

1 **Title: A genome-scale atlas reveals complex interplay of transcription and translation in**
2 **an archaeon**

3

4 Authors: Alan P. R. Lorenzetti ^{1,2}, Ulrike Kusebauch ², Lívia S. Zaramela ¹, Wei-Ju Wu ², João P.
5 P. de Almeida ^{1,3}, Serdar Turkarslan ², Adrián L. G. de Lomana ^{2,4}, José V. Gomes-Filho ^{1,5},
6 Ricardo Z. N. Vêncio ⁶, Robert L. Moritz ², Tie Koide ^{1,†}, Nitin S. Baliga ^{2,7,8,9,†,#}

7

8 Affiliations:

9 ¹ Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo,
10 Ribeirão Preto, Brazil

11 ² Institute for Systems Biology, Seattle, WA, USA

12 ³ Present address: Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte,
13 Brazil

14 ⁴ Present address: Center for Systems Biology, University of Iceland, Reykjavik, Iceland

15 ⁵ Present address: Prokaryotic RNA Biology, Phillips-Universität Marburg, Marburg, Germany

16 ⁶ Department of Computation and Mathematics, Faculty of Philosophy, Sciences and Letters at Ribeirão
17 Preto, University of São Paulo, Ribeirão Preto, Brazil

18 ⁷ Departments of Biology and Microbiology, University of Washington, Seattle, WA, USA

19 ⁸ Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA

20 ⁹ Lawrence Berkeley National Lab, Berkeley, CA, USA

21 [†] TK and NSB are joint senior authors

22 [#] Author to whom correspondence should be addressed

23

24 E-mail: nitin.baliga@isbscience.org; Tel.: +1 (206) 732-1266

25

26 **ABSTRACT**

27 The scale of post-transcriptional regulation and the implications of its interplay with other forms of
28 regulation on environmental acclimation is underexplored for organisms of the domain Archaea.
29 Here, we have investigated the scale of post-transcriptional regulation in the extremely halophilic
30 archaeon *Halobacterium salinarum* NRC-1 by integrating transcriptome-wide locations of
31 transcript processing sites (TPS) and SmAP1 binding, genome-wide locations of antisense RNAs
32 (asRNAs), and consequences of RNase_2099C knockout on differential expression of all genes.
33 This integrated analysis has discovered that 54% of all protein-coding genes in the genome of
34 this haloarchaeon are likely targeted by multiple mechanisms for putative post-transcriptional
35 processing and regulation, with about 20% of genes likely regulated by combinatorial schemes
36 involving SmAP1, asRNAs, and RNase_2099C. Comparative analysis of mRNA levels (RNA-
37 Seq) and protein levels (SWATH-MS) for 2,579 genes over four phases of batch culture growth
38 in complex medium has generated additional evidence for conditional post-transcriptional
39 regulation of 7% of all protein-coding genes. We demonstrate that post-transcriptional regulation
40 may act to fine-tune specialized and rapid acclimation to stressful environments, e.g., as a switch
41 to turn on gas vesicle biogenesis to promote vertical relocation in anoxic conditions and to
42 modulate frequency of transposition by IS elements of the IS200/IS605, IS4, and ISH3 families.
43 Findings from this study are provided as an atlas in a public web resource
44 (<https://halodata.systemsbiology.net>).

45 **IMPORTANCE** While the transcriptional regulation landscape of archaea has been extensively
46 investigated, we currently have limited knowledge about post-transcriptional regulation and its
47 driving mechanisms in this domain of life. In this study, we collected and integrated omics data
48 from multiple sources and technologies to infer post-transcriptionally regulated genes and the
49 putative mechanisms modulating their expression at the protein level in *Halobacterium salinarum*
50 NRC-1. The results suggest that post-transcriptional regulation may drive environmental
51 acclimation by regulating hallmark biological processes. To foster discoveries by other research
52 groups interested in the topic, we extended our integrated data to the public in the form of an
53 interactive atlas (<https://halodata.systemsbiology.net>).

54

55 **INTRODUCTION**

56 By virtue of their co-existence with multiple organisms within a community, microbes are under
57 significant evolutionary selection pressure to maximize resource utilization for growth and
58 sustenance, while minimizing waste (1). For this reason, even within their streamlined genomes,
59 microbes possess extensive regulatory mechanisms at multiple levels of information processing
60 (2–5). While regulation at the transcriptional level is typically modular with genome-wide
61 consequences (4, 6), regulation at the post-transcriptional level is believed to be more nuanced
62 and localized to specific sets of functions that are directly associated with environment-specific
63 phenotypic traits (7). In other words, while transcriptional regulation mediates large-scale
64 physiological adjustments, post-transcriptional regulation fine-tunes specific functions to optimize
65 environmental acclimation. Understanding the interplay of regulation across the different layers
66 of information processing will give insight into how microbes compete and collaborate effectively
67 with other co-inhabiting organisms. In addition to having foundational significance, these insights
68 also have important implications for synthetic biology approaches to introduce novel traits while
69 minimizing fitness tradeoffs in an engineered organism (8–11).

70 Understanding the interplay of regulation across transcription and translation in organisms
71 of the domain Archaea is especially interesting for several reasons. First, while they have been
72 discovered across diverse environments, archaea are particularly known for specialized
73 phenotypic adaptations for some of the most extreme and dynamic habitats (12). Second,
74 archaea are unique in terms of possessing a mix of information processing mechanisms that are
75 distinctly eukaryotic or bacterial. For instance, while their general transcriptional machinery
76 including the RNA polymerase shares ancestry with eukaryotic counterparts, the regulation of
77 transcription is mediated by regulators that have bacterial ancestry (13, 14). There has been
78 extensive work across several archaeal model organisms that has characterized basal
79 transcription and its regulation both in molecular detail and at a systems level (2, 3, 15). By
80 contrast, it has been only in the recent past that we have begun to appreciate the role of post-
81 transcriptional regulatory mechanisms in specialized phenotypic acclimation of archaea. There is
82 evidence that translational efficiency in methanogenic archaea is modulated through differential
83 processing of 5' UTRs (16), mRNA secondary structures (17), or context-specific binding by small
84 regulatory RNAs (sRNAs) to conditionally occlude ribosome binding sites within transcripts (18)
85 or to stabilize them (19). Studies conducted in a psychrophile have discovered that post-
86 transcriptional regulation directly influences methanol conversion into methane at lower
87 temperatures (20). Similarly, RNase-mediated disruption of positive autoregulation of potassium

88 uptake was discovered to be an important mechanism for energetically-efficient and rapid
89 acclimation of a halophile in a salinity shift scenario (21). These examples illustrate how some
90 archaea utilize post-transcriptional regulation to fine-tune specific functions and pathways for
91 specialized phenotypic acclimation to environmental change.

92 However, a lot remains to be understood regarding the scale of post-transcriptional
93 regulation in archaea and the extent to which they are deployed in combinatorial schemes to fine-
94 tune phenotypes for environmental acclimation. For instance, the widely conserved and
95 extensively characterized RNA-binding proteins (RBP), including Csp (A, C, and E), CsrA,
96 RNaseE, YbeY, and Hfq, are known to play important post-transcriptional regulatory functions in
97 bacteria (22), but there is limited understanding of the roles of their orthologs in archaea. Hfq is a
98 member of an RNA-guided complex, a well-characterized bacterial RNA chaperone known to
99 interfere in mRNA translation (23, 24), which acts in a manner analogous to the RNA-induced
100 silencing complex (RISC) in eukaryotes to regulate specific mRNAs (25). Notably, the Hfq
101 homolog, Sm-like archaeal protein (SmAP1 or Lsm), has been characterized structurally across
102 multiple archaea (26–29), including *Halobacterium salinarum* NRC-1 (30), and shown to likely
103 mediate post-transcriptional regulation through sRNA-binding in *Haloferax volcanii* (31, 32) and
104 *Sulfolobus solfataricus* (33). However, we do not understand the mechanism, importance, context
105 or scale of post-transcriptional regulation mediated by SmAP1 (and other RBPs) (34, 35) or, for
106 that matter, by the large numbers of sRNAs, antisense RNAs (asRNAs), and RNases that have
107 been discovered across archaeal genomes (36).

108 Here, we have investigated the scale of interplay between transcriptional and post-
109 transcriptional mechanisms in regulating protein levels in the halophilic archaeon *H. salinarum*
110 NRC-1, which has served as a model to investigate traits of organisms in the domain Archaea. In
111 particular, *H. salinarum* NRC-1 has been widely used as a model organism to dissect hallmark
112 traits of halophilic archaea, including niche adaptation via expanded families of general
113 transcription factors (37), large-scale genome organization by genomic repeats and insertion
114 sequences (IS) (38, 39), flotation by gas vesicle biogenesis (40), phototransduction by
115 bacteriorhodopsin (41), and how modularity of translational complexes enables rapid acclimation
116 to environmental changes (42). Prior work has characterized at a systems level and in
117 mechanistic detail many aspects of the global transcriptional regulatory network of *H. salinarum*
118 NRC-1 (2, 3), with extensive validations through genetic perturbation studies and physical
119 mapping of genome-wide protein-DNA interactions of multiple transcription factors (4, 5).
120 However, the transcriptional regulatory network by itself or the half-lives of all transcripts (43) did

121 not fully explain the complex relationship between absolute and relative abundance of transcripts
122 and proteins across different environmental contexts (44, 45), suggesting an important role for
123 post-transcriptional regulation. Indeed, prior studies have uncovered evidence for the potential of
124 extensive post-transcriptional regulation in *H. salinarum* NRC-1, including the presence of a
125 strikingly large number of regulatory elements within coding sequences (3) that leads to
126 widespread conditional splitting of at least 40% of all operons into multiple overlapping
127 transcriptional units (5), presence of asRNAs for 22% of all genes (46), differential regulation of
128 23 transcripts in an RNase knockout background (21), and extensive transcript processing sites
129 (TPS) across 43% of all coding sequences (47).

130 Through integrated analysis of a new transcriptome-wide map of SmAP1 binding located
131 with RNA immunoprecipitation sequencing (RIP-Seq), global differential regulation of transcripts
132 upon deletion of an RNase (VNG_2099C) implicated in acclimation to salinity change (21), and
133 locations of asRNAs and TPS (46, 47), we have generated a genome-scale atlas that has
134 discovered that 54% of all protein-coding genes in *H. salinarum* NRC-1 are targeted by multiple
135 mechanisms for putative post-transcriptional regulation. Interestingly, 20% of all protein-coding
136 genes are likely post-transcriptionally regulated in combinatorial schemes involving SmAP1,
137 asRNAs, and RNase. Further, through comparative analysis of dynamic changes in mRNA levels
138 (RNA-Seq), ribosome footprints (Ribo-Seq) (42), and protein levels (SWATH-MS) (Kusebauch et
139 al., in preparation) for 2,579 representative genes over four phases of batch culture growth in
140 complex medium, we have generated evidence that 7% of all protein-coding genes (188 genes)
141 are indeed post-transcriptionally regulated. Notably, 78% of these post-transcriptionally regulated
142 genes were mechanistically associated with SmAP1-binding, asRNAs, TPS, and/or RNase-
143 mediated differential regulation. Through in-depth analysis we demonstrate how post-
144 transcriptional regulation acts to fine-tune specialized environmental acclimation, e.g., as a switch
145 to turn on gas vesicle biogenesis and to modulate frequency of transposition by IS elements of
146 the IS200/IS605, IS4, and ISH3 families. Finally, we have generated an interactive web resource
147 to support collaborative community-wide exploration and characterization of the *H. salinarum*
148 NRC-1 multi-omics Atlas (<https://halodata.systemsbiology.net>).

149 **RESULTS**

150 *Evidence for post-transcriptional regulation by SmAP1, asRNAs, and RNase_2099C*

151 Since the publication of its genome sequence in 2000, multiple sources of gene annotations have
152 emerged for *H. salinarum* NRC-1 (48–50). To standardize annotations, we clustered sequences
153 from each source to eliminate redundancy while differentiating between paralogs (see Methods;
154 Table S1; File S1). In summary, this analysis identified 2,631 non-redundant transcripts, including
155 2,579 coding and 52 non-coding RNAs (rRNAs, tRNAs, signal recognition particle RNA, and
156 RNase P) with a dictionary anchored by locus tags from (50) and mapped to locus tags of the
157 closely related strain *H. salinarum* R1 (File S1).

158 Next, we compiled orthogonal, genome-wide evidence for putative post-transcriptional
159 regulation. Specifically, we relocated one or more published transcript processing sites (TPS)
160 within at least 966 protein-coding genes (37% of all protein-coding genes) (47), mapped cis-acting
161 asRNAs for 536 genes (46), and determined that 166 genes were differentially expressed upon
162 deletion of one out of 12 RNases predicted within the genome (VNG_2099C; here onwards
163 “RNase_2099C”) (21) (File S2). To characterize the role of SmAP1 (VNG_1496G) in *H. salinarum*
164 NRC-1, epitope-tagged SmAP1-RNA complexes were co-immunoprecipitated from late-
165 exponential phase cultures from standard growth conditions (Figure S1), and transcriptome-wide
166 binding locations of SmAP1 were mapped by enrichment of sequenced transcripts (RIP-Seq; see
167 Methods). Consistent with previous *in vitro* observations from diverse archaea, the RIP-Seq
168 analysis discovered that SmAP1 preferentially binds to AU-rich transcripts (Figure S2A) (28–31,
169 51). In particular, we determined that SmAP1 binds to 15% (397/2,579) of all protein-coding
170 transcripts in *H. salinarum* NRC-1, including its own coding transcript (File S1), suggesting
171 putative autoregulation in light of the observed dynamics for mRNA and protein levels (Figure
172 S2B).

173 Integrated analysis of locations of SmAP1 binding, asRNAs, and TPS, and differential
174 expression in Δ RNase_2099C revealed that at least 1,394 genes were potentially subject to post-
175 transcriptional regulation by at least one of these mechanisms, with 514 genes under putative
176 combinatorial regulation by two or more mechanisms (Figure 1). Interestingly, transcripts that
177 were upregulated in the Δ RNase_2099C strain background were preferentially bound by SmAP1
178 (p -value = 0.02), associated with cognate asRNAs (p -value = 0.04), and enriched for TPS (p -
179 value = 6.7×10^{-5}). These findings could suggest that SmAP1 and asRNAs are responsible for the
180 recruitment of RNase_2099C to mediate targeted cleavage of transcripts. Thus, the integrated
181 analysis predicted that 20% to 54% of the *H. salinarum* genome is post-transcriptionally regulated

182 (Figure 1; 514 to 1,394 out of 2,579 genes). The fact that SmAP1, asRNAs, and RNase_2099C
183 account for putative regulation of 858 genes, suggests that myriad mechanisms, potentially
184 involving other RBPs and RNases noted above, are likely at play even in the limited conditions
185 represented in standard growth conditions.

186

187 *Evidence of post-transcriptional regulation in global trends of mRNA and protein levels*

188 We investigated concordance in patterns of absolute abundance at the transcriptional and
189 translational levels for each gene by calculating Pearson correlation coefficients between mRNA
190 and protein quantification across all the sampled physiological states ($R_{TP1} = 0.67$; $R_{TP2} = 0.68$;
191 $R_{TP3} = 0.57$; $R_{TP4} = 0.44$) (Figure 2A-D). The weaker correlation ($R_{TP1} = R_{TP2} > R_{TP3} > R_{TP4}$; Table
192 S2) in later stages of batch culture growth was skewed towards repression of translation; that is,
193 highly abundant mRNAs were associated with low abundance proteins in the quiescent
194 physiological state (TP4). We also noticed that protein levels correlated slightly better with mRNA
195 levels from the previous time point ($R_{P-TP2\text{ m-TP1}} = 0.68$; $R_{P-TP3\text{ m-TP2}} = 0.67$; $R_{P-TP4\text{ m-TP3}} = 0.57$; Figure
196 2E-G; Table S2), which is consistent with the sequential and temporal relationship between
197 transcription and translation, as we have previously shown (44, 45). We discovered that 6.5% of
198 all protein-coding genes (167) with high mRNA levels (upper quintile) were associated with low
199 protein levels (lower quintile or undetected) over some or all four stages of growth in batch culture
200 (Figure S3A, File S3). Specifically, the 167 genes were enriched for SmAP1 binding, asRNAs,
201 and TPS (p -value = 2.3×10^{-4} , 2.9×10^{-2} , and 1.1×10^{-7} , respectively) and had longer average mRNA
202 half-lives (13.7 min. vs. 12.3 min.; p -value = 1.1×10^{-2}). Within this set, 64 genes associated with
203 protein levels detected in the lower quintile (green points in Figure 2A-D; Figure S3B; File S3)
204 were enriched for TPS (p -value = 2.6×10^{-4}). A second set of 117 genes, whose proteins were not
205 detected likely due to their low levels or complete absence (see Methods; Figure S3C; File S3),
206 was enriched for SmAP1 binding and TPS (p -value = 1.7×10^{-6} and 2.8×10^{-6} , respectively), had
207 longer average mRNA half-lives (14.2 min. vs. 12.3 min; p -value = 2.7×10^{-3}), and was upregulated
208 in $\Delta RNase_2099C$ strain (p -value = 1.5×10^{-2}). Refer to File S4 for sets and tests.

209 Finally, we searched for potentially post-transcriptionally regulated genes by correlating
210 dynamic relative changes in protein and mRNA levels over time (Figure 2H-L; File S5; File S6).
211 For example, during the transition from TP1 to TP2, we observed a decrease in protein abundance
212 of five transcriptionally upregulated genes over the same timeframe (Figure 2H). This cluster
213 (Figure S4; File S6), comprised of five genes depicted by green points (VNG_7025, VNG_7026,
214 VNG_7039, VNG_7103, and VNG_6313G) in Figure 2H, with enrichment for SmAP1 binding,

215 asRNAs, and TPS (p -value = 8.5×10^{-5} , 3.8×10^{-4} , and 0, respectively), is a strong candidate for
216 post-transcriptional repression. The genes also had lower codon adaptation index (CAI; 0.64 vs.
217 0.77; p -value = 3.9×10^{-3}) and increased mRNA levels in the $\Delta RNase_2099C$ strain (\log_2 fold
218 change = 1 vs. 0.02; p -value = 3.5×10^{-4}). The comparative analysis of mRNA and protein
219 abundance changes across all transition states (TP1 to TP2, TP2 to TP3, TP3 to TP4, TP1 to
220 TP3 and TP1 to TP4) identified 26 potentially post-transcriptionally repressed transcripts (Figure
221 S5; File S6) enriched for SmAP1 binding and TPS (p -value = 3.5×10^{-3} and 2.3×10^{-4} , respectively),
222 and upregulated in $\Delta RNase_2099C$ strain (p -value = 9.2×10^{-7}). Again, refer to File S4 for sets and
223 tests.

224 Altogether, the combined analyses of correlations between absolute and relative
225 abundance of mRNAs and proteins provided further evidence for post-transcriptional regulation
226 of at least 7% of all genes (188 out of 2,579) in *H. salinarum* NRC-1 during transition from active
227 growth to the stationary phase. Notably, 78% of these genes (147/188) with poor mRNA-protein
228 correlation were among the 1,394 genes associated with putative post-transcriptional regulation
229 features, including SmAP1 binding, asRNAs, and TPS (p -value = 1.9×10^{-9} , 7.6×10^{-6} , and 2.5×10^{-21} ,
230 respectively). Together these findings suggest complex combinatorial post-transcriptional
231 regulation of these genes at specific growth stages.

232

233 *Construction of the H. salinarum NRC-1 multi-omics Atlas*

234 To facilitate discovery of evidence of post-transcriptional regulation, we compiled corresponding
235 quantitation of mRNAs (RNA-Seq), ribosome-protected mRNA fragments (RPF; Ribo-Seq) (42),
236 and proteins (SWATH-MS) (Kusebauch et al., in preparation), quantile normalized them (File S1)
237 for scale adjustment, and performed calculations of translational efficiency (TE) and ribosome
238 occupancy (RO) for 2,579 genes across early exponential (TP1), mid-exponential (TP2), late-
239 exponential (TP3), and stationary (TP4) phases of growth in batch culture (see Methods; Figure
240 3; File S7). Further, we also included general properties such as GC content, mRNA half-life, and
241 CAI for each gene, as they are known to influence dynamics of the interplay between transcription
242 and translation (43, 52) and could likely explain discrepant patterns of corresponding changes
243 across mRNA, RPF, and proteins. A quick exploratory analysis of GC content and CAI, brought
244 up their association to protein levels in this study (Figure S6). Genes in the atlas were organized
245 into nine groups based on patterns of absolute abundance (File S3) and relative changes across
246 mRNA and protein levels (File S6). This analysis revealed that at least 188 genes (7% of all
247 protein-coding genes in the atlas) had incoherent mRNA-protein correlation patterns across the

248 four physiological states during growth in batch culture. Notably, 147 of these 188 genes were
249 associated with at least one post-transcriptional regulation mechanism noted above. The *H.*
250 *salinarum* NRC-1 Atlas is accessible through an application (<https://halodata.systemsbiology.net>)
251 that supports interactive exploration by zooming into specific segments of a heatmap, by
252 searching for genes of interest, or through a searchable genome browser. The following sections
253 demonstrate how the atlas facilitates in-depth investigations into post-transcriptional regulation of
254 hallmark processes in *H. salinarum* NRC-1.

255

256 *Functional implications of growth-associated post-transcriptional regulation in H. salinarum*
257 Altogether, the comparison of absolute and relative abundance of mRNA and protein levels
258 yielded evidence for post-transcriptional regulation of 188 genes during batch culture growth
259 (Figure 2; File S3; File S6). Furthermore, the longer transcript half-lives together with enrichment
260 of SmAP1-binding, asRNAs, TPS, and differential regulation upon deletion of RNase_2099C
261 provided evidence for post-transcriptional processing, and associated putative mechanisms of
262 regulation of different gene subsets. While a substantial number of genes were of unknown
263 function, important processes were represented among genes of known functions; these included
264 gas vesicle biogenesis, transposition-mediated genome reorganization, motility, translation, and
265 energy transduction (Figure 4). Among these, both gas vesicles and extensive genome
266 reorganization mediated by activity of mobile genetic elements are hallmark traits of *H. salinarum*
267 NRC-1 that are triggered in specific environmental contexts, including late growth and stationary
268 phases. Below, we present vignettes on each of these two processes to illustrate how the *H.*
269 *salinarum* NRC-1 multi-omics Atlas enables the discovery of mechanistic insight into post-
270 transcriptional regulation of specific phenotypes.

271 *The role of SmAP1 in the regulation of transposition and genome reorganization.*
272 Transposases are typically encoded within insertion sequences (IS), a type of transposable
273 element that is ubiquitous across prokaryotes, and known to mediate self-mobilization to new
274 locations in the genome (53, 54). *H. salinarum* NRC-1 mobilome is comprised by 80 full and 33
275 partial IS elements of eight families (ISfinder/ISbrowser) (55, 56), some of which are known to
276 introduce phenotypic diversity in flotation, by disrupting *gvp* locus at 1-5% frequency, and also in
277 phototrophic energy production, by disrupting the bacteriorhodopsin gene (*bop*) locus at 0.01%
278 frequency, potentially driving niche acclimation in brine pools (38, 57, 58). Notably, SmAP1 bound
279 24 of the 33 mobilome transcripts (Figure 5A; Figure S2C; enrichment *p*-value = 10^{-14}), consistent
280 with their low GC content (Figure 5B) and the previously implicated role of its bacterial homolog

281 in regulating transposition events (59, 60). Out of the 33 mobilome proteins, only four were
282 detected at the protein level (Figure 5AC), including three TnpB proteins encoded by IS elements
283 of the IS200/IS605 family subgroup IS1341 (VNG_0013C, VNG_0044H, and VNG_2652H) and
284 one protein encoded by the multi-copy ISH2 element (VNG_0210H), belonging to the ISH8 family
285 (see Table S3 for IS information). All mobilome proteins, except for one (VNG_0051a), were
286 present in the SWATH-MS assay library and none were predicted to be membrane-associated.
287 Moreover, all produced at least one suitable tryptic peptide (≥ 7 and ≤ 30 amino acids) when
288 digested *in silico* (Rapid Peptides Generator) (61). Notwithstanding their low CAI (Figure 5D), the
289 high mRNA abundance (Figure 5E), and presence of TPS suggests that the mobilome proteins
290 were not detected by virtue of being expressed at low abundance, and possibly due to post-
291 transcriptional repression of translation by SmAP1 and asRNAs (Figure 5A). For instance, the
292 translational repression of VNG_0112H (ISH3 family) would be consistent with the observed pile-
293 up of Ribo-Seq reads at the 5' end of the transcript, which is co-located with SmAP1 binding sites
294 and a TPS (Figure S7). Together, these observations suggest SmAP1 binding might lead to a
295 potentially stalled ribosome-transcript complex, which may then be targeted by an endonuclease
296 in a well-known mechanism called “No-Go” decay, as previously hypothesized for similar
297 observations (47). The evidence provided by the atlas offered confidence for further wet lab
298 experimental exploration. Therefore, we investigated the role of SmAP1 in regulation of IS
299 element-mediated genome reorganization by performing long-read DNA sequencing (DNA-Seq)
300 to quantify transposition events of each IS family in Δ ura3 Δ smap1 strain and its parent Δ ura3
301 (Figure 6; Figure S8; Table S4; File S8). In so doing, we discovered that knocking out SmAP1
302 significantly decreased the overall number of transposition events (Figure 6A), and in particular
303 transposition of the IS4 and ISH3 families (Figure 6B-C).

304 *The role of post-transcriptional regulation in governing environmental responsiveness and*
305 *timing of gas vesicle biogenesis.* Gas vesicles are intracellular proteinaceous organelles filled with
306 ambient gas that may be used as buoyancy devices by halophilic archaeal cells to float to the
307 surface to access oxygen, which has poor solubility in hypersaline water (62). The gas vesicles
308 also act in conjunction with sensory rhodopsin-mediated phototaxis to support phototrophic
309 energy transduction by bacteriorhodopsin (63). Hence, the biogenesis of gas vesicles is highly
310 responsive to environmental stimuli, and in particular oxygen availability (64). Gas vesicles are
311 made up of two structural proteins: GvpA, a monomer, and GvpC, which wraps around and
312 stabilizes the vesicle assembled from the GvpA polymer (65). Many other proteins (GvpF-M) are
313 involved in nucleation and biogenesis of the gas vesicle (66), a process that is regulated by GvpD
314 and GvpE (40). The bidimensional trajectories of changes in mRNA and protein levels revealed

315 that while the transcript levels of all *gvp* genes, including the structural proteins, increased across
316 the four growth phases, the corresponding protein levels did not increase until the cells
317 transitioned from mid-exponential growth phase into the stationary phase (Figure 7A), which is
318 consistent with the timing of gas vesicle production (67). Together, the multiple levels of evidence
319 in the *H. salinarum* NRC-1 Atlas (Figure 7B; Figure S9) supports a model (Figure 7C) that explains
320 how the interplay of negative and positive regulation at the transcriptional, post-transcriptional,
321 and translational levels governs the timing and environmental responsiveness of gas vesicle
322 biogenesis.

323 Based on the absolute abundance and relative change in mRNA and protein levels, we
324 posit that *gvp* genes were constitutively transcribed across all phases of growth. But translation
325 of *gvp* transcripts required further transcriptional activation by GvpE (68), which was prevented in
326 early and mid-exponential growth phase by GvpD. Specifically, in the early growth phase GvpD
327 was high in abundance and above a threshold at which it drives the degradation of GvpE (69, 70)
328 (Figure 7AC). As cells transitioned from early to mid-growth phase, SmAP1, RNase_2099C, and
329 asRNAs acted in concert to repress translation of *gvp* transcripts, which was especially evident in
330 the pile-up of ribosomal footprints in the 5' segment of the *gvpA* transcript. This putative post-
331 transcriptional repression of translation resulted in growth-associated dilution of Gvp protein
332 abundance, despite a steady increase at the mRNA level (Figure 7AC; Figure S10). As a
333 consequence, GvpD protein abundance dropped below the abovementioned threshold, disrupting
334 its ability to drive continued degradation of GvpE. This is consistent with the observation that
335 GvpE protein was only detected in later stages of growth after GvpD abundance had decreased
336 (Figure 7AC). Moreover, the appearance and subsequent increase in abundance of GvpE post-
337 mid-exponential growth phase likely resulted in transcriptional activation of all *gvp* genes (Figure
338 7AC). Indeed, mRNA levels of all *gvp* genes increased by >4-fold in mid-exponential growth phase
339 (despite active cell division), unlike the moderate (\approx 2-fold) albeit steady increase observed in early
340 and late phases of growth (Figure 7A). The transcriptional activation of all *gvp* genes likely
341 overcame SmAP1, RNase_2099C, and asRNA-mediated post-transcriptional repression to
342 upregulate translation via increased ribosomal read through (Figure 7C; Figure S10). The
343 resulting dramatic increase in abundance of proteins GvpN and GvpO, as well as the chaperone
344 GvpF, potentially triggered the recruitment of GvpA to initiate gas vesicle assembly (66).
345 Concomitantly, in the stationary phase, GvpD protein level increased above the threshold, likely
346 restoring GvpE degradation, thereby disrupting transcriptional activation of *gvp* genes, and
347 potentially terminating further translation of gas vesicle proteins (Figure 7C). So, in essence, the
348 interplay between GvpD-mediated degradation of GvpE, transcriptional activation of *gvp* genes

349 by GvpE, and post-transcriptional repression of translation of *gvp* genes (likely mediated by
350 SmAP1, asRNAs, and RNase_2099C), together modulated timing of gas vesicle biogenesis. In
351 this scheme, subtle changes in interplay across the different levels of regulation could drive rapid
352 initiation or termination of gas vesicle biogenesis, given that the transcripts and the monomeric
353 structural proteins are maintained at relatively high abundance, but the regulatory (GvpD and E)
354 and some accessory proteins (e.g., GvpJ and L) are at significantly lower abundance across all
355 growth phases.

356 **DISCUSSION**

357 This study has uncovered that a strikingly large proportion of protein-coding genes (54%) in the
358 *H. salinarum* NRC-1 genome are potentially post-transcriptionally regulated. Notably, this
359 estimate of the scale of post-transcriptional regulation is based on compilation of evidence from
360 a limited set of contexts (i.e., primarily standard growth conditions). It is noteworthy that
361 comparison of absolute and relative abundance changes in mRNA and protein levels just over
362 batch culture growth has provided evidence for post-transcriptional control of 7% of all protein-
363 coding genes. Different sets of genes were previously reported to have discordant relationship
364 between mRNA and protein levels in other environmental contexts such as shifts in oxygen
365 tension (44) and exposure to gamma irradiation (45). In response to gamma irradiation, 47
366 upregulated transcripts had direction of change incompatible with their respective proteins. Of
367 those, only five are included in the set of 188 putative post-transcriptionally regulated genes
368 identified by the present study. Together, these observations illustrate the importance of
369 environmental context in characterizing genome-wide implications of post-transcriptional
370 regulation. Similarly, we have surveyed just three mechanisms (SmAP1, asRNAs, and one
371 RNase) that provide likely mechanistic explanation for post-transcriptional regulation of 430 out
372 of 966 transcripts (45%) with TPS. This suggests that the remaining TPS-associated 536
373 transcripts are potentially post-transcriptionally regulated by other mechanisms, including
374 endoribonucleases, trans-acting antisense RNAs and small regulatory RNAs (sRNAs) that were
375 not surveyed in this study. Although, prior work has suggested a limited role for trans-acting
376 antisense RNAs and sRNAs in archaeal regulation (71). Nonetheless, we can expect many more
377 genes in the *H. salinarum* NRC-1 genome to be subject to post-transcriptional regulation,
378 especially in ecological contexts that require rapid physiological state transitions for environmental
379 acclimation.

380 Transcriptome-wide binding analysis with RIP-Seq implicated a global role for SmAP1 in
381 post-transcriptional regulation of at least 397 genes. Action of SmAP1 in *H. salinarum* NRC-1
382 appears to have mechanistic similarity to its counterparts in other archaea and also to Hfq in
383 bacteria, such as preferentially targeting AU-rich sequences, and regulating itself (35).
384 Autoregulation by the bacterial ortholog of SmAP1, Hfq, has also been reported previously in *E.*
385 *coli* (72, 73) and *Sinorhizobium meliloti* (74). By reviewing RIP-Seq results from studies in other
386 archaea we discovered that SmAP1 also binds to its own transcript in *S. solfataricus* (SSO6454)
387 (33). The absence of evidence for autoregulation of SmAP1 in *H. volcanii* (31) is likely a technical
388 artefact because the microarray used for RIP-ChIP interrogated binding to only non-coding RNAs,

389 and did not include probes for coding genes, including the SmAP1 CDS (HVO_2723). Further,
390 the genes targeted by SmAP1 also bear functional similarity with other organisms wherein SmAP1
391 has been implicated in the regulation of motility (32, 75) and its ortholog has been implicated in
392 regulation of transposition (59, 60). Notably, of the 32 non-redundant IS element-encoded
393 proteins (Table S3) with above-average mRNA levels, only four were detected by SWATH-MS in
394 this study, suggesting they were all post-transcriptionally repressed. By analyzing proteomics data
395 from PeptideAtlas (76, 77) and PRIDE (78), including PXD003667 (79) and PXD015192 (80), we
396 confirmed that 50% of the 32 transposases have been previously detected, depending on
397 techniques and biological conditions. In addition, except for VNG_0051a, we established that
398 these proteins bear the features required for detection by SWATH-MS. With that reasoning, we
399 posit that the lack of detection of transposases in this study is due to their low abundance or
400 complete absence. Together these findings make a compelling case that translation of IS
401 element-encoded transposases, and therefore transposition of mobile genetic elements, is post-
402 transcriptionally regulated. Translational inhibition of transposases might have evolved as a fail-
403 safe measure to prevent transposition in most contexts and allow their rapid activation in stressful
404 environmental contexts, wherein benefits of genome reorganization could outweigh their
405 deleterious effects (81).

406 Notwithstanding their mechanistic and functional similarities with counterparts in other
407 archaea and even bacteria, we discovered that consequences of SmAP1-mediated regulation of
408 transposition by some families of IS elements in *H. salinarum* NRC-1 are counterintuitive.
409 Specifically, while we had expected that SmAP1 may likely repress translation of transposase
410 transcripts, to our surprise we discovered that deletion of SmAP1 resulted in decreased frequency
411 of transposition by IS elements of the IS4 and ISH3 families, which brought to fore two outstanding
412 questions. First, in addition to directing targeted post-transcriptional processing and repression of
413 transcripts, (how) does SmAP1 also mediate transposition by IS elements? And second, despite
414 targeting AU-rich sequences how do SmAP1 and its counterparts accomplish regulation of
415 specific subsets of target genes in a context-specific manner? While the first question will need
416 further investigations into the mechanisms of SmAP1 action on transposition events, our
417 integrated analysis has provided some clues to address the second question, such as evidence
418 that SmAP1 might act in concert with other post-transcriptional regulatory mechanisms, viz.,
419 asRNAs and RNase_2099C to gain specificity for transcripts. So while SmAP1 appears to be
420 expressed constitutively and maintained at median abundance (Figure S2B), its mode and target
421 of action may be governed by other factors, such as conditional expression of asRNAs, which
422 could possibly guide SmAP1 action on specific transcripts in a similar manner to its bacterial

423 counterpart (24). Indeed, in *H. volcanii* the global oxidative stress response upregulates asRNAs
424 with consequential downregulation of specific transposase mRNAs, especially of the IS4 family
425 (71). For example, SmAP1 and an asRNA may jointly regulate transposition events by binding to
426 the 5' end of TnpB (VNG_0042G) transcript to repress translation of this putative RNA-guided
427 endonuclease, which is encoded by ISH39 (IS200/IS605 family) and possibly part of the
428 transposition apparatus (Figure S11) (82, 83). Thus, SmAP1-mediated post-transcriptional
429 regulation of mobile elements appears to have pleiotropic consequences depending on the IS
430 family, with a repressive role for IS200/IS605, as reported previously for *S. enterica* (60), and an
431 enhancer role for ISH3 and IS4. Indeed, SmAP1 might facilitate translation of transcripts,
432 considering its hairpin-melting potential (84) and its role as a recruiter for translational complex
433 subunits (85).

434 The current study has revealed extensive interplay of post-transcriptional regulation with
435 regulation at other levels of information processing, which may mediate rapid adaptive responses
436 to environmental change (e.g., genome reorganization by triggering transposition of IS elements,
437 and vertical relocation by activating gas vesicle biogenesis). In the case of gas vesicle biogenesis,
438 we observed that the high abundance and relative increase in transcript levels of the gas vesicle
439 structural genes did not manifest in increased protein levels until the post-transcriptional
440 repression of translation was overcome in later stages of growth, which is associated with
441 stressful conditions including anoxia and nutrient limitation. Previously, we had demonstrated that
442 RNase_2099C is transcriptionally co-regulated with genes of the aerobic physiologic state but
443 acts on transcripts of the anaerobic state (21). In this arrangement, the interplay of RNase_2099C
444 with transcriptional regulation generates an efficient state transition switch. For instance,
445 RNase_2099C-mediated repression of positive transcriptional autoregulation (RPAR) enables
446 rapid shutdown of ATP-consuming K⁺ uptake to conserve energy under anoxic conditions with
447 high potassium availability. Gas vesicle biogenesis (response to light and oxygen) appears to be
448 regulated in a similar set up albeit with an expanded set of players. Specifically, the interplay of
449 GvpD-mediated degradation of GvpE, GvpE-mediated transcriptional activation of *gvp* genes, and
450 post-transcriptional repression of gas vesicle protein synthesis through potential interplay of
451 SmAP1, RNase_2099C, and asRNAs is likely critical for mediating rapid initiation and termination
452 of gas vesicle biogenesis. The genome-wide atlas reveals that a large proportion of genes in the
453 *H. salinarum* NRC-1 genome is likely subject to such post-transcriptional regulation, and as such
454 it will serve as an interactive hypothesis generator to drive in-depth characterization of specific
455 mechanisms of rapid environmental acclimation.

456 **MATERIALS AND METHODS**

457 *Strains, media, and growth conditions*

458 We grew *Halobacterium salinarum* NRC-1 in complex media (CM; 250 g/L NaCl, 20 g/L
459 MgSO₄•7H₂O, 3 g/L sodium citrate, 2 g/L KCl, and 10 g/L bacteriological peptone). Mutant strains,
460 *Δura3* and *Δura3Δsmap1*, had their media supplemented with uracil (50 µg/mL). Vector harboring
461 strains, wtp-pMTF-cMyc and wtp-pMTF-SmAP1-cMyc, had their media supplemented with
462 mevinolin (20 µg/mL). All the cultures were grown at 37 °C, under light, and with constant agitation
463 of 125 RPM (otherwise specified). For cloning steps, we used *Escherichia coli* DH5α grown in
464 lysogeny broth (LB; 10 g/L tryptone, 5 g/L yeast extract, 10 g/L NaCl, pH 7.5) at 37 °C and under
465 constant agitation. Carbenicillin (50 µg/mL) was added to LB when necessary.

466

467 *Construction of SmAP1 knockout strain and SmAP1 tagged strain*

468 SmAP1 knockout strain (*Δura3Δsmap1*; *ΔVNG_1673GΔVNG_1496G*) was constructed from a
469 parent *Δura3* strain (*ΔVNG_1673G*) by using the pop-in/pop-out method with two-step selection
470 by mevinolin and 5-fluoroorotic acid (5-FOA) (86). Polymerase chain reaction (PCR) was used to
471 confirm the genotype of null mutants selected by 5-FOA (Table S5). We evaluated the growth
472 curve phenotype (Figure S12) by culturing strains in CM supplemented with uracil (50 µg/ml) at
473 37 °C and 125 RPM.

474 To create the recombinant protein SmAP1-cMyc, we used the pMTF-cMyc vector (4).
475 The SmAP1 encoding gene (VNG_1496G) was amplified (Table S5) and purified using QIAquick
476 PCR Purification (QIAGEN). The amplification product was cloned into the vector pMTF-cMyc,
477 upstream to the region encoding 13-cMyc tag. The procedure was carried out by digesting pMTF-
478 cMyc with endonucleases NdeI and BamHI (Fermentas) with further ligation of *smap1* amplicon
479 by T4 DNA ligase (Fermentas). The clone was transformed into *E. coli* DH5α and confirmed by
480 PCR and Sanger sequencing. Vectors were extracted and transformed into *H. salinarum* NRC-1
481 strain to create strains wtp-pMTF-SmAP1-cMyc (SmAP1-cMyc overexpression) and wtp-pMTF-
482 cMyc (cMyc-overexpression).

483

484

485 *SmAP1-RNA co-immunoprecipitation*

486 *H. salinarum* strains wtp-pMTF-SmAP1-cMyc and wtp-pMTF-cMyc were grown until they reached
487 OD_{600nm} ≈ 0.75. We centrifuged 20 mL of cell culture at 3,700 RCF for 10 minutes and
488 resuspended cells in 12 mL of basal solution (CM without bacteriological peptone). The cellular
489 suspension solution was transferred to Petri dishes, on ice, and submitted to 800x100 μJ/cm²
490 ultraviolet (UV) radiation inside a UVC 500 Crosslinker (Amersham Biosciences). It was carefully
491 transferred to 50 mL tubes and centrifuged at 3,700 RCF for 15 minutes at 4 °C. Cells were
492 resuspended in 1 mL of lysis solution (1x PBS, 0.1% SDS, 0.5% deoxycholate, 0.5% NP-40,
493 proteinase inhibitor—1 tablet for 100 mL (Sigma S8830), RNaseOUT inhibitor—2 μL/10 mL
494 (Invitrogen)) and ice incubated for five minutes. The suspension was centrifuged at 10,000 RCF
495 for five minutes at 4 °C. The supernatant was separated and incubated with 10 μL of Dynabeads
496 M-450 anti-mouse IgG (Invitrogen #11041) for 10 minutes, at 4 °C, to remove spurious
497 interactions. After incubation, the solution was centrifuged at 10,000 RCF for five minutes at 4 °C.
498 The supernatant was incubated overnight, under constant agitation, at 4 °C, with 60 μL of anti-
499 cMyc (antibody) coated beads (Sigma M4439). Beads were immobilized using a magnetic rack
500 and washed twice using 1 mL of lysis solution, followed by two rounds of washing with 1 mL of
501 saline solution (5x PBS, 0.1% SDS, 0.5% deoxycholate, 0.5% NP-40), and finally washed with 1
502 mL of Tris-EDTA (TE buffer). Beads were resuspended in 100 μL of TE and incubated at 65 °C
503 for 10 minutes. The suspension was centrifuged at 14,000 RCF for 30 minutes at 25 °C. We
504 added 120 μL of TE/SDS (SDS 0.1%) to the supernatant and incubated it for 30 minutes at 65
505 °C. Two aliquots were separated: i) one destined to the western blot assay; and ii) another
506 destined to the RNA isolation prior to sequencing.

507

508 *SmAP1-cMyc western blot assay*

509 We verified the presence of the SmAP1 protein in the co-immunoprecipitated samples using the
510 western blot assay. Aliquots were added of sample buffer (30% glycerol (v/v), 9.2% SDS (w/v),
511 1% bromophenol blue (w/v), 20% β-mercaptoethanol (v/v), 0.25 M Tris-HCl pH 7.0) and denatured
512 at 95 °C for five minutes. Denatured samples (20 μL) were submitted to 10% polyacrylamide gel
513 electrophoresis (SDS-PAGE). PageRuler Prestained Protein Ladder (Fermentas) was used as
514 weight marker and transference control. Gel and Hybond ECL nitrocellulose membrane (GE) were
515 dipped in transfer buffer for 10 minutes.

516 The membrane transfer was performed at 100 V for one hour. The membrane was
517 washed with PBS-T (0.1% Tween 20 (v/v)) and incubated in PBS-T with milk at room temperature
518 for one hour. After the blocking step, the membrane was quickly washed twice with PBS-T. The
519 primary antibody (anti-cMyc) was diluted (1:3,000) in PBS-T, and incubation was carried out at 4
520 °C, under constant agitation, overnight. The membrane was rewashed with PBS-T and incubated
521 in PBS-T at room temperature, under constant agitation for 15 minutes. The secondary antibody
522 (anti-mouse IgG-peroxidase - Sigma A4416) was diluted (1:3,000) in PBS-T, and incubation was
523 carried out at room temperature, under constant agitation, for one hour. The membrane was
524 quickly washed twice using PBS-T and incubated in PBS-T at room temperature, under constant
525 agitation, for 15 minutes. We used the reagents ECL Western Blotting Detection (GE) to develop
526 the membrane, and images were obtained using ChemiDoc XRS+ (Bio-Rad).

527

528 *SmAP1 RIP-Seq and data analysis*

529 The co-immunoprecipitated RNA samples were submitted to protein digestion using proteinase K
530 (Fermentas) and purified using the MinElute Reaction Cleanup Kit (QIAGEN) with a DNase
531 treatment step. We quantified the RNA samples using Quant-iT RiboGreen RNA Assay
532 (Invitrogen) and prepared them for sequencing using the TruSeq mRNA Stranded kit (Illumina).
533 Before sequencing, to equalize the concentrations, quantification was performed by using the
534 KAPA Library Quant kit (Kapa Biosystems). Samples were sequenced using the MiSeq Reagent
535 v2 kit (Illumina) for 50 cycles, using the single-end mode, in a MiSeq instrument (Illumina).

536 We processed the sequenced libraries using the ripper pipeline (Table S6) to obtain
537 putative SmAP1 binding regions. Briefly, the software: i) trims the bad quality ends and adapters
538 from reads using Trimmomatic (87); ii) aligns trimmed reads to the reference genome (NCBI
539 Assembly ASM680v1) using HISAT2 (88) without gaps, splicing, or soft-clipping; iii) converts
540 alignment files from SAM to BAM format using SAMtools (89); iv) adjusts multi-mapping reads
541 using MMR (90); v) computes single-nucleotide resolution transcriptome signal using BEDtools
542 (91); vi) computes a coordinate-wise \log_2 fold change between co-immunoprecipitated samples
543 relative to control samples and identify regions with at least ten consecutive nucleotides satisfying
544 \log_2 fold change ≥ 1 . Interaction regions for two biological replicates (BR1 and BR2) were merged,
545 since their intersection of SmAP1-bound genes had a 3.8-fold enrichment over the expected value
546 (observed: 157; expected: 41.44; p -value = 3.14×10^{-71}). We tested the fold enrichment
547 significance by using the SuperExactTest::MSET function (92).

548 *Preparation and acquisition of proteomics samples*

549 Sample preparation and data acquisition for the time-course measurements of the *H. salinarum*
550 proteome were performed as described in Kusebauch et al. (in preparation). *H. salinarum* NRC-
551 1 was cultured in CM. Cultures were grown in triplicate (37°C, shaking at 220 RPM) and
552 illuminated (\approx 20 μ mol/m²/sec) in Innova 9400 incubators (New Brunswick). Cultures were
553 harvested at four time points: early exponential phase ($OD_{600nm} = 0.2$; 14.3 hours), mid-
554 exponential phase ($OD_{600nm} = 0.5$; 21.5 hours), late exponential phase ($OD_{600nm} = 0.8$; 28.8 hours),
555 and stationary phase (40.8 hours). Cells were collected by centrifugation (8,000 x g, 2 minutes,
556 4°C). Cell pellets were resuspended in Milli-Q water and disrupted at 4°C using ceramic beads
557 (Mo Bio Laboratories) and a Precellys 24 homogenizer (Bertin Corp). Protein content was
558 determined by bicinchoninic acid assay (BCA) (Thermo-Fisher). Proteins were reduced (5mM
559 Dithiothreitol (DDT, 45 minutes, 37 °C)), alkylated (14 mM iodoacetamide (30 minutes, room
560 temperature, darkness)), and digested with trypsin (1:50 enzyme:substrate ratio, 37°C, 16 h).
561 Samples were desalted with tC18 SepPak cartridges (Waters). Sample analysis was performed
562 on a TripleTOF® 5600+ system equipped with a Nanospray-III® Source (Sciex) and an Eksigent
563 Ekspert™ nanoLC 425 with cHiPLC® system in trap-elute mode (Sciex). Peptides were separated
564 with a gradient from 3% to 33% of 0.1% formic acid in acetonitrile (v/v) for 120 minutes. Data were
565 collected in MS/MS^{ALL} SWATH™ acquisition mode using 100 variable acquisition windows.

566

567 *SWATH-MS data analysis*

568 SWATH-MS data were analyzed with the Spectronaut software (version 15.5.211111.50606) and
569 an assay library for *H. salinarum* NRC-1 reported in Kusebauch et al. (in preparation). SWATH
570 .wiff raw data files were converted to HTRMS files with the Spectronaut HTRMS converter
571 (15.5.211111.50606). Data extraction mass tolerance (MS1 and MS2) was set to dynamic with a
572 correction factor of 1. Dynamic extracted ion chromatogram (XIC) RT window was enabled with
573 a correction factor of 1 and local (non-linear) RT regression. Decoy assays were dynamically
574 generated using the scrambled decoy method and library size fraction set to 1. The identification
575 was performed using the normal distribution estimator with precursor identification results with *q*-
576 value (false discovery rate; FDR) < 0.1 and protein identification results with a *q*-value (FDR) <
577 0.01. Quantification was performed with interference correction enabled, MS2 ion peak areas of
578 quantified peptides were summed to estimate protein peak areas, and area as quantity type
579 selected. Identified precursor quantities were normalized using the Spectronaut built-in global
580 normalization function (median). The four time points in this study were defined as four conditions

581 in the condition setup. We used Spectronaut's protein quantification and proDA (93) to perform
582 differential expression analysis of proteins. We computed the contrasts of interest and set up $|\log_2$
583 fold change| ≥ 1 and adjusted p -value < 0.05 as the criteria to determine differentially expressed
584 proteins.

585

586 *Non-redundant reference transcriptome*

587 Many annotation efforts for *H. salinarum* NRC-1 have been made available since the publication
588 of its genome assembly (49). Consequently, cross-referencing findings from publications using
589 different sources has become a challenging and time-consuming task. Moreover, the genome
590 presents redundancy in terms of (quasi)identical paralogs, most of them found within plasmid
591 repetitive regions (94) and contained within multi-copy insertion sequences (95). To solve the
592 problem of the annotation multiplicity and gene redundancy, we extracted coding and non-coding
593 sequences (tRNAs, rRNAs, Signal Recognition Particle RNA, and RNase P) from different
594 annotation sources for *H. salinarum* NRC-1 and R1 strains (Table S1) and clustered them using
595 CD-HIT (96). Coding and non-coding genes with at least 95% and 99% global amino acid and
596 nucleotide identity, respectively, were grouped and represented by a single entity anchored by
597 the sequence and locus tag given by the latest large-scale annotation effort for *H. salinarum* NRC-
598 1 (50). We only considered sequences represented in this annotation. We also collected and
599 parsed clusters of orthologous genes (COG) (97) to functionally categorize the non-redundant
600 reference transcriptome, and classified insertion sequence families using ISfinder (56) and ISSaga
601 (98) platforms. The code to reproduce this annotation simplification effort is available on GitHub
602 (see halo_nr_tx in Table S6).

603

604 *Transcriptome analysis*

605 We retrieved RNA-Seq and Ribo-Seq data from a *H. salinarum*'s growth curve experiment
606 available at NCBI SRA under accession PRJNA413990 (42). The samples are the same for which
607 the proteome data was generated, as explained previously. We quantified all the RNA-Seq
608 libraries by mapping them against the *H. salinarum* NRC-1 non-redundant reference
609 transcriptome using kallisto (99) facilitated by the use of the pipeline runKallisto (Table S6). We
610 performed differential expression analysis for the RNA-Seq and Ribo-Seq time course experiment
611 (42) using DESeq2 (100). Only genes satisfying $|\log_2$ fold change| ≥ 1 and adjusted p -value $<$
612 0.05 were considered differentially expressed. We generated the transcriptome coverage signal
613 for genome browsing using the frtc pipeline (101) (Table S6). Briefly, the tool trims reads using

614 Trimmomatic (87); aligns them to the reference genome (NCBI Assembly ASM680v1) using
615 HISAT2 without splicing (88); adjusts multi-mapping instances using MMR (90); and computes
616 the genome-wide coverage using deepTools2 (102).

617 We performed differential expression analysis of strain $\Delta RNase_2099C$ by reanalyzing
618 data from (21), deposited in Gene Expression Omnibus (GEO) under accession GSE45988.
619 Briefly, we used limma (103) to process the data and computed the $\Delta RNase_2099C$ vs. $\Delta ura3$
620 contrast controlling for the growth curve time point effect. We only used mid-exponential (OD_{600nm}
621 ≈ 0.4) and late-exponential ($OD_{600nm} \approx 0.8$) growth phase data. Only genes satisfying $|\log_2$ fold
622 change| ≥ 1 and p -value < 0.05 were considered differentially expressed.

623

624 *Inference of putative post-transcriptionally regulated genes*

625 We relied on transcriptome and proteome quantitation to infer putative post-transcriptionally
626 regulated genes. For that, we developed two methods: i) the absolute abundance-based
627 approach, in which we identified genes producing simultaneously high mRNA levels (transcripts
628 per million, TPM, in the upper quintile) and low protein abundance (lower quintile or undetected);
629 and ii) the relative abundance-based approach, in which we inspected differentially expressed
630 genes in physiological state transitions having mRNA levels being upregulated whilst protein
631 levels being downregulated.

632 We further inspected genes identified by the absolute abundance-based approach,
633 whose proteins were not detected, to remove entries likely missed due to technical limitations.
634 After manual inspection, we removed potential transmembrane proteins (as these are difficult to
635 be detected), proteins not represented in the assay library due to the lack of suitable peptides for
636 detection by SWATH-MS (e.g., hydrophobicity, peptide length), and proteins not represented in
637 the assay library due to differences in annotation versions. To be considered a transmembrane
638 protein, we first conducted a transmembrane domain prediction for all the entries encoded by the
639 non-redundant transcriptome using TOPCONS webserver (104). We manually inspected the
640 results and evaluated the “consensus prediction probability” of transmembrane regions. We
641 required proteins to have at least one transmembrane domain with a considerable extension
642 satisfying probability ≥ 0.9 . To aid our judgement, we also pondered empirical evidence (105,
643 106) and functional annotation. This approach identified 117 genes with expressive mRNA and
644 undetected proteins with a high likelihood of being post-transcriptionally regulated (File S3).

645

646 *Long-read DNA sequencing and analysis*

647 *H. salinarum* strains Δ ura3 and Δ ura3 Δ smap1 were grown in CM supplemented with uracil until
648 OD_{600nm} \approx 0.5. Aliquots of 2 mL of cell cultures were submitted to DNA extraction using DNeasy
649 Blood & Tissue kit (QIAGEN). DNA samples were quality checked and genotyped using PCR to
650 confirm strains (Table S5). We prepared the samples for long-read DNA sequencing using the
651 MinION platform (Oxford Nanopore Technologies, ONT). Libraries were prepared using SQK-
652 LSK108 (ONT) combined with EXP-NBD103 (ONT) to allow multiplexing. The experiment was
653 run using MinION Mk1B (ONT) in a FLO-MIN106 (ONT) flow cell for 48 hours. Raw data were
654 demultiplexed using Deepbinner (107), and base called by Guppy (ONT). Quality checking was
655 done using Filtlong (Table S6), and adapter trimming was performed using Porechop (Table S6).

656 We used NGMLR (108) to align reads to a modified version of reference genome, which
657 excludes long duplications (NC_002607.1:1-2,014,239, NC_001869.1:1-150,252,
658 NC_002608.1:112,796-332,792). To identify structural variations (SV), the alignments were
659 processed with Sniffles (108), and the VCF files were filtered to keep only insertions and deletions.
660 The sequences of detected SVs were compared to *H. salinarum* NRC-1 annotated insertion
661 sequences using BLAST (109). Insertions and excisions were only annotated if satisfying the
662 threshold of at least 75% identity, 80% coverage considering both query and subject. These
663 criteria were based on the 80-80-80 rule proposed by (110), but slightly loosened because of
664 Nanopore intrinsic high error rates.

665 We applied a clustering approach for neighbor elements to avoid overestimating the
666 number of identified SVs. SVs of the same class (insertion or excision), caused by the same
667 element, and starting within 50 base pairs of distance from each other, were combined into a
668 single cluster having a mean start point and a support index based on the number of occurrences.
669 Dividing this number of occurrences (e) by the local read coverage (25-nucleotide bidirectional
670 flank) (c) allowed us to classify SV clusters in three categories: i) When $e/c \leq 0.1$, the cluster is
671 defined as relatively rare in the population; ii) When $0.1 < e/c \leq 0.5$, it is common; iii) When $e/c >$
672 0.5, it is characterized as predominant, indicating this SV might be fixed in the population
673 genomes.

674 We computed the total number of clusters of insertions and excisions for each of the
675 libraries and added them up before normalizing the values based on each sample's total of aligned
676 reads. To normalize, we identified the library with the biggest number of aligned reads and
677 adjusted the others to be comparable. The mean value for normalized counts was computed for

678 both $\Deltaura3\Deltasmap1$ and $\Deltaura3$ and compared using a confidence interval of 68% (see Table S6
679 for code).

680

681 *Enrichment analysis and average comparison*

682 To detect enriched features (e.g., SmAP1 binding, asRNA, and TPS) within groups of genes, we
683 performed enrichment analysis using the hypergeometric test from R software (stats::phyper
684 function). To compare the average of features (e.g., half-lives, CAI, GC, and $\Delta RNase_2099C \log_2$
685 fold change (LFC)) between groups of genes, we used the nonparametric Mann–Whitney U test
686 from R software (stats::wilcox.test function). The significance cutoff of our choice for both
687 statistical tests was p -value < 0.05 .

688

689 *Data collection from miscellaneous sources*

690 We gathered and parsed data from several sources. We collected antisense RNA (asRNA) data
691 from Table S4 of (46). We obtained transcript processing sites (TPS) from Table S1 of (47).
692 Redundancy was removed by collapsing asRNAs and TPS of identical and (quasi)identical
693 transcripts. We obtained half-lives from a microarray experiment (43). The redundancy was
694 removed by computing the average half-lives of identical and (quasi)identical genes. We
695 computed the codon adaptation index (CAI) (111) using the coRdon::CAI function (see coRdon
696 in Table S6), taking as input the 5% most abundant proteins according to our proteomics
697 approach. We computed the GC content (guanine-cytosine content) using the
698 Biostrings::letterFrequency function.

699

700 *H. salinarum NRC-1 multi-omics Atlas portal*

701 We developed the *H. salinarum* NRC-1 multi-omics Atlas portal by integrating existing
702 components to new resources. Legacy data is stored in an SBEAMS MS SQL Server database
703 which supplements the main MySQL database. A web service API implemented in Python and
704 Flask provides uniform access to these resources. We implemented the web-based user interface
705 using the Javascript framework Vue.js (see Table S6 for code). We built the heatmap interface
706 with the help of InteractiveComplexHeatmap (112), ComplexHeatmap (113), and Shiny R
707 packages. We built the genome browser by using igv.js (114). Data used to generate heatmaps
708 were prepared as described in previous sections with an additional step for scale adjustment

709 allowing a graphical representation of disparate multimodal omics sources. The quantile
710 normalized data is also available along with the non-normalized data (File S1). The web portal is
711 available at <http://halodata.systemsbiology.net>.

712

713 *Data and code availability*

714 SmAP1 RIP-Seq raw data (FASTQ format) and DNA-Seq data (demultiplexed, base called, and
715 trimmed; FASTQ format) were deposited in NCBI's Sequence Read Archive and are publicly
716 available under the BioProject accession PRJNA808788. Raw DNA-Seq data (FAST5 format) is
717 available at Zenodo under the digital object identifier 10.5281/zenodo.6303948 (accession
718 6303948). The code used in this study is available on GitHub in multiple repositories (see Table
719 S6 for links and description).

720

721 **CREDIT AUTHORSHIP CONTRIBUTION STATEMENT**

722 APRL: Methodology, Software, Validation, Formal analysis, Investigation, Data Curation, Writing
723 — Original Draft, Writing — Review & Editing, Visualization; UK: Methodology, Investigation,
724 Formal analysis, Writing — Review & Editing; LSZ: Methodology, Investigation; WJW: Software,
725 Data Curation, Visualization; JPPA: Methodology, Validation, Formal analysis, Investigation, Data
726 Curation, Writing — Review & Editing; ST: Software, Data Curation, Writing — Review & Editing,
727 Visualization; ALGL: Conceptualization, Writing — Review & Editing, Supervision; JVGF:
728 Conceptualization, Writing — Review & Editing, Methodology, Investigation; RZNV:
729 Conceptualization, Validation, Writing — Review & Editing, Supervision; RLM: Conceptualization,
730 Resources, Writing — Review & Editing, Supervision, Project administration, Funding acquisition;
731 TK: Conceptualization, Resources, Supervision, Project administration, Funding acquisition;
732 NSB: Conceptualization, Resources, Writing — Original Draft, Writing — Review & Editing,
733 Visualization, Supervision, Project administration, Funding acquisition.

734

735 **DECLARATION OF CONFLICTING INTERESTS**

736 All authors declare that they do not have conflicts of interest.

737

738 **ACKNOWLEDGMENTS**

739 We thank Dr. Alessandro de Mello Varani for helping us with insertion sequence family annotation;
740 Silvia Helena Epifânio and Min Pan for the laboratory technical support; Catarina dos Santos
741 Gomes for helping in the execution of long-read DNA sequencing; Dr. Elisabeth Wurtmann for
742 helping with the RIP-Seq assay standardization.

743

744 **FUNDING**

745 APRL was supported by a fellowship granted by the São Paulo Research Foundation (FAPESP;
746 grants #2017/03052-2 and #2019/13440-5). LSZ and JVGF were supported by FAPESP
747 fellowships #2011/07487-7 and #2013/21522-5, respectively. TK was supported by FAPESP
748 grants #2009/09532-0 and #2015/21038-1. This study was partially funded by grants from the
749 National Institutes of Health, National Institute of General Medical Sciences (R01GM087221 to
750 RLM), the Office of the Director (S10OD026936 to RLM), and the National Science Foundation
751 (awards DBI-1920268 to RLM, MCB-1616955 to NB and RLM, and MCB-2105570 to NB and ST).
752 This study was also supported by the *Coordenação de Aperfeiçoamento de Pessoal de Nível*
753 *Superior—Brasil* (CAPES)—Finance Code 001, and *Fundação de Apoio ao Ensino, Pesquisa e*
754 *Assistência do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da*
755 *Universidade de São Paulo* (FAEPA).

756 **REFERENCES**

- 757 1. Bauer MA, Kainz K, Carmona-Gutierrez D, Madeo F. 2018. Microbial wars: Competition
758 in ecological niches and within the microbiome. *Microb Cell* 5:215–219.
- 759 2. Bonneau R, Facciotti MT, Reiss DJ, Schmid AK, Pan M, Kaur A, Thorsson V, Shannon P,
760 Johnson MH, Bare JC, Longabaugh W, Vuthoori M, Whitehead K, Madar A, Suzuki L,
761 Mori T, Chang D-E, Diruggiero J, Johnson CH, Hood L, Baliga NS. 2007. A predictive
762 model for transcriptional control of physiology in a free living cell. *Cell* 131:1354–1365.
- 763 3. Brooks AN, Reiss DJ, Allard A, Wu W-J, Salvanha DM, Plaisier CL, Chandrasekaran S,
764 Pan M, Kaur A, Baliga NS. 2014. A system-level model for the microbial regulatory
765 genome. *Mol Syst Biol* 10:740.
- 766 4. Facciotti MT, Reiss DJ, Pan M, Kaur A, Vuthoori M, Bonneau R, Shannon P, Srivastava
767 A, Donohoe SM, Hood LE, Baliga NS. 2007. General transcription factor specified global
768 gene regulation in archaea. *Proc Natl Acad Sci U S A* 104:4630–4635.
- 769 5. Koide T, Reiss DJ, Bare JC, Pang WL, Facciotti MT, Schmid AK, Pan M, Marzolf B, Van
770 PT, Lo F-Y, Pratap A, Deutsch EW, Peterson A, Martin D, Baliga NS. 2009. Prevalence of
771 transcription promoters within archaeal operons and coding sequences. *Mol Syst Biol*
772 5:285.
- 773 6. Facciotti MT, Pang WL, Lo F, Whitehead K, Koide T, Masumura K, Pan M, Kaur A,
774 Larsen DJ, Reiss DJ, Hoang L, Kalisiak E, Northen T, Trauger SA, Siuzdak G, Baliga NS.
775 2010. Large scale physiological readjustment during growth enables rapid,
776 comprehensive and inexpensive systems analysis. *BMC Syst Biol* 4:64.
- 777 7. Martínez LC, Vadyvaloo V. 2014. Mechanisms of post-transcriptional gene regulation in
778 bacterial biofilms. *Front Cell Infect Microbiol* 4:38.
- 779 8. Ashworth J, Wurtmann EJ, Baliga NS. 2012. Reverse engineering systems models of
780 regulation: discovery, prediction and mechanisms. *Curr Opin Biotechnol* 23:598–603.
- 781 9. Brooks AN, Turkarslan S, Beer KD, Lo FY, Baliga NS. 2011. Adaptation of cells to new
782 environments. *Wiley Interdiscip Rev Syst Biol Med* 3:544–561.
- 783 10. Koide T, Pang WL, Baliga NS. 2009. The role of predictive modelling in rationally re-
784 engineering biological systems. *Nat Rev Microbiol* 7:297–305.
- 785 11. Otwell AE, López García de Lomana A, Gibbons SM, Orellana MV, Baliga NS. 2018.
786 Systems biology approaches towards predictive microbial ecology. *Environ Microbiol*
787 20:4197–4209.
- 788 12. Shu W-S, Huang L-N. 2022. Microbial diversity in extreme environments. *Nat Rev
789 Microbiol* 20:219–235.
- 790 13. Allers T, Mevarech M. 2005. Archaeal genetics — the third way. *Nat Rev Genet* 6:58–73.
- 791 14. Bell SD, Jackson SP. 2001. Mechanism and regulation of transcription in archaea. *Curr
792 Opin Microbiol* 4:208–213.
- 793 15. Martinez-Pastor M, Tonner PD, Darnell CL, Schmid AK. 2017. Transcriptional Regulation
794 in Archaea: From Individual Genes to Global Regulatory Networks. *Annu Rev Genet*
795 51:143–170.

796 16. Qi L, Yue L, Feng D, Qi F, Li J, Dong X. 2017. Genome-wide mRNA processing in
797 methanogenic archaea reveals post-transcriptional regulation of ribosomal protein
798 synthesis. *Nucleic Acids Res* 45:7285–7298.

799 17. Li J, Qi L, Guo Y, Yue L, Li Y, Ge W, Wu J, Shi W, Dong X. 2015. Global mapping
800 transcriptional start sites revealed both transcriptional and post-transcriptional regulation
801 of cold adaptation in the methanogenic archaeon *Methanolobus psychrophilus*. *Sci Rep*
802 5:9209.

803 18. Jäger D, Pernitzsch SR, Richter AS, Backofen R, Sharma CM, Schmitz RA. 2012. An
804 archaeal sRNA targeting cis- and trans-encoded mRNAs via two distinct domains.
805 *Nucleic Acids Res* 40:10964–10979.

806 19. Prasse D, Förstner KU, Jäger D, Backofen R, Schmitz RA. 2017. sRNA₁₅₄ a newly
807 identified regulator of nitrogen fixation in *Methanosarcina mazei* strain Gö1. *RNA Biol*
808 14:1544–1558.

809 20. Jia J, Li J, Qi L, Li L, Yue L, Dong X. 2021. Post-transcriptional regulation is involved in
810 the cold-active methanol-based methanogenic pathway of a psychrophilic methanogen.
811 *Environ Microbiol* 23:3773–3788.

812 21. Wurtmann EJ, Ratushny AV, Pan M, Beer KD, Aitchison JD, Baliga NS. 2014. An
813 evolutionarily conserved RNase-based mechanism for repression of transcriptional
814 positive autoregulation. *Mol Microbiol* 92:369–382.

815 22. Van Assche E, Van Puyvelde S, Vanderleyden J, Steenackers HP. 2015. RNA-binding
816 proteins involved in post-transcriptional regulation in bacteria. *Front Microbiol* 6:141.

817 23. Azam MS, Vanderpool CK. 2018. Translational regulation by bacterial small RNAs via an
818 unusual Hfq-dependent mechanism. *Nucleic Acids Res* 46:2585–2599.

819 24. Vogel J, Luisi BF. 2011. Hfq and its constellation of RNA. *Nat Rev Microbiol* 9:578–589.

820 25. Chapman EJ, Carrington JC. 2007. Specialization and evolution of endogenous small
821 RNA pathways. *Nat Rev Genet* 8:884–896.

822 26. Collins BM, Harrop SJ, Kornfeld GD, Dawes IW, Curmi PMG, Mabbott BC. 2001. Crystal
823 structure of a heptameric Sm-like protein complex from archaea: implications for the
824 structure and evolution of snRNPs. *J Mol Biol* 309:915–923.

825 27. Kilic T, Thore S, Suck D. 2005. Crystal structure of an archaeal Sm protein from
826 *Sulfolobus solfataricus*. *Proteins* 61:689–693.

827 28. Thore S, Mayer C, Sauter C, Weeks S, Suck D. 2003. Crystal Structures of the
828 *Pyrococcus abyssi* Sm Core and Its Complex with RNA: COMMON FEATURES OF RNA
829 BINDING IN ARCHAEA AND EUKARYA. *J Biol Chem* 278:1239–1247.

830 29. Törö I, Basquin J, Teo-Dreher H, Suck D. 2002. Archaeal Sm Proteins form Heptameric
831 and Hexameric Complexes: Crystal Structures of the Sm1 and Sm2 Proteins from the
832 Hyperthermophile *Archaeoglobus fulgidus*. *J Mol Biol* 320:129–142.

833 30. Fando MS, Mikhaylina AO, Lekontseva NV, Tishchenko SV, Nikulin AD. 2021. Structure
834 and RNA-Binding Properties of Lsm Protein from *Halobacterium salinarum*. *Biochemistry*
835 (Mosc) 86:833–842.

836 31. Fischer S, Benz J, Späth B, Maier L-K, Straub J, Granzow M, Raabe M, Urlaub H,
837 Hoffmann J, Brutschy B, Allers T, Soppa J, Marchfelder A. 2010. The archaeal Lsm
838 protein binds to small RNAs. *J Biol Chem* 285:34429–34438.

839 32. Maier LK, Benz J, Fischer S, Alstetter M, Jaschinski K, Hilker R, Becker A, Allers T,
840 Soppa J, Marchfelder A. 2015. Deletion of the Sm1 encoding motif in the *lsm* gene results
841 in distinct changes in the transcriptome and enhanced swarming activity of *Haloferax*
842 cells. *Biochimie* 117:129–137.

843 33. Märtens B, Bezerra GA, Kreuter MJ, Grishkovskaya I, Manica A, Arkhipova V, Djinovic-
844 Carugo K, Bläsi U. 2015. The Heptameric SmAP1 and SmAP2 Proteins of the
845 Crenarchaeon *Sulfolobus solfataricus* Bind to Common and Distinct RNA Targets. *Life*
846 (Basel) 5:1264–1281.

847 34. Clouet-d'Orval B, Batista M, Bouvier M, Quentin Y, Fichant G, Marchfelder A, Maier L-K.
848 2018. Insights into RNA-processing pathways and associated RNA-degrading enzymes in
849 Archaea. *FEMS Microbiol Rev* 42:579–613.

850 35. Reichelt R, Grohmann D, Willkomm S. 2018. A journey through the evolutionary
851 diversification of archaeal Lsm and Hfq proteins. *Emerg Top Life Sci* 2:647–657.

852 36. Gelsinger DR, DiRuggiero J. 2018. The Non-Coding Regulatory RNA Revolution in
853 Archaea. *Genes* (Basel) 9.

854 37. Turkarslan S, Reiss DJ, Gibbins G, Su WL, Pan M, Bare JC, Plaisier CL, Baliga NS.
855 2011. Niche adaptation by expansion and reprogramming of general transcription factors.
856 *Mol Syst Biol* 7:554.

857 38. DasSarma S. 1989. Mechanisms of genetic variability in *Halobacterium halobium*: the
858 purple membrane and gas vesicle mutations. *Can J Microbiol* 35:65–72.

859 39. Kunka KS, Griffith JM, Holdener C, Bischof KM, Li H, DasSarma P, DasSarma S,
860 Slonczewski JL. 2020. Acid Experimental Evolution of the Haloarchaeon *Halobacterium*
861 sp. NRC-1 Selects Mutations Affecting Arginine Transport and Catabolism. *Front*
862 *Microbiol* 11.

863 40. Pfeifer F. 2015. Haloarchaea and the Formation of Gas Vesicles. *Life* (Basel) 5:385–402.

864 41. Grote M, O'Malley MA. 2011. Enlightening the life sciences: the history of halobacterial
865 and microbial rhodopsin research. *FEMS Microbiol Rev* 35:1082–1099.

866 42. López García de Lomana A, Kusebauch U, Raman AV, Pan M, Turkarslan S, Lorenzetti
867 APR, Moritz RL, Baliga NS. 2020. Selective Translation of Low Abundance and
868 Upregulated Transcripts in *Halobacterium salinarum*. *mSystems* 5.

869 43. Hundt S, Zaigler A, Lange C, Soppa J, Klug G. 2007. Global analysis of mRNA decay in
870 *Halobacterium salinarum* NRC-1 at single-gene resolution using DNA microarrays. *J*
871 *Bacteriol* 189:6936–6944.

872 44. Schmid AK, Reiss DJ, Kaur A, Pan M, King N, Van PT, Hohmann L, Martin DB, Baliga
873 NS. 2007. The anatomy of microbial cell state transitions in response to oxygen. *Genome*
874 *Res* 17:1399–1413.

875 45. Whitehead K, Kish A, Pan M, Kaur A, Reiss DJ, King N, Hohmann L, DiRuggiero J,
876 Baliga NS. 2006. An integrated systems approach for understanding cellular responses to
877 gamma radiation. *Mol Syst Biol* 2:47.

878 46. de Almeida JPP, Vêncio RZN, Lorenzetti APR, Ten-Caten F, Gomes-Filho JV, Koide T.
879 2019. The Primary Antisense Transcriptome of *Halobacterium salinarum* NRC-1. *Genes*
880 (Basel) 10.

881 47. Ibrahim AGAE-R, Vêncio RZN, Lorenzetti APR, Koide T. 2021. *Halobacterium salinarum*
882 and *Haloferax volcanii* Comparative Transcriptomics Reveals Conserved Transcriptional
883 Processing Sites. *Genes (Basel)* 12:1018.

884 48. Li W, O'Neill KR, Haft DH, DiCuccio M, Chetvernin V, Badretdin A, Coulouris G, Chitsaz
885 F, Derbyshire MK, Durkin AS, Gonzales NR, Gwadz M, Lanczycki CJ, Song JS, Thanki
886 N, Wang J, Yamashita RA, Yang M, Zheng C, Marchler-Bauer A, Thibaud-Nissen F.
887 2020. RefSeq: expanding the Prokaryotic Genome Annotation Pipeline reach with protein
888 family model curation. *Nucleic Acids Res* 49:D1020–D1028.

889 49. Ng WV, Kennedy SP, Mahairas GG, Berquist B, Pan M, Shukla HD, Lasky SR, Baliga
890 NS, Thorsson V, Sbrogna J, Swartzell S, Weir D, Hall J, Dahl TA, Welti R, Goo YA,
891 Leithauser B, Keller K, Cruz R, Danson MJ, Hough DW, Maddocks DG, Jablonski PE,
892 Krebs MP, Angevine CM, Dale H, Isenbarger TA, Peck RF, Pohlschroder M, Spudich JL,
893 Jung K-H, Alam M, Freitas T, Hou S, Daniels CJ, Dennis PP, Omer AD, Ebhardt H, Lowe
894 TM, Liang P, Riley M, Hood L, DasSarma S. 2000. Genome sequence of *Halobacterium*
895 species NRC-1. *Proc Natl Acad Sci U S A* 97:12176–12181.

896 50. Pfeiffer F, Marchfelder A, Habermann B, Dyall-Smith ML. 2019. The Genome Sequence
897 of the *Halobacterium salinarum* Type Strain Is Closely Related to That of Laboratory
898 Strains NRC-1 and R1. *Microbiol Resour Announc* 8.

899 51. Achsel T, Stark H, Lührmann R. 2001. The Sm domain is an ancient RNA-binding motif
900 with oligo(U) specificity. *Proc Natl Acad Sci U S A* 98:3685–3689.

901 52. Frumkin I, Lajoie MJ, Gregg CJ, Hornung G, Church GM, Pilpel Y. 2018. Codon usage of
902 highly expressed genes affects proteome-wide translation efficiency. *Proc Natl Acad Sci*
903 *U S A* 115.

904 53. Filee J, Siguier P, Chandler M. 2007. Insertion Sequence Diversity in Archaea. *Microbiol*
905 *Mol Biol Rev* 71:121–157.

906 54. Siguier P, Gourbeyre E, Varani A, Ton-Hoang B, Chandler M. 2015. Everyman's Guide to
907 Bacterial Insertion Sequences. *Microbiol Spectr* 3.

908 55. Kichenaradja P, Siguier P, Pérochon J, Chandler M. 2010. ISBrowser: an extension of
909 ISfinder for visualizing insertion sequences in prokaryotic genomes. *Nucleic Acids Res*
910 38:D62-68.

911 56. Siguier P, Pérochon J, Lestrade L, Mahillon J, Chandler M. 2006. ISfinder: the reference
912 centre for bacterial insertion sequences. *Nucleic Acids Res* 34:D32–D36.

913 57. DasSarma S, RajBhandary UL, Khorana HG. 1983. High-frequency spontaneous
914 mutation in the bacterio-opsin gene in *Halobacterium halobium* is mediated by
915 transposable elements. *Proc Natl Acad Sci U S A* 80:2201–2205.

916 58. DasSarma S, Halladay JT, Jones JG, Donovan JW, Giannasca PJ, de Marsac NT. 1988.
917 High-frequency mutations in a plasmid-encoded gas vesicle gene in *Halobacterium*
918 *halobium*. Proc Natl Acad Sci U S A 85:6861–6865.

919 59. Ellis MJ, Trussler RS, Haniford DB. 2015. Hfq binds directly to the ribosome-binding site
920 of IS10 transposase mRNA to inhibit translation. Mol Microbiol 96:633–650.

921 60. Ellis MJ, Trussler RS, Haniford DB. 2015. A cis-encoded sRNA, Hfq and mRNA
922 secondary structure act independently to suppress IS200 transposition. Nucleic Acids
923 Res 43:6511–6527.

924 61. Maillet N. 2020. Rapid Peptides Generator: fast and efficient in silico protein digestion.
925 NAR Genom Bioinform 2.

926 62. Oren A. 2012. The function of gas vesicles in halophilic archaea and bacteria: theories
927 and experimental evidence. Life (Basel) 3:1–20.

928 63. DasSarma S, Kennedy SP, Berquist B, Victor Ng W, Baliga NS, Spudich JL, Krebs MP,
929 Eisen JA, Johnson CH, Hood L. 2001. Genomic perspective on the photobiology of
930 *Halobacterium* species NRC-1, a phototrophic, phototactic, and UV-tolerant
931 haloarchaeon. Photosynth Res 70:3–17.

932 64. DasSarma P, Zamora RC, Müller JA, DasSarma S. 2012. Genome-Wide Responses of
933 the Model Archaeon *Halobacterium* sp. Strain NRC-1 to Oxygen Limitation. J Bacteriol
934 194:5530–5537.

935 65. Pfeifer F. 2012. Distribution, formation and regulation of gas vesicles. Nat Rev Microbiol
936 10:705–715.

937 66. Völkner K, Jost A, Pfeifer F. 2020. Accessory Gvp Proteins Form a Complex During Gas
938 Vesicle Formation of Haloarchaea. Front Microbiol 11.

939 67. Yao AI, Facciotti MT. 2011. Regulatory multidimensionality of gas vesicle biogenesis in
940 *Halobacterium salinarum* NRC-1. Archaea 2011:716456.

941 68. Bauer M, Marschaus L, Reuff M, Besche V, Sartorius-Neef S, Pfeifer F. 2008.
942 Overlapping activator sequences determined for two oppositely oriented promoters in
943 halophilic Archaea. Nucleic Acids Res 36:598–606.

944 69. Scheuch S, Pfeifer F. 2007. GvpD-induced breakdown of the transcriptional activator
945 GvpE of halophilic archaea requires a functional p-loop and an arginine-rich region of
946 GvpD. Microbiology (Reading) 153:947–958.

947 70. Schmidt I, Pfeifer F. 2013. Use of GFP-GvpE fusions to quantify the GvpD-mediated
948 reduction of the transcriptional activator GvpE in haloarchaea. Arch Microbiol 195:403–
949 412.

950 71. Gelsinger DR, DiRuggiero J. 2018. Transcriptional Landscape and Regulatory Roles of
951 Small Noncoding RNAs in the Oxidative Stress Response of the Haloarchaeon *Haloferax*
952 *volcanii*. J Bacteriol 200.

953 72. Morita T, Aiba H. 2019. Mechanism and physiological significance of autoregulation of the
954 *Escherichia coli* *hfq* gene. RNA 25:264–276.

955 73. Večerek B, Moll I, Bläsi U. 2005. Translational autocontrol of the *Escherichia coli* *hfq* RNA
956 chaperone gene. RNA 11:976–984.

957 74. Sobrero P, Valverde C. 2011. Evidences of autoregulation of *hfq* expression in
958 *Sinorhizobium meliloti* strain 2011. *Arch Microbiol* 193:629–639.

959 75. Payá G, Bautista V, Camacho M, Bonete M-J, Esclapez J. 2021. Functional analysis of
960 Lsm protein under multiple stress conditions in the extreme haloarchaeon *Haloferax*
961 *mediterranei*. *Biochimie* 187:33–47.

962 76. Desiere F, Deutsch EW, King NL, Nesvizhskii AI, Mallick P, Eng J, Chen S, Eddes J,
963 Loevenich SN, Aebersold R. 2006. The PeptideAtlas project. *Nucleic Acids Res*
964 34:D655–D658.

965 77. Van PT, Schmid AK, King NL, Kaur A, Pan M, Whitehead K, Koide T, Facciotti MT, Goo
966 YA, Deutsch EW, Reiss DJ, Mallick P, Baliga NS. 2008. *Halobacterium salinarum* NRC-1
967 PeptideAtlas: toward strategies for targeted proteomics and improved proteome
968 coverage. *J Proteome Res* 7:3755–3764.

969 78. Perez-Riverol Y, Bai J, Bandla C, García-Seisdedos D, Hewapathirana S,
970 Kamatchinathan S, Kundu DJ, Prakash A, Frericks-Zipper A, Eisenacher M, Walzer M,
971 Wang S, Brazma A, Vizcaíno JA. 2022. The PRIDE database resources in 2022: a hub
972 for mass spectrometry-based proteomics evidences. *Nucleic Acids Res* 50:D543–D552.

973 79. Losensky G, Jung K, Urlaub H, Pfeifer F, Fröls S, Lenz C. 2017. Shedding light on biofilm
974 formation of *Halobacterium salinarum* R1 by SWATH-LC/MS/MS analysis of planktonic
975 and sessile cells. *Proteomics* 17.

976 80. Völkel S, Hein S, Benker N, Pfeifer F, Lenz C, Losensky G. 2020. How to Cope With
977 Heavy Metal Ions: Cellular and Proteome-Level Stress Response to Divalent Copper and
978 Nickel in *Halobacterium salinarum* R1 Planktonic and Biofilm Cells. *Front Microbiol* 10.

979 81. Nagy Z, Chandler M. 2004. Regulation of transposition in bacteria. *Res Microbiol*
980 155:387–398.

981 82. Altae-Tran H, Kannan S, Demircioglu FE, Oshiro R, Nety SP, McKay LJ, Dlakić M,
982 Inskeep WP, Makarova KS, Macrae RK, Koonin EV, Zhang F. 2021. The widespread
983 IS200/605 transposon family encodes diverse programmable RNA-guided
984 endonucleases. *Science* 0:eabj6856.

985 83. Karvelis T, Druteika G, Bigelyte G, Budre K, Zedaveinyte R, Silanskas A, Kazlauskas D,
986 Venclovas Č, Siksnys V. 2021. Transposon-associated TnpB is a programmable RNA-
987 guided DNA endonuclease. *Nature* 1–8.

988 84. Lekontseva N, Mikhailina A, Fando M, Kravchenko O, Balobanov V, Tishchenko S,
989 Nikulin A. 2020. Crystal structures and RNA-binding properties of Lsm proteins from
990 archaea *Sulfolobus acidocaldarius* and *Methanococcus vannielii*: Similarity and difference
991 of the U-binding mode. *Biochimie* 175:1–12.

992 85. Weixlbaumer A, Grünberger F, Werner F, Grohmann D. 2021. Coupling of Transcription
993 and Translation in Archaea: Cues From the Bacterial World. *Front Microbiol* 12:661827.

994 86. Peck RF, DasSarma S, Krebs MP. 2000. Homologous gene knockout in the archaeon
995 *Halobacterium salinarum* with *ura3* as a counterselectable marker. *Mol Microbiol* 35:667–
996 676.

997 87. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina
998 sequence data. *Bioinformatics* 30:2114–2120.

999 88. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome
1000 alignment and genotyping with HISAT2 and HISAT-genotype. *Nat Biotechnol* 37:907–
1001 915.

1002 89. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G,
1003 Durbin R, 1000 Genome Project Data Processing Subgroup. 2009. The Sequence
1004 Alignment/Map format and SAMtools. *Bioinformatics* 25:2078–2079.

1005 90. Kahles A, Behr J, Rätsch G. 2016. MMR: a tool for read multi-mapper resolution.
1006 *Bioinformatics* (Oxford, England) 32:770–772.

1007 91. Quinlan AR. 2014. BEDTools: The Swiss-Army Tool for Genome Feature Analysis, p.
1008 11.12.1-11.12.34. In Bateman, A, Pearson, WR, Stein, LD, Storno, GD, Yates, JR (eds.),
1009 Current Protocols in Bioinformatics. John Wiley & Sons, Inc., Hoboken, NJ, USA.

1010 92. Wang M, Zhao Y, Zhang B. 2015. Efficient Test and Visualization of Multi-Set
1011 Intersections. *Sci Rep* 5:16923.

1012 93. Ahlmann-Eltze C, Anders S. 2019. proDA: Probabilistic Dropout Analysis for Identifying
1013 Differentially Abundant Proteins in Label-Free Mass Spectrometry. *bioRxiv*
1014 <https://doi.org/10.1101/661496>.

1015 94. Pfeiffer F, Schuster SC, Broicher A, Falb M, Palm P, Rodewald K, Ruepp A, Soppa J,
1016 Tittor J, Oesterhelt D. 2008. Evolution in the laboratory: the genome of *Halobacterium*
1017 *salinarum* strain R1 compared to that of strain NRC-1. *Genomics* 91:335–346.

1018 95. Pfeiffer F, Losensky G, Marchfelder A, Habermann B, Dyall-Smith M. 2019. Whole-
1019 genome comparison between the type strain of *Halobacterium salinarum* (DSM 3754T)
1020 and the laboratory strains R1 and NRC-1. *Microbiologyopen* 9.

1021 96. Li W, Godzik A. 2006. Cd-hit: a fast program for clustering and comparing large sets of
1022 protein or nucleotide sequences. *Bioinformatics* 22:1658–1659.

1023 97. Galperin MY, Wolf YI, Makarova KS, Alvarez RV, Landsman D, Koonin EV. 2020. COG
1024 database update: focus on microbial diversity, model organisms, and widespread
1025 pathogens. *Nucleic Acids Res* 49:D274–D281.

1026 98. Varani A, Siguier P, Gourbeyre E, Charneau V, Chandler M. 2011. ISsaga is an
1027 ensemble of web-based methods for high throughput identification and semi-automatic
1028 annotation of insertion sequences in prokaryotic genomes. *Genome Biol* 12:R30.

1029 99. Bray NL, Pimentel H, Melsted P, Pachter L. 2016. Near-optimal probabilistic RNA-seq
1030 quantification. *Nat Biotechnol* 34:525–527.

1031 100. Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion
1032 for RNA-seq data with DESeq2. *Genome Biol* 15.

1033 101. Ten-Caten F, Vêncio RZN, Lorenzetti APR, Zaramela LS, Santana AC, Koide T. 2018.
1034 Internal RNAs overlapping coding sequences can drive the production of alternative
1035 proteins in archaea. *RNA Biol* 15:1119–1132.

1036 102. Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, Heyne S, Dündar F,
1037 Manke T. 2016. deepTools2: a next generation web server for deep-sequencing data
1038 analysis. *Nucleic Acids Res* 44:W160-165.

1039 103. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. 2015. limma powers
1040 differential expression analyses for RNA-sequencing and microarray studies. *Nucleic
1041 Acids Res* 43:e47.

1042 104. Tsirigos KD, Peters C, Shu N, Käll L, Elofsson A. 2015. The TOPCONS web server for
1043 consensus prediction of membrane protein topology and signal peptides. *Nucleic Acids
1044 Res* 43:W401-407.

1045 105. Goo YA, Yi EC, Baliga NS, Tao WA, Pan M, Aebersold R, Goodlett DR, Hood L, Ng WV.
1046 2003. Proteomic analysis of an extreme halophilic archaeon, *Halobacterium* sp. NRC-1.
1047 *Mol Cell Proteomics* 2:506–524.

1048 106. Klein C, Garcia-Rizo C, Bisle B, Scheffer B, Zischka H, Pfeiffer F, Siedler F, Oesterhelt D.
1049 2005. The membrane proteome of *Halobacterium salinarum*. *Proteomics* 5:180–197.

1050 107. Wick RR, Judd LM, Holt KE. 2018. Deepbinner: Demultiplexing barcoded Oxford
1051 Nanopore reads with deep convolutional neural networks. *PLoS Comput Biol*
1052 14:e1006583.

1053 108. Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, vonHaeseler A, Schatz
1054 MC. 2018. Accurate detection of complex structural variations using single-molecule
1055 sequencing. *Nat Methods* 15:461.

1056 109. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL.
1057 2009. BLAST+: architecture and applications. *BMC Bioinformatics* 10:421.

1058 110. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P,
1059 Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH. 2007. A unified
1060 classification system for eukaryotic transposable elements. *Nat Rev Genet* 8:973–982.

1061 111. Sharp PM, Li WH. 1987. The codon Adaptation Index — a measure of directional
1062 synonymous codon usage bias, and its potential applications. *Nucleic Acids Res*
1063 15:1281–1295.

1064 112. Gu Z, Hübschmann D. 2021. Make Interactive Complex Heatmaps in R. *Bioinformatics*
1065 btab806.

1066 113. Gu Z, Eils R, Schlesner M. 2016. Complex heatmaps reveal patterns and correlations in
1067 multidimensional genomic data. *Bioinformatics* 32:2847–2849.

1068 114. Robinson JT, Thorvaldsdóttir H, Turner D, Mesirov JP. 2020. igv.js: an embeddable
1069 JavaScript implementation of the Integrative Genomics Viewer (IGV). *bioRxiv*
1070 <https://doi.org/10.1101/2020.05.03.075499>.

1071

1072

1073 **FIGURES**

1074 Figure 1 | Features potentially associated with post-transcriptional regulation. Four features
1075 related to the post-transcriptional regulation in *H. salinarum*. Sets are comprised of genes that
1076 bind to SmAP1, show transcript processing sites (TPS), have a putative cis-regulatory antisense
1077 RNA (asRNA), and are differentially expressed in the RNase_2099C knockout strain
1078 (ΔVNG_2099C).

1079 Figure 2 | Genes following patterns compatible with post-transcriptional regulation. Each panel
1080 shows protein (y-axis) and mRNA (x-axis) absolute abundance (\log_{10} -transformed) or relative
1081 changes (\log_2 fold change). Absolute abundance-based analysis is reported from **A** to **D** in a time
1082 point-wise manner and from **E** to **G** in a time-lag perspective. Gray points represent entities
1083 following usual patterns; orange points represent entities within the upper quintile of protein
1084 abundance and lower quintile of mRNA abundance; green points represent entities within the
1085 lower quintile of protein abundance and upper quintile of mRNA abundance. The solid black line
1086 illustrates the fitted linear regression model. **H**, **I**, and **J** present the relative abundance-based
1087 analysis of protein and mRNA levels in consecutive physiological state transitions. **K** and **L**
1088 present the same variables for long physiological state transitions. Points are color-coded
1089 according to multiple combinations of change status considering both variables. TP1: early
1090 exponential growth phase; TP2: mid-exponential growth phase; TP3: late exponential growth
1091 phase; TP4: stationary phase.

1092 Figure 3 | An atlas of the transcriptome, ribosome profile, and proteome for *Halobacterium*
1093 *salinarum* NRC-1. The heatmap shows quantile-normalized \log_{10} -transformed abundance levels
1094 for proteins (a pseudocount was imputed for missing values), messenger RNAs (mRNAs;
1095 TPM+1), and ribosome-protected mRNA fragments (RPF; TPM+1) for 2,579 genes across four
1096 consecutive stages of batch culture growth, namely early exponential, mid-exponential, late
1097 exponential, and stationary phase (TP1, TP2, TP3, and TP4, respectively). \log_2 -transformed
1098 translational efficiency (TE) and ribosome occupancy (RO) were computed by dividing protein
1099 levels by mRNA levels and mRNA levels by RPF levels, respectively. We present general features
1100 on the left-hand side, starting with the cluster of orthologous genes (COG) functional categories
1101 (97), split into groups before clustering the protein levels. Chromosome, pNRC100, and pNRC200
1102 show the replicon location of each gene within the genome. The presence of SmAP1 binding,
1103 antisense RNAs (asRNA) (46), and putative endoribonuclease-generated transcript processing
1104 sites (TPS) (47) are indicated in corresponding tracks. The 2099 track shows \log_2 fold change
1105 (LFC) of transcript levels in the RNase_2099C null mutant (ΔVNG_2099C) relative to the parent

1106 $\Delta ura3$ strain (21). mRNA half-lives (43), codon adaptation index (CAI), and the deviation of GC
1107 content from average GC content of all transcripts are also indicated in corresponding tracks. See
1108 inset keys for color codes for each track and Methods section for details. Interactive and expanded
1109 static versions of this figure are available in our *H. salinarum* NRC-1 multi-omics Atlas portal
1110 (<https://halodata.systemsbiology.net>).

1111 Figure 4 | Functions of putative post-transcriptionally regulated genes and potential driving
1112 mechanisms. The figure shows the common properties of groups of putative post-transcriptionally
1113 regulated genes. **A.** The union set of genes found by the absolute abundance-based approach
1114 across the growth curve (green points in Figure 2A-D). **B-E.** Arbitrarily selected genes of known
1115 functions (subsets of **A**). **F-H.** Gene categories according to clusters of orthologous genes (COG)
1116 with enriched features compatible with the post-transcriptional regulation hypothesis (subsets of
1117 **A**). **I.** The union set of genes found by the relative abundance-based approach across the growth
1118 curve (upregulated mRNA and downregulated protein; green clusters in Figure 2H-L). **J.** Genes
1119 of the *gvp* cluster in the transition from early exponential (TP1) to mid-exponential growth phase
1120 (TP2) (subset of **I**). See File S4 for a complete list of genes within each group (**A, F-H, I**) and the
1121 respective supporting evidence. TPS: Transcript processing sites; asRNA: antisense RNA; CAI:
1122 Codon adaptation index.

1123 Figure 5 | Protein and mRNA levels of mobile genetic elements. **A.** Log₁₀-transformed expression
1124 profile of proteins (a pseudocount was imputed for missing values), mRNAs (TPM+1), and
1125 ribosome-protected mRNA fragments (RPF; TPM+1) with miscellaneous properties of genes
1126 classified by clusters of orthologous genes (COG) within the “Mobilome: prophages, transposons”
1127 category (pink). TE: translational efficiency; RO: ribosome occupancy; asRNAs: antisense RNA;
1128 TPS: transcript processing site; 2099: log₂ fold change (LFC) of transcripts in the absence of
1129 RNase_2099C; TP1: early exponential growth phase; TP2: mid-exponential growth phase; TP3:
1130 late exponential growth phase; TP4: stationary phase. Box plots aid the comparison between
1131 features of genes within the “Mobilome: prophages, transposons” versus the pool of the other
1132 categories: **B.** GC content; **C.** Log₁₀-transformed average protein abundance across all time
1133 points (missing values excluded); **D.** Codon adaptation index (CAI). **E.** Log₁₀-transformed average
1134 mRNA levels (TPM+1) across all time points. We compared medians using the Mann–Whitney U
1135 test. * *p*-value $\leq 5 \times 10^{-2}$; ** *p*-value $\leq 10^{-2}$; **** *p*-value $\leq 10^{-4}$.

1136 Figure 6 | Detected mobilizations for decomposed insertion sequence families. The figure shows
1137 the average normalized number of clusters for each strain. The panels, from top to bottom, show

1138 the results for the **(A)** pool of all insertion sequences, **(B)** IS4 family only, **(C)** ISH3 family only,
1139 and **(D)** the other families. Black lines indicate the range of the 68% confidence interval.

1140 Figure 7 | Post-transcriptional regulation of *gvp* operons. **A.** Arrows represent how each one of
1141 the gas vesicle operon genes (color-coded; protein names in parentheses) behaves regarding its
1142 \log_2 -transformed protein abundance (y-axis) and mRNA abundance (x-axis) across consecutive
1143 physiological states (TP1: early exponential growth phase; TP2: mid-exponential growth phase;
1144 TP3: late exponential growth phase; TP4: stationary phase). We represent *gvpMLKJIHGFED* and
1145 *gvpACNO* operons, except for a few elements (*gvpG*, *gvpl*, *gvpK*, and *gvpM*), whose protein
1146 levels were not detected by our SWATH-MS approach. **B.** The genome browser snapshot reveals
1147 the region of *gvpDEFGHIJKLM* (reverse strand) and *gvpACNO* (forward strand)
1148 (NC_001869.1:16,000-25,500). We depict genes as blue rectangles. Tracks show various
1149 features described on the left-hand side of the panel. Green ticks represent transcript processing
1150 sites (TPS); red rectangles represent SmAP1 binding sites; purple rectangles represent annotated
1151 antisense RNAs. **C.** Time point-wise regulatory scheme of gas vesicles proteins encoded by the
1152 *gvp* cluster. Blue bars represent translational repression, red arrows represent transcriptional
1153 activation, and green bars represent post-translational degradation. Protein abundance is
1154 depicted by the font size of gas vesicle proteins (GvpX).

1155 **SUPPLEMENTAL TABLES**

1156 Table S1 | Annotation sources for constructing the *Halobacterium salinarum* NRC-1 non-
1157 redundant transcriptome and a loci dictionary.

1158 Table S2 | Comparison of Pearson correlation coefficient computed for protein and mRNA
1159 abundance throughout the growth curve. We compared the coefficients using Zou's confidence
1160 interval method implemented in the cocor package. Subscripts *P* and *m* refer to protein and mRNA
1161 levels for indicated time points. Uppercase letters (A-F) refer to panels in Figure 2. * ΔR stands
1162 for the subtraction between the two coefficients (e.g., $R_{TP1(A)} - R_{TP2(B)}$). A confidence interval (CI)
1163 of ΔR spanning zero is not significant. Coefficients diverge slightly from those presented in the
1164 main text due to technical differences between the comparative approach and classic correlation
1165 method implementations. TP1: early exponential growth phase; TP2: mid-exponential growth
1166 phase; TP3: late exponential growth phase; TP4: stationary phase.

1167 Table S3 | The non-redundant set of insertion sequences in *Halobacterium salinarum* NRC-1. We
1168 obtained insertion sequence families from ISfinder and ISsaga, and the transposition mechanisms
1169 from Siguier et al. (2015).

1170 Table S4 | Summary of the transposition detection assay. ^a Number of identified insertion clusters.
1171 ^b Number of identified excision clusters. ^c Number of reads aligned to the reference genome. ^d
1172 Sum of insertion and excision clusters normalized by the library with the highest number of aligned
1173 reads.

1174 Table S5 | List of primers used in this study.

1175 Table S6 | In-house and third-party GitHub repositories cited in this study.

1176

1177 **SUPPLEMENTAL FIGURES**

1178 Figure S1 | Quality assurance of co-immunoprecipitated samples. **A.** Western blot of samples
1179 extracted from strains expressing plasmids for cMyc and cMyc-tagged SmAP1 (see lane titles for
1180 labels). The expected molecular weight of the cMyc-tagged SmAP1 complex is 37 kDa. BR:
1181 Biological replicate. **B.** Polymerase Chain Reaction (PCR) of RNA-purified samples treated with
1182 DNase. M: Ladder; 1: Positive control (genomic DNA amplified using 19-fwd and 20-rev primers
1183 with a predicted amplicon size of 85 bp); 2-5: cMyc BR1, cMyc BR2, SmAP1-cMyc BR1, and
1184 SmAP1-cMyc BR2 (amplified using 19-fwd and 20-rev primers); 6: Positive control (genomic DNA
1185 amplified using 63-fwd and 64-rev primers with a predicted amplicon size of 450 bp). 7-10: cMyc
1186 BR1, cMyc BR2, SmAP1-cMyc BR1, and SmAP1-cMyc BR2 (amplified using 63-fwd and 64-rev
1187 primers).

1188 Figure S2 | SmAP1 features. **A.** SmAP1 binding is conditioned to the GC content of transcripts.
1189 The reduced GC content of transcripts is a property influencing SmAP1 binding. We compared
1190 medians using the Mann–Whitney U test. **** p -value $\leq 10^{-4}$. **B.** Time course view of protein,
1191 ribosome-protected mRNA fragments (RPF; TPM+1), and mRNA levels (TPM+1). Vertical bars
1192 represent the standard error computed using at least six replicates for proteins and three
1193 replicates for mRNA and RPF. **C.** Functional categories of transcripts bound to SmAP1. The panel
1194 shows how many genes have transcripts bound to SmAP1, considering each category of COG
1195 (clusters of orthologous genes). The left-hand side panel shows categories with no more than 25
1196 genes with SmAP1-bound transcripts, and the right-hand side panel shows genes within the
1197 “Function unknown” category. We highlighted enriched categories with an asterisk (* p -value <
1198 0.05).

1199 Figure S3 | Venn diagrams of putative post-transcriptionally regulated genes shared among
1200 different physiological states. **A.** Entities with proteins within the lower quintile of protein levels or
1201 not detected by our proteome survey whose mRNA levels are within the upper quintile (union set
1202 = 167). **B.** Entities within the lower quintile of protein levels and within the upper quintile of mRNA
1203 levels (union set = 64). **C.** Entities with proteins not detected by our proteome survey and within
1204 the upper quintile of mRNA levels (union set = 117). TP1: early exponential growth phase; TP2:
1205 mid-exponential growth phase; TP3: late exponential growth phase; TP4: stationary phase. All
1206 sets are available in File S3.

1207 Figure S4 | Atlas section of putative post-transcriptionally regulated genes in the transition from
1208 TP1 to TP2. This section of the atlas shows genes having downregulated proteins and
1209 upregulated mRNAs (green cluster in Figure 2H) in the transition from the early exponential

1210 growth phase (TP1) to mid-exponential growth phase (TP2). The heatmap represents \log_{10} -
1211 transformed expression profile of proteins (a pseudocount was imputed for missing values),
1212 mRNAs (TPM+1), and ribosome-protected mRNA fragments (RPF; TPM+1). Heatmaps also
1213 represent the respective \log_2 -transformed translational efficiency (TE) and ribosome occupancy
1214 (RO) for each time point. COG: clusters of orthologous genes; asRNAs: antisense RNA; TPS:
1215 transcript processing site; 2099: \log_2 fold change (LFC) of transcripts in the absence of
1216 RNase_2099C; CAI: codon adaptation index; TP3: late exponential growth phase; TP4: stationary
1217 phase.

1218 Figure S5 | UpSet plot of putative post-transcriptionally regulated genes shared in different
1219 physiological state transitions. Entities being downregulated at the protein level and upregulated
1220 at the mRNA level (union set = 26). TP1: early exponential growth phase; TP2: mid-exponential
1221 growth phase; TP3: late exponential growth phase; TP4: stationary phase. All sets are available
1222 in File S6.

1223 Figure S6 | Protein levels are associated with transcript GC content. The solid line illustrates the
1224 locally weighted smoothing (loess), and the shaded gray ribbon indicates its 95% confidence
1225 interval. A dashed line indicates the average GC content computed using the whole set of
1226 transcripts. Points follow a color gradient defined by the codon adaptation index (CAI). TP1: early
1227 exponential growth phase; TP2: mid-exponential growth phase; TP3: late exponential growth
1228 phase; TP4: stationary phase.

1229 Figure S7 | VNG_0112H, a transposase encoded by the ISH3B element. Tracks show various
1230 features described on the left-hand side of the panel. Green tick marks represent transcript
1231 processing sites (TPS); red rectangles represent SmAP1 binding sites; a blue rectangle (reverse
1232 strand) represents the open reading frame for the transposase VNG_0112H; a green rectangle
1233 (reverse strand) represent the ISH3B element. Gray single-nucleotide resolution bar plots
1234 represent RNA-Seq and Ribo-Seq coverage; TP2: mid-exponential growth phase.

1235 Figure S8 | Detected mobilization events. **A.** Detected insertions. **B.** Detected excisions.
1236 Observed events are the number of detected clusters for each type of mobilization. All the cluster
1237 types are represented, considering those classified as predominant, common, and rare. Bars are
1238 color-coded according to insertion sequence families.

1239 Figure S9 | Protein-mRNA dynamics and various features of genes encoding gas vesicle
1240 biogenesis proteins. We represented the 14 genes comprising the *gvpDEFGHIJKLM* and
1241 *gvpACNO* operons in the context of their features. SmAP1 binding, antisense RNAs (asRNAs),

1242 and transcript processing sites (TPS) are enriched in this cluster (p -value = 2.4×10^{-7} , 3×10^{-3} , and
1243 3.8×10^{-2} , respectively). The heatmap represents \log_{10} -transformed expression profile of proteins
1244 (a pseudocount was imputed for missing values), mRNAs (TPM+1), and ribosome-protected
1245 mRNA fragments (RPF; TPM+1). Heatmaps also represent the respective \log_2 -transformed
1246 translational efficiency (TE) and ribosome occupancy (RO) for each time point. COG: clusters of
1247 orthologous genes; 2099: \log_2 fold change (LFC) of transcripts in the absence of RNase_2099C;
1248 CAI: codon adaptation index; TP1: early exponential growth phase; TP2: mid-exponential growth
1249 phase; TP3: late exponential growth phase; TP4: stationary phase.

1250 Figure S10 | *gvpACN* loci reveal differential patterns of Ribo-Seq signal. We present the three
1251 consecutive loci (VNG_7025-VNG_7027) comprising the *gvpACN* region (blue rectangles). The
1252 time point-wise Ribo-Seq and RNA-Seq normalized profiles are represented by gray bars. Red
1253 rectangles represent SmAP1 binding sites; green tick marks represent transcript processing sites
1254 (TPS); purple rectangles represent antisense RNAs. Each track was automatically scaled using
1255 the “Autoscale” feature of Integrative Genomics Viewer. We observe that pile-ups of Ribo-Seq
1256 emerge after the late exponential growth phase (TP3), indicating that the elongation phase of
1257 translation intensifies late on growth. Concurrently, we see SmAP1 binding sites either right
1258 before or spanning the region where the peaks emerge, indicating the role of this protein as a
1259 translational regulator. TP1: early exponential growth phase; TP2: mid-exponential growth phase;
1260 TP4: stationary phase.

1261 Figure S11 | VNG_0042G, a TnpB encoded by the ISH39 element from the IS200/IS605 family
1262 subgroup IS1341. Tracks show various features described on the left-hand side of the panel.
1263 Green tick marks represent transcript processing sites (TPS); red rectangles represent SmAP1
1264 binding sites; a purple rectangle (forward strand) represent an annotated antisense RNA; a blue
1265 rectangle (reverse strand) represents the open reading frame for TnpB; a green rectangle
1266 (reverse strand) represents the ISH39 element. Gray single-nucleotide resolution bar plots
1267 represent RNA-Seq and Ribo-Seq coverage; TP2: mid-exponential growth phase.

1268 Figure S12 | Growth curve of Δ ura3 and Δ ura3 Δ smap1 strains. We conducted a growth curve
1269 experiment with three biological replicates for Δ ura3 (blue lines) and Δ ura3 Δ smap1 (orange lines)
1270 strains. Line types depict each of the biological replicates.

1271 **SUPPLEMENTAL FILES**

1272 File S1 | Atlas data. The non-redundant transcriptome locus tag dictionary, the normalized atlas
1273 data, and the non-normalized atlas data.

1274 File S2 | Differentially expressed genes in the absence of RNase_2099C.

1275 File S3 | Putative post-transcriptionally regulated genes (absolute abundance-based approach).
1276 Genes with patterns compatible with the post-transcriptional regulation hypothesis found by the
1277 abundance-based approach.

1278 File S4 | Gene set enrichment analysis and comparison of features. Comparison of quantitative
1279 variables and enrichment tests for putative post-transcriptionally regulated gene sets found by the
1280 absolute abundance- and by the relative abundance-based approaches.

1281 File S5 | Differential expression analysis of transcripts and proteins across the growth curve.

1282 File S6 | Putative post-transcriptionally regulated genes (relative abundance-based approach).
1283 Genes with patterns compatible with the post-transcriptional regulation hypothesis found by the
1284 relative abundance -based approach.

1285 File S7 | Atlas heatmap (expanded version). This file brings an expanded version of Figure 3.

1286 File S8 | Insertion sequence mobilization events detected by the long-read DNA-Seq experiment.

FIGURES

Title: A genome-scale atlas reveals complex interplay of transcription and translation in an archaeon

Authors: Alan P. R. Lorenzetti ^{1,2}, Ulrike Kusebauch ², Lívia S. Zaramela ¹, Wei-Ju Wu ², João P. P. de Almeida ^{1,3}, Serdar Turkarslan ², Adrián L. G. de Lomana ^{2,4}, José V. Gomes-Filho ^{1,5}, Ricardo Z. N. Vêncio ⁶, Robert L. Moritz ², Tie Koide ^{1,†}, Nitin S. Baliga ^{2,7,8,9,†,#}

Affiliations:

¹ Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil

² Institute for Systems Biology, Seattle, WA, USA

³ Present address: Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil

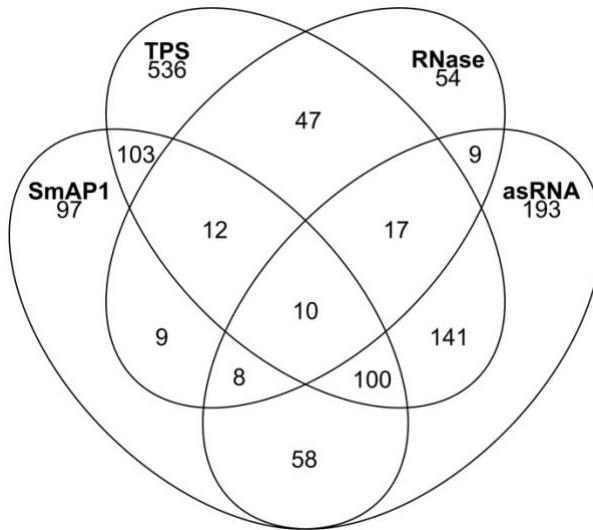
⁴ Present address: Center for Systems Biology, University of Iceland, Reykjavik, Iceland

⁵ Present address: Prokaryotic RNA Biology, Phillips-Universität Marburg, Marburg, Germany

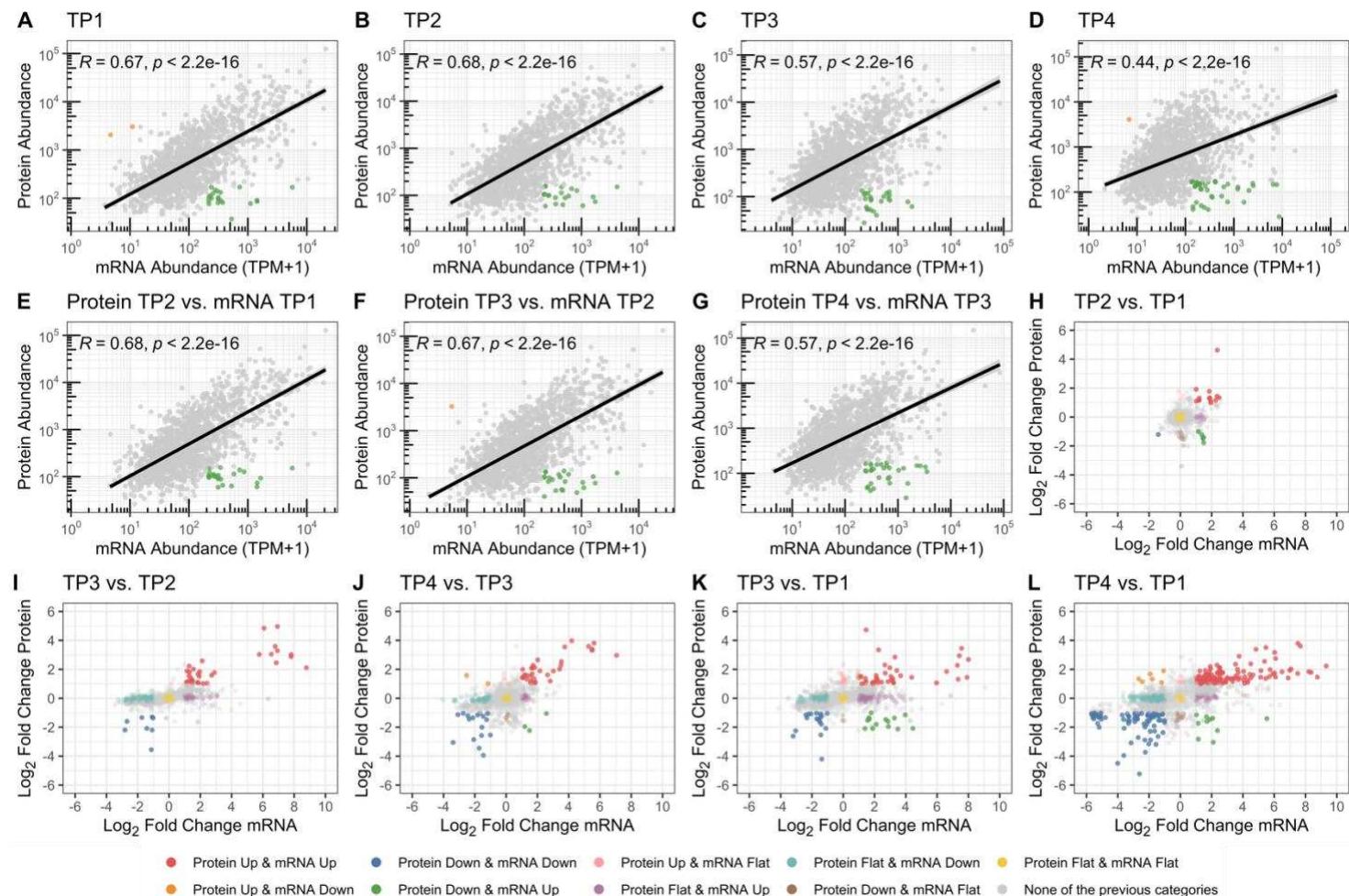
⁶ Department of Computation and Mathematics, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil

⁷ Departments of Biology and Microbiology, University of Washington, Seattle, WA, USA

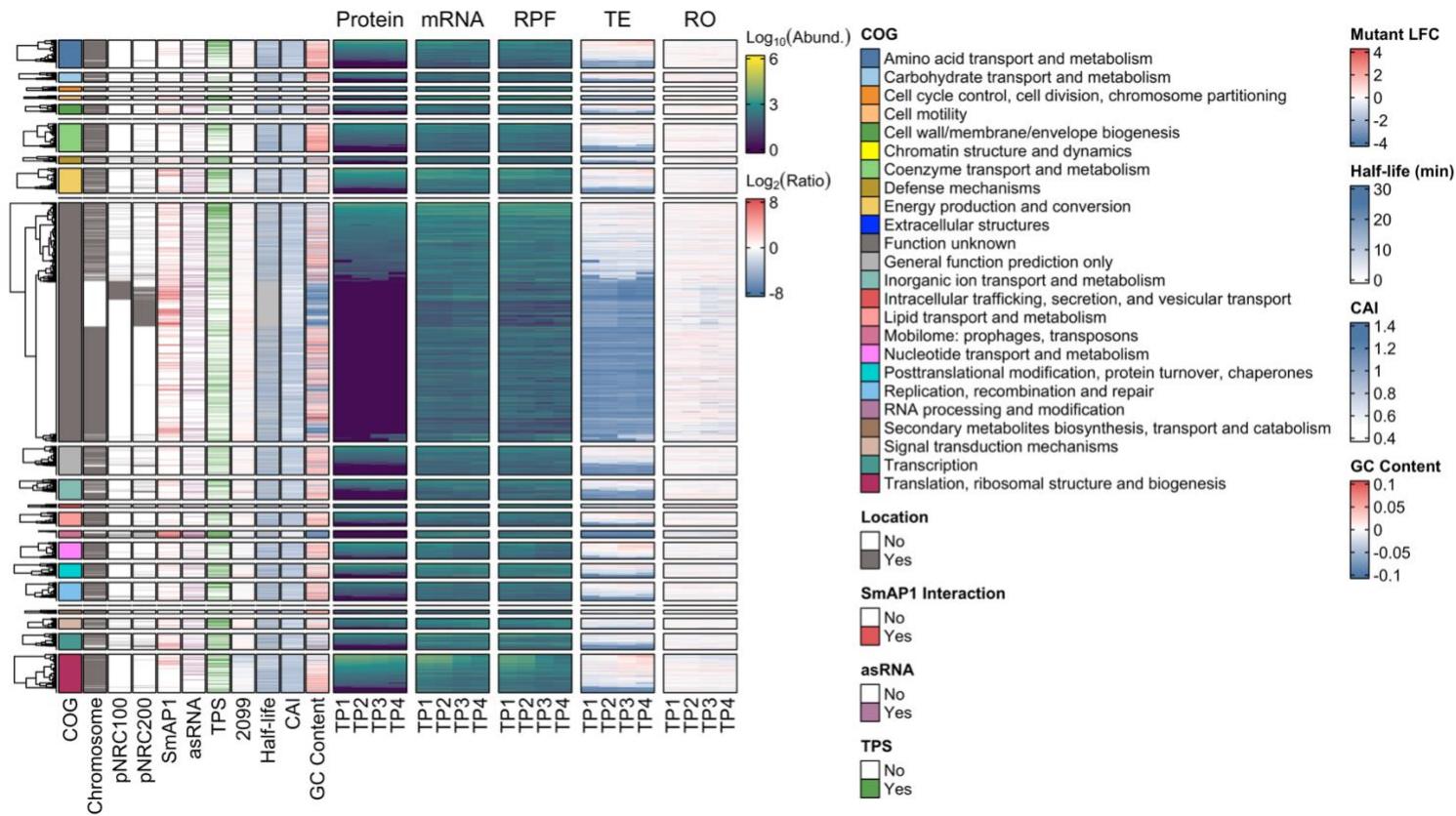
⁸ Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA

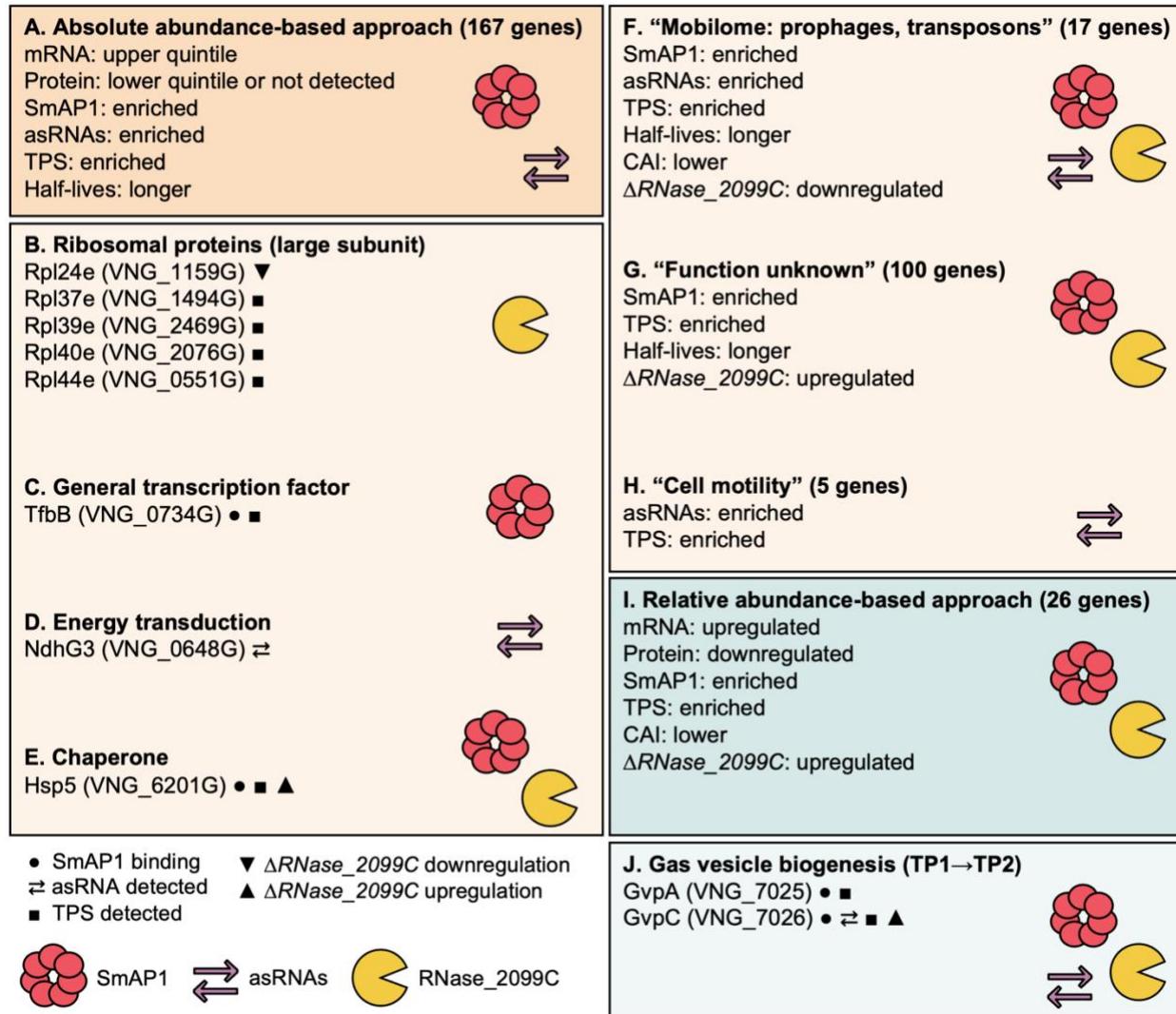

⁹ Lawrence Berkeley National Lab, Berkeley, CA, USA

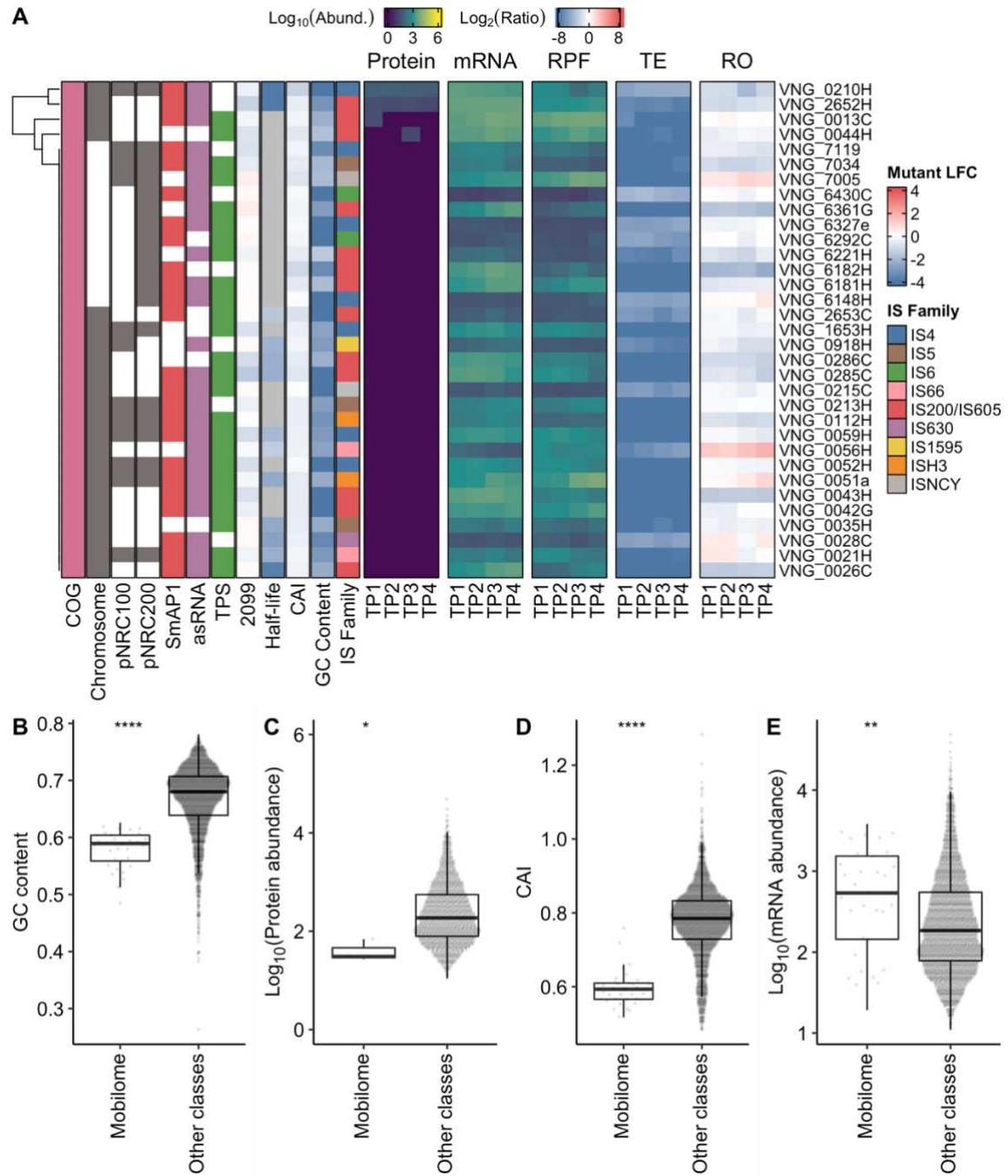
† TK and NSB are joint senior authors

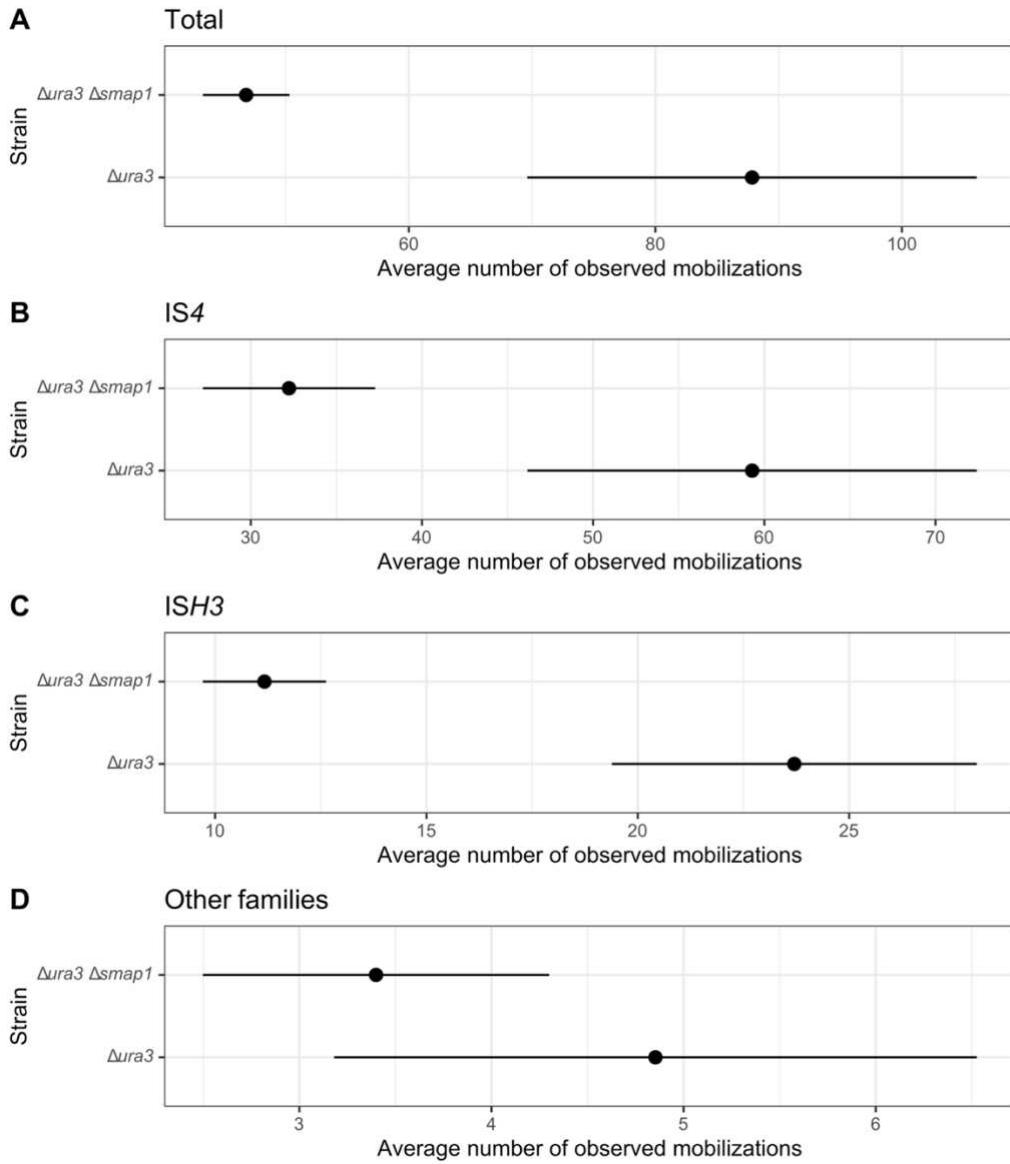

Author to whom correspondence should be addressed

E-mail: nitin.baliga@isbscience.org; Tel.: +1 (206) 732-1266


Feature	Number of Genes
SmAP1	397
TPS	966
1	561
2-5	380
>5	25
asRNA	536
$\Delta RNase_2099C$	166
Upregulated	82
Downregulated	84


Figure 1 | Features potentially associated with post-transcriptional regulation. Four features related to the post-transcriptional regulation in *H. salinarum*. Sets are comprised of genes that bind to SmAP1, show transcript processing sites (TPS), have a putative cis-regulatory antisense RNA (asRNA), and are differentially expressed in the RNase_2099C knockout strain (ΔVNG_2099C).


Figure 2 | Genes following patterns compatible with post-transcriptional regulation. Each panel shows protein (y-axis) and mRNA (x-axis) absolute abundance (\log_{10} -transformed) or relative changes (\log_2 fold change). Absolute abundance-based analysis is reported from **A** to **D** in a time point-wise manner and from **E** to **G** in a time-lag perspective. Gray points represent entities following usual patterns; orange points represent entities within the upper quintile of protein abundance and lower quintile of mRNA abundance; green points represent entities within the lower quintile of protein abundance and upper quintile of mRNA abundance. The solid black line illustrates the fitted linear regression model. **H**, **I**, and **J** present the relative abundance-based analysis of protein and mRNA levels in consecutive physiological state transitions. **K** and **L** present the same variables for long physiological state transitions. Points are color-coded according to multiple combinations of change status considering both variables. TP1: early exponential growth phase; TP2: mid-exponential growth phase; TP3: late exponential growth phase; TP4: stationary phase.


Figure 3 | An atlas of the transcriptome, ribosome profile, and proteome for *Halobacterium salinarum* NRC-1. The heatmap shows quantile-normalized log₁₀-transformed abundance levels for proteins (a pseudocount was imputed for missing values), messenger RNAs (mRNAs; TPM+1), and ribosome-protected mRNA fragments (RPF; TPM+1) for 2,579 genes across four consecutive stages of batch culture growth, namely early exponential, mid-exponential, late exponential, and stationary phase (TP1, TP2, TP3, and TP4, respectively). Log₂-transformed translational efficiency (TE) and ribosome occupancy (RO) were computed by dividing protein levels by mRNA levels and mRNA levels by RPF levels, respectively. We present general features on the left-hand side, starting with the cluster of orthologous genes (COG) functional categories (97), split into groups before clustering the protein levels. Chromosome, pNRC100, and pNRC200 show the replicon location of each gene within the genome. The presence of SmAP1 binding, antisense RNAs (asRNA) (46), and putative endoribonuclease-generated transcript processing sites (TPS) (47) are indicated in corresponding tracks. The 2099 track shows log₂ fold change (LFC) of transcript levels in the RNase_2099C null mutant (Δ VNG_2099C) relative to the parent Δ ura3 strain (21). mRNA half-lives (43), codon adaptation index (CAI), and the deviation of GC content from average GC content of all transcripts are also indicated in corresponding tracks. See inset keys for color codes for each track and Methods section for details. Interactive and expanded static versions of this figure are available in our *H. salinarum* NRC-1 multi-omics Atlas portal (<https://halodata.systemsbiology.net>).

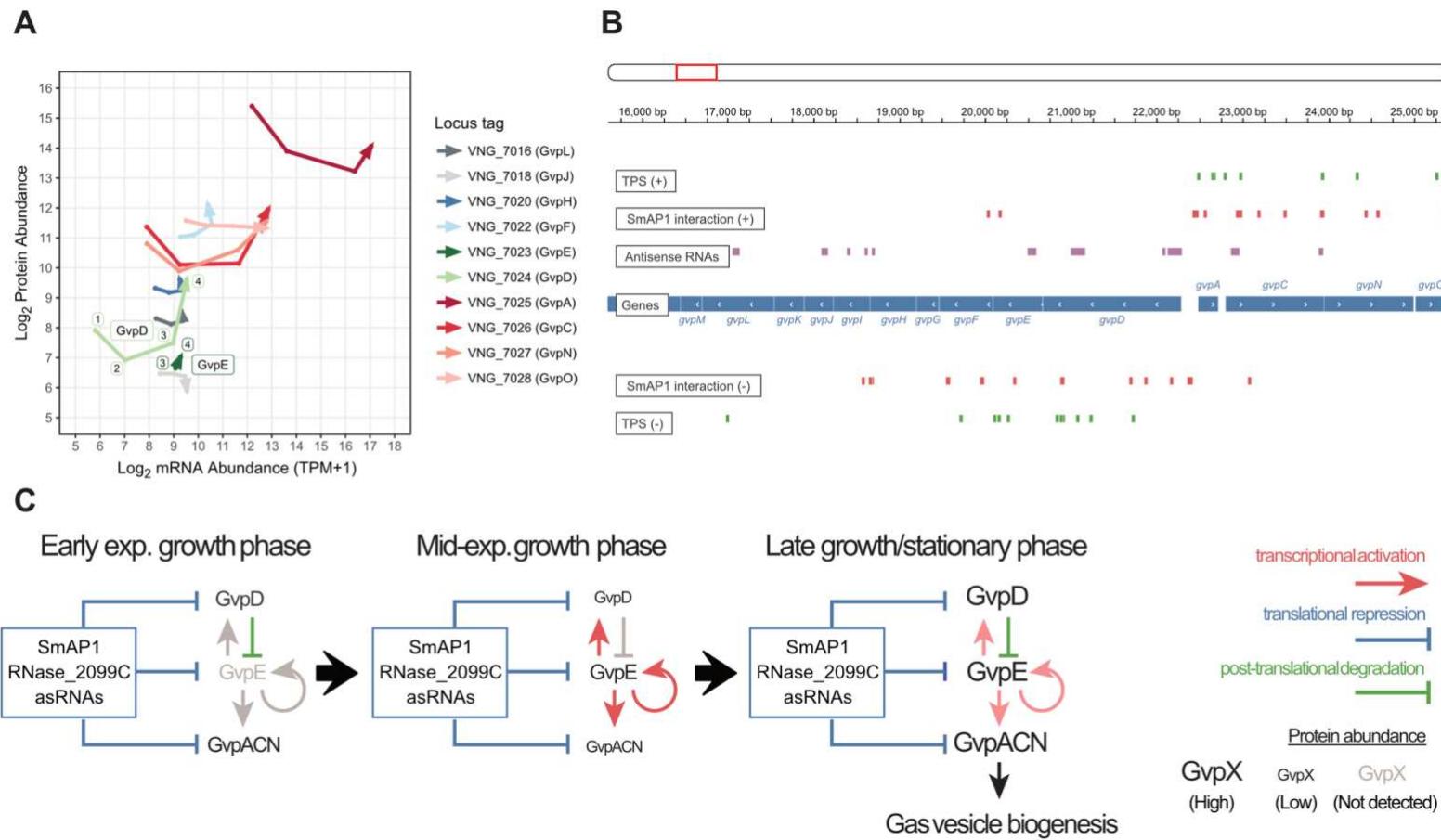

Figure 4 | Functions of putative post-transcriptionally regulated genes and potential driving mechanisms. The figure shows the common properties of groups of putative post-transcriptionally regulated genes. **A.** The union set of genes found by the absolute abundance-based approach across the growth curve (green points in Figure 2A-D). **B-E.** Arbitrarily selected genes of known functions (subsets of A). **F-H.** Gene categories according to clusters of orthologous genes (COG) with enriched features compatible with the post-transcriptional regulation hypothesis (subsets of A). **I.** The union set of genes found by the relative abundance-based approach across the growth curve (upregulated mRNA and downregulated protein; green clusters in Figure 2H-L). **J.** Genes of the *gvp* cluster in the transition from early exponential (TP1) to mid-exponential growth phase (TP2) (subset of I). See File S4 for a complete list of genes within each group (A, F-H, I) and the respective supporting evidence. TPS: Transcript processing sites; asRNA: antisense RNA; CAI: Codon adaptation index.

Figure 5 | Protein and mRNA levels of mobile genetic elements. A. Log_{10} -transformed expression profile of proteins (a pseudocount was imputed for missing values), mRNAs (TPM+1), and ribosome-protected mRNA fragments (RPF; TPM+1) with miscellaneous properties of genes classified by clusters of orthologous genes (COG) within the “Mobilome: prophages, transposons” category (pink). TE: translational efficiency; RO: ribosome occupancy; asRNAs: antisense RNA; TPS: transcript processing site; 2099: \log_2 fold change (LFC) of transcripts in the absence of RNase_2099C; TP1: early exponential growth phase; TP2: mid-exponential growth phase; TP3: late exponential growth phase; TP4: stationary phase. Box plots aid the comparison between features of genes within the “Mobilome: prophages, transposons” versus the pool of the other categories: **B.** GC content; **C.** Log_{10} -transformed average protein abundance across all time points (missing values excluded); **D.** Codon adaptation index (CAI). **E.** Log_{10} -transformed average mRNA levels (TPM+1) across all time points. We compared medians using the Mann–Whitney U test. * p -value $\leq 5 \times 10^{-2}$; ** p -value $\leq 10^{-2}$; **** p -value $\leq 10^{-4}$.

Figure 6 | Detected mobilizations for decomposed insertion sequence families. The figure shows the average normalized number of clusters for each strain. The panels, from top to bottom, show the results for the (A) pool of all insertion sequences, (B) IS4 family only, (C) ISH3 family only, and (D) the other families. Black lines indicate the range of the 68% confidence interval.

Figure 7 | Post-transcriptional regulation of *gvp* operons. A. Arrows represent how each one of the gas vesicle operon genes (color-coded; protein names in parentheses) behaves regarding its log₂-transformed protein abundance (y-axis) and mRNA abundance (x-axis) across consecutive physiological states (TP1: early exponential growth phase; TP2: mid-exponential growth phase; TP3: late exponential growth phase; TP4: stationary phase). We represent *gvpMLKJHGFED* and *gvpACNO* operons, except for a few elements (*gvpG*, *gvpI*, *gvpK*, and *gvpM*), whose protein levels were not detected by our SWATH-MS approach. **B.** The genome browser snapshot reveals the region of *gvpDEFGHJKLM* (reverse strand) and *gvpACNO* (forward strand) (NC_001869.1:16,000-25,500). We depict genes as blue rectangles. Tracks show various features described on the left-hand side of the panel. Green ticks represent transcript processing sites (TPS); red rectangles represent SmAP1 binding sites; purple rectangles represent annotated antisense RNAs. **C.** Time point-wise regulatory scheme of gas vesicles proteins encoded by the *gvp* cluster. Blue bars represent translational repression, red arrows represent transcriptional activation, and green bars represent post-translational degradation. Protein abundance is depicted by the font size of gas vesicle proteins (GvpX).