

The Presence of Myelinated Nerves and Schwann Cells in White Adipose Tissue:
Proximity to Synaptic Vesicle Containing Nerve Terminals
and Potential Role in BTBR *ob/ob* Demyelinating Diabetic Neuropathy

Jake W. Willows¹, Gilian Gunsch¹, Emma Paradie¹, Magdalena Blaszkiewicz¹,
Jeffrey R. Tonniges², Maria F. Pino³, Steven R. Smith³, Lauren M. Sparks³, Kristy L. Townsend^{1*}

¹Department of Neurological Surgery, The Ohio State University, Columbus, OH

²Campus Microscopy and Imaging Facility, The Ohio State University, Columbus, OH

³Translational Research Institute, AdventHealth, Orlando, FL

*Corresponding Author

kristy.townsend@osumc.edu

460 W 12th Ave, 1014 Biomedical Research Tower, Columbus, OH 43210

Keywords: Subcutaneous white adipose tissue, Schwann cell, myelin, peripheral nerve, neuro-adipose nexus, diabetic peripheral neuropathy

Schwann Cells in Subcutaneous Adipose Tissue

35 **ABSTRACT:**

36 Peripheral neuropathy is a pathophysiological state of nerve degeneration and loss of
37 tissue innervation. The most prominent cause of small fiber neuropathy is diabetes which can be
38 demyelinating in nature, but this has not yet been explored in adipose tissue. Both demyelinating
39 neuropathies and axonopathies implicate Schwann cells (SCs), the peripheral glial required for
40 nerve myelination and regeneration after injury. Here, we perform a comprehensive assessment
41 of SCs and myelination patterns of subcutaneous white adipose tissue (scWAT) nerves, including
42 changes that occur with obesity and other imbalanced energy states in mice and humans. We
43 found that mouse scWAT is densely innervated by both myelinated and unmyelinated sensory
44 and sympathetic nerves. Accordingly, scWAT is home to both myelinating and non-myelinating
45 SCs – the greater proportion of which are myelinating. Furthermore, SCs were found closely
46 associated with synaptic vesicle-containing nerve terminals in scWAT. Obese BTBR *ob/ob* mice
47 exhibit diabetic peripheral neuropathy in scWAT, and display concordant demyelination specific
48 to small fibers, which was also associated with a decrease in the pan-SC marker Sox10 and
49 compensatory increase in Krox20 gene expression. Together this suggests that adipose SCs may
50 be involved in regulating the plasticity or the neuropathy of adipose tissue nerves.

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

Schwann Cells in Subcutaneous Adipose Tissue

69 INTRODUCTION:

70 Peripheral nerves in adipose tissue are demonstrably important for the regulation of tissue
71 function and whole-body metabolic health, as reviewed in [1]. The bidirectional neural
72 communication between adipose and brain is achieved by afferent sensory nerves that
73 communicate from adipose to brain via the dorsal root ganglia and release neuropeptides to
74 adipose tissue when activated, as well as efferent sympathetic nerves that communicate from
75 brain to adipose and release norepinephrine to the tissue. Only recently have the diversity of
76 nerve fibers in adipose tissue, their patterns of innervation, and investigations into nerve terminals
77 or junctions in the parenchyma versus the vasculature been undertaken [2; 3]. From the current
78 work, it is clear that many of the nerves in adipose – whether they are individual sensory or
79 sympathetic axons, or large mixed nerve bundles – are largely myelinated. Additionally, previous
80 scRNAseq studies in adipose have identified populations of Schwann cells (SCs) in the stromal
81 vascular fraction (SVF) [4-6] and SCs have been visualized in visceral white adipose tissue (WAT)
82 [7] and brown adipose tissue (BAT) [3] by TEM. Most recently, neural crest derived SCs were
83 isolated from nerve bundles in mouse and human subcutaneous WAT (scWAT) for use in
84 neurogenic therapies [8]. Taken together, more knowledge is needed to better understand the
85 contribution of adipose tissue SCs to nerve function and tissue function.

86 Peripheral neuropathy, or the dying-back of peripheral axons innervating tissues and
87 organs, can cause severe pain and discomfort and blunts tissue neural communication with the
88 brain, leading to numerous health complications [9; 10]. We previously demonstrated that aging
89 leads to peripheral neuropathy in scWAT [11], and that in obese and diabetic BTBR mice
90 homozygous for the spontaneous *Lep^{ob}* mutation (BTBR *ob/ob*) [12] the peripheral neuropathy
91 also extended to metabolically-relevant tissues like adipose and muscle [11]. Deletion of brain
92 derived neurotrophic factor (BDNF), a neurotrophic factor implicated in human obesity, from
93 myeloid-lineage neuroimmune cells also causes a ‘genetic denervation’ of adipose tissue [13] that
94 is accompanied by worsened metabolic phenotype. Small fiber peripheral neuropathy is common
95 with altered metabolic disease states such as diabetes or aging, and these may involve
96 demyelinating neuropathies or reduced axon outgrowth due to impaired SC function in nerve
97 repair and regeneration [14]. From our prior work, small fiber innervation in scWAT may be
98 particularly important for metabolic control [13].

99 SCs support normal nerve physiology through the formation of myelin sheaths, which
100 enable electrical conductance by providing insulation for the axon’s ionic flow. Each myelinating
101 SC (mSC) surrounds a single axon and several mSCs are required to myelinate the entire length
102 of an axon. Non-myelinating SCs (nmSCs) are usually associated with smaller diameter axons

Schwann Cells in Subcutaneous Adipose Tissue

103 (Remak bundles), such as many sensory axons and axons of the autonomic nervous system, as
104 reviewed in [14]. Therefore, demyelination of nerves results in reduced nerve conductance and
105 loss of functions (motor and sensory deficits, for example). The unique capability for plasticity and
106 regeneration of nerves in the peripheral nervous system (PNS) is due largely to the ability of SCs
107 to respond to and repair damaged nerves by phenotypically switching to “repair SCs” [15].

108 The conversion, or transdifferentiation, of mature SCs to repair SCs involves down-
109 regulation of myelin-production genes (such as myelin basic protein (MBP), Krox20, and myelin
110 protein zero (MPZ)), and upregulation of glial fibrillary acidic protein (GFAP), the neurotrophic
111 factor receptor p75NTR, and c-Jun [16]. Restoration of c-Jun expression in SCs is able to rescue
112 failed nerve regeneration in aging mice [17], and is thus considered a master regulator of repair
113 SC phenotypic conversion. The exact signals from damaged nerves (released during a process
114 known as Wallerian degeneration) that promote SC conversion to repair SCs is currently
115 unknown. Given the striking plasticity of SCs in response to their local environment, it is likely that
116 SC phenotypes and activity differ by tissue and by tissue state [14]. Therefore, a better
117 characterization of adipose-resident SCs is warranted to further our current understanding of SC
118 plasticity and their role in adipose-related pathologies, including diabetic neuropathy

119

120 RESEARCH DESIGN AND METHODS:

121 ***Experimental model and subject details - Mice***

122 All mice were obtained from The Jackson Laboratory (Bar Harbor, ME) and/or bred at our
123 mouse facilities at University of Maine and The Ohio State University. Animals were housed in a
124 temperature-controlled environment, kept on a 12 hr light-dark cycle, and allowed access to food
125 and water *ad libitum* (unless stated otherwise for a particular study). For all studies animals were
126 euthanized using CO₂ followed by cervical dislocation. All procedures were performed in
127 compliance with the National Institute of Health Guide for the Care and Use of Laboratory Animals
128 and were approved by an Institutional Animal Care and Use Committee.

129

130 **PGP9.5-EGFP^{+/−} Reporter Mice:**

131 Male and female PGP9.5-EGFP^{+/−} (*C57BL/6-Tg(Uchl1-EGFP)G1Phoz/J*, Stock # 022476)
132 pan-neuronal reporter mice were used for microscopy experiments to investigate adipose
133 innervation. Mice were housed 2-5 a cage, fed a standard chow diet and were aged 10-26 weeks
134 prior to tissue collection.

135

136 **Sedentary/Exercised:**

Schwann Cells in Subcutaneous Adipose Tissue

137 Adult (12-15 week old) C57BL/6J male mice, age and body weight matched, were
138 assigned to either sedentary or exercised groups. Animals were single housed in running wheel
139 cages that allowed *ad libitum* access to running for a period of 7 days. Wheel running was
140 monitored using odometers (magnets were placed on the outer arm of the running wheels with
141 the sensor attached to the inside of the cage). Sedentary (control) animals were single caged with
142 locked running wheels for the same period.

143

144 BTBR *ob/ob* mice:

145 BTBR +/+ (WT) and BTBR *ob/ob* (MUT) mice (BTBR.Cg-Lep^{ob}/WiscJ) were fed a standard
146 chow diet, housed two to a cage, and aged at least 12 weeks, when they exhibit a strong
147 phenotype (including obesity and diabetes) for all experiments.

148

149 Cold exposure experiments:

150 Adult (8 week old) male C57BL/6J mice were housed two to a cage, and either maintained
151 at room temperature (RT), continuously cold exposed (at 5°C), or kept at thermoneutral
152 temperature (30°C) for 3 days with *ad libitum* access to food and water. All cold exposure
153 experiments occurred in a diurnal incubator with 12 hr light/dark cycle and humidity control
154 (Caron, Marietta, OH, USA).

155

156 Diet-induced obesity:

157 Adult (11 week old) male C57BL/6J mice, housed 2-3 to a cage, were fed either chow
158 control or a 58% high fat diet (HFD) (Research Diets Cat #D12330) *ad libitum* for 19 weeks.
159 Animals were euthanized with CO₂ and inguinal scWAT was collected and frozen before being
160 processed for qPCR.

161

162 Aging:

163 C57BL/6J male mice were housed 2-4 in a cage and aged to 15 weeks (young) and 75
164 weeks (aged). Tissues were snap-frozen in liquid nitrogen upon collection for gene expression
165 analysis using RT-qPCR. For ageing related FACS studies, C57BL/6J male mice were aged to 4
166 months, 8 months, and 15 months.

167

168 Experimental model and subject details – Human tissues

169 Human abdominal scWAT were obtained from 23 individuals, 11 were healthy lean (BMI
170 ≤ 25) and 12 were healthy obese (BMI >30) individuals who participated in a cross-sectional study

Schwann Cells in Subcutaneous Adipose Tissue

171 at the Translational Research Institute at AdventHealth. The study protocol was approved by the
172 AdventHealth Institutional Review Board and was in line with the Declaration of Helsinki. Samples
173 were collected from informed and consenting male (lean N=2, 18-23 years old; obese N=3, 35-
174 64 years old) and female (lean N=9, 23-49 years old; obese N=9, 25-55 years old) subjects during
175 elective surgery. Abdominal scWAT was obtained under local anesthesia [18]. Tissue was
176 immediately snap-frozen in liquid nitrogen and then processed for RNA extraction. RNA was used
177 to measure gene expression by real-time qPCR

178

179 **Whole mount immunofluorescence (IF)**

180 Whole inguinal and axillary scWAT depots were carefully removed to remain fully intact
181 and fixed in 2% PFA (Sigma, Cat#P6148) for 16hrs (or 24hrs for obese BTBR *ob/ob*) at 4°C.
182 Tissues were Z-depth reduced and subsequently blocked in 2.5% BSA / 1% Triton X-100 / 1X
183 PBS for 24hrs at 4°C and incubated in 0.1% Typogen Black (Sigma, Cat#199664) to reduce
184 autofluorescence. BTBR *ob/ob* tissues did not receive autofluorescence quenching. Tissues were
185 incubated in primary antibody solution for 48hrs at 4°C, rinsed in 1X PBS, and incubated in
186 secondary antibody solution for 24hrs at 4°C. These steps were repeated for additional co-
187 labeling. When desired, tissues were incubated in 100 ng/mL DAPI (Sigma-Aldrich, Cat#D9564)
188 for 1hr at room temperature to label nuclei. Finally, tissues were mounted on glass slides and
189 imaged. For additional details see [2] and the accompanying peer-reviewed protocol [19].

190

191 **Confocal microscopy**

192 Confocal micrographs were captured on a Leica Stellaris 5, laser scanning confocal
193 microscope using LASX software. Fluorescent labels were excited with either a diode 405 nm
194 laser (DAPI, Autofluorescence) or a white light laser: EGFP (499 nm), Alexa Fluor 555 (553
195 nm), Alexa Fluor Plus 594 (590 nm), Alexa Fluor Plus 647 (653 nm). Emission spectra were
196 tuned specifically for each fluorophore or groups of fluorophores to reduce and eliminate
197 crosstalk. Multiple channels were scanned sequentially, and all channels were line averaged 3
198 times. Photons were detected with Power HyD S detectors. Objectives included: HC PL APO
199 10x/0.40 CS2, HC PL APO 40x/1.30 OIL CS2, and HC PL APO 63x/1.40 OIL CS2. PinholeAiry
200 1.00 AU. Confocal zoom was applied to further increase magnification when necessary. Entire
201 tissues were visually scanned, and representative images were captured at 2048x2048 pixel
202 resolution as Z-stacks (1-6 μ m step size) that were maximum intensity projected. LUTs were
203 adjusted to improve structure visualization. Digital cross-sections were captured by utilizing the

Schwann Cells in Subcutaneous Adipose Tissue

204 XZY scan function. One iteration of a 5-kernel median noise filter was applied. Image
205 processing performed in Leica LASX software.

206

207 Deconvolution:

208 In specific instances (stated in figure legends) images were acquired using Lightning
209 (Leica) 3D deconvolution. Z-stack images were captured at Nyquist lateral and axial resolutions
210 at 63X objective magnification with a PinholeAiry of 0.50 AU with varying confocal zooms applied.
211 Adaptive deconvolution was calculated for a 1.4429 refractive index. Deconvolved z-stacks were
212 maximum intensity projected and LUTs were adjusted to improve structure visualization. Image
213 processing performed in Leica LASX software.

214

215 Epifluorescence microscopy:

216 Epifluorescence micrographs were captured on a Nikon Eclipse E400 epifluorescence
217 microscope using a Hamamatsu ORCA-Flash4.0 V2 Digital CMOS monochrome camera. Alexa
218 Fluor 555 fluorophores were excited using a Cy3 filter cube. Objectives used: Nikon CFI Plan
219 Fluor 20x/0.50 and Nikon CFI Plan Fluor 40x/0.75. Images were captured utilizing the extended
220 depth of field (EDF) function; LUTs were adjusted to improve structural visualization. Post
221 processing was performed in Nikon Elements BR software.

222

223 Neuromuscular junction immunostaining

224 Medial gastrocnemius muscle was fixed in 2% PFA for 2hrs and teased apart. Tissue was
225 blocked in 2.5% BSA / 1% Triton X-100 / 1X PBS for 24hrs at 4°C. Tissues were incubated in a
226 series of primary and secondary antibody solutions each lasting 24hrs and performed at 4°C on
227 a rotator. Tissues were washed in 1X PBS between incubations. Primary antibodies SV2 and 2H3
228 were incubated simultaneously with α -bungarotoxin (BTX) conjugated to Alexa Fluor 555 (1
229 mg/mL, ThermoFisher, Cat#B35451) to label pre- and post-synapse. This was followed by the
230 secondary antibody goat anti-mouse IgG1 Alexa Fluor 488, and then the primary antibody MPZ
231 followed by its secondary antibody goat anti-rabbit IgG Alexa Fluor 647 Plus. Finally, the tissues
232 were incubated in 100 ng/mL for 1hr at room temperature to label nuclei and mounted on glass
233 slides for imaging.

234

235 Antibodies used for immunostaining

236 Primary antibodies:

Schwann Cells in Subcutaneous Adipose Tissue

237 MPZ (1:250, Abcam, Cat#ab31851); SOX10 (1:200, Abcam, Cat#ab227680); CGRP
238 (1:200, EMD Millipore, Cat#PC205L); TH (1:250, EMD Millipore, Cat#AB152); NCAM (1:250,
239 Millipore, Cat#AB5032); SV2 (1:250, Developmental Studies Hybridoma Bank, Cat#SV2); 2H3
240 (1:500, Developmental Studies Hybridoma Bank, Cat#2H3); SYN1 (1:200, Cell Signalling,
241 Cat#5297); TUBB3 conjugated to Alexa Fluor 488 (1:200, Abcam, Cat#ab195879); MBP
242 conjugated to Alexa Fluor 555 (1:500, Cell Signaling, Cat#84987).

243

244 Secondary antibodies:

245 Goat anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 555 (1:500,
246 ThermoFisher, Cat#A-21428); Goat anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary
247 Antibody, Alexa Fluor Plus 594 (1:1000, ThermoFisher, Cat#A32740); Goat anti-Rabbit IgG (H+L)
248 Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor Plus 647 (1:250, ThermoFisher, Cat#A-
249 32733), Goat anti-Mouse IgG1 Cross-Adsorbed Secondary Antibody, Alexa Fluor 488 (1:500,
250 ThermoFisher, Cat#**A-21121**).

251

252

253

254 Adipose stromal vascular fraction (SVF) dissociation

255 SVF from bilateral whole inguinal adipose depots was isolated as previously described
256 [12]. Inguinal scWAT was quickly harvested and minced in DMEM (high glucose, serum free, pre-
257 warmed in a 37°C water bath) containing 2 mg/mL of Collagenase A (Sigma-Aldrich,
258 Cat#10103586001) at a volume of 20 mL/g of tissue. Collagenase was added to warmed media
259 immediately before tissue dissection. Inguinal scWAT was pooled bilaterally from each animal for
260 FACS analysis of exercise and ageing cohorts. For FACS analysis at basal state, bilateral depots
261 from 4 animals were pooled together after the dissociation step. Minced tissue in dissociation
262 media was placed in 50 mL conical tube and transferred to a shaking warm water bath (90
263 rotations/min at 37°C). Dispersion of cells was furthered via gentle vortexing and trituration using
264 Pasteur Pipettes at various bores until full dissociation was achieved and floating adipocytes were
265 visible. Samples were filtered through 100 µm cell strainers and rinsed with DMEM then
266 centrifuged at 500 g for 10 min to separate adipocytes and SVF pellet. SVF pellet was incubated
267 with 500 µL of red blood cell lysis buffer for 2 min on ice. Lysis was stopped by the addition of 2
268 mL of DMEM containing 5% FBS. Cells were centrifuged at 500 g for 5 min at 4°C and
269 resuspended in 100 µL of FACS buffer (1X PBS with FBS and EDTA) for cell sorting.

270

Schwann Cells in Subcutaneous Adipose Tissue

271 **Fluorescence-activated cell sorting (FACS)**

272 For antibody labeling, 2 μ L FACS block (BSA and FBS in 1X PBS) was added to SVF
273 resuspended in FACS buffer (as described above) and then left to sit for 15-20 min on ice, after
274 which 500 μ L FACS buffer was added, and samples were spun at 1800 rpm for 5 min. Samples
275 were resuspended in 100 μ L FACS buffer with conjugated antibodies. Antibodies used included;
276 Anti-CD45-BV421 (Biolegend, Cat. # 103133 (clone 30-F11)), Anti-O4-APC (Miltenyi Biotec,
277 Clone O4), Anti-p75-VioBright FITC (Miltenyi Biotec, Clone REA648). Cells were washed 1-2
278 times by centrifugation at 1500 rpm for 5 min and then resuspended in 300 μ L of FACS buffer.
279 UltraComp eBeads (Invitrogen # 01-2222-42) were used for compensation controls. DAPI
280 exclusion was used for viability. Sorting was performed on a BD™ FACS Aria II™ cell sorter or
281 BD™ Influx equipped with a 100uM nozzle to accommodate Schwann cell size. Cells were gated
282 on FSC/SSC, live cells and CD45 to exclude immune cells. Cells representing Schwann cell
283 populations (CD45-p75+, CD45-p75+O4+, or CD45-O4-), were sorted into 400 μ L of Trizol (Zymo,
284 Irvine, CA, USA; Cat. #R2050-1-200). FACS performed sorts reported in this paper were
285 performed at The Jackson Laboratory in Bar Harbor, ME and at The Nationwide Children's
286 Hospital Flow Cytometry Core Facility in Columbus, OH.

287

288 **RNA extraction and real-time quantitative PCR (qPCR)**

289 Zymo DirectZol RNA extraction kit (Zymo, Irvine, CA, USA; Cat. #R2052) was used for
290 RNA extraction from whole tissue and the RNeasy Micro Kit (Qiagen, Cat. # 74004) was used to
291 isolate RNA from sorted cells. RNA yield was determined using a Nanodrop and cDNA was
292 synthesized using High-Capacity Synthesis Kit (Applied Biosystems, Foster City, CA, USA; Cat.
293 #4368813). Real-time quantitative polymerase chain reaction was performed using SYBR Green
294 (Bio-Rad, Cat#1725271) on a CFX384 real-time PCR detection system (Bio-Rad, Hercules, CA,
295 USA). Gene expression was normalized to housekeeper gene *Ppia* and *Sox10* for analysis.
296 Primers used for qPCR are listed in Supplemental Table 1.

297

298 **Western blot (WB)**

299 Protein expression was measured by western blotting analysis of scWAT lysates. Whole
300 adipose depots were homogenized in RIPA buffer with protease inhibitors in a Bullet Blender. A
301 Bradford assay was performed to measure total protein from which equal concentrations of
302 protein lysates were prepared in Laemmli buffer using 1X PBS as diluent. 30 μ g of protein were
303 loaded per lane of a 10% polyacrylamide gel, and following gel running, proteins were transferred
304 to PVDF membrane and incubated with 10% Roche Blocking Reagent for 1 hr at room

Schwann Cells in Subcutaneous Adipose Tissue

305 temperature prior to antibody incubation. The membrane was bisected horizontally at 37 kDa to
306 avoid the need for stripping proteins later. Primary antibodies included: TH (62 kDa, 1:250, EMD
307 Millipore, Cat#AB152); SOX10 (49 kDa, 1:400, Abcam, Cat#ab155279); MPZ (25 kDa, 1:1000,
308 Abcam, Cat#ab31851); β -Tubulin (55 kDa, 1:1000, Cell Signaling Technology, Cat#2146BC);
309 Cyclophilin B (21 kDa, 1:40,000, Abcam, Cat#16045). Primary antibodies were incubated
310 overnight at 4°C on a rotator with gentle agitation. Membranes were rinsed with 1X TBS-T and
311 then incubated in anti-rabbit HRP-linked secondary antibody (1:3000, Cell Signaling Technology,
312 Cat#7074) for 1hr a room temperature. Blots were visualized with enhanced chemiluminescence
313 (ECL; Pierce) on a Syngene G:BOX. TH and SOX10 expression were normalized to Cyclophilin
314 B, and MPZ was normalized to β -Tubulin and quantified by densitometry in Fiji [19].
315

316 **Statistical analyses**

317 For all animal experiments, mice were body weight matched and then randomized to
318 experimental or control groups to mitigate differences in starting body weights. ROUT outlier test
319 ($Q=1\%$) was performed on raw data to identify and remove statistical outliers within data sets.
320 FACS data was analyzed by two-tailed Student's t-test or two-way ANOVA with Tukey's multiple
321 comparison test for mixed models. qPCR data was analyzed for each gene individually by either
322 unpaired two-tailed Student's t-test or one-way ANOVA with multiple comparisons. Linear
323 regression analysis was performed with Goodness of Fit measured by R-squared and the
324 significance of slope determined by F-test, when comparing two linear regressions statistical
325 difference between slopes and Y-intercepts were analyzed. Western blot was analyzed by
326 unpaired Student's t-test. G-ratio was analyzed by unpaired Student's t-test. Neurite density was
327 analyzed as unpaired Student's t-test. All error bars are SEMs. Statistical calculations for
328 determining significance were calculated in GraphPad Prism software (La Jolla, CA, USA). For
329 all figures statistically significant p-values are displayed on each graph. n. s. = not significant.
330

331 **BTBR ob/ob scWAT nerve bundle processing, imaging, and quantification**

332 A prominent nerve bundle traversing into the inguinal scWAT depot was excised from each
333 mouse and samples were fixed in a 2% PFA / 2.5% glutaraldehyde mixture, postfixed with 1%
334 osmium tetroxide, and then en bloc stained with 1% aqueous uranyl acetate. The samples were
335 dehydrated in a graded series of ethanol and embedded in Eponate 12 epoxy resin (Ted Pella
336 Inc., Redding, CA). One-micron thick sections were cut with a Leica EM UC7 ultramicrotome
337 (Leica microsystems Inc., Deerfield, IL) and stained with toluidine blue. Images of nerve bundle
338 cross-sections were acquired with a Zeiss Axioskop microscope (Carl Zeiss Microscopy, LLC,

Schwann Cells in Subcutaneous Adipose Tissue

339 White Plains, NY) using Zeiss Achroplan 20X/0.45 Ph2 and Zeiss Plan-APOCHROMAT 63X/1.4 Oil
340 Ph3 objective lenses. Images were captured with a Nuance multispectral imaging camera
341 (PerkinElmer, Waltham, MA).

342 Intact whole axillary scWAT depots were excised and immunostained for TH. Alexa fluor
343 plus 594 was excited at 590 nm, and emitted photons were detected for 600-700 nm. Laser
344 intensity (10%) and detector gain (8%) remained constant for all images. The entirety of each
345 whole tissue was visually scanned at 10X objective magnification (1.00 confocal zoom) and a
346 representative 5x5 tiled (22.85 mm²) area was captured as a series of Z-stacks (10 µm step size)
347 extending through the full thickness of each tissue (120-230 µm) and were maximum intensity
348 projected. Images were processed for quantification in Fiji [20] by first applying background
349 subtraction (50 pixel rolling ball radius). Next, a threshold (30-255) was applied to further remove
350 autofluorescent background. Area of remaining pixels was measured.

351

352 ***Data and resource availability***

353 The datasets generated during and/or analyzed during the current study are available from
354 the corresponding author upon reasonable request. No applicable resources were generated or
355 analyzed during the current study.

356

357 **RESULTS:**

358 ***Patterns of nerve myelination in scWAT***

359 We used C57BL/6-Tg(Uchl1-EGFP)G1Phoz/J mice which endogenously express a pan-
360 neuronal GFP reporter (henceforth referred to as PGP9.5-EGFP^{+/−}) to investigate the relative
361 proportions of myelinated and non-myelinated nerves in inguinal scWAT (Figure 1A-C). To label
362 the myelin sheath of adipose-resident peripheral nerves, we used antibodies against two myelin
363 specific proteins, MPZ that is more commonly found in the PNS, and MBP that is more commonly
364 found in the CNS but also localized to PNS myelin [21]. Co-expression of PGP9.5-EGFP^{+/−} with
365 either MPZ or MBP was interpreted as a myelinated fiber and the absence of either marker on a
366 PGP9.5-EGFP^{+/−} nerve was interpreted as a non-myelinated fiber. Each whole adipose tissue
367 depot was systematically visually scanned for qualitative analyses, and representative images for
368 each tissue were captured of nerve bundles, nerves innervating blood vessels, and nerves in the
369 parenchyma.

370 All large nerve bundles (>25 µm diameter when viewed from above) in scWAT presented
371 with myelination, as indicated by MPZ/MBP labeling (Figure 1A and 1B, Nerve Bundle). These
372 large bundles displayed numerous branching points that eventually led to individual myelinated

Schwann Cells in Subcutaneous Adipose Tissue

373 fibers that branched further into thinly or unmyelinated fibers. The presence of myelin on each
374 nerve bundle appeared unevenly distributed, and myelin sheaths could not be traced along each
375 individual axon in the field of view. Digital cross-sectioning of these nerve bundles provided a
376 clear view of individual axons within the bundle, and the MPZ+ and MBP+ myelin sheaths around
377 them (Figure 1A and 1B, cross-section). In this view it was evident that MPZ and MBP labeling
378 were specific to the myelin sheath. Light scatter and a potential inability for antibodies to penetrate
379 the full diameter of nerve bundles resulted in the superficial aspect (closest to the light source) to
380 appear brighter than the nerve fibers distal from the light source, and was partially obscured by
381 the overlying nerves within the bundle. Myelin was present throughout the depth of each bundle,
382 but localization of MPZ+ and MBP+ staining to individual fibers was most obvious superficially.

383 Nerves innervating the adipose vasculature followed consistent patterning to what has
384 been described previously [2]; small unmyelinated fibers contacting vessel walls with myelinated
385 fibers traversing in parallel with the vessel. Here we note surprising variation between the markers
386 for myelin sheaths (Figure 1A and 1B, neurovascular). MPZ consistently labeled one or two
387 myelinated fibers running parallel to most blood vessels, excluding capillaries, and the small fibers
388 connecting with the vessel wall were MPZ-, supporting previous findings [2] that the nerves
389 directly innervating tissue vasculature are unmyelinated sympathetic nerves (Figure 1A,
390 neurovascular). By contrast, MBP staining of neurovascular fibers was less consistent. MBP was
391 observed to label the thicker nerves running parallel to vessels as well as many of the smaller
392 fibers contacting the vessel wall (Figure 1B, neurovascular). As with neurovascular labeling, MPZ
393 was expressed only on a subset of nerve fibers in the parenchyma with the majority being MPZ-
394 (Figure 1A, Parenchymal). MBP seemed to label the parenchymal fibers found alongside
395 adipocytes with less discrimination (Figure 1B, Parenchymal).

396 Because MPZ and MBP had slightly different patterns of labeling, it was necessary to co-
397 stain with these antibodies to gauge the extent of their overlap (Figure 1C). Co-labeling MPZ with
398 MBP demonstrated complete co-expression in the myelin sheaths around nerve fibers within
399 bundles (Figure 1C, nerve bundle, cross-section). Although MBP was observed to label a greater
400 number of small fibers, co-labeling with MPZ showed that in large part, labeling around
401 vasculature (Figure 1C, Neurovascular) and in the parenchyma (Figure 1C, Parenchymal) was
402 consistent for both markers.

403

404 ***Distinguishing sympathetic and sensory nerve myelination in scWAT***

405 Given scant prior reports of myelination status for the sensory and sympathetic innervation
406 in WAT, we assessed myelin presence on sympathetic nerves that were labeled for tyrosine

Schwann Cells in Subcutaneous Adipose Tissue

407 hydroxylase (TH), the rate-limiting enzyme for norepinephrine synthesis, as these nerves
408 comprise the majority of scWAT innervation [22]. We also labeled sensory nerves for the sensory-
409 specific neuropeptide Calcitonin Gene-Related Peptide (CGRP). This may under-represent the
410 entirety and diversity of adipose sensory nerves since neuropeptide diversity and non-peptidergic
411 sensory fibers are only beginning to be described in scWAT [2].

412 Intact inguinal scWAT depots were excised from PGP9.5-EGFP^{+/−} mice and co-stained for
413 TH and MBP. TH+ axons comprised only a subset of the axons within each myelinated nerve
414 bundle (Figure 2A, nerve bundle, cross-section). Neurovascular axons were almost entirely TH+,
415 excluding rarely observed myelinated nerves running in parallel with blood vessels, which were
416 TH-/MBP+ (Figure 2A, neurovascular). We observed that the majority of TH+ fibers co-expressed
417 MBP around vasculature and in the parenchyma (Figure 2A, parenchymal).

418 PGP9.5-EGFP^{+/−} nerve bundles co-stained for CGRP and MBP revealed punctate CGRP+
419 labeling across the length of a subset of the axons within myelinated nerve bundles (Figure 2B,
420 nerve bundle). Digital cross sections supported this finding, although due to the punctate nature
421 of the staining (likely because the vesicles containing CGRP were not uniformly distributed along
422 the axon), it is possible that digital cross sections underrepresented the total number of CGRP+
423 axons in each bundle (Figure 2B, cross-section). Neurovascular imaging of CGRP+ nerves
424 showed that the majority of CGRP+ axons outside of nerve bundles were closely aligned with
425 blood vessels (Figure 2B, neurovascular). This was not surprising given CGRP's known role in
426 vasodilation [23; 24]. Small axons in contact with the vessel wall were largely CGRP-/MBP-, and
427 only rarely were CGRP+/MBP+ (Figure 2B, neurovascular). Most parenchymal nerves were
428 CGRP-/MBP-, with infrequent CGRP+/MBP-, CGRP+/MBP+, and CGRP-/MBP+ axons also
429 present (Figure 2B, Parenchymal). Parenchymal nerve fibers presented with what appeared to
430 be cell bodies residing between axons and forming gaps between adjacent fibers (Figure 2C),
431 which were presumed to be Schwann cells or neuroimmune cells since neuronal cell bodies are
432 in the dorsal root ganglia and not in the tissue. DAPI labeled nuclei were found embedded in both
433 myelinated (MBP+) and unmyelinated (MBP-) axons, regardless of CGRP or TH expression
434 (Figure 2C). Combined, these data exemplify the heterogeneity of nerve fibers within scWAT
435 including myelinated sensory and sympathetic axons.

436

437 **SCs in scWAT.**

438 To confirm that the nuclei residing between adjacent nerve fibers and around scWAT
439 axons were SCs, we labeled whole inguinal scWAT from PGP9.5-EGFP^{+/−} reporter mice for the
440 SC lineage-determining transcription factor SOX10 [25; 26], which was used as a pan-SC marker.

Schwann Cells in Subcutaneous Adipose Tissue

441 DAPI+ nuclei residing between adjacent fibers and along the parenchymal nerves were found to
442 be SOX10+ (Figure 3A), thus confirming their SC identity. A thorough analysis of the whole tissue
443 revealed that SOX10+ cells were prominently distributed throughout the tissue (Figure 3B), with
444 the majority localized to nerve bundles. SOX10+ cells contributed to most of the DAPI labeled
445 nuclei within and around each nerve bundle (Figure 3B, nerve bundle, cross-section). The
446 remainder of the nuclei associated with each bundle are speculated to be neuroimmune cells,
447 based on prior data [13]. The second greatest proportion of SOX10+ cells were observed in
448 contact with the nerves innervating tissue vasculature (Figure 3B, neurovascular), and relatively
449 few SOX10+ cells were observed in the parenchyma around adipocytes (Figure 3B,
450 parenchymal). Importantly, the SOX10 antibody used in this manuscript also demonstrated off-
451 target labeling of what appeared to be mammillary ducts and/or lymphatic vessels (Supplemental
452 Figure S3A). Fortunately, SCs and ducts/vessels were easily distinguished from one another due
453 the distinct morphology of cells versus vessels (Supplemental Figure S3B).

454 Although SOX10 staining cannot differentiate between mSCs and nmSCs, we observed
455 that the greatest proportion of SOX10+ cells were distributed in structures that we had previously
456 observed to have significant myelination [2]. To confirm this, we co-stained scWAT from PGP9.5-
457 EGFP^{+/−} reporter mice for SOX10 and MBP (Figure 3C). As expected, most SOX10+ cells were
458 associated with MBP+ nerves, indicating they were mSCs. There were also SOX10+ cells
459 associated with unmyelinated nerves in the parenchyma, but these were less common (Figure
460 3C).

461

462 **The neuro-adipose nexus (NAN) is preceded by SCs**

463 Following the recent discovery of putative nerve terminals in scWAT, a structure where
464 axons terminate by wrapping around individual adipocytes which we termed the 'neuro-adipose
465 nexus' (NAN) [2], we sought to learn more about these structures by labeling for various nerve,
466 synaptic, and SC markers (Figure 4). Whole inguinal scWAT depots were excised from C57BL/6J
467 mice and immunostained for sympathetic nerves (TH). Tissue autofluorescence was captured
468 intentionally to visualize adipocyte boundaries and tissue structure along with TH labeling (Figure
469 4A), as is often exploited in tissue clearing experiments. Images were also captured with TH
470 labeling that did not include tissue autofluorescence (Supplemental Figure S4A), as control. NANs
471 were labeled clearly by TH and were visualized in clusters (2-4 adipocytes) as well as individually
472 (Figure 4A, Supplemental Figure S4A). These images revealed that branching axons terminate
473 on the cell surface of adipocytes (Figure 4A). Axons forming each NAN were pearlyed by
474 varicosities, similar to those observed in autonomic neuroeffector junctions [27] (Figure 4A).

Schwann Cells in Subcutaneous Adipose Tissue

475 Varicose axons were found throughout scWAT, with NANs characteristically displaying the
476 greatest number of varicose axons (Figure 4B). To investigate whether synaptic transmission /
477 neurotransmitter release could be occurring at these nexuses, we immunostained whole
478 PGP9.5-EGFP^{+/−} inguinal scWAT depots for the pre-synaptic vesicle organization protein,
479 Synapsin I (SYN1) [28] (Figure 4C), and for the membrane glycoprotein SV2, which is localized
480 to secretory vesicles [29] (Figure 4D). NANs were labeled by both characteristic pre-synaptic
481 markers, which provided further evidence that these terminal structures are points of
482 communication between the peripheral nervous system and single adipocytes. This is likely a site
483 of release of the neurotransmitter norepinephrine, as NANs are largely labeled by TH (Figure 4A-
484 B). However, the actual release and uptake of neurotransmitters at NANs has not yet been
485 confirmed.

486 Varicose sympathetic axons were also visualized surrounding putative nerve-embedded
487 SCs, as indicated by unstained gaps between adjacent fibers (Figure 4F, white arrows), similar
488 to those previously shown to contain nuclei (Figure 2C) and confirmed to be SCs (Figure 3A).
489 These same nerve-embedded SCs were frequently observed preceding NANs (Figure 4, white
490 arrows and Supplemental Figure S4, white arrows). Co-staining of PGP9.5-EGFP^{+/−} inguinal
491 scWAT revealed that these gaps between adjacent fibers were indeed SOX10+ SCs. To better
492 characterize the NAN SCs, we stained whole inguinal scWAT from C57BL/6J mice for neural cell
493 adhesion molecule (NCAM), a marker specific for nmSCs in adult mice [30] (Supplemental Figure
494 S4D). However, we found that NCAM was not specific to nmSCs in scWAT and labeled all
495 parenchymal nerves indiscriminately (Supplemental Figure S4E), including myelinated fibers
496 (Supplemental Figure S4F).

497 Several similarities can be observed between the NAN and another peripheral nerve-
498 termini, such as the well-characterized neuromuscular junction (NMJ) (Figure 3F). For both
499 termini, the axon branches from peripheral bundles toward specific cellular targets, to form
500 morphologically distinct connections. The axons leading to NMJs are myelinated [31], whereas
501 the more distal pre-synaptic terminal is unmyelinated [32]. mSCs are found in/on the myelinated
502 region of the NMJ axon, and nmSCs (important for maintaining synapses [32]) are found at the
503 terminal, which are called terminal SCs (tSCs). In adipose, the NAN similarly branches from
504 myelinated nerves with the terminal itself being unmyelinated, and like the NMJ, the NAN is
505 immediately preceded by SCs.

506

507 ***Fluorescence-activated cell sorting of SVF indicates the presence of two distinct SC***
508 ***populations***

Schwann Cells in Subcutaneous Adipose Tissue

509 To determine both the presence and relative quantity of nmSC and mSC sub-populations,
510 O4 and p75NTR were used as canonical markers. Previous literature indicated the use of O4 and
511 p75NTR expression to positively select for SCs in rat sciatic nerve [33]. CD45 was used to
512 negatively select for immune cells, after FSC/SSC gating on live singlet cells. O4 was used to
513 positively select for mSCs, while O4 and p75NTR together were used to positively select for
514 nmSCs [34]. The population of mSCs in scWAT was significantly higher compared to the nmSC
515 population (Figure 5A) This was consistent with immunofluorescence labeling of SOX10+ SCs
516 being associated primarily with myelinated structures in scWAT (Figure 3C). Since exercise has
517 been shown to increase scWAT innervation [11], we aimed to investigate whether this intervention
518 affects the relative distribution of SC populations in scWAT. Adult male BL6 mice were exercised
519 for 7 days (caged with unrestricted running wheel access) or maintained sedentary (caged with
520 locked running wheel). We observed no difference between exercised and sedentary SC
521 populations in the scWAT of the two groups (Figure 5B). However, for both groups, the amount
522 of mSCs trended higher compared to nmSCs (Figure 5B). Conversely, we have also previously
523 shown that aging decreased innervation in scWAT [11]. Therefore, we examined whether aging
524 alters SCs populations in scWAT. Following FACS of scWAT SVF from male BL6 mice across
525 different age groups (4 months, 8 months, and 15 months), we again observed a higher amount
526 of mSCs compared to nmSCs at 4 months ($p=0.0011$), 8 months ($p=0.0017$) and 15 months. At
527 the latest age of 15mo, there was a loss of statistical significance (Figure 5C), possibly indicative
528 of a relative decrease in myelinating SCs. Limitations in the FACS approach may preclude
529 detailed phenotyping of SC subtypes in the tissue, including cell size exclusion and ‘stickiness’ of
530 myelin to the adipocyte fraction.

531

532 ***Changes to SC phenotype with altered energy balance status***

533 Adipose tissue innervation is highly plastic and imbalances in energy intake and energy
534 expenditure have correlative impacts on tissue total innervation patterns, as well as sympathetic
535 nerve activity [11; 35; 36], but the impacts of changing energy balance on adipose resident SCs
536 have not yet been examined. We investigated gene expression changes in scWAT with obesity,
537 aging, cold exposure, and exercise using six SC specific markers: the pan-SC markers *Sox10*
538 [25; 26], oligodendrocyte marker 4 (*O4*) [37], and neurotrophin receptor p75 (*p75*) [37; 38]; the
539 myelin-specific markers *Mpz* and *Krox20* [39; 40]; and the repair SC transcription factor *c-Jun*
540 [17]. Because the associated changes in innervation status are likely to impact the total number
541 of SCs, we also normalized gene expression to the pan-SC gene to investigate changes not
542 confounded by changes in total SC number (Figure 6).

Schwann Cells in Subcutaneous Adipose Tissue

543 Cold exposure is a common means to increase sympathetic drive within adipose tissue
544 and results in the tissue taking on a more metabolically favorable, energy expending phenotype
545 with browning, increased sympathetic innervation, and non-shivering thermogenesis [35]. Male
546 BL6 mice (N=6) were cold exposed at 5°C for 3 days and scWAT gene expression of SC markers
547 was compared with mice housed at thermoneutrality (30°C) (N=6) or at room temperature (25°C)
548 (N=6). Cold-exposed mice exhibited a downregulation in *Krox20* compared to mice housed at RT
549 (p=0.0157) (Figure 6A).

550 Exercise promotes adipose tissue lipolysis through increased sympathetic drive and its
551 demonstrated role in neuroplasticity [41], similar to cold exposure. Accordingly, we compared
552 mice with access to voluntary exercise (running wheel cages; N=6) for 7 days with locked wheel
553 caged sedentary littermates (N=4). Mice with access to running wheels displayed no significant
554 differences in SC markers (Figure 6B) compared to sedentary controls (N=4).

555 Aging correlates with an increased prevalence of age-related neuropathy in the skin [42],
556 the underlying muscle [32], and in scWAT [11]. We investigated the effects of aging on SC gene
557 expression in scWAT by comparing male BL6 mice at 15 weeks old (N=5) to mice at 75 weeks
558 old (N=4) (Figure 6C). Aged mice exhibited an upregulation in *Krox20* compared to the young
559 controls (p=0.0491) (Figure 6C).

560 BTBR *ob/ob* (MUT) mice are leptin deficient (exhibiting an obese, diabetic, and
561 neuropathic phenotype), with reduced innervation of scWAT [11; 43]. We compared relative gene
562 expression of SC markers in MUT mice (N=4) to wild type BTBR (WT) littermate controls (N=5)
563 (Figure 6D). MUT mice had a significant upregulation of *Krox20* (p=0.0147), *O4* (p=0.0051), and
564 *c-Jun* (p=0.0063) (Figure 6D).

565 To investigate whether a diet-induced obesity (DIO) model would result in similar changes
566 seen in obese BTBR *ob/ob* MUT mice, we measured relative gene expression in BL6 mice fed a
567 high fat diet (HFD) for 19 weeks (N=5) compared to chow-fed controls (N=5) (Figure 6E).
568 Interestingly, no significant changes were observed in SC marker gene expression, perhaps due
569 to being less obese and neuropathic than the BTBR *ob/ob*. However, scWAT biopsies from male
570 and female lean (N=11) and obese (N=12) human donors did display an upregulation in p75NTR
571 (p=0.002) and a trending increase in *Krox20* with obesity, which was more similar to what was
572 observed in the BTBR *ob/ob* mice (Figure 6F).

573 Additionally, we normalized gene expression to the housekeeper gene *Ppia* to investigate
574 what changes were occurring relative to the whole tissue (Supplemental Figure S5). We found
575 that cold exposure resulted in down regulation of *Krox20* when compared to TN (p=0.0184)
576 (Supplemental Figure S5A). There were no changes in gene expression with exercise or aging

Schwann Cells in Subcutaneous Adipose Tissue

577 (Supplemental Figure S5B-C). Prominently, BTBR *ob/ob* MUT showed down regulation of *Sox10*
578 ($p=0.0076$), *Mpz* ($p=0.0089$), and *p75* ($p=0.0004$), as well as upregulation of *Krox20* ($p=0.0123$)
579 (Supplemental Figure S5D). A linear regression was performed looking at the relative fold change
580 between *Sox10* and *Mpz* gene expression in BTBR *ob/ob* scWAT which found a strong correlation
581 between the down regulation of *Mpz* with *Sox10* in scWAT ($r^2=0.8034$, $p=0.0011$) (Figure 6G).
582 Diet induced obesity in mice displayed no changes (Supplemental Figure S5E), but obese human
583 scWAT showed an increase in *Krox20* gene expression ($p=0.0456$) (Supplemental Figure S5F).

584 When taking all data sets into consideration it becomes quite evident that pro-myelinating
585 *Krox20* gene expression in scWAT is impacted by different metabolic states. *Krox20* is
586 consistently downregulated in scWAT under an energy expending metabolic state (cold exposure)
587 and significantly upregulated in unfavorable metabolic states (aging and obesity). Importantly,
588 these changes are consistent regardless of the reference gene.

589

590 **BTBR *ob/ob* mice are neuropathic and show demyelination of small nerve fibers.**

591 BTBR *ob/ob* mice displayed the most changes in SC gene expression (Figure 6D)
592 (Supplemental Figure S5D), and as such, we wanted to see if these changes were reflected in
593 inguinal scWAT innervation and demyelination. Male and female BTBR *ob/ob* (MUT, $N=4$) and
594 BTBR $+/+$ wild-type littermates (WT, $N=3$) were aged to at least 12 weeks old (when they show
595 an obese and neuropathic phenotype [11]). At the time of tissue collection, MUT mice had
596 significantly greater body weight ($p=0.0280$), inguinal scWAT weight ($p=0.0013$), and
597 subcutaneous adiposity ($p=<0.0001$) (Supplemental Figure S6A-C). Protein expression of whole
598 inguinal scWAT lysates showed a decrease in sympathetic nerve activity (TH, $p=0.0020$) in MUT
599 (Figure 7A) when compared to WT, as previously shown to correlate with a decrease in total
600 innervation [11]. MUT mice also displayed a decrease in total SCs (SOX10) ($p=0.0452$) (Figure
601 7B) and a decrease in total myelination (MPZ) ($p=0.0092$) (Figure 7C).

602 To gauge the scale at which demyelination was occurring, we started by consistently
603 excising the same nerve bundle (Supplemental Figure S6D) entering the inguinal scWAT depot
604 and analyzed nerve fiber myelination status by G-ratio. We observed no differences in the
605 average G-ratio between WT and MUT mice (Figure 7E). There was also no change in G-ratio
606 compared to axon diameter between both groups as determined by nearly identical linear
607 regressions (Y-intercepts and slopes not significantly different) between WT and MUT mice
608 (Figure 7F). With apparently no change in large bundle myelination, we turned our focus to the
609 small fibers.

Schwann Cells in Subcutaneous Adipose Tissue

610 Whole axillary scWAT depots were excised (WT N=3; MUT N=4) and immunostained for
611 TH which showed a loss of small TH+ fibers in the tissue parenchyma (Figure 7G), confirmed by
612 quantifying neurite density ($p=0.036$) (Figure 7H). A similar decrease in scWAT innervation was
613 observed in C57BL/6J *ob/ob* mice [44]. Additionally, we observed this same loss of small fibers
614 in MUT inguinal scWAT, though with an insufficient sample size to draw conclusions (WT N=1;
615 MUT N=1) (Supplemental Figure S6E). To investigate if the observed reduction in *Mpz* (Figure
616 6D) and MPZ (Figure 7C) was due to the overall reduced tissue innervation (Figure 7G-H) or a
617 demyelination of the existing small nerve fibers we co-stained inguinal scWAT from BTBR *ob/ob*
618 mice (WT N=3; MUT N=4) for the pan-neuronal marker, beta III tubulin (TUBB3) and MPZ.
619 Immunostaining of tissue resident nerve bundles was consistent with our previous data, with no
620 noticeable differences in bundle myelination (Figure 7I). However, many of the small fibers
621 displayed a deterioration of the myelin sheath with the associated nerves taking on irregular
622 shapes and a punctate appearance (Figure 7J). Because we could not differentiate between non-
623 myelinated nerves, and those that had become completely demyelinated (though nerve
624 irregularity was an indicator), we felt that we could not make definitive claims as to the ratio at
625 which demyelination was occurring throughout each tissue. Nerves also did not show uniform
626 demyelination along their length (Figure 7K); adding an additional layer of complexity in the
627 neuropathy phenotype.

628

629 **DISCUSSION:**

630 Despite extensive research on SC development and injury responses within large nerve
631 bundles such as the sciatic nerve, less is known about tissue-resident SCs and how unique
632 environmental and metabolic cues may influence SC function. This is a significant gap in
633 knowledge, given that chronic inflammatory demyelinating polyneuropathy (CIDP) is associated
634 with metabolic conditions such as diabetes [45; 46] and the fact that demyelinating neuropathies
635 may also be important in aging-related or idiopathic cases. Prior work has demonstrated the
636 presence of SCs in brown adipose tissue [3; 5; 47] , and scRNAseq studies have also reported
637 the presence of SCs in white adipose [4; 6], with a recent study using SCs harvested from scWAT
638 for regenerative therapies [8]. Regardless, it stands out that no studies have directly assessed
639 the contributions of myelinated nerves and SCs to adipose tissue physiology. We sought to begin
640 to fill this gap in understanding by investigating the tissue-resident SCs present in scWAT, how
641 they contribute to myelinated axons in the tissue, and how myelination or SC phenotype may shift
642 with metabolic state.

Schwann Cells in Subcutaneous Adipose Tissue

643 Our data provide conclusive evidence for myelinated and unmyelinated nerve subtypes
644 within adipose, carried into scWAT by shared/mixed peripheral nerve bundles. Within these
645 myelinated nerve bundles, we observed co-localized expression of both MPZ and MBP,
646 demonstrating a role for both myelin proteins in adipose nerves. Of note, MBP+ myelination was
647 observed in both CGRP+ sensory and TH+ sympathetic nerve fibers (Figure 2). This is contrary
648 to statements in the available literature which state that post-ganglionic sympathetic nerves are
649 largely unmyelinated [48]. Limitations in imaging or other experimental approaches may have led
650 to this overly simplified conclusion. By contrast, previous work in rats had identified thinly
651 myelinated sympathetic axons in the superior cervical ganglia and paravertebral chain ganglia
652 [49], and more recently it was reported that MBP+ myelination may be protective against
653 sympathetic denervation of the left ventricle in rhesus macaques [50]. Whereas these studies
654 identified select populations of myelinated sympathetic nerves, we observed near complete
655 overlap between TH and MBP within scWAT and found that the majority of sympathetic nerve
656 fibers are at least thinly myelinated in the mouse scWAT tissue environment.

657 By contrast, we find that sensory (CGRP+) nerve fibers show greater heterogeneity in
658 myelination. MBP and CGRP mark fibers (both thick and thin) entwined in nerve bundles together,
659 further exemplifying the heterogeneous nature of nerve bundles in adipose tissue. Sensory nerve
660 fibers in the skin are also highly diverse; both functionally and characteristically. They can be
661 either myelinated or non-myelinated, and when present, the myelin thickness corresponds to axon
662 diameter and depends on several factors including the detected stimuli, whether the skin is
663 glabrous or hairy, and even the dermal layer the nerve resides within [51]. Given our initial
664 observations here, similar diversity in scWAT sensory fibers also exists and warrants further
665 exploration.

666 The exact role of sympathetic myelination within adipose tissue is beyond the scope of
667 this study but may strengthen the bidirectional communication between the CNS and adipose
668 depots by allowing faster neural conduction, given myelin's function as insulation for ionic
669 movement in axons. Axonal diameter and myelin sheath thickness are directly related to the
670 speed of signal conductance and resulting physiological functions [52]. Adipose nerves in the
671 parenchyma also displayed heterogeneity in axon thickness and myelination, and may signify
672 diversity in SNS functions in the tissue.

673 We were limited to assessing sympathetic and sensory myelination exclusively with anti-
674 MBP labeling due to antibody host species cross-reactivity. This poses a significant caveat of
675 these assessments, as we did observe less MPZ+ labeling around small neurovascular and
676 parenchymal fibers (Figure 1), which tend to be sympathetic. As MPZ is the primary myelinating

Schwann Cells in Subcutaneous Adipose Tissue

677 protein of the PNS, future studies utilizing an MPZ reporter mouse line would be important for
678 clarifying this matter and are underway in our laboratory currently.

679 The presence of nerve termini in scWAT, unique from the majority of innervation observed
680 across the tissue architecture, is intriguing, but ultimately provides more questions than it does
681 answers. It is still unclear if a true synapse is being formed or what the function is of these terminal
682 endings that only form connections with a subset of mature adipocytes. Many of the parenchymal
683 nerves in scWAT are varicose, and it was shown in BAT that sympathetic axonal varicosities can
684 make direct contact with adipocytes [3]. We have now shown that NANs house synaptic vesicles
685 in axonal varicosities and likely function as a pre-synapse terminal releasing sympathetic
686 neurotransmitters on effector adipocytes. However, a true post-synaptic junction on adipocytes
687 has yet to be observed or described, despite the presence of post-synaptic proteins expressed in
688 adipose tissue, such as PSD95 [11]. This may instead be similar to other autonomic neuroeffector
689 junctions which are characterized by varicose nerve fibers that release neurotransmitters onto
690 effector cells that do not contain post-synaptic specialization but do have neurotransmitter
691 receptors on their cell membrane [27]. As mentioned, many of the sympathetic nerves in scWAT
692 parenchyma were varicose suggesting that they may be largely releasing neurotransmitter and
693 neuropeptide along the length of their axons ('en passant') onto contacted adipocytes. NANs
694 would accordingly serve a specialized function requiring more targeted synaptic release versus
695 the diffuse release that occurs en passant. The distinguishing characteristics between an
696 adipocyte which forms a nexus and one that does not is still a mystery, but is supported by the
697 vast literature describing numerous subtypes of scWAT mature adipocytes. The mechanisms that
698 induce nexus formation also remain to be determined.

699 By characterizing the glia associated with NANs, such as the SCs that appear similar to
700 the terminal SCs observed at the NMJ, we hoped to further develop our understanding of NANs
701 as well as the important functions SCs serve that are unique to adipose tissue. NCAM labeling
702 indicated that these NAN terminals are unmyelinated, but this was undermined by the NCAM
703 antibody's apparent lack of binding specificity within a tissue environment. The presence of SCs
704 immediately preceding the NAN suggests the alternative; that the axons leading to each NAN are
705 myelinated, as we have demonstrated that scWAT SCs are mostly myelinating and tend to be
706 localized to myelinated structures. Regardless, the consistency with which SCs are localized to
707 NANs hints to their importance for maintaining and/or eliciting these connections. By drawing
708 comparisons with the NMJ (a well described peripheral nerve terminal) we hoped to tease out
709 potential functional similarities shared between the supporting glia at each terminal. tSCs are
710 crucial for maintaining NMJs so we hypothesized that tSCs would be present at the terminal

Schwann Cells in Subcutaneous Adipose Tissue

711 junction of the NAN as well. However, the terminal SCs of the NAN were different than the NMJ,
712 in that they were only observed in the preceding axon leading to the NAN and not at the terminal
713 itself. These SCs still may be functioning as tSCs in synapse maintenance and nerve repair, but
714 hints that the long-term maintenance provided by abundant tSCs as required by the NMJ, may
715 not be required by NANs. This could suggest that NANs are highly plastic and do not form life-
716 long connections.

717 The frequency of nerve myelination within adipose tissue, and presence of both mSCs
718 and nmSCs (Figure 5) subtypes, demonstrates a role for SCs in adipose nerve maintenance and
719 function and makes them a potential target of dysregulation during adipose neuropathy. We have
720 shown that the scWAT of BTBR *ob/ob* MUT mice became neuropathic, with observed
721 demyelination of small fibers in the tissue. Additionally, these obese mice also underwent the
722 most changes in SC-related genes across changing energy balance states, specifically exhibiting
723 upregulation of *Krox20* (Figure 6). *Krox20* has been identified as the main regulator of SC
724 myelination during the pro-myelination phase, and plays a key role in interacting with *Sox10*
725 during the formation of nodes of Ranvier. *Krox20* also acts as a transcription factor for the
726 production of MPZ [37; 53; 54], thus emphasizing *Krox20*'s importance in myelination of axons
727 [39; 55; 56].

728 We also observed a significant upregulation of *Krox20* in BL6 mice with age and in humans
729 with obesity (Figure 6). Interestingly, in each instance, *Krox20* increased without a correlative
730 increase in *Mpz* expression (Figure 6). Moreover, BTBR *ob/ob* mice displayed reduced
731 myelination (Figure 7) alongside reductions in *Mpz* when normalized to *Ppia*, but this difference
732 disappeared when normalized to *Sox10* indicating that the downregulation of *Mpz* was directly
733 correlated to total SC *Sox10* expression. This was confirmed by running a linear regression of
734 both genes which correlated the downregulation of *Mpz* with a downregulation of *Sox10* (Figure
735 6). We hypothesize that upregulation of *Krox20* may be a compensatory response of adipose
736 mSCs to increase myelin production in neuropathic environments. Additionally, an increase in
737 *Krox20* expression would be expected if mature SCs were transdifferentiating into repair SCs [16]
738 in response to obesity or age-related neuropathy. The observed decrease in *Krox20* expression
739 may then indicate an impaired ability to produce repair SCs in neuropathic states. Further
740 research is needed to identify environmental signals that may be preventing functional myelination
741 in these models despite robust *Krox20* activation, or whether *Krox20* may be functioning in other
742 ways in the tissue.

743 A hallmark feature of SCs is their ability to shift towards a repair phenotype in response to
744 injury, releasing neurotrophic factors such as BDNF and glial cell line-derived neurotrophic factor

Schwann Cells in Subcutaneous Adipose Tissue

745 (GDNF). Previous studies have demonstrated the decreased ability of aged mice to regenerate
746 nerves post-injury when compared to their younger counterparts as a result of decreased c-Jun
747 expression [17], and neuropathic diseases such as CIDP are characterized by a loss of SC
748 plasticity [57]. Notably, qPCR of *c-Jun* in scWAT revealed almost no difference between young
749 and old mice while displaying upregulation in obese BTBR *ob/ob* mice (Figure 6). In order to
750 promote Wallerian degeneration, c-Jun is an inhibitor of myelination [58], and recent studies found
751 that SC mitochondrial dysfunction may drive c-Jun expression that contributed to demyelination
752 [59]. The upregulation of *c-Jun* in obese BTBR *ob/ob* mice may be contributing to the
753 demyelination of small fibers, or alternatively, as a means for repairing the neuropathy that has
754 occurred.

755 We have previously shown that obese BTBR *ob/ob* mice display neuropathy in scWAT
756 [11; 43] and others have demonstrated a specific decline in scWAT neurovascular innervation
757 [11; 43]. Here we have provided evidence that this neuropathy likely begins with the small
758 parenchymal nerve fibers and is associated with deteriorating myelin sheaths. It is still unclear if
759 demyelination is causing the axonopathy. We noted that MPZ did not label many small
760 parenchymal nerve fibers in scWAT (which are mostly sympathetic). Interestingly, in BTBR *ob/ob*
761 mice we observed deterioration of myelin sheaths labeled with MPZ as well as a decrease in
762 small sympathetic fibers. This suggests that there is axonopathy of the sympathetic fibers that
763 may be independent from the demyelination. Whether or not the neuropathy effects both sensory
764 and sympathetic nerves equally is also unclear. The downregulation of *Mpz* correlated with a
765 downregulation of *Sox10* and decreased SOX10 protein expression, but whether this is a loss of
766 just mSCs, or both mSCs and nmSCs is unclear. Finally, one could imagine that therapies capable
767 of preventing or reducing the loss of adipose tissue resident SCs may protect from nerve loss and
768 demyelination, ultimately contributing to healthier metabolism and energy balance, especially in
769 metabolic disease states like obesity and diabetes

770 In conclusion, we have now characterized SCs in white adipose tissue, their association
771 with myelinated and non-myelinated nerves, and localization to synaptic vesicle-containing
772 terminal nerve structures, or NANs. Most importantly we have provided evidence that
773 obesity/diabetes-related adipose neuropathy is concurrent with small fiber demyelination, loss of
774 small fiber innervation, and a decrease in SCs - together illustrating the importance of SCs in the
775 maintenance of adipose tissue peripheral nerves and thereby healthy metabolism.

776

777 **ACKNOWLEDGEMENTS:**

Schwann Cells in Subcutaneous Adipose Tissue

778 The authors wish to thank Morganne Robinson and Joshua Havelin for technical
779 assistance, as well as FACS services at the Jackson Laboratory (Will Schott), The Ohio State
780 University Wexner Medical Center Flow Cytometry Core, and Nationwide Children's Hospital
781 (Dave Dunaway). We would also like to thank Robert Burgess at the Jackson Laboratory for
782 technical advice.

783

784 **AUTHOR CONTRIBUTIONS:**

785 JWW, GG, EP, and MB wrote the manuscript, designed experiments, and analyzed data.
786 JRT processed and imaged tissues for brightfield microscopy. MFP, SRS, and LMS conducted
787 the human tissue collection and provided samples. KLT wrote the manuscript, designed
788 experiments, analyzed data, conceived of and oversaw the project, and serves as lead contact
789 for this manuscript.

790

791 **GUARANTOR STATEMENT:**

792 Kristy L. Townsend is takes responsibility for the research presented in this manuscript.

793

794 **CONFLICT OF INTEREST STATEMENT:**

795 The authors do not declare any conflicts of interest.

796

797 **FUNDING:**

798 This work was funded by an NIH R01 1R01DK114320-01A1, an American Heart
799 Association Collaborative Sciences Award (18CSA34090028), and start-up funding from The
800 Ohio State University.

801

802

803

804

805

806

807

808

809

810

811

Schwann Cells in Subcutaneous Adipose Tissue

812 REFERENCES:

813 [1] Blaszkiewicz, M., Willows, J.W., Johnson, C.P., Townsend, K.L., 2019. The Importance of
814 Peripheral Nerves in Adipose Tissue for the Regulation of Energy Balance. *Biology (Basel)* 8(1).
815 [2] Willows, J.W., Blaszkiewicz, M., Lamore, A., Borer, S., Dubois, A.L., Garner, E., et al.,
816 2021. Visualization and analysis of whole depot adipose tissue neural innervation. *iScience*
817 24(10):103127.
818 [3] Huesing, C., Zhang, R., Gummadi, S., Lee, N., Qualls-Creekmore, E., Yu, S., et al., 2022.
819 Organization of sympathetic innervation of interscapular brown adipose tissue in the mouse. *J*
820 *Comp Neurol* 530(9):1363-1378.
821 [4] Rondini, E.A., Ramseyer, V.D., Burl, R.B., Pique-Regi, R., Granneman, J.G., 2021. Single
822 cell functional genomics reveals plasticity of subcutaneous white adipose tissue (WAT) during
823 early postnatal development. *Mol Metab* 53:101307.
824 [5] Shamsi, F., Piper, M., Ho, L.L., Huang, T.L., Gupta, A., Streets, A., et al., 2021. Vascular
825 smooth muscle-derived *Trpv1*(+) progenitors are a source of cold-induced thermogenic
826 adipocytes. *Nat Metab* 3(4):485-495.
827 [6] Henriques, F., Bedard, A.H., Guilherme, A., Kelly, M., Chi, J., Zhang, P., et al., 2020.
828 Single-Cell RNA Profiling Reveals Adipocyte to Macrophage Signaling Sufficient to Enhance
829 Thermogenesis. *Cell Rep* 32(5):107998.
830 [7] Slavin, B.G., Ballard, K.W., 1978. Morphological studies on the adrenergic innervation of
831 white adipose tissue. *Anat Rec* 191(3):377-389.
832 [8] Stavely, R., Hotta, R., Picard, N., Rahman, A.A., Pan, W., Bhave, S., et al., 2022. Schwann
833 cells in the subcutaneous adipose tissue have neurogenic potential and can be used for
834 regenerative therapies. *Sci Transl Med* 14(646):eabl8753.
835 [9] Barrell, K., Smith, A.G., 2019. Peripheral Neuropathy. *Med Clin North Am* 103(2):383-397.
836 [10] Mold, J.W., Vesely, S.K., Keyl, B.A., Schenk, J.B., Roberts, M., 2004. The prevalence,
837 predictors, and consequences of peripheral sensory neuropathy in older patients. *J Am Board*
838 *Fam Pract* 17(5):309-318.
839 [11] Blaszkiewicz, M., Willows, J.W., Dubois, A.L., Waible, S., DiBello, K., Lyons, L.L., et al.,
840 2019. Neuropathy and neural plasticity in the subcutaneous white adipose depot. *PLOS One*
841 14(9):e0221766.
842 [12] O'Brien, P.D., Hur, J., Hayes, J.M., Backus, C., Sakowski, S.A., Feldman, E.L., 2015.
843 BTBR ob/ob mice as a novel diabetic neuropathy model: Neurological characterization and gene
844 expression analyses. *Neurobiol Dis* 73:348-355.
845 [13] Blaszkiewicz, M., Wood, E., Koizar, S., Willows, J., Anderson, R., Tseng, Y.H., et al., 2020.
846 The involvement of neuroimmune cells in adipose innervation. *Mol Med* 26(1):126.
847 [14] Jessen, K.R., Mirsky, R., 2019. The Success and Failure of the Schwann Cell Response
848 to Nerve Injury. *Front Cell Neurosci* 13:33.
849 [15] Jessen, K.R., Mirsky, R., 2016. The repair Schwann cell and its function in regenerating
850 nerves. *J Physiol* 594(13):3521-3531.
851 [16] Boerboom, A., Dion, V., Chariot, A., Franzen, R., 2017. Molecular Mechanisms Involved
852 in Schwann Cell Plasticity. *Front Mol Neurosci* 10:38.
853 [17] Wagstaff, L.J., Gomez-Sanchez, J.A., Fazal, S.V., Otto, G.W., Kilpatrick, A.M., Michael,
854 K., et al., 2021. Failures of nerve regeneration caused by aging or chronic denervation are
855 rescued by restoring Schwann cell c-Jun. *Elife* 10.
856 [18] Bogacka, I., Xie, H., Bray, G.A., Smith, S.R., 2005. Pioglitazone induces mitochondrial
857 biogenesis in human subcutaneous adipose tissue *in vivo*. *Diabetes* 54(5):1392-1399.
858 [19] Willows, J.W., Blaszkiewicz, M., Townsend, K.L., 2022. A clearing-free protocol for
859 imaging intact whole adipose tissue innervation in mice. *STAR Protoc* 3(1):101109.
860 [20] Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., et al.,
861 2012. Fiji: an open-source platform for biological-image analysis. *Nat Methods* 9(7):676-682.

Schwann Cells in Subcutaneous Adipose Tissue

862 [21] Raasakka, A., Kursula, P., 2020. How Does Protein Zero Assemble Compact Myelin?
863 Cells 9(8).

864 [22] Jiang, H., Ding, X., Cao, Y., Wang, H., Zeng, W., 2017. Dense Intra-adipose Sympathetic
865 Arborizations Are Essential for Cold-Induced Beiging of Mouse White Adipose Tissue. Cell Metab
866 26(4):686-692 e683.

867 [23] Brain, S.D., Williams, T.J., Tippins, J.R., Morris, H.R., MacIntyre, I., 1985. Calcitonin gene-
868 related peptide is a potent vasodilator. Nature 313(5997):54-56.

869 [24] Kee, Z., Kodji, X., Brain, S.D., 2018. The Role of Calcitonin Gene Related Peptide (CGRP)
870 in Neurogenic Vasodilation and Its Cardioprotective Effects. Front Physiol 9:1249.

871 [25] Finzsch, M., Schreiner, S., Kichko, T., Reeh, P., Tamm, E.R., Bosl, M.R., et al., 2010.
872 Sox10 is required for Schwann cell identity and progression beyond the immature Schwann cell
873 stage. J Cell Biol 189(4):701-712.

874 [26] Kuhlbrodt, K., Herbarth, B., Sock, E., Hermans-Borgmeyer, I., Wegner, M., 1998. Sox10,
875 a novel transcriptional modulator in glial cells. J Neurosci 18(1):237-250.

876 [27] Burnstock, G., 2008. Non-synaptic transmission at autonomic neuroeffector junctions.
877 Neurochem Int 52(1-2):14-25.

878 [28] Steiner, J.P., Gardner, K., Baines, A., Bennett, V., 1987. Synapsin I: a regulated synaptic
879 vesicle organizing protein. Brain Res Bull 18(6):777-785.

880 [29] Bajjalieh, S.M., Peterson, K., Shinghal, R., Scheller, R.H., 1992. SV2, a brain synaptic
881 vesicle protein homologous to bacterial transporters. Science 257(5074):1271-1273.

882 [30] Klein, D., Groh, J., Wettemarshausen, J., Martini, R., 2014. Nonuniform molecular features
883 of myelinating Schwann cells in models for CMT1: distinct disease patterns are associated with
884 NCAM and c-Jun upregulation. Glia 62(5):736-750.

885 [31] Tintignac, L.A., Brenner, H.R., Ruegg, M.A., 2015. Mechanisms Regulating
886 Neuromuscular Junction Development and Function and Causes of Muscle Wasting. Physiol Rev
887 95(3):809-852.

888 [32] Fuertes-Alvarez, S., Izeta, A., 2021. Terminal Schwann Cell Aging: Implications for Age-
889 Associated Neuromuscular Dysfunction. Aging Dis 12(2):494-514.

890 [33] Chen, L., Jin, Y., Yang, X., Liu, Z., Wang, Y., Wang, G., et al., 2017. Fat tissue, a potential
891 Schwann cell reservoir: isolation and identification of adipose-derived Schwann cells. Am J Transl
892 Res 9(5):2579-2594.

893 [34] Jessen, K.R., Mirsky, R., 2002. Signals that determine Schwann cell identity. J Anat
894 200(4):367-376.

895 [35] Brito, N.A., Brito, M.N., Bartness, T.J., 2008. Differential sympathetic drive to adipose
896 tissues after food deprivation, cold exposure or glucoprivation. Am J Physiol Regul Integr Comp
897 Physiol 294(5):R1445-1452.

898 [36] Rayner, D.V., 2001. The sympathetic nervous system in white adipose tissue regulation.
899 Proc Nutr Soc 60(3):357-364.

900 [37] Liu, Z., Jin, Y.Q., Chen, L., Wang, Y., Yang, X., Cheng, J., et al., 2015. Specific marker
901 expression and cell state of Schwann cells during culture in vitro. PLOS One 10(4):e0123278.

902 [38] Wolbert, J., Li, X., Heming, M., Mausberg, A.K., Akkermann, D., Frydrychowicz, C., et al.,
903 2020. Redefining the heterogeneity of peripheral nerve cells in health and autoimmunity. Proc
904 Natl Acad Sci U S A 117(17):9466-9476.

905 [39] Topilko, P., Schneider-Maunoury, S., Levi, G., Baron-Van Evercooren, A., Chennoufi,
906 A.B., Seitanidou, T., et al., 1994. Krox-20 controls myelination in the peripheral nervous system.
907 Nature 371(6500):796-799.

908 [40] Decker, L., Desmarquet-Trin-Dinh, C., Taillebourg, E., Ghislain, J., Vallat, J.M., Charnay,
909 P., 2006. Peripheral myelin maintenance is a dynamic process requiring constant Krox20
910 expression. J Neurosci 26(38):9771-9779.

911 [41] Hotting, K., Roder, B., 2013. Beneficial effects of physical exercise on neuroplasticity and
912 cognition. Neurosci Biobehav Rev 37(9 Pt B):2243-2257.

Schwann Cells in Subcutaneous Adipose Tissue

913 [42] Verdu, E., Ceballos, D., Vilches, J.J., Navarro, X., 2000. Influence of aging on peripheral
914 nerve function and regeneration. *J Peripher Nerv Syst* 5(4):191-208.
915 [43] Cao, Y., Wang, H., Wang, Q., Han, X., Zeng, W., 2018. Three-dimensional volume
916 fluorescence-imaging of vascular plasticity in adipose tissues. *Mol Metab* 14:71-81.
917 [44] Wang, P., Loh, K.H., Wu, M., Morgan, D.A., Schneeberger, M., Yu, X., et al., 2020. A
918 leptin-BDNF pathway regulating sympathetic innervation of adipose tissue. *Nature*
919 583(7818):839-844.
920 [45] Fatehi, F., Nafissi, S., Basiri, K., Amiri, M., Soltanzadeh, A., 2013. Chronic inflammatory
921 demyelinating polyneuropathy associated with diabetes mellitus. *J Res Med Sci* 18(5):438-441.
922 [46] Rajabally, Y.A., Stettner, M., Kieseier, B.C., Hartung, H.P., Malik, R.A., 2017. CIDP and
923 other inflammatory neuropathies in diabetes - diagnosis and management. *Nat Rev Neurol*
924 13(10):599-611.
925 [47] Harris, W.H., Foster, D.O., Ma, S.W., Yamashiro, S., Langlais-Burgess, L.A., 1986. The
926 noradrenaline content and innervation of brown adipose tissue in the young rabbit. *Can J Physiol*
927 *Pharmacol* 64(5):561-567.
928 [48] Patel, T.R., 2015. Chapter 36 - Anatomy of the Sympathetic Nervous System. In: Shane
929 Tubbs, E.R., Mohammadali M. Shoja, Marios Loukas, Nicholas Barbaro, Robert J. Spinner, editor.
930 *Nerves and Nerve Injuries*, p. 495-506.
931 [49] Inuzuka, T., Quarles, R.H., Trapp, B.D., Heath, J.W., 1988. Analysis of myelin proteins in
932 sympathetic peripheral nerve of adult rats. *Brain Res* 466(2):191-199.
933 [50] Metzger, J.M., Matsoff, H.N., Vu, D., Zinnen, A.D., Jones, K.M., Bondarenko, V., et al.,
934 2021. Myelin Basic Protein and Cardiac Sympathetic Neurodegeneration in Nonhuman Primates.
935 *Neurol Res Int* 2021:4776610.
936 [51] Glatte, P., Buchmann, S.J., Hijazi, M.M., Illigens, B.M., Siepmann, T., 2019. Architecture
937 of the Cutaneous Autonomic Nervous System. *Front Neurol* 10:970.
938 [52] Seidl, A.H., 2014. Regulation of conduction time along axons. *Neuroscience* 276:126-134.
939 [53] Svaren, J., Meijer, D., 2008. The molecular machinery of myelin gene transcription in
940 Schwann cells. *Glia* 56(14):1541-1551.
941 [54] Hui, T.K., Lai, X.S., Dong, X., Jing, H., Liu, Z., Fei, E., et al., 2021. Ablation of Lrp4 in
942 Schwann Cells Promotes Peripheral Nerve Regeneration in Mice. *Biology (Basel)* 10(6).
943 [55] Murphy, P., Topilko, P., Schneider-Maunoury, S., Seitanidou, T., Baron-Van Evercooren,
944 A., Charnay, P., 1996. The regulation of Krox-20 expression reveals important steps in the control
945 of peripheral glial cell development. *Development* 122(9):2847-2857.
946 [56] Saur, A.L., Frob, F., Weider, M., Wegner, M., 2021. Formation of the node of Ranvier by
947 Schwann cells is under control of transcription factor Sox10. *Glia* 69(6):1464-1477.
948 [57] Joshi, A.R., Holtmann, L., Bobylev, I., Schneider, C., Ritter, C., Weis, J., et al., 2016. Loss
949 of Schwann cell plasticity in chronic inflammatory demyelinating polyneuropathy (CIDP). *J*
950 *Neuroinflammation* 13(1):255.
951 [58] Parkinson, D.B., Bhaskaran, A., Arthur-Farraj, P., Noon, L.A., Woodhoo, A., Lloyd, A.C.,
952 et al., 2008. c-Jun is a negative regulator of myelination. *J Cell Biol* 181(4):625-637.
953 [59] Della-Flora Nunes, G., Wilson, E.R., Hurley, E., He, B., O'Malley, B.W., Poitelon, Y., et al.,
954 2021. Activation of mTORC1 and c-Jun by Prohibitin1 loss in Schwann cells may link
955 mitochondrial dysfunction to demyelination. *Elife* 10.
956
957
958
959
960

Schwann Cells in Subcutaneous Adipose Tissue

961 **FIGURE LEGENEDS:**

962

963 **Figure 1: Immunofluorescence in subcutaneous white adipose tissue (scWAT) reveals a**
964 **heterogenous mix of myelinated and non-myelinated axons.** Intact inguinal scWAT depots
965 were excised from PGP9.5-EGFP^{+/−} reporter mice and immunolabeled for myelin with MPZ and
966 MBP. Representative images are displayed of nerve bundles (top-down and cross-sectional),
967 nerves interacting with blood vessels, and those in the parenchyma. Each marker was
968 immunostained and analyzed individually (**A-B**) and co-labeled (**C**) to investigate co-expression.
969 Structures co-labeled with PGP9.5-EGFP^{+/−} (green) and either of the myelinating markers (red)
970 were identified as myelinated nerves (**A-B**). Overlap of MPZ (red) and MBP (blue) was used to
971 determine extent of MPZ and MBP co-expression (**C**). White boxes show select regions digitally
972 enlarged to aid visualization. Images were captured on Stellaris 5 confocal microscope. See
973 Supplemental Figure S1 for single-color channels of each image.

974

975 **Figure 2: Sympathetic and sensory nerve myelination in scWAT.** To investigate the status of
976 sympathetic and sensory nerve myelination, intact inguinal scWAT depots were excised from
977 PGP9.5-EGFP^{+/−} (green) reporter mice and co-labeled for MBP (blue) and either the sympathetic
978 nerve marker TH (red) (**A**) or the sensory nerve marker CGRP (red) (**B**). Representative images
979 of nerve bundles, vascular innervation, and parenchymal innervation are displayed. White boxes
980 were digitally enlarged to aid in visualization. Red and blue overlap identified myelinated
981 sympathetic (**A**) and Sensory nerves (**B**). Axons in the parenchyma demonstrate nuclei (DAPI,
982 grey) embedded in both sympathetic and sensory nerves (**C**). Images were captured on Stellaris
983 5 confocal microscope. See Supplemental Figure S2 for single-color channels of each image.

984

985 **Figure 3: Schwann cell (SC) bodies are embedded in heterogenous nerves within scWAT**
986 Intact inguinal scWAT depots were excised from PGP9.5-EGFP^{+/−} (green) reporter mice and co-

Schwann Cells in Subcutaneous Adipose Tissue

987 stained to label SCs (SOX10, red) and nuclei (DAPI, grey) **(A-B)**. High magnification image of
988 SOX10 positive nuclei embedded in small parenchymal nerve fibers **(A)**. Representative images
989 of SOX10 positive nuclei distribution throughout scWAT **(B)**. SC localization in relation to
990 myelinated nerves stained with MBP **(C)**. Overlap of red and grey identified SCs **(A-C)**. Overlap
991 of green and blue identified myelinated nerves **(C)**. Images were captured on Stellaris 5 confocal
992 microscope. See Supplemental Figure S3 for single-color channels of each image.

993

994 **Figure 4: The neuro-adipose nexus (NAN) is densely pearly by synaptic vesicle**
995 **containing axonal varicosities and is often immediately preceded by SCs.** Intact inguinal
996 scWAT depots were excised from C57BL/6J mice and labeled for TH which revealed NANs
997 throughout the tissue parenchyma terminating on single adipocytes or small clusters of adipocytes
998 **(A)**. TH labeling of NANs were merged with single Z-planes of purposefully captured tissue
999 autofluorescence to display adipocyte boundaries in relation to the spread of axons in each NAN;
1000 displayed as inverted monochrome images **(A)**. TH+ axons are black overlying white adipocytes
1001 with grey extracellular matrix separating each cell **(A)**. NANs were characteristically densely
1002 populated by axonal varicosities when compared to other parenchymal axons within the same
1003 tissue; images displayed with Glow LUT **(B)**. Co-labeling of PGP9.5-EGFP^{+/−} (green) reporter mice
1004 demonstrated that NAN axonal varicosities contain the synaptic vesicle organizing protein, SYN1
1005 (red) **(C)**, as well as synaptic vesicles (SV2, red) **(D)**. Varicose axons were observed surrounding
1006 unlabeled putative SCs (gaps between adjacent fibers; white arrows) in the parenchyma **(E)** and
1007 preceding many NANs **(C)**. SC identity was confirmed by SOX10 labeling; overlap of SOX10 (red)
1008 with DAPI (blue) within a nerve (green) leading to NAN **(F)**. White boxes were digitally magnified
1009 to aid in visualization. All images were captured on a Stellaris 5 confocal microscope. Lightning
1010 deconvolution was utilized to resolve axonal varicosities **(A-C,E)**. See Supplemental Figure S4
1011 for single-color channels of each image.

1012

Schwann Cells in Subcutaneous Adipose Tissue

1013 **Figure 5: Fluorescence-activated cell sorting (FACS) and quantification of SCs in scWAT.**

1014 Stromal vascular fraction (SVF) was isolated from inguinal scWAT depots excised from C57BL/6J
1015 mice and sorted into two distinct SC populations: CD45-O4+p75-, myelinating SCs (mSCs); and
1016 CD45-O4+p75+, non-myelinating SCs (nmSCs). mSCs and nmSCs were quantified as percent
1017 of live cells. Basal: 21-week-old male mice (N=4) **(A)**. Exercise: Male mice aged between 29 and
1018 68 weeks were either given continuous access to run (Exercise, N=5) or had the running wheel
1019 locked in place (Sedentary, N=5) **(B)**. Aging: Male mice at three ages (4-months, N=5; 8-months,
1020 N=5; 15-months, N=5) **(C)**. Statistics: unpaired Student's t-test **(A)** and one-way ANOVA with
1021 multiple comparisons **(B-C)**. Error bars are SEMs. P-values are as shown or are not provided
1022 when not significant (n.s.).

1023

1024 **Figure 6: SC gene expression in scWAT with changing metabolic status.** Relative gene

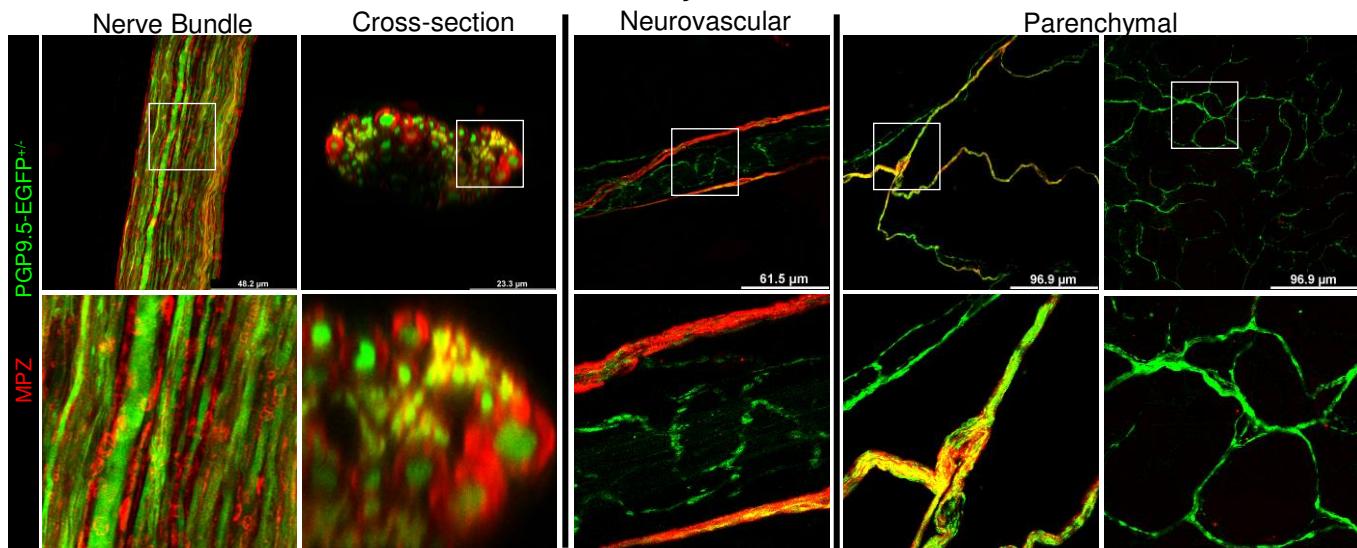
1025 expression measured by qPCR, normalized to total SCs (*Sox10*) and represented as fold change
1026 in $\Delta\Delta Ct$ value **(A-F)**. Gene expression of scWAT from BL6 mice that were either housed at 30°C,
1027 thermoneutrality (TN, N=6); at 25°C, room temperature (RT, N=6); or at 5°C (Cold, N=6) **(A)**. Fold
1028 change is normalized to RT group. Gene expression of scWAT from BL6 mice that were exercised
1029 for 7-days or remained sedentary **(B)**. Mice were either given continuous access to running
1030 wheels (Exercise, N=6) or had the running wheel locked in place (Sedentary, N=4) **(B)**. Gene
1031 expression of scWAT from BL6 mice aged 15wks (Young, N=5) and 75wks (Old, N=4) **(C)**. Gene
1032 expression of scWAT excised from BTBR *ob/ob* (MUT, N=4) and wild-type littermates (WT, N=5)
1033 **(D)**. Gene expression of scWAT excised from BL6 mice fed either a 58% high fat diet (HFD, N=5)
1034 or chow (Control, N=5) **(E)**. Gene expression of scWAT biopsies excised from lean (BMI >30) and
1035 obese (BMI <25) human donors **(F)**. Linear regression of *Mpz* and *Sox10* foldchange normalized
1036 to housekeeper gene *Ppia* **(G)**. Statistics: one-way ANOVA with multiple comparisons **(A)** and
1037 unpaired Student's t-test **(B-F)** and linear regression goodness of fit measured by R-squared and
1038 the significance of slope determined by F-test **(G)**. Error bars are SEMs. P-values are as shown

Schwann Cells in Subcutaneous Adipose Tissue

1039 or are not provided when not significant (n.s.). See Supplemental Figure S5 for all genes
1040 normalized to the housekeeper gene *Ppia*.

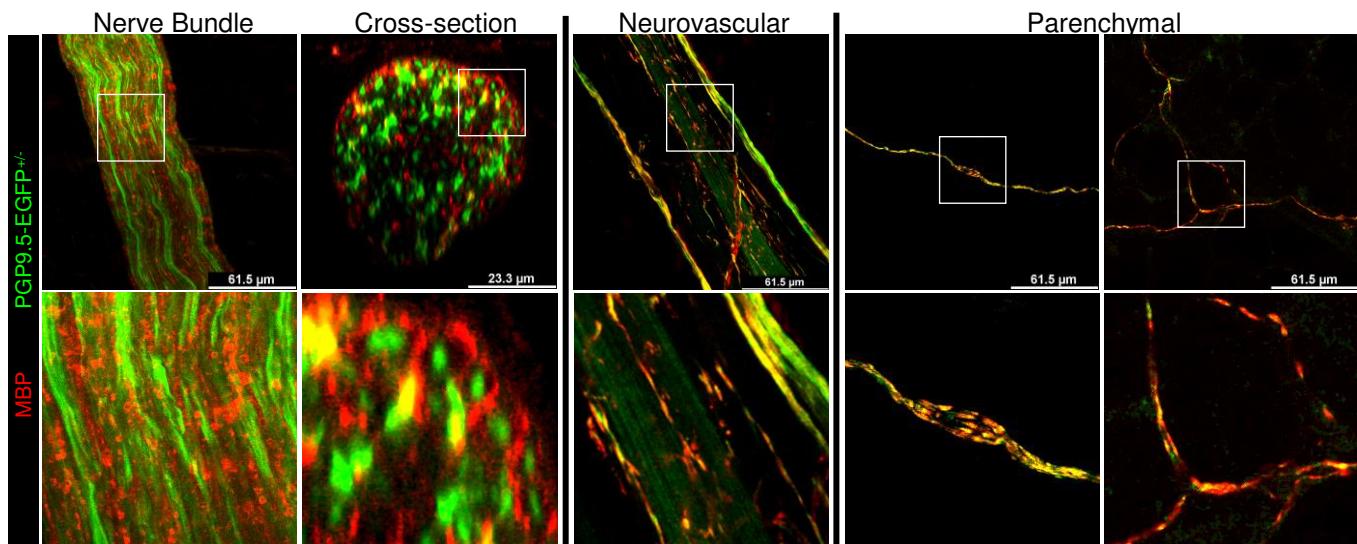
1041

1042 **Figure 7: BTBR *ob/ob* mice present with a loss of small fiber sympathetic innervation in**
1043 **scWAT, accompanied by small fiber demyelination.** Male and female BTBR *ob/ob* (MUT, N=4)
1044 and wild-type littermates (WT, N=3). Western blot protein analysis of TH (**A**), SOX10 (**B**), and
1045 MPZ (**C**) in inguinal scWAT. A consistent nerve bundle entering scWAT depot was excised from
1046 each mouse, cross-sectioned, and stained with toluidine blue (**D**). G-ratio was measured for all
1047 myelinated axons in a nerve bundle and averaged for each mouse (**E**). G-ratios were pooled for
1048 each group (WT, 377; MUT, 981) and plotted against axon diameter (**F**). Linear regression values
1049 plotted in table below with slopes and Y-intercepts compared (**F**). Whole mount immunostaining
1050 of sympathetic nerves in axillary scWAT were captured as Z-stacks (10 μ m step size) with a 10X
1051 objective, tiled 5x5 (22.85 mm² area), and maximum intensity projected (**G**). Neurite density
1052 measured as fluorescence area in each 22.85 mm² field of view (**H**). Whole mount immunostaining
1053 of inguinal scWAT nerves (TUBB3, green) and myelin (MPZ, red) demonstrating myelinated nerve
1054 bundles (**I**) and demyelination of small nerve fibers in MUT mice (**J**). Demyelination shown
1055 progressing along the length of comparable small fiber nerves overlying the subiliac lymph node
1056 (SiLN) in scWAT (**K**). Numbers 1-4 correspond to adjacent images digitally magnified to aid
1057 visualization (**K**). Brightfield images were captured on a Zeiss Axioskop microscope (**D**) and
1058 fluorescence images were captured on a Stellaris 5 confocal microscope (**G,I-K**). Lightning
1059 deconvolution (**I-J**). Statistics: unpaired Student's t-test (**A-C,E,H**) and a linear regression (**F**).
1060 Error bars are SEMs. P-values are as shown.


1061

1062

Figure 1: Immunofluorescence in subcutaneous white adipose tissue (scWAT) reveals a heterogenous mix of myelinated and non-myelinated axons.


A.

scWAT Nerve Myelination: MPZ

B.

scWAT Nerve Myelination: MBP

C.

MPZ and MBP Co-Labeling

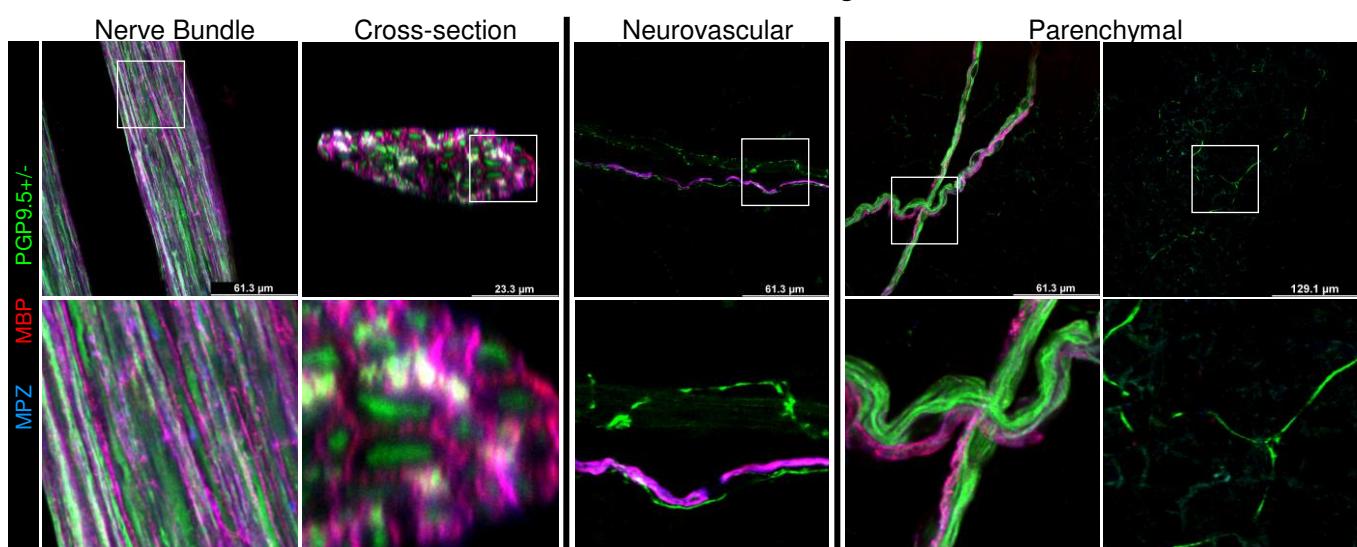
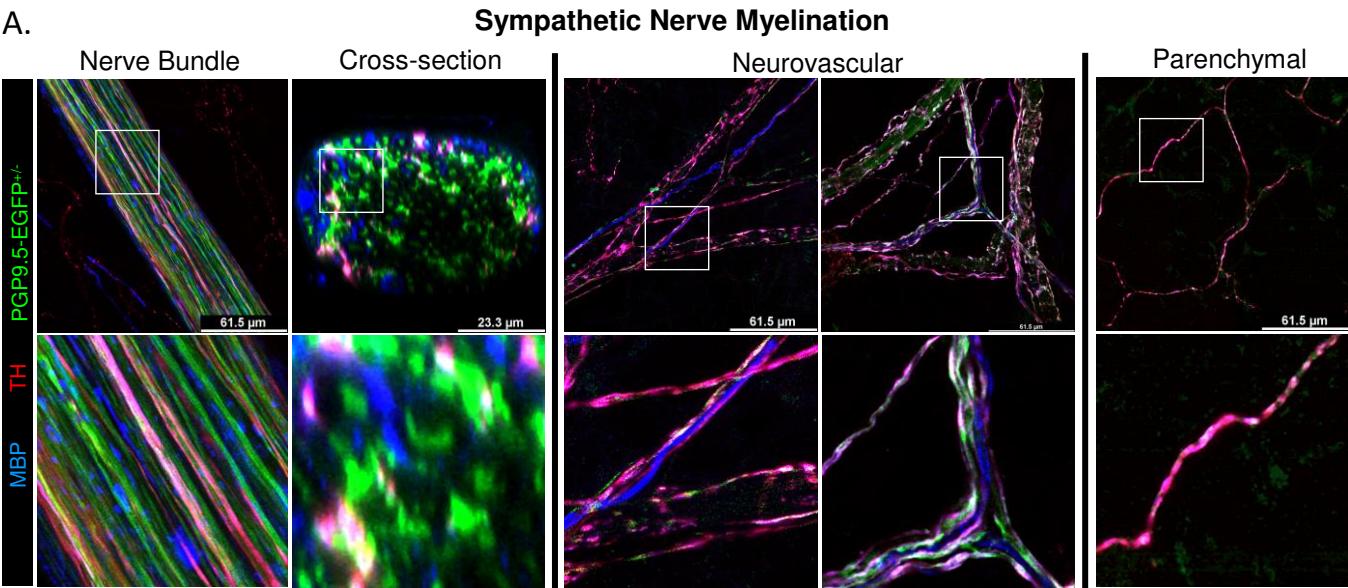
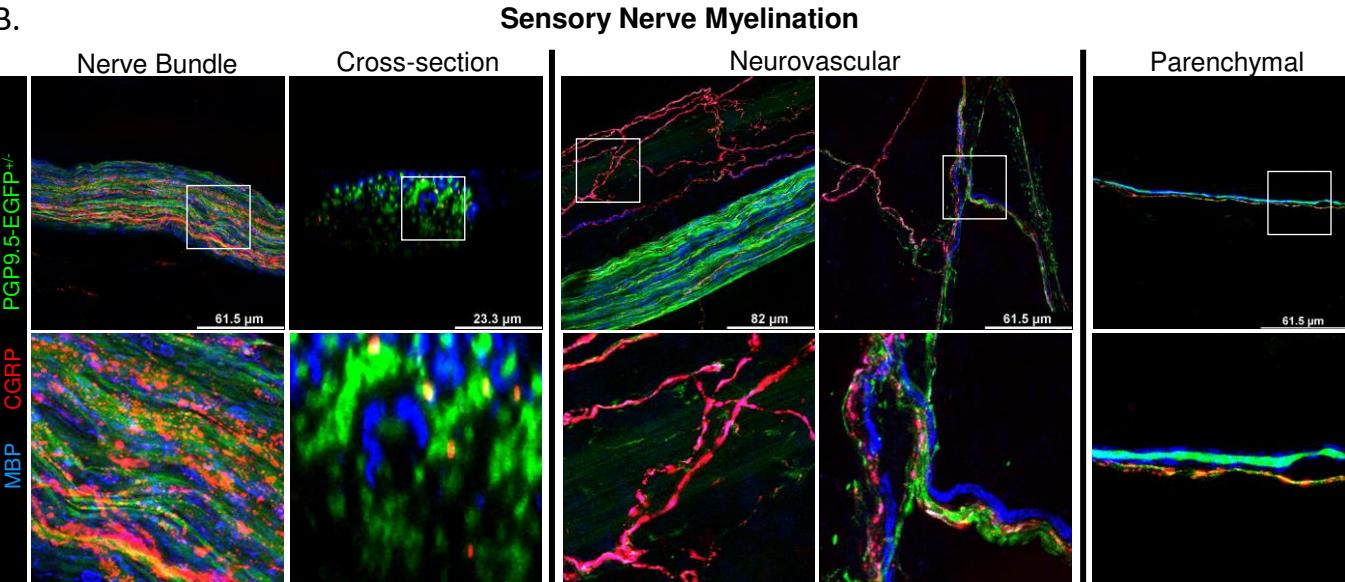




Figure 2: Sympathetic and sensory nerve myelination in scWAT.

A.

B.

C.

Heterogeneity of Thin Nerve Fiber Myelination and Presence Nerve Embedded Nuclei

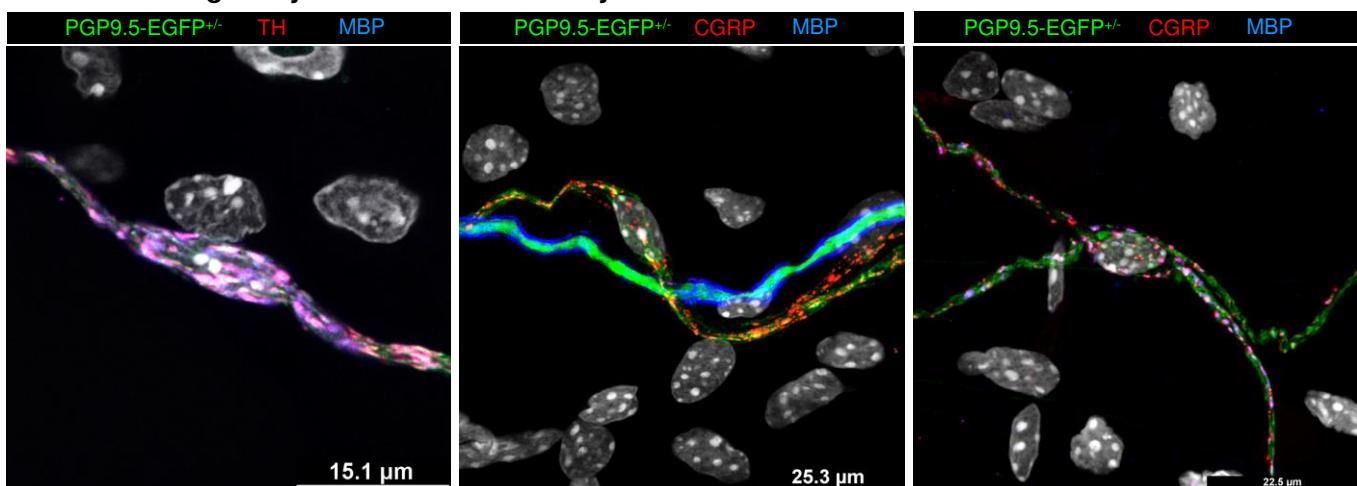
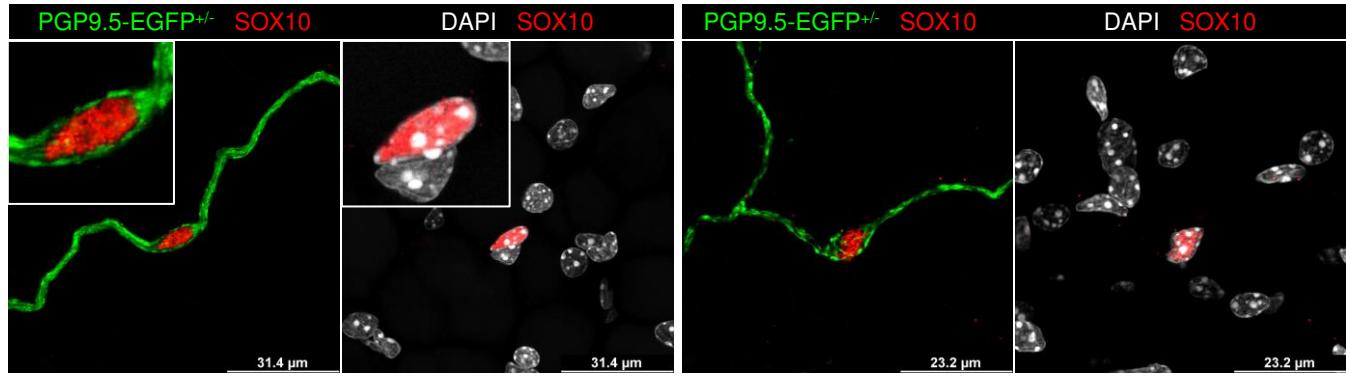
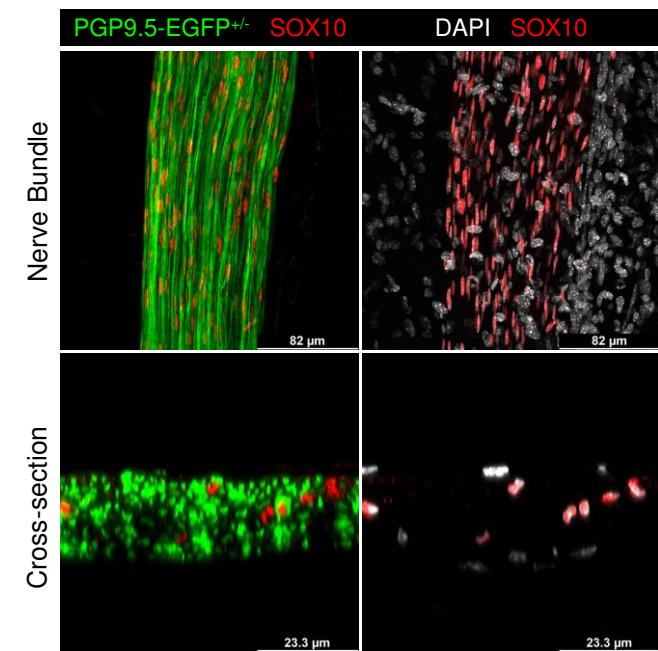



Figure 3: Schwann cell (SC) bodies are embedded in heterogenous nerves within scWAT.


A.

Nerve-Embedded Schwann Cells in scWAT

B.

Schwann Cells in scWAT

C.

Schwann Cells Associated with Myelinated Nerves in scWAT

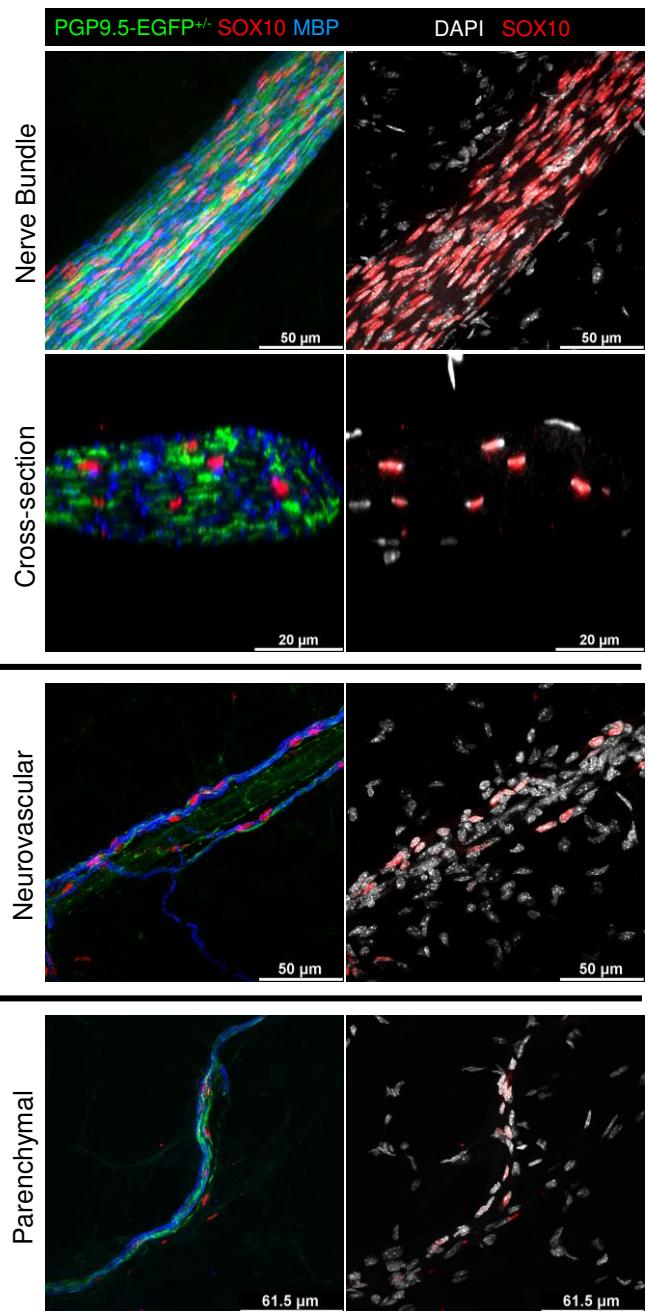
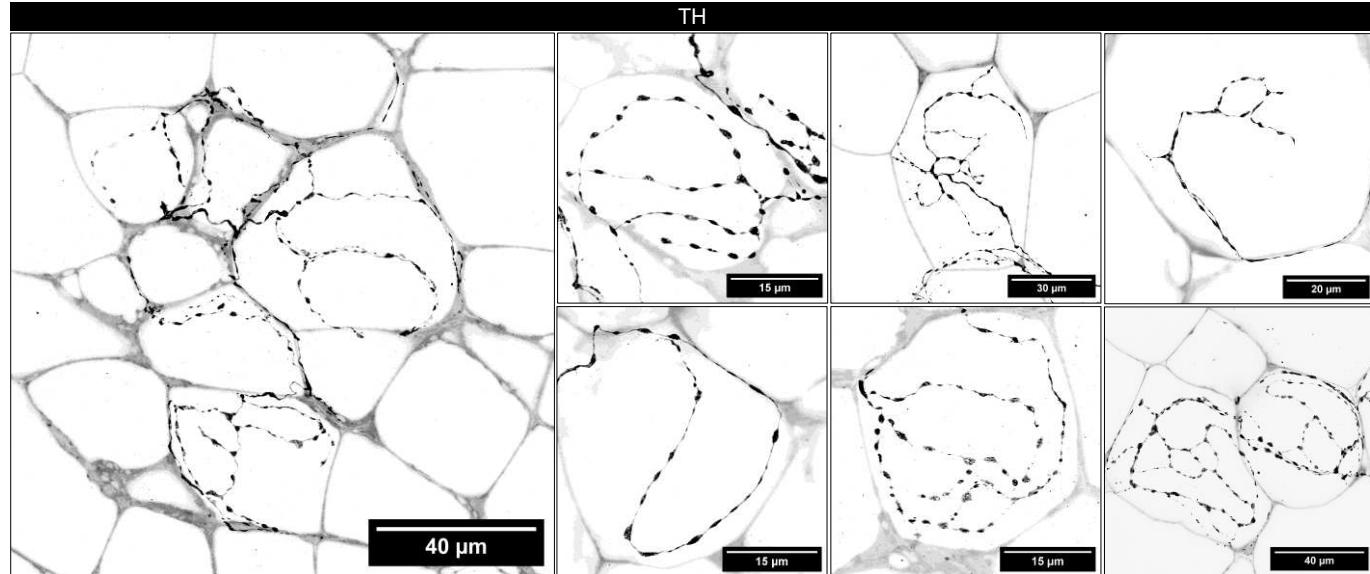
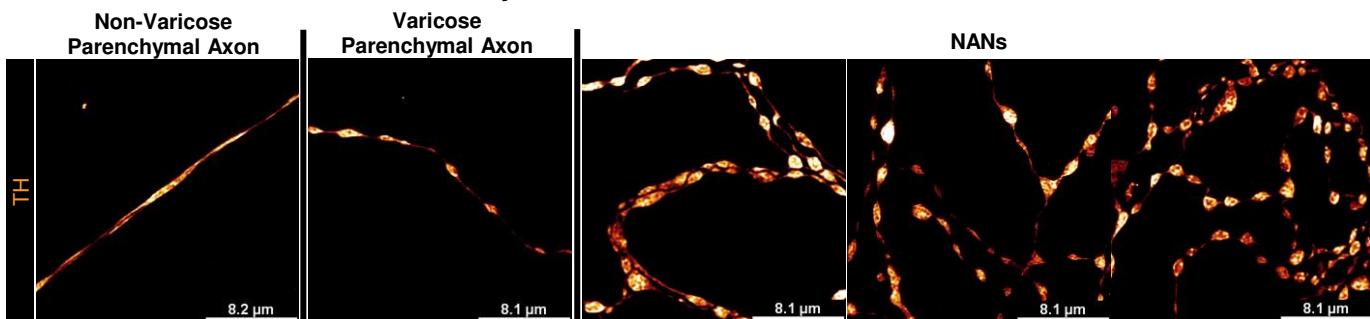
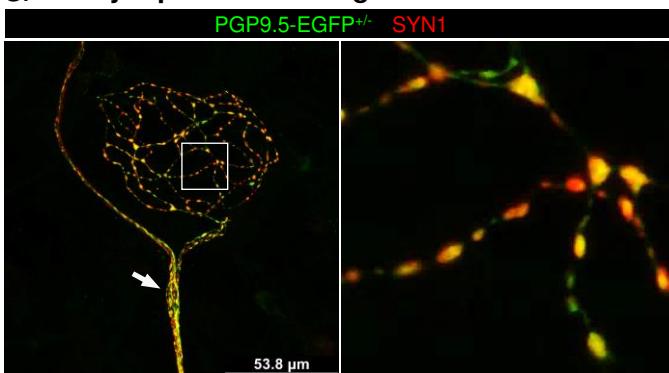



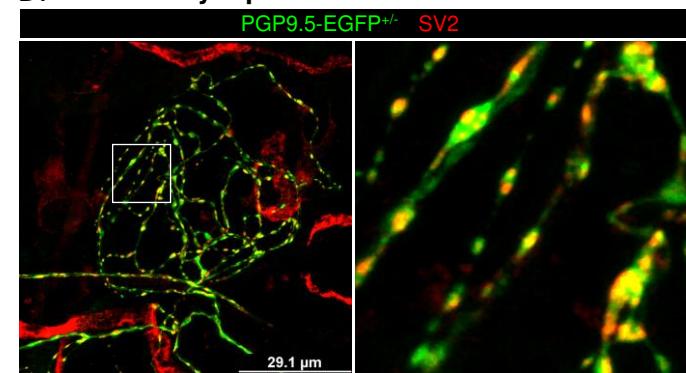
Figure 4: The neuro-adipose nexus (NAN) is densely pearly by synaptic vesicle containing axonal varicosities and is often immediately preceded by SCs.

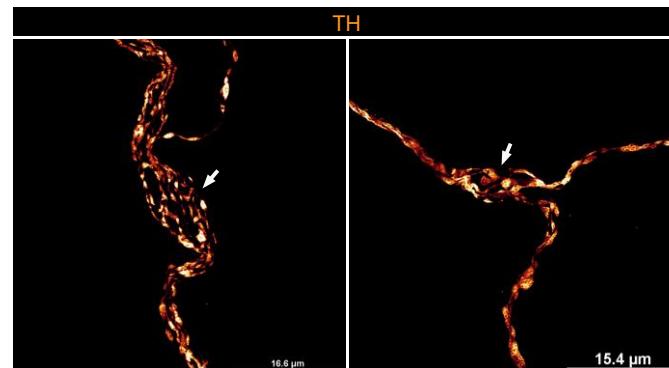

A.

Neuro-adipose Nexus (NAN)



B.


Parenchymal Axonal Varicosities in scWAT


C. Synaptic Vesicle Organization at NAN

D. Synaptic Vesicles at NAN

E. Putative SCs Reside Between Varicose Nerve Fibers

F. SCs Precede NANs

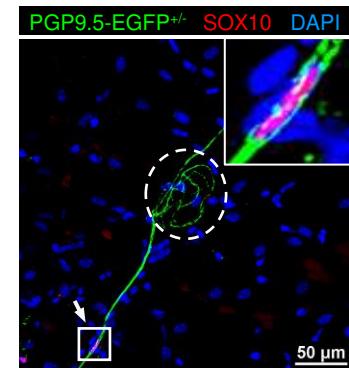
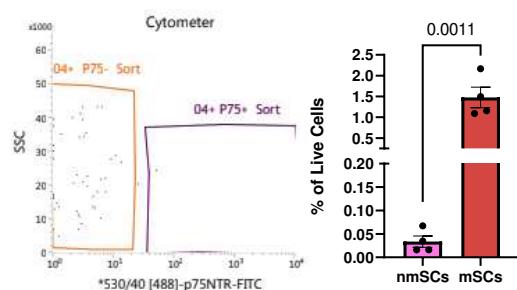
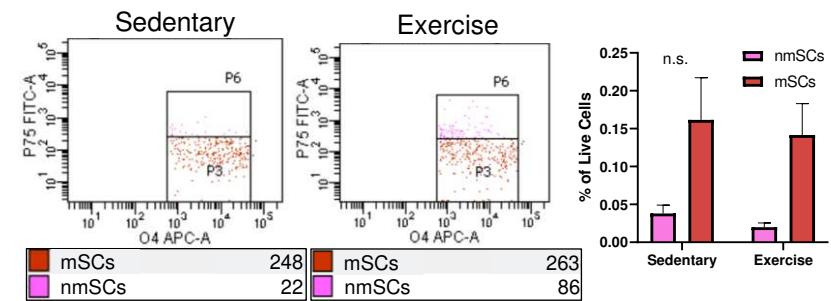




Figure 5: Fluorescence-activated cell sorting (FACS) and quantification of SCs in scWAT..

A. SC Populations in scWAT: Basal

B. scWAT SC Populations: Exercise

C.

scWAT SC Populations: Aging

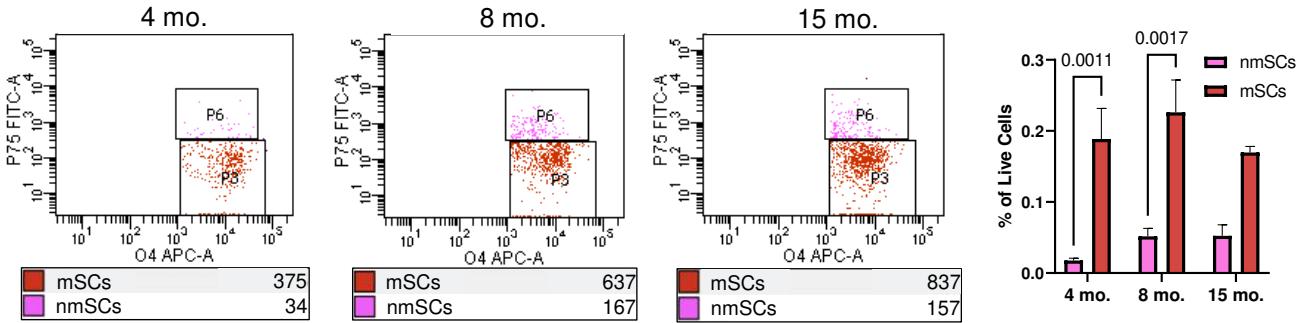


Figure 6: SC gene expression in scWAT with changing metabolic status.

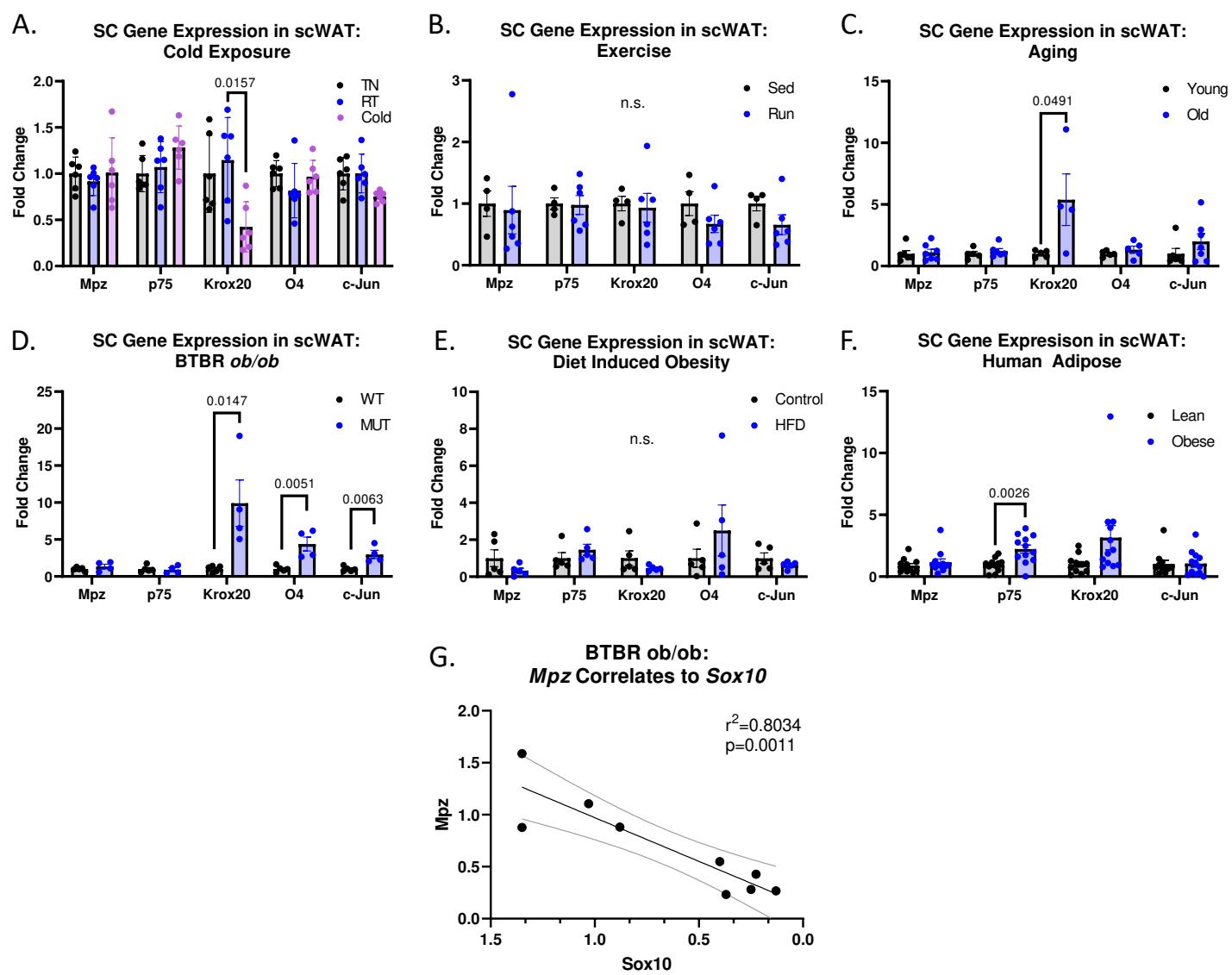
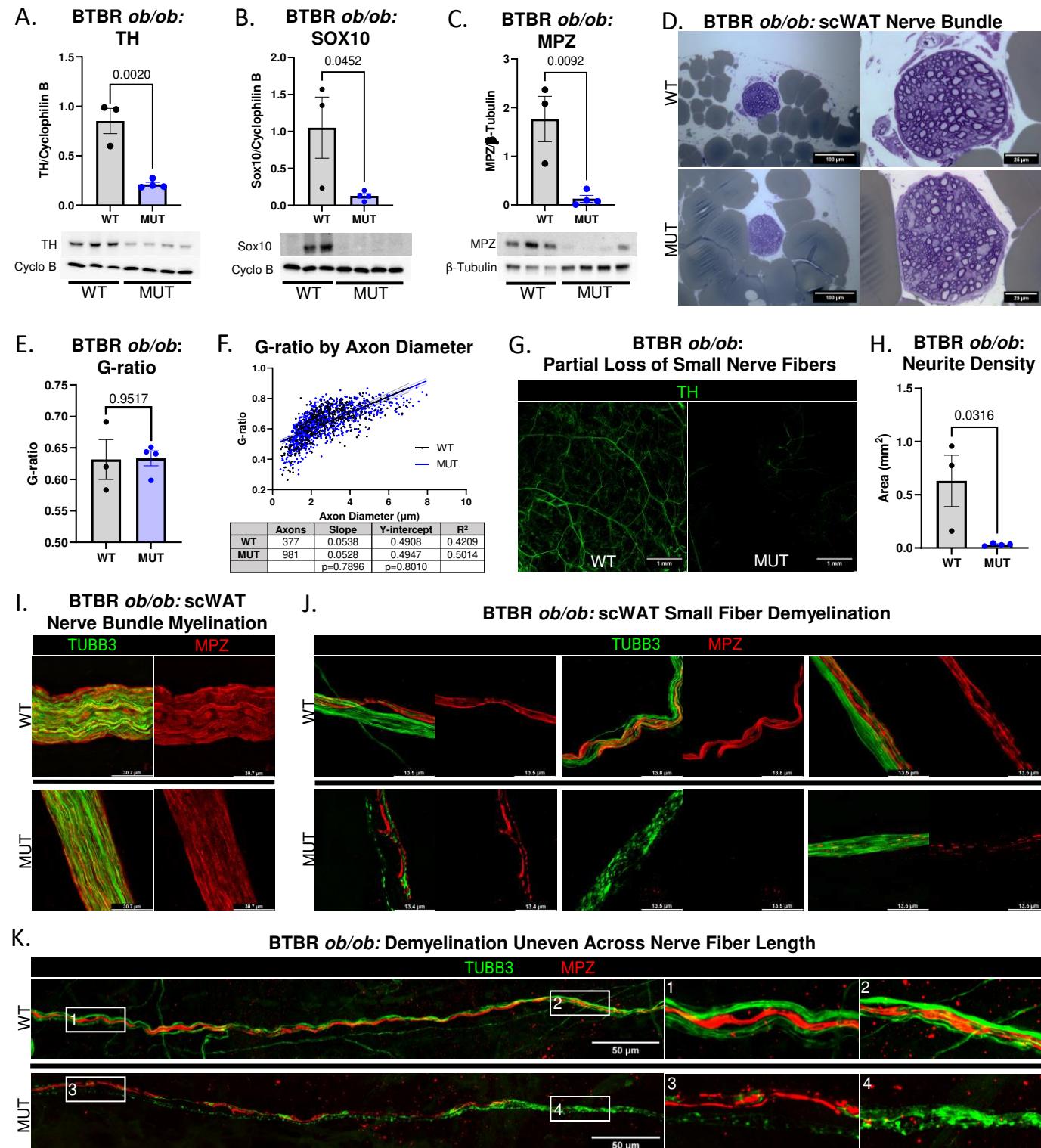



Figure 7. BTBR *ob/ob* mice present with a loss of small fiber sympathetic innervation in scWAT, accompanied by small fiber demyelination.

