(Y=0)$) dramatically declines when concentrations of template DNA are
276 greater than ~ 10 copies μL^{-1} per species, given an average amplification efficiency of 0.7
277 (Figures 1C & 1D). Likewise, our results demonstrate that species with low amplification
278 efficiencies exhibit high probabilities of non-detections regardless of starting DNA
279 concentrations (Figure 1A, B). Importantly, we demonstrate that even species with an
280 amplification efficiency slightly below average (e.g., $a = 0.7$) exhibit high rates of non-detections
281 at DNA concentrations far higher than from typical eDNA field samples (e.g. $\lambda > 100$
282 copies/ μL ; [45]). Together these simulations indicate that the probability of non-detection is
283 dominated by the subsampling process at low template DNA concentrations while the probability
284 of non-detection is driven primarily by the PCR process (i.e., differences in amplification
285 efficiencies) at higher template DNA concentrations.



286

287 **Figure 1. Non-detections Driven By Both DNA Concentration and Amplification
288 Efficiency.**

289 The probability of non-detection ($p(Y=0)$) is shown for a community of 50 equally
290 abundant taxa with the amplification efficiency distribution shown inset in the upper left
291 of each panel. The amount of among-taxa variation in amplification efficiency varies
292 from high variation (A; $\gamma=5$) to moderate variation (B: $\gamma=10$) to low variation (C: $\gamma=100$)
293 to effectively no variation (D: $\gamma=1,000,000$). Both subsampling and amplification
294 efficiencies influence the rate of non-detection. The probability of observing no DNA in a
295 given technical replicate is highest at low DNA concentrations (<10 copies / μL).
296 However, non-detections are possible for species with below average amplification

297 efficiencies (in this case approximately $a_i = 0.7$) and very likely ($p(Y=0) > 0.5$) for
298 amplification well below average ($a_i < 0.4$).

299

300 ***Empirical Results***

301 *Microscopy Results*

302 Independent estimates of abundance were generated from sorting 9,610 larvae from 84 jars (min
303 = 2, max = 960). See Gold et al. [31] for a detailed description of the results.

304 *Metabarcoding Results*

305 The metabarcoding data set generated from ethanol-derived eDNA consisted of a total of 54.5
306 million amplicon sequence reads that passed through the *Anacapa Toolkit* quality control, ASV
307 dereplication, and decontamination processes. Sequencing depth ranged from 36,050 reads to 1.2
308 million reads per technical replicate. For our integrated Bayesian model of the probability of
309 non-detection in a technical replicate, we focused on the 17 species that had 1) sufficient
310 representation across the metabarcoding data set (observed in > 10 technical PCR replicates) to
311 achieve model convergence and 2) were represented in our mock communities. See Gold et al.
312 [31] for the full description of model implementation and results.

313 *Mock Community Results*

314 The mock community data set consisted of 4.0 million amplicon sequence reads that passed
315 through the *Anacapa Toolkit* quality control, ASV dereplication, and decontamination processes
316 across a total of 36 unique samples comprising three distinct community assemblages each with
317 three PCR technical replicates. Sequencing depth ranged from 9,872 reads to 206,900 reads per
318 technical replicate. Of the 57 voucher species represented, we classified 56 unique species, and

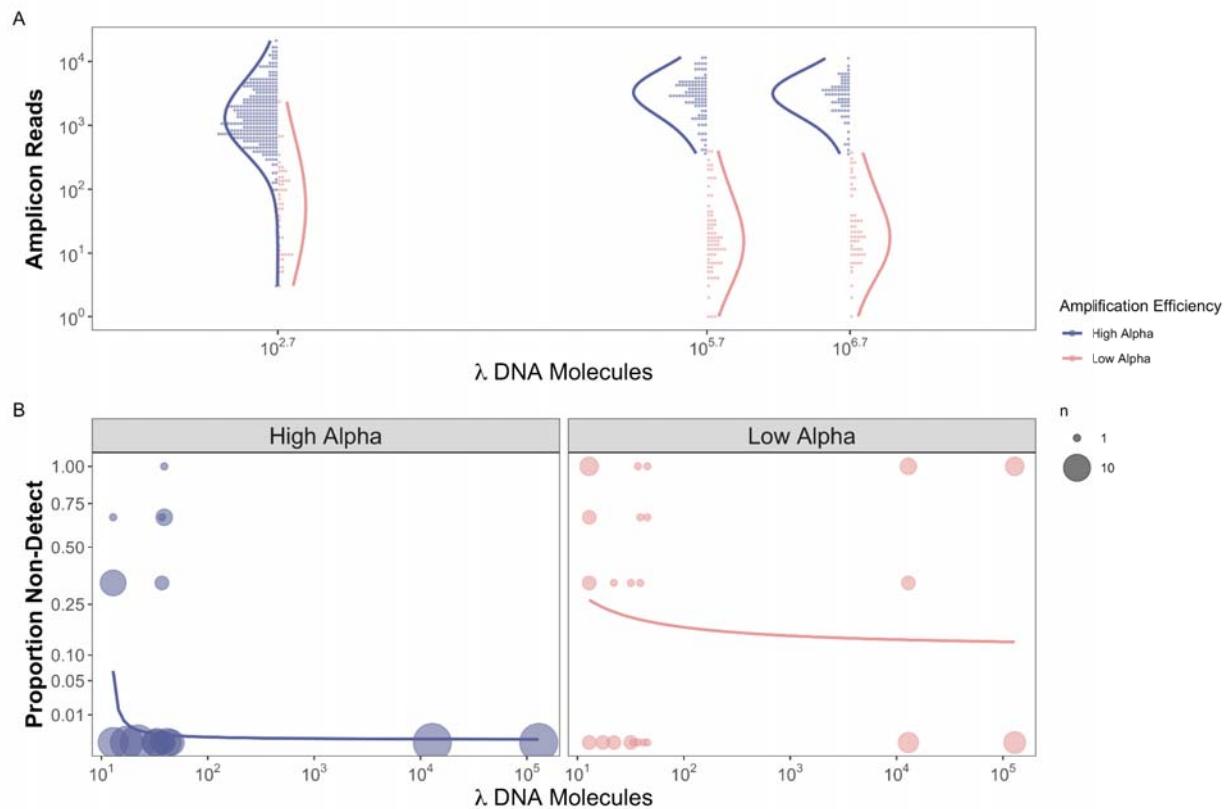
319 used the Shelton et al. [27] model to estimate amplification efficiencies for each species. One
320 species, *Urobatis halleri*, was not detected in any technical replicate. *Citharichthys sordidus* was
321 present in all mock communities and was selected as the reference species for estimating relative
322 amplification efficiencies. Across all species, α_i ranged from -0.30 to 0.03 with a mean of -0.06
323 (Table S3). For presentation purposes, we label species with α_i values below -0.07 as a low
324 amplification efficiency group (n=15) and the remaining species as a high amplification (n=41).

325 *Hypothesis Testing*

326 As with the simulation results, we found that the probability of non-detections is strongly
327 correlated with both the abundance of DNA molecules for a given species within a sample and
328 the species-specific amplification efficiency (Figures 2b, 3b). Non-detections occur more
329 frequently at low DNA concentrations regardless of amplification efficiency (Figures 2b, 3b).
330 Species exhibiting lower amplification efficiencies ($\alpha_i < -0.07$) had higher rates of non-
331 detections even at high input DNA concentrations (10^4 copies μL^{-1}) and larval counts (9 larvae
332 per jar; Figures 2b, 3b).

333 Furthermore, from the mock community example, species with higher amplification
334 efficiencies ($\alpha_i > -0.07$) have higher observed sequence read counts for an equivalent template
335 DNA concentration (Figure 2a). The 41 species with high amplification efficiencies have more
336 reads sequenced per DNA molecule added (mean \pm sd = 4.1 ± 6.31 , range = 0.00-55.4) than the
337 15 species with low amplification efficiencies (mean \pm sd = 0.1 ± 0.47 , range = 0.00-5.5).
338 Likewise, species with higher larval counts in ethanol-preserved samples from plankton tows
339 also have higher observed sequence read counts (Figure 3a). From the CalCOFI example, the 15
340 species with high amplification efficiencies have more reads sequenced per larvae counted (mean

341 \pm sd = $6,689 \pm 28,305$, range = 0-79,454) than the two species in the low amplification efficiency
342 group (mean \pm sd = $524 \pm 1,080$, range = 0-7,101).



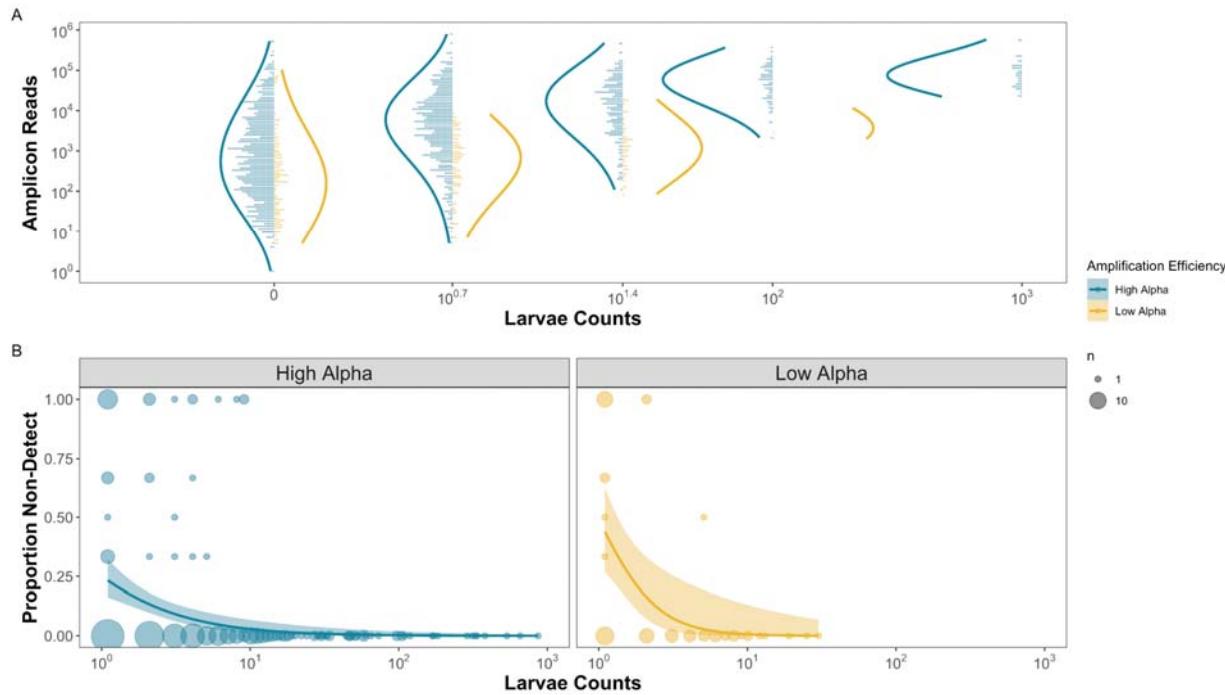
343

344

345 **Figure 2: Observed Reads and Non-detections are a function of Amplification**
346 **Efficiency and Input DNA Concentration in the Mock Community example**

347 For species observed within a replicate, we find that species with higher amplification
348 efficiencies ($\alpha > 0.7$) have a greater number of observed reads for an equivalent template
349 DNA concentration (a). We also find no difference in the total number of observed reads
350 and increased DNA concentration as expected for a compositional data set. Furthermore,
351 we find a greater proportion of non-detections when both DNA concentration and
352 amplification efficiencies are lower (b). These results align well with our simulated data.

353



354

355 **Figure 3. Observed Reads and Non-detections are a function of Amplification**
356 **Efficiency and Larval Abundances in the CalCOFI example**

357 For species observed within a replicate, we find that species with higher amplification
358 efficiencies ($\alpha > 0.07$) have consistently greater numbers of observed reads for an
359 equivalent template DNA concentration (a). We assume that the number of larvae in the
360 jar is proportional to the number of DNA molecules present. We also find a greater
361 proportion of non-detections when larvae are rare in the jars and have lower amplification
362 efficiencies (b).

363

364 **Discussion**

365 Using both simulated and empirical data, we demonstrate that observed sequence read counts
366 from metabarcoding data are a function of species-specific input DNA concentrations,
367 subsampling, and species-specific amplification efficiencies. Variability among replicates in

368 detections of specific taxa – reflecting either rare targets or poor amplification efficiencies – are
369 a substantial source of noise in these data. Consequently, it can be difficult to distinguish signal
370 from noise in metabarcoding datasets. Our results illustrate several potential causes of non-
371 detections and suggest that metabarcoding data can provide reliable quantitative estimates for
372 species with abundant input DNA ($> \sim 50$ copies μL^{-1}) and high species-specific amplification
373 efficiencies. By characterizing underlying sources of sequence read count variability in
374 metabarcoding, we identify key sources of noise that impact our ability to derive quantitative
375 estimates of source DNA.

376 *Subsampling Rare Targets Results in Non-detections*

377 Consistent with expectation, our framework strongly suggests that all else being equal in a
378 metabarcoding assay (e.g., assuming even amplification efficiencies across species), rarer
379 template DNA molecules have a higher probability of non-detection across technical replicates.
380 These findings align well with observations of qPCR assays in which the probability of non-
381 detection increases as you approach the limit of detection, in terms of absolute copies of DNA
382 per reaction volume [46,47]. High rates of non-detections in qPCR assays are commonly
383 observed for input DNA concentrations between 1 and 10 copies [46,48,49] and are likely driven
384 by subsampling errors in which too few or no physical DNA molecules are transferred into a
385 given PCR reaction [36,50,51]. These observations from qPCR studies reflect the findings from
386 both simulated and empirical metabarcoding results reported here.

387 Importantly, subsampling rare target DNA molecules yields stark differences in observed
388 per-species read counts among technical replicates, non-detections being the most obvious case
389 of this phenomenon [15,16,34,46]. Together, these findings strongly support the hypothesis that
390 the concentration of target DNA within a sample influences the observed patterns of amplicon

391 read counts, particularly increasing the probability of non-detections for species with low
392 template DNA concentrations. Such observations of high rates of non-detections also justify the
393 use of over dispersed multinomial sampling approaches within metabarcoding models [27].

394 *Amplification Efficiencies Drive Sequence Counts and Non-detections*

395 While the relationship between template concentration and non-detections is well documented in
396 the literature [10,12,16,24,34,46], the causes of non-detection among species with abundant
397 DNA are not widely appreciated. Both simulation and empirical results demonstrate that species
398 with higher amplification efficiencies have higher observed amplicon read counts, confirming
399 the predictions of previous compositional modeling efforts [25–27]. Furthermore, we find a clear
400 association between the probability of non-detections and amplification efficiencies, with species
401 with higher amplification efficiencies exhibiting fewer non-detections. Here we observed an
402 order of magnitude difference in average sequence reads per larvae collected in a given jar with a
403 maximum observed difference in amplification efficiencies of 0.33 (n=17). Previous research
404 using mock communities has similarly demonstrated that equal concentrations of DNA in a
405 single extraction frequently results in amplicon read counts that differ by orders of magnitude
406 [16,32,36,37,52]. Such dramatic differences in resulting read proportions are understandable
407 given the exponential nature of PCR - even a subtle difference in amplification efficiency across
408 30+ PCR cycles can result in stark differences in sequence counts [27].

409 The observed variation in amplification efficiency among species in metabarcoding
410 approaches arises from complex PCR processes, including primer specificity, DNA polymerase
411 selectivity, annealing temperature, GC content, and higher-order dimensional structure of DNA,
412 inhibition, and co-factors such as MgCl₂, among others [53–59]. This complexity makes
413 designing metabarcoding assays that are highly specific for only target taxa challenging [60,61],

414 resulting in the amplification of off-target taxa as well as a range of amplification efficiencies
415 across target taxa [26,27,43,62,63]. As demonstrated by our simulations and empirical results,
416 such a range of amplification efficiencies can result in substantial noise in metabarcoding data
417 sets.

418 *Complex Relationship between Amplification Efficiencies and Abundance*

419 The above results highlight the cumulative importance of the variance in amplification efficiency
420 among species, as well as the abundance of template DNA for understanding the patterns of
421 metabarcoding non-detections. The interaction between these factors is key for disentangling the
422 signal from the noise of metabarcoding data. Here, we demonstrate that there are two ways to
423 obtain non-detections for a given species after sequencing: low initial DNA concentration or low
424 amplification efficiency. Both of these results are clear from our empirical CalCOFI fish larvae
425 dataset which captured the effects of species-specific amplification efficiency and DNA
426 concentrations on both sequence read counts and frequency of non-detections (Figure 2).
427 Importantly, our results demonstrate that noise in metabarcoding datasets, like signal, is non-
428 random and can be accounted for [16].

429 Alone, metabarcoding data is insufficient to tease apart these complex interactions.
430 However, distinguishing signal from noise in metabarcoding datasets is tractable using
431 independent estimates of amplification efficiencies and underlying DNA concentrations.
432 Amplification efficiencies can be estimated through either generating mock communities
433 [26,27], by amplifying a subset of samples multiple times at various numbers of PCR cycles
434 [25], or by including internal positive controls within each PCR [28]. Likewise, underlying DNA
435 concentrations can be estimated using qPCR or dPCR assays of key taxa or the metabarcoding
436 locus itself; or estimated using non-genetic independent abundance estimates such as the

437 microscopy counts presented above. As demonstrated here, and in Shelton et al. [27], McLaren et
438 al. [26], and Silverman et al. [25], the inclusion of independent estimates of amplification
439 efficiencies and DNA concentrations allow for the delineation of signal from noise from
440 metabarcoding data sets. Further modeling efforts incorporating stochastic sampling of rare
441 molecules prior to PCR will allow for accurate quantification and identification of true absences
442 in metabarcoding data sets, greatly enhancing biological and ecological interpretation.

443 Furthermore, our analysis also underscores the importance of technical PCR replicates to
444 quantify sequence variance in metabarcoding studies [64–66]. Without technical replicates, we
445 would not have been able to quantify the frequency of non-detections in our metabarcoding
446 datasets [17]. We demonstrate that non-detections may indicate low-relative-abundance starting
447 DNA concentrations regardless of observed read depth, and conversely, may indicate low
448 amplification efficiency regardless of starting concentration [27]. Thus, our results strongly
449 support the inclusion of technical replicates for metabarcoding studies, particularly for deriving
450 quantitative estimates.

451 Current best practices for qPCR and dPCR assays include numerous technical replicates
452 to help distinguish signal from noise [46,48]. However, we recognize that technical replication
453 dramatically increases the cost and effort of metabarcoding projects and may exhaust limited
454 DNA extracts and resources. Alternatively, technical replicates could be performed on a subset
455 of samples and the observed variance could be used to contextualize sequence read patterns in
456 the whole dataset. However, such approaches come with a suite of assumptions, particularly
457 whether the pattern of species' sequence counts behaves similarly across all samples and
458 environments/treatments. Future efforts to validate such approaches are clearly warranted.

459 In addition, given the importance of subsampling in driving non-detections, our results
460 strongly suggest that field and laboratory processes that increase the absolute abundance of DNA
461 molecules will reduce the noise in observed amplicon sequence reads [67]. For example, using a
462 greater volume of DNA template for PCR reactions (3 μ L vs. 1 μ L) will reduce subsampling
463 driven non-detections across samples. Likewise, increasing the total amount of water filtered for
464 eDNA samples (3 L vs. 1 L) acts to concentrate DNA from the environment, similarly reducing
465 subsampling driven non-detections [68]. These are two of many examples of laboratory
466 protocols that may serve to increase the available number of DNA molecules and reduce the
467 impacts of subsampling rare molecules, consequently improving quantitative estimates from
468 amplicon sequence data.

469 The above mechanistic frameworks focus on processes from DNA extraction through
470 sequencing, but do not approach the myriad of factors that influence the amount of DNA
471 collected from the environment, gut, or other starting communities for metabarcoding.
472 Substantial efforts have focused on understanding the effects of gene copy number, patchiness,
473 shedding and degradation rates, and the fate and transport of cellular DNA, among others, on the
474 amount/types of DNA collected from the environment [26,51,69]. Linking such research to the
475 growing body of work that quantifies sources of potential bias in the lab, including the present
476 study, is an important next step in understanding the relationship between biological signals and
477 observed sequence read counts.

478 We recognize that incorporating the additional laboratory analyses and technical
479 replicates to better characterize metabarcoding results may not be feasible for all metabarcoding
480 applications. Many metabarcoding efforts are exploratory in nature, primarily focused on the
481 characterization of biodiversity in under sampled habitats including the deep sea, polar regions,

482 remote alpine regions, etc. For such exploratory biodiversity surveys, the additional efforts
483 needed to achieve quantitative metabarcoding outlined above may not be practicable given
484 surveying and budget constraints. However, it is important to recognize that our framework
485 extends not only to quantitative metabarcoding but detection rates of taxa from metabarcoding
486 surveys. The expected detection rate (observed reads > 0) of a given taxon in metabarcoding data
487 is a function of other species in the community, the amplification rate of the target species, the
488 amplification rates of other species, the proportional abundance of the target species, and the
489 absolute abundance of the target species as demonstrated in our empirical datasets above. Thus,
490 estimating the probability of detection from metabarcoding data alone is difficult in the abstract,
491 but is quite tractable given a set of estimated parameters for a particular sampled community.
492 Conversely, interpreting metabarcoding results from exploratory applications within systems
493 with limited ecological context is challenging as species detection rates are a function of multiple
494 unsampled parameters.

495 Undoubtedly, addressing this shortcoming of compositional metabarcoding data requires
496 increased field and laboratory efforts. Such challenges are acute in under studied systems where
497 the creation of mock communities is particularly difficult with limited access to vouchered DNA
498 samples, let alone known species lists. However, exploratory metabarcoding studies do not
499 preclude the revisiting of quantitative metabarcoding approaches in the future, especially since
500 DNA extracts can be archived. For example, metabarcoding data can be generated first to
501 provide an initial perspective into community assemblages that then allows for the identification
502 and development of single species qPCR/dPCR assays and mock communities or variable PCR
503 targets. In summary, we argue that all future best practices of metabarcoding results incorporate
504 additional independent estimates of amplification efficiency, independent estimates of DNA

505 concentrations, and technical replicates to better contextualize metabarcoding efforts. Given the
506 rapid decline in sequencing costs and steady improvement in the development and
507 implementation of molecular assays, such additional work is tractable, opening the door to
508 adoption for routine application across metabarcoding studies to generate characterization of
509 underlying biological communities.

510 **Conclusion**

511 Ultimately, we demonstrate that variation in amplification efficiencies and underlying template
512 DNA concentration are responsible for a substantial portion of observed noise in metabarcoding
513 datasets. This study demonstrates the value of incorporating additional independent estimates of
514 amplification efficiencies and DNA concentration along with amplicon sequence data, providing
515 for the application of routine statistical approaches and straightforward interpretation of observed
516 read patterns. Together with Shelton et al. [27], we provide a framework for establishing reliable
517 estimates of abundance from amplicon sequence data that will be critical for extending the
518 application of this method to health and ecological questions.

519 **Data Availability Statement**

520 All data and code for analyses will be made publicly available at NCBI SRA, Dryad, and Github
521 (https://github.com/zjgold/Metabarcoding_Signal_from_Noise) upon acceptance.

522 **Conflict of Interest**

523 Authors have no conflicts of interest to report.

524

525 **References**

526 1. Smeele ZE, Ainley DG, Varsani A. Viruses associated with Antarctic wildlife: From
527 serology based detection to identification of genomes using high throughput sequencing.
528 *Virus Res.* 2018;243: 91–105.

529 2. Sekse C, Holst-Jensen A, Dobrindt U, Johannessen GS, Li W, Spilsberg B, et al. High
530 throughput sequencing for detection of foodborne pathogens. *Front Microbiol.* 2017;8:
531 2029.

532 3. Soon WW, Hariharan M, Snyder MP. High-throughput sequencing for biology and
533 medicine. *Mol Syst Biol.* 2013;9: 640. doi:10.1038/MSB.2012.61

534 4. Poisot T, Péquin B, Gravel D. High-Throughput Sequencing: A Roadmap Toward
535 Community Ecology. *Ecol Evol.* 2013;3: 1125–1139. doi:10.1002/ECE3.508

536 5. Manor O, Dai C, Kornilov S, ... BS-N, 2020 undefined. Health and disease markers
537 correlate with gut microbiome composition across thousands of people. *nature.com*. [cited
538 28 Jul 2022]. Available: <https://www.nature.com/articles/s41467-020-18871-1>

539 6. Taberlet P, Bonin A, Zinger L, Coissac E. Environmental DNA: For biodiversity research
540 and monitoring. *Environmental DNA: For Biodiversity Research and Monitoring*. Oxford
541 University Press; 2018. doi:10.1093/oso/9780198767220.001.0001

542 7. Beng KC, Corlett RT. Applications of environmental DNA (eDNA) in ecology and
543 conservation: opportunities, challenges and prospects. *Biodivers Conserv.* 2020;29: 2089–
544 2121. doi:10.1007/s10531-020-01980-0

545 8. Bohmann K, Evans A, Gilbert MTP, Carvalho GR, Creer S, Knapp M, et al.
546 Environmental DNA for wildlife biology and biodiversity monitoring. *Trends Ecol Evol.*
547 2014;29: 358–367. doi:10.1016/j.tree.2014.04.003

548 9. Lacoursière-Roussel A, Rosabal M, Bernatchez L. Estimating fish abundance and biomass
549 from eDNA concentrations: variability among capture methods and environmental
550 conditions. *Mol Ecol Resour.* 2016;16: 1401–1414. doi:10.1111/1755-0998.12522

551 10. Yates MC, Fraser DJ, Derry AM. Meta-analysis supports further refinement of eDNA for
552 monitoring aquatic species-specific abundance in nature. *Environmental DNA.* 2019;1: 5–
553 13. doi:10.1002/edn3.7

554 11. Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are
555 compositional: And this is not optional. *Front Microbiol.* 2017;8: 2224.
556 doi:10.3389/fmicb.2017.02224

557 12. Jia C, Hu Y, Kelly D, Kim J, Li M, Zhang NR. Accounting for technical noise in
558 differential expression analysis of single-cell RNA sequencing data. *Nucleic Acids Res.*
559 2017.

560 13. Edgar RC. UNBIAS: An attempt to correct abundance bias in 16S sequencing, with
561 limited success. *BioRxiv.* 2017; 124149.

562 14. Ficetola GF, Pansu J, Bonin A, Coissac E, Giguet-Covex C, de Barba M, et al. Replication
563 levels, false presences and the estimation of the presence/absence from eDNA
564 metabarcoding data. *Mol Ecol Resour.* 2015;15: 543–556. doi:10.1111/1755-0998.12338

565 15. Stoeckle MY, Adolf J, Charlop-Powers Z, Dunton KJ, Hinks G, Vanmorter SM. Trawl
566 and eDNA assessment of marine fish diversity, seasonality, and relative abundance in
567 coastal New Jersey, USA. *ICES Journal of Marine Science.* 2021;78: 293–304.
568 doi:10.1093/icesjms/fsaa225

569 16. Silverman JD, Roche K, Mukherjee S, David LA. Naught all zeros in sequence count data
570 are the same. *Comput Struct Biotechnol J.* 2020;18: 2789–2798.
571 doi:10.1016/j.csbj.2020.09.014

572 17. Egoscue JJ, Graffelman J, Ortego MI, Pawlowsky-Glahn V. Some thoughts on counts in
573 sequencing studies. *NAR Genom Bioinform.* 2020;2: 1–10. Available:
574 <https://academic.oup.com/nargab/article/2/4/lqaa094/5996081>

575 18. Bessey C, Jarman SN, Berry O, Olsen YS, Bunce M, Simpson T, et al. Maximizing fish
576 detection with eDNA metabarcoding. *Environmental DNA.* 2020;2: 493–504.

577 19. Kelly RP, Port JA, Yamahara KM, Crowder LB. Using environmental DNA to census
578 marine fishes in a large mesocosm. *PLoS One.* 2014;9: e86175.
579 doi:10.1371/journal.pone.0086175

580 20. Evans NT, Olds BP, Renshaw MA, Turner CR, Li Y, Jerde CL, et al. Quantification of
581 mesocosm fish and amphibian species diversity via environmental DNA metabarcoding.
582 *Mol Ecol Resour.* 2016;16: 29–41. doi:10.1111/1755-0998.12433

583 21. Yates MC, Glaser DM, Post JR, Cristescu ME, Fraser DJ, Derry AM. The relationship
584 between eDNA particle concentration and organism abundance in nature is strengthened
585 by allometric scaling. *Mol Ecol.* 2021;30: 3068–3082.

586 22. di Muri C, Handley LL, Bean CW, Li J, Peirson G, Sellers GS, et al. Read counts from
587 environmental DNA (eDNA) metabarcoding reflect fish abundance and biomass in
588 drained ponds. *Metabarcoding Metagenom.* 2020;4: 97–112. doi:10.3897/MBMG.4.56959

589 23. Rourke ML, Fowler AM, Hughes JM, Broadhurst MK, DiBattista JD, Fielder S, et al.
590 Environmental DNA (eDNA) as a tool for assessing fish biomass: A review of approaches
591 and future considerations for resource surveys. *Environmental DNA.* 2022;4: 9–33.

592 24. Jiang R, Li WV, Li JJ. mbImpute: an accurate and robust imputation method for
593 microbiome data. *Genome Biology* 2021 22:1. 2021;22: 1–27. doi:10.1186/S13059-021-
594 02400-4

595 25. Silverman JD, Bloom RJ, Jiang S, Durand HK, Dallow E, Mukherjee S, et al. Measuring
596 and mitigating PCR bias in microbiota datasets. *PLoS Comput Biol.* 2021;17: e1009113.
597 doi:10.1371/journal.pcbi.1009113

598 26. McLaren MR, Willis AD, Callahan BJ. Consistent and correctable bias in metagenomic
599 sequencing experiments. *Elife.* 2019;8: e46923. doi:10.7554/eLife.46923

600 27. Shelton AO, Gold ZJ, Jensen AJ, D’Agnese E, Allan EA, van Cise A, et al. Toward
601 quantitative metabarcoding. *bioRxiv.* 2022.

602 28. McLaren M, Nearing J, Willis A, bioRxiv KL-, 2022 undefined. Implications of
603 taxonomic bias for microbial differential-abundance analysis. *biorxiv.org.* [cited 21 Aug
604 2022]. Available: <https://www.biorxiv.org/content/10.1101/2022.08.19.504330>

605 29. Shelton AO, O’Donnell JL, Samhouri JF, Lowell N, Williams GD, Kelly RP. A
606 framework for inferring biological communities from environmental DNA. *Ecological
607 Applications.* 2016;26: 1645–1659.

608 30. Coissac E, Riaz T, Puillandre N. Bioinformatic challenges for DNA metabarcoding of
609 plants and animals. *Mol Ecol.* 2012;21: 1834–1847. doi:10.1111/j.1365-
610 294X.2012.05550.x

611 31. Gold Z, Kelly RP, Shelton AO, Thompson AR, Goodwin KD, Gallego R, et al. Message
612 in a Bottle: Archived DNA Reveals Marine Heatwave-Associated Shifts in Fish
613 Assemblages. *biorxiv.* 2022.

614 32. Braukmann TWA, Ivanova N v., Prosser SWJ, Elbrecht V, Steinke D, Ratnasingham S, et
615 al. Metabarcoding a diverse arthropod mock community. *Mol Ecol Resour.* 2019;19: 711–
616 727. doi:10.1111/1755-0998.13008

617 33. Port JA, O'Donnell JL, Romero Maraccini OC, Leary PR, Litvin SY, Nickols KJ, et al.
618 Assessing vertebrate biodiversity in a kelp forest ecosystem using environmental DNA.
619 *Mol Ecol*. 2016;25: 527–541.

620 34. Kaul A, Mandal S, Davidov O, Peddada SD. Analysis of microbiome data in the presence
621 of excess zeros. *Front Microbiol*. 2017;8: 2114.

622 35. Guenay-Greunke Y, Bohan DA, Traugott M, Wallinger C. Handling of targeted amplicon
623 sequencing data focusing on index hopping and demultiplexing using a nested
624 metabarcoding approach in ecology. *Scientific Reports* 2021 11:1. 2021;11: 1–15.
625 doi:10.1038/s41598-021-98018-4

626 36. Leray M, Knowlton N. Random sampling causes the low reproducibility of rare
627 eukaryotic OTUs in Illumina COI metabarcoding. *PeerJ*. 2017;2017: e3006.
628 doi:10.7717/peerj.3006

629 37. Gohl DM, Vangay P, Garbe J, MacLean A, Hauge A, Becker A, et al. Systematic
630 improvement of amplicon marker gene methods for increased accuracy in microbiome
631 studies. *Nat Biotechnol*. 2016;34: 942–949.

632 38. Bohmann K, Elbrecht V, Carøe C, Bista I, Leese F, Bunce M, et al. Strategies for sample
633 labelling and library preparation in DNA metabarcoding studies. *Mol Ecol Resour*. 2021.
634 doi:10.1111/1755-0998.13512

635 39. Gallo ND, Drenkard E, Thompson AR, Weber ED, Wilson-Vandenberg D, McClatchie S,
636 et al. Bridging From Monitoring to Solutions-Based Thinking: Lessons From CalCOFI for
637 Understanding and Adapting to Marine Climate Change Impacts. *Front Mar Sci*. 2019;6:
638 695. doi:10.3389/fmars.2019.00695

639 40. Thompson AR, Watson W, McClatchie S, Weber ED. Multi-scale sampling to evaluate
640 assemblage dynamics in an oceanic marine reserve. Thrush S, editor. *PLoS One*. 2012;7:
641 e33131. doi:10.1371/journal.pone.0033131

642 41. Miya M, Sato Y, Fukunaga T, Sado T, Poulsen JY, Sato K, et al. MiFish, a set of universal
643 PCR primers for metabarcoding environmental DNA from fishes: Detection of more than
644 230 subtropical marine species. *R Soc Open Sci*. 2015;2: 150088.
645 doi:10.1098/rsos.150088

646 42. Curd EE, Gold Z, Kandlikar GS, Gomer J, Ogden M, O'Connell T, et al. Anacapa Toolkit:
647 An environmental DNA toolkit for processing multilocus metabarcode datasets. *Methods*
648 *Ecol Evol*. 2019;10: 1469–1475. doi:10.1111/2041-210X.13214

649 43. Gold Z, Curd EE, Goodwin KD, Choi ES, Frable BW, Thompson AR, et al. Improving
650 metabarcoding taxonomic assignment: A case study of fishes in a large marine ecosystem.
651 *Mol Ecol Resour*. 2021;21: 2546–2564. doi:10.1111/1755-0998.13450

652 44. Collins RA, Trauzzi G, Maltby KM, Gibson TI, Ratcliffe FC, Hallam J, et al. Meta-Fish-
653 Lib: A generalised, dynamic DNA reference library pipeline for metabarcoding of fishes. *J*
654 *Fish Biol*. 2021;99: 1446–1454. doi:10.1111/jfb.14852

655 45. Shelton AO, Ramón-Laca A, Wells A, Clemons J, Chu D, Feist BE, et al. Environmental
656 DNA provides quantitative estimates of Pacific hake abundance and distribution in the
657 open ocean. *Proceedings of the Royal Society B*. 2022;289: 20212613.

658 46. Forootan A, Sjöback R, Björkman J, Sjögren B, Linz L, Kubista M. Methods to
659 determine limit of detection and limit of quantification in quantitative real-time PCR
660 (qPCR). *Biomol Detect Quantif*. 2017;12: 1–6.

661 47. Lesperance ML, Allison MJ, Bergman LC, Hocking MD, Helbing CC. A statistical model
662 for calibration and computation of detection and quantification limits for low copy number

663 environmental DNA samples. *Environmental DNA*. 2021;3: 970–981.
664 doi:10.1002/EDN3.220

665 48. Abbott C, Coulson M, Gagné N, Lacoursière□Roussel A, Parent GJ, Bajno R, et al.
666 Guidance on the Use of Targeted Environmental DNA (eDNA) Analysis for the
667 Management of Aquatic Invasive Species and Species at Risk. Canadian Science Advisory
668 Secretariat. Canadian Science Advisory Secretariat (CSAS); 2021. Available:
669 https://escholarship.org/content/qt4ts0c9g8/qt4ts0c9g8_noSplash_e37874707346976a26b1c2022238d2df.pdf%0Ahttps://westernregionalpanel.org/wp-content/uploads/2021/04/Canada_eDNAGuidanceDoc.pdf

670 49. Hatzenbuhler C, Kelly JR, Martinson J, Okum S, Pilgrim E. Sensitivity and accuracy of
671 high-throughput metabarcoding methods for early detection of invasive fish species. *Sci Rep.* 2017;7: 1–10.

672 50. Taylor SC, Nadeau K, Abbasi M, Lachance C, Nguyen M, Fenrich J. The ultimate qPCR
673 experiment: producing publication quality, reproducible data the first time. *Trends Biotechnol.* 2019;37: 761–774.

674 51. Deiner K, Bik HM, Mächler E, Seymour M, Lacoursière-Roussel A, Altermatt F, et al.
675 Environmental DNA metabarcoding: Transforming how we survey animal and plant
676 communities. *Mol Ecol.* 2017;26: 5872–5895. doi:10.1111/mec.14350

677 52. Häneling B, Handley LL, Read DS, Hahn C, Li J, Nichols P, et al. Environmental DNA
678 metabarcoding of lake fish communities reflects long-term data from established survey
679 methods. *Mol Ecol.* 2016;25: 3101–3119. doi:10.1111/mec.13660

680 53. Moushomi R, Wilgar G, Carvalho G, Creer S, Seymour M. Environmental DNA size
681 sorting and degradation experiment indicates the state of *Daphnia magna* mitochondrial
682 and nuclear eDNA is subcellular. *Sci Rep.* 2019;9: 1–9.

683 54. Piñol J, Mir G, Gomez□Polo P, Agustí N. Universal and blocking primer mismatches
684 limit the use of high□throughput DNA sequencing for the quantitative metabarcoding of
685 arthropods. *Mol Ecol Resour.* 2015;15: 819–830.

686 55. Sipos R, Székely AJ, Palatinszky M, Révész S, Márialigeti K, Nikolausz M. Effect of
687 primer mismatch, annealing temperature and PCR cycle number on 16S rRNA gene-
688 targetting bacterial community analysis. *FEMS Microbiol Ecol.* 2007;60: 341–350.

689 56. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a
690 tool to design target-specific primers for polymerase chain reaction. *BMC Bioinformatics.*
691 2012;13: 1–11.

692 57. Riaz T, Shehzad W, Viari A, Pompanon F, Taberlet P, Coissac E. ecoPrimers: inference of
693 new DNA barcode markers from whole genome sequence analysis. *Nucleic Acids Res.*
694 2011;39: e145–e145.

695 58. Sidstedt M, Rådström P, Hedman J. PCR inhibition in qPCR, dPCR and MPS—
696 mechanisms and solutions. *Anal Bioanal Chem.* 2020;412: 2009–2023.

697 59. Fonseca VG, Nichols B, Lallias D, Quince C, Carvalho GR, Power DM, et al. Sample
698 richness and genetic diversity as drivers of chimera formation in nSSU metagenetic
699 analyses. *Nucleic Acids Res.* 2012;40: e66–e66.

700 60. Miya M, Gotoh RO, Sado T. MiFish metabarcoding: a high-throughput approach for
701 simultaneous detection of multiple fish species from environmental DNA and other
702 samples. *Fisheries Science.* 2020;86: 939–970. doi:10.1007/s12562-020-01461-x

703 61. Leray M, Yang JY, Meyer CP, Mills SC, Agudelo N, Ranwez V, et al. A new versatile
704 primer set targeting a short fragment of the mitochondrial COI region for metabarcoding
705

706

707

708

709 metazoan diversity: Application for characterizing coral reef fish gut contents. *Front Zool.*
710 2013;10: 34. doi:10.1186/1742-9994-10-34

711 62. Leese F, Sander M, Buchner D, Elbrecht V, Haase P, Zizka VMA. Improved freshwater
712 macroinvertebrate detection from environmental DNA through minimized nontarget
713 amplification. *Environmental DNA*. 2021;3: 261–276.

714 63. Dorn-In S, Bassitta R, Schwaiger K, Bauer J, Hölzel CS. Specific amplification of
715 bacterial DNA by optimized so-called universal bacterial primers in samples rich of plant
716 DNA. *J Microbiol Methods*. 2015;113: 50–56.

717 64. Nichols R v, Vollmers C, Newsom LA, Wang Y, Heintzman PD, Leighton M, et al.
718 Minimizing polymerase biases in metabarcoding. *Mol Ecol Resour*. 2018;18: 927–939.

719 65. Doi H, Fukaya K, Oka S ichiro, Sato K, Kondoh M, Miya M. Evaluation of detection
720 probabilities at the water-filtering and initial PCR steps in environmental DNA
721 metabarcoding using a multispecies site occupancy model. *Sci Rep*. 2019;9: 3581.
722 doi:10.1038/s41598-019-40233-1

723 66. Mata VA, Rebelo H, Amorim F, McCracken GF, Jarman S, Beja P. How much is enough?
724 Effects of technical and biological replication on metabarcoding dietary analysis. *Mol*
725 *Ecol*. 2019;28: 165–175. doi:10.1111/mec.14779

726 67. Krehenwinkel H, Wolf M, Lim JY, Rominger AJ, Simison WB, Gillespie RG. Estimating
727 and mitigating amplification bias in qualitative and quantitative arthropod metabarcoding.
728 *Scientific Reports* 2017 7:1. 2017;7: 1–12. doi:10.1038/s41598-017-17333-x

729 68. Valentini A, Taberlet P, Miaud C, Civade R, Herder J, Thomsen PF, et al. Next-generation
730 monitoring of aquatic biodiversity using environmental DNA metabarcoding. *Mol Ecol*.
731 2016;25: 929–942. doi:10.1111/mec.13428

732 69. Harrison JB, Sunday JM, Rogers SM. Predicting the fate of eDNA in the environment and
733 implications for studying biodiversity. *Proceedings of the Royal Society B: Biological*
734 *Sciences*. 2019;286: 20191409. doi:10.1098/rspb.2019.1409

735

736

737 **Supplement 1: A note on sampling depth and the probability of observing zeros.**

738 In the metabarcoding literature, it is often asserted that if more reads are sampled, it is more
739 likely that rare variants will be observed. While this is true, the magnitude of the effect is likely
740 less than one would like and only meaningfully changes the probability for a relatively narrow
741 range of rare things. This supplement provides some simple examples for how to do that
742 calculation.

743 Let us focus on only the last step of the metabarcoding process: multinomial sampling.

744 As we are interested in isolating the contribution of sampling depth we can assert that everything
745 prior to the sampling of DNA strands is identical; only the sampling depth changes. So for
746 illustration, let's discuss a single taxon ("A") that comprises 0.0001% of the DNA (1 in 10,000
747 sequences) of the post-PCR product. We will assume that multinomial sampling is a decent
748 approximation to the process (i.e., there are so many DNA copies floating around removing a
749 few doesn't materially change the probability of observing a given taxon; for those who are
750 uncomfortable with this assumption, the below can be reframed using the hypergeometric
751 distribution in place of the multinomial). For a single taxon, the multinomial collapses to the
752 binomial (i.e., we can think of many taxa collapsing to two groups: taxon A and not taxon A).
753 The probability mass function for the binomial is:

$$754 \quad p(k|\pi, n) = \frac{n!}{k!(n-k)!} \pi^k (1-\pi)^{n-k} \quad (1)$$

755 where k is the number of "successes" (observations of taxon A by the sequencer) and n is the
756 number of sequences read. We are interested in a single value here: what is the probability of
757 $k=0$ (i.e. taxon A was not observed) as the number of sequences examined (n) increases. First,
758 simplify for the case $k=0$

$$759 \quad p(k=0|\pi, n) = (1-\pi)^n \quad (2)$$

760 then plug in $\pi = 0.0001$ a range of values for sampling depth(below I use 10 thousand, 100
761 thousand, and 1 million reads):

762
$$p(k = 0 | \pi = 0.0001, n = 10,000) = (1 - 0.0001)^{10000} = 0.367861 \quad (3)$$

763
$$p(k = 0 | \pi = 0.0001, n = 100,000) = (1 - 0.0001)^{100000} = 0.00045377$$

764 (4)

765
$$p(k = 0 | \pi = 0.0001, n = 1,000,000) = (1 - 0.0001)^{1000000} = 3.7 \times 10^{-44}$$

766 (5)

767 So for a species that is rare we go from seeing 1 or greater sequences with probability of 0.64
768 (1-0.36) at 10,000 reads to seeing it with almost certainty at 100,000 or more reads. Let's do the
769 calculation for a rarer sequence.

770
$$p(k = 0 | \pi = 0.000001, n = 10,000) = (1 - 0.000001)^{10000} = 0.99 \quad (6)$$

771
$$p(k = 0 | \pi = 0.000001, n = 100,000) = (1 - 0.000001)^{100000} = 0.90 \quad (7)$$

772
$$p(k = 0 | \pi = 0.000001, n = 1,000,000) = (1 - 0.000001)^{1000000} = 0.367$$

773 (8)

774 So for a sequence that occurs at a rate of 1 in a million you go from observing 0 99% of the time
775 with a sampling depth of 10,000 reads to 90% at 100 thousand reads to only 36% at 1 million
776 reads.

777 Going the other direction, let's look at something that is more common, say 1 in 1,000:

778
$$p(k = 0 | \pi = 0.001, n = 10,000) = (1 - 0.001)^{10000} = 0.00045377 \quad (9)$$

779
$$p(k = 0 | \pi = 0.001, n = 100,000) = (1 - 0.001)^{100000} = 3.7 \times 10^{-44} \quad (10)$$

780
$$p(k = 0 | \pi = 0.001, n = 1,000,000) = (1 - 0.001)^{1000000} = 0 \quad (11)$$

781 Thus, you are almost certain to see at least one copy at 10,000 or greater read depths.

782 So what does this mean in general? Basically, you will see rarer things at higher read
783 depths but moving from a read depth of say 10,000 to 1 million will only meaningfully change
784 non-detection of very rare sequence variants (sequences that make up somewhere between 1 in
785 10,000 and 1 in 1 million copies). If you think that there are a lot of taxa that you care about are
786 in this very rare zone, it may make sense to do more sequencing. But things that are extremely
787 rare (occur at a frequency of less than 1 in a million) still will not be detected. Note that things
788 can be rare after PCR because they are rare in the sample or because they are poor amplifiers, or
789 both. One caveat to the description above is it only includes the probability of observing exactly
790 zero. Many researchers use a higher threshold to determine presence (say $k > 10$, for example).
791 Calculating $k > K$ is not quite as easy as $p(k=0)$ in that more terms are involved, but it is
792 certainly not a hard calculation and involves summing the probability of $k=0$ to $k=K$,

$$793 p(k \geq K | \pi, n) = 1 - \sum_{k=0}^{k=K} \frac{n!}{k!(n-k)!} \pi^k (1-\pi)^{n-k} \quad (12)$$

794

795

796

797

798

799

800

801

802

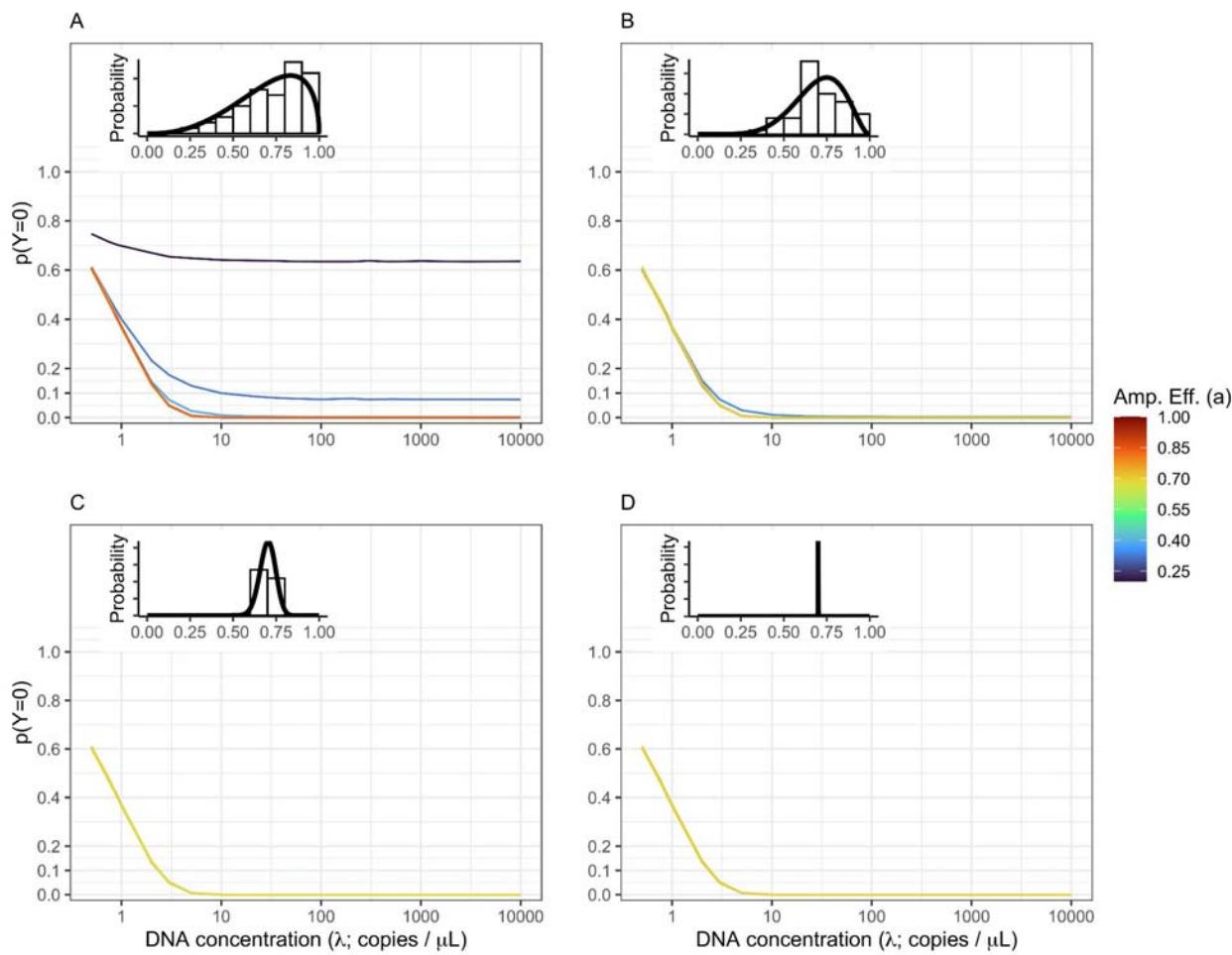
803

804

805 **Supplemental 2 Alternate simulation results**

806 **Changing N_pcr1**

807 It is important to understand how changing some of the parameters in the simulation affect the
808 probability of non-detection. In Fig. S3.1 we used $N_{pcr1} = 20$ rather than $N_{pcr1} = 35$ presented
809 in the main text. As N_{pcr1} declines, the probability of non-detects becomes more similar among
810 species and only species with amplification efficiencies that are much lower than the average α
811 (in this case $\alpha_i < 0.4$) have increased non-detection probabilities (Fig. S3.1A).



812

813 **Figure S3.1. Non-detects Driven By Both DNA Concentration and Amplification
814 Efficiency.**

815 The probability of non-detection ($p(Y=0)$) is shown for a community of 50, equally
816 abundant taxa with the amplification efficiency distribution shown inset in each panel.
817 This simulation uses $N_{pcr1} = 20$ (see Fig. 1 for the same simulation but with $N_{pcr1} =$
818 35). The amount of among-taxa variation in amplification efficiency varies from highly
819 variable (A ; $\gamma=5$) to moderate variation (B ; $\gamma=10$) to low variation (C ; $\gamma=100$) to
820 effectively no variation (D ; $\gamma=1,000,000$). Both subsampling and amplification
821 efficiencies influence the rate of non-detection. The probability of observing no DNA in a
822 given technical replicate is highest at low DNA concentrations (<10 copies / μ L).
823 However, non-detects are possible for species with low amplification efficiencies and
824 very likely ($p(Y=0) > 0.5$) for amplification well below average (in this case
825 approximately $a_i < 0.3$).

826

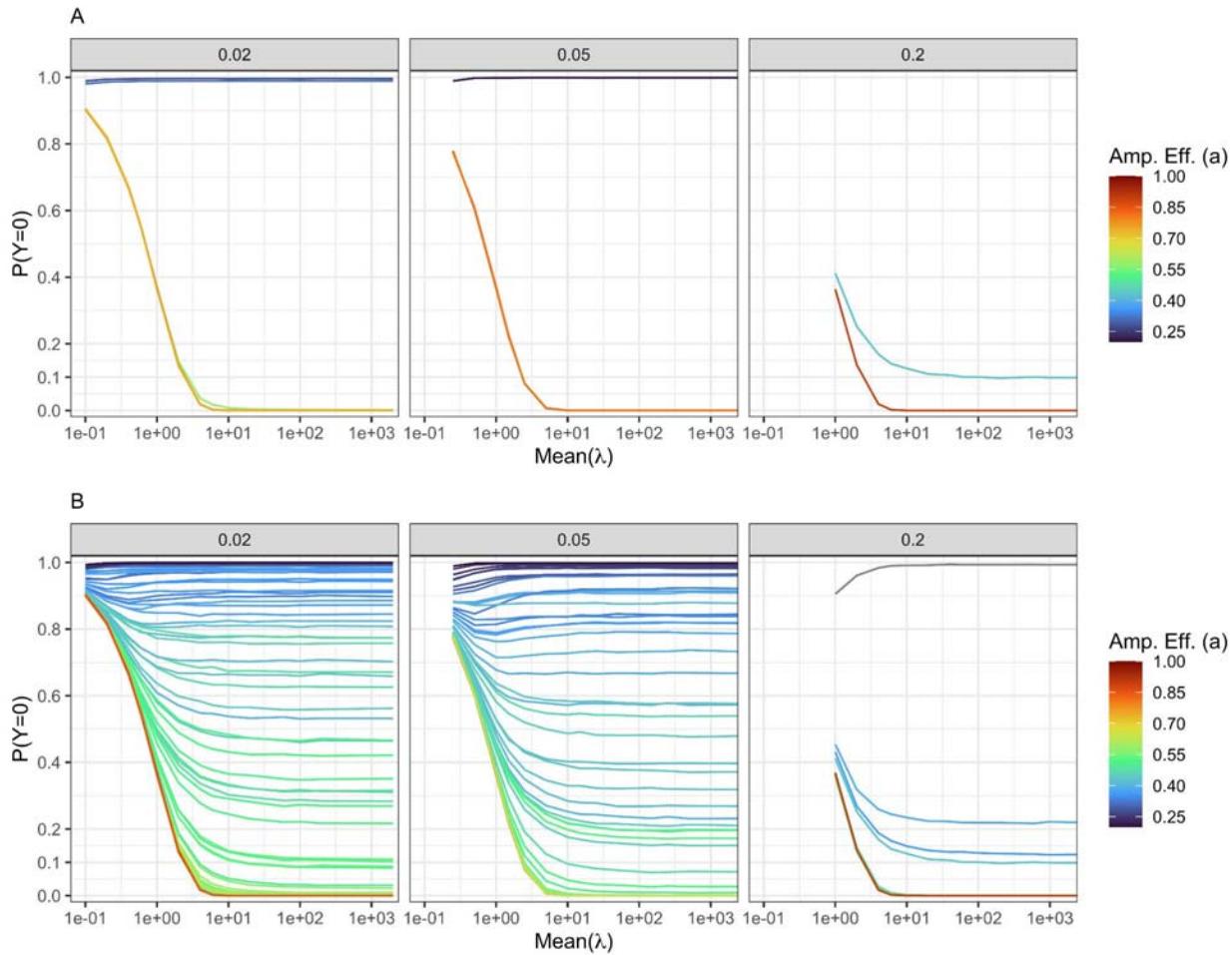
827 **Simulating uneven DNA concentrations**

828 The base simulation presented in the main text assumes that the starting DNA concentration for
829 each taxon is equivalent (i.e., for ten taxa, each comprises 10% of the DNA in a sample). While
830 this assumption makes it easier to visualize the simulation results, it clearly does not represent
831 natural communities which have skewed abundance distributions (some taxa are common while
832 others are rare). To illustrate the consequences of a skewed abundance distribution we simulated
833 a community of 20 taxa with 2 taxa each comprising 20% of the DNA, 8 taxa each with 5% of
834 the DNA, and 10 taxa with 2% of the DNA. Otherwise, we followed the simulation parameters
835 described in the main text. Figure S3.2 presents the patterns of non-detections for a single
836 community of 20 taxa (Figure S3.2A) with large among-species variation in amplification
837 efficiency ($\gamma = 5$) and for 20 communities of 20 taxa each overlaid on one figure (Fig. S3.2B).

838 Facets show the true starting proportion within each community (proportions of 0.02, 0.05, or
839 0.20).

840 As shown in the even community simulated in the main text, for all taxa non-detection
841 increases as DNA concentration declines and taxa with lower amplification rates show higher
842 probability of non-detection. But there is clearly an interaction between the community
843 proportion and amplification efficiency which affects the probability of non-detection.
844 Specifically, for two taxa with equivalent amplification efficiencies, the more abundant taxa
845 (community proportion of 0.20) have a much lower probability of non-detection than a relatively
846 rare species (community proportion of 0.02; Fig. S3.2B). Indeed, for taxa with a community
847 proportion of 0.02, at a constant DNA concentration, $p(Y = 0|\lambda=10) > 0.5$ when $a_i < 0.45$. In
848 contrast, for taxa with community proportions of 0.20, $p(Y = 0|\lambda=10) > 0.5$ only occurred for
849 one taxa in the 20 simulated communities with a very low amplification efficiency ($a_i = 0.19$).

850 Thus both community proportion and amplification efficiency affect the probability of
851 non-detection. In broad strokes, amplification efficiency will play a more important role in
852 determining non-detection when taxa are rare relative to other species in a sample. The
853 importance of amplification efficiency increases with PCR protocols that use a large number of
854 PCR cycles. Non-detection of relatively common taxa in a community will generally be less
855 influenced by relative amplification efficiency, but non-detection can still occur if amplification
856 efficiency is sufficiently low.



857

858

859 **Figure S3.2. Non-detects Driven By Both DNA Concentration and Amplification
860 Efficiency.**

861 The probability of non-detection ($p(Y=0)$) is shown for a community of 20 taxa with 4
862 taxa comprising 0.20 of the initial DNA, 8 with 0.05 of the DNA, and 10 species
863 comprising 2% of the DNA across a range of initial DNA concentrations. *A*: Presents
864 results for a single 20 taxa community with facets representing the three abundance
865 categories. *B* shows results for 20 communities of 20 taxa each to illustrate general
866 patterns. For all simulations we use $N_{pcr1} = 35$ and a fixed amount of among-taxa
867 variation in amplification efficiency ($\gamma = 5$). Clearly, relative abundance influence the rate

868 of non-detection with relatively rare taxa (those with 0.02 having larger probabilities of
869 non-detection than common taxa (0.2) with equivalent amplification efficiencies (colors).