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Abstract

Summary: Phylodynamic methods are central to studies of the geographic and demographic history of disease outbreaks.
Inference under discrete-geographic phylodynamic models—which involve many parameters that must be inferred from
minimal information—is inherently sensitive to our prior beliefs about the model parameters. We present an interactive utility,
PrioriTree, to help researchers identify and accommodate prior sensitivity in discrete-geographic inferences. Specifically,
PrioriTree provides a suite of functions to generate input files fo—and summarize output from—BEAST analyses for
performing robust Bayesian inference, data-cloning analyses, and assessing the relative and absolute fit of candidate discrete-

geographic (prior) models to empirical datasets.

Availability and Implementation: PrioriTree is distributed as an R package available at https://github.com/jsigao/prioritree,
with a comprehensive user manual provided at https://bookdown.org/jsigao/prioritree_manual/.

Contact: jsigao@ucdavis.edu

1 Introduction

Phylogenies are increasingly used to study the dispersal history and
dynamics of pathogens. The phylodynamic methods developed by
Lemey et al. (Lemey et al., 2009; Edwards et al., 2011) are used to infer
key aspects of the geographic history of disease outbreaks, including:
(1) the area in which an epidemic originated; (2) the dispersal routes
by which the pathogen spread among geographic areas, and; (3) the
number of dispersal events between areas.

The process of geographic dispersal among a set of discrete areas is
modeled as a continuous-time Markov chain. For a geographic history
with k areas, this stochastic process is fully specified by a k x k
instantaneous-rate matrix, Q, where an element of the matrix, g;;,
specifies the instantaneous rate of dispersal from area i to area j. An
additional parameter, p, specifies the average dispersal rate among all
areas. We estimate parameters of these phylodynamic models within
a Bayesian statistical framework using the Markov chain Monte Carlo
(MCMC) algorithms implemented in BEAST (Drummond et al., 2012;
Suchard et al., 2018). This approach requires that we first specify a
prior probability distribution for each parameter (reflecting our beliefs
about that parameter before evaluating the study data); the prior is
then updated by the information in the data to return the corresponding
posterior probability distribution (reflecting our updated beliefs about
the parameter given our study data).

To enhance the realism of phylodynamic inferences, empirical
studies frequently adopt a granular discretization of continuous
geographic space into many discrete areas (Gao et al., 2022). However,
the complexity of geographic models increases rapidly as we increase
the number of areas. For example, a geographic inference problem with
k = 5 areas has 20 parameters, with k£ = 10 areas has 90 parameters,
and with £ = 20 areas has 380 parameters. In every case, we must
estimate these parameters from a dataset with minimal information; a
single observation on the area where each pathogen was sampled. This
inference scenario raises concerns about prior sensitivity, i.e., where
posterior parameter estimates are strongly influenced by our choice of
priors on the model parameters.

The inherent prior sensitivity of phylodynamic inferences is of
particular concern because the priors on discrete-geographic model
parameters implemented as the defaults in BEAST—and used in
most phylodynamic studies—reflect extremely strong and biologically
unrealistic assumptions about the underlying dispersal process (Gao
et al., 2022). These considerations motivated our development of
PrioriTree, an interactive utility for identifying and navigating
prior sensitivity in discrete-geographic analyses.

2 Features

PrioriTree includes a suite of functions to generate input files
for—and summarize output from—BEAST analyses that allow users to
perform robust Bayesian inference, data-cloning analyses, and assess
the relative and absolute fit of candidate discrete-geographic (prior)
models to empirical datasets. We briefly outline these features below.

2.1 Robust Bayesian inference

PrioriTree allows users to assess the prior sensitivity of geographic
inferences using an approach called robust Bayesian inference. This
approach simply involves performing a series of MCMC analyses—of
the same dataset under the same inference model—where we iteratively
change one (or more) priors of our discrete-geographic model for each
separate analysis. We then compare the resulting series of marginal
posterior probability distributions for a given parameter to assess
whether (or how much) our estimates change under different priors.
While conceptually simple, the main practical challenge with robust
Bayesian inference is deciding which (and how many) priors to evaluate.

PrioriTree allows users to explore a wide range of priors for
each of the discrete-geographic model parameters. Moreover, the
PrioriTree interface dynamically generates a graphical plot of the
specified prior probability distribution to help clarify the biological
implications of that prior choice. For example, an investigator may lack
intuition (and/or prior knowledge) about the average rate of pathogen
dispersal, p; however, PrioriTree provides plots of the prior
distribution for the number of dispersal events corresponding to a given
choice of prior on p. This may help guide the choice of prior; e.g.,
we minimally know that a pathogen that occurs in 10 areas must have
experienced at least 9 dispersal events. This increased transparency
may help researchers identify plausible priors to be explored via robust
Bayesian analyses.

PrioriTree provides graphical summaries of robust Bayesian
analyses, plotting distributions for a given parameter under the range of
candidate priors (Fig. 1). If the inferred marginal posterior probability
distributions for a given parameter are (more or less) identical under a
range of corresponding priors, we can safely conclude that our estimates
of this parameter are robust to the choice of prior. Conversely, if
the marginal posterior probability distributions vary substantially (and
resemble their corresponding marginal prior probability distributions),
then we would conclude that this parameter exhibits prior sensitivity.

2.2 Data-cloning analyses

PrioriTree also allows us to assess the prior sensitivity of our
discrete-geographic inferences using an approach called data cloning
(Robert, 1993; Lele et al., 2007; Ponciano et al., 2009, 2012). In
contrast to robust Bayesian inference, which explores prior sensitivity
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Fig. 1: Assessing prior sensitivity in analyses of a SARS-CoV-2 dataset.
PrioriTree allowsusers to assess the prior sensitivity of discrete-geographic
analyses performed using BEAST. Here, we explore the prior sensitivity of the
average dispersal rate parameter, p. Panels summarize estimates of p under
two alternative priors; a CTMC-rate reference prior (used as the default in
BEAST, left) and a hierarchical exponential prior (right). Within each panel,
each boxplot summarizes the marginal distribution for y inferred for different
numbers of data clones (x-axis); the prior is inferred without data (green), the
posterior is inferred from a single copy (purple), and the data-cloned posteriors
are inferred from datasets with 5 or 20 copies (gray). Each pair of boxplots
represents replicate analyses (to assess MCMC performance).

by assessing the impact of different prior choices, data cloning is a
tool for assessing the impact of a given prior. Intuitively, data cloning
measures the relative contribution of the data and the prior to the
posterior distribution: an analysis is prior sensitive when the prior makes
a relatively large contribution to the posterior. In practice, we perform
a series of MCMC analyses—under the same inference model with
identical priors—where we iteratively increment the number of copies
(“clones”) of our original dataset; increasing the number of clones
corresponds to increasing the relative contribution of the data to the
posterior. We then explore the resulting series of posterior distributions
to assess how our estimates change as the level of information in the
data increases (i.e., as we increment the number of data clones).

A particular MCMC simulation in a series of data clones is defined
by the number of replicate copies of our original data, ;. If we set
Bi =0, we would be targeting the joint prior probability distribution
(i.e., we would be running the MCMC without data), when 3; = 1, we
are targeting the joint posterior probability distribution (i.e., we would
be running the MCMC using our original dataset). As 3; — oo, the
marginal posterior distribution for the parameter under consideration
will converge to a point value that is identical to the maximum-
likelihood estimate (MLE) for that parameter (assuming the parameter
is identifiable).

Of interest here is the relative rate at which the marginal posterior
probability distribution for the parameter under scrutiny—given the
prior specified for that parameter—converges to the MLE as we increase
the clone number. If the prior is very informative (i.e., focused on a
narrow range of parameter values) and/or the prior mean is far from
the MLE value, the rate of convergence will be slow. Conversely,
if a prior is more diffuse (i.e., spread over a relatively wide range
of parameter values) and/or the posterior mean is relatively close
to the MLE value, the rate of convergence will be relatively fast.
PrioriTree generates summaries to assess the convergence rate by
plotting marginal distributions for a given parameter under the range of
B values that we explored (Fig. 1).

2.3 Assessing the absolute and relative fit of (prior) models

PrioriTree implements functions to assess the adequacy (i.e.,
absolute fit) of the specified (prior) model to our study data using
an approach called posterior-predictive simulation (Gelman et al.,
1996; Bollback, 2002). This Bayesian approach for assessing model
adequacy is based on the following premise: if our inference model
provides an adequate description of the process that gave rise to our
observed data, then we should be able to use that model to simulate
datasets that resemble our original data. The resemblance between
the observed and simulated datasets is quantified using a summary
statistic. PrioriTree allows users to perform posterior-predictive
simulations using the output of BEAST discrete-geographic analyses,
and then computes and plots the summary statistics to assess model
adequacy (Fig. 2). PrioriTree also provides functions to set up
power-posterior analyses for estimating the marginal likelihoods of
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Fig. 2: Assessing model adequacy in analyses of a SARS-CoV-2 dataset.
PrioriTree allows users to assess the absolute fit of alternative prior
models to the data using posterior-predictive simulation. Each boxplot depicts
the posterior-predictive distribution of the summary statistic computed from
datasets simulated under the a CTMC-rate reference prior on p (left panel) or the
alternative (hierarchical exponential) prior (right panel). Posterior-predictive
distributions under the hierarchical exponential prior overlap with the observed
data (dashed horizontal line), indicating that this prior model provides an
adequate description of the process that gave rise to the SARS-CoV-2 dataset),
whereas the CTMC-rate reference prior is inadequate. Each pair of boxplots
represents posterior-predictive summaries for replicate MCMC simulations.

candidate models in BEAST (Lartillot and Philippe, 2006; Xie et al.,
2011; Baele et al., 2012) to compare the relative fit of competing (prior)
models to the geographic data using Bayes factors.

2.4 Additional Features

PrioriTree assumes that the phylogeny and geographic history
are inferred sequentially. Under this sequential-inference approach,
the phylogeny of the study group is first estimated from a sequence
alignment using BEAST. These phylogenetic estimates are then read
into PrioriTree as a single summary tree or as a posterior
distribution of trees. If the input file contains a posterior distribution
of trees, PrioriTree allows users to specify how to marginalize
over the the distribution to accommodate phylogenetic uncertainty in
the discrete-geographic inference.

Users can also set up other BEAST discrete-geographic inferences
(e.g., inferring the number of dispersal events between each pair
of geographic areas) in PrioriTree. In addition to generating
XML scripts (as input files for BEAST analyses) and figures and
tables (summarizing various analysis), PrioriTree also dynamically
generates an explicit description of the methods and parameters used
for each biogeographic analysis to enhance the reproducibility of
phylodynamic studies.

3 Availability and Implementation

PrioriTree is developed and distributed as an R Shiny package
(R Core Team, 2021; Chang et al., 2021)—that provides a dynamic,
graphical-user interface via a local web browser—hosted on GitHub
(https://github.com/jsigao/prioritree), with a comprehensive user
manual available at https://bookdown.org/jsigao/prioritree_manual/.
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