

1 **Two sides to every coin: complementary introgression line populations in *Caenorhabditis***

2 ***elegans***

3

4 Mark G. Sterken^{1,*}, Lisa van Sluijs¹, Jelle W. van Creij¹, Daniel E. Cook^{2,3}, Joost A.G.

5 Riksen¹, Katharina Jovic¹, Jasmijn Schouten¹, Maarten Steeghs¹, Yiru A. Wang⁴, Jana J.

6 Stastna⁴, L. Basten Snoek^{1,5}, Simon C. Harvey⁴, Jan E. Kammenga^{1*}

7

8 1: Laboratory of Nematology, Droevedaalsesteeg 1, 6708 PB, Wageningen University and

9 Research, The Netherlands.

10 2: Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois,
11 United States of America

12 3: Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United
13 States of America.

14 4: Biomolecular Research Group, School of Human and Life Science, Canterbury Christ
15 Church University, Canterbury CT1 1QU, UK

16 5: Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, The
17 Netherlands

18

19 *corresponding authors (mark.sterken@wur.nl, jan.kammenga@wur.nl)

20

21 Keywords: introgression lines, QTL mapping, *Caenorhabditis elegans*, lifespan, heat shock,
22 gene expression, genetic interaction

23 **Abstract**

24 Quantitative genetics seeks to understand the role of allelic variation in trait differences.
25 Introgression lines (ILs) contain a single genetic locus introgressed into another genetic
26 background, and are one of the most powerful quantitative trait locus (QTL) mapping designs.
27 However, albeit useful for QTL discovery, this homogenous background confounds genetic
28 interactions. Here, we created a novel IL population, complementary to a previously created
29 population, which enables identification of genetic interactions in ILs. The novel IL_{CB4856}
30 panel was made by crossing divergent strains of the model nematode *Caenorhabditis elegans*
31 (N2 and CB4856). The IL_{CB4856} panel comprises a population of 145 strains with sequencing
32 confirmed N2 introgressions in a CB4856 background from which a core set of 87 strains
33 covering the entire genome was selected. We present three experiments demonstrating the
34 power of the complementary IL panels. First, we performed QTL mapping identifying new
35 regions associated with lifespan. Second, the existence of opposite-effect loci regulating heat-
36 stress survival is demonstrated. Third, by combining IL_{N2} and IL_{CB4856} strains, an interacting
37 expression QTL was uncovered. In conclusion, the complementary IL panels are a unique and
38 ready-to-use resource to identify, resolve, and refine complex trait architectures in *C. elegans*.

39 **Introduction**

40 In the last decade, many advances have been made in quantitative genetics using
41 *Caenorhabditis elegans*, putting it at the forefront of the study of natural genetic variation (1).
42 The most frequently used strains for exploring natural genetic variation in *C. elegans* are
43 called N2 (Bristol) and CB4856 (Hawaii). These two strains differ in 176,543 single
44 nucleotide variants 256,747 insertions-deletions (2-4). These polymorphisms also translate to
45 differences in phenotypic traits, many of which were identified using genetic crosses (1).
46 Many of these genes were identified using a combination of recombinant inbred lines (RILs)
47 and introgression lines (ILs). These extensive discoveries illustrate how ILs are excellent tools
48 for dissection of complex traits, but only a single genome-wide IL panel exists for *C. elegans*
49 at this time.

50 Many quantitative genetics studies in *C. elegans* that focus on gene identification start
51 with a two-step approach: first recombinant inbred lines (RILs) are used, followed by
52 introgression lines (ILs) (5). RILs are lines that form a genetic mosaic of both parental
53 genomes, whereas ILs consist of small segments of one parental strain introgressed into the
54 genetic background of the other parental strain. In the RIL-IL approach, first a quantitative
55 trait locus (QTL) is identified using RILs, followed by confirmation and fine mapping using
56 ILs (for examples, see *e.g.*: (5-9)). Although this paradigm is used in many QTL studies
57 where such populations can be established, different approaches do exist such as
58 chromosome-substitution populations or whole-genome IL populations (10-14). In studies
59 using whole-genome IL populations, it has generally been noted that ILs are more sensitive
60 for small-effect QTL compared to RILs (11,15-19). The reason ILs are more sensitive lies in
61 the reduction of genetic diversity which enables direct comparison of isolated genomic
62 regions against the parent background; genetic variation is isolated to the introgression.

63 However, whole-genome ILs panels are generally less informative on the exact location of the
64 QTL, because they contain fewer genetic cross-overs than RIL panels.

65 One of the major challenges in quantitative genetics is the detection (or the inference)
66 of the contributions of multiple loci to trait differences. The existence of pervasive epistasis
67 for complex traits has been hinted upon in many studies (for a review see (20)). Still, it
68 remains prohibitively challenging to map and quantify genetically interacting loci (1,21-23).
69 Interestingly, ILs are potentially suitable for uncovering such genetic interactions. However,
70 in a single-background introgression line population, the locus-background interactions are by
71 definition entangled. Therefore, the current genetic panels present limited options to detect
72 and verify genetic interactions. Complementary IL populations (containing introgressions
73 from parent A in genetic background B and vice versa) would be of great value here, because
74 these can detect loci-background interactions. In a combined, complementary IL population,
75 loci-background interactions can be mapped when adjacent ILs overlap and be distinguished
76 from closely linked additive effects or interactions. Thus, adding a population with the
77 complementary genetic background can further elucidate the genetic architecture of traits, as
78 has already been demonstrated for specific QTL (e.g. (9,24,25)).

79 Here, we constructed a new IL population with N2 segments introgressed into a
80 CB4856 genetic background (IL_{CB4856}). This population complements a previously
81 constructed IL_{N2} population and consists of 145 strains with sequencing-confirmed
82 introgressions and a core set of 87 strains covering the entire genome. This makes *C. elegans*
83 the first organism for which a set of complementary whole-genome IL panels is available. We
84 present power simulations for QTL detection and show experimentally that this population
85 can identify multiple QTL for lifespan (a notoriously complex trait). Furthermore, we
86 demonstrate that the combination of the IL_{CB4856} and IL_{N2} panels can uncover genetic
87 interactions with distant loci for heat-stress survival and the expression of the gene *clec-62*.

88 Together, our research provides a toolset for uncovering and mapping the existence of
89 complex genetic architectures in *C. elegans*.

90 **Material and methods**

91

92 *Strains and maintenance*

93 The starting strains for introgression line construction were recombinant inbred lines (RILs)
94 with N2 and CB4856 parents, namely: WN001, WN007, WN025, WN068, WN071, and
95 WN110 (26). Strains were kept on NGM plates seeded with *Escherichia coli* OP50 and
96 culturing temperatures used during the crosses were 12°C, 16°C, or 20°C, depending on the
97 desired speed of population growth (27).

98

99 *Crossing scheme*

100 To generate the IL_{CB4856}, we divided crosses into two stages (**Supplementary table 1**). The
101 first stage was used for most loci, where a RIL male was back-crossed to a CB4856
102 hermaphrodite to ensure the presence of CB4856 mitochondria in the F1. This step was
103 followed by a second stage cross with CB4856 males to enable the integration of homozygous
104 CB4856 genotypes at the *peel-1 zeel-1* incompatibility locus on chromosome I in the F2 (28).
105 The exception were strains with WN001 as a parent, where we wanted to obtain coverage of
106 the *peel-1 zeel-1* locus. For WN001 crosses, the second cross was initially omitted.
107 Subsequently, selected genotyping was conducted in the F3 (4-9 markers; **Supplementary**
108 **table 2**), screening for strains with most CB4856 loci and absence of the N2 genotype at the
109 *peel-1 zeel-1* locus.

110 Next, selected strains were inbred and selected further to obtain as many homozygous
111 CB4856 loci as possible (for 5-12 generations). If a desired strain contained more than one N2
112 locus, further back-crosses with CB4856 males were conducted until only one detectable N2
113 locus remained in an otherwise CB4856 genotypic background. Finally, the strains were
114 inbred by transferring single hermaphrodites to new NGM plates for at least 10 generations.

115 In this way, 154 ILs were created initially. These ILs have been cryopreserved along with the
116 parental strains. Ultimately, after genotyping by low-coverage whole-genome sequencing we
117 could verify the introgressions in 145 IL_{CB4856} strains and selected a core set of 87 unique
118 introgression lines covering the entire genome (**Supplementary table 3**).

119

120 *Genotyping by fragment length polymorphisms*

121 Initial genotyping (during the crossing of the strains) was PCR-based using primer pairs that
122 detect insertions-deletion variants between the CB4856 and N2 strains (4). In total, 41 primer
123 pairs were optimized with a bias for covering loci with a high-recombination frequency
124 (**Supplementary table 2**) (29). The selection criteria for generating the primer pairs were: (i)
125 the deletion occurred in the CB4856 strain, (ii) the deletion is larger than 25 bp and shorter
126 than 150 bp, and (iii) it is not located in a repetitive region. All primers have been developed
127 with Primer3 (primer3-win-bin-2.3.6) on the 1000 bp up- and downstream of the deletion
128 (30). Primer3 was used with standard settings, selecting three primers in the size ranges of:
129 100-150 bp, 200-250 bp, 300-350 bp, 400-450 bp, 500-550 bp, 600-650 bp, 700-750 bp, and
130 800-850 bp. The annealing temperature was selected between 58°C and 60°C. The specificities
131 of the primers were tested using BLAST (ncbi-blast 2.2.28 win64) against WS230 (settings:
132 blastn –word_size 7 –reward 1 –penalty -3) (31). Only primers with fewer than five hits were
133 considered for further selection. Final selection of the primers was based on the presence of a
134 visible amplicon of the expected size after PCR of the N2 and CB4856 strains
135 (**Supplementary figure 1**) and detection of heterozygous strains.

136 For genotyping during crossing, DNA was isolated from single adults that had
137 generated offspring. Nematodes were lysed at 65°C for 30 minutes using a custom lysis buffer
138 (32), followed by 5 minutes at 99°C. Genotyping PCRs were performed with GoTaq using the
139 manufacturers recommendations (Promega, Catalogue No. M3008; Madison, USA). The

140 annealing temperature was 58°C (30 seconds), with an extension time of 1 minute for 40
141 cycles. All samples were run on 1.5% agarose gels stained with ethidium bromide. Ultimately,
142 a low-resolution genetic map was constructed for 154 ILs based on the insertion-deletion
143 markers.

144

145 *Sequencing: DNA isolation, library construction, and sequencing*

146 DNA was isolated from all the 154 initially generated IL_{CB4856}. Furthermore, DNA was
147 isolated from the six parental N2xCB4856 RILs: WN001, WN007, WN025, WN068,
148 WN071, and WN110. We also sequenced an additional 29 IL_{N2} that were generated
149 previously (14): WN203, WN204, WN206, WN208, WN210, WN213, WN214, WN218,
150 WN222, WN224, WN231, WN233, WN236, WN237, WN238, WN240, WN247, WN249,
151 WN253, WN256, WN259, WN261, WN262, WN265, WN269, WN272, WN282, WN283,
152 and WN285. Furthermore, we sequenced the two parental strains N2 and CB4856 as
153 reference. A subset of 15 of the IL_{CB4856} population – covering parts of chromosomes I and IV
154 – has been published previously (**Supplementary table 3**) (33,34).

155 The DNA isolation and library construction have been reported on previously (33).
156 Shortly, genomic DNA was obtained from populations grown on 9 cm NGM plates. The
157 Qiagen DNeasy Blood & Tissue Kit (Catalogue No. 69506; Hilden, Germany) was used for
158 DNA isolation. DNA was quantified by Qubit. For each sample, a total of 0.75 ng of DNA
159 was taken as input for the library construction. The libraries were sequenced on an Illumina
160 MiSeq using a 300 cycle kit. Data have been deposited under accession number SRP154243
161 in the NCBI Sequence Read Archive (SRA; <https://www.ncbi.nlm.nih.gov/sra>).

162

163 *Genotype calling using hidden Markov model and construction of the genetic map*

164 The low-coverage sequencing data were used for variant calling using a hidden Markov
165 model, as described previously (35,36). Subsequently, the hidden Markov model genotype
166 calls were filtered for low-coverage areas (<100 supporting calls) and for introgressions less
167 than $1*10^5$ base pairs, which are unlikely to occur often given the crossing scheme. From the
168 154 initially created ILs, we could confirm the presence of an introgression in 145 ILs and a
169 core set of 87 ILs was selected. The core set covered as many loci as possible with
170 introgressions with as few multi-introgression ILs as possible. Ultimately, the genetic map of
171 the new population and the additionally sequenced strains were integrated with the previously
172 constructed and sequenced RILs (4,26) IL_{N2} strains (4,14) from the Laboratory of
173 Nematology, Wageningen University. This genetic map with 1152 markers covers the
174 recombination events in the whole set of strains (**Supplementary table 4**).

175

176 *Lifespan experiment*

177 We measured lifespan of the 87 IL_{CB4856} strains in the core set. Each experiment was started
178 by transferring 10 L4 animals to three independent plates per genotype (30 animals per strain
179 in total). The two parental strains were tested on nine plates (90 animals in total). Plates were
180 screened daily until reproduction ended. Animals that bagged and those that were lost from
181 the assay (i.e. that climbed to the sides of the plate) were censored from the data. For the
182 IL_{CB4856} strains WN322, WN342, and WN351, all three replicates were not successful. For
183 QTL mapping, we summarized the data to the mean, median, minimum, maximum, and
184 variance in lifespan. These summarized traits were used in further analyses (**Supplementary**
185 **table 5**).

186

187 *Heat-shock survival experiment*

188 We analysed previously published data to identify heat-stress survival QTL in *C. elegans*
189 (37). The goal of the analysis was to test whether loci on chromosome IV could be associated
190 with heat-stress survival. The data from Jovic *et al.* consist of survival measurements in 33
191 CB4856 x N2 RILs and 71 IL_{N2} strains (**Supplementary table 7**). For each strain, 32 animals
192 were measured together on one plate on average. These animals were heat-shocked for four
193 hours at 35°C, 48 hours after age-synchronization of the population by bleaching (see (37)).
194 We took the data for survival at 72, 96, and 216 hours for mapping QTL.

195 As the previously published dataset indicated chromosome IV might be involved in
196 heat-stress survival, we designed a replicated experiment. We tested 17 IL_{N2}, 20 IL_{CB4856}, and
197 the N2 and CB4856 parental strains for heat-shock survival (**Supplementary table 8**). Each
198 experiment was started by transferring a food-deprived population to a new 9 cm NGM dish,
199 where the population was allowed to develop for ~60h at 20°C. After that period, the
200 population consisted of egg-laying adults, from which eggs were isolated by bleaching for
201 developmental synchronization (day 0) (38). Isolated eggs were grown for 48 h at 20°C. At
202 this time, 20-40 nematodes were transferred to 6 cm NGM plates containing 100 µl FUDR,
203 which inhibits reproduction (39). Two plates per strains were generated, one as a control
204 (remaining on 20°C) and one receiving a four hour 35°C heat-shock immediately after transfer
205 (40). At 72h, 96h and day 216h of the experiment, the number of surviving and dead
206 nematodes were counted. After gathering the data, we only included samples with greater than
207 10 animals found at the 72 hour observation (upon heat-shock, animals tend to crawl to the
208 top of the plates where they desiccate). Each strain was assessed at least three times per
209 treatment, parental lines were tested more frequently (n = 10 for N2 and n = 12 for CB4856,
210 post filtering).

211

212 *Experiment to measure gene expression of clec-62*

213 We used the IL_{CB4856} population to test the QTL for the expression of *clec-62*, for which
214 multiple QTL were uncovered in a previous study in the IL_{N2} panel (41). Expression of *clec-*
215 *62* was measured in a similar setup as in two previous eQTL experiments (41,42). In short, we
216 collected 48-hour old L4 nematodes of N2 (6 replicates), CB4856 (6 replicates) and a single
217 replicate for 46 IL_{CB4856} strains, 50 IL_{N2} strains, and 52 N2xCB4856 RILs grown at 20°C
218 (**Supplementary table 9**). The strains were tested in three experimental batches and each
219 batch contained a randomized selection of strains and both parental lines in duplicate.

220 The RNA was isolated from these samples using a Maxwell16 LEV Plant RNA kit
221 using the recommended protocol with one modification, namely adding 20 µL proteinase K to
222 the lysis step after which the samples were incubated for 10 minutes at 65°C whilst shaking at
223 900 rpm (43). Some samples were removed from the analysis afterwards because of low RNA
224 concentrations and/or RNA degradation (confirmed by gel electrophoresis). Subsequently,
225 cDNA was constructed using a Promega GoScript reverse transcriptase kit and *clec-62*
226 expression was measured using RT-qPCR. For the RT-qPCR, two primer pairs were designed
227 for amplification of the two isoforms (A and B) of *clec-62*: P_MS_CLEC62_A_F (5'
228 CGACACTTCATTCCCCGAGC 3'), P_MS_CLEC62_A_R (5'
229 TTAAGCTGGAACGGCACCAAC 3'), P_MS_CLEC62_B_F (5'
230 CGCGTTGGTGCCGCTTAAC 3') and P_MS_CLEC62_B_R (5'
231 GATTGCTGATTGAGGACGGCG 3'). Gene expression of *clec-62* was normalized against
232 the reference genes *rpl-6* and *Y37E3.8* as previously described by (43). After the experiment
233 and quality control of the qPCR data, 5 N2 replicates, 6 CB4856 replicates, 41 IL_{CB4856}, 42
234 IL_{N2}, and 47 RIL samples were analysed further.

235

236 *QTL mapping in the IL populations*

237 We used three approaches for QTL mapping in the IL population(s): (i) to an individual IL,
238 (ii) to a single genetic background using bin mapping (14), and (iii) to two backgrounds using
239 bin mapping with an interaction term. The mapping to an individual IL uses a linear model
240 where each IL is compared to the parent genetic background, correlating trait differences to
241 the introgression region covered by the particular IL. To correlate trait values to the
242 introgression, the linear model

$$y = I + e$$

243 where y is the trait and I is the presence of the introgression was used. Each IL was tested
244 with this model versus the genetic-background parent (e.g., for an IL_{CB4856} strain versus the
245 CB4856 strain). The obtained p-values were corrected for multiple testing by using the
246 p.adjust function in R with the Benjamini-Hochberg method (44).

247 The single-background bin mapping assumes that a single QTL exists per overlapping
248 set of introgressions (14). Here, the ILs with an introgression at a specific marker were tested
249 versus the genetic background strain. Similar to the individual introgression, a linear model

$$y = x_I + e$$

250 where y is the trait and x_I is the introgression genotype at a given marker is used. For each
251 marker, only the ILs with an introgression are compared to the genetic background parent
252 (e.g., for an IL_{CB4856} strain versus the CB4856 strain). The significance threshold was
253 calculated using a permutation approach with 1,000 permutations to determine whether a
254 significance fell below a pre-set false-discovery rate ($q = 0.05$).

255 The two-background bin mapping also assumes that a single QTL exists per
256 overlapping set of introgressions. However, because both parental backgrounds were
257 considered, the interaction between the two backgrounds can also be solved

$$y = x_I + x_{BG} + x_I \times x_{BG} + e$$

258 Where y is the trait and x_I is the introgression genotype at a given marker, and x_{BG} is the
259 genetic background of the IL. Also here, for each marker, only the ILs with an introgression
260 are compared to the genetic background parent (e.g., for an IL_{CB4856} strain versus the CB4856
261 strain). The significance threshold was calculated using a permutation approach with 1,000
262 permutations to determine whether a significance fell below a pre-set false-discovery rate ($q =$
263 0.05).

264 Using the outcome of the bin mapping models QTL peaks were called using a 1.5
265 LOD-drop and under the condition that two peaks should be at least $1*10^6$ base pairs apart.

266

267 *QTL mapping in the RIL population*

268 Mapping in the RIL population was conducted as described previously (33,34). In short, we
269 fitted the trait data to the linear model

$$y_i = x_{i,j} + e_{i,j}$$

270 where y is the trait as measured in RIL i , x is the marker of RIL i at location j , and e is the
271 residual variance. The 1152 marker set was used for mapping, and the significance was
272 determined by a permutation approach using 1,000 permutations ($q = 0.05$).

273

274 *Power analysis in the IL populations*

275 To determine the statistical power of bin mapping with the IL_{CB4856} and both IL panels, we
276 used a simulation approach. QTL mapping was simulated for two scenarios: (i) using only the
277 IL_{CB4856} panel (87 strains), or (ii) using the combined IL_{CB4856} and IL_{N2} panels. To test the
278 power for QTL detection, simulated data was used as input for the analyses. First, we
279 simulated scenarios of a single QTL, varying the amount of variance explained (0.2, 0.25, ...,
280 0.8) and various levels of replication in the RILs and ILs (2, 3, ..., 15). Second, we mapped
281 the data using a bin mapping approach (as in (14)). Third, we bin mapped using both the IL_{N2}

282 and IL_{CB4856} populations enabling to detect additive QTL and local interacting QTL. QTL
283 were mapped using the methods described above and compared to the simulated data.

284

285 *Heritability analysis*

286 The broad-sense heritability (H^2) was calculated as in (41,45,46), where

$$H^2 = \frac{\sigma_F^2 - \sigma_P^2}{\sigma_F^2}$$

287 here H^2 was the broad-sense heritability, σ^2 is the variance of either the population F (RIL,
288 IL_{N2}, or IL_{CB4856}) or the parental strains P (N2 and CB4856). Where the variance of the
289 parental populations was the pooled variance and used as an estimate of the measurement
290 error. The significance threshold was determined using a permutation approach with 1,000
291 permutations per trait. A significance of $q = 0.01$ was taken to compensate for the upper-
292 bound estimation this approach gives.

293 The narrow-sense heritability was calculated using a REML approach as provided by
294 the “heritability” package (47-49). The significance threshold was determined by 1,000
295 permutations per trait.

296

297 *Software, scripts, and data*

298 Data were analysed using R (version 3.4.2, windows x64) in RStudio (version 1.1.383) with
299 custom written scripts (50,51). The tidyverse packages (version 1.2.1) were used for
300 organizing and plotting data (52). All scripts and data are available at
301 https://git.wur.nl/published_papers/sterken_2022_cb4856-ils. In particular, the scripts include
302 a set of functions for QTL mapping and power simulations in the IL populations.

303 **Results**

304

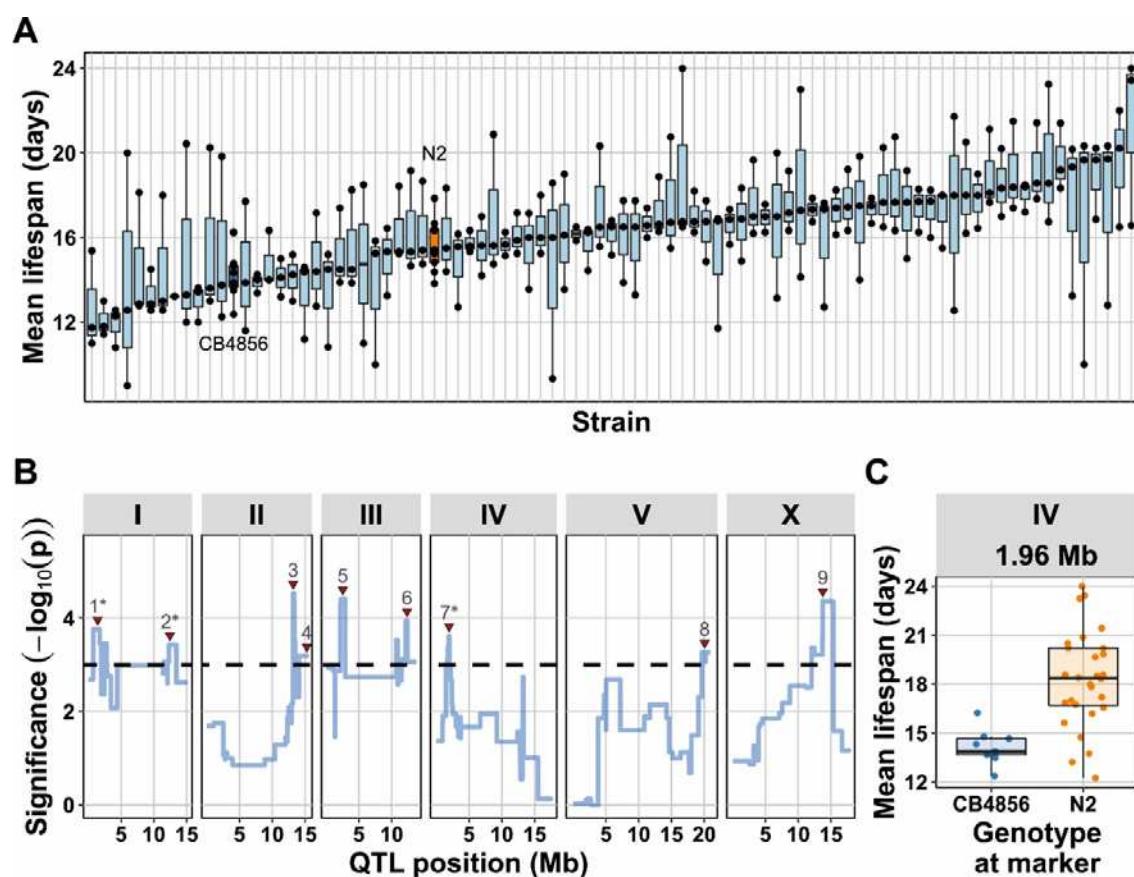

305 *Genetic characteristics of the IL_{CB4856} population*

306 A genome-wide population of introgression lines containing an N2 segment in a CB4856
307 background was constructed (IL_{CB4856}). This set was created by backcrossing a set of six
308 recombinant inbred lines (26) with the CB4856 strain (**Supplementary table 1; Figure 1A**).
309 During the crosses, the genotypes were monitored using 41 amplification fragment length
310 polymorphism (FLP) markers (**Supplementary table 2; Supplementary figure 1**) and
311 afterwards all 154 selected IL strains were whole-genome sequenced (**Supplementary table**
312 **3**). A total of 145 strains with sequence-confirmed N2 introgressions into the CB4856 strain
313 was obtained, of which 99 contained a single N2 introgressed region in an otherwise CB4856
314 genetic background, 37 ILs contained two N2 introgressed regions, and nine strains contained
315 multiple N2 introgressed regions (**Supplementary table 3**). From this set, a core set of 87
316 strains was assembled, covering the entire *C. elegans* genome with N2 segments in an
317 otherwise CB4856 genetic background (**Figure 1B**). The median introgression size of this
318 population was 3.13 Mb, with the smallest region spanning less than 0.02 Mb and the largest
319 region spanning 16.09 Mb. Each chromosome was covered by regions found in a minimum of
320 seven ILs (chromosome III) and a maximum of 20 ILs (chromosome IV). In conclusion, this
321 set of strains can be used as resource for QTL exploration in *C. elegans*.

322 To facilitate integrated analyses using IL populations, we created and tested the power
323 of a combined genetic map of the new population with our previously constructed N2-
324 background IL population (IL_{N2}) (14). To complete the IL_{N2} genetic map, we sequenced 29 of
325 the IL_{N2} strains, to supplement the 57 IL_{N2} strains that were sequenced previously (4). By
326 integrating the IL_{CB4856}, IL_{N2} with the genetic map of the Wageningen N2xCB4856 RIL
327 population (4,26), we constructed a map with 1152 informative markers, spanning 389 strains

328 (Supplementary table 4). We used this map for power analyses of the core sets of the two IL
329 populations. With the establishment of an IL_{CB4856} population, we could simulate its ability to
330 detect QTL when combined with the IL_{N2} population (Supplementary figure 2; Figure 1C).
331 Using simulations, we found that three replicates are sufficient to detect 50% of the
332 interacting QTL explaining at least 35% of variance. Therefore, this analytical design can
333 effectively uncover local genetic interactions.

334


Figure 1: A novel N2>CB4856 introgression line panel and its mapping properties. (A) Schematic overview of the crossing scheme to create IL_{CB4856} strains. N2xCB4856 RIL strains were (back)crossed with CB4856 over several generations to obtain IL_{CB4856} strains with single introgressions. (B) The panel consisting of 87 strains covering the entire genome with N2 introgressions in a CB4856 genetic background. On the x-axis, the physical location is shown in million bases (Mb) split-out per chromosome. On the y-axis, the strains are shown (no label, each row represents a single strain). The blue colours indicate the CB4856 genotype, and the orange colours indicate the N2 genotype. (C) Power analysis of the

detection of genetic interactions when combining the IL_{CB4856} with the previously constructed IL_{N2} panel. On the x-axis, the number of replicates per IL is plotted against the percentage of the simulated QTL detected on the y-axis. The colours indicate the amount of variance explained (h^2) per simulated interaction QTL.

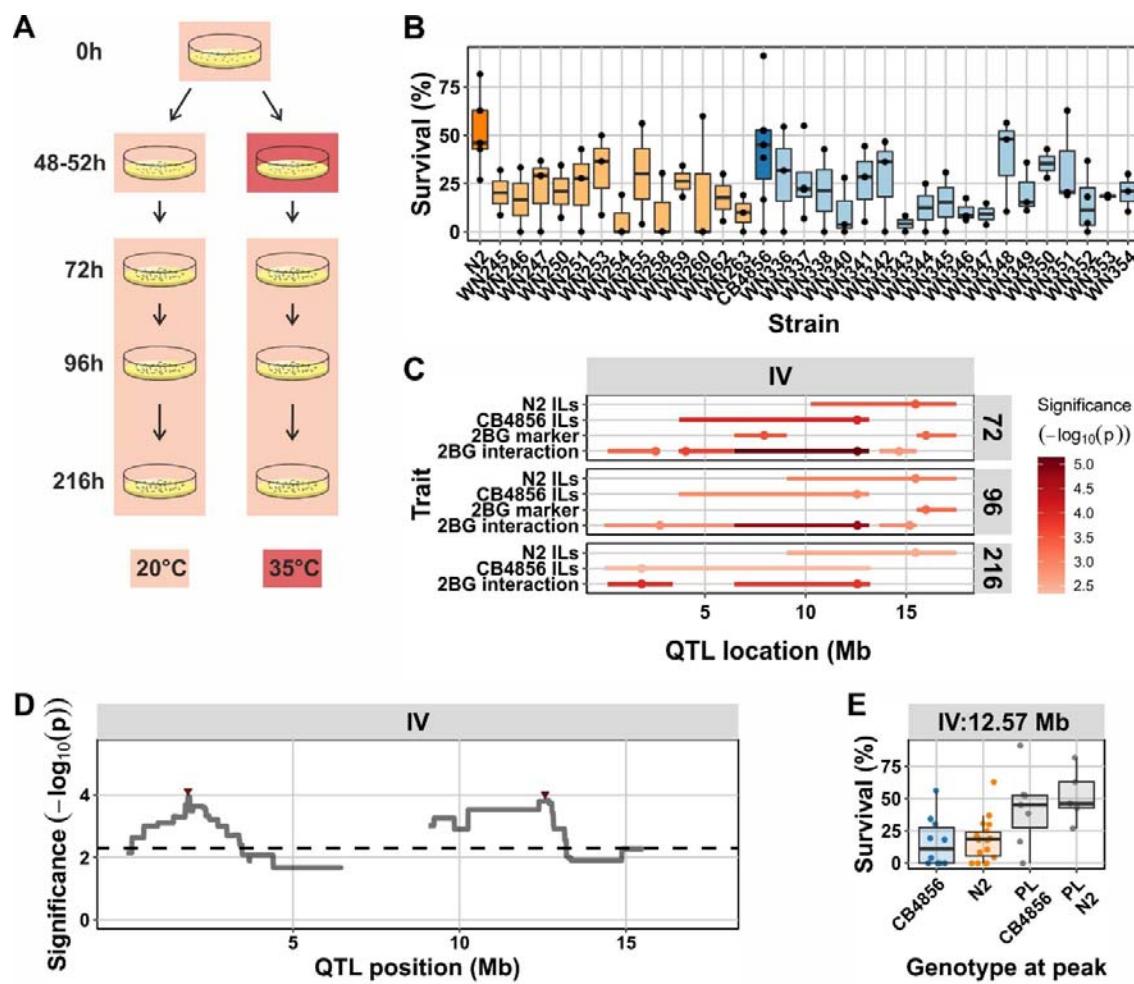
335

336 *QTL mapping in the IL_{CB4856} panel uncovered nine lifespan QTL*

337 To investigate QTL detection using real data in the newly generated IL_{CB4856} strains, we
338 performed a QTL mapping experiment for lifespan (**Supplementary table 5**). We picked this
339 trait because it was tested previously in the IL_{N2} population and would allow us to compare
340 the QTL architectures (14). In the previous panel, six QTL for mean lifespan were detected.
341 When we measured lifespan, we found that the N2 strain lived longer than the CB4856 strain
342 on average, which was similar to previous results (**Figure 2A**) (14). After bin mapping, we
343 detected 42 QTL for the various summary statistics mapped, including nine QTL related to
344 mean lifespan (**Supplementary figure 3; Supplementary table 6; Figure 2B**). Of these nine
345 mean-lifespan QTL, three (1, 2, and 7) were also detected in the IL_{N2} population, including a
346 QTL on chromosome IV. Interestingly, the effect direction (shorter mean lifespan related to
347 CB4856) was recapitulated in the IL_{CB4856} population (**Figure 2C**), indicating that we
348 uncovered an additive QTL on the right side of chromosome IV.

Figure 2: Lifespan analysis in the IL_{CB4856} panel. **(A)** Overview of the mean lifespan over all 87 IL_{CB4856} strains and the N2 and CB4856 parental lines. Each dot represents a plate (n = 10 animals per plate), the box plots are used as visual aids. Most of the ILs had longer lifespan than the two parental lines. **(B)** The QTL profile for the mean lifespan mapping. On the x-axis, the physical position in million bases (Mb) is shown. On the y-axis, the statistical significance of the association. The dashed horizontal line indicates the FDR = 0.05 threshold (based on 1,000 permutations). The red triangles indicate the peaks that were called, the asterisk indicates that this peak was mapped previously in the IL_{N2} panel **(C)** The trait values under the chromosome IV peak (7), where we found that the ILs with an introgression on the site (N2 genotype) had an increased lifespan compared to the CB4856 parental strain.

349


350 *QTL fine mapping using the IL_{CB4856} panel identified 18 heat-stress survival QTL on*
351 *chromosome IV*

352 The most common usage of ILs is in fine mapping or experimental validation of previously
353 identified QTL. Typically, once a QTL is detected in a RIL panel, a selected set of ILs can be
354 used to validate a QTL detected in a mapping experiment (for examples, see *e.g.*: (5-9)). We
355 used a set of ILs that could validate the detected QTL on chromosome IV in the heat-stress

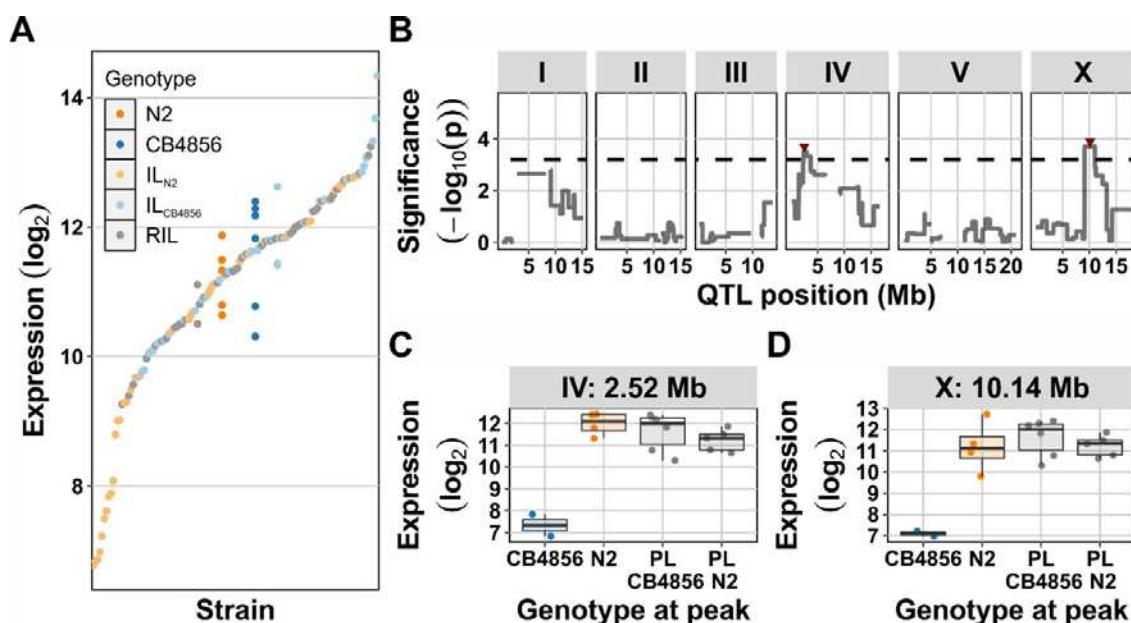
356 response. Chromosome IV was previously implicated in fitness (reproduction) after heat
357 shock, and a heat-shock expression QTL hotspot was found on chromosome IV (40-42). To
358 further verify the QTL, we performed a QTL analysis on previously published data from a
359 heat-shock survival experiment in the IL_{N2} panel (**Supplementary table 7**) (37). In this
360 experiment, we found only one chromosome IV QTL associated with heat-stress survival
361 (**Supplementary figure 4; Supplementary table 6**). We set out to investigate (i) whether this
362 QTL was robust and (ii) whether it was additive or implicated in a genetic interaction with the
363 genetic background.

364 We performed a heat-stress survival experiment on ILs that together covered
365 chromosome IV: 17 IL_{N2} strains and 20 IL_{CB4856} strains. We measured survival of four hour
366 exposure to 35°C at 24, 48, and 168 hours after the start of the exposure (**Supplementary**
367 **table 8; Figure 3A**). We observed that the ILs typically showed a decreased survival when
368 compared with the parental lines (**Figure 3B**). When we used these data for bin mapping, 18
369 heat-stress survival QTL were uncovered on chromosome IV (**Supplementary table 6**;
370 **Figure 3C**). One locus, a QTL around 12.6 Mb was associated with a decrease in survival in
371 both N2 and CB4856 ILs, indicating the existence of opposite-effect QTL in that region
372 (**Figure 3D and E**). Therefore, we concluded that the use of strains from both IL panels is
373 especially useful when mapping traits with complex genetic architectures.

374

Figure 3: Heat-stress survival in ILs covering chromosome IV. **(A)** Experimental setup of the heat-stress survival experiment. **(B)** The survival one week after 4 hour exposure to a 35°C heat-shock. Each dot represents a plate ($n = 20 - 40$ animals per plate) and the box-plots are added as visual aide. **(C)** Overview of all QTL mapped in the IL populations using various types of models (N2 ILs: IL_{N2} bin mapping; CB4856 ILs: IL_{CB4856} bin mapping; 2BG marker: 2-background mapping model variance captured by marker; 2BG interaction: 2-background mapping model variance captured by the interaction marker-background). On the x-axis, the physical position in million bases (Mb) is shown. The colour scale indicates the significance of the association. Only significant associations are shown (FDR = 0.05; based on 1,000 permutations). **(D)** The QTL profile of the 2BG interaction term, the two red triangles indicate the locations of the peaks. On the x-axis, the physical position in million bases (Mb) is shown, on the y-axis the significance. The dashed horizontal line indicates the threshold (FDR = 0.05; based on 1,000 permutations). **(E)** The split-out of the right peak from panel (D). Where both parental strains have a similar survival percentage, the IL_{N2} (CB4856 introgression at the locus) and the IL_{CB4856} (N2 introgression at the locus) display a lower survival percentage.

376 *Whole-genome QTL mapping uncovering an N2-background-dependent QTL for clec-62*
377 *gene-expression*


378 One final way in which the IL_{CB4856} panel can be used, is by combining data from different
379 genetic panels, especially the IL_{N2} and N2xCB4856 RIL populations. For this case, we
380 investigated an expression QTL for the gene *clec-62*, which we previously picked up in the
381 IL_{N2} panel (41). Previously, no expression QTL in N2xCB4856 mapping populations had
382 been identified (42,53-56). We set out to verify previous QTL detection in the IL_{N2} panel
383 (41), as well as explore the existence of eQTL for *clec-62* in the IL_{CB4856} population.

384 We measured the expression of the two isoforms of *clec-62* in 47 RILs, 42 IL_{N2}
385 strains, and 41 IL_{CB4856} strains by RT-qPCR (**Figure 4A; Supplementary table 9**) and found
386 that *clec-62A* expression was 3.5-fold higher than *clec-62B*. The expression levels of the two
387 isoforms were highly correlated (**Supplementary figure 5A**; Pearson $R = 0.94$; $p < 1^{-15}$) and
388 therefore the analysis was performed using the higher expressed isoform A. We also found a
389 high correlation between the expression in the previous microarray-based experiment on the
390 IL_{N2} population, but not on the RIL population (**Supplementary figure 5B; Supplementary**
391 **table 10**). Analysis of broad-sense and narrow-sense heritabilities in the three populations
392 showed there was only significant broad-sense heritability for *clec-62* expression in the IL_{N2}
393 panel (H^2 estimates 0.86 – 0.98; $q < 0.01$; **Supplementary table 11**). Significant narrow-
394 sense heritability was only found in the microarray data of the IL_{N2} panel ($h^2 = 0.56$; $q <$
395 0.01), which is probably due to the higher number of strains included in that experiment.
396 Altogether, we conclude that genetic variation in *clec-62* expression can only be found in an
397 N2 genetic background and no QTL should exist in the RIL and the IL_{CB4856} population.
398 Therefore, the variation in *clec-62* expression must be explained by genetic interactions.

399 QTL mapping of *clec-62* expression indeed identified QTL interacting with the
400 genetic background. As predicted, no QTL were detected in the RIL and the IL_{CB4856}

401 populations (**Supplementary figure 5C**). However, when mapping using the IL_{N2} panel, a
402 highly similar QTL profile for *clec-62* expression as measured by RT-qPCR and microarray
403 was found (**Supplementary figure 5C; Supplementary table 6**). When using the combined
404 IL_{N2} and IL_{CB4856} panels, we identified two loci with significant interaction effects: one on
405 chromosome IV and one on chromosome X (**Supplementary table 6; Figure 4B**). These loci
406 were both associated with a low expression when a CB4856 introgression is present (**Figure**
407 **4C and D**). Overall, we conclude that the interaction of CB4856 introgressions with the N2
408 genetic background drives the *clec-62* expression QTL.

409

Figure 4: Expression of *clec-62* is due to QTL interacting with the N2 genetic background
(A) The expression of *clec-62* as measured by qPCR in N2 (n = 5), CB4856 (n = 6), and three
inbred panels: RIL (n = 47), IL_{N2} (n = 42), and IL_{CB4856} (n = 41). The log₂-normalized
expression is shown per strain. (B) Profile of the significance of the interaction with the
genetic background as mapped in the two IL panels. On the x-axis the physical position is
shown in million bases (Mb). On the y-axis the significance of the association is shown
(-log₁₀(p)). The dashed horizontal line indicates the FDR = 0.05 threshold. The red triangles
indicate QTL-peaks. (C) The split-out of the chromosome IV peak from panel (B). Where
both parental strains and the IL_{CB4856} population have a similar *clec-62* expression, the IL_{N2}
(CB4856 introgression at the locus) has a lower *clec-62* expression. (D) As in (C), but for the

chromosome X peak.

410

411 **Discussion**

412 Here we presented a novel whole-genome N2>CB4856 IL population in *C. elegans*. This new
413 IL_{CB4856} population is complementary to the previous IL_{N2} population (14). The construction
414 of the novel panel was facilitated by the availability of the first high-quality CB4856 genome
415 (4), allowing for the selection of insertions/deletions as genetic markers which could be used
416 during the crossing process. Genotyping by low-coverage whole-genome sequencing
417 provided a detailed genetic map that allows the use of the novel population in various QTL
418 approaches. We present three such approaches in this paper: (i) mapping lifespan using the
419 panel on its own, (ii) further dissection of a previously implicated region in heat-stress
420 resistance, and (iii) exploration of *clec-62* expression regulation using all three available
421 N2xCB4856 populations. These cases show that the IL_{CB4856} panel empowers understanding
422 the role of natural genetic variation in trait regulation, especially the role of genetic
423 interactions.

424

425 *The IL_{CB4856} panel for use in QTL mapping*

426 The IL_{CB4856} panel is mostly free from large-effect laboratory-derived alleles that segregate in
427 the IL_{N2} panel. The crossing scheme used to obtain the IL population considered results
428 obtained from quantitative genetics studies in *C. elegans*. The scheme accounted for the *peel-1/zeel-1*
429 locus (28) leading to marker distribution distortions in N2xCB4856 RIL populations
430 (4,26,29). A double back-cross with CB4856 was used to remove the N2 *peel-1/zeel-1* allele,
431 which failed to segregate otherwise (data not shown). As the background of the developed IL
432 population is CB4856, it lacks the N2 laboratory derived alleles, such as *nath-10* (57), *glb-5*
433 (9), and *npr-1* (9,25). Therefore, the new IL_{CB4856} panel may be especially useful if the studied
434 trait might be affected by these pleiotropic and large-effect alleles (58).

435 One of the main strengths of IL populations in comparison to RIL populations lies in
436 the detection of small phenotypic effects. RIL populations are hampered by the residual
437 variance induced by the segregation of multiple QTL (11). In strains with a homogeneous
438 background all QTL are fixed, except the introgressed locus, reducing the residual variance
439 (the experimental variation) per QTL to a minimum. Many studies observed ILs resolve more
440 QTL than RILs (11,15-19) and because the IL_{CB4856} population contains novel breakpoints
441 compared to the IL_{N2} population QTL in these ILs can now also be pinpointed to a narrower
442 locus. Therefore, the IL_{CB4856} population will likely be useful for fine mapping complex traits.
443 Furthermore, the IL_{CB4856} population can serve as a resource for the generation of ILs with
444 even smaller introgressions (19).

445

446 *The compounding benefit of additional mapping populations*

447 We show that complementary IL populations can easily identify genetic interaction dependent
448 on background-effects. As examples, we identified interacting loci for both heat-stress
449 resistance and *clec-62* expression. The reason that genetic interactions can more easily be
450 identified when compared to RIL population (21,22) is that complementary IL populations
451 can place the QTL effect in the context of the genetic background. There are many genome-
452 wide IL populations, including for barley (12), *Arabidopsis* (11,13), tomato (59), maize (60),
453 rice (61), and mice (62). However, to our knowledge there are no genome-wide
454 complementary IL populations and until now observations in complementary ILs have only
455 been made on a small scale. One difficulty of mapping interactions in complementary IL
456 panels is that the partner locus (hiding in the genetic background) cannot readily be
457 pinpointed. Still, QTL mapping in the combined IL_{N2} and IL_{CB4856} panels provides a starting
458 point for investigations into genetic interactions.

459 From the experimental observations we made, we propose that genetic background
460 effects are often overlooked in an IL panel with a single background. In such IL panels, the
461 QTL-background interactions are confounded by definition. In other words: if an interaction
462 with the genetic background exists and determines the trait levels in the individual
463 introgression line, it cannot be distinguished from additive QTL. The homogenous
464 background can lead to different estimations of QTL effect sizes compared to RILs (as
465 reviewed (20)). The cause of this effect is due to the frequency of the genotype at the
466 interacting locus. In an ideal RIL population, the loci are unlinked and therefore both
467 genotypes affect the main effect at the QTL. However, in ILs, the loci are linked and the QTL
468 main effects are therefore affected by the background interaction as exemplified by ILs
469 generated for specific loci (9,24,63). The availability of two complementary IL populations
470 therefore enables QTL dissection on a genome-wide scale.

471 **Acknowledgements**

472 The authors thank Robyn Tanny, Erik Andersen, Beatrice Tan, Tatiana Blokhina, Jenifer
473 Sundar, and Myrthe Walhout for technical support. Erik Andersen is also thanked for
474 feedback on the manuscript. MGS was supported by the Graduate School for Production
475 Ecology and Resource Conservation (PE&RC) and by NWO domain Applied and
476 Engineering Sciences VENI grant (17282). LBS was funded by ALW grant 823.01.001 JEK
477 received support from NIH R01 AA026658.

478

479 **Author contributions**

480 Conceived and designed the experiments: MGS, LBS, JEK. Constructed the panel: MGS,
481 JWvC, JAGR. Sequencing and genetic map construction: DC. Performed experiments: MS,
482 JS, KJ, YAW, JJS, SCH. Analysed the data: MGS, LvS. Wrote the paper: MGS, LvS. All
483 authors edited and commented on the paper.

484 **Supplementary figures and tables**

485

486 **Supplementary figure 1:** Map of the amplification fragment length polymorphisms. For each
487 primer-pair (indicated by the chromosome number and the start location of the deletion in
488 CB4856) the amplicons in N2, CB4856 and the six RILs used for constructing the IL_{CB4856}
489 panel are shown. The 100, 500, and 1000 bp bands of the 1kb+ marker are indicated.
490 Photographs of the gels were stretched to cover the same area.

491

492 **Supplementary figure 2:** Power analysis in the IL_{CB4856} and the combined IL_{N2} and IL_{CB4856}
493 panels. **(A)** Power analysis of bin mapping using the IL_{CB4856} panel core set of 87 ILs. The
494 percentage of simulated QTL detected is plotted versus the number of replicates per IL. The
495 colours indicate the amount of heritable variation simulated in the QTL. **(B)** Power analysis of
496 bin mapping using both the 90 IL_{N2} and 87 IL_{CB4856} core sets. The simulated QTL contained
497 only a marker effect. The percentage detected versus the number of replicates is for the
498 marker-effect in the two-background model.

499

500 **Supplementary figure 3:** A figure of all lifespan QTL mapped. On the y-axis the various
501 summary statistics (maximum, mean, median, and variance) for lifespan are shown. On the x-
502 axis the position of the QTL in million bases (Mb) is shown. The dots indicate the peak of the
503 QTL and the horizontal lines the confidence interval of the peak location. The colours indicate
504 the significance.

505

506 **Supplementary figure 4:** The heat-stress survival QTL mapped in the data obtained from
507 (37). **(A)** the QTL profiles as mapped in the IL_{N2} and the N2xCB4856 RIL population. On the
508 x-axis the physical position is shown in million bases (Mb). On the y-axis the significance of
509 the association is shown (-log₁₀(p)). The dashed horizontal line indicates the FDR = 0.05
510 threshold. The red triangles indicate QTL-peaks. **(B)** The split-out per genotype at the
511 Chromosome IV QTL at 13.2 Mb. The ILs with the CB4856 introgression at the marker are
512 shown versus the measurements in the N2 strain.

513

514 **Supplementary figure 5:** The *clec-62* expression QTL. **(A)** The expression of *clec-62*
515 isoform A versus isoform B as measured by RT-qPCR in the same strains. The expression has
516 been normalized and log₂-transformed. The Pearson correlation coefficient is shown as well
517 as the significance of correlation. The colours indicate the various strains/panels tested. **(B)**
518 the correlation between the expression of *clec-62* as measured by microarray (x-axis) versus
519 RT-qPCR measured *clec-62* isoform A expression. Each dot represents the expression
520 measured in a strain of either the IL_{N2} panel (orange) or RIL panel (grey). The Pearson

521 correlation coefficient is shown, as well as the significance of the correlation. (C) The QTL
522 profiles of *clec-62* expression. On the x-axis the physical position is shown in million bases
523 (Mb). On the y-axis the significance of the association is shown (-log₁₀(p)). The dashed
524 horizontal line indicates the FDR = 0.05 threshold. The red triangles indicate QTL-peaks.
525 Where qPCR data is shown, *clec-62* isoform A was used for analysis.

526

527 **Supplementary table 1:** Description of the crossing setup and generations underlying each
528 IL.

529

530 **Supplementary table 2:** List with the fragment length polymorphism primers used for initial
531 tracking of segments.

532

533 **Supplementary table 3:** Complete list of genotypes of all the Wageningen Nematology
534 strains of the N2xCB4856 RIL, IL_{N2} and IL_{CB4856} panels.

535

536 **Supplementary table 4:** Integrated genetic map for all the Wageningen Nematology strains
537 of the N2xCB4856 RIL, IL_{N2} and IL_{CB4856} panels.

538

539 **Supplementary table 5:** Data of the lifespan experiment in the IL_{CB4856} panel.

540

541 **Supplementary table 6:** Locations and intervals of all QTL mapped for lifespan, heat-stress
542 survival and *clec-62* expression.

543

544 **Supplementary table 7:** Heat stress survival data from (37) that was analysed.

545

546 **Supplementary table 8:** Heat stress survival data from chromosome IV IL_{N2} and IL_{CB4856}
547 strains.

548

549 **Supplementary table 9:** Expression data of the *clec-62* gene as measured by RT-qPCR.

550

551 **Supplementary table 10:** Expression data of the *clec-62* gene as measured by microarray,
552 obtained from (41,42).

553

554 **Supplementary table 11:** Heritability analysis of *clec-62* expression.

555

556 **References**

- 557 1. Evans, K.S., van Wijk, M.H., McGrath, P.T., Andersen, E.C. and Sterken, M.G.
558 (2021) From QTL to gene: *C. elegans* facilitates discoveries of the genetic
559 mechanisms underlying natural variation. *Trends Genet*, **37**, 933-947.
- 560 2. Kim, C., Kim, J., Kim, S., Cook, D.E., Evans, K.S., Andersen, E.C. and Lee, J. (2019)
561 Long-read sequencing reveals intra-species tolerance of substantial structural
562 variations and new subtelomere formation in *C. elegans*. *Genome Res*, **29**, 1023-1035.
- 563 3. Lee, D., Zdraljevic, S., Stevens, L., Wang, Y., Tanny, R.E., Crombie, T.A., Cook,
564 D.E., Webster, A.K., Chirakar, R., Baugh, L.R. *et al.* (2021) Balancing selection
565 maintains hyper-divergent haplotypes in *Caenorhabditis elegans*. *Nat Ecol Evol*, **5**,
566 794-807.
- 567 4. Thompson, O.A., Snoek, L.B., Nijveen, H., Sterken, M.G., Volkers, R.J., Brenchley,
568 R., Van't Hof, A., Bevers, R.P., Cossins, A.R., Yanai, I. *et al.* (2015) Remarkably
569 Divergent Regions Punctuate the Genome Assembly of the *Caenorhabditis elegans*
570 Hawaiian Strain CB4856. *Genetics*, **200**, 975-989.
- 571 5. Andersen, E.C. and Rockman, M.V. (2022) Natural genetic variation as a tool for
572 discovery in *Caenorhabditis* nematodes. *Genetics*, **220**.
- 573 6. Kammenga, J.E., Doroszuk, A., Riksen, J.A., Hazendonk, E., Spiridon, L., Petrescu,
574 A.J., Tijsterman, M., Plasterk, R.H. and Bakker, J. (2007) A *Caenorhabditis elegans*
575 wild type defies the temperature-size rule owing to a single nucleotide polymorphism
576 in tra-3. *PLoS Genet*, **3**, e34.
- 577 7. Bendesky, A., Tsunozaki, M., Rockman, M.V., Kruglyak, L. and Bargmann, C.I.
578 (2011) Catecholamine receptor polymorphisms affect decision-making in *C. elegans*.
579 *Nature*, **472**, 313-318.
- 580 8. Frezal, L., Demoinet, E., Braendle, C., Miska, E. and Felix, M.A. (2018) Natural
581 Genetic Variation in a Multigenerational Phenotype in *C. elegans*. *Curr Biol*, **28**,
582 2588-2596 e2588.
- 583 9. McGrath, P.T., Rockman, M.V., Zimmer, M., Jang, H., Macosko, E.Z., Kruglyak, L.
584 and Bargmann, C.I. (2009) Quantitative mapping of a digenic behavioral trait
585 implicates globin variation in *C. elegans* sensory behaviors. *Neuron*, **61**, 692-699.
- 586 10. Glauser, D.A., Chen, W.C., Agin, R., Macinnis, B.L., Hellman, A.B., Garrity, P.A.,
587 Tan, M.W. and Goodman, M.B. (2011) Heat avoidance is regulated by transient
588 receptor potential (TRP) channels and a neuropeptide signaling pathway in
589 *Caenorhabditis elegans*. *Genetics*, **188**, 91-103.
- 590 11. Keurentjes, J.J., Bentsink, L., Alonso-Blanco, C., Hanhart, C.J., Blankestijn-De Vries,
591 H., Effgen, S., Vreugdenhil, D. and Koornneef, M. (2007) Development of a near-
592 isogenic line population of *Arabidopsis thaliana* and comparison of mapping power
593 with a recombinant inbred line population. *Genetics*, **175**, 891-905.
- 594 12. Schmalenbach, I., Korber, N. and Pillen, K. (2008) Selecting a set of wild barley
595 introgression lines and verification of QTL effects for resistance to powdery mildew
596 and leaf rust. *Theor Appl Genet*, **117**, 1093-1106.
- 597 13. Fletcher, R.S., Mullen, J.L., Yoder, S., Bauerle, W.L., Reuning, G., Sen, S., Meyer, E.,
598 Juenger, T.E. and McKay, J.K. (2013) Development of a next-generation NIL library
599 in *Arabidopsis thaliana* for dissecting complex traits. *BMC Genomics*, **14**, 655.
- 600 14. Doroszuk, A., Snoek, L.B., Fradin, E., Riksen, J. and Kammenga, J. (2009) A
601 genome-wide library of CB4856/N2 introgression lines of *Caenorhabditis elegans*.
602 *Nucleic Acids Res*, **37**, e110.

603 15. Glater, E.E., Rockman, M.V. and Bargmann, C.I. (2014) Multigenic natural variation
604 underlies *Caenorhabditis elegans* olfactory preference for the bacterial pathogen
605 *Serratia marcescens*. *G3 (Bethesda)*, **4**, 265-276.

606 16. Green, J.W., Snoek, L.B., Kammenga, J.E. and Harvey, S.C. (2013) Genetic mapping
607 of variation in dauer larvae development in growing populations of *Caenorhabditis*
608 *elegans*. *Heredity (Edinb)*, **111**, 306-313.

609 17. Evans, K.S. and Andersen, E.C. (2020) The Gene *scb-1* Underlies Variation in
610 *Caenorhabditis elegans* Chemotherapeutic Responses. *G3 (Bethesda)*, **10**, 2353-2364.

611 18. Evans, K.S., Zdraljevic, S., Stevens, L., Collins, K., Tanny, R.E. and Andersen, E.C.
612 (2020) Natural variation in the sequestosome-related gene, *sqst-5*, underlies zinc
613 homeostasis in *Caenorhabditis elegans*. *PLoS Genet*, **16**, e1008986.

614 19. Bernstein, M.R. and Rockman, M.V. (2016) Fine-Scale Crossover Rate Variation on
615 the *Caenorhabditis elegans* X Chromosome. *G3 (Bethesda)*, **6**, 1767-1776.

616 20. Mackay, T.F. (2014) Epistasis and quantitative traits: using model organisms to study
617 gene-gene interactions. *Nat Rev Genet*, **15**, 22-33.

618 21. Bloom, J.S., Kotenko, I., Sadhu, M.J., Treusch, S., Albert, F.W. and Kruglyak, L.
619 (2015) Genetic interactions contribute less than additive effects to quantitative trait
620 variation in yeast. *Nat Commun*, **6**, 8712.

621 22. Forsberg, S.K., Bloom, J.S., Sadhu, M.J., Kruglyak, L. and Carlborg, O. (2017)
622 Accounting for genetic interactions improves modeling of individual quantitative trait
623 phenotypes in yeast. *Nat Genet*, **49**, 497-503.

624 23. Huang, W., Richards, S., Carbone, M.A., Zhu, D., Anholt, R.R., Ayroles, J.F.,
625 Duncan, L., Jordan, K.W., Lawrence, F., Magwire, M.M. *et al.* (2012) Epistasis
626 dominates the genetic architecture of *Drosophila* quantitative traits. *Proc Natl Acad
627 Sci U S A*, **109**, 15553-15559.

628 24. Gaertner, B.E., Parmenter, M.D., Rockman, M.V., Kruglyak, L. and Phillips, P.C.
629 (2012) More than the sum of its parts: a complex epistatic network underlies natural
630 variation in thermal preference behavior in *Caenorhabditis elegans*. *Genetics*, **192**,
631 1533-1542.

632 25. Andersen, E.C., Bloom, J.S., Gerke, J.P. and Kruglyak, L. (2014) A variant in the
633 neuropeptide receptor *npr-1* is a major determinant of *Caenorhabditis elegans* growth
634 and physiology. *PLoS Genet*, **10**, e1004156.

635 26. Li, Y., Alvarez, O.A., Gutteling, E.W., Tijsterman, M., Fu, J., Riksen, J.A.,
636 Hazendonk, E., Prins, P., Plasterk, R.H., Jansen, R.C. *et al.* (2006) Mapping
637 determinants of gene expression plasticity by genetical genomics in *C. elegans*. *PLoS
638 Genet*, **2**, e222.

639 27. Brenner, S. (1974) The genetics of *Caenorhabditis elegans*. *Genetics*, **77**, 71-94.

640 28. Seidel, H.S., Ailion, M., Li, J., van Oudenaarden, A., Rockman, M.V. and Kruglyak,
641 L. (2011) A novel sperm-delivered toxin causes late-stage embryo lethality and
642 transmission ratio distortion in *C. elegans*. *PLoS Biol*, **9**, e1001115.

643 29. Rockman, M.V. and Kruglyak, L. (2009) Recombinational landscape and population
644 genomics of *Caenorhabditis elegans*. *PLoS Genet*, **5**, e1000419.

645 30. Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B.C., Remm, M. and
646 Rozen, S.G. (2012) Primer3--new capabilities and interfaces. *Nucleic Acids Res*, **40**,
647 e115.

648 31. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) Basic local
649 alignment search tool. *J Mol Biol*, **215**, 403-410.

650 32. Vervoort, M.T., Vonk, J.A., Mooijman, P.J., Van den Elsen, S.J., Van Megen, H.H.,
651 Veenhuizen, P., Landeweert, R., Bakker, J., Mulder, C. and Helder, J. (2012) SSU

652 ribosomal DNA-based monitoring of nematode assemblages reveals distinct seasonal
 653 fluctuations within evolutionary heterogeneous feeding guilds. *PLoS One*, **7**, e47555.

654 33. Gao, A.W., Sterken, M.G., Uit de Bos, J., van Creij, J., Kamble, R., Snoek, B.L.,
 655 Kammenga, J.E. and Houtkooper, R.H. (2018) Natural genetic variation in *C. elegans*
 656 identified genomic loci controlling metabolite levels. *Genome Res*, **28**, 1296-1308.

657 34. Sterken, M.G., van Sluijs, L., Wang, Y.A., Ritmahan, W., Gultom, M.L., Riksen,
 658 J.A.G., Volkers, R.J.M., Snoek, L.B., Pijlman, G.P. and Kammenga, J.E. (2021)
 659 Punctuated Loci on Chromosome IV Determine Natural Variation in Orsay Virus
 660 Susceptibility of *Caenorhabditis elegans* Strains Bristol N2 and Hawaiian CB4856. *J
 661 Virol*, **95**.

662 35. Cook, D.E. and Andersen, E.C. (2017) VCF-kit: assorted utilities for the variant call
 663 format. *Bioinformatics*, **33**, 1581-1582.

664 36. Cook, D.E., Zdraljevic, S., Tanny, R.E., Seo, B., Riccardi, D.D., Noble, L.M.,
 665 Rockman, M.V., Alkema, M.J., Braendle, C., Kammenga, J.E. *et al.* (2016) The
 666 Genetic Basis of Natural Variation in *Caenorhabditis elegans* Telomere Length.
 667 *Genetics*, **204**, 371-383.

668 37. Jovic, K., Grilli, J., Sterken, M.G., Snoek, B.L., Riksen, J.A.G., Allesina, S. and
 669 Kammenga, J.E. (2019) Transcriptome resilience predicts thermotolerance in
 670 *Caenorhabditis elegans*. *BMC Biol*, **17**, 102.

671 38. Emmons, S.W., Klass, M.R. and Hirsh, D. (1979) Analysis of the constancy of DNA
 672 sequences during development and evolution of the nematode *Caenorhabditis elegans*.
 673 *Proc Natl Acad Sci U S A*, **76**, 1333-1337.

674 39. Hosono, R. (1978) Sterilization and growth inhibition of *Caenorhabditis elegans* by 5-
 675 fluorodeoxyuridine. *Exp Gerontol*, **13**, 369-374.

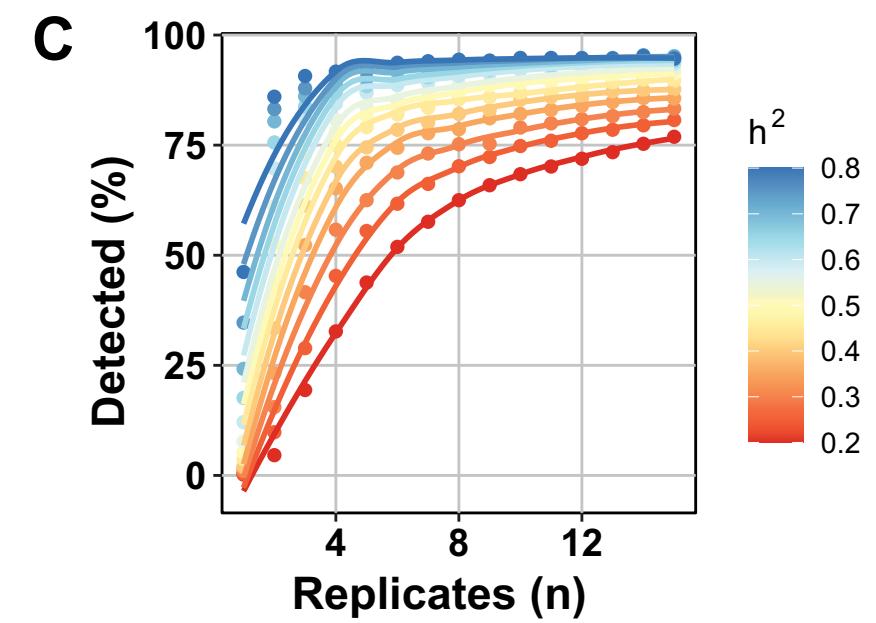
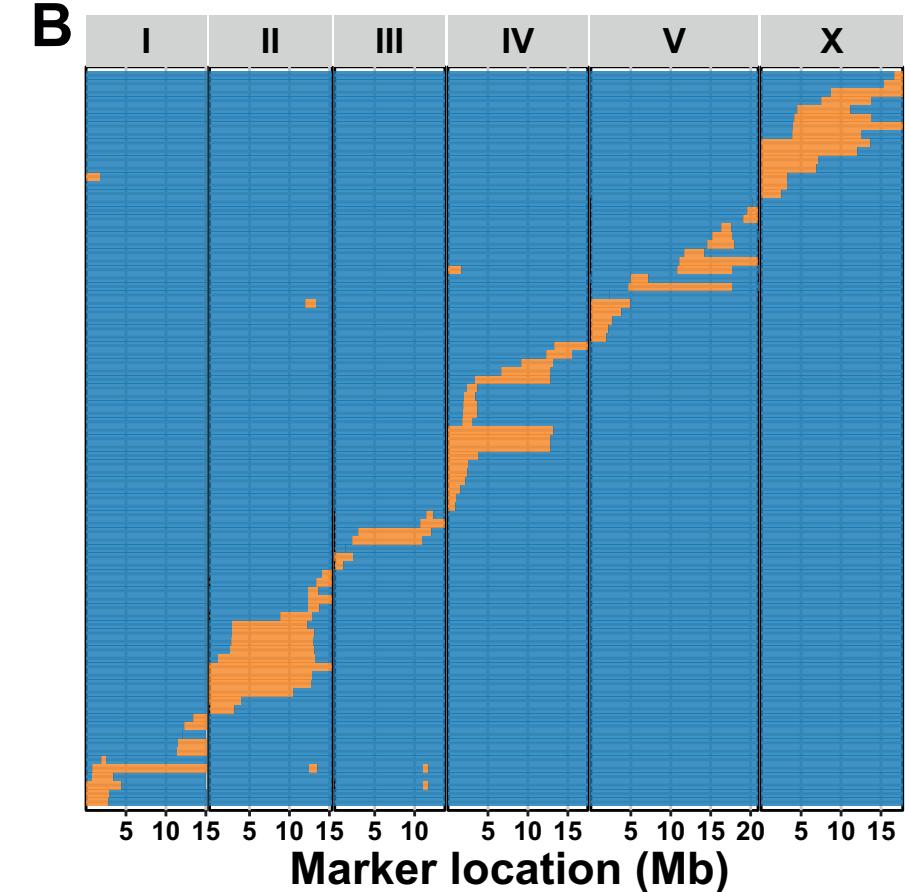
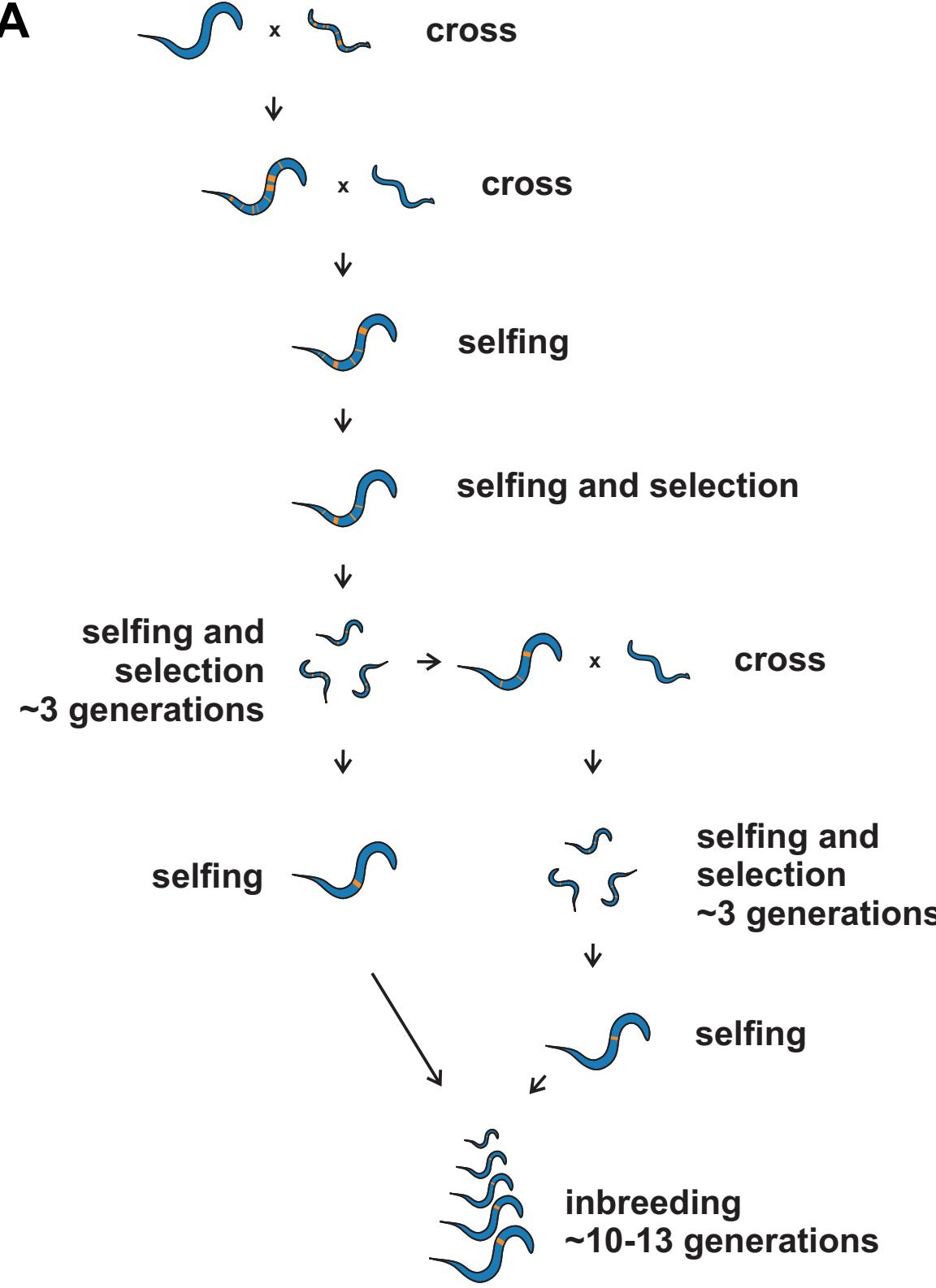
676 40. Rodriguez, M., Snoek, L.B., Riksen, J.A., Bevers, R.P. and Kammenga, J.E. (2012)
 677 Genetic variation for stress-response hormesis in *C. elegans* lifespan. *Exp Gerontol*,
 678 **47**, 581-587.

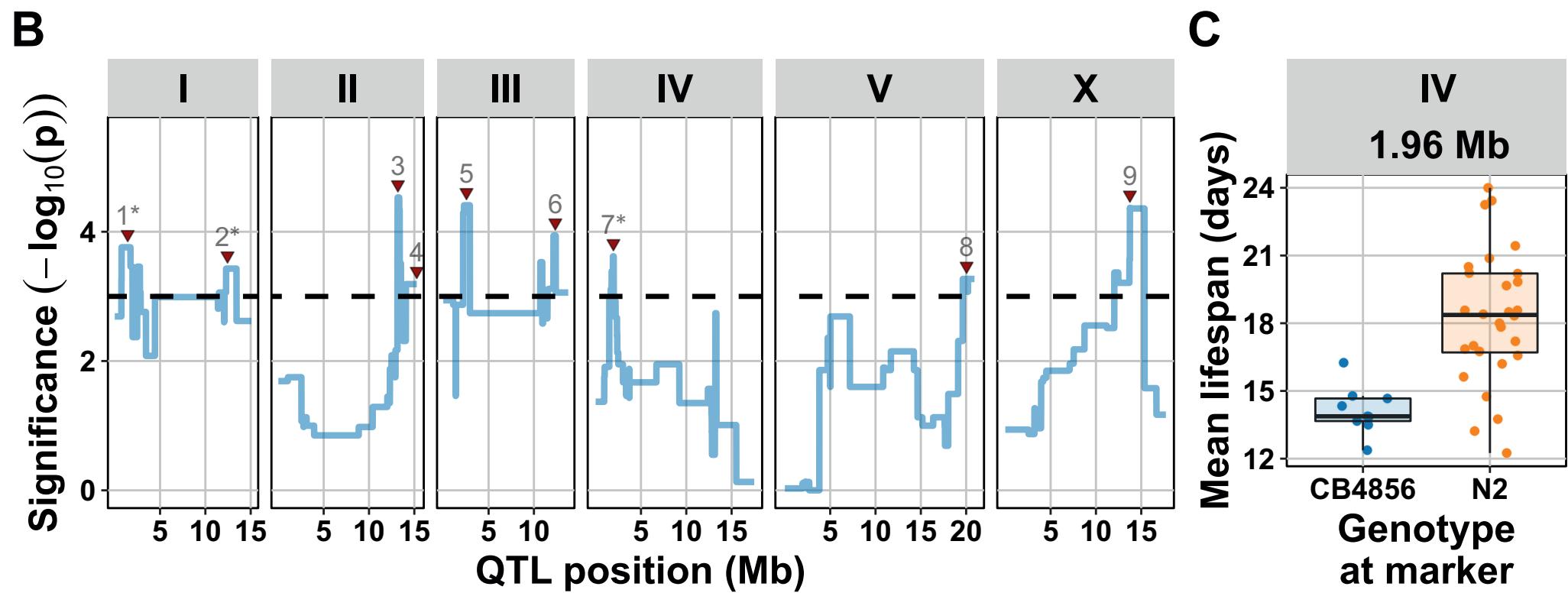
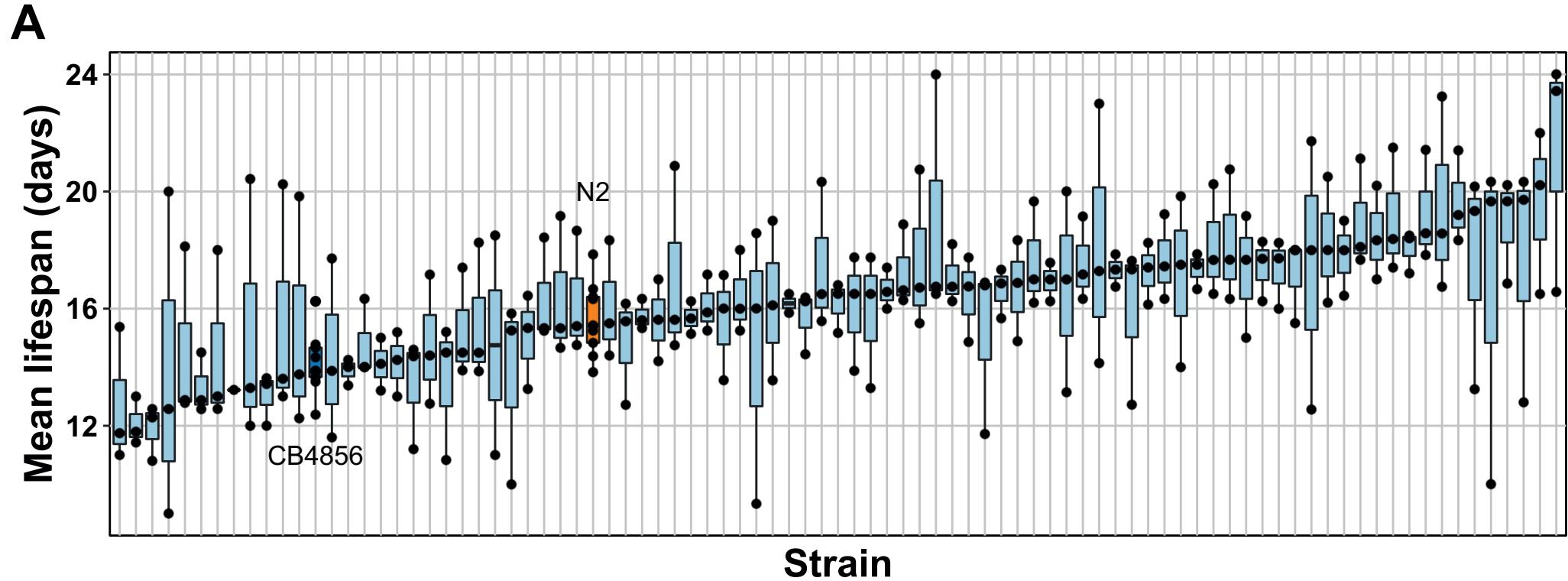
679 41. Sterken, M.G., Bevers, R.P.J., Volkers, R.J.M., Riksen, J.A.G., Kammenga, J.E. and
 680 Snoek, B.L. (2020) Dissecting the eQTL Micro-Architecture in *Caenorhabditis
 681 elegans*. *Front Genet*, **11**, 501376.

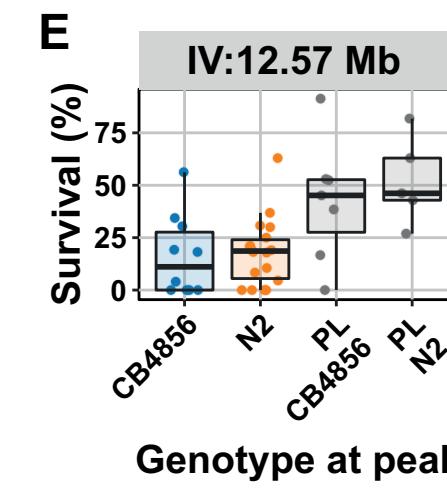
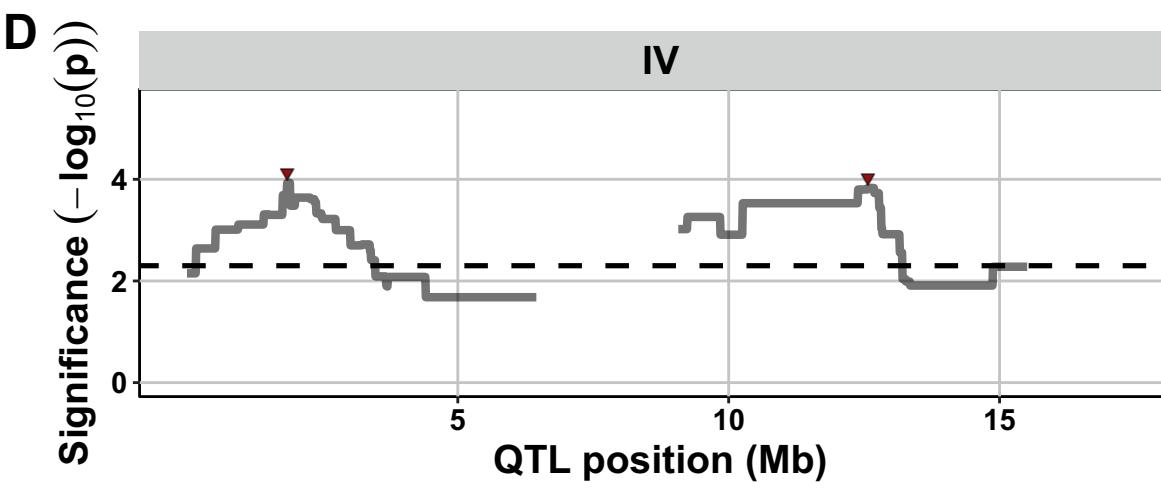
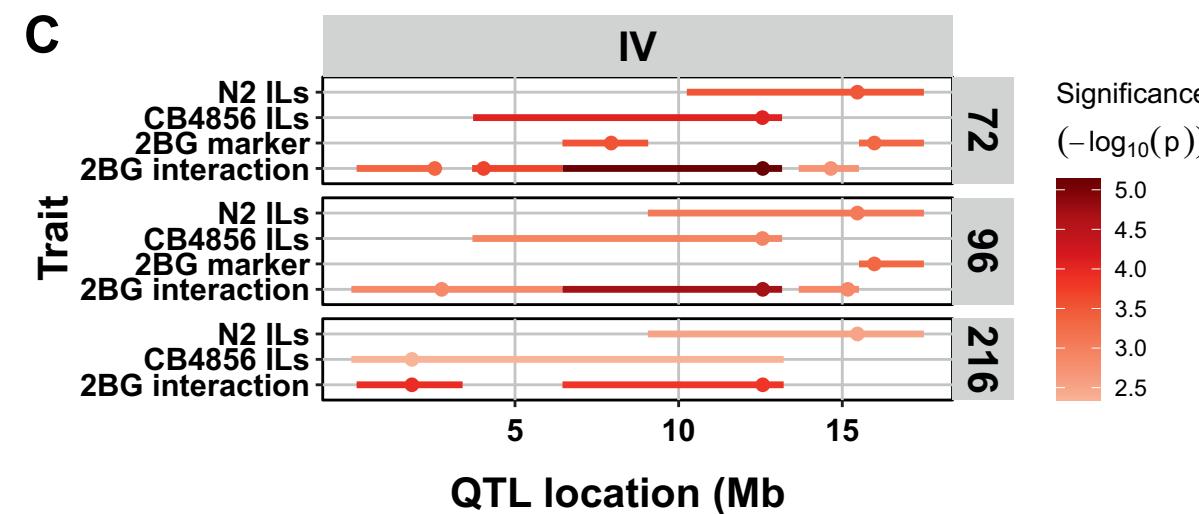
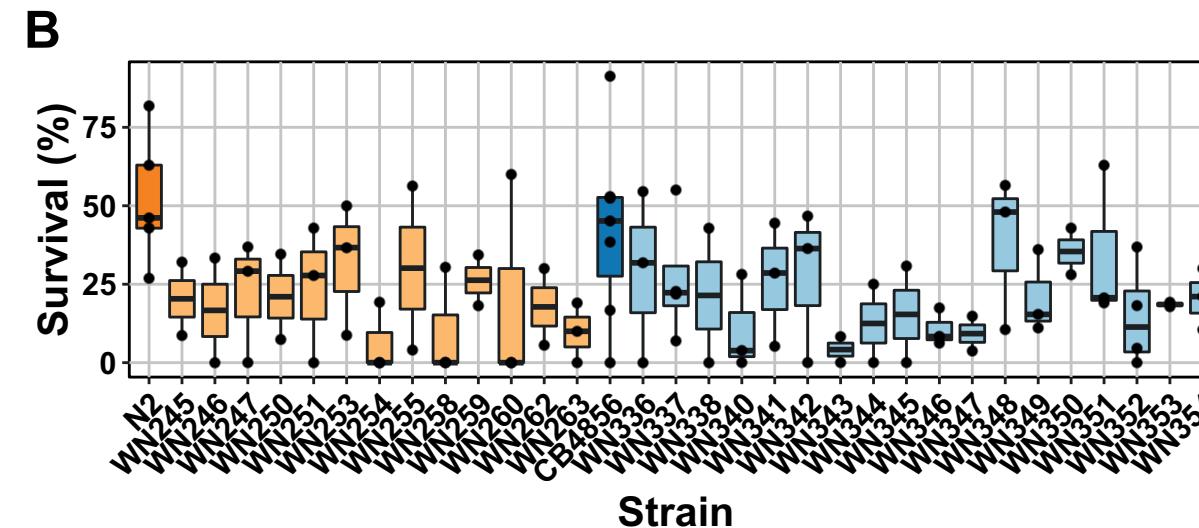
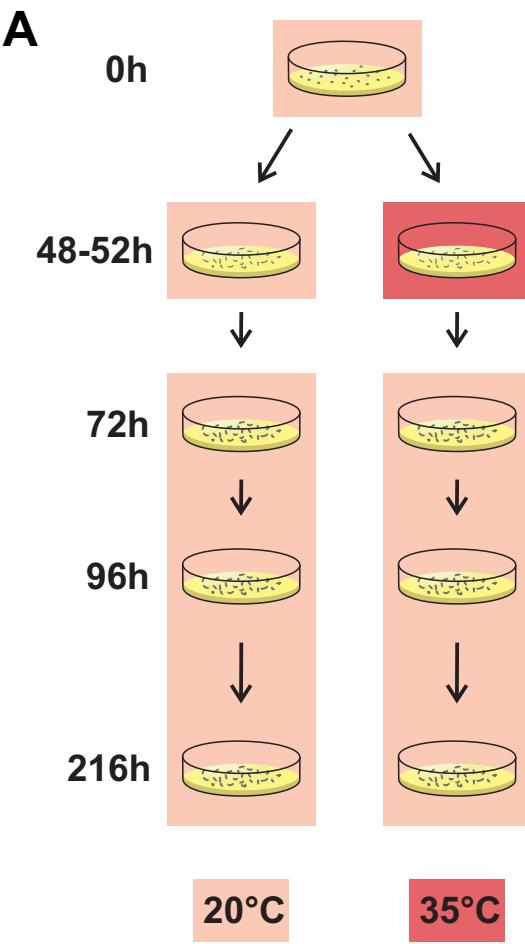
682 42. Snoek, B.L., Sterken, M.G., Bevers, R.P.J., Volkers, R.J.M., Van't Hof, A., Brenchley,
 683 R., Riksen, J.A.G., Cossins, A. and Kammenga, J.E. (2017) Contribution of trans
 684 regulatory eQTL to cryptic genetic variation in *C. elegans*. *BMC Genomics*, **18**, 500.

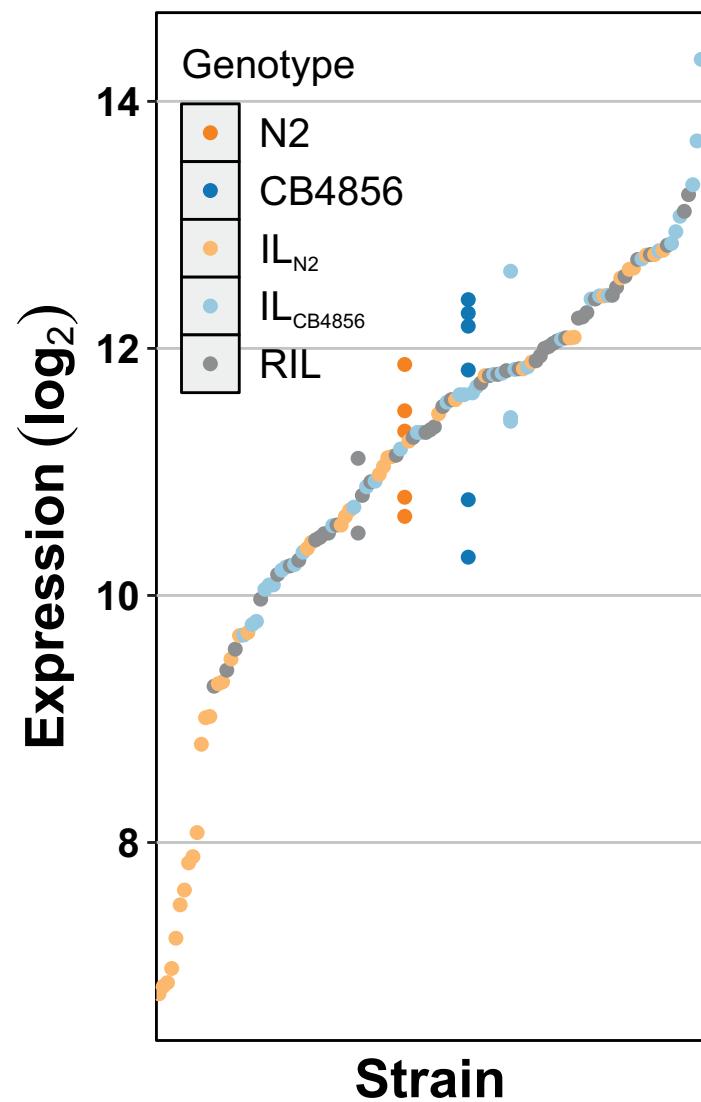
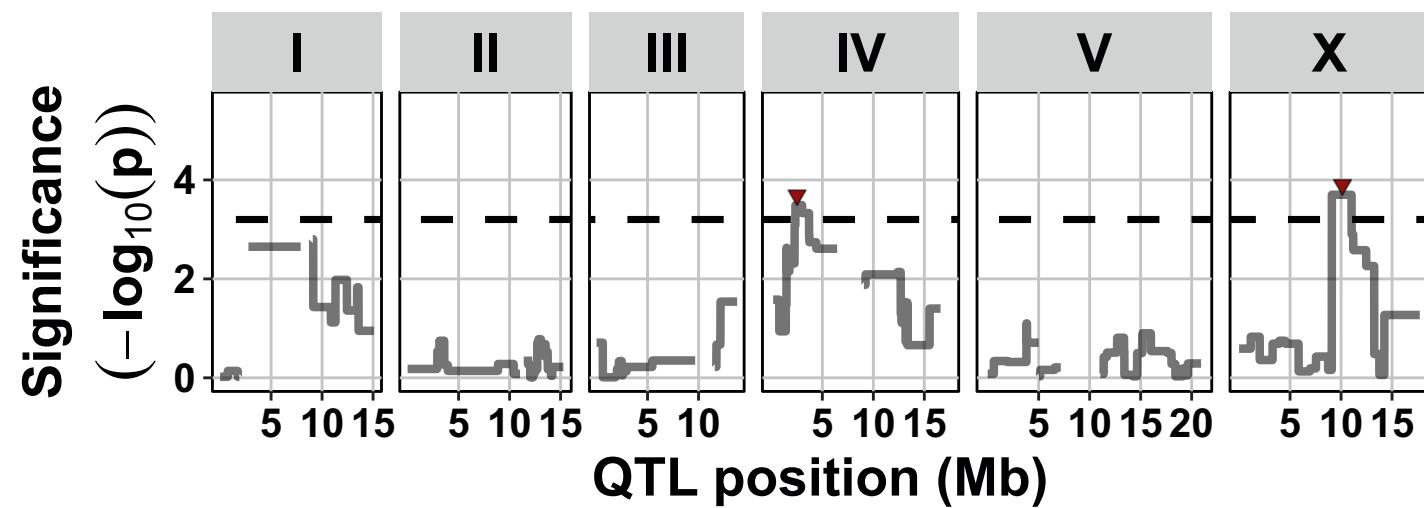
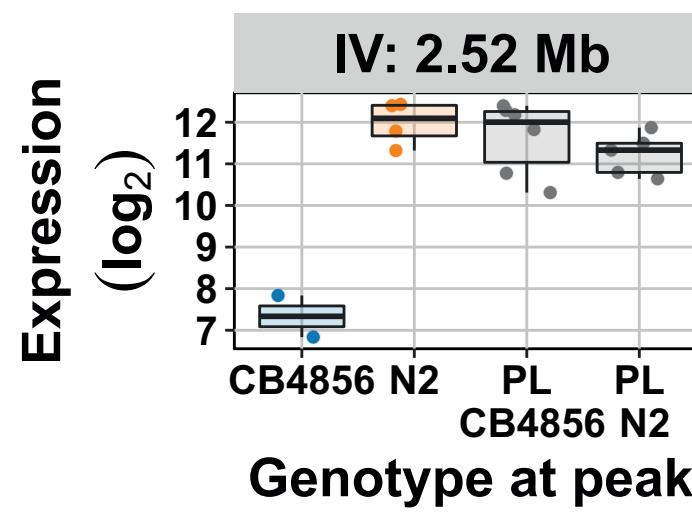
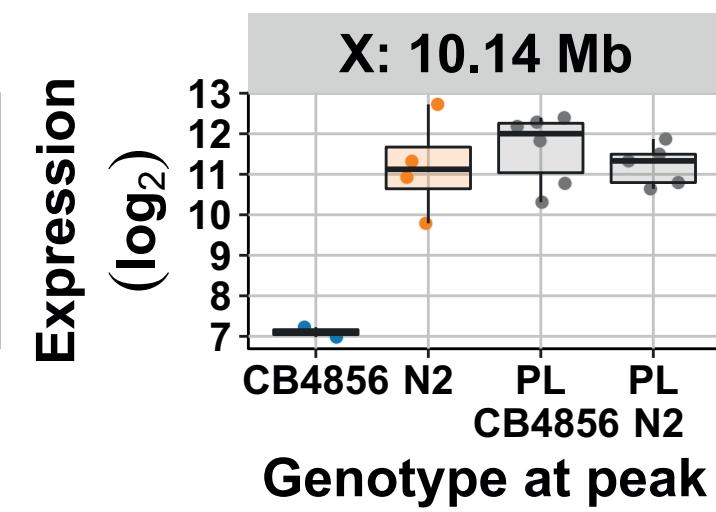
685 43. Sterken, M.G., Snoek, L.B., Bosman, K.J., Daamen, J., Riksen, J.A., Bakker, J.,
 686 Pijlman, G.P. and Kammenga, J.E. (2014) A heritable antiviral RNAi response limits
 687 Orsay virus infection in *Caenorhabditis elegans* N2. *PLoS One*, **9**, e89760.

688 44. Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a
 689 practical and powerful approach to multiple testing. *Journal of the Royal statistical
 690 society: series B (Methodological)*, **57**, 289-300.




691 45. Brem, R.B. and Kruglyak, L. (2005) The landscape of genetic complexity across 5,700
 692 gene expression traits in yeast. *Proc Natl Acad Sci U S A*, **102**, 1572-1577.



693 46. Keurentjes, J.J., Fu, J., Terpstra, I.R., Garcia, J.M., van den Ackerveken, G., Snoek,
 694 L.B., Peeters, A.J., Vreugdenhil, D., Koornneef, M. and Jansen, R.C. (2007)
 695 Regulatory network construction in *Arabidopsis* by using genome-wide gene
 696 expression quantitative trait loci. *Proc Natl Acad Sci U S A*, **104**, 1708-1713.






697 47. Kruijer, W., Boer, M.P., Malosetti, M., Flood, P.J., Engel, B., Kooke, R., Keurentjes,
 698 J.J. and van Eeuwijk, F.A. (2015) Marker-based estimation of heritability in immortal
 699 populations. *Genetics*, **199**, 379-398.





700 48. Speed, D., Hemani, G., Johnson, M.R. and Balding, D.J. (2012) Improved heritability
 701 estimation from genome-wide SNPs. *Am J Hum Genet*, **91**, 1011-1021.

702 49. Kruijer, W. and Kruijer, M.W. (2014) Package ‘heritability’.
703 50. Team, R. (2015) RStudio: integrated development for R. *RStudio, Inc., Boston, MA*
704 *URL* <http://www.rstudio.com>, **42**, 84.
705 51. Team, R.C. (2013) R: A language and environment for statistical computing.
706 52. Wickham, H. (2019) *Advanced r*. CRC press.
707 53. Snoek, B.L., Sterken, M.G., Hartanto, M., van Zuilichem, A.J., Kammenga, J.E., de
708 Ridder, D. and Nijveen, H. (2020) WormQTL2: an interactive platform for systems
709 genetics in *Caenorhabditis elegans*. *Database (Oxford)*, **2020**.
710 54. Li, Y., Breitling, R., Snoek, L.B., van der Velde, K.J., Swertz, M.A., Riksen, J.,
711 Jansen, R.C. and Kammenga, J.E. (2010) Global genetic robustness of the alternative
712 splicing machinery in *Caenorhabditis elegans*. *Genetics*, **186**, 405-410.
713 55. Rockman, M.V., Skrovanek, S.S. and Kruglyak, L. (2010) Selection at linked sites
714 shapes heritable phenotypic variation in *C. elegans*. *Science*, **330**, 372-376.
715 56. Sterken, M.G., van Bemmelen van der Plaat, L., Riksen, J.A.G., Rodriguez, M.,
716 Schmid, T., Hajnal, A., Kammenga, J.E. and Snoek, B.L. (2017) Ras/MAPK Modifier
717 Loci Revealed by eQTL in *Caenorhabditis elegans*. *G3 (Bethesda)*, **7**, 3185-3193.
718 57. Duveau, F. and Felix, M.A. (2012) Role of pleiotropy in the evolution of a cryptic
719 developmental variation in *Caenorhabditis elegans*. *PLoS Biol*, **10**, e1001230.
720 58. Sterken, M.G., Snoek, L.B., Kammenga, J.E. and Andersen, E.C. (2015) The
721 laboratory domestication of *Caenorhabditis elegans*. *Trends Genet*, **31**, 224-231.
722 59. Monforte, A.J. and Tanksley, S.D. (2000) Development of a set of near isogenic and
723 backcross recombinant inbred lines containing most of the *Lycopersicon hirsutum*
724 genome in a *L. esculentum* genetic background: a tool for gene mapping and gene
725 discovery. *Genome*, **43**, 803-813.
726 60. Szalma, S.J., Hostert, B.M., Ledeaux, J.R., Stuber, C.W. and Holland, J.B. (2007)
727 QTL mapping with near-isogenic lines in maize. *Theor Appl Genet*, **114**, 1211-1228.
728 61. Li, Z.-K., Fu, B.-Y., Gao, Y.-M., Xu, J.-L., Ali, J., Lafitte, H., Jiang, Y.-Z., Rey, J.D.,
729 Vijayakumar, C. and Maghirang, R. (2005) Genome-wide introgression lines and their
730 use in genetic and molecular dissection of complex phenotypes in rice (*Oryza sativa*
731 L.). *Plant Molecular Biology*, **59**, 33-52.
732 62. Gale, G.D., Yazdi, R.D., Khan, A.H., Lusis, A.J., Davis, R.C. and Smith, D.J. (2009)
733 A genome-wide panel of congenic mice reveals widespread epistasis of behavior
734 quantitative trait loci. *Mol Psychiatry*, **14**, 631-645.
735 63. Kroymann, J. and Mitchell-Olds, T. (2005) Epistasis and balanced polymorphism
736 influencing complex trait variation. *Nature*, **435**, 95-98.
737

A**B****C****D**