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Abstract

Non-coding RNAs (ncRNAs) are transcribed throughout the genome and provide regulatory inputs to gene
expression through their interaction with chromatin. The genomic targets and regulatory mechanisms of
most ncRNAs remain unknown. Using chromatin-associated RNA sequencing (ChAR-seq) we obtained
a global map of RNA-chromatin interactions, transcriptome and genome-wide, in human embryonic stem
cells and definitive endoderm. We defined the overall architecture of the RNA-chromatin interactome
that encompasses all long non-coding RNAs, intronic RNAs, as well as unannotated RNAs derived from
regulatory elements, transposable elements, and intergenic regions. We show that the interactome is
cell state specific, involves functionally diverse classes of RNAs, and can be accurately predicted by a
simple model accounting for RNA expression and distance to their DNA targets. We show that nearly all
ncRNAs exclusively interact with genes in close three-dimensional proximity to their transcription locus. We
identified a small number of RNAs that deviate from that behavior and interact with many loci across the
genome. By relating the changes in the interactome during differentiation to changes in gene expression,
we demonstrate that activation or repression of individual genes is unlikely to be controlled by the activity
of a single ncRNA.
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Introduction

Cell identity is determined by the precise execution of lineage-specific gene expression programs’.
These programs are controlled by coordinated signals from regulatory DNA sequences, transcription
factors, histone modifications and variants, and 3D genome organization. The role of RNAs in
modulating these programs is increasingly appreciated®3. Many different RNAs bind chromatin,
collectively termed here chromatin-associated RNAs (caRNAs). These include long non-coding RNA
(IncRNAs)*°, heterogeneous nuclear RNAs (hnRNAs)®%’, enhancer-RNAs (eRNAs)&%10  transposable
element (TE)-derived RNAs'"-1213.14 " and other chromatin enriched RNAs (cheRNAs)'>16.  Yet, the
function of these RNAs on chromatin remains largely unknown.

Several examples have demonstrated that IncRNAs can orchestrate complex regulatory circuits.
For example, XIST is a core regulator of X-chromosome inactivation'”, and KCNQ10OT1 mediates
allele-specific silencing of a group of imprinted genes near its locus'®'%. With advances in genomics
methods, the proposed regulatory roles of caRNAs have expanded to include RNA species other than
IncRNAs. For example, eRNAs can affect expression of neighboring genes through modulation of RNA
polll elongation?%2", or recruitment of transcription coregulators®?23. Nascent pre-mRNAs can interact
with chromatin architectural proteins and locally regulate chromatin compaction®24, and TE-derived RNAs
can silence immune response genes and hamper the T-cell effector functions®. Furthermore, many
proteins involved in controlling chromatin state?627:2829.30 and topology 3’3 have RNA-binding activity,
establishing a putative mechanistic link between caRNA and gene regulation. Despite these examples
and general models, which caRNAs have gene regulatory roles and the mechanisms through which they
act is not well understood 2.

Our ability to understand transcription regulation by caRNAs is hampered by one key gap in our
knowledge: we do not know, for all but a select few RNAs, the genomic loci where these RNAs act.
This knowledge gap makes it challenging to unravel the network of interactions between caRNAs and
genes. Furthermore, this network of interactions is likely highly complex. The number of caRNAs
greatly exceeds that of proteins. Annotated IncRNAs alone represent ~20,000 RNAs (Gencode v29),
and the number of regulatory elements is estimated to be over 900,0003334, Although the transcriptional
activity of these regulatory elements hasn’t been fully characterized, conservative estimates based on a
subset of promoters and enhancers from FANTOMS indicate at least 100 000 such elements generate
RNAs 35136 Transcription of both IncRNAs3"3 and regulatory elements®39:36:35 exhibit strong tissue
specificity such that the ncRNA-gene interaction network is also likely cell-state dependent, although this
remains to be experimentally tested. More generally, pervasive transcription outside of protein-coding
regions provides a large sequence space with potential regulatory activity%#'42. Given the suggested
associations between sequence or expression variations in IncRNAs, TE-derived RNA, or eRNAs and
human health, characterization of the network of human caRNA-gene interactions at the full transcriptome
scale represents an important goal43:25:44:45,46

Here, we used chromatin-associated RNA sequencing (ChAR-seq) to map the RNA-chromatin interactome
in H9 embryonic stem cells and definitive endoderm#7:484% " From these data we characterize the global
architecture of this interactome, present a model which predicts the majority of RNA-DNA chromatin
interactions based on RNA-target distance, and highlight RNAs deviating from this model. Finally, we
generate an all-to-all caRNA-gene interaction network linking every gene to the set of caRNAs with
which it interacts based on physical proximity. Our network encompasses IncRNAs, as well as many
unannotated intergenic RNAs and could help prioritize specific caRNAs for future functional validation
studies. Finally, we analyzed the dynamics of the interactome during differentiation to shed light on the
potential mechanisms by which caRNAs may regulate genes.

Results

To detect caRNAs and map their interactions with the genome, we applied our recently developed assay,
ChAR-seq*®4749 a proximity-ligation method that captures and sequences RNA-DNA contacts across
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the genome and transcriptome (Fig. 1a). We performed ChAR-seq in human H9 embryonic stem cells
(ES) before and after differentiation into definitive endoderm (DE) to understand how changes in the
caRNA-chromatin interaction network might relate to activation or repression of cell-state specific genes
upon differentiation. We validated our cell differentiation system by qPCR against cell-state marker
genes and immunostaining, which revealed pure (>99%) ES and DE cell populations (Extended Data
Fig. 1a,b)%°.

We performed deep sequencing of the ChAR-seq libraries to obtain over 900 million reads per cell state
across 2 replicates. We computationally split each read into a RNA- and a DNA-derived sequence and
selected reads that passed stringent quality filters with both the RNA and DNA sequences mapping to
unambiguous loci (Supplementary Fig. 1 and Methods). We thereby obtained the RNA identity and
genomic target for nearly 200 million unique RNA-DNA contacts (Supplementary Fig. 2).

We first analyzed the global composition of the caRNA population. We observed a high level of RNAs
derived from introns (Fig. 1b), which likely reflects the capture of RNA during nascent transcription while the
RNA is tethered to chromatin through polymerase, or other forms of chromatin retention of introns such as
interaction with RNA binding proteins®':°2453 _ caRNAs were enriched for non-coding RNAs, including long
non-coding RNAs (IncRNAs) and other short non-coding RNAs encompassing several functionally distinct
subtypes of RNAs such as small nuclear RNAs (snRNAs) and small nucleolar RNAs (snoRNAs; Fig. 1c,
Extended Data Fig. 2a). Overall, caRNAs are highly diverse, with as many RNAs represented at above 0.1
Fragment Per Million (FPM, ~10 reads at our sequencing depth) in the caRNA transcriptome as in the total
RNA transcriptome (Extended Data Fig. 2 b-d, Supplementary Tables 1,2). To normalize the composition
of the caRNA population to expression levels, we assigned each RNA a chromatin association score, which
we defined as its relative abundance in the ChAR-seq versus total RNA-seq data (Methods). We found
that nearly all introns and half of all ncRNAs, including half of the ~5,000 IncRNAs detected, had over
3-fold enrichment on chromatin, in agreement with prior characterizations of caRNA®*'6 indicating that
ncRNAs tend to have nuclear or chromatin localization (Fig. 1d, Extended Data Fig. 3a-d, Supplementary
Table 3). Thus, while IncRNAs are often considered prime candidates for potential chromatin regulatory
roles®2*, our data indicate that non-intronic regions of IncRNAs only constitute approximately 3% of the
caRNA population, and less than 1% when excluding the top 10 most abundant IncRNAs. This result
prompted us to perform a broad analysis of RNA-DNA interactions, including all caRNAs, rather than to
focus exclusively on IncRNAs.

Because the chromatin association patterns and potential chromatin activity of exon- and intron-derived
RNAs might be distinct, we generated separate RNA-DNA contact maps for exons and introns (Fig. 1e).
Our RNA-DNA contact maps were highly reproducible (Extended Data Fig. 4a) and showed high
correlation between replicates and lower correlation between cell states, indicating that the interactome
is dynamic during differentiation (Extended Data Fig. 4b). In both ES and DE cells and across exons
and introns, we uncovered several features of the RNA-DNA interactome mirroring those described in
our prior work on Drosophila melanogaster and by others®%48.56.5457 " First we noted a higher density
of intrachromosomal compared to interchromosmal RNA-DNA contacts, reminiscent of the properties
observed at the DNA level by Hi-C8, and likely reflecting the chromatin organization into chromosome
territories®°. Furthermore, the average contact frequency between an RNA and a genomic target dropped
sharply as a function of the distance between the RNA locus and the target, with an average ~100-fold
lower contact density 50-100 kb away from the transcription locus compared to at the transcription locus
(Extended Data Fig. 4c). Finally, we observed 3 classes of RNAs with distinct chromatin association
patterns (Fig. 1). i) Many RNAs localized predominantly at or near their transcription locus. ii) Another
set of RNAs, including the MALAT1 RNA, localized across the genome, as previously observed®6:60,
iii) The third class of RNA, which includes XIST, is characterized by chromatin interactions across a
single chromosome. The localization of XIST across the X chromosome was more apparent in DE cells,
concomitant with its transcriptional activation and the initiation of X chromosome inactivation during early
embryonic development®'. We confirmed by RNA fluorescence in situ hybridization microscopy that the
nuclear localization of select RNAs from these classes was consistent with their classification by ChAR-seq
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124 (Extended Data Fig. 5). Altogether, these RNA-chromatin interactomes identify numerous RNAs in
125 different functional classes that dynamically reorganize dependent upon cell state and demonstrate that
126 most caRNAs remain associated with chromatin near their sites of synthesis.
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Figure 1. Global mapping of RNA-chromatin interactions during stem cell differentiation. a, Schematic of the strategy used
to map RNA-DNA contacts across the transcriptome and genome by ChAR-seq, highlighting the key steps of the workflow. b-c,
Composition of the caRNAs identified by ChAR-seq compared to the total RNA population determined by total RNA sequencing.
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Figure 1 (previous page). d, Scatter plots showing the chromatin association scores for individual RNAs originating from
annotated exons, as a function of the RNA level in the caRNA population. Chromatin enriched and depleted RNAs were
determined using DESeqg2 (FDR 0.05, fold change threshold 3x). Pie charts summarize the fraction of chromatin enriched
and chromatin depleted RNA in each functional RNA type. The numbers within each pie chart indicate the total number of RNAs
in that category. e, RNA-DNA contact maps in ES and DE cells for the top 200 most abundant caRNAs (according to their
mean expression in ES and DE cells) on Chr7 and Chr8. Maps are displayed at a resolution of 1 RNA per row and 1 Mbp of
genome space per column. Color represents contact density defined as the number of contacts between an RNA and a genomic
bin, normalized for sequencing-depth and size of the genomic bin (CPKM: Contacts Per Kb in target genomic region per Million
reads). Contacts made by exonic and intronic RNAs are shown in left and right maps, respectively. f, Interaction profiles along
the genome for SOX17, PVT1, MALAT1 and XIST exons, and for SOX17, PVT1 and SLC26A3 introns, illustrating 3 major classes
of interaction profiles: RNAs localized predominantly near their transcription locus (SOX17, PVT1 exons and introns), spreading
across a single chromosome (XIST), and across the genome (MALAT1, SLC26A3 introns)

A highly cell-state specific population of unannotated RNAs localizes on chromatin

Strikingly, we identified unannotated RNAs that did not overlap with any known genes (as of Gencode
v29) in 14% of all RNA-DNA contacts—a proportion similar to that of exons for annotated RNAs (Fig. 1b).
To further characterize the nature of these unannotated transcripts, we used the StringTie de novo
transcriptome assembler to identify individual transcription units (Fig. 2a)%?. We uncovered 78,314
data-inferred transcription loci, which we hereafter refer to as unannotated transcribed loci (UTLs), 30,442
of which were above 0.1 FPM in ES or DE cells (Extended Data Fig. 6a-b, Supplementary Table 4). Thus,
the number of UTLs is comparable to the 22,475 (resp. 23,832) Gencode transcripts with exons (resp.
introns) above 0.1 FPM. We examined the genomic context of these RNAs and noted that UTLs were
composed of distinct functional classes of RNAs (Fig. 2b). Some UTLs were immediately continuous with
the 3’ end of active genes (e.g., UTL69162), thus likely originating from transcriptional read-through, as
reported in prior studies®364. Other UTLs overlapped at their 5* end with known regulatory elements (e.g.,
UTL69163), as indicated by their relative proximity to gene transcription start sites (TSSs), high ATAC-seq
signal, H3K27ac levels, and their overlap with annotations from the ENCODE Registry of Regulatory
Elements v332. These cis regulatory element-derived RNAs (CRE-derived RNAs) are likely a mixture of
enhancer RNAs (eRNAs) and promoter upstream RNAs®%66. Another subset of RNAs mostly overlapped
or were immediately downstream of TEs (e.g., UTL69657), in agreement with prior studies showing that
TEs are a source of RNAs that associate with chromatin''-2512_ A fourth and fifth category of UTLs did
not have any of the above features but were either antisense to known genes or localized in intergenic
regions. Finally, some UTLs had sequence similarity with known transfer RNAs (tRNAs), snRNAs other
small RNAs and tended to be very abundant (Supplementary Fig. 3). These UTLs may derive from either
mature or unprocessed transcripts from these tRNAs and snRNAs complete gene units®’. Guided by
these observations, we classified the UTLs based on their proximity to the 3’ or 5’ ends of genes, their
overlap with transposable elements, snRNAs, or tRNAs, and their overlap with cis regulatory elements
annotated in the Encode Registry of Regulatory Elements®3, yielding 7 categories of unannotated RNAs
(Methods). We found that on average across ES and DE cells, ~32% of the reads coming from UTLs
were classified as readthrough RNAs and ~27% as cis regulatory element-derived (Fig. 2c). Over 60% of
the CRE-derived RNAs were from enhancer elements (Extended Data Fig. 6a). Four percent of the UTL
reads were repeat-derived transcripts, roughly evenly distributed between LTR, SINE, and LINE elements
(Fig. 2c, Extended Data Fig. 6a). Overall, the expression levels of UTLs were low, but similar to those of
IncBRNAs (Extended Data Fig. 2b, Extended Data Fig. 6b-c).

Although these RNAs were present in the total RNA population, chromatin association score analysis
indicated that all categories of UTLs were enriched on chromatin (Fig. 2d, Extended Data Fig. 6a,
Supplementary Fig. 4). We also found that UTLs were highly cell-state specific in both the total RNA
and caRNA populations (Fig. 2e). 15-49% of UTLs were up- or down-regulated in the caRNA and total
RNA populations compared to only ~12% for mRNAs and IncRNAs. The high cell state specificity of
CRE-derived RNAs in particular is consistent with prior studies®’. We generated RNA-DNA contact
maps specifically for UTLs, which showed patterns similar to those observed for exonic and intronic RNAs
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(Fig. 2f). We found both UTLs which were locally restricted near their locus and UTLs that spread across
the whole genome (Fig. 2g). This result prompted us to perform a broad analysis of RNA-DNA interactions,
including all caRNAs, rather than to focus exclusively on IncRNAs.
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Figure 2. Cell state specific unannotated RNAs make up a large fraction of the caRNAs. a, Schematic of the method
used to catalog unannotated RNAs by identifying transcription units using StringTie2. b, Genome tracks showing the chromatin
context of 3 representative uannotated transcription loci (UTL). Left panel: UTL69162 and UTL69163, respectively downstream
and antisense to RB1CC1 are classified as a readthrough RNA and CRE-derived RNAs. Right panel: UTL69657 is classified as a
repeat-derived RNA due to its overlap with a LINE element. In both left and right panels, the top 2 tracks display the strand-specific
genome coverage of the RNA-derived side of the ChAR-seq reads in ES and DE replicate 1 (+ strand ES in dark blue, - strand ES
in light blue, + strand DE in dark yellow, - strand ES in light yellow). Next two tracks display the strand-specific genome coverage
of the total RNA-seq data. ¢, Relative composition of the chromatin-associated UTLs in the 7 annotation classes. d, Scatter plots
showing the chromatin association scores for individual UTLs and their abundance in the caRNA population. Chromatin enriched
and depleted UTLs were determined using DESeqg2 (FDR 0.05, fold change threshold 3x). Pie charts summarize the fraction of
chromatin enriched and chromatin depleted UTLs in each category. Numbers within each pie chart indicate the total number of
RNAs in that category. e, Percentage of genes upregulated and downregulated in DE vs ES cells in the caRNA transcriptome
and for each RNA category. Up- and downregulated RNAs were identified using DESeq2 (FDR 0.05, fold change threshold 3x).
f, RNA-DNA contact maps in ES and DE cells for the top 200 most abundant UTLs on Chr7 and Chr8, displayed at a resolution
of 1 RNA per row and 1 Mbp of genome space per column. g, Genome-scale chromatin interaction profiles of 4 UTLs showing
similar localization patterns as annotated RNAs.

RNA-DNA interactome dynamics is driven by caRNAs transcription dynamics rather than
relocalization of caRNAs

We next quantified the dynamics of the RNA-chromatin interactome during ES-DE cell differentiation.
To identify cell-state dependent interactions, we binned the DNA contacts of each RNA into 100 kb or
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1 Mb intervals and performed a quantitative analysis analogous to differential expression analysis to
obtain the fold change of each contact in ES versus DE cells and its associated statistical significance
(Methods). In total, after filtering the data to only include contacts with at least 10 counts in at least two
samples, we tested ~100,000 exon-chromatin contacts, ~300,000 UTL-chromatin contacts, and 1.6 million
intron-chromatin contacts (all at 100 kb resolution) for differential representation in ES vs DE cells. The
corresponding maps are shown in Fig. 3a. While we observed few dynamic RNA-chromatin interactions far
from the RNA transcription locus (TL) in the exon and UTL maps, zooming in on a 10 Mb window around
each RNA TL at 100 kb resolution revealed widespread changes in the interactome for all categories of
RNAs. At 100 kb resolution ~2% of interactions involving exons and ~7% of interactions involving introns
were up- or down-regulated in DE versus ES cells (Fig. 3b). More substantial changes were observed at
a lower resolution of 1 Mb per genomic bin (Supplementary Fig. 6).

The interactome dynamics during differentiation may be driven by three non-mutually exclusive effects
(Fig. 3c). First, an RNA may increase or decrease in overall abundance, resulting in proportionally
increased or decreased binding levels on chromatin. Second, an RNA may modulate its affinity for
chromatin, for instance, through RNA modifications or through changes in affinity with RNA-binding
proteins mediating its interaction with chromatin. Third, an RNA may relocalize from one genomic site
to another. The first two modes of dynamics would result in similar binding profiles in ES vs DE cells, albeit
with an overall scale shift in binding levels. In contrast, the third mode implies changes in the RNA binding
pattern to chromatin.

To test these models, we first compared the chromatin association score of each RNA in ES versus DE
cells. Remarkably, the chromatin association scores remained mostly unchanged during differentiation,
particularly for IncRNAs, with only 35 IncRNAs showing evidence of changes in their chromatin affinity
(Fig. 3d, left panel, Supplementary Table 3). Surprisingly, a larger fraction of UTLs compared to ncRNAs
(~8% of CRE-derived UTLs and ~5% of intergenic and antisense UTLs) had significant changes in their
chromatin association score between ES and DE cells (Fig. 3d, right panel), yet this fraction remained
small. Thus, while individual RNAs show different propensities to interact with chromatin, this propensity
is not modulated during differentiation and seems to be a property of the RNA itself. This result rules out
model 2 for the majority of caRNAs.

Next, we examined whether the dynamics of specific interactions between an RNA and a chromatin locus
can be explained by the transcriptional dynamics of the RNA itself. We compared the true differential
contact maps to differential contact maps that would be observed if the frequency of each RNA-DNA
contact was proportional to the total abundance of the corresponding RNAs in the caRNA population
(Methods). These two differential interaction maps were highly similar (Fig. 3e). We further quantified
the differences between these maps by identifying specific RNA-DNA contacts whose frequency changes
between ES vs DE cells at a greater level than explained by the changes in RNA expression (Methods).
We found no such contacts in the exon-DNA interactome and a negligible number of them in the UTL-DNA
interactome (Fig. 3f). Thus, the bulk of the changes in the RNA-DNA interactome appear to rely on
transcription level regulation and expression differences in ES vs DE, rather than on modulation of an
RNA’s affinity for chromatin or changes in an RNA’s contacts to different DNA binding sites.
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Figure 3. The RNA-DNA interactome dynamics is controlled at the transcription level. a, Differential contact maps showing
the changes in the RNA-DNA interactome on Chr7 and Chr8 during cellular differentiation, for the same top 200 most abundant
exonic RNAs, intronic RNAs, and UTLs as those shown Fig. 1e and Fig. 2f. For each RNA category, the left map shows the log»
fold change (LFC) in the frequency of each RNA-DNA contact, as computed by DESeq2 (shrunken LFC estimates, see Methods).
x-axis resolution is 1 Mb as in Fig. 1e and Fig. 2f. The right map shows a zoom in of the left differential map in a 10 Mb window
centered at the Transcription Locus (TL) of each caRNA, and displayed with an x-axis resolution of 100 kb.
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Figure 3 (previous page). b, Quantification by RNA class of the percentage of interactions upregulated in DE or ES cells amongst
all interactions tested in that class (interactions with >10 counts in at least one replicate in ES or DE), at 100 kb resolution (bottom
panel). ¢, Schematic of 3 models that can explain changes in the DNA contact profile of an RNA during differentiation. d, Scatter
plot showing the chromatin association score for individual IncRNAs exons (left panel) and UTLs (right panel) in ES versus DE
cells. All of the caRNAs with an expression level above 0.1 FPM in both ES and DE cells are shown. Pie charts summarize the
fraction of RNAs with significantly higher chromatin association in ES or DE cells (fold change >3, FDR 0.05), and for each RNA
class. Numbers within the pie charts indicate the total number of RNAs in that class (FPM >0.1) and the number of RNAs with
differential chromatin association. e, Differential contact maps observed versus those explained by transcription dynamics only
for the 50 most abundant IncRNAs (left) and UTL (right) on ChrX. Labeled genes are the top 12 most abundant genes. x-axis
resolution is 100 kb, and a 10 Mb window centered around each RNA TL is shown. f, Percentage of differential interaction not
explained by differential RNA expression, at 100 kb resolution, relative to the total number of interactions tested within the RNA
class.

A select number of RNAs interact with the genome broadly

We hypothesized that the dynamic RNA-DNA interactome contains a mixture of i) functional interactions
linked to regulatory activity of the RNA on chromatin, and ii) coincidental interactions due to transient
proximity of the RNA to chromatin, for instance, during nascent transcription or diffusion within the nucleus.
We thus analyzed the contact patterns of individual RNAs to detect features consistent with functional
interaction, beginning with features at the chromosome scale. The nuclear speckle-associated IncRNA,
MALAT1, and the XIST RNA are two well studied IncRNAs which act to regulate gene expression broadly
across the genome or throughout the X chromosome®860:69 Yet, it is not known which other RNAs have
similar widespread interaction patterns on chromatin.

To systematically identify all RNAs with genome- or chromosome-wide associations, which we termed
type | and type Il RNAs (Fig. 4a), respectively, we developed two metrics, a trans-delocalization and
a cis-delocalization score (Fig. 4b and Methods). The trans-delocalization score of an RNA is loosely
defined as the ratio of the number of contacts on chromosomes other than its chromosome of origin
(trans chromosomes) to the number of contacts on its own chromosome. This score thus quantifies
the tendency for an RNA to be found on frans chromosomes (Supplementary Table 5). Similarly, the
cis-delocalization score assesses the tendency for an RNA to spread far from its locus on its source
chromosome by quantifying the ratio of the number of contacts over 1 Mb away from its transcription
locus (TL) to the number of contacts within 10 Mb of its TL (Supplementary Table 6). We reasoned that
type | RNAs must have high trans- and cis-delocalization scores, while type Il RNA must have a high
cis-delocalization score but a low trans-delocalization scores. Thus, although other patterns may yield
high delocalization scores (e.g. an RNA which targets a single locus on a frans-chromosome may have a
large trans-delocalization score), we can use these metrics to screen for candidate RNAs with type | and
type Il patterns. We found that IncRNAs with large frans-delocalization scores (Fig. 4e, left panel) included
MALAT1, the pTEFb-associated RNA, 7SK, and the telomerase RNA component, TERC, which all have
established genome-wide chromatin regulatory functions, thus validating our approach’%7"-72,

We found that functionally distinct classes of RNAs had different distributions of delocalization scores
(Fig. 4c, Supplementary Table 7). LncRNAs had a wide range of delocalization scores, with a distribution of
scores that mirrored those of mMRNAs. In contrast, SnRNAs, snoRNAs, tRNA-derived and snRNA-derived
UTLs had globally high cis- and trans-delocalization scores, indicating that RNAs in these classes interact
with loci throughout their source chromosome and across the whole genome. We observed the opposite
behavior for CRE-derived RNAs and, to an even greater extent, for readthrough RNAs, which had mostly
negative cis- and trans-delocalization scores, demonstrating that these RNAs tend to remain near their
locus of origin. We also noted a negative-shifted distribution of delocalization scores for introns of both
mRNAs and IncRNAs (Extended Data Fig. 7a). For ~77% of individual IncRNAs and 97% of individual
mRNAs, the trans-delocalization scores of their introns were lower than those of their exons (Extended
Data Fig. 7b-c). Thus, introns tend to remain in closer proximity to their source locus.

Interestingly, repeat-derived RNAs had globally high cis- and frans-delocalization scores in ES cells
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and low cis- and trans-delocalization scores in DE cells (Fig. 4c). Thus, in ES cells specifically, many
repeat-derived RNAs tend to localize away from their locus.

To identify RNAs with extreme association scores, we applied an empirical Bayes method using mRNAs
as a training set, which essentially identified RNAs in the 5% right-tail or the 5% left-tail of the mRNA
score distribution (Methods). We thus created a complete catalog of RNAs with candidate chromosome-
or genome-wide association patterns, and another catalog of RNAs that remain localized within a 10 Mb
window around their transcription locus or on their own chromosome, which we termed ultra-localized
RNAs (from a cis- or trans-chromosomal perspective, Supplementary Table 8). As expected, >50% of
snRNAs, snoRNAs, tRNAs,and snRNAs were classified as trans-delocalized and >70% of readthrough
RNAs were classified as ultra-localized (Fig. 4d). Surprisingly, out of 1,289 ncRNAs above 1 FPM with
sufficient signal to compute delocalization scores (Methods), we detected only 22 IncRNAs (1.7%) with
cis- or trans-delocalized patterns in either ES or DE cells (Fig. 4d and Fig. 4e, left panel). In contrast, we
found (excluding tRNA-derived and snRNA-derived UTLs) 60 UTLs in DE cells and 836 UTLs in ES cells
and with cis- or trans-delocalization patterns, including 349 repeat-derived RNAs, and several hundreds of
intergenic or CRE-derived UTLs (Extended Data Fig. 8a). Our catalog of IncRNAs contained the known
broadly acting RNAs discussed above.

Importantly, we discovered new candidate IncRNAs with potential genome-wide regulatory functions,
including the mitochondrial RNA processing endoribonuclease RNA, RMRP, which is implicated in
rRNA maturation’37446 the Ribonuclease P RNA Component H1, RPPH1, which is involved in tRNA
processing’>’®, two isoforms of the Vault RNA, VTRNA1-1 and VTRNA1-3, and a large number of UTLs.
We validated the delocalization score analysis by directly examining the ChAR-seq signal of these RNAs,
which revealed their association across the genome (Fig. 4f). The delocalization of these RNAs was
not explained by their abundance. Although MALAT1, 7SK, and RMRP were highly abundant, other
delocalized RNAs were all below 10 FPM. Furthermore, many abundant ncRNAs had low delocalization
scores (Fig. 4e, right panel). To confirm that the broad patterns detected by our delocalization score
approach were not random or due to non-specific interactions, we performed metagene analysis centered
on select genomic features. We detected enrichment of snRNAs at RNAPII occupancy loci (Extended
Data Fig. 8b), where MALAT1 and 7SK were also enriched, consistent with the role of these RNAs in
cotranscriptional splicing and transcriptional elongation®®7%, Together, our data show that broadly localized
RNAs are rare amongst annotated IncRNAs, but we detected a large repertoire of UTLs with potential
global chromatin regulatory roles, specifically in ES cells.

While our catalog contained RNAs that were identified as significantly delocalized in cis but not in trans,
we noted that amongst these RNAs, all but XIST also had a high trans-delocalization scores, albeit
below the FDR threshold for classification as trans-delocalized. Generally, across all RNAs, the cis-
and trans-delocalization scores were strongly correlated, indicating that RNAs that localize broadly on
their own chromosomes also interact broadly with the rest of the genome (Fig. 4g). Remarkably, XIST
was the only exception to this rule and was the only RNA which was simultaneously delocalized in cis
and ultralocalized in trans, consistent with its known localization throughout its source chromosome X
(Fig. 4g-h). We concluded that XIST is unique in these cell types in its ability to interact with an entire
chromosome while being excluded from other chromosomes.

We next looked at changes in RNA delocalization in different cell states. We found that the delocalization
scores were highly correlated between ES and DE cells, even for RNAs that were differentially abundant
across cell states (Fig. 4h). We thus concluded that the extent to which an RNA interacts with chromatin
far from its transcription locus or on trans chromosomes is encoded in the RNA itself or the position of its
transcription locus relative to other genomic features, rather than post-transcriptionally regulated.
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Figure 4. A select population of caRNAs interact with the genome broadly. a, Schematic of the two types of binding patterns
identified in this analysis: type I) RNAs localized across the genome (trans-delocalized RNAs), type 1l) RNAs localized throughout
their source chromosome but absent on other chromosomes (cis-delocalized RNAS).
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Figure 4 (previous page). b, Schematic definition of the frans- and cis-delocalization scores. The trans-delocalization score
quantifies the number of DNA contacts an RNA makes on chromosomes other than its source chromosome (trans contacts),
relative to the number of contacts on its source chromosome (cis contacts). The cis-delocalization score quantifies the number
of DNA contacts an RNA makes over 10 Mb away from its transcription locus (TL), relative to the number of contacts within 10
Mb of its TL. ¢, Distribution of trans- (left) and cis- (right) delocalization scores by class of RNA for exons and UTLs (introns are
shown in Extended Data Fig. 7a). d, Fraction of RNAs within each class identified as either delocalized or ultralocalized in regard
to its trans- (left) or cis-chromosomal contacts (right). e, Left: list of all IncRNAs identified as cis or trans-delocalized in either
ES or DE cells and candidate RNAs for type | or type Il patterns. Heat maps show the RNA cis and trans delocalization scores
in ES and DE cells, and their abundance in the caRNA population. Right: cis- and trans-delocalization scores for the 20 most
abundant IncRNAs (excluding those identified as cis- or trans-delocalized). f, Chromatin interaction profiles for two examples of
cis-delocalized RNAs (RMRP, VTRNA1-1), one example of cis-delocalized RNAs (AP000915.2), and one non-delocalized RNA
(CASC15). Yellow track shows the observed ChAR-seq signal. Gray track shows the predicted interaction profile based on the
generative model and empirical Bayes model. g, Scatter plot showing the cis- versus trans-delocalization score for individual
IncRNAs in ES cells (left), and UTLs in DE cells (right, excludes tRNA-derived and snRNA-derived UTLs). Colored data points
indicate RNAs classified as delocalized (in either cis or trans), ultralocalized (in both cis and trans), and RNAs with XIST-like
behavior. Black line shows the linear regression output. h, Scatterplots showing the trans- (left) and cis-delocalization scores
(right) for individual IncRNAs in DE versus ES cells. Black lines show linear regression output

RNA-DNA contacts occur in the vicinity of the transcription locus

Engrietz et al. proposed a dichotomization of RNA-chromatin interactions into proximity-driven and
affinity-driven interactions?. The former describes interactions occurring in a 2D or 3D distance bounded
region around the transcription locus, without specificity for particular loci within that region. The latter
describes RNA targeting well-defined loci, irrespective of their distance to the RNA locus. Some ncRNAs
have been proposed to have affinity-driven interactions and regulate transcription or 3D organization of
chromatin at their target loci’”’87%3. These data motivated us to search the interactome for contact
patterns in which an RNA shows discrete peaks in its localization profile that are not explained by proximity
to its locus (Fig. 5a, top panel, hereafter referred to as Type Ill patterns). Because standard genomic peak
finding tools like MACS28° are not appropriate for ChAR-seq data, we instead developed a generative
model, which predicts the RNA-DNA interactome based on 3 features: 1) the total abundance of each RNA
on chromatin, 2) a DNA-locus bias which models the propensity for an RNA to be captured at this locus,
independently of the identity of that RNA, and 3) the distance between each RNA transcription site and its
DNA target loci (Fig. 5b and Supplementary Methods). As anticipated, the DNA-locus bias correlated with
ATAC-seq, likely due to a combination of biological factors such as fewer RNA-DNA interactions existing
in compact chromatin, and technical biases related to accessibility of the ChAR-seq bridge molecule. The
DNA-locus bias also correlated with nuclear speckle proximity as measured by TSA-seq®!, revealing a
possible increased affinity for diffusing RNAs towards nuclear speckles. We trained our generative model
on mMRNAs, as we reasoned that most mRNAs should not have defined chromatin targets. We then used
our final model to generate a “predicted” contact pattern for each RNA, which effectively provides a null
hypothesis representing “neutral” patterns, where an RNA interacts exclusively and non-specifically with
neighboring loci due to diffusion (Fig. 5a, model track). Thus, positive deviations from the prediction
(more contacts in the observed data compared with the model prediction) provide evidence for peak-like
interactions in type lll patterns.

In both ES and DE cells and for exons, introns, and UTLs, our simple generative model produced
RNA-DNA contact maps qualitatively similar to true ChAR-seq RNA-DNA contacts maps (Fig. 5d).
Correlations between observed and predicted maps were nearly as high as correlations between replicates
(Extended Data Fig. 9a). At 100 kb DNA locus resolution and excluding RNAs previously identified as cis-
or trans-delocalized, we identified only ~0.2% of exon and ~0.7% of intron contacts that were not explained
by the model, irrespective of whether the RNAs were mRNAs, IncRNAs, or ncRNAs (Fig. 5e and Extended
Data Fig. 9b-c). Thus, we detected only 11 and 9 IncRNAs in ES and DE cells, respectively, with exons
making contacts in the genome at loci not predicted by our model (Supplementary Table 9). Our model
also accurately predicted changes in contact rates during differentiation (Extended Data and Fig 9d). Thus,
in contrast with prior studies’”-’%78, we found no evidence for type Il patterns amongst the entire IncRNA
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population.

Interestingly, in contrast with that of INcRNAs, the interactome of the UTLs differed more substantially from
its prediction. Over 1% of contacts, or 3433 and 4986 contacts involving 2283 and 2597 distinct RNAs in
ES and DE cells, respectively, showed statistical evidence for affinity-driven interactions (Supplementary
Table 9). Readthrough RNAs had the largest number of contacts (2.6%, 2465 contacts in DE) significantly
different from the model, and CRE-derived RNAs at ~1% (1514 contacts in DE) significantly different from
the model (Extended Data Fig. 9c). This result suggests that many unannotated RNAs, in particular
regulatory elements derived RNAs, engage in genomic contacts that cannot be explained by a diffusion
process around the transcription locus similar to that of mRNAs.

To better understand the nature of these contacts, we examined how far from the RNA transcription
locus these contacts occurred (Extended Data Fig. 10a,b). We found the majority of the significant
contacts made by UTL occurred within 100 kb of their locus (51%, 4316 contacts across ES and DE
cells). The percentage of significant contacts within 100 kb was highest amongst readthrough RNAs
(69%-74%). In contrast, introns of annotated RNAs tended to show deviations from the predicted patterns
at larger distances. Indeed we found that only 17% of contacts from introns that were not predicted by
the model occurred within 100 kb of their locus, whereas 88% occurred between 100 kb and 10 Mb.
The difference in distances between RNA loci and their significant DNA contacts between annotated
intron RNAs and unannotated RNAs suggests different types of interactions might be regulating RNA
spread across chromosomes. Because these length scales are reminiscent of those involved in genome
organization at the levels of TADs and A/B compartments®28384 we examined the relationship between
the RNA localization patterns and the 3D organization of the genome.

The 3D genome organization enables contacts between RNAs and distal chromatin loci

To examine how the 3D organization of the genome affects the localization patterns of individual RNAs
on chromatin, we focused on the example of a small ~50 kb TAD on chr4qg25, which is nested inside a
larger 100 kb TAD (Fig. 5g). Two genes are located at the inner boundary of the small and large TADs:
AC106864, an uncharacterized IncRNA, and the LARP7 gene, which is antisense to AC106864 and is
highly transcribed in ES cells. We examined the binding profile of AC106864 on chr4 and found that most
of the contacts of this RNA were within a few kb of its locus. Yet we also observed two side peaks, labeled
L1 and L2, that coincided with the other edge of the small and large TAD, respectively. In contrast, our
generated model predicted a small peak at L1 (likely due to high accessibility of this locus as revealed by
ATAC-seq) and no signal at L2. The Fold Difference signal of the observed data over the model confirmed
that the 2 peaks at L1 and L2 were not explained by a simple diffusion of the AC106864 or accessibility
biases. Interestingly, Hi-C data showed two corner peaks characteristic of a chromatin loop linking the
LARP7 locus with both L1 and L2. This result suggests that AC106864 localization at L1 and L2 might
be mediated by the chromatin loop. It is also possible that AC106864 targets these loci through other
mechanisms such as base-pairing or association with RBP that are independent of genome folding. Yet
this biochemically targeted interaction is unlikely given that the introns of the overlapping mRNA LARP7
also have contact peaks at L1 and L2. Together, these data suggest that TAD organization influences the
contact patterns of RNAs, and that chromatin looping enables distal RNA-DNA interactions.

This observation prompted us to ask whether larger-scale topological organization of the chromosome
also influences RNA-DNA contacts (Fig. 5h). ChAR-seq contact maps are naturally asymmetric in that the
y-axis maps each row to an individual RNA and the x-axis maps each column to a genomic bin. Thus to
compare ChAR-seq to Hi-C data at the chromosome scale, we collapsed one dimension of the Hi-C maps
into genes while keeping the other dimension as genomic bins. In these transformed Hi-C maps, each pixel
represents the contact frequency between the gene and a cognate DNA bin. We detected in the ChAR-seq
maps the same plaid pattern found in Hi-C data resulting from the 3D partitioning of the genome into two
major compartments, the A and B compartments, also associated with active and inactive chromatin,
respectively®. This pattern indicates that any individual caRNA tends to have a specific compartment
(either A or B) with which it interacts preferentially. Equivalently, when one caRNA contacts a locus in say
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the A compartment, it has higher likelihood to contact other loci in the A compartment rather than in the
B compartment. It was not surprising that this pattern was not produced by our generative model, since
only linear distance is encoded in the model. We concluded that A/B compartments also modulate the
long-range interactions of individual RNAs with chromatin.
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Figure 5. RNA expression and genomic distance determine the RNA-DNA interactome. a, Schematic of the type of binding
patterns identified in this analysis. An RNA may localize at one or more discrete loci distinct from its transcription site (Pattern
type Ill, top track) or remain in a diffusion constrained region around its locus (neutral RNA, bottom track).
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Figure 5 (previous page). b, Components of the generative model used to predict the ChAR-seq maps. The number of contacts
observed for an RNA at a DNA locus is proportional to i) an RNA-DNA distance-dependent contact frequency, ii) the abundance
of the RNA on chromatin, iii) a target locus dependent bias (DNA-bias, yellow track) which correlates with both ATAC-seq signal
(purple track) and nuclear speckle proximity signal (TSA-seq, red track). ¢, Example of a type Ill pattern with a candidate
affinity-driven interaction for the INcRNA JPX in DE cells. The observed and predicted localization of JPX (top two tracks) at 10
kb resolution, and the are compared using DESeq2, yielding a Log, fold change (observed over model) and an adjusted p-value
track (bottom two tracks). Interactions with an LFC greater than 1.3 and an adjusted p-value smaller than 0.05 are labeled
as “candidate affinity driven interaction”. d, Observed contact maps, predicted contact maps, and observed over model LFC
maps computed using DESeqg2 for the top 200 most abundant RNAs originating from exons (top), introns (middle) and UTLs
(bottom). x-axis resolution is 100 kb per bin, Y-axis resolution is 1 RNA per bin. Only interactions with at least 10 counts in at
least two samples were tested for differences with the model and are shown in the LFC maps. e, Number of interactions tested
for enrichment over model and proportion of identified candidate affinity-driven interactions by RNA class, in relation to the total
number of tested interactions in that RNA class. f, Distribution of the RNA-DNA travel distance for interactions significantly above
model. The RNA-DNA travel distance is calculated using the mapping coordinates of the RNA and DNA side of the ChAR-seq
read (Methods). g, Example of long-range RNA-DNA contacts across a chromatin loop at the LARP7 & AC106864 locus in ES
cells. ICE normalized Hi-C map (2 kb resolution) is shown at the top. Transcription of LARP7 (expressed from the positive strand)
and AC106864 (expressed from the negative strand, shown as negative values) are detected by ChAR-seq (top 2 tracks). The
observed (dark organge) and predicted localization pattern (dark grey) of AC106864 on chromatin are shown with the log fold
difference between observed and predicted (purple). The observed and predicted localization patterns for LARP7 are shown in
light orange and light gray. ATAC-seq, H3K27ac and H3K4me3 tracks are also shown and indicate that L2 has enhancer-like
chromatin properties. h, Comparison between ChAR-seq and Hi-C at the chromosome scale. Dashed boxes highlight two
example regions where the A/B compartments plaid pattern is clearly visible in both Hi-C and ChAR-seq maps

The caRNA-gene interactome preferentially links upregulated caRNAs to upregulated target
genes

Our results point to a model where RNA-chromatin association patterns and their dynamics are restricted
by i) the caRNA expression level ii) the genomic distance from the RNA locus to the DNA target, iii) the
3D chromatin topology. We thus wanted to determine whether this result is compatible with the hypothesis
that ncRNAs participate in the regulation of cell-state specific protein-coding genes. We reasoned that
RNAs with transcriptional regulatory roles are likely to be found near their cognate gene, where they could
modulate local chromatin state, TF binding, RNA polymerase, or the activity of gene-proximal regulatory
elements. This colocalization hypothesis is consistent with the better studied ncRNAs with gene regulatory
activity, including XIST'”, KCNQ10T1 '8, and HOTAIR®. Thus, we defined a “proximal regulatory region”
(PRR) around each protein-coding gene, encompassing +10 kb upstream and -90 kb downstream of its
TSS, and measured the contact density of each caRNA at the PRR of each gene. Using this approach,
we mapped all the physical contacts between the chromatin associated transcriptome and protein-coding
genes (hereinafter referred to as the caRNA-gene interactome, Fig. 6a).

Consistent with the dynamics of the genome-wide RNA-DNA interactome we previously observed, the
caRNA-gene interactome of >1 million contacts was dynamic across differentiation. We detected most
of the differential contacts at genes nearby the RNA locus (Fig. 6b). For IncRNAs only, we detected
340 differential contacts (~1% of all IncRNA-gene contacts), but these involved only 57 distinct IncRNAs,
indicating that a typical single IncRNAs differentially contacts multiple genes (Fig. 6¢,d). Also consistent
with the global interactome dynamics, the caRNA-gene interactome involving UTLs was more dynamic
than that involving annotated RNAs, with up to 20% differential UTL-gene contacts between ES and DE
(Fig. 6d).

To identify potential regulatory caRNAs and their putative gene targets, we next classified each caRNA and
each protein-coding gene as an ES, DE, or stable caRNA or gene, based on whether it was differentially
expressed in ES, in DE, or similarly expressed in both cell states (FDR cutoff 0.05, Fold Change cutoff 3).
We then examined the statistical associations between the class (ES/DE/stable) of a caRNA, its cognate
gene, and their interaction. Fig 6e shows the top 20 most upregulated contacts involving a IncRNA in ES
(left panel) or DE (right), along with the cognate IncRNA-gene pair. We noted that nearly all these top 20
ES (resp. DE) upregulated contacts involved ncRNAs upregulated in the same state. This result makes
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sense given our prior findings that the RNA-DNA interactome dynamics is globally driven by transcriptional
dynamics. Yet most of the target genes for these differential contacts were not differentially expressed in
ES vs DE, suggesting that changes in the caRNA levels at these genes do not affect their expression. We
generalized this finding by analyzing across all caRNA-target gene pairs linked by a differential contact,
the relationship between the fold change in the contact and the fold change in the expression of the caRNA
or of the target gene (Fig. 6f). We found that the fold change in contact rate during ES to DE transition
correlated with the fold change of the expression of the source caRNA (Fig. 6f, left panel), but not with that
of the target protein coding gene (Fig. 6f, right panel).

To further understand the relationship between gene expression and presence of a caRNA in the PRR of
a gene, we examined how many cell-state specific contacts are made at cell state-specific genes. This
analysis revealed that >97% of cell state specific genes are not contacted by a IncRNAs in a cell state
specific manner (Fig. 69, left panel). Interestingly however, over 50% of these genes are contacted by at
least one, and sometimes several UTL specifically in one cell state (and 15% with a CRE), nearly twice
as many as genes that are not cell-state specific. Thus, most genes do not require cell-state specific
localization of a particular IncRNA in their PRR to alter their expression, but genes whose expression is
altered are likely to be contacted by an UTL in a cell-state specific manner. Together, our findings indicate
that the presence of an individual ncRNA near the gene TSS does not correlate with the gene transcription.
This result does not rule out a regulatory activity of ncRNAs at protein coding genes. Indeed, it is likely
that multiple inputs may gate the target gene expression, including chromatin state, transcription factors,
and possibly several RNAs, which could wash out average correlations between caRNA-gene interactions
and gene transcription.

To identify patterns in the interactome that would indicate a regulatory structure, we compared the
observed interactome dynamics to that that would be expected should it be independent of the gene
expression dynamics (null model). We binned differential contacts in 3 categories: i) positive edges, where
the contact dynamics were positively correlated with the target gene dynamics (contacts that increased
in ES to genes that increased in ES, or contacts that increased in DE to genes that increased in DE ), ii)
negative edges (contacts that increased in ES to genes that increased in DE, or contacts that increased
in DE to genes that increased in ES), iii) neutral edges (contacts that increased in ES or DE to genes that
were neither ES or DE genes).

We found that across all categories of caRNAs, the interactome contained up to 1.8 times more positive
edges (p-value<0.05 by bootstrap) and up to 1.3 times fewer negative edges (p-value<0.05 by bootstrap)
than would be expected for a random interactome under the null model (Fig. 6h,i). Thus, we conclude
that although specific RNAs are not sole drivers of transcription activation or silencing at any gene, the
architecture of the interactome is consistent with an overall positive regulation, where the presence of
caRNAs is generally associated with higher expression of the target genes.
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Figure 6. The caRNA-gene interactome preferentially links upregulated caRNAs to upregulated genes. a, Abstract
representation of the caRNA-gene interactome studied in this analysis and displayed as a contact matrix with one caRNA per
row and one protein-coding gene per column. Each matrix entry contains the number of contacts between an ncRNA and the
proximal regulatory region (PRR) of a protein coding gene. Only cis interactions are shown for simplicity, but frans interactions

are represented similarly.
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Figure 6 (previous page). b, caRNA-gene interactome in ES and DE cells for the 50 most abundant IncRNAs (top) and UTLs
(bottom) on Chr11. Narrow maps on the right are zoomed in view of the interactome for 50 protein-coding genes upstream and
downstream of each caRNA PRR. Zoomed in maps are shown for the true interactome signal (Obs), the interactome predicted
by the generative model (Mod), the log, fold change (LFCops over model) Of the observed data over model (Obs/Model), and the
interactions significantly enriched in the observed data over the model (Sig), namely those with adjusted p-value < 0.05 and
LFCops,model>0, obtained using DESeq2 as described in Fig. 4c-d. Only contacts with at least 10 counts in at least 2 samples
were tested for enrichment over model. ¢, Volcano plot showing the differential IncRNA-gene contacts is ES versus DE cells.
Each data point is a contact between a IncRNA and the PRR of a protein-coding gene. Volcano plots are shown as contact
adjusted p-value versus logy Fold Change in DE versus ES cells (LFCgg pg). Differential contacts are computed as in Fig. 3a,
and significant contacts are those with an adjusted p-value<0.05. d, Quantification of the percentage of cell-state specific contacts
for each class of caRNA relative to the number of contacts tested for that class (top), and number of distinct caRNAs involved in
these contacts (bottom). Cell-specific contacts were defined as those with an adjusted p-value<0.05 and LFCgg pe>1.3. e, Top
20 IncRNA-gene contacts upregulated in ES (left) and DE cells (right) in the observed data (blue circles). Most of these contacts
are also predicted to be amongst the 20 most upregulated contacts by the generative model (purple circles). f, Scatter plots
showing for each differential contact the relationship between the change in contact rate during differentiation (LFCgg pg) and
the change in the chromatin levels of the involved caRNA (left) and in the expression of the cognate protein coding gene (right).
Differential contacts were defined as in d). Only differential contacts involving exons of INcRNAs or UTLs are shown. g, Percent
of protein-coding genes, targeted by one or more dynamic contact with a IncRNA (left panel), a CRE-derived RNA (middle panel),
or any UTL (right panel, excluding tRNA- and snRNA-derived NARs). Protein coding genes are grouped (x-axis) according
to whether their expression is upregulated in ES, DE, or stable during differentiation as measured by total RNA-seq (DEseq2,
FDR 0.05, fold change threshold 3x). Colors indicate whether the protein coding gene is targeted by a single (light colors) or
several (dark colors) caRNAs with which the interaction is upregulated in ES (blue shade) or DE (yellow shade). Some genes
are targeted by several caRNAs which include both ES and DE upregulated interactions (purple). h, Top two rows: Percentage
of interactions upregulated in ES targeting a protein coding gene upregulated in ES, which we define as a positive association,
or targeting a protein coding gene upregulated in DE, which we define as a negative association. Bottom two rows: similarly, for
interactions upregulated in DE cells. x-axis indicates the caRNA class. i, Fold enrichment of the fraction of positive associations
in the observed interactome, compared to a randomized interactome, where the differential expression state of the target genes is
shuffled. Error bars indicate 95% confidence intervals by bootstrap. Error bars not overlapping with x-axis indicate p-value<0.05
by bootstrap.

Discussion

Understanding how caRNAs control chromatin state and transcription is a long-standing problem. To date,
only a few RNAs have been linked to specific regulatory functions and the mechanistic details remain
debated. In this work, we provide a global view of the RNA-chromatin interactome which complements
studies focused on individual RNAs and uncovers general principles governing the architecture of putative
ncRNA-gene regulatory networks.

First, we show that IncRNAs with promiscuous chromatin interactions are rare. Given that we detected
only a handful of IncRNAs with such patterns, it is unlikely that uncharacterized IncRNAs have global
regulatory roles, such as those established for 7SK, MALAT1, XIST, or TERC. However, we identified a
larger repertoire of unannotated RNAs with broad chromatin interactions which contained many TE-derived
RNAs. These data reinforce the idea that transcriptionally active LINE, SINE and LTR may play key
roles in chromatin regulation and highlight the necessity to further explore the biology of transposable
elements®.

Second, it is noteworthy that all delocalized IncRNAs but TERC and 2 uncharacterized ncRNAs
(VAULT-RNA and ACO073335) are known RNA residents of the nucleolus (RMRP, RPPH1, 7SL, most
snoRNAs) or nuclear speckles (7SK, MALAT1, most snRNAs). SPRITE, a Hi-C-like method which
probes high order chromatin interactions, showed that the 3D genome is organized into 2 major hubs
around the nucleolus and nuclear speckles, where abundant long-range and interchromosomal DNA-DNA
contacts occur®”. We hypothesize that the proximity of these RNA loci to the genomic hubs may be
important in enabling interactions with dispersed genomic loci. This behavior is reminiscent of XIST, whose
location on the X chromosome defines where heterochromatin spreading initiates'”. We speculate that a
general principle may underlie these observations, where the interactions of an RNA with chromatin are
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constrained by the position of their transcription locus relative to other loci or to nuclear domains.

Third, we demonstrate unambiguously that no RNA behaves like XIST and localizes throughout its own
chromosome while being excluded from other chromosomes. Thus, while XIST sets expectations for
ncRNAs regarding their potential roles as regulators of transcription and large genetic networks, XIST
appears to be unique in its localization pattern.

Fourth, excluding small RNAs such as snRNAs, snoRNAs, tRNAs, and some UTLs as described above,
we found no evidence across the non-coding transcriptome for widespread existence of trans interactions,
or of affinity-driven interactions as defined by Engreitz et al?. Indeed, we demonstrated that a simple
generative model, encoding only for expression and RNA-DNA distance, accurately predicts the contact
patterns for each RNA. Thus, while acknowledging possible false-negatives for lowly expressed RNAs as
discussed later, we show that nearly all interactions are proximity-driven. An important implication of our
results is that across the non-coding transcriptome, chromatin regulatory activities are essentially limited
to nearby genes.

Several modes of regulatory activity are compatible with proximity-driven interactions, yet our work brings
in important refinements to the proposed models. If a ncRNA serves as a platform to locally recruit
histone modifying complexes, as proposed for many IncRNAs, we show that the dimensions of the
domain around the RNA transcription locus where this activity occurs is solely determined by the RNA
expression. The same local constraints apply if a ncRNA operates via a decoy mechanism, whereby it
evicts specific remodeling complexes from chromatin, through competitive or inhibitory associations with
these complexes .

To our surprise, we observed a general lack of correlation between the dynamics of the RNA contacts
at a given gene and the dynamics of the expression of that gene. This observation challenges models
proposing that the activation or silencing of a gene may be controlled by a single ncRNA8%:8518.78.23
Instead, our data either indicates that most ncRNAs do not have gene regulatory activity, or favors some of
the more complex proposed models, for example, involving coordinated inputs from a ncRNA and the local
chromatin environment. One such model, the “junk mail model,” posits that caRNAs interact with chromatin
remodeling complexes and keep them poised and in check until other local conditions are satisfied >3
(such as deposition of a specific chromatin modification or binding of a transcription factor). The junk malil
model is compatible with our observations. Another possibility, which we termed the “democratic RNA
model,” is that the distributed activity of multiple, weakly influential ncRNAs, rather than that of a single,
strongly influential ncRNA determines the overall regulatory output of RNA-chromatin interactions at a
gene.

We found that an increase in interaction frequency between a specific ncRNA and a target gene is
more likely to correlate with an increase in target gene expression than one would expect should the
ncRNA-gene contacts and the gene expression be uncorrelated with one another. Three scenarios may
explain this result. First, this may merely reflect increased accessibility during chromatin activation and
higher likelihood to crosslink nearby RNAs. Second, there may be local coregulation of nearby ncRNAs
and genes, for instance, through shared regulatory elements. Third, it is possible that the default activities
of caRNAs are: i) a decoying of the silencing machinery, as proposed by the junk mail model, in the context
of PRC2 eviction®', or ii) a recruitment of transcription activators such as the CREB-binding protein®C.
These two effects would also give rise to a positive correlation between caRNA presence at a gene and
transcriptional output of this gene.

As mentioned above, we did not identify IncRNAs localized at defined genomic targets in trans, beyond
the interactions explained by the expression levels of these IncRNAs and the distance to their targets. This
finding will need to be reconciled with the models proposed for a few ncRNAs, such as DIGIT or RMST,
which have been reported to broadly colocalize with BRD3 at endoderm differentiation genes, and SOX2
at genes that control pluripotency and neurogenesis, respectively 787989 Given that IncRNAs and eRNAs
are highly cell state specific3”-38, the architecture of the caRNA-chromatin interactome may be qualitatively

| 19


https://doi.org/10.1101/2022.09.02.506418
http://creativecommons.org/licenses/by-nc-nd/4.0/

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.02.506418; this version posted September 2, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

different and perhaps contain more trans interactions in further differentiated cells. Additionally, we cannot
exclude the possibility that our analysis missed affinity-driven trans interactions due to sequencing depth
limitations, in particular for lowly expressed ncRNAs. Thus, deeper sequencing or more powerful statistical
frameworks may reveal weak deviations from the model at more loci. However, the fact that our analysis
reveals broad differences in the contactome between ES and DE cells gives us confidence that any
undetected deviation from the model has to be more subtle than the contactome changes related to cellular
differentiation.

This work presents a global analysis of caRNA-chromatin interaction and establishes that caRNAs
predominately operate locally, through diffusion and genome conformation driven interactions. We
anticipate this work will direct the efforts in the non-coding RNA field by providing data-informed priors on
the localization of RNAs, and a simple model predicting where non-coding RNAs may act. Future studies to
identify the proteins mediating these RNA-chromatin interactions will be necessary to inform the interplay
between caRNA and RNA binding proteins in the control of transcription and chromatin state.

Methods

Cell culture & differentiation

Passaging. H9 hESCs cells (ES cells) were obtained from Wicell (cell line WAQ09) and cultured on Corning
Matrigel hESC qualified matrix with mTeSR1 medium according to manufacturer’s protocols and as
described in Loh et al. 2014, Briefly, 6-well plates were prepared with matrigel by adding 1 mL of
matrigel (diluted in serum free DMEM/F-12 according to lot dilution factor) to each well and polymerized
for 1 hour at room temperature. DMEM/F-12 was aspirated and replaced with 1.5 mL mTeSR1 warmed
to room temperature, then 2 M of 10 mM ROCK inhibitor (Y27632-Dihydrochrolride) was added to each
well. H9 hESCs (~3-5 million cell aliquots) were thawed and immediately diluted by dropwise addition of
10 mL prewarmed mTeSR1, spun at 200 g for 5 min, and gently resuspended in 1.5 mL mTeSR. 0.5 mL
of cells were added to each well and placed at 37 °C. Media was replaced daily with 2 mL fresh mTeSR1
per well. When colonies were ~70% confluent and started to touch each other, cells were passaged as
colonies. Each well was washed with 1x PBS, 1 mL of Versene-EDTA was added, and cells were incubated
at 37 °C for 5 min. Colonies were detached, broken up with gentle pipetting, and resuspended in mTeSR1
at a 1:5to 1:10 dilution. 0.5 mL of cells was added dropwise to each well containing 1.5 mL mTeSR1 and
coated with matrigel prepared as described above (without ROCK inhibitor).

Differentiation into definitive endoderm. Colonies were seeded from 1:10 dilution on day 0 into four 15 cm
dishes with matrigel, two for maintenance as ES cells and two for differentiation into Definitive Endoderm
(DE) cells. ES cells were maintained as above with daily mTeSR1 media replacement. For differentiation,
cells were treated with 10 M ROCK inhibitor on day 0, and their media was replaced on day 1 with
DE induction Media A (Gibco Cat# A3062601), and on day 2 with DE induction Media B (Gibco Cat#
A3062601). On day 3, cells were harvested for ChAR-seq. In addition to the 15 cm dishes used for
ChAR-seq, cells were also seeded and maintained as ES cells or differentiated into DE cells in 6-well plates
with poly-L-lysine coated coverslips under matrigel, and collected at the same time for immunofluorescence
analysis. Cells were also differentiated in 6-well plates for RNA-seq and ATAC-seq.

Immunostaining

Cells were cultured in 6-well plates on poly-L-lysine coated coverslips under matrigel and maintained as
ES cells or differentiated into DE cells as described above. Cells were washed three times with PBS and
fixed with 2% PFA in PBS added directly to the wells for 10 min at room temperature. The PFA solution
was aspirated, cells were washed three times with PBS, and permeabilized with 0.1% Triton-X-100 in PBS
for 5 min at room temperature. Coverslips were transferred to parafilm-coated staining chambers, washed
with PBS, and blocked with Antibody Dilution Buffer (AbDil, 150 mM NaCl, 20 mM Tris-HCI pH 7.4, 0.1%
Triton X-100, 2% BSA, 0.1% Sodium Azide) for 30 min at room temperature. Samples were incubated
in primary antibody for 30 min at room temperature (Rabbit anti-Nanog 1:500, Goat anti-Sox17 1:1000
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diluted in AbDil), washed three times with AbDil, and incubated with secondary antibodies conjugated to
Goat anti-Rabbit Alexa-647 and Chicken anti-Goat Alexa-555 (1:1000 diluted in AbDil) for 30 min at room
temperature. Cells were washed with AbDil three times, stained for 5 min with 10 ug/mL Hoescht-33342 in
PBS, and washed with PBS with 0.1% Triton-X-100 before being mounted (20 mM Tris-HCI pH 8.8, 0.5%
p-Phenylenediamine, 90% glycerol) onto slides and sealed with nail polish. Samples were imaged with
an 1X70 Olympus microscope with a Sedat quad-pass filter set (Semrock) and monochromatic solid-state
illuminators. Cells were imaged using a 40x objective. At least 10 images per coverslip were captured
using 0.2-uM z-stacks. Maximum intensity projections were processed with CellProfiler (3.1.8) to identify
nuclei based on Hoescht signal and to measure the mean intensity of each channel. Histograms of mean
nuclear intensity for each marker were plotted in R.

gPCR

For gPCR, RNA was extracted from each well of a 6-well plate containing ES or DE cells (~1 million cells
per well) using 1 mL Tripure reagent and according to the manufacturer’s protocol. RNA were treated with
DNase (TURBO DNase; Ambion) for 1 hour at room temperature followed by isolation with a minElute RNA
Cleanup Kit (Qiagen). RNA concentrations were measured by Nanodrop and total RNA integrity assayed
using an Agilent Bioanalyzer. All RNAs had a RNA integrity number (RIN) greater than 9.0. 0.5-1 ug of
RNA was reverse-transcribed with random hexamer primers using SuperScript Il reverse transcriptase
(18080-051; Invitrogen) according to the manufacturer’s protocols. First-strand cDNA was diluted 1:10
in nuclease free H,O and amplified using gene-specific primers that had been tested for amplification
efficiencies >90% and to amplify a single product. Real-time PCR was performed using the Powerup
SYBR Master Mix (ThermoFisher) for 40 cycles (94 °C 15 sec, 55 °C 30 sec, 68 °C, 1 min) on an ABI ViiA
7 Real-Time PCR Machine with cycle thresholds (Cts) determined automatically and with all samples in
triplicate. Experimental genes were normalized to the PBGD housekeeping gene, with relative expression
levels calculated using the 22T method, and the transcript level fold-change in DE versus ES cells
was calculated. If a gene’s expression was too low to detect via gPCR, these “undetermined” Ct values
were assigned a value of 38 to provide a conservative over-estimate for use in calculation of expression
change.

RNA-seq

For RNA-seq, RNA was extracted from each well of a 6-well plate containing ES or DE cells using
1 mL Tripure and the Direct-Zol RNA Extraction kit (Zymo Research) according to the manufacturer’s
instructions. RNA concentrations and quality were assayed as described for gPCR. For each sample, 2.5
1g of RNA was treated with DNase (TURBO DNase; Ambion) for 1 hour at room temperature followed
by isolation with a RNA Clean & Concentrator-25 kit (Zymo Research). 1 ug RNA was converted to
ribosomal depleted cDNA libraries ready for sequencing using the TruSeq Stranded Total RNA Library Prep
Human/Mouse/Rat kit (lllumina) according to the manufacturer’s instructions. Samples were uniquely dual
indexed using IDT for lllumina TruSeq RNA UD Indices. The 4 biological replicates from both conditions
(ES and DE cells) were pooled and sequenced at low read depth on a MiSeq (2 x PE75) at the Stanford
Functional Genomics Facility to assess quality, and later on 1 lane of the HiSeq4000 (2 x PE150) at
NovoGene (Sacramento, CA). All reported analysis was generated using the HiSeq dataset.

ATAC-seq

Cells for ATAC-seq were differentiated as described above and collected by dissociating in Versene
followed by resuspension in warm mTeSR media. Cells were transferred to 15 mL conical tubes and
centrifuged at 1000 RPM for 5 min. The pellet was resuspended in DPBS, cells were counted and
immediately processed. ATAC-seq was performed as previously described using the OMNI-ATAC protocol
(Corces et al., Nature Methods 2017) with slight modifications. Briefly, ~100K cells were resuspended
in 50 uL cold ATAC-Resuspension Buffer (10 mM Tris-HCI pH 7.4, 10 mM NaCl, 3 mM MgCl,, 0.01%
Digitonin, 0.1% Tween-20, and 0.1% NP40 in water) and incubated on ice. Cells were washed with 1
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mL cold ATAC-RSB (without NP40 and digitonin), centrifuged at 500 RCF for 10 min at 4 °C. The pellet
was resuspended in 50 plL transposition mixture (2x TD buffer and 2.5 ulL transposase) from the lllumina
Nextera DNA Library Prep Kit and incubated at 37 °C for 30 min in a thermomixer at 1000 RPM. Libraries
were purified with the DNA Clean & Concentrator-5 Kit (Zymo Research) and PCR amplified with barcoded
primers (Buenrostro et al., 2013). Amplification cycle number for each sample was monitored by qPCR
to minimize PCR bias. PCR amplified libraries were purified with the MinElute purification kit (Qiagen)
and excess primers and large (>1000 bp). DNA fragments were removed by AMPure XP bead selection
(Beckman Coulter). Four biological replicates from each cell type (ES and DE) were pooled and sequenced
at low read depth on a MiSeq (2 x PE75) at the Stanford Functional Genomics Facility to assess quality
and later on 1 lane of the HiSeq4000 (2 x PE150) at NovoGene (Sacramento, CA). All reported analysis
was generated using the HiSeq dataset.

ChAR-seq library preparation

ChAR-seq libraries were prepared according to the published protocol*’ as briefly described below. All
reagents used were RNAse-free.

Cell fixation and nuclei. About 10 million cells were harvested from a 15 cm dish with Versene and fixed in
3% formaldehyde for 10 min at room temperature. Formaldehyde was quenched with the addition of 0.6
M glycine for 5 min at room temperature then 15 min on ice. Cells were pelleted for 5 min at 500 g at 4 °C,
washed with 10 mL ice-cold PBS, and resuspended in ~5-10 mL PBS. Cell concentration was measured
and cells were aliquoted in batches of 10 million cells in 1.5 mL tubes. Aliquots were spun for 5 min at
500 g at 4 °C, the supernatant was removed, and pellets were flash frozen in liquid nitrogen and stored at
-80 °C until library preparation.

Cell lysis and nuclei preparation. Frozen pellets were resuspended in 500 L ice cold lysis buffer (10 mM
Tris-HCI pH 8, 10 mM NaCl, 0.2% Igepal-CA630, 1 mM DTT, 1 U/uL RNaseOUT, 1x protease inhibitor) and
incubated for 15 min on ice. Nuclei were washed (throughout the protocol, “nuclei were washed” indicates
the following steps: spinning for 4 min at 2500 g, discarding of supernatant, resuspension and mixing in
the indicated wash buffer, spinning for 4 min at 2500 g, and aspiration of the wash buffer) with 500 uL of
lysis buffer without Igepal, RNaseOUT, or Protease Inhibitor, then resuspended in 400 uL of 0.5% SDS
(10 mM Tris-HCI pH 8, 10 mM NaCl, 1 mM DTT, 0.5% SDS, 1 U/uL RNAseOUT), and incubated for 10
min at 37 °C. SDS was then quenched by adding Triton X-100 to 1.4% final concentration and incubating
for 15 min at 37 °C.

In situ biochemistry steps for RNA-DNA proximity ligation. To fragment RNAs, nuclei were pelleted
and resuspended in 150 pL fragmentation buffer (0.25x T4 RNA ligase buffer, 1 U/uL RNAseOUT),
and exposed to heat for 4 min at 70 °C. To dephosphorylate RNA 5 ends, nuclei were washed
twice (in 800 upL PBS then 800 pL 1x RNA ligase buffer, with the first spin omitted for the first
wash and PBS added directly to the previous reaction), resuspended in 150 uL dephosphorylation
mix (1x T4 PNK buffer, 1 U/uL T4 PNK, 1 U/uL RNAseOUT), and incubated for 30 min at
37 °C. To perform RNA-bridge ligation, nuclei were washed twice as above and resuspended in
200uL RNA-bridge ligation mixture [1x T4 RNA ligase buffer, 25 uM annealed ChAR-seq bridge
(top strand: /5rApp/AANNNAAACCGGCGTCCAAGGATCTTTAATTAAGTCGCAG/3SpC3/; bottom strand:
/5Phos/GATCTGCGACTTAATTAAAGATCCTTGGACGCCGG/iBiodT/T; individual strands ordered from
IDT DNA), 10 U/uL T4KQRNAligase2, 1.5 U/uL RNAseOUT, 20% PEG-8000] and incubated overnight
at 23 °C on a thermomixer at 900 RPM. To perform first-strand synthesis, nuclei were washed twice as
above and resuspended in 250 uL of first strand synthesis mixture (1x T4 RNA ligase, 8 U/uL Bst3.0, 1
mM of each dNTP, 1 mM DTT, 1 U/uL RNAseOUT), and incubated for 15 min at 23 °C, 10 min at 37 °C,
and 20 min at 50 °C. Bst3.0 was inactivated by adding 8 uL of 0.5 mM EDTA (15 mM final concentration),
14 ul of 1% SDS (0.5% final), and incubating for 10 min at 37 °C. SDS was then quenched with 43 uL of
10% Triton X-100 (1.3% final concentration) for 15 min at 37 °C. Next to perform genomic digestion, nuclei
were washed twice and resuspended in 250 uL of Dpnll reaction mixture (1x T4 RNA ligase, 3 U/uL Dpnll,
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1 mM DTT, 1 U/uL RNAseOUT) overnight at 37 °C on a thermomixer at 900 RPM. Dpnll was inactivated
in the same manner as Bst3.0 inactivation. SDS was quenched as above. Next, to perform bridge-DNA
ligation, nuclei were washed twice and resuspended in 250 pL of ligation mixture (1x T4 DNA ligase, 10
U/uL T4 DNA ligase, 1 U/uL RNAseOUT) for 4 hours at 23 °C. T4 was inactivated by adding 8 uL of 0.5 M
EDTA (15 mM final concentration). Finally, to perform second strand synthesis, nuclei were washed twice
(PBS then 1x cDNA buffer 10 mM Tris-HCI pH 8, 90 mM KCI, 50 mM (NH4)>S0O,), and resuspended in
250 pL of secon strand synthesis mix (1x cDNA buffer, 0.5 U/uL E. coli DNA Poll, 0.025 U/uL RNaseH, 1
mM of each dNTP, 1 mM DTT) for 1.5 hours at 37 °C.

DNA isolation and shearing. Reverse crosslinking was carried out by adding 31.25 uL of 10% SDS, 31.25
1L 0.5 M NaCl, 9 uL of 20 mg/mL proteinase K and incubating overnight at 68 °C. DNA was purified by
phenol chloroform extraction, ethanol precipitated, and resuspended in 130 pL TE (10 mM Tris pH 8, 0.1
mM EDTA) buffer. DNA was sheared with a Covaris S220 to target a mean fragment size of ~200 bp (175
peak incident power, 10% duty factor, 200 cycles/burst, 180 sec). Fragment size distribution was quality
controlled on an Agilent High Sensitivity DNA Bioanalyzer.

Isolation of biotinylated molecules, on-beads adapter ligation, and on-beads PCR. Molecules containing the
biotinylated bridge sequence were isolated using 150 uL of MyOne Streptavidin T1 dynabeads. To bind
bridge containing molecules, beads were washed with 750 uL tween wash buffer (TWB, 10 mM Tris pH 8,
0.5 mM EDTA, 1 M NaCl, 0.05% Tween20) and resuspended in 130 uL 2x bead binding buffer (10 mM Tris
pH 8, 2 M NaCl, 0.5 mM EDTA) and 130 uL sheared DNA sample, then incubated at room temperature
for 15 min with agitation. To remove unbound DNA, beads were washed twice with 750 uL. TWB (with
incubation at 50 °C for 2 min with agitation during the first wash), then resuspended in 40 uL TE buffer.
DNA ends were prepared for ligation by adding 7 uL of NEBNext End Prep Buffer and 3 uL NEXext
End Prep enzyme mix and incubating for 20 min at room temperature and 30 min at 65 °C. Adapters
were ligated using NEBNext Ultra Il Ligation module according to manufacturer’s protocols. Beads were
washed twice as above and resuspended in 50 L PCR amplification mix (25 pL 2x NEBNext High Fidelity
master mix, 2.5 uL 10 M Universal Primer, 2.5 L 10 pM indexing primer, 20 uL H20). PCR reaction was
performed using the following program (1 cycle: 98 °C for 30 sec; 5 cycles: 98 °C for 10 sec, 65 °C for 75
sec). Beads were magnetically collected and the supernatant containing amplified DNA was transferred to
a clean 1.5 mL microcentrifuge tube. The amplified libraries were purified using magnetic SPRI beads at
a ratio of 1:1 and eluted with 31 xL 10 mM Tris-HCI, pH 8.

Side gPCR & off-bead PCR. To determine the number of additional cycles of PCR amplification to perform,
5 plL of purified library from on-bead PCR, 6 uL 2x NEBNext High Fidelity master mix, 0.5 L 10 uM
Universal primer, 0.5 puL 10 ©M indexing primer, and 0.33 uL 33x SYBR Green were mixed and added
to a gPCR well and cycled on an ABI ViiA 7 Real-Time PCR Machine with the following parameters (1
cycle: 98 °C for 30 sec; 25 cycles: 98 °C for 10 sec, 65 °C for 75 sec). The number of off-bead PCR
cycles to perform was determined by finding the number of cycles such that the fluorescence intensity
is about one third the plateau intensity at the PCR saturation. The remaining 25 uL of the library was
combined with 30 uL 2x NEBNext High Fidelity master mix, 2.5 uL 10 M universal Primer, and 2.5 uL 10
1M indexing primer. Each sample was then cycled as above for the number of cycles determined by the
side qPCR.

Library clean up and sequencing. To purify the amplified library, high molecular weight fragments were
bound to Ampure beads by adding 0.6x volume of the PCR reaction of Ampure beads and collecting
the supernatant. Low molecular weight fragments were purified out by adding 0.1875x the volume of
the supernatant transferred to obtain a final ratio of 0.9x beads:slurry. DNA was eluded in 33 uL 10
mM Tris pH 8. Library concentration was assessed using a Qubit dsDNA High Sensitivity kit and size
distributions were determined using an Agilent High Sensitivity DNA bionalyzer. Samples were pooled
and sequenced on 1 lane of an lllumina HiSeq4000 platform (2x PE150) to assess library quality, then
later deeply sequenced on 2 lanes of an lllumina NovaSeq platform at NovoGene (Sacramento, CA). All
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reported analysis was generated using the NovaSeq dataset. Replicates 1 and 2 of ES and DE ChAR-seq
libraries were prepared at different times and each sequenced separately on 1 NovaSeq lane.

ChAR-seq data processing and generation of pairs files

Demultiplexed fastq files from the ChAR-seq data were processed using a custom Snakemake pipeline
(https://github.com/straightlab/charseq-pipelines), outputting pairs files containing the RNA
and DNA coordinates of each RNA(cDNA)-DNA chimeric read and relevant annotations for each RNA-DNA
contact. A summary of the pipeline workflow is depicted in Supplementary Fig. 1. For full details of the
processing pipeline, see Supplementary Note 1. Briefly, reads were PCR deduplicated using clumpify.sh
v38.84 (BBMap suite), low quality reads () < 30) were removed, and sequencing adapters were trimmed
using Trimmomatic v0.38. Paired-end reads were merged using Pear v0.9.6 when possible and reads
containing a single instance of the ChAR-seq bridge sequence were identified using chartools v0.1, a
custom ChAR-seq reads preprocessing package released as part of this study (https://github.com/
straightlab/chartools). Reads were split into a rna.fastq and dna.fastq file corresponding to the
sequences of the RNA (cDNA) and DNA side of the chimeric molecule using chartools. Reads with either
the RNA or DNA side shorter than 15 bp were removed using chartools, and reads whose RNA side
aligned to a rRNA sequence by Bowtie2 were filtered out using Picard. DNA reads were aligned to hg38
using Bowtie2, and RNA reads were aligned to hg38 using STAR and Gencode v29 annotations. RNA
reads were assigned specific genes using tagtools (https://github.com/straightlab/tagtools), a
package released as part of this study. pairs files containing for each read the mapping coordinates of
the DNA, the RNA, and the most likely gene of origin were produced using chartools pairup function.
Separate pairs files were produced for reads whose RNA was annotated by tagtools as exonic, intronic,
or intergenic. pairs files were filtered using a bash script to remove multimapping reads and reads with
low mapping scores on either the RNA (STAR @ < 255) or DNA (Bowtie2 @ < 40) side. Reads whose
RNA overlapped with the hg38 ENCODE blacklist or that could not be attributed to a single known gene or
genomic locus were also removed.

RNA-seq data processing

RNA-seq reads were processed using a Snakemake pipeline mirroring the ChAR-seq pipeline, but all of
the operations related to the DNA-side of the reads were skipped. In brief, demultiplexed fastq files were
deduplicated, sequencing adapters were removed, paired mates were merged as described for ChAR-seq
reads. Reads that aligned to a rRNA sequence by Bowtie2 were filtered out using Picard. Reads were
aligned to hg38 using STAR and were annotated with tagtools using the Gencode V29 gene models. Reads
with low mapping scores (STAR @ < 255), reads which could not be attributed to a single known gene or
a single locus, and reads that overlapped with a locus on the ENCODE black were discarded.

ATAC-seq data processing

lllumina Nextera Adapters were removed using a custom Python script. Reads were aligned to the hg38
using Bowtie2. Duplicates were removed with Picard. Mitochondrial reads or reads with Bowtie2 MAPQ
score < 30 were removed using SAMtools. All replicates were similar, so their alignment files were merged
to increase library complexity (=100 million mapped reads per cell type) and produce a single bigwig file
per cell type used to display the ATAC-seq tracks, and a single bam file to determine ATAC-seq peaks.
ATAC-seq peaks were identified in each cell line using HMMRATAC v1.2.10.

Chromatin association scores

We defined the chromatin association score for RNA i as the log fold difference between the level of
RNA 7 in the chromatin associated RNA transcriptome (measured with the RNA-side of the ChAR-seq
reads) and its level in the total RNA transcriptome (measured with total RNA-seq). To estimate
the chromatin association score in a way that was robust to small counts and obtain p-values
to detect RNAs with meaningful chromatin enrichment, we used DEseg2 with a design formula
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~cell + sequencing + cell:sequencing. In this design matrix, the cell covariate represented the
cell type and the sequencing covariate indicated whether the sample originated from RNA-seq or
ChAR-seq. The interaction term cell:sequencing captured differences in the chromatin association of
a given RNA between ES and DE cells. We used the shrunken estimate of the regression coefficient
associated with the sequencing covariate as the estimate of the chromatin association score. We
computed the chromatin association score in ES and DE cells separately by setting the reference level
for the cell covariate to ES and DE, respectively, before running DEseqg2. The apeglm method was used
to compute the shrunken estimates. We ran DEseq2 using an input count matrix with 16 samples: 2 ES
and 2 DE replicates from ChAR-seq and 4 ES and 4 DE replicates from RNA-seq. Gene counts for all
Gencode V29 genes and all UTLs identified in this study were included in the input matrix, except those
with fewer than 10 counts combined across all 16 samples. Counts from exons and introns of a given gene
and from UTLs were input as separate entries (rows) in the matrix. All DESeg2 parameters were set to
their default value, except for the sample depth normalization step. For sample depth normalization, we
ran the estimateSizeFactors command on a subset of the rows of the count matrix that included only
exons of annotated genes with at least 50 counts combined across all 16 samples. Subselecting exonic
reads removed length bias due the low representation of introns in the total RNA-seq data compared
to the ChAR-seq data. False Discovery Rate (FDR) adjusted p-values corresponding to the regression
coefficient associated with the sequencing covariate were used to identify genes with significant chromatin
enrichment. Genes with an adjusted p-value smaller than 0.05 and a chromatin association score either
greater than 3 where labeled as chromatin enriched, and those with an adjusted p-value smaller than 0.05
and a chromatin association score less than -3 were labeled as chromatin depleted. To identify genes with
statistically significant changes in their chromatin association score in ES versus DE cells (Fig. 3d), we
used the regression coefficient associated with the interaction term cell:sequencing, LFCgspe and its
corresponding adjusted p-value p,g;es,pe- Thresholds used to label such genes where LFCgs pg > 0, and

Padj,es,DE < 0.05.

Computational interaction with ChAR-seq data

For most computational analyses, the filtered pairs files were loaded in python as a chartable python object
using the chartools package. Within the object, the interaction data were stored in a sparse matrix with
one row per RNA and one column per genomic Dpnll site, binned at 10 bp resolution, which could be
loaded entirely in RAM. This allowed us to perform computationally efficient indexing operations to select
individual RNAs or target genomic loci, plot ChAR-seq maps at various resolutions, produce bigwig files of
the binding profile of individual RNAs, and generate the caRNA-gene interactome. All of these operations
were performed using methods from the chartools package.

De-novo identification and classification of unannotated transcribed loci (UTLs)

Identification of UTLs. For each ChAR-seq sample, reads whose RNA did not overlap with any gene
body in GenecodeV29 in the sense orientation were classified as intergenic by tagtools and their
STAR RNA alignments were extracted in a separate bam file. Only RNA reads with a STAR
alignment score of @@ = 255, a cognate DNA read with a Bowtie2 alignment score of @ > 15
were retained. The reads handling and filtering steps were performed as part of our ChAR-seq
reads preprocessing Snakemake pipeline. These bam files were used as an input to StringTie2
with parameters --fr --conservative -u -m 30 -p 4 -A to produce one gtf file with de-novo
gene models for each sample. The sample specific gtf files from the 2 ES and 2 DE ChAR-seq
replicates were merged using StringTie2 with parameters --merge -p 4 -m 30 -¢ 0 -F 0 -T 0
to produce a final a gtf file intergenic.merged.gtf with gene models for the UTL. This
gtf file was used to generate a STAR index containing the gene models for the UTLs using
command STAR --runMode genomeGenerate --sjdbGTFfile intergenic.merged.gtf. A dedicated
Snakemake pipeline was run, similar to the full preprocessing pipeline described above, but starting from
the tagtools step and using the UTL rather than the gencode gene models (and corresponding STAR
indices) to produce pairs files corresponding to RNAs emanating from UTLs.
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Classification of UTLs. Each UTL was assigned 4 metrics or tags. i) We attributed each UTL a dominant
Transposable Element (TE) family and a TE-score. For this task, we applied Classification of Ambivalent
Sequences using K-mers (CASK)®6 to the RNA-side of the ChAR-reads. CASK annotates each read with
a candidate TE family (if any) based on its k-mer composition analyzed against a database of TE-specific
k-mers build using the T2Tv1 genome assembly and T2T-CHM13 repeat annotations. Then, for each UTL,
we identified the CASK annotation with the highest representation amongst all the reads (across the 2 ES
and 2 DE replicates) mapped to this UTL. We assigned this annotation as the dominant TE family for this
UTL and the proportion of reads from this UTL with this specific CASK annotation as its TE-score. ii) If
the 5" end of an UTL was within +/- 300 bp of a cis-regulatory element (CRE) active in either ES or DE
cells, we annotated this UTL with the closest such CRE and its associated 7-group classification based on
the Encode Registry of Regulatory Elements®? (file ID GRCh38-cCREs.bed). To determine active CRE in
ES or DE cells, we selected, amongst the Encode Registry of Regulatory Elements (containing 1,063,878
human candidate CREs), those that overlapped with an ATAC-seq peak in that cell line. iii) UTLs whose 5’
end were within -200 bp to +100 bp of the 3’ end of a GencodeV29 gene body were flagged as candidate
“readthrough.” iv) UTLs with at least 10% overlap with the antistrand of a GenecodeV29 gene body were
flagged as candidate “antisense.” Finally, these 4 metrics and tags were combined to determine the final
UTL classification using the following priority rule: i) UTLs with a dominant TE family of tRNAs and at
TE-score greater than 10% were classified as tRNA-derived. ii) Remaining UTLs with a dominant TE
family in {snRNA, snoRNA , scaRNA , srpRNA, scRNA , rRNA} and at TE-score greater than 10% were
classified as snRNA-derived. iii) Remaining UTLs flagged as candidate readthroughs were classified as
readthroughs. iv) Remaining UTLs with a CRE annotation in either ES or DE cells were classified as
CRE-derived, and the subtype of CRE was selected from the ES cell annotation if the CRE was active in
ES cells, and from DE cell annotation otherwise. v) Remaining UTLs with a TE-score greater than 50%
were classified as repeat-derived, with the specific repeat family determined by their dominant TE family.
vi) Remaining UTLs flagged as candidate antisense were classified as antisense. vii) All remaining UTL
were classified as intergenic.

Quantification of the RNA-DNA interactome dynamics

To compare the ChAR-seq RNA-DNA contact maps in ES versus DE cells, we repurposed the differential
gene expression analysis tool DEseq2%. We applied DEseqg2 in the interactome space (rather than
the transcriptome space, as traditionally done in differential RNA-seq) using the number of ChAR-seq
reads linking a specific RNA to a specific DNA locus, hereafter refer to an RNA-DNA interaction, as a
separate rows in the input count matrix. We defined a DNA locus as either a 100 kb or 1 Mb genomic
window (for Fig. 3), or a region surrounding the TSS of a protein coding gene as defined in the main
text (for Fig. 6). The 4 ChAR-seq samples were included as columns of the count matrix. RNA-DNA
interactions for which fewer than 2 samples had at least 10 reads were excluded from the count matrix and
further analysis. The contact maps from exons, introns, and UTLs were analyzed in independent DESeq2
runs. The count matrices were generated in Python directly from the chartable objects that stored the
contactome data. These matrices were imported in R and DESeqg2 was run with all parameters set to
their default values. Log, Fold Change differential contacts maps shown in Fig. 3 were generated using
the shrunken fold change estimates for each contact as returned by DESeq2. The apeglm method was
used for shrinkage. This DESeq2 output was loaded into a chartable object in Python for computational
handling and visualization tasks using chartools. Bar plots in Fig. 3b were produced using ggplot2 in R
after converting the DESeq2 output into dplyr tibbles and applying appropriate transformations.

Detection of RNA relocalization events during differentiation.

Model 3 in Fig. 3c was tested by comparing the fold change between ES and DE cells for each RNA-DNA
interaction with the fold change in total expression of the corresponding RNA in the caRNA transcriptome.
To do so, we generated “expression only” contact maps, where the number of contacts between RNA ¢ and
genomic locus j was set equal to the total number of contacts made by RNA i in the observed map. For
this analysis, genomic loci were defined using a 100 kb tiling partition of the genome. Because in these
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“expression only” maps, each row i (representing RNA 7) is constant across the columns (representing
the 100 kb-wide DNA loci), any information about the localization of individual RNAs is effectively removed
and only the information about the abundance of each RNA is retained. We next applied DEseg2 in
the interactome space as described above, but with the following modifications. First, the count matrix
input to DEseg2 contained 8 samples/columns: the 2 ES and the 2 DE replicates of the observed
contact maps and the 4 corresponding “expression only” maps. Second, we used a design matrix of the
form ~cell + mapType + cell:mapType, where the mapType covariate indicated whether the column
corresponded to an observed ChAR-seq map or an “expression only” map, and the cell covariate
indicated whether the column corresponded to a map in ES or DE cells. Third, the count matrix was
prefiltered as above by removing interactions for which fewer than 2 samples had at least 10 reads, except
that only the true observed samples (mapType=observed) were considered for the purpose of the filter.
The interaction term cell:rnaType captured differences in the ES to DE dynamics in the true maps
compared to the “expression only” maps. All interactions that had an FDR adjusted p-value associated
with the cell:rnaType covariate smaller than 0.05 were flagged as “not explained by expression.” Maps
shown in Fig. 3e and labeled as “Differential contacts explained by expression” were generated using the
apeglm shrunken estimate of the regression coefficient associated with the cell covariate and with the
reference level for mapType set to “expressionOnly.” This analysis was performed separately for maps
corresponding to exons, introns, and UTLs.

Computation of the trans- and cis-delocalization scores
For full details on the trans-delocalization scores please refer to Supplementary Note 2.

trans-delocalization scores. Briefly, we defined the raw trans-delocalization score for each RNA as the
ratio of the contact density of this RNA on frans chromosomes (number of contacts divided by the total
length of the trans chromosomes) over the contact density of this RNA on its cis chromosome. The
raw delocalization score was difficult to interpret due to sample-specific biases and dependency in the
chromosome of origin and expression (Supplementary Figure 5). To regress out these biases and obtain
a score that was comparable across RNAs and samples, we used a generalized linear model (GLM) and
an empirical Bayes approach. First, we modeled the total number of trans-chromosomal contacts Nyrans,
for each RNA 7 as independent Beta Bionomial distributions. The Beta Binomial distribution accounts for
both the sampling variation and the biological variation across RNAs, and was parametrized with the total
number of reads N; for RNA 4, a mean frans-contact rate for RNA ¢ m;, and an overdispersion parameter
which we assumed constant across all RNA ~, such that

E (Nirans,i | Ni) = m; N;

Var(Ntrans,z’ | N;) =mi(1—m)N; (1 4+ (N; — 1)) M

We captured the expression and chromosome biases by using a beta-binomial GLM and by including these
effects as covariates in the GLM. Specifically, we used a logit link function for the mean trans-contact rate
pi; of the form

logit (i) = mehr,i + Nexpr IN(IV;) (2)

We next fit the Beta-binomial GLM using our ChAR-seq count data from mRNAs as a training set and
conditioning on the total number of reads N; for each RNA <.

Fitting was performed using the fit.gamlss function from the gamlss package in R with the beta binomial
family parameter and after loading the count data in a dplyr tibble and transforming the table appropriately
for input into the fit function. RNAs with fewer than 50 total counts were removed and discarded from
further analysis. Using the fitted beta-binomial GLM, we obtained for each RNA ¢ an estimate for the mean
frans-contact rate mmodel; @nd an associated Beta Binomial distribution with parameters N;, mmodel; @and
gammamedel, Which we used as an Empirical Bayes prior. We performed a Bayesian update using the true
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observed number of trans-chromosomal contacts for RNA ¢, thereby obtaining a shrinkage estimate for
the trans-contact ratempost,;. We defined the calibrated trans-delocalization score for RNA i Ayapg, i as the
log, transformed ratio of the shrinkage estimate over the model prediction:

Atrans, i = logit (Wpost,z‘) — logit (7Tmodel7z‘) (3)

Delocalization scores were computed independently for each sample, and a final delocalization score for
each RNA in each cell state was obtained by averaging the scores over the 2 replicates.

cis-delocalization scores. We defined the RNA travel distance ¢ for each ChAR-seq read corresponding to
a cis-chromosomal contact as the distance between the mapping locus of the RNA and the mapping locus
of the DNA. cis-delocalization scores were defined and computed similarly to the trans-delocalization
scores, except for the following replacements: the number of cis-chromosomal contacts for RNA ¢ was
replaced with the number of contacts Ns.1mp; such that the absolute RNA travel distance was smaller
than 1 Mb, and the number of trans-chromosomal contacts was replaced with the number of contacts
Ns~1mpb,i such that the absolute RNA travel distance was greater than 1 Mb. The covariates for the GLM
remained unchanged.

Detection of RNAs with extreme delocalization scores

The analysis described below was used for the trans-delocalization scores and was performed similarly
for the cis-delocalization scores. Briefly, for each RNA and each sample, we computed the probability
Pdelocalized,; that a random sample drawn from the posterior distribution of the frans-contact rate post; Was
larger than a random sample drawn from the GLM trained on the mRNA population. This probability was
used as a p-value for identifying trans-delocalized RNAs. One p-value was obtained per RNA and per
sample, and p-values from replicates were combined using Fisher’s method. Multiple hypothesis testing
was correction performed using Benjamini Hochberg procedure. RNAs with an adjusted p-value smaller
than 0.05 were declared as trans-delocalized. To identify RNAs on the other side of the distribution tail
(ultra-localized RNAS) 1 — pgelocaiized,; Was used, and Fisher's and BH methods were applied similarly. An
RNA was declared ultra-localized if the resulting adjusted p-value was smaller than 0.05. All computations
were performed in R. For further details please refer to Supplementary Note 2.

Prediction of ChAR-seq contact maps using a generative model

For mathematical details and a detailed discussion on the generative model, please refer to Supplementary
Note 3. Briefly, the ChAR-seq dataset can be represented as a set of RNAs from an arbitrarily indexed
transcriptome (i.e., RNA i refers to an RNA associated with the i gene in the transcriptome), and for each
RNA i, a set of N; reads coming from this RNA whose RNA mapping coordinates are {r; ;};—=1..n, and
DNA mapping coordinates are {di7j}j:1,..Ni. We modeled for each RNA i the probability to observe any
particular realization of the DNA mapping coordinates, conditional on knowing i) the set of RNA mapping
coordinates and ii) the total number of contacts for this RNA on each chromosome. We modeled the
cis- and trans-chromosomomal contacts separately. For cis-contacts, we assumed the probability for an
RNA emanating from coordinates r to contact locus j with coordinates d;, is proportional to: i) an RNA
independent and DNA locus-dependent bias b; representing biological and technical variation of RNA
localization and detection along the genome and ii) an interaction frequency dependent on the distance
between the RNA and the DNA locus. The latter effect captures diffusion and tethering effects at short
distances, whereby an RNA is more likely to interact with loci near its transcription site. Under this model,
the probability to observe any specific localization pattern for RNA ¢ in cis is given by a multinomial
distribution of the form:

Multinomial (Ni,cis,oc b * Z p(d; —ri,k)) (4)

keC;
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where C; is the set of indices amongst the reads from RNA 4, for which the DNA-side maps to a locus in
cis. For trans-contacts, we assumed that the probability for any RNA to contact locus j is only proportional
to the DNA-bias. Under this model, the probability to observe any specific localization pattern for RNA
on a trans chromosome c is given by a multinomial distribution of the form

Multinomial (Nz‘7chr(i):c7bj) )

where N; ¢ne(;)—c IS the number of contacts made by RNA i on chromosome c.

The DNA bias coefficients b; were estimated using the total coverage at each locus j from all the mRNAs
originating from trans chromosomes. The distance dependent interaction frequency curve was estimated
using the empirical distribution of RNA-DNA travel distance from all the protein coding RNAs. Maps shown
across the manuscript and labeled as "model" were obtained by simulating a single realization of the cis
and trans probabilistic models for each RNA in the transcriptome and for each target chromosome. Note
that for each RNA, because of the conditional constraints, the total number of contacts on any specific
chromosome are always equal in the simulated data and in the observed data. All simulations were
performed in python as described in Supplementary Note 4, and the resulting maps were loaded in memory
as chartables using chartools for analysis and plotting purposes.

Detection of RNA-DNA contacts not predicted by the generative model

To compare the true observed ChAR-seq RNA-DNA contact maps to those predicted by the generative
model, we applied DEseqg2 in the interactome space as described in the section “Quantification of
the RNA-DNA interactome dynamics” with the following modifications. First, the count matrix input to
DEseq2 contained 8 samples/columns : the 2 ES and the 2 DE replicates of the true “observed” contact
maps, and the 4 corresponding “model” maps, obtained by a single simulation of the generative model.
Second, the design matrix was set to ~ cell + observedORmodel + cell:observedORmodel, where
the observedORmodel covariate indicated whether the column corresponded to “observed” or “model”
ChAR-seq map. Third, the count matrix was prefiltered by removing interactions for which fewer than 2
samples amongst the “observed” samples had at least 10 reads. The interaction term cell:rnaType
captured differences between the observed and modeled data that were specific to either ES to DE
cells. All interactions whose apeglm shrunken estimate of the regression coefficient associated with the
observedORmodel covariate was greater than log2(1.3) and had an FDR adjusted p-value smaller than 0.0
5 were flagged as “not explained by model.” We computed the regression coefficient associated with the
observedORmodel and its p-value in ES and DE cells separately, by setting the reference level for the cell
covariate to ES and DE, respectively, before running DEseq2. This analysis was performed separately for
maps corresponding to exons, introns, and UTLs. Maps shown in Fig. 5d-h, and Fig. 6b labeled as “model’
or “mod” were generated using the apeglm shrunken estimate of the regression coefficient associated
with the observedORmodel covariate. The DESeq2 outputs were loaded into a chartable object in Python
using chartools for visualization tasks. Bar and line plots in Fig. 5e where produced using ggplot2 in R
after converting the DESeq2 output into dplyr tibbles and applying appropriate transformations.

External data used in this study

Hi-C data in Fig. 5 were loaded in HiGlass from the Krietenstein et al. 2019 (H1 hESCs) dataset®,
visualized at 2kb resolution after ICE normalization, and manually aligned with the ChAR-seq, ATAC-seq,
H3K27ac and H3K4me3 tracks plotted in IGV based on their genomic coordinates. H3K27ac and
K3K4me3 tracks in Fig. 2b and Fig. 5g were generated using ChIP-seq data in H7 hESCs cells and H7
cells differentiated into definitive endoderm from GSE127202%°.

Data and code availability

All ChAR-seq, RNA-seq and ATAC-seq sequencing data generated as part of this study are available
by request and will be made publicly available on GEO upon publication. Packages released as part of
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this study and Snakemake pipelines used to preprocess the ChAR-seq and RNA-seq data are available
on github at the specific repositories described above. All data analysis code and code to generate the
figures are available by request and will be available on github upon publication.
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