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10 Abstract
11 Plant diseases are major causes of crop yield losses and exert a financial burden via expenditure on
12 disease control. The magnitude of these burdens depends on biological, environmental and
13 management factors, but this variation is poorly understood. Here we model the effects of weather on
14 potential yield losses due to fungal plant pathogens (the biotic yield gap, Yg) using experimental
15  trials of fungicide-treated and untreated cereal crops in the UK, and project future Y, under climate
16  change. We find that Y, varies between 10 and 20 % of fungicide-treated yields depending on crop,
17  and increases under warmer winter and wetter spring conditions. Yg will increase for winter wheat
18  and winter barley under climate change, while declining for spring crops because drier summers
19  offset the effects of warmer winters. Potential disease impacts are comparable in magnitude to the
20  effects of suboptimal weather and crop varieties.
21


https://doi.org/10.1101/2022.08.12.503729
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2022.08.12.503729
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2022.08.12.503729
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2022.08.12.503729
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2022.08.12.503729
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.12.503729; this version posted August 15, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53

54
55
56
57

made available under aCC-BY-NC-ND 4.0 International license.

Introduction

Sustainable intensification of agriculture aims to increase food production without exacerbating
environmental impacts, thereby avoiding the need to further expand agriculture into natural
ecosystems to satisfy growing market demand . A key metric for intensification is the crop yield
gap, which is the fractional difference between the potential yield in a region under irrigated or
rainfed conditions and the average yield actually achieved by farmers '. The yield gap depends on
numerous factors including crop genotype, nutrient deficiency, water stress, solar radiation, growing
season temperatures, management factors (e.g. reliance on manual labour) and the effects of weeds,
pests and diseases "**. Yield gaps shrink with economic development, as wealthier countries are able
to invest more in technology, training, fertilizer and crop protection, but tend toward 20% as further

improvements become economically and ecologically undesirable °.

While recent research has quantified the contribution of suboptimal crop genetics and management to
yield gaps, biotic burdens like weeds, pests and diseases tend to be ignored *°. Expert opinion
suggests that around one fifth to one third of crop production is lost to pests and diseases globally °,
but little is known about how these losses vary in time and space. Observed losses are potential losses
reduced by expenditure on measures like weeding, disease-resistant seed, and agrochemical
herbicides, pesticides and fungicides ", Here, we focus on the impacts of fungal diseases. Disease
risk varies with pathogen virulence, crop susceptibility and environmental factors like weather *°. Pest
and disease life cycles are strongly determined by weather conditions, and many weather-driven
models have been developed to predict occurrence or infection risk and thereby support decisions on
when to apply control measures ®. Similarly, climate change, particularly warming, has driven
historical increases in pest and disease incidence '° and is likely to cause significant shifts in pest and
disease risks in future '"*'%. In contrast with disease risk, the effects of weather and climate change on

yield losses to biotic agents are poorly understood.

Quantifying potential yield losses to biotic agents and why these vary is key to understanding an
important component of crop yield gaps, and how to reduce them. The potential biotic yield gap (Ygb)
can be defined as the fractional difference in yield between crops that have been protected against

losses to biotic agents (Y¢) and those that are unprotected (Y.) keeping crop variety and environment

. Y . . .
constant, i.e. Ygp = 1 — Y—° Y can be considered as a measure of disease pressure or disease burden,
t

as it indicates the importance of disease to a particular cropping system. Potential losses can be
estimated by controlled field experiments that compare protected (e.g. fungicide-treated) with control
(untreated) yields. Such experiments are generally undertaken by agencies responsible for crop

variety selection when determining pest or disease resistance levels, most often to fungal pathogens **.
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Here, we analyse untreated (Y.) and fungicide-treated (Y+) yields from nearly two decades of grain
cultivar trials in the UK to quantify Y attributable to fungal pathogens (Supplementary Table 1), and
to test the hypothesis that the fungal disease burden will increase with climate change. Further, we
quantify the contribution of crop variety differences and interannual (climatic) variability to trial

yields, and estimated the relative contributions of changing temperature and moisture to Y gp.

Results

Yields and the biotic yield gap

Yields varied among crops and between spring and winter varieties of wheat and barley (Fig. 1,
Supplementary Fig. 1). Mean Y, per site (averaged across all varieties) over the study period was 10.6
+ 1.7 (sample SD) t ha! for winter wheat, 7.2 + 1.4 t ha! for spring wheat, 9.1 + 1.4 t ha™' for winter
barley, 7.3 + 1.2 t ha! for spring barley and 7.2 + 1.5 t ha! for spring oats. Y. tended to increase over
time for winter and spring barley but not for the other crops. Mean Y. per site was 8.3 = 1.7 t ha! for
winter wheat, 6.1 = 1.2 t ha' for spring wheat, 7.4 + 1.2 t ha™ for winter barley, 6.6 + 1.3 t ha™ for
spring barley and 6.3 + 1.4 t ha™ for spring oats. Y. followed similar temporal trends to Y, increasing
for barley but not changing over the study period for the other crops. The mean difference between Y,
and Y. for each individual variety trial was 2.3 + 1.6 t ha™' for winter wheat, 1.4 + 1.2 t ha™' for spring
wheat, 1.7 + 1.2 t ha™! for winter barley, 0.8 + 0.8 t ha™ for spring barley and 1.0 = 1.0 t ha™ for spring
oats. The mean biotic yield gap (Yg) attributable to fungal pathogens per site was 0.21 + 0.12 for
winter wheat, 0.17 & 0.13 for spring wheat, 0.18 £ 0.10 for winter barley, 0.11 + 0.09 for spring

barley and 0.13 £ 0.11 for spring oats. No trends were apparent in Y, over time for any crop.

Maximum attainable yield and components of the yield gap

While Y: estimates yield in the absence of fungal pathogens, the effects of genetic variation among
varieties, growing season climate, and site-specific edaphic factors may reduce yield below what is
potentially possible for a crop. We estimated the maximum attainable yield (Ymax) for each crop from
the top 5 % of all Y, values across all trials. We detected no spatial trends in Y, except for an increase
with latitude in spring oats (Supplementary Table 2), and therefore estimated Y max across all sites
rather than as a function of location. Mean Y., was 14.5 t ha = 0.1 t ha™ (bootstrap SD) for winter
wheat, 10.1 £ 0.1 t ha™ for spring wheat, 12.1 £ 0.05 t ha™* for winter barley, 10.0 + 0.03 t ha™ for
spring barley and 10.5 + 0.1 t ha™' for spring oats. We estimated the contribution of variety (genetic)
differences to yield by the mean absolute error (MAE) of Y; among varieties within sites and years
(Yge). Over the study period, Y, was 0.4 t ha” for winter wheat, 0.3 t ha! for spring wheat, 0.4 t ha™
for winter barley, 0.3 t ha™ for spring barley and 0.6 t ha for spring oats. The MAE of Y, within

varieties and sites across years gave an estimate of the contribution of climatic variation to the yield
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gap (Yg). Over the study period, Yy was 1.0 t ha™ for winter wheat, 0.7 t ha™ for spring wheat, 0.7 t
ha! for winter barley, 0.6 t ha™* for spring barley and 0.7 t ha™' for spring oats.

Taking winter wheat as an example, we decomposed the gap between Y max and Ymin (the mean of the
lowest 5 % Y. values) into biotic (Yg), genetic (Ygg) and climatic (Yg) components (Fig. 2). In this
case, Ygg and Ygc were the empirical 95 % confidence intervals of Y, deviations rather than MAE,
indicating the difference between best and worst varieties within trials, and best and worst years
within varieties. This indicated that mean losses to disease were of similar magnitude to varietal
effects, but smaller than the effects of interannual climatic variation. Modelled potential yields and

achieved yields for rainfed wheat'* lie within the range of Yomax and Ymin.

Weather and the biotic yield gap

We correlated Yg, with site-specific monthly temperature, relative humidity (RH) and precipitation
over the growing season to determine the most important weather variables driving fungal disease
pressure (Fig. 3). Winter temperatures and summer RH were most strongly positively correlated with
Y in winter wheat and in barley, while spring and summer precipitation were most important in
spring wheat. Early spring temperature and early summer RH were most strongly correlated with Y
in spring oats. We selected the single months with the strongest temperature and RH (or precipitation)
correlations for each crop for predictive modelling. The correlations for the best predictor months
varied between 0.22 and 0.57 (Supplementary Table 3). Inclusion of additional months in the models
was unnecessary because weather is temporally autocorrelated (a warmer February tends to follow a
warmer January etc). Model selection determined that, over the range of monthly temperature and
humidity values in the data, the relationships with Y4, were best explained by additive linear terms,
except for spring oats for which there was an interaction between March temperature and May
humidity (Supplementary Fig. 2, Supplementary Table 4). Fitted values for the models were strongly
correlated (r > 0.41) with observations (Supplementary Table 4).

Climate change and the biotic yield gap

We estimated Y, across crop production areas in the UK with our models, under recent historical
(2002 — 2020) and projected future climates (2021 — 2040 and 2061 — 2080). Wheat production is
currently concentrated in central and eastern England, barley in central southern England and eastern
England and Scotland, and oat production occurs at low densities across the country (Supplementary
Fig. 3). We employed the Met Office UKCP18 RCPS8.5 projections at 5 km resolution for both the
historical and future climates. We used current crop distributions for all estimates and did not try to
project potential future crop distributions. Mean Y, weighted by crop area was around one fifth for
winter wheat, spring wheat and winter barley, and one tenth for spring barley and spring oats over the

recent historical period (Fig. 4, Supplementary Table 5). For all crops Y increased towards the South
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and West (Fig. 4). On average, Y increased slightly in the two future periods for winter wheat and
winter barley, but declined slightly for the spring crops (Supplementary Table 5). Our results were
robust to model perturbations in future climate projections, with mean standard deviations below
0.015 % across the production areas of each crop (Supplementary Figs. 4 — 8, Supplementary Table
6).

There were marked spatial patterns in the projected future changes in Y (Fig. 5). For winter wheat
and winter barley, Yg tended to increase in Wales, East Anglia, northern England and Scotland. For
spring wheat the greatest declines in Y, were projected in the South West while small increases
occurred in Scotland. For spring barley, the change in Y, was projected to be negative over most of
England and Wales, and positive in northern Scotland. Spring oats are less commonly planted across
the UK, but there was some indication of an increase in Y4 in Wales with declines elsewhere.
Overall, our results suggest that on average the changes in Yg will be relatively minor, but that some
regions will experience large increases or decreases in fungal disease pressure depending on the crop.
In particular, spring crops will see overall decreases in Y g, while winter crops will see increases. This
difference between winter and spring crops is attributable to projected changes in temperature and
moisture in winter and summer (Supplementary Figs. 9 — 10). Winter temperatures (December to
February) increase less than summer temperatures (June to August), with the largest increases
expected in the south. Winters are expected to get wetter, particularly in the north, while summers are
expected to become drier in the south and wetter only in northern Scotland. Most winter wheat and
barley production occurs in regions that will warm substantially in December and become drier in
May (Fig. 6). These trends have opposing effects on Y, meaning that much of the production area is
expected to experience relatively small changes in Y. In contrast, most of the production area for
spring barley occurs in areas expected to experience only moderate March warming, but substantial
drying in July. This results in declines in Y, for the majority of the production area. Most of the
production area for spring oats is expected to experience only moderate changes in temperature and

moisture, with relatively minor associated changes in Y g.

Discussion

Our results show that fungal disease pressure on grain crops in the UK, as measured by Y g, amounts
to between one tenth and one fifth of yield in variety trials. Y, tends to increase with winter
temperatures and summer moisture, and Y is greater in wheat and in winter barley than in spring
barley and spring oats. Projections of Y, under future climates using these models suggests that
change in disease pressure will be moderate on average, but spatially variable and dependent upon the
crop growing season. Winter varieties are more likely to see increases in disease pressure due to

warming winters, which are only partially offset by drying summers. Spring varieties of wheat and
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barley are likely to see declines in disease pressure due to summer drying. These changes could
influence the relative importance of spring and winter varieties in the UK in future. While our models
cannot be reliably extrapolated outside the UK, the strong predictive power of our relatively simple
models suggests that our approach could be applied to other regions where suitable agricultural trial

data are available.

We did not attempt to relate Y to incidences of specific fungal diseases. AHDB provides disease
incidence scores for a number of pests and pathogens for each crop, but available records are highly
incomplete making statistical estimation of impacts difficult. Septoria Tritici Blotch (STB, caused by
Zymoseptoria tritici) has been the most important disease of winter wheat in the UK for several
decades "°. Other significant fungal diseases of winter wheat include brown rust (caused by Puccinia
triticina), yellow rust (Puccinia striiformis), the soilborne disease take-all (Gaeumannomyces tritici),
glume blotch (Phaeosphaeria nodorum), powdery mildew (Blumeria graminis), tan spot
(Pyrenophora tritici-repentis), eyespot (Oculimacula spp.), sharp eyespot (Rhizoctonia cerealis), and
Fusarium ear blight (Fusarium spp.) '°. Farm surveys between 1999 and 2019 suggest that incidences
of most diseases are rather variable over time, with glume blotch, powdery mildew, eyespot and sharp
eyespot declining somewhat and Fusarium ear blight emerging '°. Temporal and spatial dynamics of

fungal diseases of spring wheat, barley and oats are less well characterized than those of winter wheat.

Fungal plant pathogens show a range of climatic tolerances '°, therefore the suite of diseases affecting
different crops may well change in future with warming and other global change drivers '2. For
example, improvements in air quality in recent decades may have allowed STB to overtake glume
blotch as the most important winter wheat disease in the UK !’ although changes in fungicide
application regimes are also implicated '°. A combination of climate change, landscape management
and crop breeding may allow a previously important disease, stem rust (caused by Puccinia graminis
f.sp. tritici), to return '*. Our projections of future Y, assumed that fungal disease responses to
weather would remain constant, though this may not be tenable if the pathogen assemblage changes.
However, general trends in fungal pathogen responses to climate change have been reported. For
example, soilborne fungal pathogens tend to increase in relative abundance in response to warming *°.
Replication of our methods in other regions, thereby extending the climate envelope for model

parameterization, could help to determine the generality of the patterns we have detected.

We assumed that fungicide applications in trials completely prevented yield losses. In the UK,
fungicides are applied to nearly all crop areas with between three and four sprays applied to winter
wheat during the growing season '°. The most consistently important fungicide classes have been
demethylation inhibitors. Use of strobilurins has declined due to resistance evolution, while succinate

dehydrogenase inhibitors and chlorothalonil use has increased '°. Details of experimental fungicide
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applications are not reported by AHDB, but we assumed that the manufacturer-recommended dosage
and timings were implemented. Farmers tend to apply less than the recommended dosage, though this
fraction increased from around 0.4 to around 0.8 between 1999 and 2019 *°. Fungicides are required
because genetic resistance to fungal pathogens provides insufficient protection. Resistance to STB
and Wheat mildew (Blumeria graminis f. sp. tritici) is polygenic and partial, but tends to be durable
over time, while resistance to rusts and Barley mildew (Blumeria graminis f. sp. hordei) is monogenic
and persists for a few years before being overcome by evolution of virulence in the pathogen .

Variation in resistance will be a major determinant of the variability in Y4 among tested varieties.

We statistically modelled Yy in relation to weather while the majority of studies have focussed on
processes like infection rate or some measure of disease risk 81221-23 Pprocess-based, or mechanistic,
models of infection risk tend to be driven by hourly meteorological data %, though some large-scale
studies have employed monthly averages . Temperature responses are usually humped, with the
maximum infection rate occurring at optimum temperature. In contrast, we detected a linear response
to temperature. This may indicate that UK crop production occurs at temperatures below the optima
for important fungal pathogens. The effect of moisture is commonly modelled as an increasing
function of humidity, or a binary process whereby infection can only take place during periods in
which leaf surfaces are wet 2. While these models of disease risk can be used in disease control
decision-making, or to estimate risks under future climates, they do not directly estimate potential
yield losses. In the UK, potential yields of rainfed crops (Yy) estimated from crop models *'* v

between 11.2 and 12.9 (mean 11.5) t ha' for wheat and 8.5 and 9.8 (mean 8.9) t ha™ for barley,

ary

depending on climate zone °. Achieved yields (Y.) vary between 7.3 and 8.1 t ha™' (mean 7.8 t ha™)
for wheat and 5.6 and 6.3 t ha™' (mean 6.0 t ha™) for barley. Oats are not modelled, and winter and
spring varieties are not differentiated °. The modelled yield gap between Y, and Y, is therefore 3.7 t
ha! for wheat and 2.9 t ha™' for barley. While we cannot estimate the contribution of different causes
(weather, variety selection, pests and diseases) precisely, our results demonstrate that potential losses
from pathogens are a similar magnitude to other yield gap drivers (Fig. 2), and that climate change

will differentially affect varieties and could therefore influence cropping patterns.

Methods

Crop and Yield data

We analysed yield data for crop variety trials conducted by the Agriculture and Horticulture
Development Board (AHDB) from 2002 to 2020. AHDB hosts archives of recommended lists of
cereals and oilseed that provide independent information on yield and quality performance,
agronomic features, disease pressure and market options to assist with variety selection **. This list is

updated each year and provides information based on the analysis of hundreds of UK trials conducted
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242  since 2002. No information is provided for fungicide usage in trials. We also obtained the

243 approximate spatial coordinates for the trial locations for data analysis and mapping by matching
244  names of trial locations to locations using GeoNames ** and Google map search (Supplementary Fig.
245  11). Data were cleaned to remove sites and varieties with missing data for yields. Yield from

246  fungicide-treated (Y.) and untreated (Y.) trials was used to calculate the fungal disease-related yield
247  gap (Yg) as:

Untreated yield(Y,.)
Treated yield(Y;)

248 Potential biotic yield gap(ng) =1-

249  As each site had data for different varieties and cultivars, Yy, and disease pressure information, mean
250  values per site per year were used for subsequent analyses.

251

252 Fungicide-treated (Y+) and untreated (Y.) yields were available for winter wheat (289 varieties),

253  spring wheat (47), winter barley (147), spring barley (154) and spring oats (45). Site locations varied
254  geographically between Limavady, Northern Ireland (6.98 °W, 55.07 °N) in the west and Morley,
255  Norfolk (1.03 °E, 52.56 °N) in the east, and West Charleton, Devon (3.76 °W, 50.27° N) in the south
256  and Kinghorn, Fife (3.10° E, 56.18° N) in the north (Supplementary Fig. 1). The number and

257  locations of trial sites varied over time, and the number and composition of varieties in the trials

258  varied among sites and over time. The total number of crop varieties tested per year remained roughly
259  stable, with a mean of 42 winter wheat, 9 spring wheat, 22 winter barley, 22 spring barley, and 10
260  spring oat varieties tested per year.

261

262  Crop map

263 Crop distribution data for the UK were obtained from the EUCROPMAP 2018 %7, This map is

264  produced using Sentinel S1A and S1B Synthetic Aperture Radar observations for 2018 and random
265  forest-based classification algorithms. The map provides detailed spatial information on 19 crop types
266  inthe EU for 2018 at 10-m resolution, with high accuracy. Pixels for each AHDB crop were extracted
267  and aggregated to a 1 km x 1 km grid generated using the Fishnet tool in ArcMap (ESRI ArcGIS

268  Desktop, release 10.8). This grid was generated on the same 1 km grid as the HadUK-Grid Gridded
269  Climate Observations. The count of crop pixels in each grid cell was then used to calculate the total
270  area (hectares) of crop under cultivation and, subsequently, the fractional area under crop cultivation
271 (Ar) in each 1 km grid cell for further analysis (Supplementary Fig. 3).

272

273 Climate data

274  Monthly weather data (2001-2020), including mean air temperature (°C), relative humidity (%), total
275  rainfall (mm) and sunshine hours (h), were obtained from the HadUK-Grid Gridded Climate

276  Observations v1.0.3.0 on a 1km and 5km grid over the UK **. Weather data from 1km grid were

277  extracted for AHDB trial sites (point locations, years 2001 - 2020) for each crop from the rasters
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using the extract function of the raster package in R v. 4.2.1 #°. Climate model projections for
monthly mean air temperature (°C), relative humidity (%), total rainfall (mm) and sunshine hours (h)
were obtained from UKCP Local Projections on a Skm grid over the UK for 2021-2040 and 2061-
2080 *°. These projections are produced by the Met Office Hadley Centre as part of the UK Climate
Projection 2018 (UKCP18) project and cover three time-periods (1981-2000, 2021-2040 and 2061-
2080) for a high emissions scenario, RCP8.5. Projections for other emission scenarios are not
available. For Y, predictions, monthly weather data (2001-2020) from HadUK-Grid Climate
Observations and climate model projections data (2021-2040 and 2061-2080) from UKCP Local
Projections on a 5 km grid were extracted for areas under cultivation for each crop, using the mask

function of raster package in R %°.

Climate-yield gap relationship estimation

The relationship between Y, and climatic variables for each month was explored using simple
correlation and regression analysis. Estimates from correlation and regression analyses were
bootstrapped (1000 iterations) using the bootstraps function in the rsample package of R *', where
each iteration was fitted on a resampled dataset with replacement. We used temporal block
bootstrapping to randomly resample data from a single year with replacement instead of sampling
random monthly observations, to maintain within-year temporal correlations *2. The bootstrapped
estimates of correlation coefficient and beta slope estimate were visually inspected for consistency
and strength of association between monthly weather variables and observed Y g.

Our objective was to statistically fit the observed Yy, to monthly weather variables. The resulting
relationship would be used for further analyses. We used generalized-least-squares (GLS) using the
gls function from the nlme package in R ** to fit the model between Y and the significant weather
variables identified through bootstrapping estimates. The GLS regression allowed for a first-order
autoregressive correlation structure in the residuals to account for the correlation over time and among
experimental sites in climate data. The parameters of the GLS regression represented the climate-
driven trends in yield gaps. We compared the models with and without temporal correlation structure,
using F-test in the anova function, to determine whether inclusion of temporal autocorrelation was
required. Finally, current (2002-2020) and future yield gap levels (2021-2040, 2061-2080) were
predicted and the estimates of the standard error of prediction were calculated for each masked (crop
pixels only) climate dataset pixel (5 km) using the predictSE.gls function from the A/Ccmodavg
package in R **. The modelled yield gaps were averaged for each time period and climate dataset
pixel. In addition, we made predictions on all 12-member perturbed physics ensembles (UKCP local 5
km) for projections to get uncertainty in Y predictions due to climate model

parameters/physics perturbations .

Future climate change impacts on yield gaps (forecast) and climate risk classification
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315 The impact of future climate change on Y, was quantified as the change in predicted future
316  yield gaps (2021-2040, 2061-2080) relative to current yield gaps (2002-2020). The mean yield gap
317  differences AY,, were calculated for each pixel (5 km), weighted by Ar. We also compared the

318  relationship between AY g and the change in average future temperature (AT) and relative humidity
319  (ARH) levels in each future time slice to identify the strong drivers of Yy, in each crop.
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(AHDB); part of this dataset is from the AHDB Recommended Lists. The AHDB Recommended
Lists are managed by a project consortium of AHDB, BSPB, MAGB and UKFM. Data are available
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420  Figure 1. Distribution of total grain yield (Tonnes ha™) and yield gap (Yg). Distribution of grain
421  yield from fungicide treated (Y:) and non-treated (Y.) experimental sites and resultant yield gaps (Ygb)
422  in the studied crops from 2002 - 2020. The dashed horizontal line in the right panel indicates no yield
423 gap. Data points above this line indicate yield gap (Y:> Y.). However, points below this line indicate
424 yield gain (Y < Yo).
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Figure 2. Yield gap components in winter wheat. Y nax and Ymi are top and bottom 5 % of Y: and
Y., respectively, across all trials. Yma (14.5 t ha™') indicates the highest yield achievable under
optimal weather conditions in the best sites with the best varieties and no loss to disease. Ymin (4.3 t
ha™') indicates the yield in the worst sites with the lowest yielding varieties in the worst years with
large losses to disease. Ygb (2.3 t ha™') is the mean loss to disease. Y (2.2 t ha') indicates the
difference between the highest and lowest Y, of varieties within trials. Y, (5.7 t ha') indicates the
difference between the best and worst Y of a variety within a site. Yield trial results are compared to
modelled potential rainfed wheat yield for the UK (Yy) and achieved yield (Y.) from the Global Yield

Gap Analysis'*. Bar are not to scale.
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438
439  Figure 2. Bootstrapped estimates of the correlation between yield gap (Yq) and monthly

440  weather variables. Boxplots show the distribution (minimum, maximum, median and interquartile
441  range) of correlation coefficient (7) estimates of the association between Y, and monthly temperature
442  and relative humidity except for D, representing the correlation estimates between Y, and rainfall.
443 Dashed horizontal line indicates no correlation. Blue and pink shaded areas indicate planting and

444  harvesting times of the studied AHDB crops, respectively. The varying pattern of boxplots indicates
445  how the correlation estimates vary for weather variables in each month of the growing season.

446  Boxplots filled with red are the months we used climate data for model fitting. We did not find any
447  significant association of Yy, with temperature in spring wheat (C).

448
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Figure 4. Current and future predicted average yield gap (Yg). Predictions were made on current
(2002 - 2020) and future (2021 — 2040 and 2061 - 2080) climate pixels of 1km x 1km grid resolution.
Predicted Yy were then summarized for each time slice. Grey indicates either no or low Y g, while
dark blue represents a higher Yg. White grid cells contained no hosts and were excluded from the
analysis. Values outside 1.5 times the interquartile range (IQR) above upper quartile and below lower

quartile are shown in red and deep blue respectively.
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Figure 5. Average change in future yield gap (AYg). Current (2002 - 2020) average predicted Y
levels were subtracted from future (2021 — 2040 and 2061 - 2080) predicted Y levels for each pixel
at 1km x 1km grid resolution. Red indicates a high Y, while blue indicates high yield gain compared
to current Yg, levels. Grey indicates no change. White grid cells contained no hosts and were
excluded from the analysis. Values outside 1.5 times the interquartile range (IQR) above upper

quartile and below lower quartile are shown in red and deep blue respectively.
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467
468  Figure 6. Association between change in average future temperature (AT) and relative humidity

469  (ARH) and the interpolated surface of mean yield gap differences (AYyp) in future time slices.
470  Contour lines represent the aggregated count of data points of association between AT and ARH.
471  Values outside 1.5 times the interquartile range (IQR) below lower quartile are shown in deep blue.
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