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Abstract11

Non-coding RNAs (ncRNAs) are transcribed throughout the genome and provide regulatory inputs to gene12

expression through their interaction with chromatin. The genomic targets and regulatory mechanisms of13

most ncRNAs remain unknown. Using chromatin-associated RNA sequencing (ChAR-seq) we obtained14

a global map of RNA-chromatin interactions, transcriptome and genome-wide, in human embryonic stem15

cells and definitive endoderm. We defined the overall architecture of the RNA-chromatin interactome16

that encompasses all long non-coding RNAs, intronic RNAs, as well as unannotated RNAs derived from17

regulatory elements, transposable elements, and intergenic regions. We show that the interactome is18

cell state specific, involves functionally diverse classes of RNAs, and can be accurately predicted by a19

simple model accounting for RNA expression and distance to their DNA targets. We show that nearly all20

ncRNAs exclusively interact with genes in close three-dimensional proximity to their transcription locus. We21

identified a small number of RNAs that deviate from that behavior and interact with many loci across the22

genome. By relating the changes in the interactome during differentiation to changes in gene expression,23

we demonstrate that activation or repression of individual genes is unlikely to be controlled by the activity24

of a single ncRNA.25
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Introduction26

Cell identity is determined by the precise execution of lineage-specific gene expression programs1.27

These programs are controlled by coordinated signals from regulatory DNA sequences, transcription28

factors, histone modifications and variants, and 3D genome organization. The role of RNAs in29

modulating these programs is increasingly appreciated2,3. Many different RNAs bind chromatin,30

collectively termed here chromatin-associated RNAs (caRNAs). These include long non-coding RNA31

(lncRNAs)4,5, heterogeneous nuclear RNAs (hnRNAs)6,7, enhancer-RNAs (eRNAs)8,9,10, transposable32

element (TE)-derived RNAs11,12,13,14, and other chromatin enriched RNAs (cheRNAs)15,16. Yet, the33

function of these RNAs on chromatin remains largely unknown.34

Several examples have demonstrated that lncRNAs can orchestrate complex regulatory circuits.35

For example, XIST is a core regulator of X-chromosome inactivation17, and KCNQ1OT1 mediates36

allele-specific silencing of a group of imprinted genes near its locus18,19. With advances in genomics37

methods, the proposed regulatory roles of caRNAs have expanded to include RNA species other than38

lncRNAs. For example, eRNAs can affect expression of neighboring genes through modulation of RNA39

polII elongation20,21, or recruitment of transcription coregulators22,23. Nascent pre-mRNAs can interact40

with chromatin architectural proteins and locally regulate chromatin compaction6,24, and TE-derived RNAs41

can silence immune response genes and hamper the T-cell effector functions25. Furthermore, many42

proteins involved in controlling chromatin state26,27,28,29,30 and topology31,23 have RNA-binding activity,43

establishing a putative mechanistic link between caRNA and gene regulation. Despite these examples44

and general models, which caRNAs have gene regulatory roles and the mechanisms through which they45

act is not well understood32.46

Our ability to understand transcription regulation by caRNAs is hampered by one key gap in our47

knowledge: we do not know, for all but a select few RNAs, the genomic loci where these RNAs act.48

This knowledge gap makes it challenging to unravel the network of interactions between caRNAs and49

genes. Furthermore, this network of interactions is likely highly complex. The number of caRNAs50

greatly exceeds that of proteins. Annotated lncRNAs alone represent ~20,000 RNAs (Gencode v29),51

and the number of regulatory elements is estimated to be over 900,00033,34. Although the transcriptional52

activity of these regulatory elements hasn’t been fully characterized, conservative estimates based on a53

subset of promoters and enhancers from FANTOM5 indicate at least 100 000 such elements generate54

RNAs35,1,36. Transcription of both lncRNAs37,38 and regulatory elements9,39,36,35 exhibit strong tissue55

specificity such that the ncRNA-gene interaction network is also likely cell-state dependent, although this56

remains to be experimentally tested. More generally, pervasive transcription outside of protein-coding57

regions provides a large sequence space with potential regulatory activity40,41,42. Given the suggested58

associations between sequence or expression variations in lncRNAs, TE-derived RNA, or eRNAs and59

human health, characterization of the network of human caRNA-gene interactions at the full transcriptome60

scale represents an important goal43,25,44,45,46.61

Here, we used chromatin-associated RNA sequencing (ChAR-seq) to map the RNA-chromatin interactome62

in H9 embryonic stem cells and definitive endoderm47,48,49. From these data we characterize the global63

architecture of this interactome, present a model which predicts the majority of RNA-DNA chromatin64

interactions based on RNA-target distance, and highlight RNAs deviating from this model. Finally, we65

generate an all-to-all caRNA-gene interaction network linking every gene to the set of caRNAs with66

which it interacts based on physical proximity. Our network encompasses lncRNAs, as well as many67

unannotated intergenic RNAs and could help prioritize specific caRNAs for future functional validation68

studies. Finally, we analyzed the dynamics of the interactome during differentiation to shed light on the69

potential mechanisms by which caRNAs may regulate genes.70

Results71

To detect caRNAs and map their interactions with the genome, we applied our recently developed assay,72

ChAR-seq48,47,49, a proximity-ligation method that captures and sequences RNA-DNA contacts across73
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the genome and transcriptome (Fig. 1a). We performed ChAR-seq in human H9 embryonic stem cells74

(ES) before and after differentiation into definitive endoderm (DE) to understand how changes in the75

caRNA-chromatin interaction network might relate to activation or repression of cell-state specific genes76

upon differentiation. We validated our cell differentiation system by qPCR against cell-state marker77

genes and immunostaining, which revealed pure (>99%) ES and DE cell populations (Extended Data78

Fig. 1a,b)50.79

We performed deep sequencing of the ChAR-seq libraries to obtain over 900 million reads per cell state80

across 2 replicates. We computationally split each read into a RNA- and a DNA-derived sequence and81

selected reads that passed stringent quality filters with both the RNA and DNA sequences mapping to82

unambiguous loci (Supplementary Fig. 1 and Methods). We thereby obtained the RNA identity and83

genomic target for nearly 200 million unique RNA-DNA contacts (Supplementary Fig. 2).84

We first analyzed the global composition of the caRNA population. We observed a high level of RNAs85

derived from introns (Fig. 1b), which likely reflects the capture of RNA during nascent transcription while the86

RNA is tethered to chromatin through polymerase, or other forms of chromatin retention of introns such as87

interaction with RNA binding proteins51,52,4,53 . caRNAs were enriched for non-coding RNAs, including long88

non-coding RNAs (lncRNAs) and other short non-coding RNAs encompassing several functionally distinct89

subtypes of RNAs such as small nuclear RNAs (snRNAs) and small nucleolar RNAs (snoRNAs; Fig. 1c,90

Extended Data Fig. 2a). Overall, caRNAs are highly diverse, with as many RNAs represented at above 0.191

Fragment Per Million (FPM, ~10 reads at our sequencing depth) in the caRNA transcriptome as in the total92

RNA transcriptome (Extended Data Fig. 2 b-d, Supplementary Tables 1,2). To normalize the composition93

of the caRNA population to expression levels, we assigned each RNA a chromatin association score, which94

we defined as its relative abundance in the ChAR-seq versus total RNA-seq data (Methods). We found95

that nearly all introns and half of all ncRNAs, including half of the ~5,000 lncRNAs detected, had over96

3-fold enrichment on chromatin, in agreement with prior characterizations of caRNA54,16 , indicating that97

ncRNAs tend to have nuclear or chromatin localization (Fig. 1d, Extended Data Fig. 3a-d, Supplementary98

Table 3). Thus, while lncRNAs are often considered prime candidates for potential chromatin regulatory99

roles3,34, our data indicate that non-intronic regions of lncRNAs only constitute approximately 3% of the100

caRNA population, and less than 1% when excluding the top 10 most abundant lncRNAs. This result101

prompted us to perform a broad analysis of RNA-DNA interactions, including all caRNAs, rather than to102

focus exclusively on lncRNAs.103

Because the chromatin association patterns and potential chromatin activity of exon- and intron-derived104

RNAs might be distinct, we generated separate RNA-DNA contact maps for exons and introns (Fig. 1e).105

Our RNA-DNA contact maps were highly reproducible (Extended Data Fig. 4a) and showed high106

correlation between replicates and lower correlation between cell states, indicating that the interactome107

is dynamic during differentiation (Extended Data Fig. 4b). In both ES and DE cells and across exons108

and introns, we uncovered several features of the RNA-DNA interactome mirroring those described in109

our prior work on Drosophila melanogaster and by others55,48,56,54,57. First, we noted a higher density110

of intrachromosomal compared to interchromosmal RNA-DNA contacts, reminiscent of the properties111

observed at the DNA level by Hi-C58, and likely reflecting the chromatin organization into chromosome112

territories59. Furthermore, the average contact frequency between an RNA and a genomic target dropped113

sharply as a function of the distance between the RNA locus and the target, with an average ~100-fold114

lower contact density 50-100 kb away from the transcription locus compared to at the transcription locus115

(Extended Data Fig. 4c). Finally, we observed 3 classes of RNAs with distinct chromatin association116

patterns (Fig. 1). i) Many RNAs localized predominantly at or near their transcription locus. ii) Another117

set of RNAs, including the MALAT1 RNA, localized across the genome, as previously observed56,60.118

iii) The third class of RNA, which includes XIST, is characterized by chromatin interactions across a119

single chromosome. The localization of XIST across the X chromosome was more apparent in DE cells,120

concomitant with its transcriptional activation and the initiation of X chromosome inactivation during early121

embryonic development61. We confirmed by RNA fluorescence in situ hybridization microscopy that the122

nuclear localization of select RNAs from these classes was consistent with their classification by ChAR-seq123
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(Extended Data Fig. 5). Altogether, these RNA-chromatin interactomes identify numerous RNAs in124

different functional classes that dynamically reorganize dependent upon cell state and demonstrate that125

most caRNAs remain associated with chromatin near their sites of synthesis.126
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Figure 1. Global mapping of RNA-chromatin interactions during stem cell differentiation. a, Schematic of the strategy used

to map RNA-DNA contacts across the transcriptome and genome by ChAR-seq, highlighting the key steps of the workflow. b-c,

Composition of the caRNAs identified by ChAR-seq compared to the total RNA population determined by total RNA sequencing.
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Figure 1 (previous page). d, Scatter plots showing the chromatin association scores for individual RNAs originating from

annotated exons, as a function of the RNA level in the caRNA population. Chromatin enriched and depleted RNAs were

determined using DESeq2 (FDR 0.05, fold change threshold 3x). Pie charts summarize the fraction of chromatin enriched

and chromatin depleted RNA in each functional RNA type. The numbers within each pie chart indicate the total number of RNAs

in that category. e, RNA-DNA contact maps in ES and DE cells for the top 200 most abundant caRNAs (according to their

mean expression in ES and DE cells) on Chr7 and Chr8. Maps are displayed at a resolution of 1 RNA per row and 1 Mbp of

genome space per column. Color represents contact density defined as the number of contacts between an RNA and a genomic

bin, normalized for sequencing-depth and size of the genomic bin (CPKM: Contacts Per Kb in target genomic region per Million

reads). Contacts made by exonic and intronic RNAs are shown in left and right maps, respectively. f, Interaction profiles along

the genome for SOX17, PVT1, MALAT1 and XIST exons, and for SOX17, PVT1 and SLC26A3 introns, illustrating 3 major classes

of interaction profiles: RNAs localized predominantly near their transcription locus (SOX17, PVT1 exons and introns), spreading

across a single chromosome (XIST), and across the genome (MALAT1, SLC26A3 introns)

A highly cell-state specific population of unannotated RNAs localizes on chromatin127

Strikingly, we identified unannotated RNAs that did not overlap with any known genes (as of Gencode128

v29) in 14% of all RNA-DNA contacts–a proportion similar to that of exons for annotated RNAs (Fig. 1b).129

To further characterize the nature of these unannotated transcripts, we used the StringTie de novo130

transcriptome assembler to identify individual transcription units (Fig. 2a)62. We uncovered 78,314131

data-inferred transcription loci, which we hereafter refer to as unannotated transcribed loci (UTLs), 30,442132

of which were above 0.1 FPM in ES or DE cells (Extended Data Fig. 6a-b, Supplementary Table 4). Thus,133

the number of UTLs is comparable to the 22,475 (resp. 23,832) Gencode transcripts with exons (resp.134

introns) above 0.1 FPM. We examined the genomic context of these RNAs and noted that UTLs were135

composed of distinct functional classes of RNAs (Fig. 2b). Some UTLs were immediately continuous with136

the 3’ end of active genes (e.g., UTL69162), thus likely originating from transcriptional read-through, as137

reported in prior studies63,64. Other UTLs overlapped at their 5’ end with known regulatory elements (e.g.,138

UTL69163), as indicated by their relative proximity to gene transcription start sites (TSSs), high ATAC-seq139

signal, H3K27ac levels, and their overlap with annotations from the ENCODE Registry of Regulatory140

Elements v333. These cis regulatory element-derived RNAs (CRE-derived RNAs) are likely a mixture of141

enhancer RNAs (eRNAs) and promoter upstream RNAs65,66. Another subset of RNAs mostly overlapped142

or were immediately downstream of TEs (e.g., UTL69657), in agreement with prior studies showing that143

TEs are a source of RNAs that associate with chromatin11,25,12. A fourth and fifth category of UTLs did144

not have any of the above features but were either antisense to known genes or localized in intergenic145

regions. Finally, some UTLs had sequence similarity with known transfer RNAs (tRNAs), snRNAs other146

small RNAs and tended to be very abundant (Supplementary Fig. 3). These UTLs may derive from either147

mature or unprocessed transcripts from these tRNAs and snRNAs complete gene units67. Guided by148

these observations, we classified the UTLs based on their proximity to the 3’ or 5’ ends of genes, their149

overlap with transposable elements, snRNAs, or tRNAs, and their overlap with cis regulatory elements150

annotated in the Encode Registry of Regulatory Elements33, yielding 7 categories of unannotated RNAs151

(Methods). We found that on average across ES and DE cells, ~32% of the reads coming from UTLs152

were classified as readthrough RNAs and ~27% as cis regulatory element-derived (Fig. 2c). Over 60% of153

the CRE-derived RNAs were from enhancer elements (Extended Data Fig. 6a). Four percent of the UTL154

reads were repeat-derived transcripts, roughly evenly distributed between LTR, SINE, and LINE elements155

(Fig. 2c, Extended Data Fig. 6a). Overall, the expression levels of UTLs were low, but similar to those of156

lncRNAs (Extended Data Fig. 2b, Extended Data Fig. 6b-c).157

Although these RNAs were present in the total RNA population, chromatin association score analysis158

indicated that all categories of UTLs were enriched on chromatin (Fig. 2d, Extended Data Fig. 6a,159

Supplementary Fig. 4). We also found that UTLs were highly cell-state specific in both the total RNA160

and caRNA populations (Fig. 2e). 15-49% of UTLs were up- or down-regulated in the caRNA and total161

RNA populations compared to only ~12% for mRNAs and lncRNAs. The high cell state specificity of162

CRE-derived RNAs in particular is consistent with prior studies37. We generated RNA-DNA contact163

maps specifically for UTLs, which showed patterns similar to those observed for exonic and intronic RNAs164
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(Fig. 2f). We found both UTLs which were locally restricted near their locus and UTLs that spread across165

the whole genome (Fig. 2g). This result prompted us to perform a broad analysis of RNA-DNA interactions,166

including all caRNAs, rather than to focus exclusively on lncRNAs.167
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Figure 2. Cell state specific unannotated RNAs make up a large fraction of the caRNAs. a, Schematic of the method

used to catalog unannotated RNAs by identifying transcription units using StringTie2. b, Genome tracks showing the chromatin

context of 3 representative uannotated transcription loci (UTL). Left panel: UTL69162 and UTL69163, respectively downstream

and antisense to RB1CC1 are classified as a readthrough RNA and CRE-derived RNAs. Right panel: UTL69657 is classified as a

repeat-derived RNA due to its overlap with a LINE element. In both left and right panels, the top 2 tracks display the strand-specific

genome coverage of the RNA-derived side of the ChAR-seq reads in ES and DE replicate 1 (+ strand ES in dark blue, - strand ES

in light blue, + strand DE in dark yellow, - strand ES in light yellow). Next two tracks display the strand-specific genome coverage

of the total RNA-seq data. c, Relative composition of the chromatin-associated UTLs in the 7 annotation classes. d, Scatter plots

showing the chromatin association scores for individual UTLs and their abundance in the caRNA population. Chromatin enriched

and depleted UTLs were determined using DESeq2 (FDR 0.05, fold change threshold 3x). Pie charts summarize the fraction of

chromatin enriched and chromatin depleted UTLs in each category. Numbers within each pie chart indicate the total number of

RNAs in that category. e, Percentage of genes upregulated and downregulated in DE vs ES cells in the caRNA transcriptome

and for each RNA category. Up- and downregulated RNAs were identified using DESeq2 (FDR 0.05, fold change threshold 3x).

f, RNA-DNA contact maps in ES and DE cells for the top 200 most abundant UTLs on Chr7 and Chr8, displayed at a resolution

of 1 RNA per row and 1 Mbp of genome space per column. g, Genome-scale chromatin interaction profiles of 4 UTLs showing

similar localization patterns as annotated RNAs.

RNA-DNA interactome dynamics is driven by caRNAs transcription dynamics rather than168

relocalization of caRNAs169

We next quantified the dynamics of the RNA-chromatin interactome during ES-DE cell differentiation.170

To identify cell-state dependent interactions, we binned the DNA contacts of each RNA into 100 kb or171
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1 Mb intervals and performed a quantitative analysis analogous to differential expression analysis to172

obtain the fold change of each contact in ES versus DE cells and its associated statistical significance173

(Methods). In total, after filtering the data to only include contacts with at least 10 counts in at least two174

samples, we tested ~100,000 exon-chromatin contacts, ~300,000 UTL-chromatin contacts, and 1.6 million175

intron-chromatin contacts (all at 100 kb resolution) for differential representation in ES vs DE cells. The176

corresponding maps are shown in Fig. 3a. While we observed few dynamic RNA-chromatin interactions far177

from the RNA transcription locus (TL) in the exon and UTL maps, zooming in on a 10 Mb window around178

each RNA TL at 100 kb resolution revealed widespread changes in the interactome for all categories of179

RNAs. At 100 kb resolution ~2% of interactions involving exons and ~7% of interactions involving introns180

were up- or down-regulated in DE versus ES cells (Fig. 3b). More substantial changes were observed at181

a lower resolution of 1 Mb per genomic bin (Supplementary Fig. 6).182

The interactome dynamics during differentiation may be driven by three non-mutually exclusive effects183

(Fig. 3c). First, an RNA may increase or decrease in overall abundance, resulting in proportionally184

increased or decreased binding levels on chromatin. Second, an RNA may modulate its affinity for185

chromatin, for instance, through RNA modifications or through changes in affinity with RNA-binding186

proteins mediating its interaction with chromatin. Third, an RNA may relocalize from one genomic site187

to another. The first two modes of dynamics would result in similar binding profiles in ES vs DE cells, albeit188

with an overall scale shift in binding levels. In contrast, the third mode implies changes in the RNA binding189

pattern to chromatin.190

To test these models, we first compared the chromatin association score of each RNA in ES versus DE191

cells. Remarkably, the chromatin association scores remained mostly unchanged during differentiation,192

particularly for lncRNAs, with only 35 lncRNAs showing evidence of changes in their chromatin affinity193

(Fig. 3d, left panel, Supplementary Table 3). Surprisingly, a larger fraction of UTLs compared to ncRNAs194

(~8% of CRE-derived UTLs and ~5% of intergenic and antisense UTLs) had significant changes in their195

chromatin association score between ES and DE cells (Fig. 3d, right panel), yet this fraction remained196

small. Thus, while individual RNAs show different propensities to interact with chromatin, this propensity197

is not modulated during differentiation and seems to be a property of the RNA itself. This result rules out198

model 2 for the majority of caRNAs.199

Next, we examined whether the dynamics of specific interactions between an RNA and a chromatin locus200

can be explained by the transcriptional dynamics of the RNA itself. We compared the true differential201

contact maps to differential contact maps that would be observed if the frequency of each RNA-DNA202

contact was proportional to the total abundance of the corresponding RNAs in the caRNA population203

(Methods). These two differential interaction maps were highly similar (Fig. 3e). We further quantified204

the differences between these maps by identifying specific RNA-DNA contacts whose frequency changes205

between ES vs DE cells at a greater level than explained by the changes in RNA expression (Methods).206

We found no such contacts in the exon-DNA interactome and a negligible number of them in the UTL-DNA207

interactome (Fig. 3f). Thus, the bulk of the changes in the RNA-DNA interactome appear to rely on208

transcription level regulation and expression differences in ES vs DE, rather than on modulation of an209

RNA’s affinity for chromatin or changes in an RNA’s contacts to different DNA binding sites.210
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Figure 3. The RNA-DNA interactome dynamics is controlled at the transcription level. a, Differential contact maps showing

the changes in the RNA-DNA interactome on Chr7 and Chr8 during cellular differentiation, for the same top 200 most abundant

exonic RNAs, intronic RNAs, and UTLs as those shown Fig. 1e and Fig. 2f. For each RNA category, the left map shows the log2

fold change (LFC) in the frequency of each RNA-DNA contact, as computed by DESeq2 (shrunken LFC estimates, see Methods).

x-axis resolution is 1 Mb as in Fig. 1e and Fig. 2f. The right map shows a zoom in of the left differential map in a 10 Mb window

centered at the Transcription Locus (TL) of each caRNA, and displayed with an x-axis resolution of 100 kb.
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Figure 3 (previous page). b, Quantification by RNA class of the percentage of interactions upregulated in DE or ES cells amongst

all interactions tested in that class (interactions with >10 counts in at least one replicate in ES or DE), at 100 kb resolution (bottom

panel). c, Schematic of 3 models that can explain changes in the DNA contact profile of an RNA during differentiation. d, Scatter

plot showing the chromatin association score for individual lncRNAs exons (left panel) and UTLs (right panel) in ES versus DE

cells. All of the caRNAs with an expression level above 0.1 FPM in both ES and DE cells are shown. Pie charts summarize the

fraction of RNAs with significantly higher chromatin association in ES or DE cells (fold change >3, FDR 0.05), and for each RNA

class. Numbers within the pie charts indicate the total number of RNAs in that class (FPM >0.1) and the number of RNAs with

differential chromatin association. e, Differential contact maps observed versus those explained by transcription dynamics only

for the 50 most abundant lncRNAs (left) and UTL (right) on ChrX. Labeled genes are the top 12 most abundant genes. x-axis

resolution is 100 kb, and a 10 Mb window centered around each RNA TL is shown. f, Percentage of differential interaction not

explained by differential RNA expression, at 100 kb resolution, relative to the total number of interactions tested within the RNA

class.

A select number of RNAs interact with the genome broadly211

We hypothesized that the dynamic RNA-DNA interactome contains a mixture of i) functional interactions212

linked to regulatory activity of the RNA on chromatin, and ii) coincidental interactions due to transient213

proximity of the RNA to chromatin, for instance, during nascent transcription or diffusion within the nucleus.214

We thus analyzed the contact patterns of individual RNAs to detect features consistent with functional215

interaction, beginning with features at the chromosome scale. The nuclear speckle-associated lncRNA,216

MALAT1, and the XIST RNA are two well studied lncRNAs which act to regulate gene expression broadly217

across the genome or throughout the X chromosome68,60,69. Yet, it is not known which other RNAs have218

similar widespread interaction patterns on chromatin.219

To systematically identify all RNAs with genome- or chromosome-wide associations, which we termed220

type I and type II RNAs (Fig. 4a), respectively, we developed two metrics, a trans-delocalization and221

a cis-delocalization score (Fig. 4b and Methods). The trans-delocalization score of an RNA is loosely222

defined as the ratio of the number of contacts on chromosomes other than its chromosome of origin223

(trans chromosomes) to the number of contacts on its own chromosome. This score thus quantifies224

the tendency for an RNA to be found on trans chromosomes (Supplementary Table 5). Similarly, the225

cis-delocalization score assesses the tendency for an RNA to spread far from its locus on its source226

chromosome by quantifying the ratio of the number of contacts over 1 Mb away from its transcription227

locus (TL) to the number of contacts within 10 Mb of its TL (Supplementary Table 6). We reasoned that228

type I RNAs must have high trans- and cis-delocalization scores, while type II RNA must have a high229

cis-delocalization score but a low trans-delocalization scores. Thus, although other patterns may yield230

high delocalization scores (e.g. an RNA which targets a single locus on a trans-chromosome may have a231

large trans-delocalization score), we can use these metrics to screen for candidate RNAs with type I and232

type II patterns. We found that lncRNAs with large trans-delocalization scores (Fig. 4e, left panel) included233

MALAT1, the pTEFb-associated RNA, 7SK, and the telomerase RNA component, TERC, which all have234

established genome-wide chromatin regulatory functions, thus validating our approach70,71,72.235

We found that functionally distinct classes of RNAs had different distributions of delocalization scores236

(Fig. 4c, Supplementary Table 7). LncRNAs had a wide range of delocalization scores, with a distribution of237

scores that mirrored those of mRNAs. In contrast, snRNAs, snoRNAs, tRNA-derived and snRNA-derived238

UTLs had globally high cis- and trans-delocalization scores, indicating that RNAs in these classes interact239

with loci throughout their source chromosome and across the whole genome. We observed the opposite240

behavior for CRE-derived RNAs and, to an even greater extent, for readthrough RNAs, which had mostly241

negative cis- and trans-delocalization scores, demonstrating that these RNAs tend to remain near their242

locus of origin. We also noted a negative-shifted distribution of delocalization scores for introns of both243

mRNAs and lncRNAs (Extended Data Fig. 7a). For ~77% of individual lncRNAs and 97% of individual244

mRNAs, the trans-delocalization scores of their introns were lower than those of their exons (Extended245

Data Fig. 7b-c). Thus, introns tend to remain in closer proximity to their source locus.246

Interestingly, repeat-derived RNAs had globally high cis- and trans-delocalization scores in ES cells247
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and low cis- and trans-delocalization scores in DE cells (Fig. 4c). Thus, in ES cells specifically, many248

repeat-derived RNAs tend to localize away from their locus.249

To identify RNAs with extreme association scores, we applied an empirical Bayes method using mRNAs250

as a training set, which essentially identified RNAs in the 5% right-tail or the 5% left-tail of the mRNA251

score distribution (Methods). We thus created a complete catalog of RNAs with candidate chromosome-252

or genome-wide association patterns, and another catalog of RNAs that remain localized within a 10 Mb253

window around their transcription locus or on their own chromosome, which we termed ultra-localized254

RNAs (from a cis- or trans-chromosomal perspective, Supplementary Table 8). As expected, >50% of255

snRNAs, snoRNAs, tRNAs,and snRNAs were classified as trans-delocalized and >70% of readthrough256

RNAs were classified as ultra-localized (Fig. 4d). Surprisingly, out of 1,289 ncRNAs above 1 FPM with257

sufficient signal to compute delocalization scores (Methods), we detected only 22 lncRNAs (1.7%) with258

cis- or trans-delocalized patterns in either ES or DE cells (Fig. 4d and Fig. 4e, left panel). In contrast, we259

found (excluding tRNA-derived and snRNA-derived UTLs) 60 UTLs in DE cells and 836 UTLs in ES cells260

and with cis- or trans-delocalization patterns, including 349 repeat-derived RNAs, and several hundreds of261

intergenic or CRE-derived UTLs (Extended Data Fig. 8a). Our catalog of lncRNAs contained the known262

broadly acting RNAs discussed above.263

Importantly, we discovered new candidate lncRNAs with potential genome-wide regulatory functions,264

including the mitochondrial RNA processing endoribonuclease RNA, RMRP, which is implicated in265

rRNA maturation73,74,46, the Ribonuclease P RNA Component H1, RPPH1, which is involved in tRNA266

processing75,76, two isoforms of the Vault RNA, VTRNA1-1 and VTRNA1-3, and a large number of UTLs.267

We validated the delocalization score analysis by directly examining the ChAR-seq signal of these RNAs,268

which revealed their association across the genome (Fig. 4f). The delocalization of these RNAs was269

not explained by their abundance. Although MALAT1, 7SK, and RMRP were highly abundant, other270

delocalized RNAs were all below 10 FPM. Furthermore, many abundant ncRNAs had low delocalization271

scores (Fig. 4e, right panel). To confirm that the broad patterns detected by our delocalization score272

approach were not random or due to non-specific interactions, we performed metagene analysis centered273

on select genomic features. We detected enrichment of snRNAs at RNAPII occupancy loci (Extended274

Data Fig. 8b), where MALAT1 and 7SK were also enriched, consistent with the role of these RNAs in275

cotranscriptional splicing and transcriptional elongation68,70. Together, our data show that broadly localized276

RNAs are rare amongst annotated lncRNAs, but we detected a large repertoire of UTLs with potential277

global chromatin regulatory roles, specifically in ES cells.278

While our catalog contained RNAs that were identified as significantly delocalized in cis but not in trans,279

we noted that amongst these RNAs, all but XIST also had a high trans-delocalization scores, albeit280

below the FDR threshold for classification as trans-delocalized. Generally, across all RNAs, the cis-281

and trans-delocalization scores were strongly correlated, indicating that RNAs that localize broadly on282

their own chromosomes also interact broadly with the rest of the genome (Fig. 4g). Remarkably, XIST283

was the only exception to this rule and was the only RNA which was simultaneously delocalized in cis284

and ultralocalized in trans, consistent with its known localization throughout its source chromosome X285

(Fig. 4g-h). We concluded that XIST is unique in these cell types in its ability to interact with an entire286

chromosome while being excluded from other chromosomes.287

We next looked at changes in RNA delocalization in different cell states. We found that the delocalization288

scores were highly correlated between ES and DE cells, even for RNAs that were differentially abundant289

across cell states (Fig. 4h). We thus concluded that the extent to which an RNA interacts with chromatin290

far from its transcription locus or on trans chromosomes is encoded in the RNA itself or the position of its291

transcription locus relative to other genomic features, rather than post-transcriptionally regulated.292
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Figure 4. A select population of caRNAs interact with the genome broadly. a, Schematic of the two types of binding patterns

identified in this analysis: type I) RNAs localized across the genome (trans-delocalized RNAs), type II) RNAs localized throughout

their source chromosome but absent on other chromosomes (cis-delocalized RNAs).
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Figure 4 (previous page). b, Schematic definition of the trans- and cis-delocalization scores. The trans-delocalization score

quantifies the number of DNA contacts an RNA makes on chromosomes other than its source chromosome (trans contacts),

relative to the number of contacts on its source chromosome (cis contacts). The cis-delocalization score quantifies the number

of DNA contacts an RNA makes over 10 Mb away from its transcription locus (TL), relative to the number of contacts within 10

Mb of its TL. c, Distribution of trans- (left) and cis- (right) delocalization scores by class of RNA for exons and UTLs (introns are

shown in Extended Data Fig. 7a). d, Fraction of RNAs within each class identified as either delocalized or ultralocalized in regard

to its trans- (left) or cis-chromosomal contacts (right). e, Left: list of all lncRNAs identified as cis or trans-delocalized in either

ES or DE cells and candidate RNAs for type I or type II patterns. Heat maps show the RNA cis and trans delocalization scores

in ES and DE cells, and their abundance in the caRNA population. Right: cis- and trans-delocalization scores for the 20 most

abundant lncRNAs (excluding those identified as cis- or trans-delocalized). f, Chromatin interaction profiles for two examples of

cis-delocalized RNAs (RMRP, VTRNA1-1), one example of cis-delocalized RNAs (AP000915.2), and one non-delocalized RNA

(CASC15). Yellow track shows the observed ChAR-seq signal. Gray track shows the predicted interaction profile based on the

generative model and empirical Bayes model. g, Scatter plot showing the cis- versus trans-delocalization score for individual

lncRNAs in ES cells (left), and UTLs in DE cells (right, excludes tRNA-derived and snRNA-derived UTLs). Colored data points

indicate RNAs classified as delocalized (in either cis or trans), ultralocalized (in both cis and trans), and RNAs with XIST-like

behavior. Black line shows the linear regression output. h, Scatterplots showing the trans- (left) and cis-delocalization scores

(right) for individual lncRNAs in DE versus ES cells. Black lines show linear regression output

RNA-DNA contacts occur in the vicinity of the transcription locus293

Engrietz et al. proposed a dichotomization of RNA-chromatin interactions into proximity-driven and294

affinity-driven interactions2. The former describes interactions occurring in a 2D or 3D distance bounded295

region around the transcription locus, without specificity for particular loci within that region. The latter296

describes RNA targeting well-defined loci, irrespective of their distance to the RNA locus. Some ncRNAs297

have been proposed to have affinity-driven interactions and regulate transcription or 3D organization of298

chromatin at their target loci77,78,79,3. These data motivated us to search the interactome for contact299

patterns in which an RNA shows discrete peaks in its localization profile that are not explained by proximity300

to its locus (Fig. 5a, top panel, hereafter referred to as Type III patterns). Because standard genomic peak301

finding tools like MACS280 are not appropriate for ChAR-seq data, we instead developed a generative302

model, which predicts the RNA-DNA interactome based on 3 features: 1) the total abundance of each RNA303

on chromatin, 2) a DNA-locus bias which models the propensity for an RNA to be captured at this locus,304

independently of the identity of that RNA, and 3) the distance between each RNA transcription site and its305

DNA target loci (Fig. 5b and Supplementary Methods). As anticipated, the DNA-locus bias correlated with306

ATAC-seq, likely due to a combination of biological factors such as fewer RNA-DNA interactions existing307

in compact chromatin, and technical biases related to accessibility of the ChAR-seq bridge molecule. The308

DNA-locus bias also correlated with nuclear speckle proximity as measured by TSA-seq81, revealing a309

possible increased affinity for diffusing RNAs towards nuclear speckles. We trained our generative model310

on mRNAs, as we reasoned that most mRNAs should not have defined chromatin targets. We then used311

our final model to generate a “predicted” contact pattern for each RNA, which effectively provides a null312

hypothesis representing “neutral” patterns, where an RNA interacts exclusively and non-specifically with313

neighboring loci due to diffusion (Fig. 5a, model track). Thus, positive deviations from the prediction314

(more contacts in the observed data compared with the model prediction) provide evidence for peak-like315

interactions in type III patterns.316

In both ES and DE cells and for exons, introns, and UTLs, our simple generative model produced317

RNA-DNA contact maps qualitatively similar to true ChAR-seq RNA-DNA contacts maps (Fig. 5d).318

Correlations between observed and predicted maps were nearly as high as correlations between replicates319

(Extended Data Fig. 9a). At 100 kb DNA locus resolution and excluding RNAs previously identified as cis-320

or trans-delocalized, we identified only ~0.2% of exon and ~0.7% of intron contacts that were not explained321

by the model, irrespective of whether the RNAs were mRNAs, lncRNAs, or ncRNAs (Fig. 5e and Extended322

Data Fig. 9b-c). Thus, we detected only 11 and 9 lncRNAs in ES and DE cells, respectively, with exons323

making contacts in the genome at loci not predicted by our model (Supplementary Table 9). Our model324

also accurately predicted changes in contact rates during differentiation (Extended Data and Fig 9d). Thus,325

in contrast with prior studies77,79,78, we found no evidence for type III patterns amongst the entire lncRNA326
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population.327

Interestingly, in contrast with that of lncRNAs, the interactome of the UTLs differed more substantially from328

its prediction. Over 1% of contacts, or 3433 and 4986 contacts involving 2283 and 2597 distinct RNAs in329

ES and DE cells, respectively, showed statistical evidence for affinity-driven interactions (Supplementary330

Table 9). Readthrough RNAs had the largest number of contacts (2.6%, 2465 contacts in DE) significantly331

different from the model, and CRE-derived RNAs at ~1% (1514 contacts in DE) significantly different from332

the model (Extended Data Fig. 9c). This result suggests that many unannotated RNAs, in particular333

regulatory elements derived RNAs, engage in genomic contacts that cannot be explained by a diffusion334

process around the transcription locus similar to that of mRNAs.335

To better understand the nature of these contacts, we examined how far from the RNA transcription336

locus these contacts occurred (Extended Data Fig. 10a,b). We found the majority of the significant337

contacts made by UTL occurred within 100 kb of their locus (51%, 4316 contacts across ES and DE338

cells). The percentage of significant contacts within 100 kb was highest amongst readthrough RNAs339

(69%-74%). In contrast, introns of annotated RNAs tended to show deviations from the predicted patterns340

at larger distances. Indeed we found that only 17% of contacts from introns that were not predicted by341

the model occurred within 100 kb of their locus, whereas 88% occurred between 100 kb and 10 Mb.342

The difference in distances between RNA loci and their significant DNA contacts between annotated343

intron RNAs and unannotated RNAs suggests different types of interactions might be regulating RNA344

spread across chromosomes. Because these length scales are reminiscent of those involved in genome345

organization at the levels of TADs and A/B compartments82,83,84, we examined the relationship between346

the RNA localization patterns and the 3D organization of the genome.347

The 3D genome organization enables contacts between RNAs and distal chromatin loci348

To examine how the 3D organization of the genome affects the localization patterns of individual RNAs349

on chromatin, we focused on the example of a small ~50 kb TAD on chr4q25, which is nested inside a350

larger 100 kb TAD (Fig. 5g). Two genes are located at the inner boundary of the small and large TADs:351

AC106864, an uncharacterized lncRNA, and the LARP7 gene, which is antisense to AC106864 and is352

highly transcribed in ES cells. We examined the binding profile of AC106864 on chr4 and found that most353

of the contacts of this RNA were within a few kb of its locus. Yet we also observed two side peaks, labeled354

L1 and L2, that coincided with the other edge of the small and large TAD, respectively. In contrast, our355

generated model predicted a small peak at L1 (likely due to high accessibility of this locus as revealed by356

ATAC-seq) and no signal at L2. The Fold Difference signal of the observed data over the model confirmed357

that the 2 peaks at L1 and L2 were not explained by a simple diffusion of the AC106864 or accessibility358

biases. Interestingly, Hi-C data showed two corner peaks characteristic of a chromatin loop linking the359

LARP7 locus with both L1 and L2. This result suggests that AC106864 localization at L1 and L2 might360

be mediated by the chromatin loop. It is also possible that AC106864 targets these loci through other361

mechanisms such as base-pairing or association with RBP that are independent of genome folding. Yet362

this biochemically targeted interaction is unlikely given that the introns of the overlapping mRNA LARP7363

also have contact peaks at L1 and L2. Together, these data suggest that TAD organization influences the364

contact patterns of RNAs, and that chromatin looping enables distal RNA-DNA interactions.365

This observation prompted us to ask whether larger-scale topological organization of the chromosome366

also influences RNA-DNA contacts (Fig. 5h). ChAR-seq contact maps are naturally asymmetric in that the367

y-axis maps each row to an individual RNA and the x-axis maps each column to a genomic bin. Thus to368

compare ChAR-seq to Hi-C data at the chromosome scale, we collapsed one dimension of the Hi-C maps369

into genes while keeping the other dimension as genomic bins. In these transformed Hi-C maps, each pixel370

represents the contact frequency between the gene and a cognate DNA bin. We detected in the ChAR-seq371

maps the same plaid pattern found in Hi-C data resulting from the 3D partitioning of the genome into two372

major compartments, the A and B compartments, also associated with active and inactive chromatin,373

respectively84. This pattern indicates that any individual caRNA tends to have a specific compartment374

(either A or B) with which it interacts preferentially. Equivalently, when one caRNA contacts a locus in say375
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the A compartment, it has higher likelihood to contact other loci in the A compartment rather than in the376

B compartment. It was not surprising that this pattern was not produced by our generative model, since377

only linear distance is encoded in the model. We concluded that A/B compartments also modulate the378

long-range interactions of individual RNAs with chromatin.379
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Figure 5. RNA expression and genomic distance determine the RNA-DNA interactome. a, Schematic of the type of binding

patterns identified in this analysis. An RNA may localize at one or more discrete loci distinct from its transcription site (Pattern

type III, top track) or remain in a diffusion constrained region around its locus (neutral RNA, bottom track).
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Figure 5 (previous page). b, Components of the generative model used to predict the ChAR-seq maps. The number of contacts

observed for an RNA at a DNA locus is proportional to i) an RNA-DNA distance-dependent contact frequency, ii) the abundance

of the RNA on chromatin, iii) a target locus dependent bias (DNA-bias, yellow track) which correlates with both ATAC-seq signal

(purple track) and nuclear speckle proximity signal (TSA-seq, red track). c, Example of a type III pattern with a candidate

affinity-driven interaction for the lncRNA JPX in DE cells. The observed and predicted localization of JPX (top two tracks) at 10

kb resolution, and the are compared using DESeq2, yielding a Log2 fold change (observed over model) and an adjusted p-value

track (bottom two tracks). Interactions with an LFC greater than 1.3 and an adjusted p-value smaller than 0.05 are labeled

as “candidate affinity driven interaction”. d, Observed contact maps, predicted contact maps, and observed over model LFC

maps computed using DESeq2 for the top 200 most abundant RNAs originating from exons (top), introns (middle) and UTLs

(bottom). x-axis resolution is 100 kb per bin, Y-axis resolution is 1 RNA per bin. Only interactions with at least 10 counts in at

least two samples were tested for differences with the model and are shown in the LFC maps. e, Number of interactions tested

for enrichment over model and proportion of identified candidate affinity-driven interactions by RNA class, in relation to the total

number of tested interactions in that RNA class. f, Distribution of the RNA-DNA travel distance for interactions significantly above

model. The RNA-DNA travel distance is calculated using the mapping coordinates of the RNA and DNA side of the ChAR-seq

read (Methods). g, Example of long-range RNA-DNA contacts across a chromatin loop at the LARP7 & AC106864 locus in ES

cells. ICE normalized Hi-C map (2 kb resolution) is shown at the top. Transcription of LARP7 (expressed from the positive strand)

and AC106864 (expressed from the negative strand, shown as negative values) are detected by ChAR-seq (top 2 tracks). The

observed (dark organge) and predicted localization pattern (dark grey) of AC106864 on chromatin are shown with the log fold

difference between observed and predicted (purple). The observed and predicted localization patterns for LARP7 are shown in

light orange and light gray. ATAC-seq, H3K27ac and H3K4me3 tracks are also shown and indicate that L2 has enhancer-like

chromatin properties. h, Comparison between ChAR-seq and Hi-C at the chromosome scale. Dashed boxes highlight two

example regions where the A/B compartments plaid pattern is clearly visible in both Hi-C and ChAR-seq maps

The caRNA-gene interactome preferentially links upregulated caRNAs to upregulated target380

genes381

Our results point to a model where RNA-chromatin association patterns and their dynamics are restricted382

by i) the caRNA expression level ii) the genomic distance from the RNA locus to the DNA target, iii) the383

3D chromatin topology. We thus wanted to determine whether this result is compatible with the hypothesis384

that ncRNAs participate in the regulation of cell-state specific protein-coding genes. We reasoned that385

RNAs with transcriptional regulatory roles are likely to be found near their cognate gene, where they could386

modulate local chromatin state, TF binding, RNA polymerase, or the activity of gene-proximal regulatory387

elements. This colocalization hypothesis is consistent with the better studied ncRNAs with gene regulatory388

activity, including XIST17, KCNQ1OT118, and HOTAIR85. Thus, we defined a “proximal regulatory region”389

(PRR) around each protein-coding gene, encompassing +10 kb upstream and -90 kb downstream of its390

TSS, and measured the contact density of each caRNA at the PRR of each gene. Using this approach,391

we mapped all the physical contacts between the chromatin associated transcriptome and protein-coding392

genes (hereinafter referred to as the caRNA-gene interactome, Fig. 6a).393

Consistent with the dynamics of the genome-wide RNA-DNA interactome we previously observed, the394

caRNA-gene interactome of >1 million contacts was dynamic across differentiation. We detected most395

of the differential contacts at genes nearby the RNA locus (Fig. 6b). For lncRNAs only, we detected396

340 differential contacts (~1% of all lncRNA-gene contacts), but these involved only 57 distinct lncRNAs,397

indicating that a typical single lncRNAs differentially contacts multiple genes (Fig. 6c,d). Also consistent398

with the global interactome dynamics, the caRNA-gene interactome involving UTLs was more dynamic399

than that involving annotated RNAs, with up to 20% differential UTL-gene contacts between ES and DE400

(Fig. 6d).401

To identify potential regulatory caRNAs and their putative gene targets, we next classified each caRNA and402

each protein-coding gene as an ES, DE, or stable caRNA or gene, based on whether it was differentially403

expressed in ES, in DE, or similarly expressed in both cell states (FDR cutoff 0.05, Fold Change cutoff 3).404

We then examined the statistical associations between the class (ES/DE/stable) of a caRNA, its cognate405

gene, and their interaction. Fig 6e shows the top 20 most upregulated contacts involving a lncRNA in ES406

(left panel) or DE (right), along with the cognate lncRNA-gene pair. We noted that nearly all these top 20407

ES (resp. DE) upregulated contacts involved ncRNAs upregulated in the same state. This result makes408
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sense given our prior findings that the RNA-DNA interactome dynamics is globally driven by transcriptional409

dynamics. Yet most of the target genes for these differential contacts were not differentially expressed in410

ES vs DE, suggesting that changes in the caRNA levels at these genes do not affect their expression. We411

generalized this finding by analyzing across all caRNA-target gene pairs linked by a differential contact,412

the relationship between the fold change in the contact and the fold change in the expression of the caRNA413

or of the target gene (Fig. 6f). We found that the fold change in contact rate during ES to DE transition414

correlated with the fold change of the expression of the source caRNA (Fig. 6f, left panel), but not with that415

of the target protein coding gene (Fig. 6f, right panel).416

To further understand the relationship between gene expression and presence of a caRNA in the PRR of417

a gene, we examined how many cell-state specific contacts are made at cell state-specific genes. This418

analysis revealed that >97% of cell state specific genes are not contacted by a lncRNAs in a cell state419

specific manner (Fig. 6g, left panel). Interestingly however, over 50% of these genes are contacted by at420

least one, and sometimes several UTL specifically in one cell state (and 15% with a CRE), nearly twice421

as many as genes that are not cell-state specific. Thus, most genes do not require cell-state specific422

localization of a particular lncRNA in their PRR to alter their expression, but genes whose expression is423

altered are likely to be contacted by an UTL in a cell-state specific manner. Together, our findings indicate424

that the presence of an individual ncRNA near the gene TSS does not correlate with the gene transcription.425

This result does not rule out a regulatory activity of ncRNAs at protein coding genes. Indeed, it is likely426

that multiple inputs may gate the target gene expression, including chromatin state, transcription factors,427

and possibly several RNAs, which could wash out average correlations between caRNA-gene interactions428

and gene transcription.429

To identify patterns in the interactome that would indicate a regulatory structure, we compared the430

observed interactome dynamics to that that would be expected should it be independent of the gene431

expression dynamics (null model). We binned differential contacts in 3 categories: i) positive edges, where432

the contact dynamics were positively correlated with the target gene dynamics (contacts that increased433

in ES to genes that increased in ES, or contacts that increased in DE to genes that increased in DE ), ii)434

negative edges (contacts that increased in ES to genes that increased in DE, or contacts that increased435

in DE to genes that increased in ES), iii) neutral edges (contacts that increased in ES or DE to genes that436

were neither ES or DE genes).437

We found that across all categories of caRNAs, the interactome contained up to 1.8 times more positive438

edges (p-value<0.05 by bootstrap) and up to 1.3 times fewer negative edges (p-value<0.05 by bootstrap)439

than would be expected for a random interactome under the null model (Fig. 6h,i). Thus, we conclude440

that although specific RNAs are not sole drivers of transcription activation or silencing at any gene, the441

architecture of the interactome is consistent with an overall positive regulation, where the presence of442

caRNAs is generally associated with higher expression of the target genes.443
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Figure 6. The caRNA-gene interactome preferentially links upregulated caRNAs to upregulated genes. a, Abstract

representation of the caRNA-gene interactome studied in this analysis and displayed as a contact matrix with one caRNA per

row and one protein-coding gene per column. Each matrix entry contains the number of contacts between an ncRNA and the

proximal regulatory region (PRR) of a protein coding gene. Only cis interactions are shown for simplicity, but trans interactions

are represented similarly.
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Figure 6 (previous page). b, caRNA-gene interactome in ES and DE cells for the 50 most abundant lncRNAs (top) and UTLs

(bottom) on Chr11. Narrow maps on the right are zoomed in view of the interactome for 50 protein-coding genes upstream and

downstream of each caRNA PRR. Zoomed in maps are shown for the true interactome signal (Obs), the interactome predicted

by the generative model (Mod), the log2 fold change (LFCobs over model) of the observed data over model (Obs/Model), and the

interactions significantly enriched in the observed data over the model (Sig), namely those with adjusted p-value < 0.05 and

LFCobs,model>0, obtained using DESeq2 as described in Fig. 4c-d. Only contacts with at least 10 counts in at least 2 samples

were tested for enrichment over model. c, Volcano plot showing the differential lncRNA-gene contacts is ES versus DE cells.

Each data point is a contact between a lncRNA and the PRR of a protein-coding gene. Volcano plots are shown as contact

adjusted p-value versus log2 Fold Change in DE versus ES cells (LFCES,DE). Differential contacts are computed as in Fig. 3a,

and significant contacts are those with an adjusted p-value<0.05. d, Quantification of the percentage of cell-state specific contacts

for each class of caRNA relative to the number of contacts tested for that class (top), and number of distinct caRNAs involved in

these contacts (bottom). Cell-specific contacts were defined as those with an adjusted p-value<0.05 and LFCES,DE>1.3. e, Top

20 lncRNA-gene contacts upregulated in ES (left) and DE cells (right) in the observed data (blue circles). Most of these contacts

are also predicted to be amongst the 20 most upregulated contacts by the generative model (purple circles). f, Scatter plots

showing for each differential contact the relationship between the change in contact rate during differentiation (LFCES,DE) and

the change in the chromatin levels of the involved caRNA (left) and in the expression of the cognate protein coding gene (right).

Differential contacts were defined as in d). Only differential contacts involving exons of lncRNAs or UTLs are shown. g, Percent

of protein-coding genes, targeted by one or more dynamic contact with a lncRNA (left panel), a CRE-derived RNA (middle panel),

or any UTL (right panel, excluding tRNA- and snRNA-derived NARs). Protein coding genes are grouped (x-axis) according

to whether their expression is upregulated in ES, DE, or stable during differentiation as measured by total RNA-seq (DEseq2,

FDR 0.05, fold change threshold 3x). Colors indicate whether the protein coding gene is targeted by a single (light colors) or

several (dark colors) caRNAs with which the interaction is upregulated in ES (blue shade) or DE (yellow shade). Some genes

are targeted by several caRNAs which include both ES and DE upregulated interactions (purple). h, Top two rows: Percentage

of interactions upregulated in ES targeting a protein coding gene upregulated in ES, which we define as a positive association,

or targeting a protein coding gene upregulated in DE, which we define as a negative association. Bottom two rows: similarly, for

interactions upregulated in DE cells. x-axis indicates the caRNA class. i, Fold enrichment of the fraction of positive associations

in the observed interactome, compared to a randomized interactome, where the differential expression state of the target genes is

shuffled. Error bars indicate 95% confidence intervals by bootstrap. Error bars not overlapping with x-axis indicate p-value<0.05

by bootstrap.

Discussion444

Understanding how caRNAs control chromatin state and transcription is a long-standing problem. To date,445

only a few RNAs have been linked to specific regulatory functions and the mechanistic details remain446

debated. In this work, we provide a global view of the RNA-chromatin interactome which complements447

studies focused on individual RNAs and uncovers general principles governing the architecture of putative448

ncRNA-gene regulatory networks.449

First, we show that lncRNAs with promiscuous chromatin interactions are rare. Given that we detected450

only a handful of lncRNAs with such patterns, it is unlikely that uncharacterized lncRNAs have global451

regulatory roles, such as those established for 7SK, MALAT1, XIST, or TERC. However, we identified a452

larger repertoire of unannotated RNAs with broad chromatin interactions which contained many TE-derived453

RNAs. These data reinforce the idea that transcriptionally active LINE, SINE and LTR may play key454

roles in chromatin regulation and highlight the necessity to further explore the biology of transposable455

elements86.456

Second, it is noteworthy that all delocalized lncRNAs but TERC and 2 uncharacterized ncRNAs457

(VAULT-RNA and AC073335) are known RNA residents of the nucleolus (RMRP, RPPH1, 7SL, most458

snoRNAs) or nuclear speckles (7SK, MALAT1, most snRNAs). SPRITE, a Hi-C-like method which459

probes high order chromatin interactions, showed that the 3D genome is organized into 2 major hubs460

around the nucleolus and nuclear speckles, where abundant long-range and interchromosomal DNA-DNA461

contacts occur87. We hypothesize that the proximity of these RNA loci to the genomic hubs may be462

important in enabling interactions with dispersed genomic loci. This behavior is reminiscent of XIST, whose463

location on the X chromosome defines where heterochromatin spreading initiates17. We speculate that a464

general principle may underlie these observations, where the interactions of an RNA with chromatin are465
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constrained by the position of their transcription locus relative to other loci or to nuclear domains.466

Third, we demonstrate unambiguously that no RNA behaves like XIST and localizes throughout its own467

chromosome while being excluded from other chromosomes. Thus, while XIST sets expectations for468

ncRNAs regarding their potential roles as regulators of transcription and large genetic networks, XIST469

appears to be unique in its localization pattern.470

Fourth, excluding small RNAs such as snRNAs, snoRNAs, tRNAs, and some UTLs as described above,471

we found no evidence across the non-coding transcriptome for widespread existence of trans interactions,472

or of affinity-driven interactions as defined by Engreitz et al2. Indeed, we demonstrated that a simple473

generative model, encoding only for expression and RNA-DNA distance, accurately predicts the contact474

patterns for each RNA. Thus, while acknowledging possible false-negatives for lowly expressed RNAs as475

discussed later, we show that nearly all interactions are proximity-driven. An important implication of our476

results is that across the non-coding transcriptome, chromatin regulatory activities are essentially limited477

to nearby genes.478

Several modes of regulatory activity are compatible with proximity-driven interactions, yet our work brings479

in important refinements to the proposed models. If a ncRNA serves as a platform to locally recruit480

histone modifying complexes, as proposed for many lncRNAs, we show that the dimensions of the481

domain around the RNA transcription locus where this activity occurs is solely determined by the RNA482

expression. The same local constraints apply if a ncRNA operates via a decoy mechanism, whereby it483

evicts specific remodeling complexes from chromatin, through competitive or inhibitory associations with484

these complexes88.485

To our surprise, we observed a general lack of correlation between the dynamics of the RNA contacts486

at a given gene and the dynamics of the expression of that gene. This observation challenges models487

proposing that the activation or silencing of a gene may be controlled by a single ncRNA89,85,18,78,23.488

Instead, our data either indicates that most ncRNAs do not have gene regulatory activity, or favors some of489

the more complex proposed models, for example, involving coordinated inputs from a ncRNA and the local490

chromatin environment. One such model, the “junk mail model,” posits that caRNAs interact with chromatin491

remodeling complexes and keep them poised and in check until other local conditions are satisfied53,90
492

(such as deposition of a specific chromatin modification or binding of a transcription factor). The junk mail493

model is compatible with our observations. Another possibility, which we termed the “democratic RNA494

model,” is that the distributed activity of multiple, weakly influential ncRNAs, rather than that of a single,495

strongly influential ncRNA determines the overall regulatory output of RNA-chromatin interactions at a496

gene.497

We found that an increase in interaction frequency between a specific ncRNA and a target gene is498

more likely to correlate with an increase in target gene expression than one would expect should the499

ncRNA-gene contacts and the gene expression be uncorrelated with one another. Three scenarios may500

explain this result. First, this may merely reflect increased accessibility during chromatin activation and501

higher likelihood to crosslink nearby RNAs. Second, there may be local coregulation of nearby ncRNAs502

and genes, for instance, through shared regulatory elements. Third, it is possible that the default activities503

of caRNAs are: i) a decoying of the silencing machinery, as proposed by the junk mail model, in the context504

of PRC2 eviction91, or ii) a recruitment of transcription activators such as the CREB-binding protein30.505

These two effects would also give rise to a positive correlation between caRNA presence at a gene and506

transcriptional output of this gene.507

As mentioned above, we did not identify lncRNAs localized at defined genomic targets in trans, beyond508

the interactions explained by the expression levels of these lncRNAs and the distance to their targets. This509

finding will need to be reconciled with the models proposed for a few ncRNAs, such as DIGIT or RMST,510

which have been reported to broadly colocalize with BRD3 at endoderm differentiation genes, and SOX2511

at genes that control pluripotency and neurogenesis, respectively78,79,89. Given that lncRNAs and eRNAs512

are highly cell state specific37,38, the architecture of the caRNA-chromatin interactome may be qualitatively513
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different and perhaps contain more trans interactions in further differentiated cells. Additionally, we cannot514

exclude the possibility that our analysis missed affinity-driven trans interactions due to sequencing depth515

limitations, in particular for lowly expressed ncRNAs. Thus, deeper sequencing or more powerful statistical516

frameworks may reveal weak deviations from the model at more loci. However, the fact that our analysis517

reveals broad differences in the contactome between ES and DE cells gives us confidence that any518

undetected deviation from the model has to be more subtle than the contactome changes related to cellular519

differentiation.520

This work presents a global analysis of caRNA-chromatin interaction and establishes that caRNAs521

predominately operate locally, through diffusion and genome conformation driven interactions. We522

anticipate this work will direct the efforts in the non-coding RNA field by providing data-informed priors on523

the localization of RNAs, and a simple model predicting where non-coding RNAs may act. Future studies to524

identify the proteins mediating these RNA-chromatin interactions will be necessary to inform the interplay525

between caRNA and RNA binding proteins in the control of transcription and chromatin state.526

Methods527

Cell culture & differentiation528

Passaging. H9 hESCs cells (ES cells) were obtained from Wicell (cell line WA09) and cultured on Corning529

Matrigel hESC qualified matrix with mTeSR1 medium according to manufacturer’s protocols and as530

described in Loh et al. 201450. Briefly, 6-well plates were prepared with matrigel by adding 1 mL of531

matrigel (diluted in serum free DMEM/F-12 according to lot dilution factor) to each well and polymerized532

for 1 hour at room temperature. DMEM/F-12 was aspirated and replaced with 1.5 mL mTeSR1 warmed533

to room temperature, then 2 µM of 10 mM ROCK inhibitor (Y27632-Dihydrochrolride) was added to each534

well. H9 hESCs (~3-5 million cell aliquots) were thawed and immediately diluted by dropwise addition of535

10 mL prewarmed mTeSR1, spun at 200 g for 5 min, and gently resuspended in 1.5 mL mTeSR. 0.5 mL536

of cells were added to each well and placed at 37 °C. Media was replaced daily with 2 mL fresh mTeSR1537

per well. When colonies were ~70% confluent and started to touch each other, cells were passaged as538

colonies. Each well was washed with 1x PBS, 1 mL of Versene-EDTA was added, and cells were incubated539

at 37 °C for 5 min. Colonies were detached, broken up with gentle pipetting, and resuspended in mTeSR1540

at a 1:5 to 1:10 dilution. 0.5 mL of cells was added dropwise to each well containing 1.5 mL mTeSR1 and541

coated with matrigel prepared as described above (without ROCK inhibitor).542

Differentiation into definitive endoderm. Colonies were seeded from 1:10 dilution on day 0 into four 15 cm543

dishes with matrigel, two for maintenance as ES cells and two for differentiation into Definitive Endoderm544

(DE) cells. ES cells were maintained as above with daily mTeSR1 media replacement. For differentiation,545

cells were treated with 10 µM ROCK inhibitor on day 0, and their media was replaced on day 1 with546

DE induction Media A (Gibco Cat# A3062601), and on day 2 with DE induction Media B (Gibco Cat#547

A3062601). On day 3, cells were harvested for ChAR-seq. In addition to the 15 cm dishes used for548

ChAR-seq, cells were also seeded and maintained as ES cells or differentiated into DE cells in 6-well plates549

with poly-L-lysine coated coverslips under matrigel, and collected at the same time for immunofluorescence550

analysis. Cells were also differentiated in 6-well plates for RNA-seq and ATAC-seq.551

Immunostaining552

Cells were cultured in 6-well plates on poly-L-lysine coated coverslips under matrigel and maintained as553

ES cells or differentiated into DE cells as described above. Cells were washed three times with PBS and554

fixed with 2% PFA in PBS added directly to the wells for 10 min at room temperature. The PFA solution555

was aspirated, cells were washed three times with PBS, and permeabilized with 0.1% Triton-X-100 in PBS556

for 5 min at room temperature. Coverslips were transferred to parafilm-coated staining chambers, washed557

with PBS, and blocked with Antibody Dilution Buffer (AbDil, 150 mM NaCl, 20 mM Tris-HCl pH 7.4, 0.1%558

Triton X-100, 2% BSA, 0.1% Sodium Azide) for 30 min at room temperature. Samples were incubated559

in primary antibody for 30 min at room temperature (Rabbit anti-Nanog 1:500, Goat anti-Sox17 1:1000560
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diluted in AbDil), washed three times with AbDil, and incubated with secondary antibodies conjugated to561

Goat anti-Rabbit Alexa-647 and Chicken anti-Goat Alexa-555 (1:1000 diluted in AbDil) for 30 min at room562

temperature. Cells were washed with AbDil three times, stained for 5 min with 10 µg/mL Hoescht-33342 in563

PBS, and washed with PBS with 0.1% Triton-X-100 before being mounted (20 mM Tris-HCl pH 8.8, 0.5%564

p-Phenylenediamine, 90% glycerol) onto slides and sealed with nail polish. Samples were imaged with565

an IX70 Olympus microscope with a Sedat quad-pass filter set (Semrock) and monochromatic solid-state566

illuminators. Cells were imaged using a 40x objective. At least 10 images per coverslip were captured567

using 0.2-µM z-stacks. Maximum intensity projections were processed with CellProfiler (3.1.8) to identify568

nuclei based on Hoescht signal and to measure the mean intensity of each channel. Histograms of mean569

nuclear intensity for each marker were plotted in R.570

qPCR571

For qPCR, RNA was extracted from each well of a 6-well plate containing ES or DE cells (~1 million cells572

per well) using 1 mL Tripure reagent and according to the manufacturer’s protocol. RNA were treated with573

DNase (TURBO DNase; Ambion) for 1 hour at room temperature followed by isolation with a minElute RNA574

Cleanup Kit (Qiagen). RNA concentrations were measured by Nanodrop and total RNA integrity assayed575

using an Agilent Bioanalyzer. All RNAs had a RNA integrity number (RIN) greater than 9.0. 0.5-1 µg of576

RNA was reverse-transcribed with random hexamer primers using SuperScript III reverse transcriptase577

(18080-051; Invitrogen) according to the manufacturer’s protocols. First-strand cDNA was diluted 1:10578

in nuclease free H2O and amplified using gene-specific primers that had been tested for amplification579

efficiencies >90% and to amplify a single product. Real-time PCR was performed using the Powerup580

SYBR Master Mix (ThermoFisher) for 40 cycles (94 °C 15 sec, 55 °C 30 sec, 68 °C, 1 min) on an ABI ViiA581

7 Real-Time PCR Machine with cycle thresholds (CTs) determined automatically and with all samples in582

triplicate. Experimental genes were normalized to the PBGD housekeeping gene, with relative expression583

levels calculated using the 2∆∆CT method, and the transcript level fold-change in DE versus ES cells584

was calculated. If a gene’s expression was too low to detect via qPCR, these “undetermined” Ct values585

were assigned a value of 38 to provide a conservative over-estimate for use in calculation of expression586

change.587

RNA-seq588

For RNA-seq, RNA was extracted from each well of a 6-well plate containing ES or DE cells using589

1 mL Tripure and the Direct-Zol RNA Extraction kit (Zymo Research) according to the manufacturer’s590

instructions. RNA concentrations and quality were assayed as described for qPCR. For each sample, 2.5591

µg of RNA was treated with DNase (TURBO DNase; Ambion) for 1 hour at room temperature followed592

by isolation with a RNA Clean & Concentrator-25 kit (Zymo Research). 1 µg RNA was converted to593

ribosomal depleted cDNA libraries ready for sequencing using the TruSeq Stranded Total RNA Library Prep594

Human/Mouse/Rat kit (Illumina) according to the manufacturer’s instructions. Samples were uniquely dual595

indexed using IDT for Illumina TruSeq RNA UD Indices. The 4 biological replicates from both conditions596

(ES and DE cells) were pooled and sequenced at low read depth on a MiSeq (2 x PE75) at the Stanford597

Functional Genomics Facility to assess quality, and later on 1 lane of the HiSeq4000 (2 x PE150) at598

NovoGene (Sacramento, CA). All reported analysis was generated using the HiSeq dataset.599

ATAC-seq600

Cells for ATAC-seq were differentiated as described above and collected by dissociating in Versene601

followed by resuspension in warm mTeSR media. Cells were transferred to 15 mL conical tubes and602

centrifuged at 1000 RPM for 5 min. The pellet was resuspended in DPBS, cells were counted and603

immediately processed. ATAC-seq was performed as previously described using the OMNI-ATAC protocol604

(Corces et al., Nature Methods 2017) with slight modifications. Briefly, ~100K cells were resuspended605

in 50 µL cold ATAC-Resuspension Buffer (10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.01%606

Digitonin, 0.1% Tween-20, and 0.1% NP40 in water) and incubated on ice. Cells were washed with 1607
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mL cold ATAC-RSB (without NP40 and digitonin), centrifuged at 500 RCF for 10 min at 4 °C. The pellet608

was resuspended in 50 µL transposition mixture (2x TD buffer and 2.5 µL transposase) from the Illumina609

Nextera DNA Library Prep Kit and incubated at 37 °C for 30 min in a thermomixer at 1000 RPM. Libraries610

were purified with the DNA Clean & Concentrator-5 Kit (Zymo Research) and PCR amplified with barcoded611

primers (Buenrostro et al., 2013). Amplification cycle number for each sample was monitored by qPCR612

to minimize PCR bias. PCR amplified libraries were purified with the MinElute purification kit (Qiagen)613

and excess primers and large (>1000 bp). DNA fragments were removed by AMPure XP bead selection614

(Beckman Coulter). Four biological replicates from each cell type (ES and DE) were pooled and sequenced615

at low read depth on a MiSeq (2 x PE75) at the Stanford Functional Genomics Facility to assess quality616

and later on 1 lane of the HiSeq4000 (2 x PE150) at NovoGene (Sacramento, CA). All reported analysis617

was generated using the HiSeq dataset.618

ChAR-seq library preparation619

ChAR-seq libraries were prepared according to the published protocol47 as briefly described below. All620

reagents used were RNAse-free.621

Cell fixation and nuclei. About 10 million cells were harvested from a 15 cm dish with Versene and fixed in622

3% formaldehyde for 10 min at room temperature. Formaldehyde was quenched with the addition of 0.6623

M glycine for 5 min at room temperature then 15 min on ice. Cells were pelleted for 5 min at 500 g at 4 °C,624

washed with 10 mL ice-cold PBS, and resuspended in ~5-10 mL PBS. Cell concentration was measured625

and cells were aliquoted in batches of 10 million cells in 1.5 mL tubes. Aliquots were spun for 5 min at626

500 g at 4 °C, the supernatant was removed, and pellets were flash frozen in liquid nitrogen and stored at627

−80 °C until library preparation.628

Cell lysis and nuclei preparation. Frozen pellets were resuspended in 500 µL ice cold lysis buffer (10 mM629

Tris-HCl pH 8, 10 mM NaCl, 0.2% Igepal-CA630, 1 mM DTT, 1 U/µL RNaseOUT, 1x protease inhibitor) and630

incubated for 15 min on ice. Nuclei were washed (throughout the protocol, “nuclei were washed” indicates631

the following steps: spinning for 4 min at 2500 g, discarding of supernatant, resuspension and mixing in632

the indicated wash buffer, spinning for 4 min at 2500 g, and aspiration of the wash buffer) with 500 µL of633

lysis buffer without Igepal, RNaseOUT, or Protease Inhibitor, then resuspended in 400 µL of 0.5% SDS634

(10 mM Tris-HCl pH 8, 10 mM NaCl, 1 mM DTT, 0.5% SDS, 1 U/µL RNAseOUT), and incubated for 10635

min at 37 °C. SDS was then quenched by adding Triton X-100 to 1.4% final concentration and incubating636

for 15 min at 37 °C.637

In situ biochemistry steps for RNA-DNA proximity ligation. To fragment RNAs, nuclei were pelleted638

and resuspended in 150 µL fragmentation buffer (0.25x T4 RNA ligase buffer, 1 U/µL RNAseOUT),639

and exposed to heat for 4 min at 70 °C. To dephosphorylate RNA 5’ ends, nuclei were washed640

twice (in 800 µL PBS then 800 µL 1x RNA ligase buffer, with the first spin omitted for the first641

wash and PBS added directly to the previous reaction), resuspended in 150 µL dephosphorylation642

mix (1x T4 PNK buffer, 1 U/µL T4 PNK, 1 U/µL RNAseOUT), and incubated for 30 min at643

37 °C. To perform RNA-bridge ligation, nuclei were washed twice as above and resuspended in644

200uL RNA-bridge ligation mixture [1x T4 RNA ligase buffer, 25 µM annealed ChAR-seq bridge645

(top strand: /5rApp/AANNNAAACCGGCGTCCAAGGATCTTTAATTAAGTCGCAG/3SpC3/; bottom strand:646

/5Phos/GATCTGCGACTTAATTAAAGATCCTTGGACGCCGG/iBiodT/T; individual strands ordered from647

IDT DNA), 10 U/µL T4KQRNAligase2, 1.5 U/µL RNAseOUT, 20% PEG-8000] and incubated overnight648

at 23 °C on a thermomixer at 900 RPM. To perform first-strand synthesis, nuclei were washed twice as649

above and resuspended in 250 µL of first strand synthesis mixture (1x T4 RNA ligase, 8 U/µL Bst3.0, 1650

mM of each dNTP, 1 mM DTT, 1 U/µL RNAseOUT), and incubated for 15 min at 23 °C, 10 min at 37 °C,651

and 20 min at 50 °C. Bst3.0 was inactivated by adding 8 µL of 0.5 mM EDTA (15 mM final concentration),652

14 µL of 1% SDS (0.5% final), and incubating for 10 min at 37 °C. SDS was then quenched with 43 µL of653

10% Triton X-100 (1.3% final concentration) for 15 min at 37 °C. Next to perform genomic digestion, nuclei654

were washed twice and resuspended in 250 µL of DpnII reaction mixture (1x T4 RNA ligase, 3 U/µL DpnII,655
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1 mM DTT, 1 U/µL RNAseOUT) overnight at 37 °C on a thermomixer at 900 RPM. DpnII was inactivated656

in the same manner as Bst3.0 inactivation. SDS was quenched as above. Next, to perform bridge-DNA657

ligation, nuclei were washed twice and resuspended in 250 µL of ligation mixture (1x T4 DNA ligase, 10658

U/µL T4 DNA ligase, 1 U/µL RNAseOUT) for 4 hours at 23 °C. T4 was inactivated by adding 8 µL of 0.5 M659

EDTA (15 mM final concentration). Finally, to perform second strand synthesis, nuclei were washed twice660

(PBS then 1x cDNA buffer 10 mM Tris-HCl pH 8, 90 mM KCl, 50 mM (NH4)2SO4), and resuspended in661

250 µL of secon strand synthesis mix (1x cDNA buffer, 0.5 U/µL E. coli DNA PolI, 0.025 U/µL RNaseH, 1662

mM of each dNTP, 1 mM DTT) for 1.5 hours at 37 °C.663

DNA isolation and shearing. Reverse crosslinking was carried out by adding 31.25 µL of 10% SDS, 31.25664

µL 0.5 M NaCl, 9 µL of 20 mg/mL proteinase K and incubating overnight at 68 °C. DNA was purified by665

phenol chloroform extraction, ethanol precipitated, and resuspended in 130 µL TE (10 mM Tris pH 8, 0.1666

mM EDTA) buffer. DNA was sheared with a Covaris S220 to target a mean fragment size of ~200 bp (175667

peak incident power, 10% duty factor, 200 cycles/burst, 180 sec). Fragment size distribution was quality668

controlled on an Agilent High Sensitivity DNA Bioanalyzer.669

Isolation of biotinylated molecules, on-beads adapter ligation, and on-beads PCR. Molecules containing the670

biotinylated bridge sequence were isolated using 150 µL of MyOne Streptavidin T1 dynabeads. To bind671

bridge containing molecules, beads were washed with 750 µL tween wash buffer (TWB, 10 mM Tris pH 8,672

0.5 mM EDTA, 1 M NaCl, 0.05% Tween20) and resuspended in 130 µL 2x bead binding buffer (10 mM Tris673

pH 8, 2 M NaCl, 0.5 mM EDTA) and 130 µL sheared DNA sample, then incubated at room temperature674

for 15 min with agitation. To remove unbound DNA, beads were washed twice with 750 µL TWB (with675

incubation at 50 °C for 2 min with agitation during the first wash), then resuspended in 40 µL TE buffer.676

DNA ends were prepared for ligation by adding 7 µL of NEBNext End Prep Buffer and 3 µL NEXext677

End Prep enzyme mix and incubating for 20 min at room temperature and 30 min at 65 °C. Adapters678

were ligated using NEBNext Ultra II Ligation module according to manufacturer’s protocols. Beads were679

washed twice as above and resuspended in 50 µL PCR amplification mix (25 µL 2x NEBNext High Fidelity680

master mix, 2.5 µL 10 µM Universal Primer, 2.5 µL 10 µM indexing primer, 20 µL H2O). PCR reaction was681

performed using the following program (1 cycle: 98 °C for 30 sec; 5 cycles: 98 °C for 10 sec, 65 °C for 75682

sec). Beads were magnetically collected and the supernatant containing amplified DNA was transferred to683

a clean 1.5 mL microcentrifuge tube. The amplified libraries were purified using magnetic SPRI beads at684

a ratio of 1:1 and eluted with 31 µL 10 mM Tris-HCl, pH 8.685

Side qPCR & off-bead PCR. To determine the number of additional cycles of PCR amplification to perform,686

5 µL of purified library from on-bead PCR, 6 µL 2x NEBNext High Fidelity master mix, 0.5 µL 10 µM687

Universal primer, 0.5 µL 10 µM indexing primer, and 0.33 µL 33x SYBR Green were mixed and added688

to a qPCR well and cycled on an ABI ViiA 7 Real-Time PCR Machine with the following parameters (1689

cycle: 98 °C for 30 sec; 25 cycles: 98 °C for 10 sec, 65 °C for 75 sec). The number of off-bead PCR690

cycles to perform was determined by finding the number of cycles such that the fluorescence intensity691

is about one third the plateau intensity at the PCR saturation. The remaining 25 µL of the library was692

combined with 30 µL 2x NEBNext High Fidelity master mix, 2.5 µL 10 µM universal Primer, and 2.5 µL 10693

µM indexing primer. Each sample was then cycled as above for the number of cycles determined by the694

side qPCR.695

Library clean up and sequencing. To purify the amplified library, high molecular weight fragments were696

bound to Ampure beads by adding 0.6x volume of the PCR reaction of Ampure beads and collecting697

the supernatant. Low molecular weight fragments were purified out by adding 0.1875x the volume of698

the supernatant transferred to obtain a final ratio of 0.9x beads:slurry. DNA was eluded in 33 µL 10699

mM Tris pH 8. Library concentration was assessed using a Qubit dsDNA High Sensitivity kit and size700

distributions were determined using an Agilent High Sensitivity DNA bionalyzer. Samples were pooled701

and sequenced on 1 lane of an Illumina HiSeq4000 platform (2x PE150) to assess library quality, then702

later deeply sequenced on 2 lanes of an Illumina NovaSeq platform at NovoGene (Sacramento, CA). All703
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reported analysis was generated using the NovaSeq dataset. Replicates 1 and 2 of ES and DE ChAR-seq704

libraries were prepared at different times and each sequenced separately on 1 NovaSeq lane.705

ChAR-seq data processing and generation of pairs files706

Demultiplexed fastq files from the ChAR-seq data were processed using a custom Snakemake pipeline707

(https://github.com/straightlab/charseq-pipelines), outputting pairs files containing the RNA708

and DNA coordinates of each RNA(cDNA)-DNA chimeric read and relevant annotations for each RNA-DNA709

contact. A summary of the pipeline workflow is depicted in Supplementary Fig. 1. For full details of the710

processing pipeline, see Supplementary Note 1. Briefly, reads were PCR deduplicated using clumpify.sh711

v38.84 (BBMap suite), low quality reads (Q < 30) were removed, and sequencing adapters were trimmed712

using Trimmomatic v0.38. Paired-end reads were merged using Pear v0.9.6 when possible and reads713

containing a single instance of the ChAR-seq bridge sequence were identified using chartools v0.1, a714

custom ChAR-seq reads preprocessing package released as part of this study (https://github.com/715

straightlab/chartools). Reads were split into a rna.fastq and dna.fastq file corresponding to the716

sequences of the RNA (cDNA) and DNA side of the chimeric molecule using chartools. Reads with either717

the RNA or DNA side shorter than 15 bp were removed using chartools, and reads whose RNA side718

aligned to a rRNA sequence by Bowtie2 were filtered out using Picard. DNA reads were aligned to hg38719

using Bowtie2, and RNA reads were aligned to hg38 using STAR and Gencode v29 annotations. RNA720

reads were assigned specific genes using tagtools (https://github.com/straightlab/tagtools), a721

package released as part of this study. pairs files containing for each read the mapping coordinates of722

the DNA, the RNA, and the most likely gene of origin were produced using chartools pairup function.723

Separate pairs files were produced for reads whose RNA was annotated by tagtools as exonic, intronic,724

or intergenic. pairs files were filtered using a bash script to remove multimapping reads and reads with725

low mapping scores on either the RNA (STAR Q < 255) or DNA (Bowtie2 Q < 40) side. Reads whose726

RNA overlapped with the hg38 ENCODE blacklist or that could not be attributed to a single known gene or727

genomic locus were also removed.728

RNA-seq data processing729

RNA-seq reads were processed using a Snakemake pipeline mirroring the ChAR-seq pipeline, but all of730

the operations related to the DNA-side of the reads were skipped. In brief, demultiplexed fastq files were731

deduplicated, sequencing adapters were removed, paired mates were merged as described for ChAR-seq732

reads. Reads that aligned to a rRNA sequence by Bowtie2 were filtered out using Picard. Reads were733

aligned to hg38 using STAR and were annotated with tagtools using the Gencode V29 gene models. Reads734

with low mapping scores (STAR Q < 255), reads which could not be attributed to a single known gene or735

a single locus, and reads that overlapped with a locus on the ENCODE black were discarded.736

ATAC-seq data processing737

Illumina Nextera Adapters were removed using a custom Python script. Reads were aligned to the hg38738

using Bowtie2. Duplicates were removed with Picard. Mitochondrial reads or reads with Bowtie2 MAPQ739

score < 30 were removed using SAMtools. All replicates were similar, so their alignment files were merged740

to increase library complexity (>100 million mapped reads per cell type) and produce a single bigwig file741

per cell type used to display the ATAC-seq tracks, and a single bam file to determine ATAC-seq peaks.742

ATAC-seq peaks were identified in each cell line using HMMRATAC v1.2.10.743

Chromatin association scores744

We defined the chromatin association score for RNA i as the log fold difference between the level of745

RNA i in the chromatin associated RNA transcriptome (measured with the RNA-side of the ChAR-seq746

reads) and its level in the total RNA transcriptome (measured with total RNA-seq). To estimate747

the chromatin association score in a way that was robust to small counts and obtain p-values748

to detect RNAs with meaningful chromatin enrichment, we used DEseq2 with a design formula749
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~cell + sequencing + cell:sequencing. In this design matrix, the cell covariate represented the750

cell type and the sequencing covariate indicated whether the sample originated from RNA-seq or751

ChAR-seq. The interaction term cell:sequencing captured differences in the chromatin association of752

a given RNA between ES and DE cells. We used the shrunken estimate of the regression coefficient753

associated with the sequencing covariate as the estimate of the chromatin association score. We754

computed the chromatin association score in ES and DE cells separately by setting the reference level755

for the cell covariate to ES and DE, respectively, before running DEseq2. The apeglm method was used756

to compute the shrunken estimates. We ran DEseq2 using an input count matrix with 16 samples: 2 ES757

and 2 DE replicates from ChAR-seq and 4 ES and 4 DE replicates from RNA-seq. Gene counts for all758

Gencode V29 genes and all UTLs identified in this study were included in the input matrix, except those759

with fewer than 10 counts combined across all 16 samples. Counts from exons and introns of a given gene760

and from UTLs were input as separate entries (rows) in the matrix. All DESeq2 parameters were set to761

their default value, except for the sample depth normalization step. For sample depth normalization, we762

ran the estimateSizeFactors command on a subset of the rows of the count matrix that included only763

exons of annotated genes with at least 50 counts combined across all 16 samples. Subselecting exonic764

reads removed length bias due the low representation of introns in the total RNA-seq data compared765

to the ChAR-seq data. False Discovery Rate (FDR) adjusted p-values corresponding to the regression766

coefficient associated with the sequencing covariate were used to identify genes with significant chromatin767

enrichment. Genes with an adjusted p-value smaller than 0.05 and a chromatin association score either768

greater than 3 where labeled as chromatin enriched, and those with an adjusted p-value smaller than 0.05769

and a chromatin association score less than -3 were labeled as chromatin depleted. To identify genes with770

statistically significant changes in their chromatin association score in ES versus DE cells (Fig. 3d), we771

used the regression coefficient associated with the interaction term cell:sequencing, LFCES,DE and its772

corresponding adjusted p-value padj,ES,DE. Thresholds used to label such genes where LFCES,DE > 0, and773

padj,ES,DE < 0.05.774

Computational interaction with ChAR-seq data775

For most computational analyses, the filtered pairs files were loaded in python as a chartable python object776

using the chartools package. Within the object, the interaction data were stored in a sparse matrix with777

one row per RNA and one column per genomic DpnII site, binned at 10 bp resolution, which could be778

loaded entirely in RAM. This allowed us to perform computationally efficient indexing operations to select779

individual RNAs or target genomic loci, plot ChAR-seq maps at various resolutions, produce bigwig files of780

the binding profile of individual RNAs, and generate the caRNA-gene interactome. All of these operations781

were performed using methods from the chartools package.782

De-novo identification and classification of unannotated transcribed loci (UTLs)783

Identification of UTLs. For each ChAR-seq sample, reads whose RNA did not overlap with any gene784

body in GenecodeV29 in the sense orientation were classified as intergenic by tagtools and their785

STAR RNA alignments were extracted in a separate bam file. Only RNA reads with a STAR786

alignment score of Q = 255, a cognate DNA read with a Bowtie2 alignment score of Q > 15787

were retained. The reads handling and filtering steps were performed as part of our ChAR-seq788

reads preprocessing Snakemake pipeline. These bam files were used as an input to StringTie2789

with parameters --fr --conservative -u -m 30 -p 4 -A to produce one gtf file with de-novo790

gene models for each sample. The sample specific gtf files from the 2 ES and 2 DE ChAR-seq791

replicates were merged using StringTie2 with parameters --merge -p 4 -m 30 -c 0 -F 0 -T 0792

to produce a final a gtf file intergenic.merged.gtf with gene models for the UTL. This793

gtf file was used to generate a STAR index containing the gene models for the UTLs using794

command STAR --runMode genomeGenerate --sjdbGTFfile intergenic.merged.gtf. A dedicated795

Snakemake pipeline was run, similar to the full preprocessing pipeline described above, but starting from796

the tagtools step and using the UTL rather than the gencode gene models (and corresponding STAR797

indices) to produce pairs files corresponding to RNAs emanating from UTLs.798
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Classification of UTLs. Each UTL was assigned 4 metrics or tags. i) We attributed each UTL a dominant799

Transposable Element (TE) family and a TE-score. For this task, we applied Classification of Ambivalent800

Sequences using K-mers (CASK)86 to the RNA-side of the ChAR-reads. CASK annotates each read with801

a candidate TE family (if any) based on its k-mer composition analyzed against a database of TE-specific802

k-mers build using the T2Tv1 genome assembly and T2T-CHM13 repeat annotations. Then, for each UTL,803

we identified the CASK annotation with the highest representation amongst all the reads (across the 2 ES804

and 2 DE replicates) mapped to this UTL. We assigned this annotation as the dominant TE family for this805

UTL and the proportion of reads from this UTL with this specific CASK annotation as its TE-score. ii) If806

the 5’ end of an UTL was within +/- 300 bp of a cis-regulatory element (CRE) active in either ES or DE807

cells, we annotated this UTL with the closest such CRE and its associated 7-group classification based on808

the Encode Registry of Regulatory Elements33 (file ID GRCh38-cCREs.bed). To determine active CRE in809

ES or DE cells, we selected, amongst the Encode Registry of Regulatory Elements (containing 1,063,878810

human candidate CREs), those that overlapped with an ATAC-seq peak in that cell line. iii) UTLs whose 5’811

end were within -200 bp to +100 bp of the 3’ end of a GencodeV29 gene body were flagged as candidate812

“readthrough.” iv) UTLs with at least 10% overlap with the antistrand of a GenecodeV29 gene body were813

flagged as candidate “antisense.” Finally, these 4 metrics and tags were combined to determine the final814

UTL classification using the following priority rule: i) UTLs with a dominant TE family of tRNAs and at815

TE-score greater than 10% were classified as tRNA-derived. ii) Remaining UTLs with a dominant TE816

family in {snRNA, snoRNA , scaRNA , srpRNA, scRNA , rRNA} and at TE-score greater than 10% were817

classified as snRNA-derived. iii) Remaining UTLs flagged as candidate readthroughs were classified as818

readthroughs. iv) Remaining UTLs with a CRE annotation in either ES or DE cells were classified as819

CRE-derived, and the subtype of CRE was selected from the ES cell annotation if the CRE was active in820

ES cells, and from DE cell annotation otherwise. v) Remaining UTLs with a TE-score greater than 50%821

were classified as repeat-derived, with the specific repeat family determined by their dominant TE family.822

vi) Remaining UTLs flagged as candidate antisense were classified as antisense. vii) All remaining UTL823

were classified as intergenic.824

Quantification of the RNA-DNA interactome dynamics825

To compare the ChAR-seq RNA-DNA contact maps in ES versus DE cells, we repurposed the differential826

gene expression analysis tool DEseq292. We applied DEseq2 in the interactome space (rather than827

the transcriptome space, as traditionally done in differential RNA-seq) using the number of ChAR-seq828

reads linking a specific RNA to a specific DNA locus, hereafter refer to an RNA-DNA interaction, as a829

separate rows in the input count matrix. We defined a DNA locus as either a 100 kb or 1 Mb genomic830

window (for Fig. 3), or a region surrounding the TSS of a protein coding gene as defined in the main831

text (for Fig. 6). The 4 ChAR-seq samples were included as columns of the count matrix. RNA-DNA832

interactions for which fewer than 2 samples had at least 10 reads were excluded from the count matrix and833

further analysis. The contact maps from exons, introns, and UTLs were analyzed in independent DESeq2834

runs. The count matrices were generated in Python directly from the chartable objects that stored the835

contactome data. These matrices were imported in R and DESeq2 was run with all parameters set to836

their default values. Log2 Fold Change differential contacts maps shown in Fig. 3 were generated using837

the shrunken fold change estimates for each contact as returned by DESeq2. The apeglm method was838

used for shrinkage. This DESeq2 output was loaded into a chartable object in Python for computational839

handling and visualization tasks using chartools. Bar plots in Fig. 3b were produced using ggplot2 in R840

after converting the DESeq2 output into dplyr tibbles and applying appropriate transformations.841

Detection of RNA relocalization events during differentiation.842

Model 3 in Fig. 3c was tested by comparing the fold change between ES and DE cells for each RNA-DNA843

interaction with the fold change in total expression of the corresponding RNA in the caRNA transcriptome.844

To do so, we generated “expression only” contact maps, where the number of contacts between RNA i and845

genomic locus j was set equal to the total number of contacts made by RNA i in the observed map. For846

this analysis, genomic loci were defined using a 100 kb tiling partition of the genome. Because in these847
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“expression only” maps, each row i (representing RNA i) is constant across the columns (representing848

the 100 kb-wide DNA loci), any information about the localization of individual RNAs is effectively removed849

and only the information about the abundance of each RNA is retained. We next applied DEseq2 in850

the interactome space as described above, but with the following modifications. First, the count matrix851

input to DEseq2 contained 8 samples/columns: the 2 ES and the 2 DE replicates of the observed852

contact maps and the 4 corresponding “expression only” maps. Second, we used a design matrix of the853

form ~cell + mapType + cell:mapType, where the mapType covariate indicated whether the column854

corresponded to an observed ChAR-seq map or an “expression only” map, and the cell covariate855

indicated whether the column corresponded to a map in ES or DE cells. Third, the count matrix was856

prefiltered as above by removing interactions for which fewer than 2 samples had at least 10 reads, except857

that only the true observed samples (mapType=observed) were considered for the purpose of the filter.858

The interaction term cell:rnaType captured differences in the ES to DE dynamics in the true maps859

compared to the “expression only” maps. All interactions that had an FDR adjusted p-value associated860

with the cell:rnaType covariate smaller than 0.05 were flagged as “not explained by expression.” Maps861

shown in Fig. 3e and labeled as “Differential contacts explained by expression” were generated using the862

apeglm shrunken estimate of the regression coefficient associated with the cell covariate and with the863

reference level for mapType set to “expressionOnly.” This analysis was performed separately for maps864

corresponding to exons, introns, and UTLs.865

Computation of the trans- and cis-delocalization scores866

For full details on the trans-delocalization scores please refer to Supplementary Note 2.867

trans-delocalization scores. Briefly, we defined the raw trans-delocalization score for each RNA as the

ratio of the contact density of this RNA on trans chromosomes (number of contacts divided by the total

length of the trans chromosomes) over the contact density of this RNA on its cis chromosome. The

raw delocalization score was difficult to interpret due to sample-specific biases and dependency in the

chromosome of origin and expression (Supplementary Figure 5). To regress out these biases and obtain

a score that was comparable across RNAs and samples, we used a generalized linear model (GLM) and

an empirical Bayes approach. First, we modeled the total number of trans-chromosomal contacts Ntrans,i

for each RNA i as independent Beta Bionomial distributions. The Beta Binomial distribution accounts for

both the sampling variation and the biological variation across RNAs, and was parametrized with the total

number of reads Ni for RNA i, a mean trans-contact rate for RNA i πi, and an overdispersion parameter

which we assumed constant across all RNA γ, such that

E(Ntrans,i | Ni) = πiNi

var(Ntrans,i | Ni) = πi(1−πi)Ni (1+(Ni −1)γ)
(1)

We captured the expression and chromosome biases by using a beta-binomial GLM and by including these868

effects as covariates in the GLM. Specifically, we used a logit link function for the mean trans-contact rate869

pii of the form870

logit(πi) = ηchr,i +ηexpr ln(Ni) (2)

We next fit the Beta-binomial GLM using our ChAR-seq count data from mRNAs as a training set and871

conditioning on the total number of reads Ni for each RNA i.872

Fitting was performed using the fit.gamlss function from the gamlss package in R with the beta binomial873

family parameter and after loading the count data in a dplyr tibble and transforming the table appropriately874

for input into the fit function. RNAs with fewer than 50 total counts were removed and discarded from875

further analysis. Using the fitted beta-binomial GLM, we obtained for each RNA i an estimate for the mean876

trans-contact rate πmodel,i and an associated Beta Binomial distribution with parameters Ni, πmodel,i and877

gammamodel, which we used as an Empirical Bayes prior. We performed a Bayesian update using the true878
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observed number of trans-chromosomal contacts for RNA i, thereby obtaining a shrinkage estimate for879

the trans-contact rateπpost,i. We defined the calibrated trans-delocalization score for RNA i ∆trans, i as the880

log2 transformed ratio of the shrinkage estimate over the model prediction:881

∆trans, i = logit(πpost,i)− logit(πmodel,i) (3)

Delocalization scores were computed independently for each sample, and a final delocalization score for882

each RNA in each cell state was obtained by averaging the scores over the 2 replicates.883

cis-delocalization scores. We defined the RNA travel distance δ for each ChAR-seq read corresponding to884

a cis-chromosomal contact as the distance between the mapping locus of the RNA and the mapping locus885

of the DNA. cis-delocalization scores were defined and computed similarly to the trans-delocalization886

scores, except for the following replacements: the number of cis-chromosomal contacts for RNA i was887

replaced with the number of contacts Nδ<1Mb,i such that the absolute RNA travel distance was smaller888

than 1 Mb, and the number of trans-chromosomal contacts was replaced with the number of contacts889

Nδ>1Mb,i such that the absolute RNA travel distance was greater than 1 Mb. The covariates for the GLM890

remained unchanged.891

Detection of RNAs with extreme delocalization scores892

The analysis described below was used for the trans-delocalization scores and was performed similarly893

for the cis-delocalization scores. Briefly, for each RNA and each sample, we computed the probability894

pdelocalized,i that a random sample drawn from the posterior distribution of the trans-contact rate θpost,i was895

larger than a random sample drawn from the GLM trained on the mRNA population. This probability was896

used as a p-value for identifying trans-delocalized RNAs. One p-value was obtained per RNA and per897

sample, and p-values from replicates were combined using Fisher’s method. Multiple hypothesis testing898

was correction performed using Benjamini Hochberg procedure. RNAs with an adjusted p-value smaller899

than 0.05 were declared as trans-delocalized. To identify RNAs on the other side of the distribution tail900

(ultra-localized RNAs) 1 − pdelocalized,i was used, and Fisher’s and BH methods were applied similarly. An901

RNA was declared ultra-localized if the resulting adjusted p-value was smaller than 0.05. All computations902

were performed in R. For further details please refer to Supplementary Note 2.903

Prediction of ChAR-seq contact maps using a generative model904

For mathematical details and a detailed discussion on the generative model, please refer to Supplementary905

Note 3. Briefly, the ChAR-seq dataset can be represented as a set of RNAs from an arbitrarily indexed906

transcriptome (i.e., RNA i refers to an RNA associated with the ith gene in the transcriptome), and for each907

RNA i, a set of Ni reads coming from this RNA whose RNA mapping coordinates are {ri,j}j=1...Ni
and908

DNA mapping coordinates are {di,j}j=1...Ni
. We modeled for each RNA i the probability to observe any909

particular realization of the DNA mapping coordinates, conditional on knowing i) the set of RNA mapping910

coordinates and ii) the total number of contacts for this RNA on each chromosome. We modeled the911

cis- and trans-chromosomomal contacts separately. For cis-contacts, we assumed the probability for an912

RNA emanating from coordinates r to contact locus j with coordinates dj , is proportional to: i) an RNA913

independent and DNA locus-dependent bias bj representing biological and technical variation of RNA914

localization and detection along the genome and ii) an interaction frequency dependent on the distance915

between the RNA and the DNA locus. The latter effect captures diffusion and tethering effects at short916

distances, whereby an RNA is more likely to interact with loci near its transcription site. Under this model,917

the probability to observe any specific localization pattern for RNA i in cis is given by a multinomial918

distribution of the form:919

Multinomial



Ni,cis,∝ bj ∗
∑

k∈Ci

ρ(dj − ri,k)



 (4)
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where Ci is the set of indices amongst the reads from RNA i, for which the DNA-side maps to a locus in920

cis. For trans-contacts, we assumed that the probability for any RNA to contact locus j is only proportional921

to the DNA-bias. Under this model, the probability to observe any specific localization pattern for RNA i922

on a trans chromosome c is given by a multinomial distribution of the form923

Multinomial
(

Ni,chr(i)=c, bj

)

(5)

where Ni,chr(i)=c is the number of contacts made by RNA i on chromosome c.924

The DNA bias coefficients bj were estimated using the total coverage at each locus j from all the mRNAs925

originating from trans chromosomes. The distance dependent interaction frequency curve was estimated926

using the empirical distribution of RNA-DNA travel distance from all the protein coding RNAs. Maps shown927

across the manuscript and labeled as "model" were obtained by simulating a single realization of the cis928

and trans probabilistic models for each RNA in the transcriptome and for each target chromosome. Note929

that for each RNA, because of the conditional constraints, the total number of contacts on any specific930

chromosome are always equal in the simulated data and in the observed data. All simulations were931

performed in python as described in Supplementary Note 4, and the resulting maps were loaded in memory932

as chartables using chartools for analysis and plotting purposes.933

Detection of RNA-DNA contacts not predicted by the generative model934

To compare the true observed ChAR-seq RNA-DNA contact maps to those predicted by the generative935

model, we applied DEseq2 in the interactome space as described in the section “Quantification of936

the RNA-DNA interactome dynamics” with the following modifications. First, the count matrix input to937

DEseq2 contained 8 samples/columns : the 2 ES and the 2 DE replicates of the true “observed” contact938

maps, and the 4 corresponding “model” maps, obtained by a single simulation of the generative model.939

Second, the design matrix was set to ~ cell + observedORmodel + cell:observedORmodel, where940

the observedORmodel covariate indicated whether the column corresponded to “observed” or “model”941

ChAR-seq map. Third, the count matrix was prefiltered by removing interactions for which fewer than 2942

samples amongst the “observed” samples had at least 10 reads. The interaction term cell:rnaType943

captured differences between the observed and modeled data that were specific to either ES to DE944

cells. All interactions whose apeglm shrunken estimate of the regression coefficient associated with the945

observedORmodel covariate was greater than log2(1.3) and had an FDR adjusted p-value smaller than 0.0946

5 were flagged as “not explained by model.” We computed the regression coefficient associated with the947

observedORmodel and its p-value in ES and DE cells separately, by setting the reference level for the cell948

covariate to ES and DE, respectively, before running DEseq2. This analysis was performed separately for949

maps corresponding to exons, introns, and UTLs. Maps shown in Fig. 5d-h, and Fig. 6b labeled as “model’950

or “mod” were generated using the apeglm shrunken estimate of the regression coefficient associated951

with the observedORmodel covariate. The DESeq2 outputs were loaded into a chartable object in Python952

using chartools for visualization tasks. Bar and line plots in Fig. 5e where produced using ggplot2 in R953

after converting the DESeq2 output into dplyr tibbles and applying appropriate transformations.954

External data used in this study955

Hi-C data in Fig. 5 were loaded in HiGlass from the Krietenstein et al. 2019 (H1 hESCs) dataset93,956

visualized at 2kb resolution after ICE normalization, and manually aligned with the ChAR-seq, ATAC-seq,957

H3K27ac and H3K4me3 tracks plotted in IGV based on their genomic coordinates. H3K27ac and958

K3K4me3 tracks in Fig. 2b and Fig. 5g were generated using ChIP-seq data in H7 hESCs cells and H7959

cells differentiated into definitive endoderm from GSE12720250.960

Data and code availability961

All ChAR-seq, RNA-seq and ATAC-seq sequencing data generated as part of this study are available962

by request and will be made publicly available on GEO upon publication. Packages released as part of963
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this study and Snakemake pipelines used to preprocess the ChAR-seq and RNA-seq data are available964

on github at the specific repositories described above. All data analysis code and code to generate the965

figures are available by request and will be available on github upon publication.966
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