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Abstract

Tetraploidy caused by whole-genome duplication is a halmark of cancer cells, and
tetraploidy-selective cell growth suppression is a potential strategy for targeted cancer therapy.
However, how tetraploid cells differ from normal diploids in their sensitivity to anti-proliferative
treatments remains largely unknown. In this study, we found that tetraploid cells are significantly
more susceptible to inhibitors of a mitotic kinesin CENP-E than diploids. CENP-E inhibitor
preferentially diminished the tetraploid cell population in diploid-tetraploid co-culture at optimum
conditions. Live imaging revealed that tetraploidy-linked increase in unsolvable polar chromosome
misalignment caused substantially longer mitotic delay in tetraploids than in diploids upon
moderate CENP-E inhibition. This time gap of mitotic arrest resulted in cohesion fatigue and
subsequent cell death, specifically in tetraploids, leading to tetraploidy-selective cell growth
suppression. In  contrast, the microtubule-stabilizing compound paclitaxel caused
tetraploidy-selective growth suppression through the aggravation of spindle multipolarization. We
aso found that CENP-E inhibitor had superior generality to paclitaxel in its tetraploidy selectivity
across a broader spectrum of cell lines. Our results highlight the unique properties of CENP-E
inhibitors in tetraploidy-selective suppression, giving us clues on the further development of

tetraploidy-targeting interventions in cancer.
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| ntroduction

Tetraploidy resulting from whole-genome duplication (WGD) of a normal diploid cell is a common
hallmark of cancer. Recent cancer genome analyses revealed that about 30% of solid tumors had
undergone at least one round of WGD * 2 The induction of tetraploidization facilitates
tumorigenesis and malignant transformation in mice models, suggesting that tetraploidy is a critical
intermediate state in these pathogenic processes * *. The principle of tetraploidy-driven cancer
formation is still largely unknown. However, recent studies have proposed that increased tolerance
to chromosome aterations and instability or enhanced invasiveness upon tetraploidization
contribute to the oncogenic quality of tetraploid cells > ® 7. Because of the commonality and
significant contributions of tetraploidy to the tumorigenic process, selective suppression of
tetraploid cell growth is a promising strategy for cancer chemotherapy ©. In this context, mitosisis a
good candidate for the tetraploidy-selective chemotherapeutic target. A previous study reported that
tetraploid hTERT-RPEL cells took longer to go through mitosis than diploid counterparts even when
they had the normal number (i.e., 2) of centrosomes °, suggesting that the doubled number of

chromosomes increases the burden on the mitotic mechanism upon tetrapl oidization.

Moreover, recent studies revealed that tetraploid cells are more susceptible to anti-mitotic
microtubule stabilizer paclitaxel or inhibitors of a mitotic kinase MPS1, Plk1, or a mitotic kinesin
motor protein Kif18A @ ™ 1213 These findings suggest that tetraploid cells have an increased
dependence on specific aspects of mitotic regulations, presumably as adaptive mechanisms to the
increased burden of doubled chromosomes. Elucidation of such tetraploidy-linked adaptive
mechanisms would provide more choices of tetraploidy-selective cell growth suppression,
potentially benefiting the development of tetraploidy-targeting chemotherapeutic strategy in broad

cancer types.

Centromere-associated protein E (CENP-E; kinesin-7) is a mitotic kinesin that plays an essential
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role in transporting mitotic chromosomes along spindle microtubules and aligning them on the
equatorial metaphase plate ***>°. Inhibition of CENP-E’s ATPase activity by an allosteric inhibitor
GSK-923295 causes tight binding of the protein to microtubules, resulting in frequent chromosome
misalignment at the spindle poles and mitotic arrest through the activation of the spindle assembly
checkpoint (SAC) ™ ™ '8 The specific requirement of CENP-E in mitosis makes it an ideal
candidate for an anti-mitotic cancer therapeutic target ** %. In mitosis, not all chromosomes require
CENP-E activity for their alignment. While the large population of mitotic chromosomes can align
at the equatorial plate, those initially located in the nuclear peripheral region upon mitotic entry tend

to be trapped at the spindle pole in the absence of CENP-E activity .

Moreover, while
smaller-sized chromosomes tend to re-align to the equatorial plate even when initially trapped at the
spindle poles, larger-sized chromosomes have less chance of re-alignment . Therefore, the location
and size of the mitotic chromosomes affect their susceptibility to CENP-E inhibition. On the other

hand, it remains unclear whether and how drastic differences in chromosome number affect cellular

susceptibility to CENP-E inhibition.

In this study, we compared the effect of anti-mitotic compounds on the proliferation of cells at
different ploidy states. Among these compounds, CENP-E inhibitors significantly suppressed the
proliferation of tetraploid cells compared to diploids in different culture conditions or cellular
backgrounds. We found that the tetraploidy-selective suppression was based on the aggravation of
chromosome misalignment, mitotic arrest, and consequent cell death upon CENP-E inhibition. On
the other hand, paclitaxel caused tetraploidy-selective cell death via the aggravation of mitotic
spindle multipolarization, highlighting the difference in the principle of tetraploidy-selective cell
growth suppression by paclitaxel and CENP-E inhibitors. We also found that a CENP-E inhibitor
showed selectivity toward a broader spectrum of tetraploid cell lines compared to paclitaxel,
demonstrating superior generality of CENP-E-targeted tetraploidy suppression. Based on our results,
we discuss the potential values of various tetraploidy-targeting mechanisms of different anti-mitotic

compounds.
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Results

Selective suppression of tetraploid cell growth by CENP-E inhibitors

To understand the influence of ploidy difference on cellular sensitivity to mitotic perturbations, we
compared the effect of various anti-mitotic compounds on isogenic haploid, diploid, and tetraploid
HAPZL cells 2 (Fig. S1A) using a colorimetric cell proliferation assay. Different compounds showed
diverse trends and varying degrees of ploidy dependency in efficacy (Fig. 1A, S2, and S3).
Therefore, we categorized these compounds based on statistical significance and type of
ploidy-linked differences in their 1Cso values (Fig. 1A, B, and S3; see also Materials and methods).
Among the compounds that showed significant ploidy-linked changes in efficacy, a
microtubule-stabilizing compound, paclitaxel, had higher efficacy against cells with higher ploidy
(hyperploidy-selective; Fig. 1A and S3), consistent with the previous study . CENP-E inhibitors
GSK-923295 and PF-2771 were also remarkably hyperploidy-selective (Fig. 1A and S3).
Hyperploidy-selective suppression by CENP-E inhibitors was also observed in another tetraploid
HAP1 cell line (Fig. S4A and B). As previously reported 3, a Plk1 inhibitor, BI-2536, suppressed
tetraploid cells more efficiently than diploids, while its efficacy was equivalent between haploids
and diploids. In contrast, an importin- § inhibitor importazole and an Eg5 inhibitor
Strityl-L-cysteine  (STLC) had higher efficacy against cells with lower ploidy
(hypoploidy-selective; Fig. 1A and S3). Consistent with STLC, another Eg5 inhibitor, monastrol
suppressed haploid cells more efficiently than diploids, while its efficacy was equivalent between
diploids and tetraploids (Fig. S3). Topoisomerase Il inhibitors, daunorubicin, doxorubicin, and
etoposide tended to suppress the proliferation of cells with different ploidies with equivalent
efficacy. Diverse profiles of ploidy-linked changes in the efficacy of different anti-mitotic
compounds indicate that ploidy difference has complex and non-uniform effects on different aspects
of molecular regulations of cell division. The ploidy-linked change in the efficacy of CENP-E

inhibitors was particularly notable and previously unreported. Therefore, we decided to address
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further the significance and mechanism of tetraploidy selectivity of CENP-E inhibitors in

comparison with paclitaxel, a previously reported tetraploidy-selective compound ™.

We next investigated the effect of paclitaxel and GSK-923295 on cell proliferation in 1:1 co-culture
of EGFP-labeled diploid and unlabeled tetraploid HAPL cells (Fig. 2A and S1A). Flow cytometric
analysis revealed that DM SO-treated co-culture roughly kept the original diploid-tetraploid ratio
after 48-h treatment (Fig. 2B-E), demonstrating that diploid and tetraploid cells proliferated at a
similar rate in this condition. On the other hand, 10 nM paclitaxel or 50 nM GSK-923295
significantly reduced tetraploid proportion in the co-culture (tetraploid cells reduced to 19% or
6.2%, respectively; Fig. 2B-E), illustrating the high potential of CENP-E as a target for

tetrapl oi dy-sel ective suppression within heterogeneous cell populations.

Tetraploidy-linked aggravation of chromosome misalignment, mitotic arrest, and subsequent

cohesion fatigue upon CENP-E inhibition

To understand the cause of the tetraploidy-selective growth suppression by CENP-E inhibition, we
conducted live imaging of the mitotic progression in co-cultured diploid and tetraploid HAPL cells.
Diploid and tetraploid cells were differentially labeled by stably expressing histone H2B transgene
tagged with EGFP and mCherry, respectively (Fig. 3A, B, and S1A). In DM SO-treated co-culture,
diploid and tetraploid cells underwent normal cell division with an average mitotic duration of 34
and 30 min (from NEBD to anaphase onset), respectively (Fig. 3C and D). When treated with 50
nM GSK-923295, which caused sharp tetraploidy-selective suppression (Fig. 2E), diploid and
tetraploid cells manifested misaligned polar chromosomes at a high frequency in the early mitotic
stage (85% and 100% of diploid and tetraploid cells, respectively; Fig. 3B, E, and F). In most
GSK-923295-treated diploid cells, these polar chromosomes gradually moved into the metaphase
plate, and all chromosomes eventually aligned (Fig. 3B and C). As a result, the mgjority of diploid

cells (87%) entered anaphase and completed cell division despite considerable mitotic delay (with
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an average mitotic duration of 197 min; Fg. 3D, and G). Compared to diploids,
GSK-923295-treated tetraploid cells manifested severer polar chromosome misalignment (Fig. 3E
and F). In most cases, these polar chromosomes also gradually moved into the metaphase plate but
never completed the alignment (Fig. 3B, S5A, and B). As a result, GSK-923295-treated tetraploid
cells spent an extremely long time in mitosis (with an average mitotic duration of 713 min), and
87% of them eventually underwent cohesion fatigue (the catastrophic chromosome scattering) *
(Fig. 3B, C, and H). Cohesion fatigue took place 347 + 15 min after NEBD (mean + standard error,
n=53 from 2 independent experiments) in GSK-923295-treated tetraploid cells when most
GSK-923295-treated diploids had completed congression of initially misaligned chromosomes and
entered anaphase (Fig. 3C). Subsequently to cohesion fatigue, GSK-923295-treated tetraploid cells
either died during mitosis or exit mitosis without chromosome segregation (mitotic slippage; Fig.
3B and G). A substantial proportion of GSK-923295-treated tetraploid cells (63%) that exit mitosis
died during the next cell cycle (Fig. 3I). In contrast, most GSK-923295-treated diploids survived
through the next cell cycle despite the delay in the previous mitosis. These results suggest that the
ploidy-dependent difference in time duration of mitotic arrest criticaly affects the fate of
CENP-E-inhibited cells: While diploid cells resolve mitotic arrest within the critical time window
for chromatid cohesion maintenance in the above CENP-E inhibitory condition, tetraploids go

beyond that time window and suffer catastrophic mitotic damages.

A recent study revealed that tetraploid cells were particularly defective in retention of pre-aligned
metaphase chromosomes upon inhibition of a mitotic kinesin Kif18A, highlighting the unstable
nature of metaphase plate in tetraploid cells '°. This prompted us to test the effect of CENP-E
inhibition on the retention of pre-aligned chromosomes in diploid and tetraploid cells. For this, we
used a previously developed photo-switchable CENP-E inhibitor (PCEI-HU), which reversibly
converts to non-inhibitory cis or inhibitory trans isomer by irradiating UV or visible light,
respectively % (Fig. SBA). Diploid and tetraploid cells were treated with the inhibitor at the

photo-stationary state (PSS) enriched in the non-inhibitory cis isomer along with MG132 and
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SiR-DNA (for blocking anaphase onset and staining mitotic chromosomes, respectively) for 2 h.
Then mitotic chromosomes were live imaged (see Materials and methods). During the live imaging,
the inhibitor was switched to the PSS enriched in the inhibitory trans isomer by irradiating 505 nm
light. The photo-switching of the inhibitor in prometaphase cells that still possessed unaligned
chromosomes resulted in misaligned polar chromosomes, demonstrating that the inhibitor was
indeed switched to the inhibitory state after the photo-irradiation (Fig. S6B). In contrast,
photo-switching of the inhibitor in metaphase cells in which all chromosomes aligned at the
equatorial plate, de novo misalignment of the pre-aligned chromosomes was seldom observed either
in diploids or tetraploids (Fig. S6C-F). This result indicates that aggravation of initially formed
misaligned chromosomes rather than failure to maintain pre-aligned chromosomes is likely to cause

extremely prolonged mitosis in CENP-E-inhibited tetraploid cells.

Tetraploidy-linked aggravation of spindle multipolarization and subsequent cell death by

paclitaxel treatment

Previous studies revedled that paclitaxel's effects on mitotic control are pleiotropic and

concentration-dependent 2 2" % 2

, and cellular processes of the tetraploidy-selective suppression
by paclitaxel remained unclear. To specify the paclitaxel-induced mitotic defects aggravated by
tetraploidy and gain insight into the cellular basis of tetraploidy-selective growth suppression, we
compared the effect of paclitaxel on the mitotic progression of co-cultured diploid and tetraploid
cells (Fig. 4A). In the presence of 10 nM paclitaxel, which caused tetraploidy-selective suppression
in co-culture (Fig. 2C), mitotic progression was significantly delayed in tetraploid cells (with an
average mitotic duration of 490 min or 32 min in paclitaxel- or DM SO-treated tetraploid cells,
respectively; Fig. 4B and C). The paclitaxel-induced mitotic delay was milder in diploid cells (with
an average mitotic duration of 91 min or 37 min in paclitaxel- or DM SO-treated diploid cells,

respectively; Fig. 4C). Importantly, most paclitaxel-treated tetraploid cells (97%) manifested

Y-shaped abnormal metaphase plates, frequently followed by multipolar chromosome segregation,
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mitotic death or mitotic slippage (Fig. 4A, B, and D). The majority of paclitaxel-treated tetraploid
cells that exited mitosis died during the next cell cycle (Fig. 4E). These mitotic defects were much
less frequent in paclitaxel-treated diploids, and most of them underwent normal bipolar
chromosome segregation and survived through the next cell cycle (Fig. 4D and E). These results

suggest that the tetraploidy-linked aggravation of multipolar division is a primary cause of

tetraploidy-selective growth suppression by paclitaxel.

Multipolar chromosome segregation accompanying the formation of a “Y-shaped” metaphase plate
suggests spindle multipolarization during pre-anaphase in the paclitaxel-treated tetraploid cells. To
test this possibility, we conducted immunostaining against a-tubulin, pericentrin, and CP110
(makers of microtubules, pericentriolar material, and the centrioles, respectively) in DMSO- or 3
nM paclitaxel-treated diploid or tetraploid cells (Fig. 4F-H). Previously, we found that tetraploid
cells suffered chronic centriole overduplication 2. Therefore, to distinguish the direct influence of
tetraploidy on spindle polarity upon paclitaxel treatment from indirect one through the formation of
extra centrosomes, we sorted cells based on the centriole number per cell in the spindle polarity
analysis (Fig. 4H). Paclitaxel-treated tetraploid cells possessed multipolar spindle at a significantly
higher frequency than DM SO-treated control or paclitaxel-treated diploid cells, either when all cells
or only the cells possessing 4 centrioles were counted in the quantification (Fig. 4G and H). This
result suggests that tetraploidy per se, rather than the presence of extra centrosomes, promotes the
spindle multipolarization upon low concentration paclitaxel treatment, making tetraploid cells more

proneto letha chromosome loss.

CENP-E inhibitor shows selectivity toward a broader spectrum of tetraploid cell lines than

paclitaxel

The above results indicate that CENP-E inhibitor and paclitaxel selectively suppress tetraploid cell

proliferation through different mechanisms, prompting us to compare their effects on tetraploid cells


https://doi.org/10.1101/2022.08.21.504625
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.21.504625; this version posted August 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

with different cellular backgrounds. For this, we investigated the effect of paclitaxel and CENP-E
inhibitors on the viability of another near-diploid human cell line, HCT116, and 16 isogenic
tetraploid lines (Fig. 5A and B, S1B and S7). We found variation in the efficacy of paclitaxel among
different tetraploid HCT116 cell lines: While paclitaxel suppressed 12 tetraploid cell lines
significantly more efficiently than diploid, its ICsy values dispersed among these lines (Fig. 5A). In
the remaining 4 tetraploid cell lines, the efficacy of paclitaxel did not significantly differ from that
in diploids. This result indicates the limited generality of the tetraploidy selectivity of paclitaxel. On
the other hand, GSK-923295 had significantly higher efficacy against al 16 tetraploid HCT116
lines than diploids with ICs, values comparable among these tetraploid lines (Fig. 5B), highlighting

consistent selectivity of CENP-E inhibition towards tetraploid cells in different backgrounds.
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Discussion

Ploidy alteration causes pleiotropic changesin cell structures and contents, including chromosome
number, cell volume, or whole-protein amount, having a profound quantitative effect on mitotic
machinery ** %% However, the effects of ploidy alteration on the molecular function of mitotic
regulators remain largely unknown. This study revealed that ploidy alteration changes cellular
sengitivity to different anti-mitotic compounds in acomplex and non-uniform manner. Among these
compounds, CENP-E inhibitors showed remarkable and consistent hyperploidy selectivity in
mitotic perturbation and cell proliferation suppression through a different mechanism than a
previously reported hyperploidy-sel ective compound, paclitaxel. CENP-E inhibition manifested
superior consistency to paclitaxel in the tetraploidy selectivity across cell lines, suggesting its

potential utility in tetraploidy-specific suppression in a broad spectrum of cellular backgrounds.

Our results indicate that the tetraploidy-linked aggravation of mitotic failure is the leading cause of
the sharp tetraploidy selectivity of low-dose CENP-E inhibition (Fig. 3). Based on our live imaging,
we propose that the tetraploidy-linked aggravation of mitotic failure upon CENP-E inhibition stems
from the combination of i) the tetraploidy-linked increase in chromosome misalignment and ii)
cohesion fatigue frequently occurring in the time gap between mitotic exit in diploids and
tetraploids. To explain point i) above, we speculate that the doubled chromosome number is the
direct cause of the aggravation of chromosome misalignment in CENP-E-inhibited tetraploid cells.
A previous study reported that CENP-E mediates the congression of only a subset of chromosomes
located in peripheral areas within the nucleus upon the mitotic entry 2. The doubled chromosome
number with the enlarged nucleus in tetraploid cells would increase such peripheral chromosomes
vulnerable to CENP-E inhibition. Because of the increased polar chromosomes upon CENP-E
inhibition, tetraploid cells spent significantly longer time than diploids to solve chromosome
misalignment. This differential effect of CENP-E inhibition results in a notable time gap between

mitotic exit in diploid and tetraploid cells. To explain point ii) above, cohesion fatigue (premature
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breakage of sister chromatid cohesion) occurs when mitotic progression is blocked with continuous
tension applied at kinetochores of sister chromatids *" *. Inhibition of CENP-E motor activity

satisfies the criteria for inducing cohesion fatigue with its characteristic effects on mitotic

regulations: It blocks the congression of asmall proportion of chromatids to block mitotic

progression by activating SAC (note that upon inhibition of CENP-E activity, CENP-E protein

remains at the kinetochores, supporting the recruitment of SAC activation factors) & %

, While
leaving the majority of chromatids aligned at metaphase plate under the tension force exerted by an
intact bipolar spindle > 3%, CENP-E-inhibited cells typically undergo cohesion fatigue after
>200-min mitotic arrest (Fig. 3C). By that time, most diploid cells resolve chromosome
misalignment and exit mitosis. In contrast, most tetraploid cells remain at mitosis with unsolved
chromosome misalignment and undergo irreversible mitotic catastrophe at optimum inhibitor
concentration. Based on this model of tetraploidy-selective suppression, it would beintriguing to
address potential ploidy selectivity of different interventions that satisfy the criteria described

above: The interventions that differentially modulate mitotic progression among different ploidies

while facilitating the occurrence of cohesion fatigue.

We also found that tetraploid cells are more prone to spindle multipolarization than diploid cells
upon paclitaxel treatment. Notably, the paclitaxel concentration most effective for

tetrapl oid-sel ective suppression was within the clinically relevant range of the drug concentration %.
The cause of the tetraploidy-linked increase in spindle multipolarization remains unknown.
Interestingly, a recent study reported that polyploid drosophila embryonic cells were more prone to
spindle multipolarization because of the increased steric hindrance of the polyploid amount of
chromosomes that precludes the supernumerary centrosomes from clustering into bipolar spindle
poles *. Spindle multipolarization frequently took place even in the tetraploid cells with the normal
centrosome number (Fig. 4H), indicating that the tetraploidy-linked aggravation of spindle
multipolarity upon paclitaxel treatment occurs by a different mechanism than the one depending on

supernumerary centrosomes. \We speculate that drastic changes in quantitative features of the
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mitotic spindle may make tetraploid cells more prone to multipolarize upon paclitaxel treatment.
Future studies would provide further insight into the molecular basis of the tetraploidy selectivity of

paclitaxel and the factors that limit the generality of tetraploidy selectivity among different cellular

backgrounds.

A recent study revealed the possibility of selective tetraploid cell suppression by inhibiting Kif18A,
whose requirement for maintaining proper alignment of metaphase chromosomes increasesin
tetraploid cells *°. Our study revealed that CENP-E inhibition and paclitaxel selectively suppressed
tetraploid cell proliferation through different principles from one another and the previous study.
These findings imply that quantitative changes in multifaceted aspects of the mitotic regulatory
mechanism upon the whole-genome duplication make tetraploid cells more susceptible to various
mitotic perturbations. Moreover, our results demonstrate that different tetraploidy-selective
interventions cover a different spectrum of tetraploid cellular backgrounds. Taking the high
heterogeneity of tetraploid cellsinto account °, increasing the choice of drug targets and
establishing effective combinations for tetrapl oid-sel ective suppression would benefit cancer

therapeutics.


https://doi.org/10.1101/2022.08.21.504625
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.21.504625; this version posted August 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Materials and methods

Cell culture and flow cytometry

Haploid HAPL cells * and their isogenic diploid and tetraploid lines * were cultured in Iscove's
Modified Dulbecco's Medium (IMDM; Wako Pure Chemica Industries, Osaka, Japan)
supplemented with 10% fetal bovine serum (FBS) and 1x antibiotic-antimycotic solution (AA;
Sigma-Aldrich). Haploid cells were maintained by size-based cell sorting as previously described Z.
HCT116 cells were provided by Riken Cell Bank (RCB2979) and cultured in McCoy's 5A or
Dulbecco's Modified Eagle Medium (Wako) supplemented with 10% FBS and 1x AA. For
establishing tetraploid HCT116 cell lines, diploid cells were treated with 40 ng/mL nocodazole for 4
h, washed 3 times with cell culture medium, shaken off, and treated with 5 ug/mL cytochalasin B
for 4 h. Then, cells were washed 3 times with cell culture medium and diluted in 10-cm dishes.
After 8-10 d, colonies containing cells that were uniform in size and larger than diploids were
clonally expanded and checked for DNA content to select near-tetraploid clones. For DNA content
analyses, 2 x 10° cells were stained with 10 ug/ml Hoechst 33342 (Dojindo) for 15 min at 37°C,

and DNA content was analyzed using a JSAN desktop cell sorter (Bay bioscience).

Inhibitors

Inhibitors were purchased from the distributors as follows. Aurora A inhibitor |, BI-2536,
epothilone A, and MK-1775: AdooQ BioScience. SPL-B: Axon Medchem. Latrunculin A: Focus
Biomolecules. PF-2771: MedChemExpress. GSK-923295: Selleck Chemicals. Importazole,
RO-3306, and Strityl-L-cysteine (STLC): Sigma-Aldrich. Colcemid (KaryoMAX Colcemid):
Thermo Fisher Scientific. Etoposide: Calbiochem. Vinblastine: LKT Laboratories. Monastrol:

Tocris Bioscience. Cytochalasin B, daunorubicin, doxorubicin, nocodazole, and paclitaxel: Wako.

Colorimetric cell proliferation assay

For cell viability assay, haploid, diploid, or tetraploid HAPL cells were seeded on 96-well plates at
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2250, 1125, or 562.5 cells/well, respectively. Diploid or tetraploid HCT116 cells were seeded at
1350 or 675 cells/well, respectively. After 24 h, cells were treated with different concentrations of
anti-mitotic compounds. Forty-four (HAPL cells) or 68 h (HCT116 cells) after the addition of the
compounds, 5% Cell Counting Kit-8 (Dojindo) was added to the culture, incubated for 4 h, and
absorbance at 450 nm was measured using the Sunrise plate reader (Tecan). IC50 was calculated by
curve fitting of normalized dose-response data using nonlinear regression:

a—d

b

1+()

, Where y is the normalized absorbance, x is drug concentration, a or d is the absorbance at zero or

y=d+

infinite drug concentration, respectively, and b or ¢ is the slope factor or the inflection point,

respectively.

Mixed culture experiment

For flow cytometry analysis, EGFP-labeled diploid and non-labeled tetraploid HAPL cell
suspension (1.5 x 10* cells/ml each) were mixed in a 1:1 ratio, 1.8 ml seeded on 6-well plates
coated with collagen type | (Corning). After 24 h, paclitaxel or GSK-923295 was treated in the
co-culture. Forty-eight h after the addition of the compounds, cells were trypsinized, suspended in
DPBS, stained with 10 ug/ml Hoechst 33342, and analyzed by flow cytometry. The two mixed cell
populations were separately counted based on the EGFP fluorescence signal.

For live imaging, diploid and tetraploid cells stably expressing histone H2B transgene tagged with
EGFP and mCherry, respectively, were mixed in a 1:1 ratio (1.35 x 10* cells/ml each), 0.2 ml
seeded on collagen-coated 8-well imaging chamber. After 24 h, paclitaxel or GSK-923295 was
treated in the co-culture, and live imaging was subsequently conducted for 48 h. The first mitotic

events after the drug treatment were analyzed.

I mmunofluorescence staining

Cells were fixed with 100% methanol at -20°C for 10 min, treated with BSA blocking buffer (150
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mM NaCl, 10 mM Tris-HCI pH 7.5, 5% BSA, and 0.1% Tween 20) for 30 min at 25°C, incubated
with rat monoclona anti-o-tubulin (YOL1/34, EMD Millipore; 1:1000), mouse monoclonal
anti-PCNT (ab28144, Abcam; 1:1000), rabbit polyclona anti-CP110 (A301-343A, Bethyl
Laboratories; 1:1000) overnight at 4°C, and with fluorescence (Alexa Fuor 488, 568,
647)-conjugated secondaries (Jackson ImmunoResearch Laboratories or Abcam; 1:1000) overnight
a 4°C a indicated dilutions. Following each treatment, cells were washed 3 times with

phosphate-buffered saline.

Microscopy

For fixed cell imaging, cells were observed under a TE2000 microscope (Nikon) equipped with a
x100 1.4 NA Plan-Apochromatic, a CSU-X1 confocal unit (Yokogawa), and an iXon3 electron
multiplier-charge coupled device (EMCCD) camera (Andor) or ORCA-ER CCD camera
(Hamamatsu Photonics). Live cell imaging was conducted at 37°C with 5% CO, using a Ti-2
microscope (Nikon) equipped with x20 0.75 NA Plan-Apochromatic, and Zyla4.2 sSCMOS camera
(Andor). For live imaging, cells were cultured in phenol red-free IMDM (Thermo Fisher Scientific)

supplemented with 10% FBS and 1x AA. Image acquisition was controlled by pManager (Open

Imaging).

Photo-switching CENP-E inhibition experiment

One mM stock solution of PCEI-HU, a photo-switchable CENP-E inhibitor, in dimethyl sulfoxide
was diluted at 1:2000 in IMDM in a microtube, then irradiated with 365 nm LED light (Asahi
Spectra, 416 mW/cm? at 100%, irradiated from 5 cm above the sample for 60 s) to reach a
photostationary state (PSS) enriched in non-inhibitory cis isomer, and immediately treated in
diploid or tetraploid HAPL cells at the final concentration of 0.5 puM. At the same time, cells were
co-treated with 10 uM MG132 (Peptide Institute; for blocking anaphase onset) and 100 nM
SiR-DNA (Cytoskeleton inc.; for visualizing mitotic chromosomes). After 2-h incubation in the

dark, we started far-red fluorescence live imaging of SiR-DNA-stained mitotic chromosomes. Note
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that observing light for live imaging does not affect the photoisomerization of PCEI-HU %, At 15
min after the initiation of live imaging, PCEI-HU-treated cells were irradiated with 505 nm LED
light (Asahi Spectra, 141 mW/cm? at 100%, irradiated from 3.2 cm above the sample for 35 ) to
make the compound reach a PSS enriched in inhibitory trans isomer of PCEI-HU. We then traced

the motion of mitotic chromosomes pre-aligned at the metaphase plate at the time of 505-nm light

irradiation.

Satistical analysis

All data subjected to dsatistical analyses in this study were abnormally distributed in the
Shapiro-Wilk test. For comparing two data groups not assumed to have equal variances, we used the
Brunner-Munzel test. For comparing more than two groups of data with equal or unequal sample
sizes, we used the Steel-Dwass test or the Dwass-Steel-Critchlow-Fligner (DSCF) test, respectively.
In the case of comparing a common diploid control with each of multiple tetraploid samples (Fig. 5),
we used the Steel test. Multiple group analyses of drug |Cs, differences among haploid, diploid, and
tetraploid cells (Fig. 1B) were conducted using the Kruskal-Wallis test with post-hoc Steel-Dwass
test. Statistical significance was set at p < 0.05 for all analyses. The compounds with the effect size
of Kruska-Wallis test €2 > 0.655 were defined as “significantly ploidy-selective” in Fig. 1B
(Albers and Lakens, 2018). All statistical analyses were conducted with R software (4.2.1) using
brunnermunzel, minpack.Im, PMCMRplus, rcompanion, Rmisc, nparcomp, rstatix, and stats

packages.
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Figurelegends

Fig. 1: Identification of ploidy-selective anti-mitotic compounds

(A) Dose-response curve of normalized absorbance (left) and calculated |Csq values (right) in a
comparative colorimetric cell proliferation assay using anti-mitotic compounds in haploid, diploid,
and tetraploid HAPL cells. Mean + standard error (SE) of 4 samples from 2 independent
experiments for each condition. Asterisks indicate statistically significant differencesin 1Cs
between cells with different ploidies (***p < 0.001, n.s.: not significant, the Steel-Dwass test). See
also Fig. S2 and 3 for data of all compounds tested. (B) Evaluation of ploidy selectivity of different
anti-mitotic compounds based on effect size & of ploidy-linked ICs, differences calculated by the

Kruskal-Wallis test. The filled circles indicate CENP-E inhibitors.

Fig. 2: Selective suppression of tetraploid HAPL cellsin diploid-tetraploid co-culture by
paclitaxel or GSK-923295

(A) Scheme of diploid-tetraploid co-culture experiment. (B, D) Flow cytometric analyses of diploid
and tetraploid cell numbersin their co-culture treated with paclitaxel (B) or GSK-923295 (D) for 48
h. Dot plots of EGFP intensity against the Hoechst signal (corresponding to DNA content) or
histograms of the Hoechst signal are shown on top or bottom, respectively. Cell populations
originating from diploid or tetraploid cells were distinguished based on EGFP signal intensity and
separately displayed in the histograms. (C, E) The proportion of tetraploid cells in the
diploid-tetraploid co-culture. Mean + SE of 3 independent experiments for each condition. Asterisks

indicate statistically significant differences between conditions (***p < 0.001, the Steel-Dwass test).

Fig. 3: Tetraploidy-linked aggravation of chromosome misalignment and mitotic failure upon
GSK-923295 treatment
(A) Fluorescence microscopy of co-cultured diploid and tetraploid HAPL cells expressing histone

H2B-EGFP and histone H2B-mCherry, respectively. (B) Time-lapse images of the mitotic


https://doi.org/10.1101/2022.08.21.504625
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.21.504625; this version posted August 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

progression of GSK-923295-treated diploid or tetraploid cellsin the co-culture. Arrowheads:
misaligned polar chromosomes. Arrows. Gross chromosome scattering caused through cohesion
fatigue. (C) Analysis of mitotic progression of control and GSK-923295-treated diploid or
tetraploid cellsin B. Each bar represents a single mitotic event (from NEBD to anaphase onset or
mitotic exit) in adividing cell. At least 60 cells from 2 independent experiments were analyzed for
each condition. (D) Mitotic duration (from NEBD to anaphase onset or mitotic exit) in control and
GSK-923295-treated diploid or tetraploid cellsin B. Mean + SE of at least 60 cells from 2
independent experiments for each condition. Asterisks indicate statistically significant differences
between conditions (***p < 0.001, the DSCF test). (E) Different degrees of polar chromosome
misalignment appeared upon the formation of the metaphase plates (initial polar chromosomes;
arrowheads) in GSK-923295-treated diploid or tetraploid cells. (F-1) Frequency of different degrees
of initial polar chromosome misalignment (F), mitotic fates (G), cohesion fatigue event (H), or cell
death in the subsequent cell cycle (1) in control and GSK-923295-treated diploid or tetraploid cells
in B. At least 60 cells (F-H) or 32 cells (1) from 2 independent experiments were analyzed for each

condition.

Fig. 4: Tetraploidy-linked aggravation of multipolar spindle formation upon paclitaxel
treatment

(A) Time-lapse images of the mitotic progression in paclitaxel-treated diploid H2B-EGFP and
tetraploid H2B-mCherry HAP1 co-culture. Arrows: Y-shaped chromosome arrangement. (B)
Analysis of mitotic progression of control and paclitaxel-treated diploid or tetraploid cellsin A.
Each bar represents a single mitotic event (from NEBD to anaphase onset or mitotic exit) in a
dividing cell. At least 59 cells from 2 independent experiments were analyzed for each condition.
(C) Mitotic duration (from NEBD to anaphase onset or mitotic exit) in control and
paclitaxel-treated diploid or tetraploid cellsin A. Mean + SE of at least 59 cells from 2 independent

experiments for each condition. Asterisks indicate statistically significant differences between
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conditions (***p < 0.001, the DSCF test). (D, E) Frequency of mitotic fates (D), or cell death in the
subsequent cell cycle (E) in control and paclitaxel-treated diploid or tetraploid cellsin A. At least 59
or 97 cells from 2 independent experiments were analyzed for each condition in D or E, respectively.
(F) Immunofluorescence microscopy of CP110, PCNT, and a-tubulin in 3 nM paclitaxel-treated
diploid or tetraploid cells. (G, H) Frequency of multipolar spindlein control and paclitaxel-treated
diploid or tetraploid cellsin F. Data obtained from al cells or only cells with 4 centrioles were
shown in G or H, respectively. Mean + SE of 3 independent experiments. At least 92 or 90 cells
were analyzed for each condition in G or H, respectively. Asterisks indicate statistically significant

differences between conditions (***p < 0.001, the Steel-Dwass test).

Fig. 5: Comparison of efficacy of paclitaxel or GSK-923295 in different tetraploid HCT 116
lines

(A, B) ICso values in a comparative colorimetric cell proliferation assay using paclitaxel (A) and
GSK-923295 (B) in diploid or 16 different tetraploid HCT116 cell lines. Mean + SE of 4 samples
from 2 independent experiments for each condition. Asterisks indicate statistically significant
differencesin 1Cs between the control diploid line and each tetraploid line (***p < 0.001, the Steel
test). See also Fig. S7 for the dose-response curve of normalized absorbance used for calculating

| Cso.

Fig. S1: DNA content analyses of cell lines used in this study
(A, B) Histograms of Hoechst signal in haploid HAPL cells and their isogenic diploid and tetraploid
lines (A), or diploid HCT116 cells and their isogenic tetraploid lines (B). Representative data from

2 independent experiments.

Fig. &2: Praliferation of haploid, diploid, or tetraploid HAP1 cells treated with different

concentrations of anti-mitotic compounds
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Dose-response curve of normalized absorbance in a comparative colorimetric cell proliferation
assay using different anti-mitotic compoundsin haploid, diploid, and tetraploid HAPL cells. Mean +
SE of 4 samples from 2 independent experiments for each condition. Unit of inhibitor concentration

is shown on the top of each graph. The identical data on paclitaxel, GSK-923295, STLC, and

doxorubicin were also shown in Fig. 1A.

Fig. S3: Ploidy-dependent changesin anti-mitotic compound efficacy

| Csp values of anti-mitotic compounds in haploid, diploid, and tetraploid HAPL cells (calculated
from the dose-response curvesin Fig. S2). Mean + SE of 4 samples from 2 independent experiments
for each condition. Asterisks indicate statistically significant differences in ICsy between cells with
different ploidies (**p < 0.01, ***p < 0.001, the Steel-Dwass test). The identical data on paclitaxel,
GSK-923295, STLC, and doxorubicin were also shown in Fig. 1A. Inhibitors that have significant
ploidy-dependent differencesin their efficacy (effect size & > 0.655 in the Kruskal-Wallis test; see
also Fig. 1B) with positive or negative linear correlations are categorized as “ hyperploidy- or
hypoploidy-selective,” respectively. Inhibitors with no significant ploidy-dependent differencesin

efficacy in the Kruskal-Wallis test are categorized as “ ploidy-neutral .”

Fig. $4: Sdective anti-proliferative effect of paclitaxel and CENP-E inhibitors toward 2
independent HAP1 tetraploid cell lines

(A, B) Dose-response curve of normalized absorbance (A) and calculated drug 1Csp values (B) in a
comparative colorimetric cell proliferation assay using paclitaxel, CENP-E inhibitors, or
doxorubicin in diploid and 2 different tetraploid HAPL cell lines. Mean + SE of 4 samples from 2
independent experiments for each condition. Asterisks indicate statistically significant differencesin

| Cso between cells with different ploidies (***p < 0.001, the Steel-Dwass test).

Fig. S5: Gradual re-alignment of misaligned polar chromaosomesin GSK -923295-treated cells
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(A, B) GSK-923295-treated tetraploid cells whose polar chromosomes gradually moved into the
metaphase plate (A; type 1) or did not undergo re-alignment (B; type 2). Arrowheads: misaligned
polar chromasomes. Arrows: Graoss chromosome scattering caused through cohesion fatigue. (C)
Freguency of different types of misaligned chromosome movement before cohesion fatigue in
GSK-923295-treated diploid or tetraploid cells. Cells that underwent cohesion fatigue were

analyzed from 2 independent experiments.

Fig. S6: CENP-E inhibition does not impair the maintenance of the pre-aligned metaphase
chromosomes

(A) Photoisomerization of the photo-switchable CENP-E inhibitor, PCEI-HU. (B, C, E) Schemes
(top) and time-lapse images (bottom) of mitotic progression in HAPL cells treated with DM SO or
PCEI-HU. Cells were pre-treated with MG132 and SIR-DNA for blocking anaphase onset and
staining chromosomes, respectively. Photo-switching of the inhibitor from the non-inhibitory PSSses
to inhibitory PSSsos was induced before or after the completion of chromosome alignment in B or C,
respectively. Note that the inhibitor blocked the equatorward movement of the misaligned polar
chromosomes at PSSsgs (B), whereas it did not affect the maintenance of the pre-aligned
chromosomes (C). For comparison, we also tested chromosome movement in the cells treated with
the inhibitor at PSSz¢5 throughout the live imaging (E). Asterisks: Neighboring cells. (D, F)
Cumulative frequency of de novo misalignment of the pre-aligned chromosomesin C or E (D or F,
respectively). Mean + SE of at least 44 cells from 3 independent experiments (n.s. between diploid
and tetraploid cells at 110 min, the Brunner-Munzel test). Note that de novo misalignment was

infrequent in diploids and tetraploidsin all conditions.

Fig. S7: Praliferation of diploid or tetraploid HCT 116 cellstreated with different
concentrations of paclitaxel or GSK-923295
(A, B) Dose-response curve of normalized absorbance in a comparative colorimetric cell

proliferation assay using paclitaxel (A) or GSK-923295 (B) in diploid and tetraploid HCT116 cells.
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Mean + SE of 4 samples from 2 independent experiments for each condition. For facilitating the

comparison, identical dose-response plots of diploids were overlaid in all graphs of tetraploid plots.
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