

Single cell transcriptomic profiling of human brain organoids reveals developmental timing- and cell-type-specific vulnerabilities induced by *NRXN1* CNVs in schizophrenia

Rebecca Sebastian^{1,2,#}, Kang Jin^{3,4,#}, Narciso Pavon², Ruby Bansal², Andrew Potter³,
Yoonjae Song², Juliana Babu², Rafael Gabriel², Yubing Sun⁵, Bruce Aronow^{3,4,6,7},
ChangHui Pak^{2*}

¹Graduate Program in Neuroscience & Behavior, UMass Amherst, Amherst, MA 01003 USA

²Department of Biochemistry and Molecular Biology, UMass Amherst, Amherst, MA 01003 USA

³Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA

⁴Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH 45229, USA

⁵Department of Mechanical and Industrial Engineering, UMass Amherst, Amherst, MA 01003 USA

⁶Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH 45221, USA

⁷Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH 45256, USA

#equal contribution

*Correspondence: cpak@umass.edu

33 **Abstract**

34 *De novo* mutations and copy number variations (CNVs) in *NRXN1* (2p16.3) pose a significant risk
35 for schizophrenia (SCZ). How *NRXN1* CNVs impact cortical development in a cell type-specific
36 manner and how disease genetic background modulates these phenotypes are unclear. Here, we
37 leveraged human pluripotent stem cell-derived brain organoid models carrying *NRXN1*
38 heterozygous deletions in isogenic and SCZ patient genetic backgrounds and conducted single
39 cell transcriptomic analysis over the course of cortical brain organoid development from 3 weeks
40 to 3.5 months. We identified maturing glutamatergic and GABAergic neurons as being
41 consistently impacted due to *NRXN1* CNVs irrespective of genetic background, contributed in part
42 by altered gene modules in ubiquitin-mediated pathways, splicing, and synaptic signaling.
43 Moreover, while isogenic *NRXN1* CNVs impact differentiation and maturation of neurons and
44 astroglia, cell composition and developmental trajectories of early neural progenitors are affected
45 in SCZ-*NRXN1* CNVs. Our study reveals developmental timing dependent *NRXN1* CNV-induced
46 cellular mechanisms in SCZ at single cell resolution and highlights the emergence of disease-
47 specific transcriptomic signatures and cellular vulnerabilities, which can arise from interaction
48 between genetic variants and disease background.

49

50

51

52

53

54

55

56 *De novo* mutations and copy number variations (CNVs) in 2p16.3 have been repeatedly
57 observed in patients with autism spectrum disorders (ASDs), SCZ, and intellectual disability¹⁻⁵.
58 Albeit rare, these CNV losses, usually manifested in heterozygous deletions, present a significant
59 increase in risk for multiple neuropsychiatric disorders⁶. Neurexin-1 (*NRXN1*), the single gene
60 present in this locus, encodes a type I membrane cell adhesion molecule that functions as a
61 synaptic organizer at central synapses⁷. *NRXN1*, as a presynaptic molecule, associates with
62 multiple soluble and transmembrane molecules, thereby endowing specific synapses with unique
63 synaptic signaling and transmission properties⁸⁻¹³. *NRXN1* also undergoes extensive alternative
64 splicing, further enriching the diversity of these interactions¹⁴⁻¹⁷. Due to this pan-synaptic role
65 throughout the brain, it is not surprising to find strong prevalence of *NRXN1* genetic lesions in
66 multiple neurodevelopmental and psychiatric disorders. Most often, these lesions are large
67 deletions (up to ~1Mb) affecting the long isoform *NRXN1* α specifically, as well as *NRXN1* α / β
68 lesions affecting both the long and short isoforms. However, why or how the same *NRXN1*
69 deletion results in phenotypically distinct disorders in individuals remains unknown. It is often
70 hypothesized that the interaction between common variants (disease genetic background) and
71 *NRXN1* CNVs drives these differences. Yet, experimentally demonstrating this hypothesis has
72 been challenging.

73 Separate from its canonical function at synapses, which occurs post-neurogenesis, recent
74 evidence suggests possible roles of *NRXN1* in early cortical development. In fact, *NRXN1* mRNAs
75 are abundantly detected in early human embryonic neocortex, as early as gestational week (GW)
76 14, reaching peak at birth before slowly decreasing with age¹⁸. Knockdown of *NRXN1* in human
77 neural progenitor cells (NPCs) results in decreased levels of glial progenitor marker GFAP,
78 thereby potentially skewing the ratio of neurons to astrocytes¹⁹. A bi-allelic *NRXN1* α deletion in
79 human iPSC-derived neural cells has been shown to impair maturation of neurons and shift NPC
80 differentiation potential towards glial rather than neuronal fate²⁰. More recently, *in vivo* CRISPR
81 KO of *nrxn1* in *Xenopus tropicalis* embryos led to increased telencephalon size attributed to the
82 increased proliferation of NPCs²¹. Separate validation using human cortical NPCs and iPSC-
83 derived organoids showed increased proliferation of NPCs and an increase in neurogenesis in
84 *NRXN1* mutants²¹. Though these studies provide some clues as to which roles *NRXN1* may play
85 during early corticogenesis, the outcomes from these distinct models are inconsistent due to the
86 differences in genetic lesions and the dosage of *NRXN1* being manipulated at different
87 developmental time points. Therefore, it is worth investigating whether disease-associated
88 *NRXN1* mutations in human cells lead to aberrant cortical development and differentiation of

89 neuronal populations in the cortex, thereby ultimately impacting cortical circuitry and synaptic
90 function.

91 Human pluripotent stem cell (hPSC) derived brain organoids have been proven useful to
92 model early developmental processes associated with neuropsychiatric disorders^{22–28}. The self-
93 organizing capability of hPSCs under directly guided differentiation produces relatively
94 homogenous brain organoids, which can be maintained under defined conditions over long
95 term^{24,29}. By deriving cortical brain organoids from human induced pluripotent stem cells (iPSCs)
96 representing a heterogeneous population of SCZ individuals, studies showed that there exists
97 differentially regulated transcriptomic profiles³⁰, neuronal synaptic transmission defects³¹, and
98 early cortical maldevelopment³². More recently, brain organoids derived from idiopathic SCZ
99 iPSCs exhibited reduced capacity to differentiate into neurons from NPCs³³. Though these studies
100 are promising and provide certain clues to the early brain developmental mechanisms of SCZ,
101 how certain cell types during a continuous developmental time window are affected in such human
102 cellular models of SCZ and how specific disease risk variants affect this process are unclear.
103 More importantly, since genetic backgrounds often contribute to and modulate cellular
104 phenotypes, understanding even how a single disease variant acts is difficult to dissect unless an
105 isogenic mutant model is analyzed side by side with the patient model.

106 Here, we utilized a panel of hPSC lines, where *NRXN1* CNVs have been either artificially
107 engineered (isogenic) or deleted genetically in individuals with SCZ (patient iPSCs) paired with
108 controls. These cell lines, when differentiated into NGN2-induced cortical excitatory neurons, elicit
109 reproducible synaptic impairment, i.e. decreased synaptic strength and probability of
110 neurotransmitter release^{34,35}. Using these extensively characterized hPSCs, we generated dorsal
111 forebrain organoids with the goal of creating a comprehensive single cell atlas across
112 developmental time and *NRXN1* mutation status. We generated a total of 141,039 high-quality
113 single cell transcriptomes and performed an in-depth analysis on the neurodevelopmental impact
114 of *NRXN1* CNVs in both isogenic and SCZ genetic backgrounds. We find that maturing
115 glutamatergic and GABAergic neurons as being consistently impacted due to *NRXN1* CNVs
116 irrespective of genetic background, contributed in part by altered gene expression programs in
117 ubiquitin-mediated pathways, splicing, and synaptic signaling. In addition, while SCZ-*NRXN1*
118 CNVs affect cell composition and developmental trajectories of early neural progenitors, isogenic
119 *NRXN1* CNVs act at later stages of development influencing neuronal and astroglia differentiation.
120 Ultimately, both isogenic- and SCZ-*NRXN1* CNVs impair neuronal network connectivity in
121 maturing brain organoids. Our study shows developmental timing dependent *NRXN1* CNV-
122 induced cellular mechanisms in SCZ at single cell resolution and highlights the importance of

123 disease-specific transcriptomic signatures, which can arise from the interaction between genetic
124 variants and disease background.

125

126 ***Generation of forebrain organoids for modeling NRXN1 CNVs in neocortical development***

127 We generated dorsal forebrain organoids as previously described, chosen for its reported
128 homogeneity of the cellular constituents and reproducibility in disease modeling^{31,36}. With minor
129 modifications, including the use of Aggrewell plates to control the size of generated embryoid
130 bodies and gentle agitation starting at day 6-8 to reduce spontaneous fusion (see Methods),
131 patterned forebrain organoids showed expected developmental milestones as previously reported
132 (Figs. 1, S1-2). In early time points, actively dividing proliferative ventricular zones (MKI67, SOX2)
133 appeared, which decreased in abundance over the course of maturation (Figs. 1, S1-2). Starting
134 at day 50 and well into day 100, the spatial organization of HOPX+ outer radial glia (oRGs),
135 EOMES+ intermediate progenitor cells (IPCs), and BCL11B+ deeper layer and SATB2+ upper
136 layer cortical neurons were detected (Figs. 1, S1-2). Moreover, the presence of S100B+
137 developing astrocytes and NEUN+ mature neurons were reliably detected at day 100 (Figs. 1,
138 S1-2), indicative of active neurogenesis and the start of astrogenesis. At this time point and
139 beyond, presynaptic markers (SYNAPSIN and SYNAPTOPHYSIN) and postsynaptic marker
140 (HOMER) were also detected along MAP2+ dendrites (Figs. 1, S1-2), suggesting that the
141 developing neurons are actively forming synapses in this organoid model.

142 Having established a reliable protocol, we then subjected a collection of hPSC lines, which
143 have been extensively characterized^{34,35}, for brain organoid differentiation. Previously, we have
144 generated iPSC lines from peripheral blood mononuclear cells (PBMCs) of SCZ patients carrying
145 *NRXN1* heterozygous deletions (CNVs) and from unaffected, healthy control individuals, and
146 showed that cortical excitatory induced neuronal cells (iN) differentiated from SCZ *NRXN1*^{del}
147 iPSCs compared to controls displayed significant defects in synaptic strength and
148 neurotransmitter release probability³⁵. In addition, we have previously engineered a heterozygous
149 *NRXN1* cKO allele in a control hESC (H1) genetic background³⁴, which reproduced the same
150 neuronal phenotypes as the *NRXN1* cKO iPSC line and SCZ *NRXN1*^{del} patient iPSCs³⁵. Thus, we
151 chose to work with the engineered *NRXN1* cKO hESC line, which can conditionally create control
152 and *NRXN1* cKO by the expression of Flp and Cre recombinases, respectively³⁴, and two sets of
153 SCZ patient and matched control donor iPSC pairs (2 SCZ *NRXN1*^{del} lines and 2 control lines). In
154 this experimental design, we aimed to investigate the cellular and molecular contributions of
155 isogenic *NRXN1* CNVs (hereafter referred to as 'engineered') and SCZ-associated *NRXN1* CNVs

156 (hereafter referred to as 'donor') in the context of a developing human neocortex using a brain
157 organoid model system.

158

159 ***Creating a single cell transcriptomic atlas from developing organoids with or without***
160 ***NRXN1 CNVs***

161 All hPSC lines (engineered - 1 *NRXN1* cKO hESC line producing control (Flp) and cKO
162 (Cre); donor - 2 control iPSC lines, and 2 SCZ *NRXN1*^{del} lines) normally developed into forebrain
163 organoids, transitioning reproducibly through the major developmental cell types over time as
164 visualized by the presence of key molecular markers (Figs. S1-2). We chose 3 distinct collection
165 time points for 10X single-cell RNA sequencing (scRNAseq) - day 22/23, day 50, and day 101/112
166 - which captures the different pools of cell identities undergoing fate specification and maturation.
167 First and foremost, we established a protocol that would allow us to reliably dissociate brain
168 organoids into live single cells with >75% viability across time points (see Methods). After
169 dissociation, approximately ~10,000 cells per sample were subjected to droplet based sequencing
170 and rigorous QC data processing steps were performed (see Methods; Fig. S3). Subsequently,
171 scRNAseq data was processed, normalized, and clustered to generate distinct cell clusters, which
172 were further annotated manually using canonical markers (see Methods). A total of 29 cell clusters
173 were annotated, which consisted of both cycling and non-cycling neural progenitors (NECs), outer
174 radial glial cells (oRGs), intermediate cells and intermediate progenitor cells (IPCs) that give rise
175 to distinct subpopulations of glutamatergic excitatory neurons (CNs) and GABAergic inhibitory
176 neurons (INs; Fig. S6A). Non-neuronal cells, which mostly consisted of glial cells and astroglia,
177 were also annotated (Fig. 1). Violin plots showing the expression of various canonical markers
178 and their distributions on the UMAPs are shown in Supplementary information (Figs. S4-5, S6A).
179 Here, we also provide an interactive visualization of 3D UMAP for further exploration (see
180 Supplementary .html files).

181 To further validate our cell annotations, we compared gene expression signatures of our
182 scRNAseq cell clusters to published brain organoid datasets as reference (Fig. S6B)^{24,37-41}.
183 Remarkably, we saw a high correlation between published cell clusters and ours, suggesting that
184 the specific cell clusters in our scRNAseq dataset share similar gene expression patterns with
185 other brain organoids that were generated with slightly different protocols, thus, showing overall
186 reproducibility of 3D culturing across protocols. Altogether, we established a scRNAseq dataset
187 consisting of high-quality 141,039 single cells from engineered and donor-derived organoids with
188 or without *NRXN1* CNVs at 3 distinct time points for downstream analysis.

189

190 **Single-cell *NRXN1* mRNA expression patterns in the developing forebrain organoids and**
191 **human neocortex**

192 Using this scRNASeq dataset, we first wanted to analyze the cell type-specific expression
193 of *NRXN1* in the control donor samples across organoid development, which would allow
194 identification of specific cell types enriched for *NRXN1* function. We quantified the percentage of
195 *NRXN1* mRNA expressing cells and found that CNs and INs reproducibly showed the highest
196 expression of *NRXN1* across the three time points (Fig. 2A,B). Though not to the same degree
197 as these cell types, IPCs, oRGs, and astroglia did express *NRXN1* at low levels to start (day 22)
198 and progressively increased in expression over time (day 101). Lastly, NEC subtypes showed the
199 lowest abundance of cells expressing *NRXN1* with <15 % of total cells reliably expressing the
200 gene (Fig. 2A). We also used developmental trajectory analysis (monocle3⁴²; see Methods) to
201 quantify *NRXN1* expressing cell types across pseudotime (Fig. 2B). Similar to fixed time point
202 analysis, cells with highest *NRXN1* expression included most mature CN and IN subtypes
203 followed by IPC subtypes, oRGs, and astroglia (Fig. 2B). Based on this result, we concluded that
204 the function of human *NRXN1* gene can be most reliably studied in differentiated neurons and
205 astroglia, as well as in cortical progenitors, such as IPCs and oRGs, in the brain organoid model.

206 While this result highlights the important cell types for *NRXN1* function in organoid models,
207 we were curious about *NRXN1* expression patterns in human primary tissue and how similar they
208 are to brain organoids. To this end, we leveraged a published human fetal brain scRNASeq
209 dataset, which reported single cell transcriptomes from second trimester microdissected tissues,
210 representing a time period associated with peak of neurogenesis and early gliogenesis (14 GW
211 to 25 GW)⁴⁰ and performed similar analysis. Comparable to brain organoids, at the youngest fetal
212 age (14 GW), glutamatergic neurons showed the highest % of *NRXN1* expressing cells, and at
213 16 GW, both glutamatergic and GABAergic neurons consisted of the highest % of *NRXN1*
214 expressing cells (Fig. 2C). These neuronal cells showed varying degrees of expression at older
215 time points (20 and 25 GWs). Due to the low number of astrocytes represented in the dataset,
216 astrocytes were not quantified here. In contrast, progenitor cells and forebrain radial glial cells
217 showed a relatively low number of *NRXN1* expressing cells at 14 GW, which increased
218 dramatically at 16 GW and caught up to similar levels to glutamatergic neurons and GABAergic
219 neurons at 25 GW (Fig. 2C). Thus, based on both organoid and human tissue data, major cell
220 types, which may be most affected by *NRXN1* haploinsufficiency in the developing forebrain,
221 include glutamatergic neurons and GABAergic neurons in addition to progenitor cells and
222 astroglia.

223

224 ***NRXN1* isogenic CNVs induce moderate changes in brain organoid maturation and gene
225 expression**

226 We first investigated the developmental timing- and cell type-specific effects of *NRXN1*
227 CNVs in an isogenic control background. By using relative abundance visualization, we compared
228 differential cell proportion effects in control vs. *NRXN1* cKO brain organoids over development
229 (days 23, 50, and 112; Fig. S7). We found that, in the engineered brain organoids, there were no
230 major changes in cell composition at early time points (days 23, 50). At all time points, there were
231 no changes in NEC subtypes. At a later time point (day 112), the proportions of astroglia, IPC
232 subtypes (IPC1-4), and differentiated neuronal subtypes (CN1/2/4/5, IN1-5) were altered (Fig.
233 S7). We next investigated the overall developmental trajectory of these organoids by constructing
234 single-cell trajectories in monocle3. By calculating the densities of cells across pseudo-time
235 values, we drew density plots for cells in multiple time points, genotypes and brain organoid types,
236 representing the dynamic cell abundance changes and cellular transitions throughout their
237 developmental trajectory (Fig. S8, see Methods). As expected, using data from the three time
238 points, we saw that the brain organoids underwent a progressive developmental trajectory that
239 mirrored the corresponding maturity across pseudotime: early stage of trajectory corresponding
240 to proliferating cells while later stage of trajectory corresponding to differentiated and mature
241 neuronal subtypes (Fig. S8A,B). The developmental trajectories across time points mirrored this
242 effect in cell composition where *NRXN1* cKO brain organoids followed similar developmental
243 trajectories as controls at days 23 and 50 until reaching day 112, when there was a noticeable
244 difference between the control and cKO (Fig. S8B). *NRXN1* cKO brain organoids displayed
245 abnormal developmental trajectories during mature developmental stages (at longer pseudotime
246 lengths), suggesting that the timing of cellular differentiation and maturation in brain organoids
247 may be affected by isogenic *NRXN1* engineered CNVs. Importantly, at ~day 100-120, brain
248 organoids reach the peak of neuronal diversity and amplification and the beginnings of
249 astrogenesis^{23,37,43}, indicating that isogenic *NRXN1* CNVs may impact gene expression programs
250 that regulate active neurogenesis, gliogenesis, and synapse development.

251 To understand differential gene expression patterns in *NRXN1* cKO organoids vs.
252 controls, we performed analysis of differentially expressed genes (DEGs) (see Methods for DEG
253 criterion) in each cell type associated with each time point. We identified 43, 538, and 486 DEGs
254 at day 23, 50, and 112 respectively (Fig. 3, Table S1), which showed a modest perturbation effect
255 at the transcriptional level overall. In day 112 engineered organoids, astroglia, glial cells, oRGs,
256 CN3, CN4, and IN7 had a number of DEGs (Fig. 3B, Table S1), which correlated with the results
257 from cell composition and trajectory analysis. There was minimal DEG overlapping patterns

258 among these DEG sets across cell types at each time point, as assessed by hypergeometric test,
259 which was used to measure gene set associations (see Methods, Fig. 3C, Table S2). Using day
260 112 cell type-specific DEGs, we performed gene set enrichment analysis (GSEA, ToppGene⁴⁴)
261 to examine whether specific molecular functions, biological processes and/or biochemical
262 pathways were significantly enriched (Fig. S9). Collectively, DEG sets from astroglia, glial cells,
263 and oRGs were involved in neuron and glia development (Fig. S9, Table S3). All of these cell
264 types also showed an enrichment of genes involved in cell cycle and programmed cell death (Fig.
265 S9, Table S3). Interestingly, oRG-DEGs were enriched in RNA splicing, Ubiquitin (Ub)-dependent
266 proteolysis, and WNT pathways (Fig. S9, Table S3). Notably, DEGs representing both
267 glutamatergic excitatory neurons (CN3/4) and GABAergic neurons (IN7) were enriched for
268 synaptic genes, as well as components of the Ub-mediated proteosome degradation (Fig. S9,
269 Table S3). In GABAergic neurons, neuronal splicing factors were particularly enriched, including
270 NOVA1, RBFOX2, SRRM1, and KHDRBS1 (Table S3). Altogether, GSEA suggests that
271 regulators of RNA splicing and Ub-mediated proteasome pathway are consistently perturbed from
272 oRGs to differentiated neuronal subtypes in the engineered brain organoids.

273

274 ***Composition and developmental trajectories of various cell types are affected in SCZ-***
275 ***NRXN1^{del} donor-derived brain organoids***

276 We next compared differential cell proportion effects in control vs. SCZ *NRXN1^{del}* donor
277 brain organoids over development using scCODA (days 22, 50, and 101; Fig. S10), which allows
278 quantification of cell composition changes using a Bayesian model⁴⁵. In day 22 organoids, we did
279 not observe major changes in the composition of various cell classes. However, in day 50
280 organoids, we captured a significant and uniform decrease in the ratios of NEC subtypes in
281 *NRXN1^{del}* samples, including cycling dorsal, cycling ventral, cycling and non-cycling NECs (Fig.
282 S10). In parallel, we observed an increase in the number of astroglia, CN1 and IN2 neuronal
283 subtypes (Fig. S10). Moreover, at day 101, *NRXN1^{del}* donor organoids showed a selective
284 decrease in the cycling NECs in addition to a decrease in the proportions of IPC1, IPC2, and CN2,
285 while displaying an increase in various progenitors (oRG, IPC3, IPC4) and neuronal subtypes
286 (CN3-5, IN2, IN6). Collectively, these results highlight that, in the developing *NRXN1^{del}* donor
287 brain organoids, specific changes in cell composition are induced starting at day 50 until day 101,
288 resembling precocious development of neural progenitors into differentiated neuronal subtypes.
289 Using a relative abundance visualization, we saw an agreement with scCODA results (Fig. S10B),
290 further validating changes in cell proportions in the donor-derived organoids.

291 We then sought to explore the effects of SCZ *NRXN1* CNVs on the overall developmental
292 trajectory of various cell types in these brain organoids using monocle3 (Fig. S8C). Notably, we
293 found a significant difference between *NRXN1^{del}* donor brain organoids and controls in their
294 developmental trajectories at days 50 and 101, mirroring the cell composition changes (Fig. S8C).
295 Moreover, the observed abnormal developmental trajectories are concentrated in the cell
296 populations that occupy more mature developmental stages (later stage of trajectory), suggesting
297 that SCZ-associated *NRXN1* CNVs induce most dominant effects on the developmental
298 trajectories affecting neuronal differentiation and maturation.

299

300 ***Perturbations in transcriptional profiles across cell types in SCZ-NRXN1^{del} donor-derived***
301 ***brain organoids show greatest effects in mature time points***

302 To investigate the developmental timing- and cell type-specific gene expression
303 signatures that may actively contribute to abnormal developmental dynamics and cell lineage
304 trajectories, we independently performed DEG analyses between genotypes across cell types at
305 each fixed time point. Consistent with the findings where day 101 organoids showed the greatest
306 perturbation effects in terms of cell composition and developmental trajectory, we found the
307 largest number of DEGs (adjusted p-value (FDR)< 0.05, see Methods) across multiple cell types
308 in the day 101 organoids (3105) compared to day 22 and 50 (1399 and 1094 respectively) (Fig 4;
309 Table S4). Additionally, to better understand the contribution of specific gene modules associated
310 with cell type-specific DEGs across each developmental time point, we explored whether there
311 exist any overlaps between DEGs in different cell types using hypergeometric test (see Methods).
312 We found that, at early time points (days 22 and 50), NECs, glial cells, and intermediate cells
313 shared the most overlapping DEGs while IPCs and differentiated neurons showed minimal DEG
314 overlaps (Fig. 4C, Table S2). However, at a later time point (day 101), we observed an overall
315 increase in the number of overlapping DEGs shared between developmentally distinct and similar
316 cell types across cell lineages (Fig. 4C, Table S2, S5), in agreement with this time point having
317 most significant perturbations in cell composition and transcriptional changes (Fig. S10). For
318 example, overlapping DEG patterns in CN and IN neuronal subtypes emerged as well as between
319 differentiated neurons and progenitor populations (NECs, glial cells, and intermediate cells),
320 indicating that specific changes in gene expression programs are being shared across neuronal
321 lineages and cell types during active neurogenesis and gliogenesis.

322

323 ***Intersection of DEG overlaps points to Ub biology and RNA splicing as commonly***
324 ***disrupted molecular programs across cell types in SCZ-NRXN1^{del} donor-derived brain***
325 ***organoids***

326 We further explored which DEGs and biological pathways make up the overlapping DEG
327 patterns in day 101 *NRXN1^{del}* donor-derived brain organoids by performing GSEA (ToppGene).
328 First, we separately analyzed the following overlapping DEG hotspots, organized into specific cell
329 clusters: 1) neuronal cluster (CN1/2/3, IN4/5), 2) non-neuronal cluster (NECs/astroglia/glial cells),
330 and 3) all cluster (neuronal and non-neuronal) (Figs. 4C, S11). Intriguingly, while each cluster
331 showed specific enrichment of biological processes relevant to each cell type (Table S6), we
332 identified two distinct biological processes that were repeatedly observed across clusters - Ub-
333 mediated proteolysis and RNA splicing. As mentioned above, these two pathways were also
334 disrupted in engineered brain organoids (Table S3). Specifically, factors involved in protein
335 turnover and Ub-mediated proteolysis were identified as DEGs in the 'all cluster' (*NDFIP1*, *SKP1*,
336 *SUMO1/2*, *UBB*, and *GABARAPL2*) and in the 'neuronal cluster' (*UBE2M*, *UBE2V2*, *RNF7*,
337 *STUB1*, and *UCHL1*) (see Table S5 for a complete list). These genes encode for proteins that are
338 either direct binding partners to or are themselves E3 Ub ligases (*NDFIP1*, *SKP1*, *RNF*, *STUB1*),
339 E2 conjugating enzymes (*UBE2M*, *UBE2V2*), a deubiquitinase (*UCHL1*), and are associated with
340 Ub processing (*UBB*) and autophagy (*GABARAPL2*). Though it is not clear from the list of DEGs
341 whether or not these molecules are actively participating in the protein quality control or in the
342 regulation of protein components involved in signal transduction, it has been hypothesized that
343 alterations in proteostasis and Ub-mediated regulation of synaptic signaling contribute to SCZ
344 pathogenesis⁴⁶⁻⁵⁰. Additionally, protein truncating variants of Ub ligases (*CUL1* and *HERC1*) were
345 recently found to be associated with SCZ at exome-wide scale⁵¹, further highlighting the
346 importance of this molecular pathway in SCZ.

347 Interestingly, cluster-specific enrichment of DEGs encoding splicing factors was observed
348 in the 'non-neuronal cluster' (*SRSF6*, *SAP18*, *U2SURP*, *HNRNPA2B1*, *PSIP1*, and *SNRPG*) and
349 'neuronal cluster' (*SRSF3*, *YBX1*, *HNRNPA1*, *RBM39*, and *SF1*) (see Table S5 for a complete
350 list). These genes are components of the catalytic spliceosome, splicing factors, or regulators of
351 alternative splicing. HNRNPU was the only overlapping splicing factor identified in 'all cluster'
352 which implies that the effects seen here could be reflective of cell type-specific regulation of
353 alternative splicing^{52,53}. In fact, there are distinct splicing factors that are differentially expressed
354 in glutamatergic neurons (CN1/2/3) vs. GABAergic neurons (IN4/5) (Tables S5, S6). These results
355 correlate with previous findings which report global changes in alternatively spliced

356 transcriptomes in post-mortem brains of individuals with neuropsychiatric disorders including
357 SCZ^{54,55}.

358

359 ***Dysregulated NMDAR signaling as a common neuronal mechanism across genetic***
backgrounds

360 We separately examined neuronal-specific DEG overlaps that were exclusive to cortical
361 excitatory and GABAergic inhibitory neuronal types (CN1/2/3, IN4/5; neuronal cluster) and absent
362 in the non-neuronal (NEC/astroglia/glial) cluster in the donor-derived brain organoids (Table S5).
363 Importantly, we identified the N-methyl-D-aspartate receptor 2B subunit (*GRIN2B*) and fatty acid
364 binding protein 7 (*FABP7*), among others, both of which have been linked to SCZ pathogenesis^{56–}
365 ⁶⁰. It is well documented that NMDAR hypofunction underlies SCZ pathology^{61,62} and recent
366 exome sequencing and GWAS studies identified the NMDAR subunit *GRIN2A* as a significant
367 SCZ risk allele⁶³. Genetic variants in *FABP7* have been identified in SCZ and ASD patients and
368 its function has been linked to NMDAR signaling regulation^{56–58,64}. Furthermore, while searching
369 for neuronal-specific DEGs that were consistently perturbed between engineered and donor
370 derived organoid types, we found *GRIN2B* as a commonly perturbed gene in GABAergic neuronal
371 subtypes across genetic backgrounds (engineered IN7 vs. donor IN4/5; Table S7, Fig. S12).
372 These findings suggest that misregulated NMDAR signaling in GABAergic neurons could
373 potentially impact synaptic connectivity and signaling in these brain organoid models.

374

375

376 ***Differential enrichment of disease associations in NRXN1^{del} donor vs. NRXN1 cKO***
engineered brain organoid DEGs

377 To test whether up- and down-regulated DEGs identified from donor-derived and
378 engineered brain organoids at mature time points (days 101, 112) were associated with specific
379 neuropsychiatric disease gene signatures, we computed ‘disease enrichment’ score (-log10
380 (FDR-adjusted *p* values)) based on a previously established curated list of SCZ, bipolar disorder
381 (BD), major depression disorder (MDD), and ASD-associated genes⁶⁵. Excitingly, in day 101
382 donor-derived organoids, we observed the strongest enrichment of up-regulated DEGs from CN
383 and IN subtypes (CN1/2, IN4/5) in ASD and SCZ-related gene sets (Fig. 5A). Next, dividing and
384 non-dividing NECs, as well as glial cells showed significant enrichment in SCZ-related gene sets,
385 all of which were up-regulated (Fig. 5A). Interestingly, there was no significant enrichment of the
386 DEGs in MDD and BD-related gene sets across the cell types, suggesting that the DEG pool from
387 SCZ *NRXN1* del organoids most closely resembles dysregulated transcriptional signatures
388 related to SCZ and ASD, similar to what has been reported regarding shared genetic signals

390 between SCZ and ASD⁵¹. On the other hand, in isogenic engineered brain organoids, down-
391 regulated DEGs from day 112 glial cells and oRGs showed a modest but significant enrichment
392 in ASD and SCZ-associated gene sets (Fig. 5A).

393 Next, we independently examined the enrichment score of rare and common variants of
394 SCZ in the DEG sets, by comparing them to a list of risk genes recently reported by SCZ-GWAS
395 PGC wave3 and SCHEMA consortium^{51,63}. Remarkably, several of the SCZ risk genes were
396 represented across cell types in the donor derived brain organoids (Fig. 5B), which highlights
397 SCZ-specific transcriptional signatures present in the patient genetic backgrounds. Engineered
398 brain organoid DEGs showed minimal to no overlap with SCZ-associated risk variants, clearly
399 demonstrating the absence of disease gene signatures in an isogenic background (Fig. 5B).

400

401 ***Perturbations in neuronal network connectivity in NRXN1^{del} donor-derived and NRXN1 cKO***
402 ***brain engineered brain organoids***

403 To test whether the observed developmental abnormalities and gene expression
404 programs translate to functional and sustained differences in neuronal activity, we performed live
405 Ca²⁺ imaging in both donor derived brain organoids (*NRXN1^{del}* brain organoids compared to
406 controls) and engineered brain organoids (*NRXN1* cKO brain organoids compared to controls) at
407 day 130-160 (Fig. 6). Under normal conditions, without stimulation, we measured the frequency
408 and amplitude of spontaneous Ca²⁺ transients, which are indicative of spontaneous neuronal
409 network activities. In addition, we quantified the frequency of synchronous firing, which indicates
410 how often neurons fire together, thereby producing synchronized bursts of activities. Compared
411 to controls, *NRXN1^{del}* brain organoids showed a significant decrease in the frequency of
412 spontaneous Ca²⁺ transients without a change in the amplitude of the responses, as measured
413 by dF/F₀ intensity (Fig. 6A,B). In addition, there was an overall decrease in the synchronous firing
414 rate in these brain organoids, demonstrating a significant decrease in the neuronal network bursts
415 (Fig. 6A,B). Interestingly, *NRXN1* cKO brain organoids produced a slightly different phenotype in
416 which the frequency of spontaneous Ca²⁺ transients was increased without any changes in the
417 amplitude of the responses as well as the synchronicity of spontaneous firing events (Fig. 6C,D).
418 These data suggest that although spontaneous neuronal activities are uniformly altered in the
419 brain organoids carrying *NRXN1* CNVs, depending on the genetic background, different
420 phenotypic outcomes manifest, reflective of the differences in transcriptomic landscape of these
421 brain organoids.

422

423

424 **Discussion**

425

426 Here we provide a systematic analysis of the cell-type- and developmental timing-
427 dependent perturbations induced by *NRXN1* CNVs in the developing human brain organoids
428 using single cell transcriptomics. We initially had two specific goals in mind – 1) to understand the
429 developmental effects of *NRXN1* heterozygous deletions in an isogenic background to uncover
430 which time points and cell types are important for *NRXN1* function, and 2) to utilize SCZ-*NRXN1*
431 del patient iPSC derived organoids as a model to study the molecular and cellular biology of SCZ.
432 By profiling the transcriptomes of *NRXN1* cKO brain organoids, we found that cellular phenotypes
433 associated with *NRXN1* haploinsufficiency manifests at a developmental window of brain
434 organoids at the peak of neurogenesis and start of astrogenesis. Moreover, developmental
435 trajectories and gene expression profiles of maturing glutamatergic and GABAergic neurons are
436 impacted by *NRXN1* CNVs.

437 By comparing engineered and donor-derived organoids side by side, we found both
438 commonalities and differences, reflective of the contribution of genetic background effects. We
439 unbiasedly found shared molecular programs that are perturbed across organoid types. First, the
440 NMDAR subunit *GRIN2B* was differentially expressed in GABAergic neurons across genetic
441 backgrounds. This finding was significant as it confirms previous results showing that *Nrxn1*
442 signals through NMDARs^{9,10} and *NRXN1* haploinsufficient human induced neurons carry
443 upregulated levels of the endogenous NMDAR antagonist *KYAT3*³⁵. Moreover, genetic variants
444 in the NMDAR subunits, *GRIN2B* and *GRIN2A*, are both observed in SCZ populations^{63,66,67}.
445 Lastly, NMDAR hypofunction in SCZ has been a longstanding hypothesis supported by multiple
446 post-mortem studies and brain imaging studies from SCZ patients as well as mouse models of
447 NMDAR blockade through ketamine and phencyclidine^{61,62}.

448 Second, through the interrogation of DEG overlaps and GSEA, we discovered two distinct
449 biological pathways that are enriched across genetic backgrounds – splicing and Ub-proteasome
450 system (UPS) regulation – both of which have been previously implicated in SCZ. Alternative
451 splicing is highly regulated in the brain^{68,69} and is influenced by development-specific splicing
452 factors like NOVAs, PTBPs, RBFOXs, and SSRMs⁷⁰⁻⁷³. It has been shown that global splicing
453 changes and alternative transcript usage are overrepresented in SCZ brains, more so than in
454 ASDs and BD⁵⁴. Differential splicing of various genes has been observed in the brain samples of
455 SCZ patients compared to controls, including *DRD2*, *NRG1*, *ERBB4*, *GRM3*, and *GRIN1*^{54,74-77}.
456 More recently, differential splicing effects of *NRXN1* has been appreciated in SCZ iPSC-derived
457 neurons⁷⁸ and in postmortem brains of SCZ and BD patients^{18,54}, further highlighting the

458 importance of splicing regulation in SCZ as a potential molecular mechanism. It may be possible
459 that there exists a systematic problem of the splicing machinery, which results in global changes
460 in alternative splice usage in SCZ.

461 In addition to splicing, DEGs responsible for UPS regulation have been identified in our
462 study. Importantly, post-mortem brain tissues from SCZ individuals compared to controls showed
463 increased ubiquitin immunoreactivity⁴⁷, an increase in Lys63-linked Ub species, increased
464 polyubiquitinated protein levels, and increased brain protein insolubility^{49,50}. These observations
465 are further strengthened by the recent discovery of protein truncating variants in the Ub ligases,
466 *HERC1* and *CUL1*, in SCZ exomes⁵¹. Possibly more UPS genes are to be discovered for both
467 rare and common variants in the future. Though it remains to be determined whether these
468 changes are indeed causal or merely reporting a consequence of the disease, altered UPS does
469 exist and this, in turn, could affect protein homeostasis in the brains of SCZ patients. Importantly,
470 proteasome function at synapses is tightly regulated by NMDAR activity, as NMDAR activation
471 regulates 26S proteasome assembly and catalytic activity^{79,80} and stability of proteasomes in the
472 post-synaptic density⁸¹. Moreover, E3 Ub-ligases and deubiquitinases act in concert to regulate
473 the ubiquitination, internalization and localization of NMDARs, AMPARs, and mGluRs, and
474 therefore, actively participate in Hebbian and homeostatic plasticity⁸²⁻⁸⁴. Further investigations on
475 the interplay between NMDAR signaling and UPS regulation during synaptic development would
476 enhance our understanding of how these distinct biological pathways converge in the context of
477 SCZ pathogenesis.

478 Interestingly, there were two major differences between donor vs. engineered organoids
479 that we observed. First, unlike the donor derived organoids, engineered organoids did not exhibit
480 any changes in the cell proportion or gene expression in the NEC subtypes. Moreover, the
481 magnitude of gene expression changes in various cell types in the engineered organoids was
482 minimal compared to donor derived organoids, which showed a greater number of DEGs overall.
483 These findings indicate that brain organoids derived from patient genetic background induce a
484 greater degree of transcriptional perturbations and uncover NECs as a vulnerable cell type during
485 cortical development in addition to neuronal subtypes and glial/astroglial cells, which are
486 commonly affected to varying degrees in both patient and engineered genetic backgrounds
487 carrying *NRXN1* CNVs. The specificity of NEC phenotypes in the SCZ *NRXN1* del genetic
488 background is further supported by previous studies reporting alterations in the morphology,
489 differentiation potential, and gene expression profiles from SCZ iPSC derived NECs and brain
490 organoid models, all of which are in support of the neurodevelopmental hypothesis of SCZ⁸⁵⁻⁸⁷.

491 Second, the enrichment of disease associated DEGs was minimal in the engineered
492 organoids compared to donor derived organoids. This finding makes sense since donor derived
493 organoids carry SCZ-relevant genetic background. Due to this effect, differences in the magnitude
494 of gene expression changes and the directionality of those changes were observed in these
495 organoid types. This is also apparent in the differences in the specific neuronal firing patterns
496 observed in the isogenic engineered vs. donor derived organoids.

497 There are two main limitations to this study. First, despite obtaining high-quality dataset,
498 the overall study is underpowered due to the small sample size of patient/control cohort with
499 limited genetic backgrounds being represented. Changes in the cell proportion, for example, could
500 be further analyzed using larger sample size and multiple technical replicates. It is unclear how
501 cell proportion could be initiated earlier on as answering this question would require granular
502 analysis of multiple time points across development and a greater number of single cells. Second,
503 while we focused on early developmental time points leading up to days 101/112, which allows
504 investigation of the molecular programs underlying peak of neuronal diversity and amplification,
505 older time points could reveal postnatal gene signatures that are being missed here. For example,
506 astrocytes/glial cells are prominent cell types that are shared among engineered and donor
507 derived organoids and produce changes in gene expression and cell proportions. This finding
508 could be further explored using older organoid samples, as astrocyte development is initiating at
509 ~day 100 and requires long term cultures to study their biology⁸⁸. In addition, the developmental
510 switch from *GRIN2B*- to *GRIN2A*-containing NMDARs occurs at ~300 day old brain organoids²⁹,
511 which could potentially allow one to study postnatal human brain biology.

512 In the future, it will be important to expand upon this work by comparing this dataset with
513 single cell transcriptomes obtained from *NRXN1* del individuals with other neuropsychiatric
514 disorders like ASDs as well as those from healthy, unaffected individuals who also carry *NRXN1*
515 deletions. This type of experimental design would allow dissection of the contribution of disease-
516 specific effects at a greater scale – common vs. distinct molecular features across
517 neuropsychiatric disorders which uniformly affect brain development and synaptic function.

518
519
520
521
522
523
524

525

526 **Acknowledgments**

527 We thank Kelly Rangel (CCHMC gene expression core) and Dr. Jim Chambers (IALS Light
528 Microscopy core) for assistance with 10X scRNAseq and Ca^{2+} imaging set up as well as members
529 of the Pak lab for experimental assistance and helpful discussions. We also thank Dr. Zhiping
530 Pang for sharing the psychiatric risk summary gene list for disease enrichment analysis.

531

532 **Funding**

533 This work was supported by NIMH (R01 MH122519 to C.P., R21 MH130843 to Y.S. and C.P.),
534 UMass IALS/BMB faculty start up fund (to C.P.), Tourette Association of America (Young
535 investigator award to C.P.), and NIGMS T32 BTP training program (T32 GM135096 to N.P.).

536

537 **Author contributions**

538 R.S., R.B., Y.J.S., and J.B. cultured brain organoids and performed experiments. K.J. carried out
539 all scRNAseq data analysis. R.S. and N.P. conducted live Ca^{2+} imaging and analysis. A.P. and
540 R.B. optimized single cell dissociation protocol. R.G. optimized image analysis. R.S., K.J., Y.B.S.,
541 B.A., and C.P. designed the experiments and R.S., K.J., and C.P. wrote the manuscript.

542

543 **Declaration of interests**

544 Nothing to declare.

545

546

547 **Online methods**

548

549 **hPSC culture and forebrain organoid generation**

550 hESC and iPSCs were cultured on feeder-free conditions as previously described^{34,35}. In order to
551 form serum-free floating embryoid body (EB) aggregates, hPSCs were dissociated into single
552 cells using Accutase (Innovative Cell Technologies). Dissociated cells were then reaggregated in
553 low adhesion microwell culture plates (AggreWell-800, Stem cell technologies). 3 million cells
554 were plated per 2mL well in mTesR plus Y-27632 (1 μ M, Axon Medchem). 24 hours after plating,
555 aggregated EBs were transferred to ultra-low attachment 10cm petri dishes and cultured as
556 previously described⁸⁹. Briefly, EBs in 10 cm dishes are cultured in E6 medium (ThermoFisher)
557 for up to 6 days with SB431542 (10 μ M, Peprotech) and dorsomorphin (5 μ M, Peprotech) for dual
558 SMAD inhibition, promoting neural stem cell differentiation. Following day 6, EBs were cultured in
559 Neurobasal (ThermoFisher) containing B27 without vitamin A supplement, Glutamax (Life
560 Technologies), Penicillin-Streptomycin (ThermoFisher) and the following morphogens at 20
561 ng/mL (Peprotech): human EGF, human FGF, human BDNF, and human NT3. At day 6-8,
562 forebrain organoids were placed on an orbital shaker for gentle agitation to reduce spontaneous
563 fusion. Starting at day 43, all morphogens were removed and brain organoids were cultured solely
564 in B27 containing Neurobasal media.

565

566 **Lentivirus generation**

567 Lentiviral plasmid constructs used in this study are Cre-recombinase and Flp-recombinase fused
568 to EGFP driven by the ubiquitin-C promoter as previously described³⁵. For all lentiviral vectors,
569 viruses were produced in HEK293T cells (ATCC, VA) by co-transfection with three helper
570 plasmids (3.25 μ g of pRSV-REV, 8.1 μ g of pMDLg/pRRE and 10 μ g of lentiviral vector DNA per
571 75 cm² culture area using calcium phosphate transfection method⁹⁰. Lentiviruses were harvested
572 from the medium 48 hrs after transfection. Viral supernatants were then centrifuged at a high
573 speed of 49,000 x g for 90 min and aliquoted for storage in -80C. Viral preparations that yielded
574 90% EGFP expression were assessed to be efficiently infected and used for experiments.

575

576 **Cryopreservation and sectioning**

577 Organoid samples were collected at day 21, 50 and 100. Samples were fixed in 4%
578 paraformaldehyde at 4°C overnight then submerged in 30% sucrose/PBS solution for 24-48hrs in
579 4°C. Organoids were flash frozen in gelatin solution (gelatin in 10% sucrose/PBS) using dry
580 ice/ethanol slurry and were stored in -80°C for long term storage or until cryosectioning.
581 Cryosections were between 12 to 25 micron section thickness. Organoid sections were directly
582 adhered to microscope slides and subsequently used for immunohistochemistry or stored for long
583 term storage in -20°C.

584

585 **Immunostaining**

586 Organoid sections were washed three times in 0.2% Triton-X in PBS (0.2%PBS/T) and then
587 blocked in 10% normal goat serum diluted in 0.2%PBS/T (blocking solution) for 1hr at room
588 temperature. Sections were incubated in primary antibodies diluted in blocking solution overnight
589 at 4°C and were subsequently washed three times with 0.2%PBS/T, followed by incubation with
590 secondary antibodies and DAPI diluted in PBS/T at room temperature for 2 hours. Finally,

591 sections were washed three times (20 minutes per wash), and then mounted using Fluoromount
592 mounting media (Southern Biotech). Primary antibodies used are as follows: mouse anti-Ki67
593 (1:250, BD Biosciences BDB550609), rabbit anti-SOX2 (1:500 Cell Signaling 3697S), rabbit anti-
594 HOPX (1:500, Proteintech 11419-1-H), rat anti-CTIP2 (1:2000, Abcam ab18465), rabbit anti-
595 TBR2 (1:1000, Abcam ab23345), mouse anti-SATB2 (1:1000 Abcam ab51502), mouse anti-
596 NEUN (1:500, EMD Millipore MAB377), rabbit anti-NEUN (1:1000, EMD Millipore ABN78), rabbit
597 anti-S100B (1:1000, Sigma S2644), chicken anti-MAP2 (1:5000, Abcam ab5392), rabbit anti-
598 SYNAPTOPHYSIN (1:1000, Abcam ab14692), rabbit anti-HOMER (1:1000 Synaptic System
599 160003), and mouse anti-SYNAPSIN (1:500, Synaptic System 111011). Secondary antibodies
600 conjugated with Alexa 488, 594, 647 (Invitrogen) and DAPI (1:1000, Sigma MBD0015) were used.
601
602

603 **Calcium imaging and analysis**

604 Organoids were incubated in 1 μ M of X-Rhod1 AM dye (Invitrogen) diluted in a modified HEPES
605 buffer (130mM NaCl, 5mM KCl, 2mM CaCl₂, 1mM MgCl₂, 10mM HEPES, 10mM Glucose, pH
606 7.4 adjusted with NaOH) for 15 minutes at room temperature. Excess dye was washed with
607 modified HEPES buffer once, then imaged using a confocal microscope (Nikon, A1R25). Imaging
608 was carried out in glass bottom petri dishes (MatTek). Temperature was maintained at 37C using
609 the Ibidi stage heater. Time lapse images were acquired at 250ms intervals for a period of 5 mins.
610 Images were processed using ImageJ software to produce binary images. Analysis was then
611 carried out using a stimulation-free Matlab protocol as demonstrated previously⁹¹. Using the
612 MATLAB protocol, we first 'stacked' the time lapse images captured by the confocal microscope
613 to produce a Maximum Intensity Projection (MIP). Guided by the MIP, we then selected 4-5
614 regions of interest (ROI) indicating the most active regions of the organoid, with each ROI
615 measuring 50 μ m in diameter. Next, we selected the time interval which is determined by the
616 recording duration (in seconds)/frames; in our recordings we used 300/109 for a time interval of
617 2.75. Changes in image intensity within ROI's are then quantified and plotted as raw calcium
618 traces. Using the average calcium intensity across all ROI's in one field of view, synchronous
619 spikes were plotted and a synchronous firing rate was determined using the number of detected
620 synchronous spikes every minute. Frequency was determined by the total number of detected
621 peaks every minute across all traces. Amplitude was established using the mean value of F/F₀
622 from individual peaks.
623

624 **Quantification and statistical analysis**

625 Data wrangling was performed in Microsoft Excel, and all raw data points were transferred to
626 Prism (9.3.0) for basic statistics, outlier detection, significance tests, and graph generation. To
627 identify outliers from pooled replicates, the ROUT outlier test was used to identify outliers by fitting
628 data with nonlinear regression and using a false discovery rate of Q=1%. An unpaired parametric
629 two-tailed Student's t test was performed to compare the two genotypes (CTRL vs. cKO or CTRL
630 vs. NRXN1del) for statistical significance.
631
632

633 **Live single cell dissociation**

634 Organoids were rinsed 3 times with HBSS (10X HBS salt, 1M HEPES, 0.004M NaHCO₃ diluted
635 to 1X), then minced into small pieces and transferred to a 15mL conical tube for incubation in
636 digestion solution (consisting of HBSS, 1 mg/mL Papain, 0.5mM EDTA, and 1mM L-cysteine) for
637 15 minutes at 37°C. Upon incubation, digestion mixture containing organoids were gently
638 triturated with DNase I (25 µg/mL, Worthington-Biochem) and subsequently incubated again for
639 another 10 minutes at 37°C followed by filtration with 70µM and 30µM filters (Miltenyi Biotech).
640 Cell mixture was then centrifuged and pelleted. Cell pellet was resuspended in Neurobasal media
641 with B27. This step was done to help dilute any remaining enzyme, EDTA, and other components
642 of the digest mix. After the final re-suspension in Neurobasal media (without supplements), single
643 cell mix was filtered again using 40 µM FlowMi pipet (Milipore Sigma) to help remove debris.

644

645 **10X scRNASeq Protocol**

646 Following isolation of single cells from brain organoids, cells were centrifuged at 300 g for 5 min
647 and then re-suspended in 1 mL ice-cold Neurobasal media. Cell concentration and viability were
648 determined using a hemocytometer with trypan blue dye exclusion and cell concentrations were
649 adjusted to 700-1200 cells/µL for 10X single cell sequencing. For each sample, 9,600 cells were
650 loaded into the 10X Chromium controller to target recovery of 6,000 cells and a Gel Beads in
651 Emulsion (GEM) was generated. 10X Genomics 3'v3.1 chemistry was used. The samples were
652 processed according to the protocol from 10X Genomics, using 14 cycles for cDNA amplification.
653 Single cell libraries were sequenced using the Illumina NovaSeq 6000.

654

655 **Single cell data alignment**

656 10x single-cell RNA-sequencing data in Fastq files were aligned to transcripts using Cell Ranger
657 3.1.0 (<https://www.10xgenomics.com/support/single-cell-gene-expression>). Reference genome
658 GRCh38 (Ensembl 93) was used as the reference genome. In the CellRanger *count* command,
659 parameters *chemistry* and *expected-cells* were set as SC3Pv3 and 6000, respectively.

660

661 **Single cell preprocessing and normalization**

662 Cell Ranger output h5 files were loaded using Seurat 4⁹² as the raw data. To reduce the impact
663 of low-quality cells, we first removed cells with less than 1200 or more than 25,000 unique
664 molecular identifiers (UMI). In addition, we removed cells with less than 600 or more than 6000
665 unique genes. Since low-quality or dying cells often exhibit extensive mitochondrial
666 contamination, we removed cells with more than 10% mitochondrial transcripts.

667 Furthermore, we removed several clusters (details of the clustering will be mentioned later) of
668 cells with low-sequencing depth to avoid the influence of poorly sequenced cells. Clusters with
669 lower-than-normal distributions of the number of UMIs or unique genes were manually removed
670 from the data. In the end, 9 lowly-sequenced clusters were removed from both donor-derived and
671 engineered organoids single cell data (Figure S3). In addition, we utilized Scrublet⁹³ to investigate
672 the doublets in the data. Only a small number of cells reached the threshold of doublets, indicating
673 a low prevalence of doublets.

674 After the quality control, we finally harvested 33,538 genes and 141,039 high-quality cells,
675 including 88,623 cells from 16 donor-derived organoid samples and 52,416 cells from 10

676 engineered organoid samples. Both original and processed data can be found in Data Availability.
677 We normalized the total UMI counts per gene to 1 million (CPM) and applied $\log_2(\text{CPM}+1)$
678 transformation for heatmap visualization and downstream differential gene expression analysis,
679 which were conducted in Scanpy⁹⁴. In the following Seurat integration procedure, we applied the
680 default normalization approach of Seurat.

681

682 **Single cell integration**

683 To reduce the influence of batch effects from multiple samples in single-cell data analysis, we
684 applied the Seurat integration procedure to the data. We first loaded the raw data of each sample
685 separately and created a list of Seurat objects after the quality control. Then we normalized each
686 Seurat object and found the top 2,000 highly variable genes using the “vst” method in
687 *FindVariableFeatures* function. 2000 integration features were selected from the series of Seurat
688 objects using *SelectIntegrationFeatures*. Then integration features in each dataset were scaled
689 and centered using the *ScaleData* function, based on which we ran the Principal Component
690 Analysis (PCA) to reduce the high dimensions of features into 50 principal components.

691 In this study, we used the Reciprocal PCA (RPCA) procedure as the default method of integrating
692 our large-scale data due to its high computational performance. We first identified integration
693 anchors with previously identified integration features and top 30 reciprocal principal components,
694 after which we ran the integration using the function *IntegrateData* with the top 30 dimensions for
695 the anchor weight procedure. After integration, the data was scaled and PCA was conducted
696 using *ScaleData* and *RunPCA* functions, respectively. Then the nearest neighbor graph was
697 constructed using 20 k-nearest neighbors and 30 principal components. Louvain clustering was
698 applied on the neighbor graph using the function *FindClusters* and multiple resolutions (0.5, 1.0,
699 2.0) were used to find clusters in both coarse and fine resolutions for comprehensive downstream
700 analysis. Additionally, 2-dimensional and 3-dimensional embeddings of cells were generated
701 using Uniform Manifold Approximation and Projection (UMAP) based on top 30 principal
702 components. These integration, clustering, and dimensionality reduction procedures were applied
703 to cells from donor-derived organoids, engineered organoids, as well as cells from both types of
704 organoids.

705

706 **Cell Annotations**

707 After the quality control and integration procedure, we got high-quality cells and clusters in
708 multiple resolutions. A total of 49 clusters in a fine resolution (2.0) were generated from
709 aforementioned procedures for cells from both donor-derived and engineered organoid samples.
710 Canonical markers from previous studies were collected and used for manual annotations of each
711 cluster, such as VIM for neural progenitor cells, STMN2 for neurons, and AQP4 for astrocytes. In
712 addition, enrichment results of ToppCell-derived gene modules and prediction labels from
713 reference datasets were used as supplementary evidence of annotations as well. A total of 29
714 cell classes were derived eventually, including subpopulations from NEC, glia cells, intermediate
715 cells, neurons and supportive cells. Cluster 9 and 24 were labeled as unknown cells since there
716 were no clear associations with known cell types based on marker genes or predicted cell types.
717 Two clusters, including cluster 24 and 34, were labeled as low-sequencing-depth cells since their
718 lower-than-normal transcript abundance levels. To focus on neuron differentiation, low-

719 sequencing depth unknown cells, microglia cells, and mesenchymal cells were not included in the
720 downstream analysis.

721
722 **Logistic regression for label prediction**
723 To better understand the cell identities of clusters, we built up simple logistic regression models
724 in the reference single cell data to predict cell type annotations in our own data. Such models
725 were previously used in by Young et al.⁹⁵ to infer the similarity between kidney tumor cell
726 populations and known normal kidney cell types. In our study, we established logistic regression
727 models as classifiers for each cell type in 4 public brain organoid single cell datasets and 1 fetal
728 brain single cell dataset. The prediction scores from the models were used to classify whether
729 one query single cell belongs to a specific cell type. We applied models of all cell types from
730 reference data to each cell in our single cell data and calculated the average prediction scores of
731 cell types or clusters. The results represent the association or similarity between reference and
732 query cell types (Figure S6B).

733
734 **Differential expression analysis**
735 In our study, we used the Wilcoxon test in the function *rank_genes_group* of Scanpy to calculate
736 gene differential expression statistics. We applied the DE tests for comparisons between NRXN1
737 del cells and control cells in all cell classes and time points. Normalized expression values were
738 used as the input data. FDR adjusted p values were used to control the type I error. Genes with
739 FDR-adjusted p values lower than 0.05 in DE tests were defined as significant DE genes.
740 $-\log_{10}(FDR \text{ adjusted } p \text{ values})$ were defined as significance scores for the differential
741 expression analysis. In order to highlight DEGs relevant to our analysis ('filtered' list), we extracted
742 and integrated a list of gene sets from Gene Ontology, including neurogenesis (GO:0022008),
743 generation of neurons (GO:0048699), neuron differentiation (GO:0030182), neuron projection
744 development (GO:0031175), neuron development (GO:0048666), neuron projection
745 morphogenesis (GO:0048812), neuron projection (GO:0043005), somatodendritic compartment
746 (GO:0036477), neuronal cell body (GO:0043025), myelin sheath (GO:0043209), axonal growth
747 cone (GO:0044295). Additionally, we excluded genes associated with translational initiation
748 (GO:0006413), ATP metabolic process (GO:0046034), and mitochondrion organization
749 (GO:0007005). Both 'filtered' and 'unfiltered' DEG lists are shown in the Supplementary Tables.
750 Volcano plots were generated for the visualization of DE genes using the *EnhancedVolcano*
751 package⁹⁶. In Figures 3 and 4, we conducted a hypergeometric test for each comparison of two
752 gene lists to infer the significance of the number of overlapping genes in those two lists. p value
753 were corrected using FDR-adjusted p values.

754
755 **Gene modules from ToppCell**
756 We used ToppCell toolkit to generate gene modules of cell types and clusters in our single cell
757 data (Figure S6B)⁹⁷. We applied ToppCell to user-provided cell annotations and derived well-
758 organized gene modules for all cell classes. Each gene module contains the top 200 DEGs from
759 ToppCell, representing the most prominent transcriptomic profile of this cell class. ToppCell-
760 derived gene modules were seamlessly enriched using ToppGene⁴⁴ and ToppCluster⁹⁸.

761
762 **Gene enrichment analysis**
763 Gene set enrichment analysis (GSEA) was conducted using ToppGene for gene sets from either
764 ToppCell output or differential expression analysis. Gene ontologies were used to annotate

765 molecular functions, biological processes and cellular components. In addition, we used the
766 *prerank* function in GSEAPY package for the customized GSEA analysis. We used the manually
767 curated neurological-disorder-associated gene sets⁶⁵ as the reference, such as genes of autism
768 spectrum disorder and schizophrenia. We calculated FDR adjusted p values of enrichment for
769 differentially expressed genes to infer their associations with neurological diseases.

770

Trajectory inference and pseudotime analysis

771 We used Monocle3⁴² to infer the pseudotime and trajectories of cell differentiations in the brain
772 organoid single-cell data. We took advantage of the Seurat integration procedure and transferred
773 Seurat objects into Monocle3 *cell_data_set* objects. Then we learned trajectories on the UMAP
774 using the *learn_graph* function to get the pseudotime ordering of cells using the *order_cells*
775 function. Cells with the highest expression levels of cell cycle genes in cycling NECs were
776 selected as the start point of trajectories. In the end, every cell was assigned a pseudotime value,
777 representing the estimated differentiation stages along the trajectory. Ridge plots were drawn
778 based on the density of cells across pseudotime values.

779

Cell abundance changes inferred by scCODA

780 We investigated cell abundance changes in NRXN1 del samples using the scCODA model , which
781 was used to perform compositional data analysis and determine abundance changes of cell
782 populations using Bayesian modeling in the single cell data⁴⁵. For cells in each cell type and each
783 time point, compositional models were constructed using 'genotype' as the covariate in the
784 formula. Cell types with around equal cell abundance in control and NRXN1 del samples were
785 selected as the reference cell types. Hamiltonian Monte Carlo sampling was then initiated by
786 calling *model.sample_hmc*. Since the lack of number of samples, we used 0.4 as the threshold of
787 false discovery rate for significant cell abundance changes. The signs of final parameters were
788 used to show the direction of cell abundance changes.

789

NRXN1 expression analysis

790 We collected human fetal cortex single-cell data from a large-scale single-cell dataset⁴⁰. The ratio
791 of NRXN1-expressing cells of each developmental stage and each cell type was defined as the
792 number of cells with NRXN1 UMI counts greater than 1, divided by the total number of cells.

793

Reference Datasets

794 Several datasets were used for the cell type prediction in this study, including:

795

800 Kanton et al. (2019)⁴¹: This is a single cell dataset of human cerebral organoids derived from
801 iPSC- and embryonic stem cell (ESC)- derived cells (43,498 cells) at different time points (day 0
802 ~ day 120) during the differentiation.

803

804 Paulsen et al. (2022)³⁷: This is a single cell dataset of human cerebral cortex organoids with
805 haploinsufficiency in three autism spectrum disorder (ASD) risk genes in multiple cell lines from
806 different donors of more than 745,000 cells.

807

808 Tanaka et al. (2020)³⁸: This is synthetic analysis of single cell data from multiple brain organoid
809 and fetal brain datasets. Data of 8 different protocols were collected and 190,022 cells were
810 selected for the reannotation, where they classified 24 distinct clusters and 13 cell types.

809 Velasco et al. (2019)²⁴: This is a study to validate the reproducibility of brain organoids with single
810 cell sequencing. They collected 166,242 cells from 21 individual organoids and identified
811 indistinguishable compendiums of cell types and similar developmental trajectories.
812 Zhong et al. (2018)³⁹: This is a single cell dataset with more than 2,300 cells in developing human
813 prefrontal cortex from gestational weeks 8 to 26.
814 Bhaduri et al. (2021)⁴⁰: This is a large-scale single cell data of developing human brain from
815 gestation week (GW) 14 to GW 25. Multiple brain regions and neocortical areas were sampled
816 for the data.

817

818

819 **Data availability**

820 Single cell-RNAseq data will be deposited and available on the NCBI Gene Expression Omnibus.
821

822

823

824

825 **References**

826

827 1. Dabell, M. P. *et al.* Investigation of NRXN1 deletions: clinical and molecular characterization. *American Journal of Medical Genetics. Part A* **161A**, 717–731 (2013).

828 2. Béna, F. *et al.* Molecular and clinical characterization of 25 individuals with exonic deletions
829 of NRXN1 and comprehensive review of the literature. *American Journal of Medical Genetics*
830 *Part B: Neuropsychiatric Genetics* **162**, 388–403 (2013).

831 3. Castronovo, P. *et al.* Phenotypic spectrum of NRXN1 mono- and bi-allelic deficiency: A
832 systematic review. *Clin Genet* **97**, 125–137 (2020).

833 4. Marshall, C. R. *et al.* Contribution of copy number variants to schizophrenia from a genome-
834 wide study of 41,321 subjects. *Nature Genetics* **49**, 27–35 (2017).

835 5. Lowther, C. *et al.* Molecular characterization of NRXN1 deletions from 19,263 clinical
836 microarray cases identifies exons important for neurodevelopmental disease expression.
837 *Genet Med* **19**, 53–61 (2017).

838 6. Fuccillo, M. V. & Pak, C. Copy number variants in neurexin genes: phenotypes and
839 mechanisms. *Current Opinion in Genetics & Development* **68**, 64–70 (2021).

840 7. Südhof, T. C. Synaptic Neurexin Complexes: A Molecular Code for the Logic of Neural
841 Circuits. *Cell* **171**, 745–769 (2017).

842 8. Etherton, M. R., Blaiss, C. A., Powell, C. M. & Südhof, T. C. Mouse neurexin-1alpha deletion
843 causes correlated electrophysiological and behavioral changes consistent with cognitive
844 impairments. *Proceedings of the National Academy of Sciences of the United States of*
845 *America* **106**, 17998–18003 (2009).

846 9. Dai, J., Aoto, J. & Südhof, T. C. Alternative Splicing of Presynaptic Neurexins Differentially
847 Controls Postsynaptic NMDA and AMPA Receptor Responses. *Neuron* **102**, 993–1008.e5
848 (2019).

849 10. Davatolhagh, M. F. & Fuccillo, M. V. Neurexin1 α differentially regulates synaptic efficacy
850 within striatal circuits. *Cell Reports* **34**, 108773 (2021).

851 11. Trotter, J. H. *et al.* Synaptic neurexin-1 assembles into dynamically regulated active zone
852 nanoclusters. *J Cell Biol* **218**, 2677–2698 (2019).

853 12. Luo, F., Sclip, A., Jiang, M. & Südhof, T. C. Neurexins cluster Ca $^{2+}$ channels within the
854 presynaptic active zone. *EMBO J* **39**, e103208 (2020).

855 13. Chen, L. Y., Jiang, M., Zhang, B., Gokce, O. & Südhof, T. C. Conditional Deletion of All
856 Neurexins Defines Diversity of Essential Synaptic Organizer Functions for Neurexins. *Neuron*
857 **94**, 611–625.e4 (2017).

858 14. Ullrich, B., Ushkaryov, Y. A. & Südhof, T. C. Cartography of neurexins: more than 1000
859 isoforms generated by alternative splicing and expressed in distinct subsets of neurons.
860 *Neuron* **14**, 497–507 (1995).

861 15. Tabuchi, K. & Südhof, T. C. Structure and evolution of neurexin genes: insight into the
862 mechanism of alternative splicing. *Genomics* **79**, 849–859 (2002).

863 16. Treutlein, B., Gokce, O., Quake, S. R. & Südhof, T. C. Cartography of neurexin alternative
864 splicing mapped by single-molecule long-read mRNA sequencing. *Proceedings of the*
865 *National Academy of Sciences of the United States of America* **111**, E1291–1299 (2014).

866 17. Schreiner, D. *et al.* Targeted combinatorial alternative splicing generates brain region-specific
867 repertoires of neurexins. *Neuron* **84**, 386–398 (2014).

868 18. Jenkins, A. K. *et al.* Neurexin 1 (NRXN1) splice isoform expression during human neocortical
869 development and aging. *Molecular Psychiatry* **21**, 701–706 (2016).

870 19. Zeng, L. *et al.* Functional impacts of NRXN1 knockdown on neurodevelopment in stem cell
871 models. *PloS One* **8**, e59685 (2013).

872 20. Lam, M. *et al.* Single cell analysis of autism patient with bi-allelic NRXN1-alpha deletion
873 reveals skewed fate choice in neural progenitors and impaired neuronal functionality. *Exp Cell*
874 *Res* **383**, 111469 (2019).

875

876 21. Willsey, H. R. *et al.* Parallel in vivo analysis of large-effect autism genes implicates cortical
877 neurogenesis and estrogen in risk and resilience. *Neuron* **109**, 788-804.e8 (2021).

878 22. Lancaster, M. A. *et al.* Cerebral organoids model human brain development and
879 microcephaly. *Nature* **501**, 373–379 (2013).

880 23. Pașca, A. M. *et al.* Functional cortical neurons and astrocytes from human pluripotent stem
881 cells in 3D culture. *Nature Methods* **12**, 671–678 (2015).

882 24. Velasco, S. *et al.* Individual brain organoids reproducibly form cell diversity of the human
883 cerebral cortex. *Nature* **570**, 523–527 (2019).

884 25. Qian, X. *et al.* Brain-region-specific organoids using mini-bioreactors for modeling zikv
885 exposure. *Cell* **165**, 1238–1254 (2016).

886 26. Bershteyn, M. *et al.* Human iPSC-Derived Cerebral Organoids Model Cellular Features of
887 Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia. *Cell Stem Cell* **20**, 435–
888 449.e4 (2017).

889 27. Xiang, Y. *et al.* Fusion of Regionally Specified hPSC-Derived Organoids Models Human Brain
890 Development and Interneuron Migration. *Cell Stem Cell* **21**, 383-398.e7 (2017).

891 28. Sebastian, R., Song, Y. & Pak, C. Probing the molecular and cellular pathological
892 mechanisms of schizophrenia using human induced pluripotent stem cell models. *Schizophr
893 Res* S0920-9964(22)00263–8 (2022) doi:10.1016/j.schres.2022.06.028.

894 29. Gordon, A. *et al.* Long-term maturation of human cortical organoids matches key early
895 postnatal transitions. *Nat Neurosci* **24**, 331–342 (2021).

896 30. Kathuria, A. *et al.* Transcriptomic Landscape and Functional Characterization of Induced
897 Pluripotent Stem Cell-Derived Cerebral Organoids in Schizophrenia. *JAMA Psychiatry* **77**,
898 745–754 (2020).

899 31. Khan, T. A. *et al.* Neuronal defects in a human cellular model of 22q11.2 deletion syndrome.
900 *Nat Med* **26**, 1888–1898 (2020).

901 32. Stachowiak, E. K. *et al.* Cerebral organoids reveal early cortical maldevelopment in
902 schizophrenia-computational anatomy and genomics, role of FGFR1. *Transl Psychiatry* **7**, 6
903 (2017).

904 33. Notaras, M. *et al.* Schizophrenia is defined by cell-specific neuropathology and multiple
905 neurodevelopmental mechanisms in patient-derived cerebral organoids. *Mol Psychiatry* **27**,
906 1416–1434 (2022).

907 34. Pak, C. *et al.* Human Neuropsychiatric Disease Modeling using Conditional Deletion Reveals
908 Synaptic Transmission Defects Caused by Heterozygous Mutations in NRXN1. *Cell Stem Cell*
909 **17**, 316–328 (2015).

910 35. Pak, C. *et al.* Cross-platform validation of neurotransmitter release impairments in
911 schizophrenia patient-derived NRXN1-mutant neurons. *Proceedings of the National Academy
912 of Sciences of the United States of America* **118**, e2025598118 (2021).

913 36. Yoon, S.-J. *et al.* Reliability of human cortical organoid generation. *Nature Methods* **16**, 75–
914 78 (2019).

915 37. Paulsen, B. *et al.* Autism genes converge on asynchronous development of shared neuron
916 classes. *Nature* **602**, 268–273 (2022).

917 38. Tanaka, Y., Cakir, B., Xiang, Y., Sullivan, G. J. & Park, I.-H. Synthetic Analyses of Single-Cell
918 Transcriptomes from Multiple Brain Organoids and Fetal Brain. *Cell Rep* **30**, 1682-1689.e3
919 (2020).

920 39. Zhong, S. *et al.* A single-cell RNA-seq survey of the developmental landscape of the human
921 prefrontal cortex. *Nature* **555**, 524–528 (2018).

922 40. Bhaduri, A. *et al.* An atlas of cortical arealization identifies dynamic molecular signatures.
923 *Nature* **598**, 200–204 (2021).

924 41. Kanton, S. *et al.* Organoid single-cell genomic atlas uncovers human-specific features of brain
925 development. *Nature* **574**, 418–422 (2019).

926 42. Cao, J. *et al.* The single-cell transcriptional landscape of mammalian organogenesis. *Nature*
927 **566**, 496–502 (2019).

928 43. Uzquiano, A. *et al.* Single-cell multiomics atlas of organoid development uncovers longitudinal
929 molecular programs of cellular diversification of the human cerebral cortex.
930 2022.03.17.484798 Preprint at <https://doi.org/10.1101/2022.03.17.484798> (2022).

931 44. Chen, J., Bardes, E. E., Aronow, B. J. & Jegga, A. G. ToppGene Suite for gene list enrichment
932 analysis and candidate gene prioritization. *Nucleic Acids Research* **37**, W305–311 (2009).

933 45. Büttner, M., Ostner, J., Müller, C. L., Theis, F. J. & Schubert, B. scCODA is a Bayesian model
934 for compositional single-cell data analysis. *Nat Commun* **12**, 6876 (2021).

935 46. Luza, S. *et al.* The ubiquitin proteasome system and schizophrenia. *The Lancet Psychiatry* **7**,
936 528–537 (2020).

937 47. Nishimura, A. *et al.* The carbohydrate deposits detected by histochemical methods in the
938 molecular layer of the dentate gyrus in the hippocampal formation of patients with
939 schizophrenia, Down's syndrome and dementia, and aged person. *Glycoconj J* **17**, 815–822
940 (2000).

941 48. Altar, C. A. *et al.* Deficient hippocampal neuron expression of proteasome, ubiquitin, and
942 mitochondrial genes in multiple schizophrenia cohorts. *Biol Psychiatry* **58**, 85–96 (2005).

943 49. Rubio, M. D., Wood, K., Haroutunian, V. & Meador-Woodruff, J. H. Dysfunction of the ubiquitin
944 proteasome and ubiquitin-like systems in schizophrenia. *Neuropsychopharmacology* **38**,
945 1910–1920 (2013).

946 50. Bousman, C. A. *et al.* Elevated ubiquitinated proteins in brain and blood of individuals with
947 schizophrenia. *Sci Rep* **9**, 2307 (2019).

948 51. Singh, T. *et al.* Rare coding variants in ten genes confer substantial risk for schizophrenia.
949 *Nature* **604**, 509–516 (2022).

950 52. Zhang, X. *et al.* Cell-Type-Specific Alternative Splicing Governs Cell Fate in the Developing
951 Cerebral Cortex. *Cell* **166**, 1147–1162.e15 (2016).

952 53. Johnson, M. B. *et al.* Functional and evolutionary insights into human brain development
953 through global transcriptome analysis. *Neuron* **62**, 494–509 (2009).

954 54. Gandal, M. J. *et al.* Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia,
955 and bipolar disorder. *Science* **362**, eaat8127 (2018).

956 55. Irimia, M. *et al.* A highly conserved program of neuronal microexons is misregulated in autistic
957 brains. *Cell* **159**, 1511–1523 (2014).

958 56. Watanabe, A. *et al.* Fabp7 maps to a quantitative trait locus for a schizophrenia
959 endophenotype. *PLoS Biol* **5**, e297 (2007).

960 57. Maekawa, M. *et al.* Polymorphism screening of brain-expressed FABP7, 5 and 3 genes and
961 association studies in autism and schizophrenia in Japanese subjects. *J Hum Genet* **55**, 127–
962 130 (2010).

963 58. Koga, M. *et al.* Plasma fatty acid-binding protein 7 concentration correlates with
964 depression/anxiety, cognition, and positive symptom in patients with schizophrenia. *J
965 Psychiatr Res* **144**, 304–311 (2021).

966 59. Hu, C., Chen, W., Myers, S. J., Yuan, H. & Traynelis, S. F. Human GRIN2B variants in
967 neurodevelopmental disorders. *Journal of Pharmacological Sciences* **132**, 115–121 (2016).

968 60. Takasaki, Y. *et al.* Mutation screening of GRIN2B in schizophrenia and autism spectrum
969 disorder in a Japanese population. *Sci Rep* **6**, 33311 (2016).

970 61. Coyle, J. T. NMDA receptor and schizophrenia: a brief history. *Schizophr Bull* **38**, 920–926
971 (2012).

972 62. Nakazawa, K. & Sapkota, K. The origin of NMDA receptor hypofunction in schizophrenia.
973 *Pharmacol Ther* **205**, 107426 (2020).

974 63. Trubetskoy, V. *et al.* Mapping genomic loci implicates genes and synaptic biology in
975 schizophrenia. *Nature* **604**, 502–508 (2022).

976 64. Shimamoto, C. *et al.* Functional characterization of FABP3, 5 and 7 gene variants identified
977 in schizophrenia and autism spectrum disorder and mouse behavioral studies. *Hum Mol
978 Genet* **23**, 6495–6511 (2014).

979 65. Wang, L. *et al.* Analyses of the Autism-associated Neuroligin-3 R451C Mutation in Human
980 Neurons Reveals a Gain-of-Function Synaptic Mechanism. 2021.12.07.471501 Preprint at
981 <https://doi.org/10.1101/2021.12.07.471501> (2021).

982 66. Tarabeux, J. *et al.* Rare mutations in N-methyl-D-aspartate glutamate receptors in autism
983 spectrum disorders and schizophrenia. *Transl Psychiatry* **1**, e55 (2011).

984 67. Yu, Y. *et al.* Rare loss of function mutations in N-methyl-D-aspartate glutamate receptors and
985 their contributions to schizophrenia susceptibility. *Transl Psychiatry* **8**, 1–9 (2018).

986 68. Yeo, G., Holste, D., Kreiman, G. & Burge, C. B. Variation in alternative splicing across human
987 tissues. *Genome Biology* **5**, R74 (2004).

988 69. Raj, B. & Blencowe, B. J. Alternative Splicing in the Mammalian Nervous System: Recent
989 Insights into Mechanisms and Functional Roles. *Neuron* **87**, 14–27 (2015).

990 70. Ule, J. *et al.* Nova regulates brain-specific splicing to shape the synapse. *Nat Genet* **37**, 844–
991 852 (2005).

992 71. Spellman, R. *et al.* Regulation of alternative splicing by PTB and associated factors. *Biochem
993 Soc Trans* **33**, 457–460 (2005).

994 72. Vuong, C. K., Black, D. L. & Zheng, S. The neurogenetics of alternative splicing. *Nat Rev
995 Neurosci* **17**, 265–281 (2016).

996 73. Quesnel-Vallières, M., Irimia, M., Cordes, S. P. & Blencowe, B. J. Essential roles for the
997 splicing regulator nSR100/SRRM4 during nervous system development. *Genes Dev* **29**, 746–
998 759 (2015).

999 74. Kaalund, S. S. *et al.* Contrasting changes in DRD1 and DRD2 splice variant expression in
1000 schizophrenia and affective disorders, and associations with SNPs in postmortem brain. *Mol
1001 Psychiatry* **19**, 1258–1266 (2014).

1002 75. Tan, W. *et al.* Molecular cloning of a brain-specific, developmentally regulated neuregulin 1
1003 (NRG1) isoform and identification of a functional promoter variant associated with
1004 schizophrenia. *J Biol Chem* **282**, 24343–24351 (2007).

1005 76. Law, A. J., Kleinman, J. E., Weinberger, D. R. & Weickert, C. S. Disease-associated intronic
1006 variants in the ErbB4 gene are related to altered ErbB4 splice-variant expression in the brain
1007 in schizophrenia. *Hum Mol Genet* **16**, 129–141 (2007).

1008 77. Sartorius, L. J. *et al.* Expression of a GRM3 Splice Variant is Increased in the Dorsolateral
1009 Prefrontal Cortex of Individuals Carrying a Schizophrenia Risk SNP. *Neuropsychopharmacol
1010* **33**, 2626–2634 (2008).

1011 78. Flaherty, E. *et al.* Neuronal impact of patient-specific aberrant NRXN1 α splicing. *Nat Genet*
1012 **51**, 1679–1690 (2019).

1013 79. Tai, H.-C., Besche, H., Goldberg, A. L. & Schuman, E. M. Characterization of the Brain 26S
1014 Proteasome and its Interacting Proteins. *Front Mol Neurosci* **3**, 12 (2010).

1015 80. Bingol, B. *et al.* Autophosphorylated CaMKII α Acts as a Scaffold to Recruit Proteasomes to
1016 Dendritic Spines. *Cell* **140**, 567–578 (2010).

1017 81. Ferreira, J. S. *et al.* GluN2B-Containing NMDA Receptors Regulate AMPA Receptor Traffic
1018 through Anchoring of the Synaptic Proteasome. *J. Neurosci.* **35**, 8462–8479 (2015).

1019 82. Scudder, S. L. *et al.* Synaptic Strength Is Bidirectionally Controlled by Opposing Activity-
1020 Dependent Regulation of Nedd4-1 and USP8. *J. Neurosci.* **34**, 16637–16649 (2014).

1021 83. Huo, Y. *et al.* The deubiquitinating enzyme USP46 regulates AMPA receptor ubiquitination
1022 and trafficking. *J Neurochem* **134**, 1067–1080 (2015).

1023 84. Fu, A. K. Y. *et al.* APCCdh1 mediates EphA4-dependent downregulation of AMPA receptors
1024 in homeostatic plasticity. *Nat Neurosci* **14**, 181–189 (2011).

1025 85. Weinberger, D. R. Future of Days Past: Neurodevelopment and Schizophrenia. *Schizophr
1026 Bull* **43**, 1164–1168 (2017).

1027 86. Murray, R. M. & Lewis, S. W. Is schizophrenia a neurodevelopmental disorder? *Br Med J (Clin
1028 Res Ed)* **295**, 681–682 (1987).

1029 87. Raedler, T. J., Knable, M. B. & Weinberger, D. R. Schizophrenia as a developmental disorder
1030 of the cerebral cortex. *Curr Opin Neurobiol* **8**, 157–161 (1998).

1031 88. Sloan, S. A. *et al.* Human Astrocyte Maturation Captured in 3D Cerebral Cortical Spheroids
1032 Derived from Pluripotent Stem Cells. *Neuron* **95**, 779-790.e6 (2017).

1033 89. Sloan, S. A., Andersen, J., Paşa, A. M., Birey, F. & Paşa, S. P. Generation and assembly
1034 of human brain region-specific three-dimensional cultures. *Nature Protocols* **13**, 2062–2085
1035 (2018).

1036 90. Chen, C. & Okayama, H. High-efficiency transformation of mammalian cells by plasmid DNA.
1037 *Mol Cell Biol* **7**, 2745–2752 (1987).

1038 91. Sun, Z. & Südhof, T. C. A simple Ca²⁺-imaging approach to neural network analyses in
1039 cultured neurons. *Journal of Neuroscience Methods* **349**, 109041 (2021).

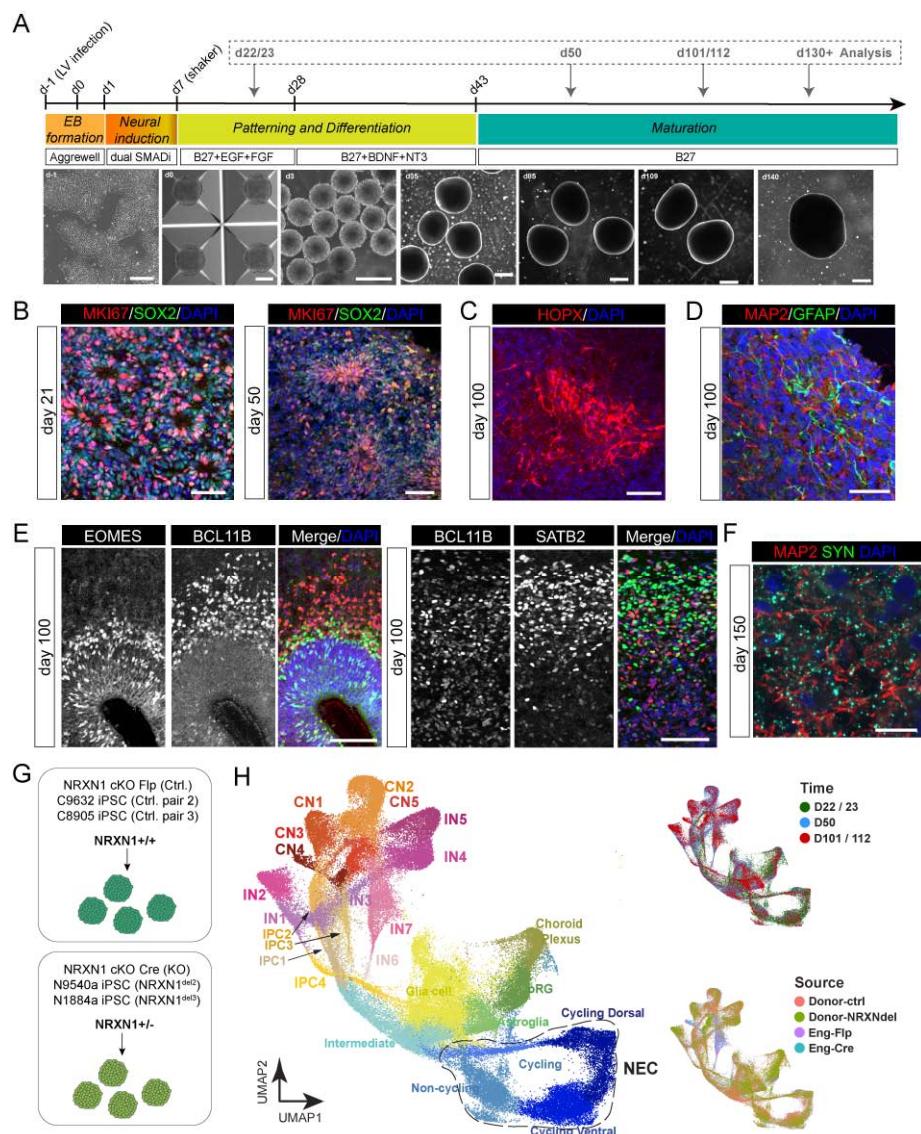
1040 92. Hao, Y. *et al.* Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573-3587.e29
1041 (2021).

1042 93. Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: Computational Identification of Cell Doublets
1043 in Single-Cell Transcriptomic Data. *Cell Syst* **8**, 281-291.e9 (2019).

1044 94. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data
1045 analysis. *Genome Biol* **19**, 15 (2018).

1046 95. Young, M. D. *et al.* Single-cell transcriptomes from human kidneys reveal the cellular identity
1047 of renal tumors. *Science* **361**, 594–599 (2018).

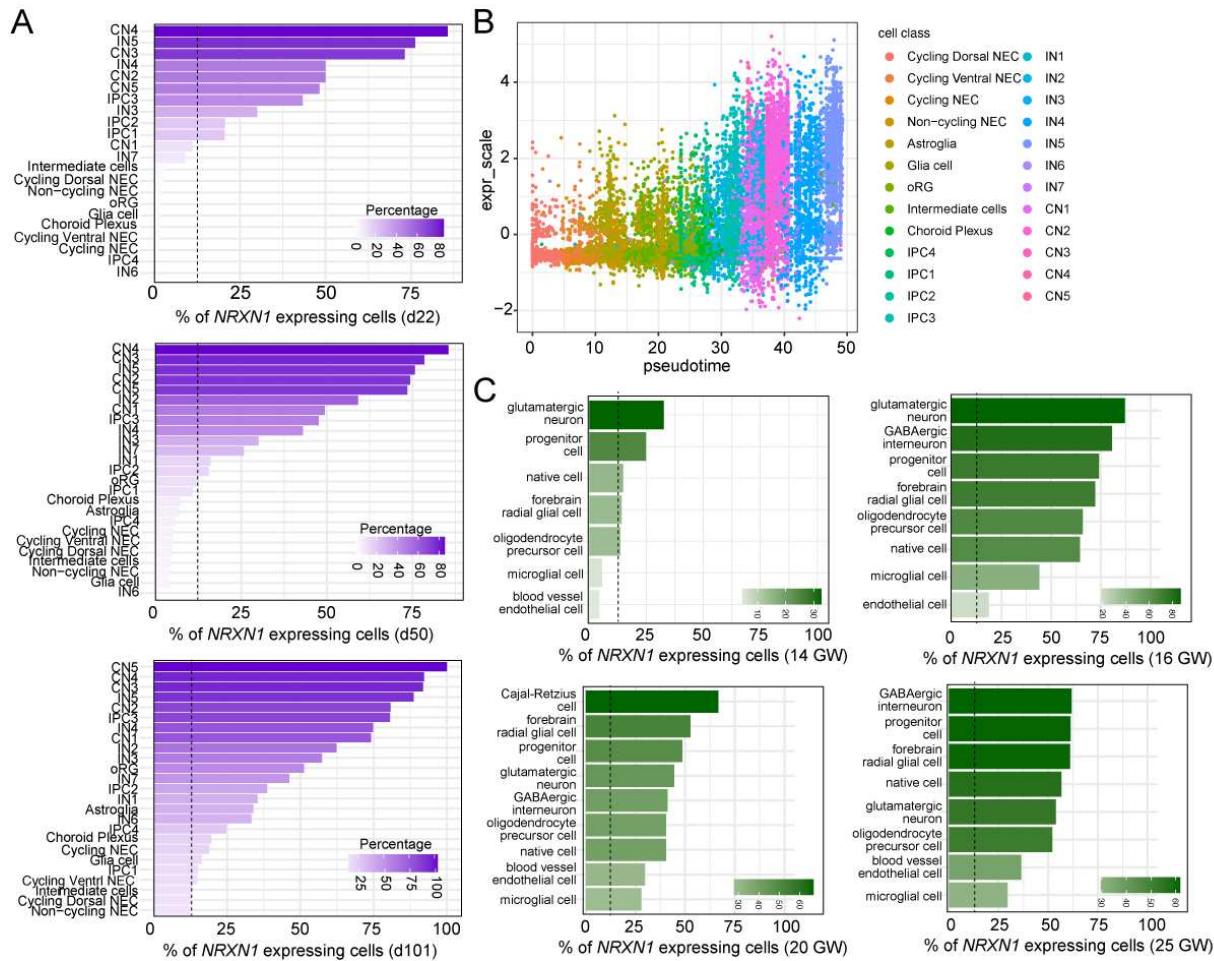
1048 96. Blighe, K., Rana, S. & Lewis, M. EnhancedVolcano: Publication-ready volcano plots with
1049 enhanced colouring and labeling. R package version 1.14.0.,


1050 97. Jin, K. *et al.* An interactive single cell web portal identifies gene and cell networks in COVID-
1051 19 host responses. *iScience* **24**, 103115 (2021).

1052 98. Kaimal, V., Bardes, E. E., Tabar, S. C., Jegga, A. G. & Aronow, B. J. ToppCluster: a multiple
1053 gene list feature analyzer for comparative enrichment clustering and network-based
1054 dissection of biological systems. *Nucleic Acids Res* **38**, W96-102 (2010).

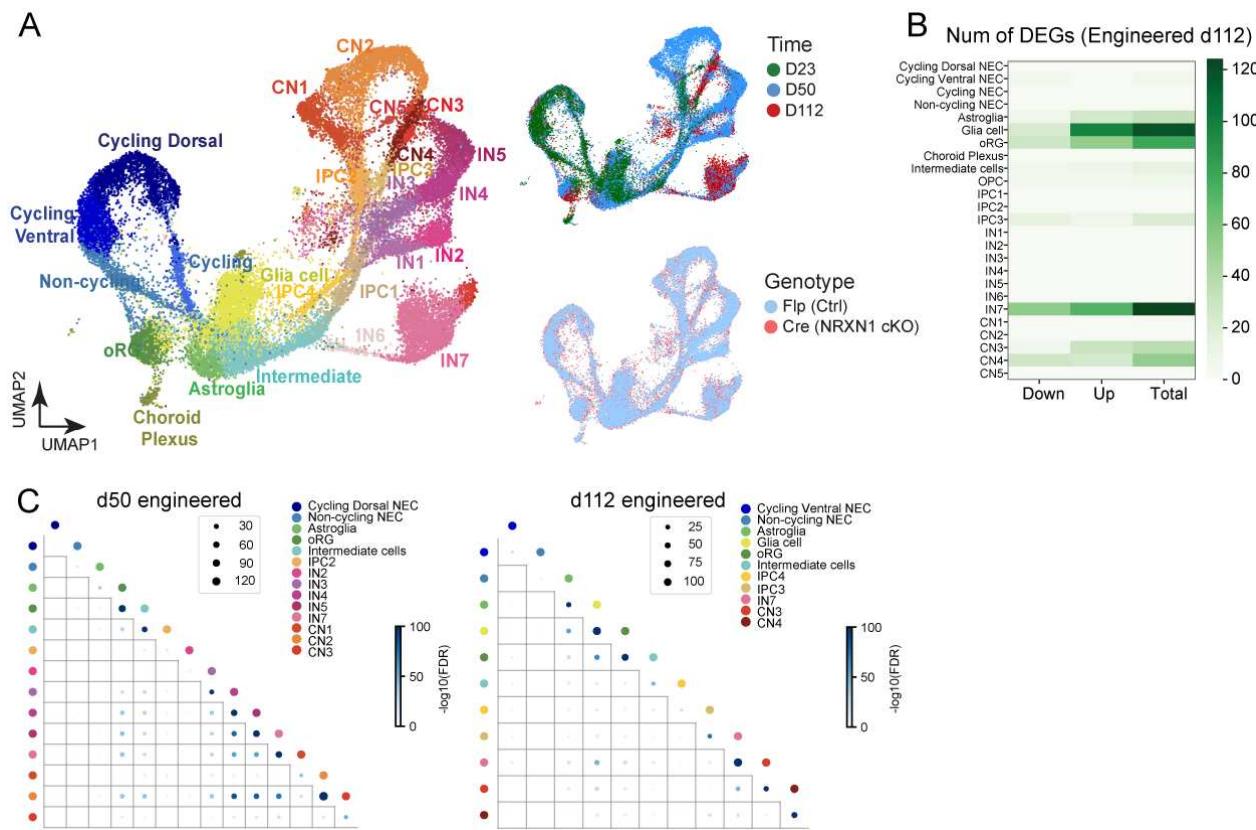
1055

1056 **Figures and figure legends**


1057

1058

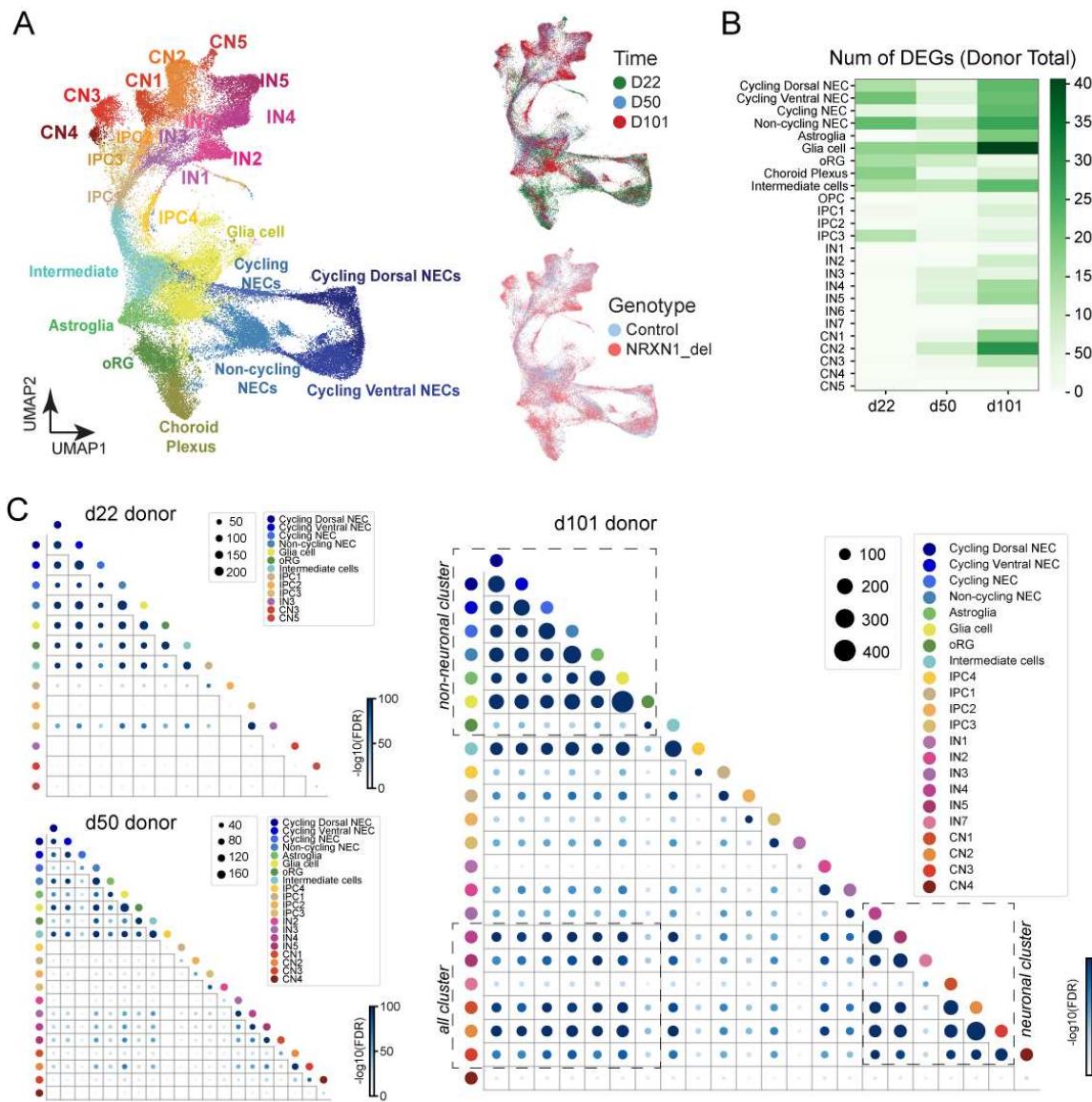
1059 **Figure 1. Generation of forebrain organoids from genetically engineered NRXN1 cKO**
 1060 **hESCs and donor derived iPSCs.**


1061 (A) Schematic of brain organoid generation protocol and the corresponding representative
 1062 brightfield images over development. Scale bars – 250 μ m for d-1, 0, 3; 100 μ m for d35+. (B-F)
 1063 Representative confocal images of brain organoid sections immunostained with antibodies
 1064 against key markers across time points. Scale bars – 50 μ m (B, D), 100 μ m (C, E) 50 μ m (F). (G)
 1065 Schematic showing genotypes used for scRNAseq. (H) Uniform Manifold Approximation and
 1066 Projection (UMAP) showing distributions of cell classes (left), time points (top right) and genotypes
 1067 (bottom right) of the integrated single-cell data. Abbreviations: neural precursor cells (NECs);
 1068 outer radial glial cells (oRG); intermediate precursor cells (IPC); cortical excitatory neurons (CN);
 1069 and cortical GABAergic inhibitory neurons (IN).

1070 **Figure 2. Single cell expression of NRXN1 transcripts in the developing human fetal cortex**
1071 **and forebrain organoids.**

1072 (A) Percentage of *NRXN1*-expressing cells in each cell class from D22, D50, and D101 control
1073 donor-derived brain organoids (combined data from 2 control iPSC lines). Quantification of
1074 *NRXN1* mRNA expression for each class is shown as a percentage of *NRXN1* expressing cells.
1075 The dotted line represents $\geq 12.5\%$ of cells out of the entire cell population. (B) *NRXN1* mRNA
1076 expression (Seurat scaled expression values) across pseudotime in control donor-derived brain
1077 organoids. A higher pseudotime value indicates greater maturity as indicated by the number of
1078 various neuronal cell classes (Methods). The legend for each class is shown to the right. (C) Bar
1079 graphs showing the percentage of *NRXN1* expressing cells in the human fetal tissue from 14,
1080 20, and 25 GWs. Data was mined from the human neocortex single-cell transcriptome study (14-
1081 25 GWs; Badhuri et al., 2021). The dotted line represents $\geq 12.5\%$ of cells out of the entire cell
1082 population.

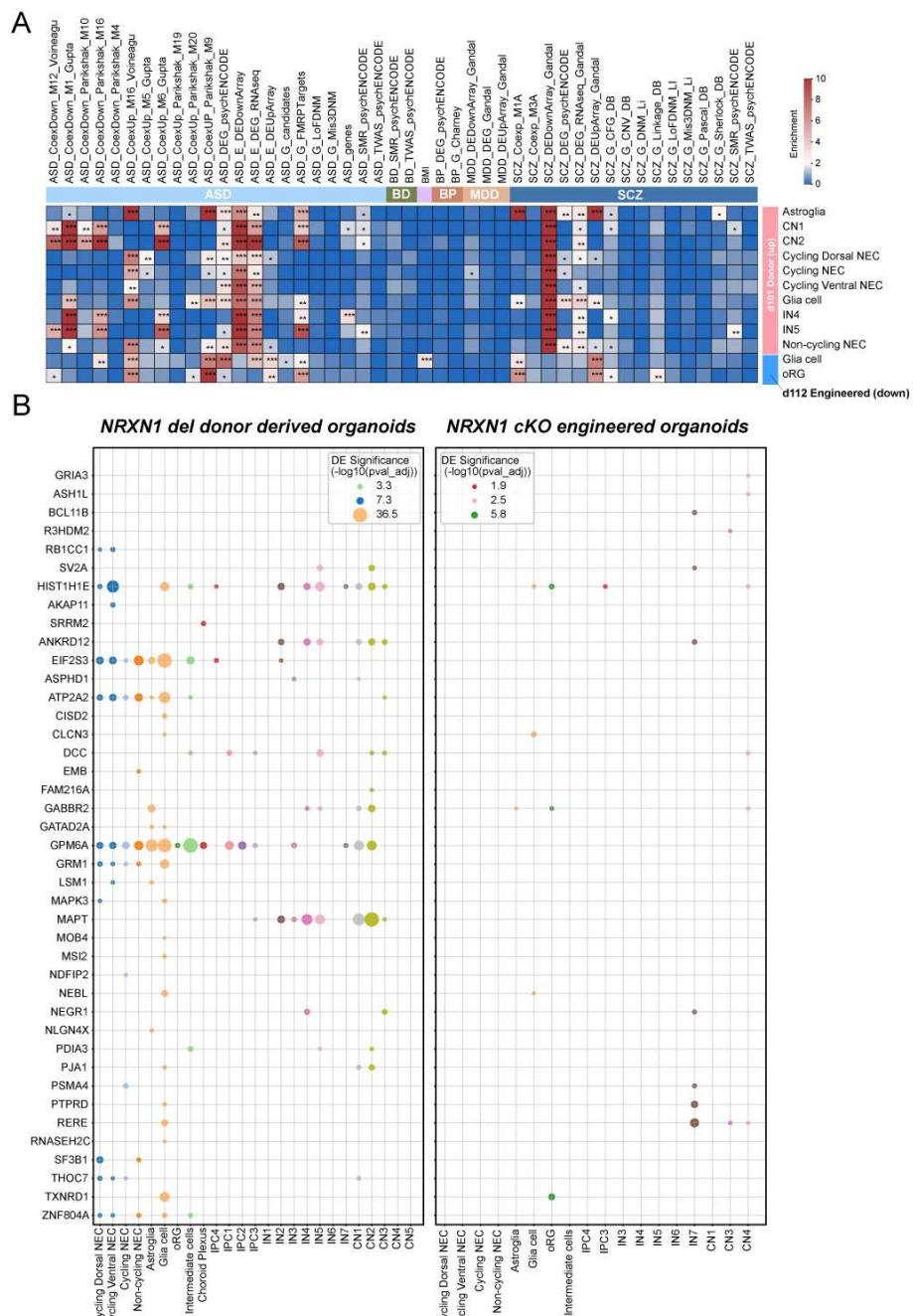
1083



1084

1085 **Figure 3. Perturbation effects of *NRXN1* isogenic CNVs.**

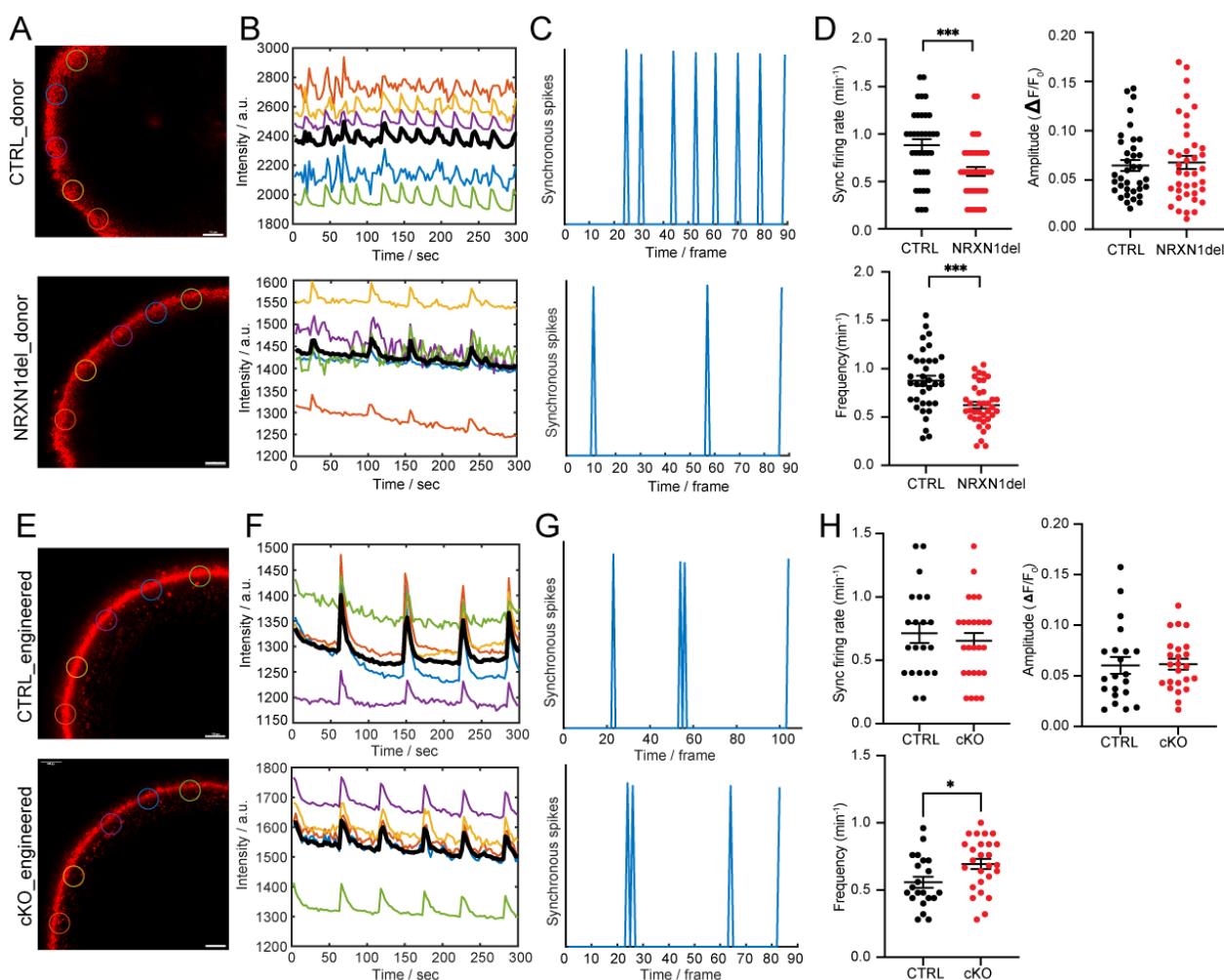
1086 (A) UMAPs showing distributions of cell classes (left), time points (top right), and genotypes
 1087 (bottom right) of *NRXN1* cKO engineered brain organoids. (B) Heatmap showing the number of
 1088 DEGs in each cell class of D112 engineered brain organoids. Down-regulated, up-regulated and
 1089 total DEGs are shown separately. (C) The size and color of each dot in the dot plots show the
 1090 number and significance of overlapping DEGs for each comparison of two cell classes in D50
 1091 (left) and D112 (right) engineered organoids. The significance was measured by
 1092 $-\log_{10}(FDR \text{ adjusted } p \text{ values})$ of hypergeometric tests (see Methods).


1093

1094

1095 **Figure 4. Perturbation effects of SCZ associated *NRXN1* CNVs.**

1096 (A) UMAPs showing distributions of cell classes (left), time points (top right), and genotypes
 1097 (bottom right) of SCZ-*NRXN1*^{del} donor derived brain organoids. (B) Heatmap showing the total
 1098 number of DEGs in each cell class and each time point of donor brain organoids. (C) The size
 1099 and color of each dot in the dot plots show the number and significance of overlapping DEGs for
 1100 each comparison of two cell classes in D22 (top left) and D50 (bottom left) and D101 (right) of
 1101 donor brain organoids. Three representative gene clusters were highlighted in dotted boxes.
 1102


1103

1104 **Figure 5. Differential effects of disease enrichment.**

(A) Heatmap showing gene enrichment analyses of DEGs from cells of both brain organoid types (engineered and donor derived brain organoids) (rows) using neurological disorder gene sets in several categories (autism spectrum disorders, ASD; bipolar disorder, BP and BD; mood disorder, MDD; schizophrenia, SCZ) (columns). Body Mass Index (BMI) was used as control. Significance scores were defined as $-\log_{10}(FDR \text{ adjusted } p \text{ values})$ to represent the associations between DEG sets and neurological disorders. Scores were trimmed to 0~10 (see Methods). Significance levels were represented by numbers of asterisks (*: adjusted p values < 0.05; **: adjusted p values

1112 < 0.01; ***: adjusted p values < 0.001). (B) Significance of differential expression of prioritized
1113 genes obtained from PGC wave 3 and SCHMEA consortium^{51,63}. The size of each dot represents
1114 the level of DE significance of each gene in each cell class of D101 donor brain organoids (left)
1115 and D112 engineered brain organoids (right).
1116

1117

1118

1119 **Figure 6. Impaired neuronal network activities in brain organoids carrying NRXN1 CNVs.**
1120 Intact isogenic *NRXN1* cKO and SCZ-*NRXN1*^{del} donor derived organoids (*NRXN1*^{del3} (N1884a
1121 iPSC), control pair 3 (C8905 iPSC)) at days 130-160 were used for Ca^{2+} imaging using X-Rhod-
1122 1 dye. Representative confocal images of brain organoids during live Ca^{2+} imaging (A, E). Colored
1123 circles represent regions of interest (ROI) selected for analysis. Corresponding colored raw
1124 intensity traces are shown in the boxed graphs with averaged intensities plotted in bolded black
1125 (B, F). Representative averaged synchronous spikes for each genotype are shown in C and G.
1126 Averaged data for synchronous firing rates (number of detected synchronous spikes/minute)
1127 representative of network activity, as well as amplitudes ($\Delta F/F_0$) and frequencies (total number of
1128 detected peaks/minute) of spontaneous spike activity, are shown in scatter plots (D, H). Each
1129 data point represents averaged data from a single field of view (FOV) consisting of 4-5 ROIs per
1130 FOV. At least 4-6 FOVs were taken from each organoid and 4-7 organoids per genotype were
1131 used for experiments. Error bars represent S.E.M. Statistical significance is represented by
1132 asterisks: *p < 0.05, ***p < 0.001.