

1 **Single-cell RNA sequencing highlights a reduced function of**
2 **natural killer and cytotoxic T cell in recovered COVID-19 pregnant**
3 **women**

4
5 Nor Haslinda Abd Aziz^{1#}, Madhuri S. Salker^{2#}, Aditya Kumar Lankapalli³, Mohammed
6 Nasir Shafiee¹, Ersoy Kocak^{5,6}, Surya Sekhar Pal², Omer Khalid², Norhana Mohd
7 Kasim¹, Aida Kalok¹, Norashikin Abdul Fuad⁴, Stephan Ossowski^{5,6}, Nicolas
8 Casadei^{5,6}, Deutsche COVID-19 OMICS Initiative (DeCOI), Sara Y Brucker², Olaf
9 Riess^{5,6}, Yogesh Singh^{2,5,6*}

10
11 ¹Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti
12 Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia

13 ²Department of Women's Health, Research Institute for Women's Health, University
14 of Tübingen, Tübingen, Germany

15 ³Department of Life Sciences, University of Warwick, Coventry, UK

16 ⁴Department of Obstetrics and Gynaecology, Sungai Buloh Hospital, Selangor,
17 Malaysia

18 ⁵Institute of Medical Genetics and Applied Genomics, University of Tübingen,
19 Tübingen, Germany

20 ⁶NGS Competence Centre Tübingen (NCCT), University of Tübingen, Tübingen,
21 Germany

22
23 [#]Equal contributions

24
25 ^{*}Lead Contact for the study

26
27 Dr Yogesh Singh
28 Institute of Medical Genetics and Applied Genomics
29 NGS Competence Centre Tübingen (NCCT)
30 Research Institute of Women's Hospital
31 University of Tübingen
32 Calwerstraße 7, 72076, Tübingen
33 Germany
34 Email: yogesh.singh@med.uni-tuebingen.de

35
36 Key words: Pregnancy, COVID-19, PBMCs, NK cells and cytotoxic cells

37
38 Running title: Immune response in COVID-19 pregnant women

39
40
41
42
43

44 **Abstract**

45 Pregnancy is a complex phenomenon during which women undergo immense
46 immunological change throughout this period. Having an infection with the SARS-
47 CoV-2 virus leads to an additional burden on the highly stretched immune response.
48 Some studies suggest that age-matched pregnant women are more prone to SARS-
49 CoV-2 infection compared with normal healthy (non-pregnant) women, while
50 alternative evidence proposed that pregnant women are neither susceptible nor
51 develop severe symptoms. This discrepancy in different findings regarding the
52 immune responses of pregnant women infected with SARS-CoV-2 virus is not well
53 understood. In this study, we investigated how SARS-CoV-2 viral infection could
54 modulate the immune landscape during the active infection phase and recovery in
55 pregnant females. Using flow cytometry, we identified that intermediate effector
56 CD8⁺ T cells were increased in pregnant women who had recovered from COVID-19
57 as opposed to those currently infected. Similarly, an increase in CD4⁺ T helper cells
58 (early or late) during the recovered phase was observed during the recovery phase
59 compared with infected pregnant women or healthy pregnant women, whilst infected
60 pregnant women had a reduced number of late effector CD4⁺ T cells. CD3⁺CD4⁻
61 CD8⁻NKT cells that diminished during active infection in contrast to healthy pregnant
62 women were significant increase in recovered COVID-19 recovered pregnant
63 women. Further, our single-cell RNA sequencing data revealed that infection of
64 SARS-CoV-2 had changed the gene expression profile of monocytes, CD4⁺ effector
65 cells and antibody producing B cells in convalescent as opposed to healthy pregnant
66 women. Additionally, several genes with cytotoxic function, interferon signalling type
67 I & II, and pro- and anti-inflammatory functions in natural killer cells and CD8⁺
68 cytotoxic T cells were compromised in recovered patients compared with healthy
69 pregnant women. Overall, our study highlights that SARS-CoV-2 infection deranged
70 the adaptive immune response in pregnant women and could be implicated in
71 pregnancy complications in ongoing pregnancies.

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88 **Introduction**

89 Corona virus disease-19 (COVID-19) is caused by SARS-CoV-2 virus which has led
90 to a global pandemic since its emergence in Wuhan, China in late 2019 (Andersen *et*
91 *al*, 2020; Zhou *et al*, 2020). More than 6.39 million people have died due to COVID-
92 19 infection and more than 574.9 million people had been infected thus far (until
93 29.07.2022) (Medicine, 2022). However, these numbers are continuously rising due
94 to newly emergent variants of this virus despite inoculation of COVID-19 vaccine
95 worldwide (Kampf, 2021; Subramanian & Kumar, 2021).

96

97 Pregnancy is a complex phenomenon during which women undergo immense
98 immunological changes throughout this period (Abu-Raya *et al*, 2020). During
99 gestation several physiological changes in the anatomical structure of the respiratory
100 system as well as in the immune system could pose a greater risk for the pregnancy
101 complications in women (Bhatia & Chhabra, 2018). The immune system in
102 pregnancy is always in a delicate balance; it must protect the semi-allogenic fetus
103 from maternal rejection whilst simultaneously provide proper fetal development and
104 protection against foreign pathogens (Aghaeepour *et al*, 2017; Watanabe *et al*,
105 1997). Epidemiological findings from other pandemics (e.g. influenza, Zika and
106 Ebola) highlighted that pregnant women are more susceptible to severe
107 complications and death from viral infection (Alberca *et al*, 2020; Silasi *et al*, 2015;
108 Wilder-Smith, 2021). Having an infection with SARS-CoV-2 virus could hamper the
109 over stretched immune response. Though, the real time number of infections in
110 pregnant women appeared to be neglected due to limited studies (Nidhi, 2021).
111 Global maternal and fetal outcomes have worsened during the COVID-19 pandemic
112 such as increase in maternal death, pre-term labour, stillbirth, ruptured ectopic
113 pregnancies and maternal depression (Henarejos-Castillo *et al*, 2020; Liu *et al*, 2020;
114 Villar *et al*, 2021). Recent studies suggested that age matched pregnant women are
115 more prone to SARS-CoV-2 infection compared with healthy non-pregnant women
116 (Villar *et al.*, 2021). SARS-CoV-2 infection in pregnant mothers lead to increased
117 placental inflammation, predisposition to the development of maternal vascular
118 thrombosis, higher caesarean rate, fetal growth restriction and increased risk of
119 preterm delivery (Wong *et al*, 2022). Additionally, altered villous maturation and
120 severe-critical maternal COVID-19 infection were associated with an elevated risk of
121 poor Apgar scores at birth and maternal mortality, respectively (Wong *et al.*, 2022).
122 In contrast, other findings proposed that pregnant women are mostly asymptomatic
123 (90%) and develop mild symptoms after SARS-CoV-2 infection (Mullins *et al*, 2020;
124 Waghmare *et al*, 2021). However, the comparisons are based on small cohort and
125 no global data is available on how the immune response of infected and recovered
126 women is shaped by SARS-CoV-2 virus. A handful of studies investigated how the
127 virus modules the function of immune cells during pregnancy (Bordt *et al*, 2021;
128 Chen *et al*, 2021a; Chen *et al*, 2021b; Lu-Culligan *et al*, 2021; Ovies *et al*, 2021).
129 Thus, there is no clear understanding why there is such a discrepancy in the immune
130 response of pregnant women infected with SARS-CoV-2 virus in different published
131 studies. In our study, we thus applied single-cell RNA sequencing (scRNA-seq) and

132 flowcytometry to investigate how SARS-CoV-2 viral infection could modulates the
133 immune response during the active SARS-CoV-2 infection and after the recovery
134 from COVID-19 disease in pregnant women.

135

136 **Results**

137 **Demographics of the pregnant women:**

138 A total of 19 pregnant Malaysian and Malaysian Indian pregnant women were
139 enrolled for this study comprised of pregnant healthy controls (Preg-HC; n=11),
140 pregnant SARS-CoV-2 infected (Preg-SARS-CoV-2; n=4), and the recovered from
141 the SARS-CoV-2 infection (Preg-R; n=4), (Table 1) some of the same patients
142 described in our recent published study (Cao *et al*, 2022). In Cao *et al*, 2022, we
143 used plasma and PBMCs for intracellular cytokine staining and scRNA-seq and
144 immunophenotyping is part of this study. Most of the infected pregnant women were
145 either asymptomatic or some had mild/moderate manifestations of COVID-19. No
146 severe form of COVID-19 was reported and used in this study. Most of the study
147 participants were in third trimester including healthy control pregnant (except one
148 participant which was in the second trimester), infected pregnant (except one
149 participant which was in the second trimester) and recovered pregnant women
150 (except one participant was in the second trimester) (Table 1).

151

Study ID	Age (years)	Ethnicity	1 st test	PCR	Symptoms*	WHO score**	Sample collection date*	Gestational age***
					Heathy control			
H1	33	Malay	-		Heathy control	-	24.11.20	36 weeks
H2	35	Malay	-		Heathy control	-	24.11.20	31 weeks
H3	29	Malay	-		Heathy control	-	24.11.20	38 weeks
H4	40	Malay	-		Heathy control	-	10.12.20	38 weeks
H5	34	Malay	-		Heathy control	-	14.12.20	38 weeks
H6	25	Indian	-		Heathy control	-	14.12.20	38 weeks
H7	31	Malay	-		Heathy control	-	14.12.20	35 weeks
H8	29	Malay	-		Heathy control	-	14.12.20	13 weeks
H9	37	Malay	-		Heathy control	-	15.12.20	37 weeks
H10	33	Malay	-		Heathy control	-	15.12.20	15 weeks
H11	27	Malay	-		Heathy control	-	16.12.20	38 weeks
H12	33	Malay	-		Heathy control	-	16.12.20	40 weeks
H13	31	Malay	-		Heathy control	-	16.12.20	25 weeks
					Infected			
D03	42	Malay	29.10.20		Asymptomatic_Inf	1	29.10.20	38 weeks
D07	26	Malay	27.08.20		Asymptomatic_Inf	1	27.08.20	23 weeks
D10	31	Indian	27.08.20		Asymptomatic_Inf	1	27.08.20	35 weeks
D14	29	Malay	14.10.20		Symptomatic [§] _Inf	2	14.10.20	38 weeks
					Recovered			
M02 ®	36	Malay	11.04.20		Symptomatic [#] _R	2	29.07.20	24 weeks
M05 (R)	36	Malay	11.04.20		Asymptomatic_R	1	13.04.20	36 weeks
M06 (R)	31	Malay	21.04.20		Asymptomatic_R	1	08.05.20	13 weeks
M20 ®	25	Malay	10.01.21		Symptomatic [§] _R	2	20.01.21	29 weeks

Notes:

Symptoms* - Symptoms at the time of disease development.
WHO score** - WHO score at the disease development (1st PCR test).
Gestational age*** - Gestational age during the blood (PBMCs) sample collection.
Symptomatic[§] - Fever for 2 days.
Symptomatic[#] - Cough for 2 days.
Symptomatic[§] - Typical symptoms of COVID-19 disease such as fever, fatigue, cough, and loss of smell/taste etc.

152

153 **Immunophenotyping of pregnant, pregnant infected and pregnant recovered**
154 **women**

155 In our cohort study most of the pregnant women were either infected or recovered
156 and were asymptomatic or mild/moderately affected which is consistent with other
157 previously reported findings (Waghmare *et al.*, 2021). We first explored the
158 percentage of different immune subsets in peripheral blood mononuclear cells
159 (PBMCs) to understand the distribution of immune cells in pregnant women. To
160 understand this, we used 14-colour antibody panel to identify the different subtypes
161 of T, B, NK cells and monocytes using flow cytometry. Gating strategy of live
162 lymphocytes and monocytes is displayed in Supp. Fig.1. Overall, 200,000 cells were
163 acquired for each sample and live cells were used for further analysis, we found
164 significantly reduced lymphocytes ($p=0.02$ Preg-R vs Preg-HC; Kruskal-Wallis
165 nonparametric test ($p=0.01$) and multiple comparisons based on post-hoc Dunn's
166 test) in Preg-R patients compared with Preg-HC. Further, a reduced tendency in
167 monocytes in Preg-SARS-CoV-2 and Preg-R patients compared with Preg-HC
168 (Suppl. Fig. 1a, b). No obvious difference was observed either in CD4⁺ or CD8⁺ T
169 cells among Preg-SARS-CoV-2, Preg-R patient samples, and Preg-HC, although,
170 there was a tendency of decreased CD8⁺ T cells and increased CD4⁺ T cells in Preg-
171 SARS-CoV-2 compared with Preg-R or Preg-HC, respectively (Suppl. Fig. 1c).

172

173 ***Early and late effector CD4⁺ or CD8⁺ T cells were dysregulated in Preg-SARS-***
174 ***CoV-2 and Preg-R***

175 Further, all the samples were concatenated, and subjected to unsupervised
176 clustering analysis using uniform manifold projection and approximation (UMAP) to
177 classify the clustering of immune cells and identify the difference in immune cell
178 subsets (Fig. 1a, b). We observed 5 major clusters of cells based on 14-colour flow
179 parameters which includes monocytes, CD4⁺ T cells, CD8⁺ T cells, CD19⁺ B cells
180 and CD56⁺ NK cells subsets. Further, using supervised clustering of CD8⁺ T cells,
181 we identified 5 different subsets of CD8⁺ T cells (Fig. 1e). We found that naïve CD8⁺
182 T cells were reduced in Preg-R patients compared with Preg-HC group and was
183 almost significant ($p=0.07$) (Fig. 1f). Intermediate effector CD8⁺ T cells were also
184 significantly reduced in Preg-SARS-CoV-2 compared with Preg-R ($p=0.03$). Late
185 effector CD8⁺ T cells were also significantly reduced in Preg-SARS-CoV-2 compared
186 with Preg-R ($p=0.08$), however, it did not reach to a significant level (Fig. 1f). This
187 apparent effect was also observed in cell distribution UMAP analysis of CD8⁺ T cells
188 in Preg-SARS-CoV-2 compared with Preg-R (Fig. 1). Further, CD4⁺ T cells were
189 extracted and subject to unsupervised UMAP clustering analysis. We observed that

190 naïve T cells were reduced in Preg-SARS-CoV-2 and Preg-R compared with Preg-
191 HC (Fig. 2a). Based on CD45RA and CCR7 markers, we found that early effector
192 cells tended to increase in Preg-R compared with Preg-HC ($p=0.07$), though, it did
193 not reach to significant level (Fig. 2b), however, late effector cells were increased in
194 Preg-R compared with Preg-HC (Fig. 2b). Thus, it appears that naïve cells were
195 reduced, whilst intermediate or later effector memory cells were increased in Preg-
196 SARS-CoV-2 and Preg-R compared with HC.
197

198 ***Decreased CD3⁺CD4⁺CD8⁺ NKT and NK cells in Preg-SARS-CoV-2 or Preg-R***

199 Furthermore, the analysis of PBMCs showed reduced frequency of CD3⁺CD56⁺ NKT
200 cells in Preg-SARS-CoV-2 infected women compared with Preg-HC (Fig. 2d, bottom,
201 left). Interestingly, CD3⁺CD4⁺CD8⁺CD56⁺ NKT cells were significantly reduced in
202 Preg-SARS-CoV-2 infected women compared with Preg-R (Fig. 2d, bottom, right).
203 UMAP analysis depicted a clear distinction of NKT cells in Preg-SARS-CoV-2, Preg-
204 R and Preg-HC. Further CD3⁺CD56⁺ NK cells were characterised using 2D FACS
205 plots and unsupervised UMAP analysis. We observed that CD3⁺CD19⁺CD56⁺HLA-
206 DR⁻ NK cells were reduced in Preg-SARS-Co or Preg-R compared with HC (Fig. 3a,
207 left). However, HLA-DR⁺CD56⁺ NK cells tended to be higher in Preg-SARS-CoV-2 or
208 Preg-R compared with HC (Fig. 3a, right) and similarly, unsupervised clustering of
209 CD3⁺CD19⁺ cells yielded a similar trend (Fig. 3b). Finally, we gated the CD3⁺CD19⁺
210 CD56⁺HLA-DR⁻ NK and divided the NK cells in different subset using CD16 makers
211 and found that mature CD56⁺CD16⁺ NK cells were decreased in Preg-SARS-CoV-2
212 or Preg-R compared with HC (Fig. 3c), the difference seen was not significant.
213 Furthermore, non-NK cells were increased in Preg-SARS-CoV-2 and Preg-R (Fig.
214 3b, c). Overall, our data revealed that mature NK cell numbers were reduced, whilst
215 increased number of activated NK cells in Preg-SARS-CoV-2 and Preg-R compared
216 with Preg-HC.
217

218 ***Single cell gene expression profiling of Preg-R and Pre-HC***

219 Flow cytometry results gave an insight at protein level, nonetheless, due to limitation
220 of fluorochromes it is not possible to understand the expression of other molecules
221 which might be affected in the Preg-R patients. We, therefore, employed single cell
222 RNA-sequencing (scRNA-seq) gene expression profiling using the 10x chromium
223 Gel Bead-in-Emulsion (GEMs) to verify this. We used 4 Preg-HC and 4 Preg-R
224 samples for SC-RNA-seq. In total, we have obtained 45,859 high quality single cells
225 for the cell clustering and gene expression analysis (Suppl. Fig. 2). Using 'Seqgeq'
226 software, we first checked the library size versus genes expressed for high quality
227 cells, secondly, we gated on high quality cells for total reads versus cells expressing
228 genes and finally cells were gated for highly dispersed genes Suppl. Fig. 2b-c).
229 Highly dispersed genes were used for PCA and PCA directed t-stochastic neighbour
230 embedding (t-SNE) analysis – a statistical method visualizing high-dimension (Suppl.
231 Fig. 2b-c). Further, using 'Seurat' plugin, we calculated the differential gene
232 expression and cell clusters and explored different immune cell subsets (Suppl. Fig.
233 2d). We observed 20 cell clusters and have identified several major immune cells

234 populations – monocytes, dendritic cells, CD4⁺ T cells, MAIT cells, CD8⁺ T cells, NK
235 cells, B cells and megakaryocytes (Suppl. Fig. 3d). Additionally, we overlaid the
236 Preg-HC or Preg-R samples on all the samples with different cell clusters. There
237 were a few instances where cell clusters were less abundantly present like naïve
238 CD4⁺ T cells, naïve B cells, NK cells and monocytes were reduced whereas MAIT
239 cells were appeared to be present more in abundant in Preg-R samples compared
240 with Preg-HC (Suppl. Fig. 2e). However, different subsets of CD4⁺ or CD8⁺ T cells
241 were difficult to be distinguished.

242
243 Further, scRNA-seq analysis was performed using Seurat, performed the
244 unsupervised clustering and visualized the data in Uniform Manifold Approximation
245 and Projection (UMAP) plots. Cell clustering was based on PhonoGraph – a
246 clustering algorithm, which is most robust when detecting refined subclusters (Liu *et*
247 *al*, 2019). We discovered 34 cell subtypes of different immune cells (Fig. 4a).
248 Further, individual known markers were defined to confirm the identity of a cell
249 subtype group using unsupervised expression of each gene transcript (Fig. 4b-c). In
250 detail, individual CD4⁺ T cells were clustered into naïve, central memory (CM),
251 effector memory (EM), cytotoxic CD4⁺ T lymphocytes (CTL), SOX⁺ CD4⁺ T cells, and
252 double negative (DN) cells. Similarly, CD8⁺ T cells were also classified in naïve, EM,
253 CM, CTL and MAIT cells and NK cells into 5 different type of NK cell population
254 based on distinct cell clusters (Suppl. Fig. 3a-c). Moreover, individual expression of
255 total cell clusters for Preg-R and Preg-HC showed a significantly decreased number
256 of specific cell subsets CD4⁺ CTL and B memory whilst CD8⁺ CTLs were significantly
257 increased in numbers (Fig. 4d-g). In contrary, NK II and NK IV were nearly
258 significantly changed, and NK II tended to be increased whilst NK IV tended to be
259 decreased in Preg-R compared with Preg-HC (Fig. 4f).

260
261 **Differential pathway regulation in monocytes, B cells and CD4⁺ TEM**
262 Monocytes are the key innate immune cells in defence as well as ‘cytokine storm’
263 during COVID-19 pathology. We observed a clear reduced number of monocytes in
264 Preg-R compared with Preg-HC. Thus, we explored the differential gene expression
265 in Preg-R compared with Preg-HC, our data revealed that 329 genes were
266 upregulated whilst 222 genes downregulated (Fold change ≥ 0.5 and q value ≤ 0.05)
267 in Preg-R women (Fig. 5a). Based on upregulated genes, we performed Gene
268 ontology pathway analysis using Metascape. We identified that Preg-R women had
269 increased inflammatory gene signature which are mostly related with cytokine
270 production, cell activation and regulation of defence response. Further, GO pathways
271 suggested that TNF signalling pathways, catabolic process, lipid and orexin receptor
272 pathways were also involved (Fig. 5b).

273
274 Further, B cells which are involved in humoral immune response were reduced in
275 Preg-R and gene expression analysis highlighted that several genes were
276 differentially regulated (349 upregulated and 229 downregulated) (Fig. 5c). The GO
277 pathway analysis revealed that B cell receptor signalling pathways and extracellular

278 B cell activation by SARS-CoV-2 were upregulated (Fig. 5d). Furthermore, GO
279 pathways were related with mRNA processing, chromatin organization and histone
280 lysine methylation which could be involved in imprinting of IgG antibody formation.

281

282 CD4⁺ TEM cells were also differentially abundant in Preg-R women, therefore, we
283 also explored the differential (43 upregulated and 90 downregulated) gene
284 expression and found that several genes were upregulated whilst 2-fold genes were
285 downregulated (Fig. 5e). GO pathway analysis revealed that mRNA catabolic
286 process was positively regulated, and further pathways related with regulation of
287 inflammatory response, interferon type I signalling pathways, cell proliferation,
288 apoptosis, cell division and epigenetic were upregulated (Fig. 5f).

289

290 **NK, MAIT and CD8⁺ T cell had reduced cytotoxic functions**

291 Previously, we and others have shown that NK cell and CD8⁺ T cells were
292 decreased in moderate and recovered COVID-19 patients respectively (Maucourant
293 *et al*, 2020; Singh *et al*, 2021; Tian *et al*, 2021) and both cell types decreased with
294 increased severity of the disease. MAIT cells were also involved in COVID-19
295 infection (Chen *et al*, 2021b). MAIT cells express the receptors for type I IFNs, IL-
296 12, IL-15 and IL-18 thus these cells could potentially be activated by proinflammatory
297 cytokines (Raffetseder *et al*, 2021). We therefore, explored the markers related with
298 NK cells, MAIT and CD8⁺ CTLs functions in pregnant women recovered after SARS-
299 CoV-2 viral infection. GO pathway analysis for NK type II cells based on upregulated
300 genes (13 genes only) revealed upregulation of chromatin organization and
301 regulation of cell adhesion molecules, whilst based several down regulated gene
302 were related with perforin and granzymes (Fig. 6a, b). GO enrichment pathways
303 (based on 82 downregulated genes) revealed that several pathways - cell activation,
304 cytokine signalling, natural killer cell mediated cytotoxicity, and oxidative
305 phosphorylation, SARS-CoV-2 signalling pathways were downregulated. These
306 pathways have some common genes such as GZMB, IL32 and IRF9 which were
307 downregulated in Preg-R women compared with Preg-HC (Fig. 6c, d). In a similar
308 fashion in NK type IV cells, mRNA metabolic pathway, cytokine signalling, cellular
309 response to stress and hypoxia were upregulated (based on 264 genes) whilst,
310 antigen processing and presentation, natural killer cell mediated cytotoxicity,
311 neutrophil degranulation, SARS-CoV-2 network signalling pathway, interferon
312 alpha/beta signalling and cytokine signalling were downregulated (218 genes) in
313 Preg-R compared with Preg-HC (Fig. 6e-g). The most common genes related with
314 cytotoxic functions and cell activation including CD2, FCFR3A, KLRC2, TUBB,
315 IL2RB, AREG, GNLY, GZMK and GZMA were significantly downregulated in Preg-R
316 compared with Preg-HC (Fig. 6h).

317

318 MAIT cells which are involved in direct recognition of peptide without MHC molecules
319 were also differentially expressed genes in Preg-R (250 genes up and 162 genes
320 downregulated) compared with Preg-HC (Suppl. Fig. 4a). Several GO pathways
321 were upregulated in Preg-R compared with Preg-HC which are related with mRNA

322 metabolic progress and cellular response to stress as well as cell adhesion. More
323 interestingly, inflammatory, and anti-inflammation pathways such as IL-1, IFNs type I
324 and TGB-b receptor signalling were also upregulated in Preg-R compared with Preg-
325 HC (Suppl. Fig. 4b).

326

327 Moreover, in case of CD8⁺ CTLs cells, several cytokines signalling pathway related
328 were upregulated whilst, cytotoxic function pathway genes were downregulated. GO
329 pathway analysis revealed that inflammation related pathways including TNF/NFKB,
330 IFNG, VEGFA-VEGFR2, HIF and actin cytoskeleton pathways were upregulated
331 (Fig. 6i-j), whilst adaptive immune system, type II interferon signalling, antigen
332 processing and presentation of exogenous peptide antigen via MHC I, neutrophil
333 degranulation and leukocyte mediated cytotoxicity were downregulated in Preg-R.
334 The most common gene related with cytotoxic functions CD2, GZMK, HLA-A,
335 KLRK1, KLDR1, GZMK, GZMA, GZMM, IL-32 and IL2RG were significantly
336 downregulated in Preg-R compared with Preg-HC (Suppl. Fig. 4c-d).

337

338 **Attenuated antiviral activity in recovered pregnant women**

339 Previously, it was reported that after SARS-CoV-2 viral infection immunity is
340 decreased in COVID-19 patients (Chua *et al*, 2020; Kim & Shin, 2021), thus, we
341 investigated the status of their immune system. We discovered that expression of
342 type I interferons (IFNs) receptors IFNAR1 and IFNAR2 was overall decreased in all
343 immune cells, however IFNAR1 appeared to drastically decrease in B cell population
344 (Fig. 7a). Downstream of type I IFNs signalling pathways TYK2, JAK1, STAT1, IRF9,
345 ISG20, ISG20L2 and OAS3 were decrease in Preg-R patients (Fig. 7a). Type II IFNs
346 signalling molecules such as IFN-g were increased in cytotoxic T cells. IFNGR1 and
347 TNF were decreased in monocytes whereas cytotoxic CD8⁺ T cells and NK cells
348 IFGR1 and TNF were increased in Preg-R patients compared with Preg-HC (Fig.
349 7b). JAK2 was also increased in monocytes in Preg-R patients compared with Preg-
350 HC (Fig. 7b). Finally, TGFB1 is upregulated in both CD8⁺ T and NK cells in Preg-R
351 compared with Preg-HC (Fig. 7b). Overall, the data suggested a decrease of pro-
352 inflammatory signalling mechanism and upregulation of anti-inflammatory molecules
353 in Preg-R patients.

354

355 **Discussion**

356

357 An immune-mediated cytokine response is the key driver for the severity of COVID-
358 19 and resulting in a 'cytokine storm'. In this report, using multi-colour flow cytometry
359 and SC-RNA-seq, we have identified the immune signature during SARS-CoV-2
360 infection and in COVID-19 recovered pregnant women. Our multi-colour
361 immunophenotyping data suggest that there was significant reduction in percentage
362 of total lymphocytes whilst there was trend of decreased monocytes in SARS-CoV-2
363 infected and recovered pregnant women compared with healthy pregnant women.
364 Our findings are further supported by recent data which also suggested that in
365 pregnant recovered women there is a reduced proportion of lymphoid cells

366 compared with healthy pregnant women (Chen *et al.*, 2021b). Further,
367 characterization of CD4⁺ T cells or CD8⁺ T cells revealed an increased percentage of
368 early or late effector CD8⁺ T cells in pregnant SARS-CoV2 infected compared with
369 pregnant recovered women. A similar trend was also observed for the CD4⁺ T cells
370 effector cells. However, a reduced trend of effector cells either CD4⁺ or CD8⁺ T cells
371 were also observed when comparisons were made between healthy control pregnant
372 with SARS-CoV-2 pregnant women. These results imply that viral infection leads to
373 transient reduction of effector cells which are increased in proportion once the viral is
374 cleared. Our data agree with published findings which implied that moderate COVID-
375 19 patients had increased reappearance of effector T cells compared with severe
376 COVID-19 patients (Odak *et al.*, 2020).

377

378 NK cells tended to be decreased in SARS-CoV2 and recovered pregnant compared
379 with healthy pregnant women. Earlier studies reported no significant change in NK
380 cells and suggested increased trend of NK cells in pregnant COVID-19 women
381 (Chen *et al.*, 2021a). Overall, our phenotyping data suggest decreased effector T
382 cells and NK cells could stop an exacerbated immune response during the active
383 infection of pregnant COVID-19 women. Cytokine and chemokines detection in the
384 plasma of pregnant SARS-CoV-2 infected women revealed reduced levels of IL-
385 12(p70) and increased RANTES levels (Chen *et al.*, 2021a). These findings suggest
386 that suppressed cytokine and chemokines levels could be helpful to avoid adverse
387 outcome and have unique anti-SARS-CoV-2 response during pregnancy.

388

389 Furthermore, scRNA-seq revealed increased levels of effector CD4⁺ or CD8⁺ T cells
390 in recovered pregnant compared with healthy pregnant women. Differential gene
391 expression analysis of CD4⁺ TEM in recovered pregnant women suggested that
392 several genes with interferon type I and inflammatory signalling pathways were
393 changed. It appears that effector CD4⁺ T cells from recovered pregnant women has
394 a strong protective effective arm, which may lead to a competitive advantage to
395 avoid overt inflammation to protect the ongoing pregnancy. Further, CD4⁺ cytotoxic T
396 cells were decreased whilst CD8⁺ cytotoxic T cells were significantly increased.
397 Differential gene expression analysis of CD8⁺ CTL suggested that several pathways
398 related with cytokine signalling (TNF, IFNG and IL-15), VEGFA-VEGFR2, actin
399 cytoskeleton and HIF1 pathways were upregulated in recovered pregnant women.
400 Furthermore, MAIT cells also have increased mRNA metabolic, IL-1, chromatin
401 organization, interferon type I, TGFB, histone modification and immune system
402 development were upregulated. pMonocytes also had increased inflammatory
403 response, positive regulation of cytokine and cell activation and regulation of defence
404 response. In a similar fashion, in B memory cells from recovered pregnant women
405 also had increased chromatin organization, histone lysine methylation and activation
406 of extrafollicular by SARS-CoV-2 and regulation of B cell proliferation were
407 upregulated. Thus, scRNA-seq analysis suggested that a clear molecular advantage
408 of infected recovered women to avoid the pregnancy complications. However, further
409 large-scale studies are warranted to confirm these data and findings.

410

411 **Limitation of the study**

412 Our results may have provided key information for future research work into how
413 pregnant women are affected by SARS-CoV-2 infection. However, there are still
414 some limitations to this study. First, our cohort sample size was relatively small as
415 few pregnant women agreed to donate the blood samples to the transcriptomics
416 study. Additionally, we were not able to recruit pregnant women with severe
417 symptoms. Also, pregnancy state has a dynamic and evolving immune changes at
418 different trimester ages, which could also affect the immune response to COVID-19
419 as the pregnant patients who enrolled in our research study mostly developed
420 symptoms in the second and third trimester rather than in the first trimester.

421

422 **Figure legends**

423

424 Sup. Fig.1 Characterization of PBMCs from pregnant infected and recovered from
425 SARS-CoV-2 infection

426

- 427 a. Gating strategy for the 14-colour flow cytometry panel. Based on FSC and
428 SSC we removed the cell debris and gated on live cells. FSC-A and FSC-W
429 was used to remove the doublets and focussed on single cells. In the next
430 step, we removed the cells using Violet Live/dead staining. Finally, we again
431 we used FSC-A vs SSC-A to gate lymphocytes and monocytes based on size
432 and granularity. Lymphocytes were discriminated in CD19 and CD3 based on
433 cell surface markers and CD3 cells were discriminated into CD4 and CD8
434 cells using CD4 and CD8a antibodies.
- 435 b. FSC-A vs SSC-A show the monocytes and lymphocyte gated population
436 (upper side FACS plots). The percentage of lymphocytes and monocytes
437 shown by violin plots (lower side) for Preg-HC, Preg-SARS-CoV-2 and Preg-R
438 samples.
- 439 c. FACS plots for CD4 versus CD8a staining gated on CD3+ T cells (upper
440 side). The percentage of CD4⁺ and CD8a⁺ T cells in Preg-HC, Preg-SARS-
441 CoV-2 and Preg-R samples.

442

443 Fig.1 Immunophenotyping of PBMCs in pregnant SARS-CoV-2 infected and
444 recovered patients

445

- 446 a. Unsupervised clustering of immune cells based on 14-colour flow cytometry
447 panel. Two major clusters for lymphocytes and monocytes population using
448 UMAP dimensional reduction method.
- 449 b. Supervised clustering of PBMCs based on gating strategy identified 7 main
450 subsets of cells as shown in a colour coded UMAP plot including monocytes,
451 CD3⁺CD4⁺ T cells, CD3⁺CD8a⁺ T cells, CD3⁺CD56⁺NKT cells CD3⁻CD19⁺ B
452 cells, CD3⁻CD56⁺NK cells and FOXP3⁺ Tregs.
- 453 c. Overlay of UMAP to show the Preg-HC (Cyan), Preg-R (pink) and Preg-D
454 (orange). All the combined cells were shown in the background (grey).
- 455 d. Comparisons of immune cells in recovered and infected pregnant women.

454 e. Dynamics of cytotoxic CD4⁺ T cells. Identification of naïve, memory and
455 effector memory CD4⁺ T cells based on CD45RA and CCR7 markers. FACS
456 plots show the CD45RA⁺CCR7⁺ naïve, CD45RA⁻CCR7⁺ CM cells,
457 CD45RA^{+high}CCR7⁻ late EM, CD45RA^{+mid}CCR7⁺ intermediate EM, CD45RA⁻
458 CCR7⁻ early EM cells (upper FACS plots). The percentage of naïve,
459 intermediate, and late EM cells shown in violin plots (lower panels). P values
460 show the significance among Preg-HC, Preg-SARS-CoV-2 and Preg-R
461 groups and compared using Wilcoxon test. P value <0.05 considered
462 significant.

463 f. UMAP analysis of total CD4⁺ T cells. UMAP overlay show the Preg-HC
464 (Cyan), Preg-R (pink) and Preg-D (orange).

465 g. UMAP analysis for different CD4⁺ T helper cells based on supervised
466 clustering.

467
468 Fig. 2 Dysregulated cytotoxic CD8⁺ T cells and NKT cells in infected and recovered
469 pregnant women

470 a. Dynamics of cytotoxic CD8⁺ T cells. Identification of naïve, memory and
471 effector memory cytotoxic CD8⁺ T cells based on CD45RA and CCR7
472 markers. FACS plots show the CD45RA⁺CCR7⁺ naïve, CD45RA⁻CCR7⁺ CM
473 cells, CD45RA^{+high}CCR7⁻ late EM, CD45RA^{+mid}CCR7⁺ intermediate EM,
474 CD45RA⁻CCR7⁻ early EM cells (upper FACS plots). The percentage of naïve,
475 intermediate, and late EM cells shown in violin plots (lower panels). P values
476 show the significance among Preg-HC, Preg-SARS-CoV-2 and Preg-R
477 groups and compared using Wilcoxon test. P value <0.05 considered
478 significant.

479 b. UMAP analysis of total CD8a⁺ T cells. UMAP overlay show the Preg-HC
480 (Cyan), Preg-R (pink) and Preg-D (orange).

481 c. UMAP analysis for different cytotoxic T cells based on supervised clustering.

482 d. UMAP plots show the distribution of NKT cells in CD4⁺ and CD8a⁺ T cell
483 compartments.

484 e. FACS plots represent the expression of CD56 on CD3⁺CD8⁺ T cells (Upper
485 FACS panel). The percentage of NKT cells displayed by violin plots among
486 Preg-HC, Preg-SARS-CoV-2 and Preg-R groups and compared using
487 Wilcoxon test. P value <0.05 considered significant.

488 f. Overlay of UMAP to show the Preg-HC (Cyan), Preg-R (pink) and Preg-D
489 (orange) for NKT cells. All the combined samples were shown in background
490 (grey).

491
492 Fig. 3 Decreased NK cells in infected and recovered pregnant women

493 a. The percentage of CD3⁻CD19⁻CD56⁺HLA-DR⁻ NK cells shown in FACS plots
494 (upper panel) and violin plots (lower panel) in Preg-HC, Preg-SARS-CoV-2
495 infected and Preg-R samples.

496 b. UMAP analysis of CD3⁻CD19⁻ cells for different subsets of NK cells based on
497 CD56 and CD16 expression for the terminal, mature, early NK and non-NK

498 cells, while grey coloured cells show the all the samples containing NK cells
499 (upper panel). UMAP overlay for different comparative groups (lower panel).

500 c. The percentage of different subsets of NK cells based on CD56 and CD16
501 makers. Cells were gated on CD3⁻CD19⁻CD56⁺HLA-DR⁻ for data acquisition.
502 Upper panels show the expression of CD56 and CD16 and lower panel show
503 the violin plots of different NK subsets including mature, intermediate, and
504 terminal NK cells.

505 Suppl. Fig. 2 Quality check and t-SNE analysis for single cell RNA-seq data from
506 healthy control and recovered pregnant women

507 a. Total 56,586 cells were recovered after sequencing from 8 samples (Preg-HC
508 and Preg-R). First RNA-sequenced cells were gated for genes expressed vs
509 library size, we found 45,859 high quality cells. Next high QC cells were
510 analysed for cells expressing based on total read cut off min cells 5 were
511 chosen for further analysis. Cells expressing highly dispersed gene were
512 gated and used for PCA and t-SNE analyses.

513 b. Highly dispersed genes were subjected to PCA analysis, and we ran 25
514 principle components (PC).

515 c. PC guided unsupervised clustering analysis was used calculating t-SNE map.

516 d. For identification of cell clusters from t-SNE plots, we identified 3 major
517 clusters – monocytes, lymphocytes and B cells as shown in arbitrary clusters.
518 Further each cluster based on RNA transcript levels and divided into major
519 cell types – CD4+ T cells, CD8+ T cells, NK cells, NKT, ILC/MAIT, p and
520 cMonocytes, dendritic cells and megakaryocytes.

521 e. Overlay of pregnant healthy control and recovered pregnant t-SNE clustering
522 show difference in cell clustering.

523 Fig. 4 Dysregulated CD8, NK and B cells in recovered pregnant women

524 a. SC-RNA-seq data were analyzed using Seqgeq software. Seurat and
525 PhenoGraph pipelines were run to get the different subtype of immune cells.
526 13 different immune cells were identified based on distinct gene expression.

527 b. Overlay of UMAP analysis of Preg-HC and Preg-R patients.

528 c. Key markers for the validation of different immune cell clusters

529 d. Percentage of major cell types in Preg-HC and Preg-R patients.

530

531 Suppl. Fig. 3 Representation of individual clusters based on phonograph-based cell
532 clustering

533 a. CD4⁺ T cell cluster. 7 major subtypes of CD4⁺ T cells were identified.

534 b. CD8⁺ T cell cluster. 5 subtypes of CD8⁺ T cells were defined based on gene
535 expression.

536 c. Five subtypes of NK cells in pregnant healthy and COVID-19 recovered
537 patients.

538

539 Fig. 5. Inflammatory monocytes, activated memory B and CD4⁺ TEM cells in Preg-R

540 a. Differential gene expression analysis in monocytes in Preg-R vs Preg-HC.
541 Volcano plots showed the significantly upregulated and downregulated
542 genes.
543 b. GO pathway analysis based on upregulated genes in monocytes
544 c. Gene expression analysis in B memory cells.
545 d. GO pathways analysis based on upregulated genes.
546 e. Differential gene expression analysis in IL-7R⁺ CD4⁺ TEM. Volcano plots
547 represent significantly up and downregulation.
548 f. GO pathways analysis based on upregulated genes in CD4⁺ TEM cells.
549
550

551 Fig. 6 Reduced cytotoxic functions of NK and CD8⁺ CTLs in Preg-R
552 a. Differential gene expression analysis in Preg-R of NK II cells. Most
553 significantly genes are shown on the map.
554 b. GO pathways based on upregulated genes in NK II.
555 c. GO pathways based on downregulated genes in NK II.
556 d. Dot plots represented significantly up and downregulated genes (selected
557 genes) in NK II.
558 e. Differential gene expression analysis in Preg-R of NK IV cells. Most
559 significantly genes are shown on the map.
560 f. GO pathways based on upregulated genes in NK IV.
561 g. GO pathways based on downregulated genes in NK IV.
562 h. Dot plots represented significantly up and downregulated genes (selected
563 genes) in NK I.
564 i. Differential gene expression analysis in Preg-R of NK IV cells. Most
565 significantly genes are shown on the map.
566 j. GO pathways based on upregulated genes in NK VI.
567

568 Suppl. Fig. 4 Deregulated MAIT and CD8⁺ CLTs response in Preg-R
569 a. Differential gene expression analysis in Preg-R of MAIT cells. Most
570 significantly genes are shown on the volcano plot.
571 b. GO pathways based on upregulated genes in MAIT cells.
572 c. GO pathways based on downregulated genes in CD8⁺ CTLs cells.
573 Dot plots represented significantly up and downregulated genes (selected
574 genes) in CD8⁺ CTLs (Red = upregulated, Blue = Downregulated (0.005)).
575

576 Fig. 7 Dysregulated Type I and type II IFN signalling in recovered pregnant women.
577 a. Type I IFN signalling genes (IFNAR1, IFAR2, TYK2, JAK1, STAT1, IRF-9,
578 ISG20, ISG20L2, OAS3 and OASL) and their corresponding expression level.
579 b. Type I IFN signalling genes (IFNG, IFNGR1, JAK2, TNF and TGFB1).
580
581

582 **Material and methods**

583

584 ***Ethics statement for the study participants***

585

586 This study is part of the overall study of the transcriptomic and protein analysis of
587 pregnant women with a history of COVID-19 infection at the epicentre of the COVID-
588 19 pandemic in Malaysia approved by Research Ethics Committee, National
589 University of Malaysia (JEP-2021-465) and from the Medical Research Ethics
590 Committee (MREC) of Ministry of Health Malaysia (ID-58736). This was a cross-
591 sectional study carried out in Malaysia with a total of 21 pregnant women fulfilling the
592 inclusion and exclusion criteria were selected using convenient sampling. 4 pregnant
593 women infected with SARS-CoV-2 virus, 4 pregnant women who recovered from
594 COVID-19 and 13 pregnant women from healthy controls were provided written
595 informed consent to participate in this study. Disease severity for this study was
596 determined by symptoms. These women were recruited from the obstetrics and
597 gynaecology clinic, outpatient clinical wards from April 2020 until February 2021. The
598 study procedures were carried out in accordance with Declaration of Helsinki.

599

600 ***Cohort size and sample collection***

601

602 We collected blood from total 8 SARS-CoV-2 infected and recovered pregnant
603 women (n=4/group) and 13 pregnant women enrolled in the Department of
604 Obstetrics and Gynaecology, Universiti Kebangsaan Malaysia Medical Centre, Kuala
605 Lumpur, Malaysia. Written informed consent from patients was obtained (Universiti
606 Kebangsaan Malaysia). Eligibility criteria included age >18 years and positive RT-
607 PCR test for infected and negative RT-PCR test for healthy control and recovered
608 pregnant women. To protect the identity of the enrolled pregnant women,
609 pseudonymized samples were sent to Tübingen University for single cell RNA-
610 sequencing (scRNA-seq) processing and analysis. Blood was collected from
611 pregnant women infected with SARS-CoV-2 virus 1-3 days after their hospital
612 admittance or prior their caesarean section delivery. From pregnant women
613 recovered from COVID-19 who were admitted in wards before delivery and pregnant
614 women from healthy controls who attended the outpatient clinic, 3-5 ml blood was
615 collected in a 5 ml plain and a 10 ml Lithium heparin vaccutainer tubes. Serum
616 isolation via centrifugation will be conducted immediately after collection. Human
617 Peripheral Blood Mononuclear Cell (PBMCs) were isolated by the standard Ficoll
618 method (Singh *et al.*, 2021).

619

620 ***Preparation of PBMCs for single cell RNA sequencing (scRNA-seq) and***
antibody (surface and intracellular proteins) staining for flow cytometry

621 Frozen PBMCs were thawed at 37 °C in a water bath for 2 minutes or until a small
622 ice crystal remains. In a biosafety hood (Level 2), thawed cells slowly transferred to a
623 50 ml conical tube using a wide-bore pipette tip and rinsed the cryovial with 1 ml
624 warm complete RPMI1640 medium (RPMI1640, 10% FBS, anti/anti) dropwise (1
625 drop per 5 seconds) to the 50 ml of tubes while gently shaking the tube. Further,
626 sequentially diluted cells in the 50 ml tube by incremental 1:1 volume addition of

627

628 complete RPMI1640 medium for a total of 5 times with 1 minute wait between each
629 addition (total volume 32 ml). After completion of adding the medium, tube was
630 centrifuged at 400xg for 5 minutes at room temperature. Supernatant was discarded
631 after centrifuge leaving 1 ml of medium was left and mixed the cells using regular
632 bore pipette or 10ml of Pasteur pipette tip. After mixing, 19ml of complete RPMI1640
633 was added and washed the cells at 400xg for 5 minutes at room temperature to
634 remove any remaining DMSO from the cells. Again, supernatant was discarded, and
635 cells were resuspended in 2 ml of medium and cells were counted. After counting the
636 cells 1×10^6 cells were used for each 14 colour FACS panel and 0.5×10^6 cells were
637 used for single-cell RNA sequencing (SC-RNA-Seq).

638

639 ***Flowcytometry data analysis staining and data analysis***

640 For flow cytometry staining, 1×10^6 cells were taken in 96 well plate and washed with
641 DPBS (Ca²⁺/Mg²⁺ free). First, the cells were stained with 5 ul of live and dead dye
642 (1:400 dilution in PBS) and stained the cells for 15 minutes in dark at room
643 temperature. After incubation, cells were washed once with PBS and added 50ul of
644 PBS into each well. 12 colour antibodies cocktail was made for the surface
645 recognizing markers (CD3, CD4, CD8, CD19, CD56, HLA-DR, CD38, CD154,
646 CD45R, CCR7, CD14, CD16) as reported earlier (Singh *et al.*, 2021). For each
647 reaction, we used 2.5ul antibody as well as 5.0ul of superbright staining buffer (to
648 distinguish two different antibody in the superbright colour). Cells were incubated
649 with antibody cocktail for 30-40 minutes. After incubation, cells were washed with
650 PBS and fixed using fix/perm buffer for 45 minutes. After fixation, cells were
651 permeabilized using 1x permeabilization buffer and added 2ul of Foxp3 intracellular
652 antibody and incubated at room temperature for 30-40 minutes. After incubation,
653 cells were washed with PBS and cell samples were acquired on BD Fortessa flow
654 cytometry. Data were analysed using Flow jo for 2D FACS plots dimensional
655 reduction methods.

656

657 ***Sample preparation of SC-RNA-seq***

658 Thawed 0.5×10^6 cells washed 3x at 400xg for 5 minutes at room temperature with 1x
659 staining buffer (Biolegend) and kept on ice during the live dead staining using
660 acridine orange and propidium dye to measure the cell viability before proceeding for
661 10x experiments. We followed the 10x chromium SC-RNA-seq protocol. In brief,
662 after measuring the cell viability, cells were loaded on 10x Chromium Chip.

663

664 Single cells were prepared in the Chromium Single Cell Gene Expression Solution
665 using the Chromium Single Cell 3' Gel Bead, Chip, and Library Kits v1 (10x
666 Genomics) as per the manufacturer's protocol. In all, 20,000 total cells were loaded
667 to each channel with an average expected recovery of 6000-9000 cells. The cells
668 were then partitioned into Gel Beads in Emulsion in the Chromium instrument, where
669 cell lysis and barcoded reverse transcription of mRNA occurred, followed by
670 amplification, shearing, and 3' adapter and sample index attachment. Libraries were
671 quantified by QubitTM 2.0 Fluorometer (ThermoFisher) and fragment size was

672 controlled using 2100 Bioanalyzer with High Sensitivity DNA kit (Agilent).
673 Sequencing was performed in paired-end mode with a S1 and S2 flow cell (100
674 cycles) using NovaSeq 6000 sequencer (Illumina) at NCCT, IMGAG, Tübingen,
675 Germany.

676
677 For the 10x Genomics sequencing data alignment and quantification, the
678 sequencing data were processed using the CellRanger software (v3.0.1) with default
679 parameters and the GRCh38 v3.0.0 human reference genome.

680
681 ***scRNA-seq analysis by Seqgeq software (BD Bioscience) using Seurat and***
682 ***associated plugin***

683 First, cell ranger filtered feature matrix files (.HD5 format) were concatenated in
684 “Seqgeq” online browser user friendly software (BD Bioscience and Flow Jo). We
685 used n=4 Preg-HC and n=4 Preg-R (in duplicate) samples for analysis (total cells
686 recovered from sequencing; n=55,588). Before concatenations each matrix file was
687 normalized (counts per 10,000) and adjusted transformation to reflect normalized
688 ranges. Concatenated file was normalized (counts per 10,000) and performed the
689 quality check (QC) as described online (<https://www.flowjo.com/learn/flowjo-university/seqgeq>). In brief, we firstly identified the library size and gene expressed in
690 total to decide the good quality cells in cell view platform. We identified 81% cells
691 (n=45,859) were good quality (Suppl. Fig 2) and use for deciding the gene cut off for
692 the upper and lower limit and gated as high parameters in cell view platform. High
693 quality gated genes were selected for highly dispersed genes. These dispersed
694 genes (n=1200) were used for software inbuilt dimensional reduction platforms -
695 principal component analysis (PCA) guided t-distributed stochastic neighbour
696 embedding (t-SNE) analysis to present the data into biaxial plots, while preserving
697 variance contained in biological populations. Further, “Seurat plugin” analyses to
698 perform the unsupervised cell clustering and UMAP analysis including the if any
699 batch corrections. The Seurat output resulted in 20 cell clusters. Cell clusters were
700 further defined on Seurat UMAP using another plugin “Phenograph” which results in
701 31 cell clusters. Each cell cluster was defined on differential gene expression
702 analysis with respect to the all the cell clusters.

703
704
705 ***Pseudotime trajectory of B cells***
706 Monocle plugin was used for pseudotime trajectory to understand the B cell
707 development. B cells were concatenated from Seurat output pipeline and were fed
708 into Monocle plugin seqgeq software as default setting.

709
710 ***Differential gene expression in Preg-HC vs Preg-R***
711 Each cell clusters were compared for differential gene expression Preg-R vs Preg-
712 HC to identify the upregulated and downregulated gene expression for gene
713 enrichment analysis. Volcano plots were used for identifying differentially regulated
714 genes to ascertain genes expressed above a certain fold change and statistically
715 significant p-value. By default, p-Values are adjusted using False Discovery Rate

716 (FDR) is calculated according to the Benjamini-Hochberg algorithm and considered
717 significant (q value ≤ 0.05).

718

719 ***Gene ontology (GO) pathway enrichments using Metascape***

720 Differentially upregulated or downregulated genes from each cell clusters were used
721 for GO pathway enrichment analysis using online Metascape tool
722 (<https://metascape.org>). In brief, Metascape first automatically converts the input
723 identifiers (Entrez Gene ID, RefSeq, Ensembl ID, UnProt ID or Symbol) into Human
724 Entrez Gene ID. We first identified all statistically enriched terms (can be GO/KEGG
725 terms, canonical pathways, hall mark gene sets, etc., based on the default choices
726 under Express Analysis). Accumulative hypergeometric p-values and enrichment
727 factors were calculated and used for filtering and the remaining significant terms
728 were then hierarchically clustered into a tree based on Kappa-statistical similarities
729 among their gene memberships (used in NCI DAVID site). Then 0.3 kappa score
730 was applied as the threshold to cast the tree into term clusters. The terms within
731 each cluster are exported in the Excel spreadsheet named “Enrichment Analysis”
732 and presented in bar diagram for selected pathways.

733

734 **Statistics analysis**

735 Cytometry data was analyzed using FlowJo 10.8.1. Statistical analyses were
736 performed in GraphPad Prism 9.3.0, unless otherwise stated. The statistical details
737 of the experiments are provided in the respective figure legends. Data plotted in
738 linear scale were expressed as Mean \pm Standard Deviation (SD). Mann–Whitney U
739 or Wilcoxon rank-sum tests with Dunn’s post-hoc (for multiple comparisons) were
740 applied for unpaired comparisons, respectively.

741

742 **Author’s contributions**

743

744 NHAA: Conceiving the study, blood sample collection, metadata collection,
745 performing the experiments, data analysis

746 MSS: Conceiving the study, performing initial part of scRNA-seq sample preparation,
747 data analysis, figure preparation, writing the manuscript

748 AKL: Single cell data analysis, discussion, preparation of the figures

749 MNS: Conceiving the study, metadata collection, funding acquisition

750 NMK, AK, and NAF: Blood sample collection, PBMCs preparation, metadata
751 collection

752 SPS, OK: PBMCs preparation for the flow staining and acquisition of the samples on
753 flow cytometry

754 EK: scRNA-seq data processing and data analysis

755 SO, NC, SYB, OR: Funding acquisition, provided tools for sc-RNA-seq, data analysis
756 and discussion of the scRNA-seq data

757 DeCOL: tools and data discussion

758 YS: Conceiving the study, provide support for the experiments, data analysis,
759 funding acquisition, writing the manuscript and overall project management

760

761 **Acknowledgements**

762 We thank all the pregnant women who participated in this study. All the lab members
763 who participated in fruitful discussion and technical assistance.

764

765 **DeCOI consortium**

766 DeCOI members are presented in <https://decoi.eu/members-of-decoi/>

767

768 **Funding for the study**

769

770 This project is supported by Ferring Pharmaceuticals to YS. MSS and MNS were
771 also independently supported by Ferring Pharmaceuticals to provide materials and
772 tools for this project. NGS sequencing methods were funded and performed with the
773 support of the DFG-funded NGS Competence Center Tübingen (INST 37/1049-1)
774 and Project-ID 286/2020B01 – 428994620. MSS is supported by the Margarete von
775 Wrangell (MvW 31-7635.41/118/3) habilitation scholarship co-funded by the Ministry
776 of Science, Research, and the Arts (MWK) of the state of Baden-Württemberg and
777 by the European Social Funds.

778

779 **Conflict of Interest**

780 The authors declare that the research was conducted in the absence of any
781 commercial or financial relationships that could be construed as a potential conflict of
782 interest.

783

784 **Data and code availability**

785

- 786 The raw data generated by SC-RNA-sequencing from this study are available
787 to download through the public repository via the following accession number
or link:
- 788 This paper does not report any original code.
- 789 Any additional information required to re-analyze the data reported in this
790 paper is available from the lead contact upon reasonable request.

791

792 **Lead contact**

793 Requests for resources and reagents and for further information should be directed
794 to and will be fulfilled by the Lead contact: yogesh.singh@med.uni-tuebingen.de

795

796 **Literature:**

797

798 Abu-Raya B, Michalski C, Sadarangani M, Lavoie PM (2020) Maternal
799 Immunological Adaptation During Normal Pregnancy. *Front Immunol* 11: 575197
800 Aghaeepour N, Ganio EA, McIlwain D, Tsai AS, Tingle M, Van Gassen S, Gaudilliere
801 DK, Baca Q, McNeil L, Okada R et al (2017) An immune clock of human pregnancy.
802 *Sci Immunol* 2

803 Alberca RW, Pereira NZ, Oliveira L, Gozzi-Silva SC, Sato MN (2020) Pregnancy,
804 Viral Infection, and COVID-19. *Front Immunol* 11: 1672

805 Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF (2020) The proximal
806 origin of SARS-CoV-2. *Nature Medicine*

807 Bhatia P, Chhabra S (2018) Physiological and anatomical changes of pregnancy:
808 Implications for anaesthesia. *Indian J Anaesth* 62: 651-657

809 Bordt EA, Shook LL, Atyeo C, Pullen KM, De Guzman RM, Meinsohn MC, Chauvin
810 M, Fischinger S, Yockey LJ, James K et al (2021) Maternal SARS-CoV-2 infection
811 elicits sexually dimorphic placental immune responses. *Sci Transl Med* 13: eabi7428

812 Cao H, Abd Aziz NH, Xavier JR, Shafiee MN, Kalok A, Jee B, Salker MS, Singh Y
813 (2022) Dysregulated Exosomes Result in Suppression of the Immune Response of
814 Pregnant COVID-19 Convalescent Women. *Frontiers in Molecular Biosciences* 9

815 Chen G, Liao Q, Ai J, Yang B, Bai H, Chen J, Liu F, Cao Y, Liu H, Li K (2021a)
816 Immune Response to COVID-19 During Pregnancy. *Front Immunol* 12: 675476

817 Chen G, Zhang Y, Zhang Y, Ai J, Yang B, Cui M, Liao Q, Chen H, Bai H, Shang D et
818 al (2021b) Differential immune responses in pregnant patients recovered from
819 COVID-19. *Signal Transduct Target Ther* 6: 289

820 Chua RL, Lukassen S, Trump S, Hennig BP, Wendisch D, Pott F, Debnath O,
821 Thurmann L, Kurth F, Volker MT et al (2020) COVID-19 severity correlates with
822 airway epithelium-immune cell interactions identified by single-cell analysis. *Nat
823 Biotechnol* 38: 970-979

824 Henarejos-Castillo I, Sebastian-Leon P, Devesa-Peiro A, Pellicer A, Diaz-Gimeno P
825 (2020) SARS-CoV-2 infection risk assessment in the endometrium: viral infection-
826 related gene expression across the menstrual cycle. *Fertil Steril* 114: 223-232

827 Kampf G (2021) The epidemiological relevance of the COVID-19-vaccinated
828 population is increasing. *Lancet Reg Health Eur* 11: 100272

829 Kim YM, Shin EC (2021) Type I and III interferon responses in SARS-CoV-2
830 infection. *Exp Mol Med* 53: 750-760

831 Liu P, Zheng J, Yang P, Wang X, Wei C, Zhang S, Feng S, Lan J, He B, Zhao D et al
832 (2020) The immunologic status of newborns born to SARS-CoV-2-infected mothers
833 in Wuhan, China. *J Allergy Clin Immunol* 146: 101-109 e101

834 Liu X, Song W, Wong BY, Zhang T, Yu S, Lin GN, Ding X (2019) A comparison
835 framework and guideline of clustering methods for mass cytometry data. *Genome
836 Biol* 20: 297

837 Lu-Culligan A, Chavan AR, Vijayakumar P, Irshaid L, Courchaine EM, Milano KM,
838 Tang Z, Pope SD, Song E, Vogels CBF et al (2021) Maternal respiratory SARS-CoV-
839 2 infection in pregnancy is associated with a robust inflammatory response at the
840 maternal-fetal interface. *Med (N Y)* 2: 591-610 e510

841 Maucourant C, Filipovic I, Ponzetta A, Aleman S, Cornillet M, Hertwig L, Strunz B,
842 Lentini A, Reinius B, Brownlie D et al (2020) Natural killer cell immunotypes related
843 to COVID-19 disease severity. *Sci Immunol* 5

844 Medicine JHU (2022) Corona Virus Resource Center:
845 <https://coronavirus.jhu.edu/map.html>.

846 Mullins E, Evans D, Viner RM, O'Brien P, Morris E (2020) Coronavirus in pregnancy
847 and delivery: rapid review. *Ultrasound Obstet Gynecol* 55: 586-592

848 Nidhi S (2021) How does COVID affect mother and Baby? *Nature* 591

849 Odak I, Barros-Martins J, Bosnjak B, Stahl K, David S, Wiesner O, Busch M, Hoeper
850 MM, Pink I, Welte T et al (2020) Reappearance of effector T cells is associated with
851 recovery from COVID-19. *EBioMedicine* 57: 102885

852 Ovies C, Semmes EC, Coyne CB (2021) Pregnancy influences immune responses
853 to SARS-CoV-2. *Sci Transl Med* 13: eabm2070

854 Raffetseder J, Lindau R, van der Veen S, Berg G, Larsson M, Ernerudh J (2021)
855 MAIT Cells Balance the Requirements for Immune Tolerance and Anti-Microbial
856 Defense During Pregnancy. *Front Immunol* 12: 718168

857 Silasi M, Cardenas I, Kwon JY, Racicot K, Aldo P, Mor G (2015) Viral infections
858 during pregnancy. *Am J Reprod Immunol* 73: 199-213

859 Singh Y, Trautwein C, Fendel R, Krickeberg N, Berezhnoy G, Bissinger R, Ossowski
860 S, Salkier MS, Casadei N, Riess O et al (2021) SARS-CoV-2 infection paralyzes
861 cytotoxic and metabolic functions of the immune cells. *Helion* 7: e07147

862 Subramanian SV, Kumar A (2021) Increases in COVID-19 are unrelated to levels of
863 vaccination across 68 countries and 2947 counties in the United States. *Eur J
864 Epidemiol* 36: 1237-1240

865 Tian Y, Carpp LN, Miller HER, Zager M, Newell EW, Gottardo R (2021) Single-cell
866 immunology of SARS-CoV-2 infection. *Nat Biotechnol*

867 Villar J, Ariff S, Gunier RB, Thiruvengadam R, Rauch S, Kholin A, Roggero P,
868 Prefumo F, do Vale MS, Cardona-Perez JA et al (2021) Maternal and Neonatal
869 Morbidity and Mortality Among Pregnant Women With and Without COVID-19
870 Infection: The INTERCOVID Multinational Cohort Study. *JAMA Pediatr* 175: 817-826

871 Waghmare R, Gajbhiye R, Mahajan NN, Modi D, Mukherjee S, Mahale SD (2021)
872 Universal screening identifies asymptomatic carriers of SARS-CoV-2 among
873 pregnant women in India. *Eur J Obstet Gynecol Reprod Biol* 256: 503-505

874 Watanabe M, Iwatani Y, Kaneda T, Hidaka Y, Mitsuda N, Morimoto Y, Amino N
875 (1997) Changes in T, B, and NK lymphocyte subsets during and after normal
876 pregnancy. *Am J Reprod Immunol* 37: 368-377

877 Wilder-Smith A (2021) COVID-19 in comparison with other emerging viral diseases:
878 risk of geographic spread via travel. *Trop Dis Travel Med Vaccines* 7: 3

879 Wong YP, Tan GC, Omar SZ, Mustangin M, Singh Y, Salkier MS, Abd Aziz NH,
880 Shafiee MN (2022) SARS-CoV-2 Infection in Pregnancy: Placental
881 Histomorphological Patterns, Disease Severity and Perinatal Outcomes. *Int J
882 Environ Res Public Health* 19

883 Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang
884 CL et al (2020) A pneumonia outbreak associated with a new coronavirus of
885 probable bat origin. *Nature* 579: 270-273

886

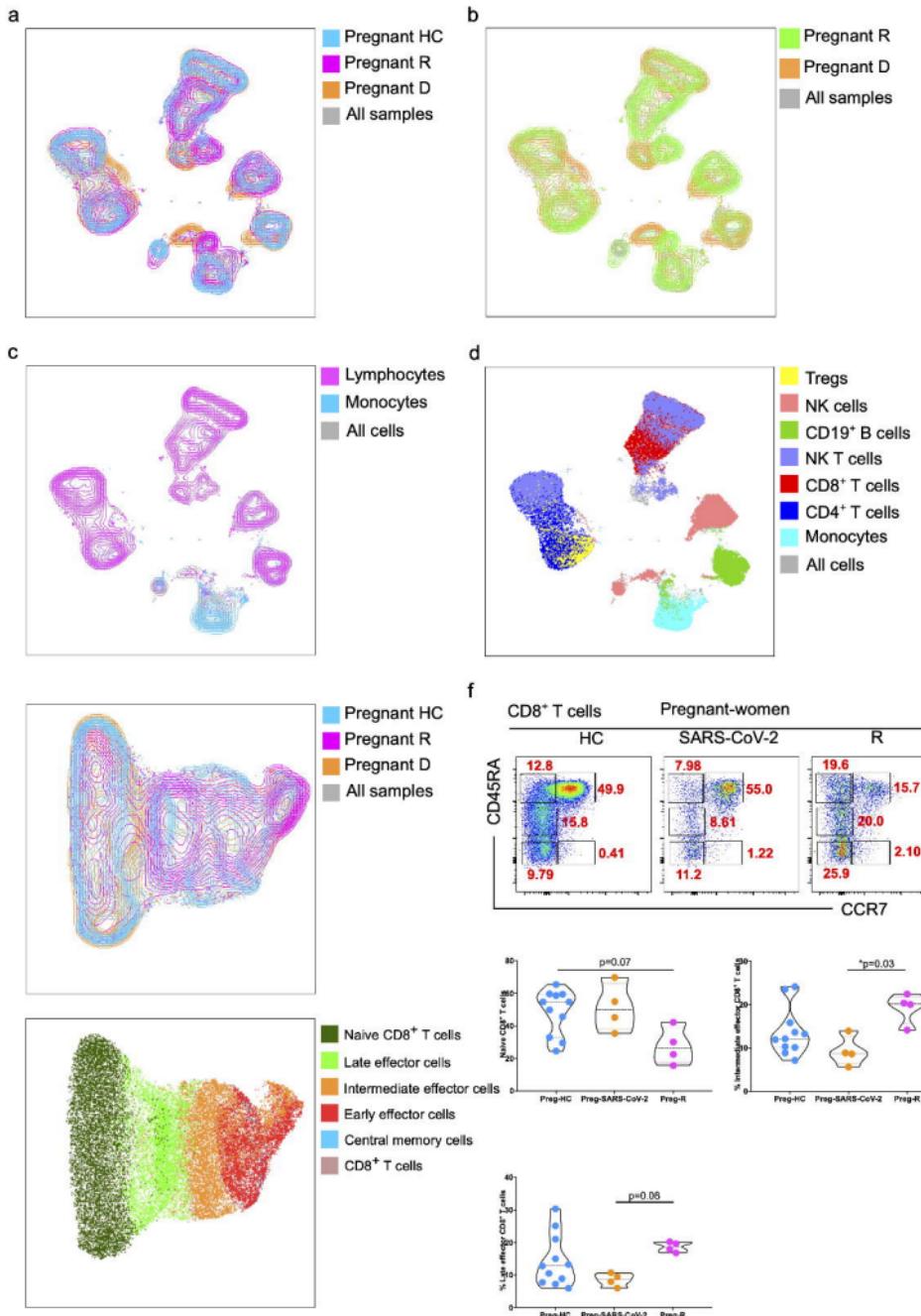
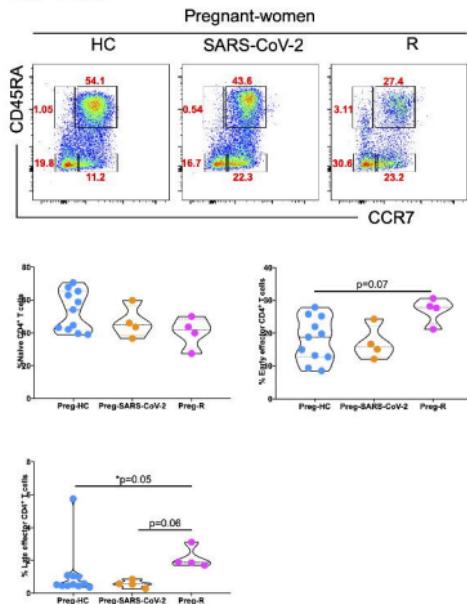
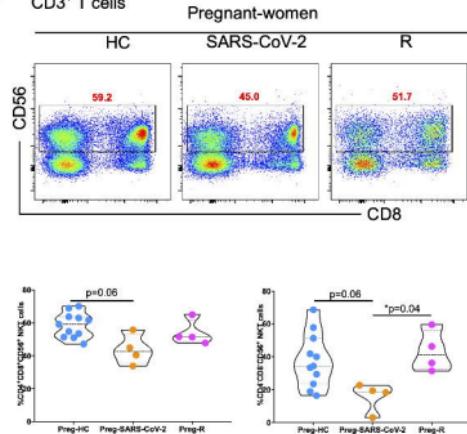




Fig. 1

a**c****b****CD4⁺ T cells****d****CD3⁺ T cells****Fig. 2**

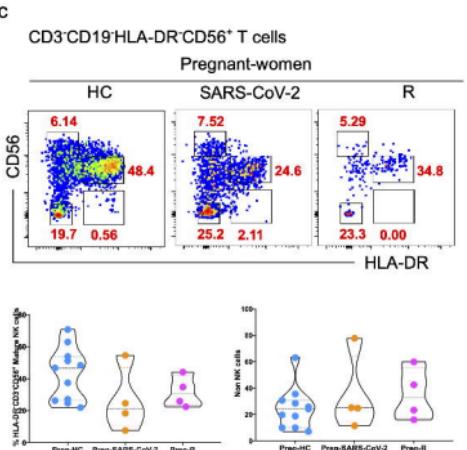
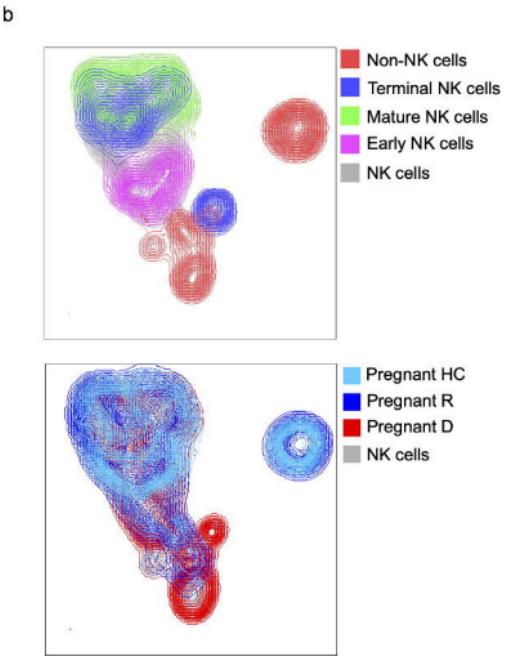
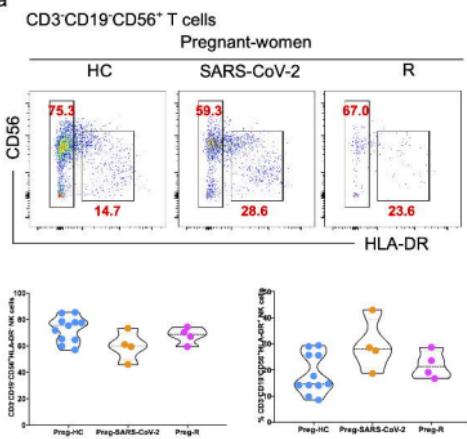
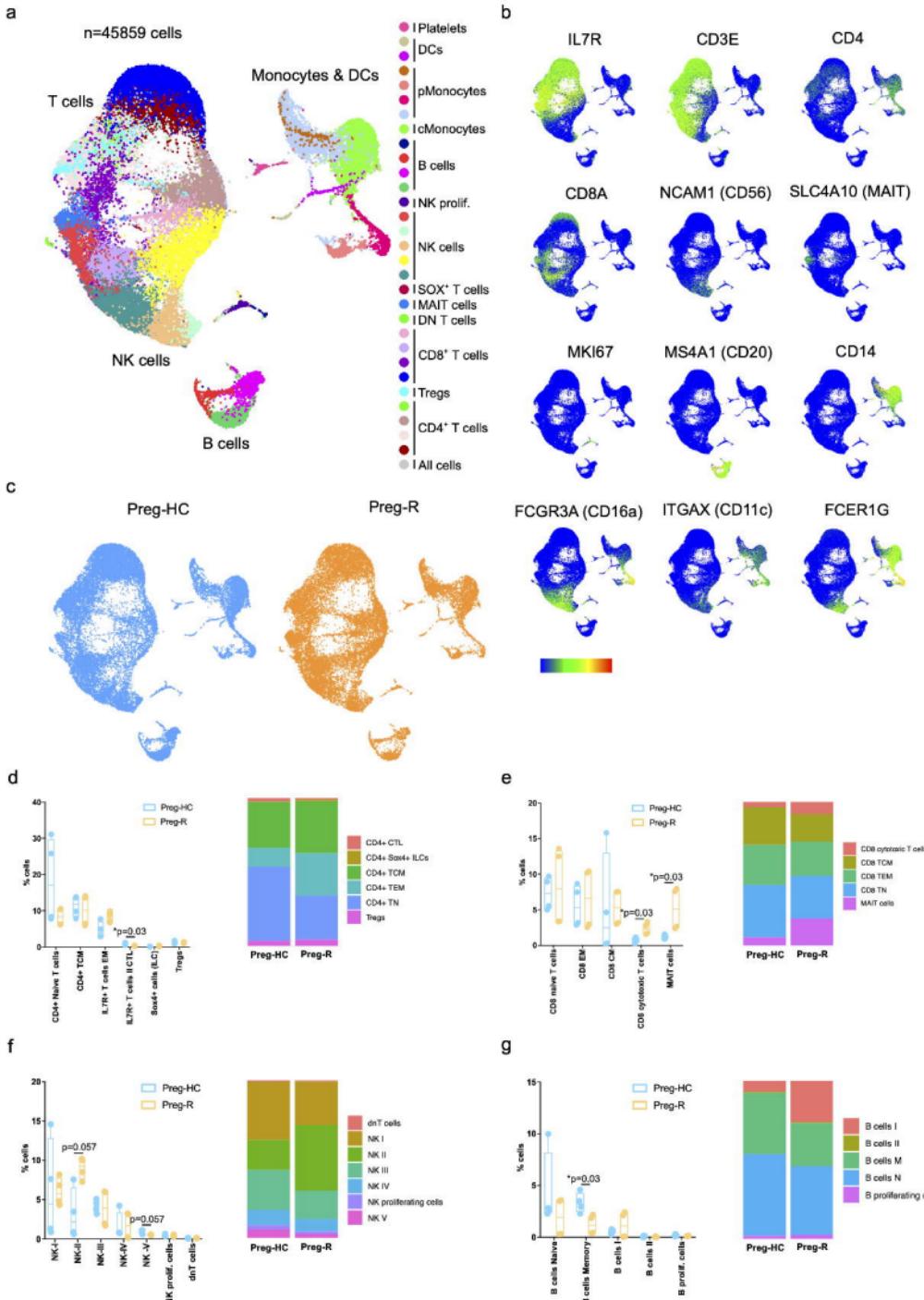
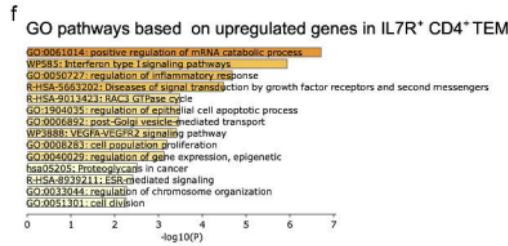
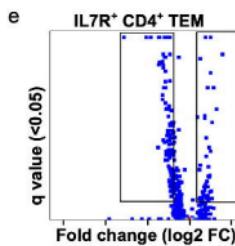




Fig. 3

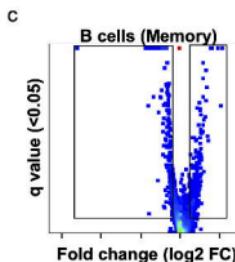
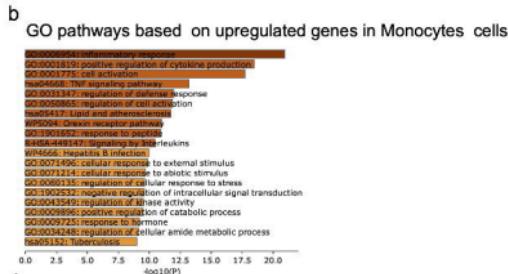
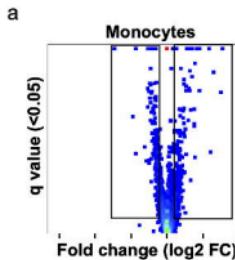
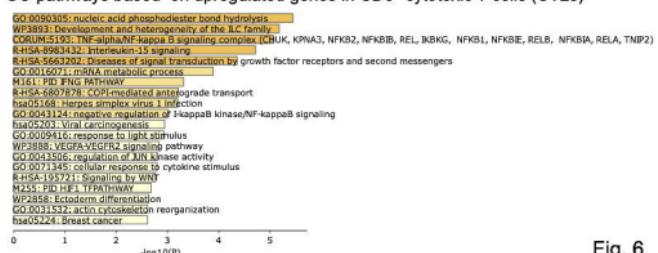
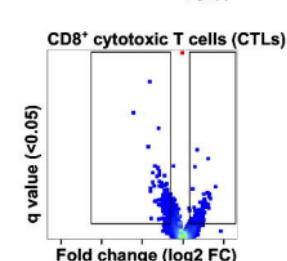
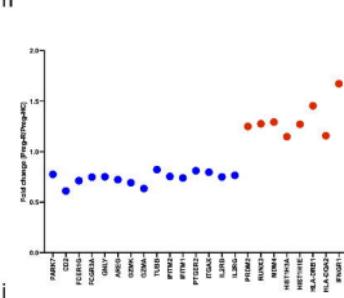
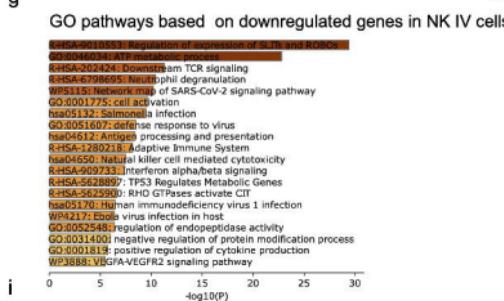
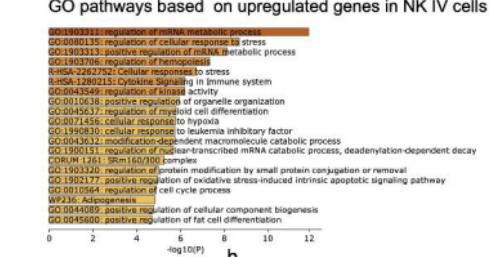
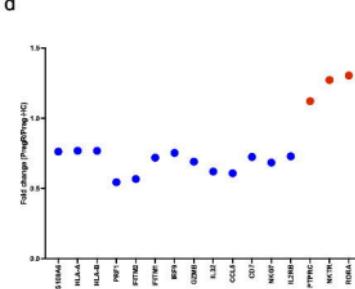
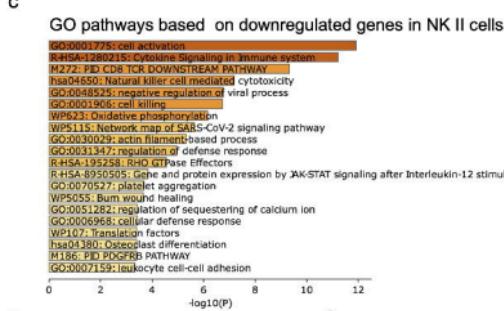
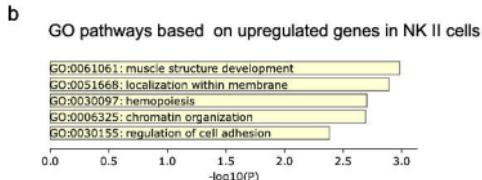
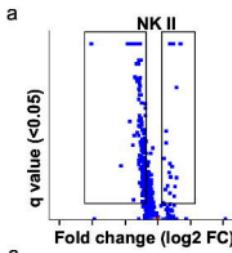













Fig. 4

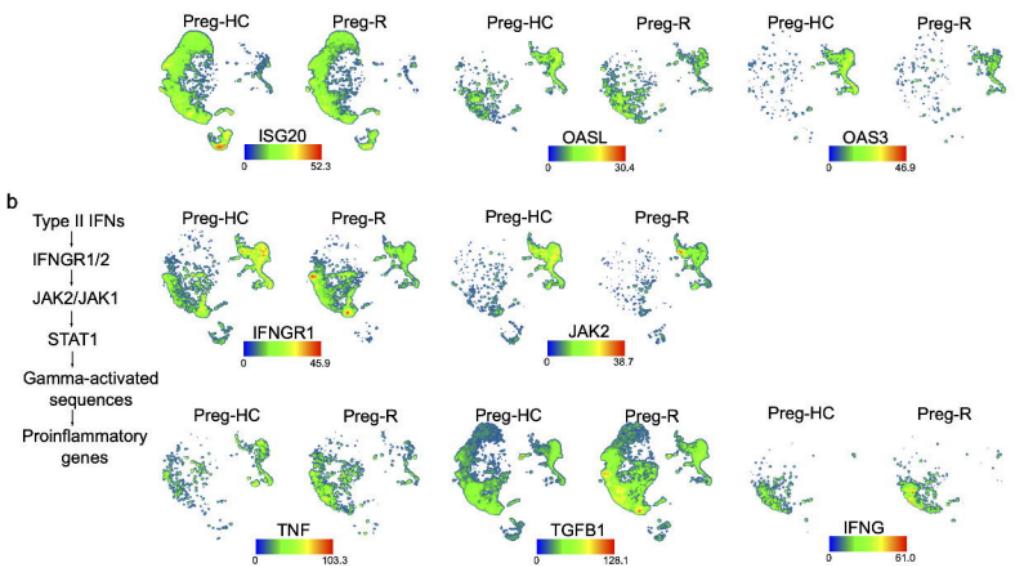
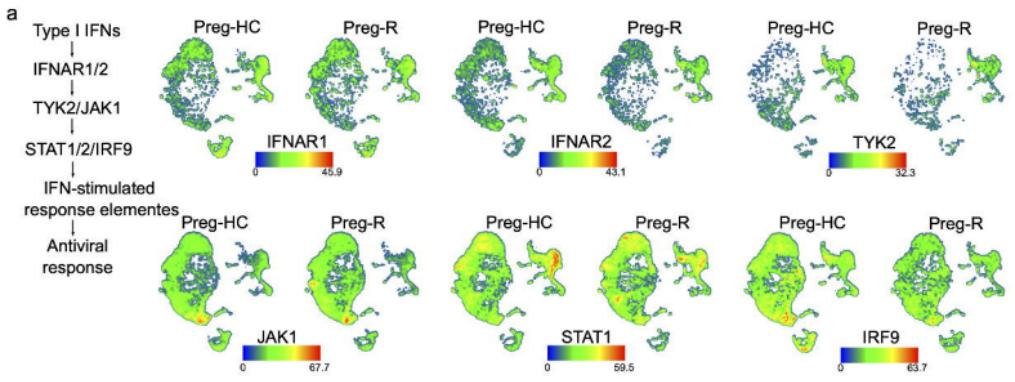



Fig. 7