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Abstract

Correcting for amplification biases in genetic metabarcoding data can yield quantitative
estimates of template DNA concentrations. However, a mgor source of uncertainty in
metabarcoding data is the presence of non-detections, where atechnical PCR replicate failsto
detect a species observed in other replicates. Such non-detections are an important special case
of variability among technical replicates in metabarcoding data, particularly in environmental
samples. While many sampling and amplification processes underlie observed variation in
metabarcoding data, understanding the causes of non-detectionsis an important step in
distinguishing signal from noise in metabarcoding studies. Here, we use both simulated and
empirical datato 1) develop a qualitative understanding of how non-detections arisein
metabarcoding data, 2) outline steps to recognize uninformative datain practice, and 3) identify
the conditions under which amplicon sequence data can reliably detect underlying biological
signals. We show in both simulations and empirical datathat, for a given species, the rate of non-
detections among technical replicatesis afunction of both the template DNA concentration and
species-specific amplification efficiency. Consequently, we conclude metabarcoding datasets are
strongly affected by (1) deterministic amplification biases during PCR and (2) stochastic
sampling of amplicons during sequencing — both of which we can model — but also by (3)
stochastic sampling of rare molecules prior to PCR, which remains afrontier for quantitative
metabarcoding. Our results highlight the importance of estimating species-specific amplification
efficiencies and critically evaluating patterns of non-detection in metabarcoding datasets to better

distinguish environmental signal from the noise inherent in molecular detections of rare targets.
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I ntroduction

Metabarcoding, or DNA amplicon sequencing, is a powerful tool that can characterize biological
communities without the need to physically observe individual organisms. The rise of
metabarcoding via high-throughput sequencing is rapidly advancing human and wildlife health,
ecology, and conservation science [1-8].

However, the power of metabarcoding applications liesin the ability to obtain reliable
guantitative estimates of underlying communities [9-11]. In the case of metabarcoding and
similar amplicon-based studies[12], it has become clear that 1) observations are non-linearly
related to the underlying biology of interest [13,14], and 2) those observations are noisy, with
many having relatively high variances as a function of expected values [11,15-17]. In order to
make reliable quantitative estimates for any set of observations, we must be able to distinguish
random variation from real signal. Thus, understanding the underlying signal-to-noiseratio is
key to quantifying the power of detection for a given dataset [18].

Substantial effortsto correlate sequence reads and underlying community abundance
have reported promising but largely equivocal results[10,15,19-23]. However, it isunsurprising
that the application of smple linear correlations to non-linear and compositional datasets
produce ambiguous results given the failure to mode the underlying drivers of observed DNA
seguence patterns and distributions. In response, recent mechanistic frameworks have begun to
address the discrepancies between observed metabarcoding sequence counts and true underlying
biological patterns by modeling the compounding processes that occur between DNA extraction
and sequence observation [24—-28]. These processes include DNA extraction, PCR, and multiple
subsampling steps prior to sequencing [16,17,27,29,30]. Importantly, these mechanistic

frameworks explicitly model the amplicon sequence-generating process by stating that observed
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sequence reads are a function of both the species-specific amplification efficiency and the
underlying abundance of each species DNA within asample [26]. Such models also reflect the
inherent compositional nature of metabarcoding, acknowledging that metabarcoding data can
only provide proportional (not absolute) abundances of a given species DNA in agiven sample
[11]. This approach can recongtruct starting DNA proportions, prior to PCR (e.g. [16,25-27])
and, where metabarcoding data are combined with additional information on underlying DNA
concentrations, can yield absolute abundance estimates of the sampled DNA concentrations (e.g.
[31]).

Despite these advances in modeling the amplicon sequence-generating process, it is clear
that the sequential molecular steps required to generate metabarcoding data result in highly
variable sequence-read counts among technical replicates derived from the same DNA extract
[13,32-36]: replicate samples yield somewhat different results. Thus, in practice, it can be
difficult to distinguish signal from noise in metabarcoding datasets. In particular, zeros are
frequently over-represented in metabarcoding data, contributing substantially to among-replicate
variability [16,24,34]. For example, in three technical replicates, a unique amplicon sequence
variant (ASV) may be represented by 3,897; 165; and O reads across replicates (132,731,
196,260, 55,400 read depth for each replicate respectively; [31]). This observed variability
among technical replicates far exceeds the expected variability arising from binomial- or
multinomial sampling, and so demands a different explanation [16].

Here we focus on the patterns and causes of non-detections (in which a speciesis
unobserved in one technical replicate despite being observed in other replicates) in
metabarcoding datasets. After first synthesizing previous research on patterns of sequence

counts, we simulate the process of metabarcoding to develop a qualitative understanding of the


https://doi.org/10.1101/2022.09.02.506420
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.02.506420; this version posted September 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

92  scenarios under which non-detections arise. We then use these results to generate predictions for
93 thefrequency of non-detections. Next, we use empirical observationsto test these predictions

94  using metabarcoding data derived from a set of ethanol-preserved fish larvae, in which both the
95  underlying organismal abundances and the resulting metabarcoding dataset are well-

96 characterized. Our empirical findings closely match the predictions and suggest a mechanism for
97  non-detections and stochastic variability in general. Given this understanding of the sources of
98 variability, we can more confidently distinguish signal from noise in metabarcoding datasets.

99

100 Methods

101  Conceptual Model and Smulating Metabar coding Data

102  Our generating model for metabarcoding derives from Shelton et al. [27], building on the work
103  of others[11,17,25,26,29]. Briefly, we envision a metabarcoding dataset as compositional,

104  arising from achain of sampling and amplification processes acting on individual DNA

105 molecules.

106 We start with a sample of extracted DNA containing sequences from multiple species.
107  From this starting point, there are many different metabarcoding laboratory protocols that lead to
108  observed sequences from a sequencing instrument [37,38]. Here, we approximate this using three
109 main stochastic processes following the commonly used two-step PCR library generation process
110 (eg., atarget PCR followed by an indexing PCR). First, we assume a sample of DNA is

111  extracted and included in the multi-taxon PCR reaction. Second, PCR amplification using a

112 specific primer and protocol occurs, replicating the DNA molecules for each taxon. This second
113  step includesthe varioustarget PCR, cleaning, indexing PCR, and pooling steps that occur

114  during or following the main PCR reaction. Finally, the resulting mix of DNA copiesis sampled
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to generate a compositional sample of amplicons that are observed through the sequencing
instrument.

Mathematically, we can write a simulation for this framework as a series of linked
stochastic processes. Specifically, we start with a sample of extracted DNA containing A; copies
uL~! DNA from theith taxon, i = 1,2,...,]. Let W;; be the discrete number of DNA molecules for
speciesi sampled (i.e., in the tube in which a given PCR reaction takes place) of technical
replicate j at the beginning of PCR and

W;j ~ Poisson(4;V) Q)
Here, V isthe volume (uL) of template DNA sampled from the DNA extract. This equation
assumes each taxon is sampled independently. Note that different technical replicates (e.g.,j =1
and | = 2) arise from the same environmental sample but may contain different numbers of
molecules for a given species due to sampling variability.

Next, we model athree-step PCR process. Most importantly, we assume the amplicons
produced during a PCR reaction are influenced by a species-specific amplification efficiency a;,
which is characteristic of the interaction between the particular primer set, reaction chemistry,
and template molecule of each species (i) being amplified [27]. For any species, X;; isthe
expected number of amplicons present in atechnical replicate at the end of PCR. X;; isdirectly
related to the efficiency of amplification and the starting number of DNA molecules, W;;(1 +

a;)Nver | where N, isthe number of PCR cycles and a; isbounded on (0,1); a; = 1 representsa
perfect doubling of molecules with each PCR cycle. For the purpose of this paper, we assume a
two-step PCR process with a sub-sampling and PCR cleaning process in between, and X;; can be
modeled at each step as:

Xyij ~ Poisson(W;;(1 + a;)"per1) 2)
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138 X5ij ~ Binomial(m, Xy;;) (3)
139 X3i; ~ Poisson(Xy;;(1 + 0.9)"per2) (4)
140 wherem isthe proportion of the first PCR product used in the second PCR amplification. Note
141  that during the indexing reaction (equation 4) all taxa share a single amplification efficiency

142  (a;=0.9) aswe assume all indexing primers anneal to the indexing adapter sequences with equal
143  efficiency. Here X5 isthe number of amplicons present after both PCR amplifications but before
144  sequencing. Finally, the sequencing instrument generates atotal number of reads within technical
145  replicate] (N,qq5;) and each replicate has a vector of observed read counts

146 (Y}, bolding indicates vectors) for | species.

147

148 Y; ~ Multinomial (p j;NreadS,j) ©

149 where p isthe proportion of reads from speciesi in technical replicate, and p;; = 3 Xi? '
i=143ij

150  Thus, observed read counts (Y;;) are sampled stochastically based on their relative amplicon

151  abundances, p;;.

152 The above model provides a general framework for understanding the causes of

153  variability in observed read counts (Y;;), specifically the probability of non-detections as a factor
154  of 1) theinitial DNA concentration A; and 2) the amount of species-specific variation in

155  amplification efficiency (a;). The simulation allows us to identify two distinct causes of non-
156  detection, p(Y;; = 0). First, non-detection may occur because there were no molecules of species
157 iintheinitid PCR (W;; = 0, in which case we are interested in p(W;; = 0) becausep(Y;; =
158  0|W;; = 0) = 1). Second, zeros can arise due to PCR amplification and sequence-sampling

159  processes; thus, we are interested in p(Y;; = 0|W;; > 0). While p(W;; = 0) istrivial to calculate
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160  from equation 1, determining p(Y;; = 0) and p(Y;; = 0|W;; > 0) are not. We turn to simulations
161 to understand the contributions of variation in A; and a; to the probability of non-detection.

162 We simulate four communities with different levels of richness (N = 4, 10, 30, and 50
163  taxa). For smplicity, we assume all taxa start with identical DNA concentrations regardless of
164  therichness. DNA concentrations, A; are varied from 0.5 to 10,000 copies uL~* (for simplicity
165 wesetV=1for al smulations). We further allow arange of amplification efficiencies (a)

166  among taxa where a ~ Beta(0.7y, 0.3y) with y ranging from 5 (high variation among species) to 1
167  million (no variation among species), but with a constant average amplification efficiency of 0.7
168 for all scenarios. We ssimulated 50,000 realizations for each combination of richness (4 levels), A
169 (18levels), andy (6 levels: 5, 10, 20, 100, 100, 1 million)), for atotal of 432 scenarios. For all
170  thesimulations, we allowed sequencing depth to vary among replicates (Ny.qqq4 ; Was uniformly
171 drawn from discrete values between 60,000 and 140,000), used a fixed sampling fraction (r =
172 0.20), and set N, = 35and N, = 10). We calculated arange of summary statistics for

173  each scenario, including the overall probability of non-detection, p(Y;; = 0); the probability of
174  non-detection due to the absence of the target molecule, p(W;; = 0); and summaries of the reads

175  both in absolute terms and in terms of relative abundance.
176  Empirical Testing

177  Wetest these hypotheses against a real metabarcoding data set making use of three data streams
178  generated from a common set of biological samples: organismal abundance (as a proxy for input
179  DNA molecules), metabarcoding data, and amplification-efficiency estimates for the relevant

180  species.

181  Study Design
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182  Aspart of the California Cooperative Oceanic Fisheries Investigations (CalCOFI), Gold et al.
183  [31] use morphological and molecular methods to analyze the response of ichthyoplankton in the
184  Cdlifornia Current Large Marine Ecosystem to ocean warming. Ichthyoplankton samples were
185  collected in obligue bongo net tows on CalCOFI research cruises over two decades (1996; 1998-
186  2019). Once a sampling tow concluded, ichthyoplankton present on one side of the net were

187  preserved in Tris-buffered 95% ethanol and stored in the Pelagic Invertebrate Collection at

188  Scripps Institution of Oceanography [39]. The paired ichthyoplankton were preserved in sodium
189  borate-buffered 2% formaldehyde for microscopy-derived species identification and abundance
190  (number of larvae per species per jar). This dataset yields paired samples for both metabarcoding

191 analysis and absolute abundance counts from the same sampling event.
192  Abundance Estimation from Microscopy

193  Formalin-preserved larvae were identified and enumerated following the methods of Thompson
194 et al. [40]. The maority of taxa were identified to species level. Here we assume that the
195 relationship of absolute abundance (counts of individual species) is proportional to the amount of

196  species-specific DNA in the extraction. See the discussion for the merits of this assumption.
197  Metabarcoding Data Generation

198 DNA sequences were generated from 84 ethanol-preserved samples as described in Gold et al.
199  [31]. Briefly, ethanol samples were filtered onto 0.2 um PV DF filters and were extracted using a
200 Qiagen DNeasy Blood and Tissue kit. We then amplified three technical PCR replicates using a
201  touchdown PCR and the MiFish Universal Teleost specific primer [41]. Both a negative control
202  (molecular grade water instead of DNA extract) and two positive controls (DNA extract from
203  non-native, non-target species) were included alongside samples. Libraries were prepared using

204  Illumina Nextera indices following the methods of Curd et al. [42] and sequenced on a NextSeq
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205  2x 150 bp mid output. Sequencing data was then processed using the Anacapa Toolkit [42] to
206  conduct quality control, ASV dereplication, and taxonomic assignment. Sequences were

207  annotated with the California fish specific reference database and a bootstrap confidence cutoff
208  score of 60 following the methods of Gold et al. [43]. Eight technical replicates with either low
209  seguencing depth (n<30,000) or high dissimilarity (Bray Curtis dissmilarity > 0.7) were

210 removed.
211 Amplification Efficiency Estimation from Mock Communities

212  We used a subset of the mock communities generated for Shelton et al. [27] to estimate
213  amplification efficiencies of relevant fish species. Mock communities included DNA from 57
214 voucher fish tissue samples, 17 of which were detected in the Cal COFlI metabarcoding data set,
215  from the Scripps Institution of Oceanography Marine Vertebrate Collection. To accurately
216  quantify input DNA for each species within the mock community, we used a nested PCR
217  strategy in which mock communities were generated by pooling resultant longer fragment PCR
218  products of each species rather than by pooling the total genomic DNA of each species (which
219 includes variable amounts of NDNA as well as bacterial and other DNA sources). To implement
220 our nested PCR drategy, we first amplified a 612 bp fragment of the 12S rRNA gene that
221  contains the MiFish Universal Teleost 12S primer set [44], and quantified the resulting PCR
222  products using the QuBit Broad Range dsDNA assay (Thermofisher Scientific, Inc.); this
223  yielded measurements of species-specific, amplifiable DNA. Using this known-concentration
224  DNA we generated 9 distinct mock communities by pooling long fragment PCR products
225 comprising three distinct sets of species and three abundance distributions (See Table S1).
226  Pooled mock communities were using the QuBit Broad Range dsDNA assay (estimated

227  concentrations ranged from 8-12 ng pL™) and then diluted serially by a 1:10 dilution down to

10
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228 10°® original concentration. We then converted ng pL™ to copies pL™ using the following

229  eguation:

QuBit Concentration [ng pL"']*6.022x10* [molecules mol™']
612 [bp] * 650 [gmol™ bp'] *(1x10” [ng g'])

Copies pL! =

230  Finally, input concentrations of 380-600 DNA copies pL™ for each total community were loaded
231 in the MiFish Universal Teleost 12S PCR step (Table S2). Given this design, each mock
232 community had a different number of DNA molecules per species. We then amplified each of
233 the mock communities in triplicate with the MiFish Universal Teleost 12S following the
234  methods of Curd et al. [42], targeting a 185 bp fragment within the larger 612 bp PCR fragment
235  used to generate the mock communities. Each triplicate PCR technical replicate was then treated
236 as aunique library and sequenced separately. Metabarcoding libraries were then prepared and
237  sequenced on a MiSeq platform using a v3 600 cartridge following the methods of Gold et al.
238 [43]. We note that one set of mock communities were re-sequenced on a separate run to generate
239 usable data. Resulting sequences were processed using the Anacapa Toolkit using the global
240 CRUX generated reference database given the broad geographic distribution of species from
241 Gold et al. [43]. We also used a taxonomic cutoff score of 60 as above. Taxonomic ass gnment
242  of ASVswas confirmed with BLAST using default settings. For the two observed discrepancies,
243  we chose to use BLAST assignments with greater than 99% identity and 100% query length

244  match as they matched our known vouchered specimen identifications.

245 We fit the modd from Shelton et al. [27] to a third of the data (3 technical replicates of
246  each evenly pooled mock community). Generated parameter estimates were then used to predict
247  the gtarting proportions of DNA in the remaining two-thirds of the data, for an out-of-sample

248 estimate of accuracy. We used the resulting model output to calculate the mean amplification

11
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249  efficiency per species. The model, implementation, and code are detailed in Shelton et al. [27],
250  but there are two particularly relevant points from the model for connecting the simulation and
251  empirical results that we highlight here. While we simulate absolute amplification efficiencies
252  (a;), because metabarcoding data is compositional, the absolute amplification efficiency cannot
253  be estimated from metabarcoding data. Instead, we estimate amplification efficiencies for each
254  gpecies relative to a reference efficiency (see also [25,26]). In our case we estimate «; as the
255 amplification efficiency of speciesi, a;, relative to the efficiency of a reference species, ag,

256 therefore a; = 2—’ Thus, for simulations we discuss a but for estimation, we discuss a. Note
R

257  while values of a can be directly calculated from a, values of a are not uniquely identifiable

258 from .

259 All dataand code for conducting analyses will be made publicly available upon
260  acceptanceviaNCBI SRA, Dryad, and GitHub

261  (https://github.com/zjgold/Metabarcodings Signal_from_Noise).
262  Hypothess Testing

263 From the above outlined simulations and empirical data, we generate a series of hypotheses.
264  First, we expect fewer non-detections for more abundant DNA molecules, given the same

265  gpecies (and therefore the same amplification efficiency). Second, we hypothesize that species
266  with higher amplification efficiencies will have fewer non-detections and higher observed

267  seguence read counts than species with lower amplification efficiencies, given the same

268  abundance of template DNA molecules. Third, we expect species with low amplification

269 efficiencies will have a high rate of non-detection regardless of the abundance of template DNA

270  molecules. We test each of these hypotheses using both simulation and empirical results.

12
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271 Results

272  Simulation Results

273  Wefound a strong correlation between the probability of non-detections and both the absolute
274  abundance of template DNA molecules and amplification efficiencies (Figure 1). The probability
275  of non-detections (p(Y=0)) dramatically declines when concentrations of template DNA are

276  greater than ~10 copies uL™ per species, given an average amplification efficiency of 0.7

277  (Figures 1C & 1D). Likewise, our results demonstrate that species with low amplification

278  efficiencies exhibit high probabilities of non-detections regardless of starting DNA

279  concentrations (Figure 1A, B). Importantly, we demonstrate that even species with an

280 amplification efficiency slightly below average (e.g., a = 0.7) exhibit high rates of non-detections
281  at DNA concentrations far higher than from typical eDNA field samples (e.g. 4 > 100

282  copies/uL; [45]). Together these simulations indicate that the probability of non-detection is

283  dominated by the subsampling process at low template DNA concentrations while the probability
284  of non-detection isdriven primarily by the PCR process (i.e., differences in amplification

285  efficiencies) at higher template DNA concentrations.

13
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Figure 1. Non-detections Driven By Both DNA Concentration and Amplification

Efficiency.

The probability of non-detection (p(Y=0)) is shown for acommunity of 50 equally

abundant taxa with the amplification efficiency distribution shown inset in the upper left

of each panel. The amount of among-taxa variation in amplification efficiency varies

from high variation (A; y=5) to moderate variation (B: y=10) to low variation (C: y=100)

to effectively no variation (D: y=1,000,000). Both subsampling and amplification

efficiencies influence the rate of non-detection. The probability of observing no DNA ina

given technical replicateis highest at low DNA concentrations (<10 copies/uL).

However, non-detections are possible for species with below average amplification
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297 efficiencies (in this case approximately a; = 0.7) and very likely (p(Y=0) > 0.5) for
298 amplification well below average ( a; < 0.4).
299

300 Empirical Results
301 Microscopy Results

302  Independent estimates of abundance were generated from sorting 9,610 larvae from 84 jars (min

303 =2, max =960). See Gold et al. [31] for a detailed description of the results.
304 Metabarcoding Results

305 The metabarcoding data set generated from ethanol-derived eDNA consisted of atotal of 54.5
306  million amplicon sequence reads that passed through the Anacapa Toolkit quality control, ASV
307  dereplication, and decontamination processes. Sequencing depth ranged from 36,050 readsto 1.2
308 million reads per technical replicate. For our integrated Bayesian model of the probability of

309 non-detection in atechnical replicate, we focused on the 17 species that had 1) sufficient

310 representation across the metabarcoding data set (observed in > 10 technical PCR replicates) to
311  achieve model convergence and 2) were represented in our mock communities. See Gold et al.

312 [31] for the full description of model implementation and results.
313  Mock Community Results

314  Themock community data set consisted of 4.0 million amplicon sequence reads that passed

315  through the Anacapa Toolkit quality control, ASV dereplication, and decontamination processes
316  acrossatotal of 36 unique samples comprising three distinct community assemblages each with
317 three PCR technical replicates. Sequencing depth ranged from 9,872 reads to 206,900 reads per

318 technical replicate. Of the 57 voucher species represented, we classified 56 unique species, and
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319 usedthe Shelton et al. [27] model to estimate amplification efficiencies for each species. One
320  species, Urobatis halleri, was not detected in any technical replicate. Citharichthys sordidus was
321  present in all mock communities and was selected as the reference species for estimating relative
322 amplification efficiencies. Across all species, a; ranged from -0.30 to 0.03 with a mean of -0.06
323  (Table S3). For presentation purposes, we label species with a; values below -0.07 asalow

324  amplification efficiency group (n=15) and the remaining species as a high amplification (n=41).
325 Hypothesis Testing

326  Aswith the smulation results, we found that the probability of non-detectionsis strongly

327  correlated with both the abundance of DNA molecules for a given species within a sample and
328 the species-specific amplification efficiency (Figures 2b, 3b). Non-detections occur more

329 frequently at low DNA concentrations regardless of amplification efficiency (Figures 2b, 3b).
330  Species exhibiting lower amplification efficiencies (a; <-0.07) had higher rates of non-

331  detections even at high input DNA concentrations (10* copies pL™) and larval counts (9 larvae
332  perjar; Figures 2b, 3b).

333 Furthermore, from the mock community example, species with higher amplification
334 efficiencies (a; >-0.07) have higher observed sequence read counts for an equivalent template
335 DNA concentration (Figure 2a). The 41 species with high amplification efficiencies have more
336 reads sequenced per DNA molecule added (mean + sd = 4.1 + 6.31, range = 0.00-55.4) than the
337 15 species with low amplification efficiencies (mean £ sd = 0.1 + 0.47, range = 0.00-5.5).

338  Likewise, specieswith higher larval counts in ethanol-preserved samples from plankton tows
339  also have higher observed sequence read counts (Figure 3a). From the CalCOFI example, the 15

340 species with high amplification efficiencies have more reads sequenced per larvae counted (mean
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341 +sd=6,689 + 28,305, range = 0-79,454) than the two speciesin the low amplification efficiency

342  group (mean x sd = 524 + 1,080, range = 0-7,101).
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345 Figure 2: Observed Reads and Non-detections are a function of Amplification
346 Efficiency and Input DNA Concentration in the Mock Community example
347 For species observed within areplicate, we find that species with higher amplification
348 efficiencies(  >0.7) have a greater number of observed reads for an equivalent template
349 DNA concentration (a). We also find no difference in the total number of observed reads
350 and increased DNA concentration as expected for a compositional data set. Furthermore,
351 we find a greater proportion of non-detections when both DNA concentration and
352 amplification efficiencies are lower (b). These results align well with our simulated data.
353
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355 Figure 3. Observed Reads and Non-detections are a function of Amplification
356 Efficiency and L arval Abundancesin the CalCOFI example
357 For species observed within areplicate, we find that species with higher amplification
358 efficiencies(  >-0.07) have consistently greater numbers of observed reads for an
359 equivalent template DNA concentration (a). We assume that the number of larvae in the
360 jar is proportional to the number of DNA molecules present. We aso find a greater
361 proportion of non-detections when larvae are rare in the jars and have lower amplification
362 efficiencies (b).
363

364 Discussion

365  Using both simulated and empirical data, we demonstrate that observed sequence read counts
366  from metabarcoding data are a function of species-specific input DNA concentrations,

367  subsampling, and species-specific amplification efficiencies. Variability among replicatesin
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368  detections of specific taxa— reflecting either rare targets or poor amplification efficiencies— are
369  asubstantial source of noise in these data. Consequently, it can be difficult to distinguish signal
370  from noise in metabarcoding datasets. Our resultsillustrate several potential causes of non-

371  detections and suggest that metabarcoding data can provide reliable quantitative estimates for
372 species with abundant input DNA (> ~50 copies pL™) and high species-specific amplification
373  efficiencies. By characterizing underlying sources of sequence read count variability in

374  metabarcoding, we identify key sources of noise that impact our ability to derive quantitative

375 estimates of source DNA.
376  Subsampling Rare Targets Results in Non-detections

377  Consistent with expectation, our framework strongly suggests that all else being equal in a

378 metabarcoding assay (e.g., assuming even amplification efficiencies across species), rarer

379 template DNA molecules have a higher probability of non-detection across technical replicates.
380 Thesefindings align well with observations of gPCR assays in which the probability of non-

381  detection increases as you approach the limit of detection, in terms of absolute copies of DNA
382  per reaction volume [46,47]. High rates of non-detections in gPCR assays are commonly

383  observed for input DNA concentrations between 1 and 10 copies[46,48,49] and are likely driven
384 by subsampling errorsin which too few or no physical DNA molecules are transferred into a
385 given PCR reaction [36,50,51]. These observations from gPCR studies reflect the findings from
386  both simulated and empirical metabarcoding results reported here.

387 Importantly, subsampling rare target DNA molecules yields stark differencesin observed
388  per-species read counts among technical replicates, non-detections being the most obvious case
389  of this phenomenon [15,16,34,46]. Together, these findings strongly support the hypothesis that

390 the concentration of target DNA within a sample influences the observed patterns of amplicon
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391 read counts, particularly increasing the probability of non-detections for species with low
392 template DNA concentrations. Such observations of high rates of non-detections also justify the

393  useof over dispersed multinomia sampling approaches within metabarcoding models [27].
394  Amplification Efficiencies Drive Sequence Counts and Non-detections

395  Whilethe relationship between template concentration and non-detections is well documented in
396 theliterature[10,12,16,24,34,46], the causes of hon-detection among species with abundant

397 DNA arenot widely appreciated. Both smulation and empirical results demonstrate that species
398  with higher amplification efficiencies have higher observed amplicon read counts, confirming
399 thepredictions of previous compositional modeling efforts [25-27]. Furthermore, we find a clear
400  association between the probability of non-detections and amplification efficiencies, with species
401  with higher amplification efficiencies exhibiting fewer non-detections. Here we observed an

402  order of magnitude difference in average sequence reads per larvae collected in agiven jar with a
403  maximum observed difference in amplification efficiencies of 0.33 (n=17). Previous research
404  using mock communities has similarly demonstrated that equal concentrations of DNA in a

405  single extraction frequently resultsin amplicon read counts that differ by orders of magnitude
406 [16,32,36,37,52]. Such dramatic differences in resulting read proportions are understandable

407  given the exponential nature of PCR - even a subtle difference in amplification efficiency across
408 30+ PCR cycles can result in stark differences in sequence counts [27].

409 The observed variation in amplification efficiency among species in metabarcoding

410  approaches arises from complex PCR processes, including primer specificity, DNA polymerase
411  sdlectivity, annealing temperature, GC content, and higher-order dimensional structure of DNA,
412  inhibition, and co-factors such as MgCl,, among others [53-59]. This complexity makes

413  designing metabarcoding assays that are highly specific for only target taxa challenging [60,61],
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414  resulting in the amplification of off-target taxa as well as a range of amplification efficiencies
415  acrosstarget taxa[26,27,43,62,63]. As demonstrated by our simulations and empirical results,
416  such arange of amplification efficiencies can result in substantial noise in metabarcoding data

417  sets.
418 Complex Relationship between Amplification Efficiencies and Abundance

419  The above results highlight the cumulative importance of the variance in amplification efficiency
420 among species, as well as the abundance of template DNA for understanding the patterns of

421  metabarcoding non-detections. The interaction between these factorsis key for disentangling the
422  signa from the noise of metabarcoding data. Here, we demonstrate that there are two ways to
423  obtain non-detections for a given species after sequencing: low initial DNA concentration or low
424  amplification efficiency. Both of these results are clear from our empirical CalCOFI fish larvae
425  dataset which captured the effects of species-specific amplification efficiency and DNA

426  concentrations on both sequence read counts and frequency of non-detections (Figure 2).

427  Importantly, our results demonstrate that noise in metabarcoding datasets, like signal, is non-
428  random and can be accounted for [16].

429 Alone, metabarcoding data is insufficient to tease apart these complex interactions.

430 However, distinguishing signal from noise in metabarcoding datasetsis tractable using

431 independent estimates of amplification efficiencies and underlying DNA concentrations.

432  Amplification efficiencies can be estimated through either generating mock communities

433  [26,27], by amplifying a subset of samples multiple times at various numbers of PCR cycles

434  [25], or by including internal positive controls within each PCR [28]. Likewise, underlying DNA
435  concentrations can be estimated using qPCR or dPCR assays of key taxa or the metabarcoding

436  locusitsdf; or estimated using non-genetic independent abundance estimates such as the

21


https://doi.org/10.1101/2022.09.02.506420
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.02.506420; this version posted September 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

437  microscopy counts presented above. As demonstrated here, and in Shelton et al. [27], McLaren et
438 a.[26], and Silverman et al. [25], theinclusion of independent estimates of amplification

439  efficienciesand DNA concentrations allow for the delineation of signal from noise from

440 metabarcoding data sets. Further modeling efforts incorporating stochastic sampling of rare

441  molecules prior to PCR will allow for accurate quantification and identification of true absences
442  in metabarcoding data sets, greatly enhancing biological and ecological interpretation.

443 Furthermore, our analysis also underscores the importance of technical PCR replicatesto
444  quantify sequence variance in metabarcoding studies [64—66]. Without technical replicates, we
445  would not have been able to quantify the frequency of non-detections in our metabarcoding

446  datasets[17]. We demonstrate that non-detections may indicate low-relative-abundance starting
447  DNA concentrations regardless of observed read depth, and conversely, may indicate low

448  amplification efficiency regardless of starting concentration [27]. Thus, our results strongly

449  support the inclusion of technical replicates for metabarcoding studies, particularly for deriving
450  quantitative estimates.

451 Current best practices for gPCR and dPCR assays include numerous technical replicates
452  to help distinguish signal from noise [46,48]. However, we recognize that technical replication
453  dramatically increases the cost and effort of metabarcoding projects and may exhaust limited
454  DNA extracts and resources. Alternatively, technical replicates could be performed on a subset
455  of samples and the observed variance could be used to contextualize sequence read patternsin
456  thewhole dataset. However, such approaches come with a suite of assumptions, particularly

457  whether the pattern of species’ sequence counts behaves similarly across all samples and

458  environments/treatments. Future efforts to validate such approaches are clearly warranted.

22


https://doi.org/10.1101/2022.09.02.506420
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.02.506420; this version posted September 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

459 In addition, given the importance of subsampling in driving non-detections, our results
460  strongly suggest that field and laboratory processes that increase the absolute abundance of DNA
461  molecules will reduce the noise in observed amplicon sequence reads [67]. For example, using a
462  greater volume of DNA template for PCR reactions (3 pL vs. 1 pL) will reduce subsampling
463  driven non-detections across samples. Likewise, increasing the total amount of water filtered for
464 eDNA samples (3 L vs. 1 L) actsto concentrate DNA from the environment, similarly reducing
465  subsampling driven non-detections [68]. These are two of many examples of laboratory

466  protocols that may serve to increase the available number of DNA molecules and reduce the
467  impacts of subsampling rare molecules, consequently improving quantitative estimates from

468 amplicon sequence data.

469 The above mechanistic frameworks focus on processes from DNA extraction through
470  sequencing, but do not approach the myriad of factors that influence the amount of DNA

471  collected from the environment, gut, or other starting communities for metabarcoding.

472  Subgantial efforts have focused on understanding the effects of gene copy number, patchiness,
473  shedding and degradation rates, and the fate and transport of cellular DNA, among others, on the
474  amount/types of DNA collected from the environment [26,51,69]. Linking such research to the
475  growing body of work that quantifies sources of potential biasin the lab, including the present
476  study, isan important next step in understanding the relationship between biological signals and
477  observed sequence read counts.

478 We recognize that incorporating the additional laboratory analyses and technical

479  replicatesto better characterize metabarcoding results may not be feasible for all metabarcoding
480  applications. Many metabarcoding efforts are exploratory in nature, primarily focused on the

481  characterization of biodiversity in under sampled habitats including the deep sea, polar regions,

23


https://doi.org/10.1101/2022.09.02.506420
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.02.506420; this version posted September 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

482  remote alpineregions, etc. For such exploratory biodiversity surveys, the additional efforts

483  needed to achieve quantitative metabarcoding outlined above may not be practicable given

484  surveying and budget constraints. However, it isimportant to recognize that our framework

485  extends not only to quantitative metabarcoding but detection rates of taxa from metabarcoding
486  surveys. The expected detection rate (observed reads > 0) of a given taxon in metabarcoding data
487 isafunction of other speciesin the community, the amplification rate of the target species, the
488 amplification rates of other species, the proportional abundance of the target species, and the
489  absolute abundance of the target species as demonstrated in our empirical datasets above. Thus,
490 estimating the probability of detection from metabarcoding data alone is difficult in the abstract,
491  but isquitetractable given a set of estimated parameters for a particular sampled community.
492  Conversdy, interpreting metabarcoding results from exploratory applications within systems
493  with limited ecological context is challenging as species detection rates are a function of multiple
494  unsampled parameters.

495 Undoubtedly, addressing this shortcoming of compositional metabarcoding data requires
496 increased field and laboratory efforts. Such challenges are acute in under studied systems where
497  the creation of mock communitiesis particularly difficult with limited access to vouchered DNA
498 samples, let alone known species lists. However, exploratory metabarcoding studies do not

499  precludetherevisiting of quantitative metabarcoding approaches in the future, especially since
500 DNA extracts can be archived. For example, metabarcoding data can be generated first to

501 provide aninitial perspectiveinto community assemblages that then allows for the identification
502 and development of single species qPCR/dPCR assays and mock communities or variable PCR
503 targets. In summary, we argue that all future best practices of metabarcoding results incorporate

504  additional independent estimates of amplification efficiency, independent estimates of DNA
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505 concentrations, and technical replicates to better contextualize metabarcoding efforts. Given the
506 rapid declinein sequencing costs and steady improvement in the development and

507 implementation of molecular assays, such additional work istractable, opening the door to

508 adoption for routine application across metabarcoding studies to generate characterization of

509 underlying biological communities.
510 Conclusion

511  Ultimately, we demonstrate that variation in amplification efficiencies and underlying template
512 DNA concentration are responsible for a substantial portion of observed noise in metabarcoding
513 datasets. Thisstudy demonstrates the value of incorporating additional independent estimates of
514  amplification efficiencies and DNA concentration along with amplicon sequence data, providing
515 for the gpplication of routine statistical approaches and straightforward interpretation of observed
516 read patterns. Together with Shelton et al. [27], we provide aframework for establishing reliable
517  estimates of abundance from amplicon sequence datathat will be critical for extending the

518 application of this method to health and ecological questions.
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737  Supplement 1: A note on sampling depth and the probability of observing zer os.

738  Inthe metabarcoding literature, it is often asserted that if more reads are sampled, it is more
739  likely that rare variants will be observed. While thisistrue, the magnitude of the effect is likely
740 lessthan one would like and only meaningfully changes the probability for arelatively narrow
741 rangeof rarethings. This supplement provides some simple examples for how to do that

742  calculation.

743 Let usfocus on only the last step of the metabarcoding process: multinomial sampling.
744  Aswe areinterested in isolating the contribution of sampling depth we can assert that everything
745  prior to the sampling of DNA strandsis identical; only the sampling depth changes. So for

746  illustration, let’s discuss a single taxon (“A”) that comprises 0.0001% of the DNA (1 in 10,000
747  seguences) of the post-PCR product. We will assume that multinomial sampling is a decent

748  approximation to the process (i.e., there are so many DNA copies floating around removing a
749  few doesn’t materially change the probability of observing a given taxon; for those who are

750  uncomfortable with this assumption, the below can be reframed using the hypergeometric

751  digribution in place of the multinomial). For a single taxon, the multinomial collapses to the
752  binomial (i.e., we can think of many taxa collapsing to two groups: taxon A and not taxon A).

753  The probability mass function for the binomial is:

n!
kl(n-k)!

754 p(k|m,n) = m*(1 —m)"Fk (2)

755  where k isthe number of “successes’ (observations of taxon A by the sequencer) and nisthe
756  number of sequencesread. We areinterested in asingle value here: what isthe probability of
757 k=0 (i.e. taxon A was not observed) as the number of sequences examined (n) increases. First,
758  simplify for the case k=0

759 p(k = 0|m,n) = (1—m)" )
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760 thenpluginm = 0.0001 arange of values for sampling depth(below | use 10 thousand, 100

761  thousand, and 1 million reads):

762 p(k = 0|r = 0.0001,n = 10,000) = (1 — 0.0001)1°°% = 0.367861 3)
763 p(k = 0|r = 0.0001,7n = 100,000) = (1 — 0.0001)°00°° = 0.00045377

764 (4)

765 p(k = 0|r = 0.0001,n = 1,000,000) = (1 — 0.0001)1000000 — 3.7 5 10~*4
766 (5)

767  Sofor aspecies that israre we go from seeing 1 or greater sequences with probability of 0.64
768  (1-0.36) at 10,000 readsto seeing it with almost certainty at 100,000 or morereads. Let’sdo the

769 calculation for ararer sequence.

770 p(k = 0| = 0.000001,n = 10,000) = (1 — 0.000001)1°°%° = .99 (6)
771 p(k = 0| = 0.000001,n = 100,000) = (1 — 0.000001)1°0°° =090  (7)
772 p(k = 0]r = 0.000001,7 = 1,000,000) = (1 — 0.000001)1002000 — 0 367
773 (8)

774  Sofor asequence that occurs at arate of 1 inamillion you go from observing 0 99% of the time

775  with asampling depth of 10,000 readsto 90% at 100 thousand reads to only 36% at 1 million

776  reads.

777 Going the other direction, let’s look at something that is more common, say 1 in 1,000:
778 p(k = 0|r = 0.001,n = 10,000) = (1 —0.001)*%%%° = 0.00045377 9
779 p(k = 0|r = 0.001,n = 100,000) = (1 —0.001)1%999° =37 x 10~** (10)
780 p(k = 0|r = 0.001,n = 1,000,000) = (1 — 0.001)1000000 — (12)

781  Thus, you are almost certain to see at least one copy at 10,000 or greater read depths.
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782 So what does this mean in general? Basically, you will see rarer things at higher read
783  depths but moving from aread depth of say 10,000 to 1 million will only meaningfully change
784  non-detection of very rare sequence variants (sequences that make up somewhere between 1 in
785 10,000 and 1 in 1 million copies). If you think that there are alot of taxa that you care about are
786 inthisvery rare zone, it may make sense to do more sequencing. But things that are extremely
787  rare(occur at afrequency of lessthan 1 inamillion) still will not be detected. Note that things
788  can berare after PCR because they are rare in the sample or because they are poor amplifiers, or
789  both. One caveat to the description above isit only includes the probability of observing exactly
790  zero. Many researchers use a higher threshold to determine presence (say k > 10, for example).
791  Calculating k> K isnot quite as easy as p(k=0) in that more terms are involved, but it is

792  certainly not ahard calculation and invol ves summing the probability of k=0 to k=K,

n!

793 p(k =2 K|m,n) =1-Y(=§ PRTEY

k(1 —m)nk (12)

794
795
796
797
798
799
800
801
802
803

804
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805 Supplemental 2 Alternate simulation results

806 Changing N _pcrl

807 Itisimportant to understand how changing some of the parameters in the ssimulation affect the
808  probability of non-detection. In Fig. S3.1 we used N, = 20 rather than N,,.,;, = 35 presented
809 inthe maintext. As N, declines, the probability of non-detects becomes more similar among
810 species and only species with amplification efficiencies that are much lower than the average a

811 (inthiscasea; < 0.4) haveincreased non-detection probabilities (Fig. S3.1A).
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812 DNA concentration (&; copies / uL) DNA concentration (i, copies / uL)
813 Figure S3.1. Non-detects Driven By Both DNA Concentration and Amplification
814 Efficiency.
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815 The probability of non-detection (p(Y=0)) is shown for acommunity of 50, equally

816 abundant taxa with the amplification efficiency distribution shown inset in each panel.
817 Thissimulation uses N, = 20 (see Fig. 1 for the same simulation but with N,,,.; =
818 35). The amount of among-taxa variation in amplification efficiency varies from highly
819 variable (A; y=5) to moderate variation (B: y=10) to low variation (C: y=100) to

820 effectively no variation (D: y=1,000,000). Both subsampling and amplification

821 efficiencies influence the rate of non-detection. The probability of observing no DNA ina
822 given technical replicateis highest at low DNA concentrations (<10 copies /uL).

823 However, non-detects are possible for species with low amplification efficiencies and
824 very likdy (p(Y=0) > 0.5) for amplification well below average (in this case

825 approximately a; < 0.3).

826

827  Simulating uneven DNA concentrations

828  The base simulation presented in the main text assumes that the starting DNA concentration for
829 eachtaxon isequivalent (i.e, for ten taxa, each comprises 10% of the DNA in asample). While
830 thisassumption makesit easier to visualize the simulation results, it clearly does not represent
831 natura communities which have skewed abundance distributions (some taxa are common while
832 othersarerare). Toillustrate the consequences of a skewed abundance distribution we simulated
833 acommunity of 20 taxa with 2 taxa each comprising 20% of the DNA, 8 taxa each with 5% of
834 the DNA, and 10 taxa with 2% of the DNA. Otherwise, we followed the simulation parameters
835  described in the main text. Figure S3.2 presents the patterns of non-detections for asingle

836 community of 20 taxa (Figure S3.2A) with large among-species variation in amplification

837 efficiency (y = 5) and for 20 communities of 20 taxa each overlaid on one figure (Fig. S3.2B).
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Facets show the true starting proportion within each community (proportions of 0.02, 0.05, or
0.20).

As shown in the even community simulated in the main text, for al taxa non-detection
increases as DNA concentration declines and taxa with lower amplification rates show higher
probability of non-detection. But thereis clearly an interaction between the community
proportion and amplification efficiency which affects the probability of non-detection.
Specifically, for two taxa with equivalent amplification efficiencies, the more abundant taxa
(community proportion of 0.20) have a much lower probability of non-detection than arelatively
rare species (community proportion of 0.02; Fig. S3.2B). Indeed, for taxa with a community
proportion of 0.02, at a constant DNA concentration, p(Y = 0|A=10) >0.5when a; < 0.45. In
contrast, for taxa with community proportions of 0.20, p(Y = 0|4=10) > 0.5 only occurred for
one taxain the 20 simulated communities with a very low amplificiation efficiency (a; = 0.19).

Thus both community proportion and amplification efficiency affect the probability of
non-detection. In broad strokes, amplification efficiency will play a more important rolein
determining non-detection when taxa are rare relative to other speciesin asample. The
importance of amplification efficiency increases with PCR protocols that use alarge number of
PCR cycles. Non-detection of relatively common taxain acommunity will generally be less
influenced by relative amplification efficiency, but non-detection can still occur if amplification

efficiency is sufficiently low.
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859 Figure S3.2. Non-detects Driven By Both DNA Concentration and Amplification
860 Efficiency.
861 The probability of non-detection (p(Y=0)) is shown for acommunity of 20 taxawith 4
862 taxa comprising 0.20 of theinitial DNA, 8 with 0.05 of the DNA, and 10 species
863 comprising 2% of the DNA across arange of initial DNA concentrations. A: Presents
864 results for a single 20 taxa community with facets representing the three abundance
865 categories. B shows results for 20 communities of 20 taxa each to illustrate general
866 patterns. For all simulationswe use N,,,.; = 35 and afixed amount of among-taxa
867 variation in amplification efficiency (y = 5). Clearly, relative abundance influence the rate
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868 of non-detection with relatively rare taxa (those with 0.02 having larger probabilities of

869 non-detection than common taxa (0.2) with equivalent amplification efficiencies (colors).
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