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Abstract 10 

Plant diseases are major causes of crop yield losses and exert a financial burden via expenditure on 11 

disease control. The magnitude of these burdens depends on biological, environmental and 12 

management factors, but this variation is poorly understood. Here we model the effects of weather on 13 

potential yield losses due to fungal plant pathogens (the biotic yield gap, Ygb) using experimental 14 

trials of fungicide-treated and untreated cereal crops in the UK, and project future Ygb under climate 15 

change. We find that Ygb varies between 10 and 20 % of fungicide-treated yields depending on crop, 16 

and increases under warmer winter and wetter spring conditions. Ygb will increase for winter wheat 17 

and winter barley under climate change, while declining for spring crops because drier summers 18 

offset the effects of warmer winters. Potential disease impacts are comparable in magnitude to the 19 

effects of suboptimal weather and crop varieties. 20 

  21 
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 2 

Introduction 22 

 23 

Sustainable intensification of agriculture aims to increase food production without exacerbating 24 

environmental impacts, thereby avoiding the need to further expand agriculture into natural 25 

ecosystems to satisfy growing market demand 1,2. A key metric for intensification is the crop yield 26 

gap, which is the fractional difference between the potential yield in a region under irrigated or 27 

rainfed conditions and the average yield actually achieved by farmers 1,3. The yield gap depends on 28 

numerous factors including crop genotype, nutrient deficiency, water stress, solar radiation, growing 29 

season temperatures, management factors (e.g. reliance on manual labour) and the effects of weeds, 30 

pests and diseases 1,3,4. Yield gaps shrink with economic development, as wealthier countries are able 31 

to invest more in technology, training, fertilizer and crop protection, but tend toward 20% as further 32 

improvements become economically and ecologically undesirable 5. 33 

 34 

While recent research has quantified the contribution of suboptimal crop genetics and management to 35 

yield gaps, biotic burdens like weeds, pests and diseases tend to be ignored 3,5. Expert opinion 36 

suggests that around one fifth to one third of crop production is lost to pests and diseases globally 6, 37 

but little is known about how these losses vary in time and space. Observed losses are potential losses 38 

reduced by expenditure on measures like weeding, disease-resistant seed, and agrochemical 39 

herbicides, pesticides and fungicides 1,7,8. Here, we focus on the impacts of fungal diseases. Disease 40 

risk varies with pathogen virulence, crop susceptibility and environmental factors like weather 8,9. Pest 41 

and disease life cycles are strongly determined by weather conditions, and many weather-driven 42 

models have been developed to predict occurrence or infection risk and thereby support decisions on 43 

when to apply control measures 8. Similarly, climate change, particularly warming, has driven 44 

historical increases in pest and disease incidence 10 and is likely to cause significant shifts in pest and 45 

disease risks in future 11,12. In contrast with disease risk, the effects of weather and climate change on 46 

yield losses to biotic agents are poorly understood. 47 

 48 

Quantifying potential yield losses to biotic agents and why these vary is key to understanding an 49 

important component of crop yield gaps, and how to reduce them. The potential biotic yield gap (Ygb) 50 

can be defined as the fractional difference in yield between crops that have been protected against 51 

losses to biotic agents (Yt) and those that are unprotected (Yc) keeping crop variety and environment 52 

constant, i.e. Y!" = 1 − #!
#"

. Ygb can be considered as a measure of disease pressure or disease burden, 53 

as it indicates the importance of disease to a particular cropping system. Potential losses can be 54 

estimated by controlled field experiments that compare protected (e.g. fungicide-treated) with control 55 

(untreated) yields. Such experiments are generally undertaken by agencies responsible for crop 56 

variety selection when determining pest or disease resistance levels, most often to fungal pathogens 13. 57 
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 3 

Here, we analyse untreated (Yc) and fungicide-treated (Yt) yields from nearly two decades of grain 58 

cultivar trials in the UK to quantify Ygb attributable to fungal pathogens (Supplementary Table 1), and 59 

to test the hypothesis that the fungal disease burden will increase with climate change. Further, we 60 

quantify the contribution of crop variety differences and interannual (climatic) variability to trial 61 

yields, and estimated the relative contributions of changing temperature and moisture to Ygb.  62 

 63 

Results 64 

 65 

Yields and the biotic yield gap 66 

Yields varied among crops and between spring and winter varieties of wheat and barley (Fig. 1, 67 

Supplementary Fig. 1). Mean Yt per site (averaged across all varieties) over the study period was 10.6 68 

± 1.7 (sample SD) t ha-1 for winter wheat, 7.2 ± 1.4 t ha-1 for spring wheat, 9.1 ± 1.4 t ha-1 for winter 69 

barley, 7.3 ± 1.2 t ha-1 for spring barley and 7.2 ± 1.5 t ha-1 for spring oats. Yt tended to increase over 70 

time for winter and spring barley but not for the other crops. Mean Yc per site was 8.3 ± 1.7 t ha-1 for 71 

winter wheat, 6.1 ± 1.2 t ha-1 for spring wheat, 7.4 ± 1.2 t ha-1 for winter barley, 6.6 ± 1.3 t ha-1 for 72 

spring barley and 6.3 ± 1.4 t ha-1 for spring oats. Yc followed similar temporal trends to Yt, increasing 73 

for barley but not changing over the study period for the other crops. The mean difference between Yt 74 

and Yc for each individual variety trial was 2.3 ± 1.6 t ha-1 for winter wheat, 1.4 ± 1.2 t ha-1 for spring 75 

wheat, 1.7 ± 1.2 t ha-1 for winter barley, 0.8 ± 0.8 t ha-1 for spring barley and 1.0 ± 1.0 t ha-1 for spring 76 

oats. The mean biotic yield gap (Ygb) attributable to fungal pathogens per site was 0.21 ± 0.12 for 77 

winter wheat, 0.17 ± 0.13 for spring wheat, 0.18 ± 0.10 for winter barley, 0.11 ± 0.09 for spring 78 

barley and 0.13 ± 0.11 for spring oats. No trends were apparent in Ygb over time for any crop. 79 

 80 

Maximum attainable yield and components of the yield gap 81 

While Yt estimates yield in the absence of fungal pathogens, the effects of genetic variation among 82 

varieties, growing season climate, and site-specific edaphic factors may reduce yield below what is 83 

potentially possible for a crop. We estimated the maximum attainable yield (Ymax) for each crop from 84 

the top 5 % of all Yt values across all trials. We detected no spatial trends in Yt except for an increase 85 

with latitude in spring oats (Supplementary Table 2), and therefore estimated Ymax across all sites 86 

rather than as a function of location. Mean Ymax was 14.5 t ha ± 0.1 t ha-1 (bootstrap SD) for winter 87 

wheat, 10.1 ± 0.1 t ha-1 for spring wheat, 12.1 ± 0.05 t ha-1 for winter barley, 10.0 ± 0.03 t ha-1 for 88 

spring barley and 10.5 ± 0.1 t ha-1 for spring oats. We estimated the contribution of variety (genetic) 89 

differences to yield by the mean absolute error (MAE) of Yt among varieties within sites and years 90 

(Ygg). Over the study period, Ygg was 0.4 t ha-1 for winter wheat, 0.3 t ha-1 for spring wheat, 0.4 t ha-1 91 

for winter barley, 0.3 t ha-1 for spring barley and 0.6 t ha-1 for spring oats. The MAE of Yt within 92 

varieties and sites across years gave an estimate of the contribution of climatic variation to the yield 93 
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gap (Ygc). Over the study period, Yvc was 1.0 t ha-1 for winter wheat, 0.7 t ha-1 for spring wheat, 0.7 t 94 

ha-1 for winter barley, 0.6 t ha-1 for spring barley and 0.7 t ha-1 for spring oats. 95 

 96 

Taking winter wheat as an example, we decomposed the gap between Ymax and Ymin (the mean of the 97 

lowest 5 % Yc values) into biotic (Ygb), genetic (Ygg) and climatic (Ygc) components (Fig. 2). In this 98 

case, Ygg and Ygc were the empirical 95 % confidence intervals of Yt deviations rather than MAE, 99 

indicating the difference between best and worst varieties within trials, and best and worst years 100 

within varieties. This indicated that mean losses to disease were of similar magnitude to varietal 101 

effects, but smaller than the effects of interannual climatic variation. Modelled potential yields and 102 

achieved yields for rainfed wheat14 lie within the range of Ymax and Ymin. 103 

 104 

Weather and the biotic yield gap 105 

We correlated Ygb with site-specific monthly temperature, relative humidity (RH) and precipitation 106 

over the growing season to determine the most important weather variables driving fungal disease 107 

pressure (Fig. 3). Winter temperatures and summer RH were most strongly positively correlated with 108 

Ygb in winter wheat and in barley, while spring and summer precipitation were most important in 109 

spring wheat. Early spring temperature and early summer RH were most strongly correlated with Ygb 110 

in spring oats. We selected the single months with the strongest temperature and RH (or precipitation) 111 

correlations for each crop for predictive modelling. The correlations for the best predictor months 112 

varied between 0.22 and 0.57 (Supplementary Table 3). Inclusion of additional months in the models 113 

was unnecessary because weather is temporally autocorrelated (a warmer February tends to follow a 114 

warmer January etc). Model selection determined that, over the range of monthly temperature and 115 

humidity values in the data, the relationships with Ygb were best explained by additive linear terms, 116 

except for spring oats for which there was an interaction between March temperature and May 117 

humidity (Supplementary Fig. 2, Supplementary Table 4). Fitted values for the models were strongly 118 

correlated (r > 0.41) with observations (Supplementary Table 4). 119 

 120 

Climate change and the biotic yield gap 121 

We estimated Ygb across crop production areas in the UK with our models, under recent historical 122 

(2002 – 2020) and projected future climates (2021 – 2040 and 2061 – 2080). Wheat production is 123 

currently concentrated in central and eastern England, barley in central southern England and eastern 124 

England and Scotland, and oat production occurs at low densities across the country (Supplementary 125 

Fig. 3). We employed the Met Office UKCP18 RCP8.5 projections at 5 km resolution for both the 126 

historical and future climates. We used current crop distributions for all estimates and did not try to 127 

project potential future crop distributions. Mean Ygb weighted by crop area was around one fifth for 128 

winter wheat, spring wheat and winter barley, and one tenth for spring barley and spring oats over the 129 

recent historical period (Fig. 4, Supplementary Table 5). For all crops Ygb increased towards the South 130 
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and West (Fig. 4). On average, Ygb increased slightly in the two future periods for winter wheat and 131 

winter barley, but declined slightly for the spring crops (Supplementary Table 5). Our results were 132 

robust to model perturbations in future climate projections, with mean standard deviations below 133 

0.015 % across the production areas of each crop (Supplementary Figs. 4 – 8, Supplementary Table 134 

6). 135 

 136 

There were marked spatial patterns in the projected future changes in Ygb (Fig. 5). For winter wheat 137 

and winter barley, Ygb tended to increase in Wales, East Anglia, northern England and Scotland. For 138 

spring wheat the greatest declines in Ygb were projected in the South West while small increases 139 

occurred in Scotland. For spring barley, the change in Ygb was projected to be negative over most of 140 

England and Wales, and positive in northern Scotland. Spring oats are less commonly planted across 141 

the UK, but there was some indication of an increase in Ygb in Wales with declines elsewhere. 142 

Overall, our results suggest that on average the changes in Ygb will be relatively minor, but that some 143 

regions will experience large increases or decreases in fungal disease pressure depending on the crop. 144 

In particular, spring crops will see overall decreases in Ygb, while winter crops will see increases. This 145 

difference between winter and spring crops is attributable to projected changes in temperature and 146 

moisture in winter and summer (Supplementary Figs. 9 – 10). Winter temperatures (December to 147 

February) increase less than summer temperatures (June to August), with the largest increases 148 

expected in the south. Winters are expected to get wetter, particularly in the north, while summers are 149 

expected to become drier in the south and wetter only in northern Scotland. Most winter wheat and 150 

barley production occurs in regions that will warm substantially in December and become drier in 151 

May (Fig. 6). These trends have opposing effects on Ygb, meaning that much of the production area is 152 

expected to experience relatively small changes in Ygb. In contrast, most of the production area for 153 

spring barley occurs in areas expected to experience only moderate March warming, but substantial 154 

drying in July. This results in declines in Ygb for the majority of the production area. Most of the 155 

production area for spring oats is expected to experience only moderate changes in temperature and 156 

moisture, with relatively minor associated changes in Ygb. 157 

 158 

Discussion 159 

 160 

Our results show that fungal disease pressure on grain crops in the UK, as measured by Ygb, amounts 161 

to between one tenth and one fifth of yield in variety trials. Ygb tends to increase with winter 162 

temperatures and summer moisture, and Ygb is greater in wheat and in winter barley than in spring 163 

barley and spring oats. Projections of Ygb under future climates using these models suggests that 164 

change in disease pressure will be moderate on average, but spatially variable and dependent upon the 165 

crop growing season. Winter varieties are more likely to see increases in disease pressure due to 166 

warming winters, which are only partially offset by drying summers. Spring varieties of wheat and 167 
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 6 

barley are likely to see declines in disease pressure due to summer drying. These changes could 168 

influence the relative importance of spring and winter varieties in the UK in future. While our models 169 

cannot be reliably extrapolated outside the UK, the strong predictive power of our relatively simple 170 

models suggests that our approach could be applied to other regions where suitable agricultural trial 171 

data are available. 172 

 173 

We did not attempt to relate Ygb to incidences of specific fungal diseases. AHDB provides disease 174 

incidence scores for a number of pests and pathogens for each crop, but available records are highly 175 

incomplete making statistical estimation of impacts difficult. Septoria Tritici Blotch (STB, caused by 176 

Zymoseptoria tritici) has been the most important disease of winter wheat in the UK for several 177 

decades 15. Other significant fungal diseases of winter wheat include brown rust (caused by Puccinia 178 

triticina), yellow rust (Puccinia striiformis), the soilborne disease take-all (Gaeumannomyces tritici), 179 

glume blotch (Phaeosphaeria nodorum), powdery mildew (Blumeria graminis), tan spot 180 

(Pyrenophora tritici-repentis), eyespot (Oculimacula spp.), sharp eyespot (Rhizoctonia cerealis), and 181 

Fusarium ear blight (Fusarium spp.) 15. Farm surveys between 1999 and 2019 suggest that incidences 182 

of most diseases are rather variable over time, with glume blotch, powdery mildew, eyespot and sharp 183 

eyespot declining somewhat and Fusarium ear blight emerging 15. Temporal and spatial dynamics of 184 

fungal diseases of spring wheat, barley and oats are less well characterized than those of winter wheat. 185 

 186 

Fungal plant pathogens show a range of climatic tolerances 16, therefore the suite of diseases affecting 187 

different crops may well change in future with warming and other global change drivers 12. For 188 

example, improvements in air quality in recent decades may have allowed STB to overtake glume 189 

blotch as the most important winter wheat disease in the UK 17, although changes in fungicide 190 

application regimes are also implicated 15. A combination of climate change, landscape management 191 

and crop breeding may allow a previously important disease, stem rust (caused by Puccinia graminis 192 

f.sp. tritici), to return 18. Our projections of future Ygb assumed that fungal disease responses to 193 

weather would remain constant, though this may not be tenable if the pathogen assemblage changes. 194 

However, general trends in fungal pathogen responses to climate change have been reported. For 195 

example, soilborne fungal pathogens tend to increase in relative abundance in response to warming 19. 196 

Replication of our methods in other regions, thereby extending the climate envelope for model 197 

parameterization, could help to determine the generality of the patterns we have detected. 198 

 199 

We assumed that fungicide applications in trials completely prevented yield losses. In the UK, 200 

fungicides are applied to nearly all crop areas with between three and four sprays applied to winter 201 

wheat during the growing season 15. The most consistently important fungicide classes have been 202 

demethylation inhibitors. Use of strobilurins has declined due to resistance evolution, while succinate 203 

dehydrogenase inhibitors and chlorothalonil use has increased 15. Details of experimental fungicide 204 
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 7 

applications are not reported by AHDB, but we assumed that the manufacturer-recommended dosage 205 

and timings were implemented. Farmers tend to apply less than the recommended dosage, though this 206 

fraction increased from around 0.4 to around 0.8 between 1999 and 2019 15. Fungicides are required 207 

because genetic resistance to fungal pathogens provides insufficient protection. Resistance to STB 208 

and Wheat mildew (Blumeria graminis f. sp. tritici) is polygenic and partial, but tends to be durable 209 

over time, while resistance to rusts and Barley mildew (Blumeria graminis f. sp. hordei) is monogenic 210 

and persists for a few years before being overcome by evolution of virulence in the pathogen 20. 211 

Variation in resistance will be a major determinant of the variability in Ygb among tested varieties. 212 

 213 

We statistically modelled Ygb in relation to weather while the majority of studies have focussed on 214 

processes like infection rate or some measure of disease risk 8,12,21–23. Process-based, or mechanistic, 215 

models of infection risk tend to be driven by hourly meteorological data 22, though some large-scale 216 

studies have employed monthly averages 12. Temperature responses are usually humped, with the 217 

maximum infection rate occurring at optimum temperature. In contrast, we detected a linear response 218 

to temperature. This may indicate that UK crop production occurs at temperatures below the optima 219 

for important fungal pathogens. The effect of moisture is commonly modelled as an increasing 220 

function of humidity, or a binary process whereby infection can only take place during periods in 221 

which leaf surfaces are wet 22. While these models of disease risk can be used in disease control 222 

decision-making, or to estimate risks under future climates, they do not directly estimate potential 223 

yield losses. In the UK, potential yields of rainfed crops (Yw) estimated from crop models 5,14 vary 224 

between 11.2 and 12.9 (mean 11.5) t ha-1 for wheat and 8.5 and 9.8 (mean 8.9) t ha-1 for barley, 225 

depending on climate zone 5. Achieved yields (Ya) vary between 7.3 and 8.1 t ha-1 (mean 7.8 t ha-1) 226 

for wheat and 5.6 and 6.3 t ha-1 (mean 6.0 t ha-1) for barley. Oats are not modelled, and winter and 227 

spring varieties are not differentiated 5. The modelled yield gap between Yw and Ya is therefore 3.7 t 228 

ha-1 for wheat and 2.9 t ha-1 for barley. While we cannot estimate the contribution of different causes 229 

(weather, variety selection, pests and diseases) precisely, our results demonstrate that potential losses 230 

from pathogens are a similar magnitude to other yield gap drivers (Fig. 2), and that climate change 231 

will differentially affect varieties and could therefore influence cropping patterns. 232 

 233 

Methods 234 

 235 

Crop and Yield data 236 

We analysed yield data for crop variety trials conducted by the Agriculture and Horticulture 237 

Development Board (AHDB) from 2002 to 2020. AHDB hosts archives of recommended lists of 238 

cereals and oilseed that provide independent information on yield and quality performance, 239 

agronomic features, disease pressure and market options to assist with variety selection 24. This list is 240 

updated each year and provides information based on the analysis of hundreds of UK trials conducted 241 
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 8 

since 2002. No information is provided for fungicide usage in trials. We also obtained the 242 

approximate spatial coordinates for the trial locations for data analysis and mapping by matching 243 

names of trial locations to locations using GeoNames 25 and Google map search (Supplementary Fig. 244 

11). Data were cleaned to remove sites and varieties with missing data for yields. Yield from 245 

fungicide-treated (Yt) and untreated (Yc) trials was used to calculate the fungal disease-related yield 246 

gap (Ygb) as: 247 

Potential	biotic	yield	gap4Y!"5 = 1 −
Untreated	yield(Y$)
Treated	yield(Y%)

 248 

As each site had data for different varieties and cultivars, Ygb and disease pressure information, mean 249 

values per site per year were used for subsequent analyses. 250 

 251 

Fungicide-treated (Yt) and untreated (Yc) yields were available for winter wheat (289 varieties), 252 

spring wheat (47), winter barley (147), spring barley (154) and spring oats (45). Site locations varied 253 

geographically between Limavady, Northern Ireland (6.98 °W, 55.07 °N) in the west and Morley, 254 

Norfolk (1.03 °E, 52.56 °N) in the east, and West Charleton, Devon (3.76 °W, 50.27° N) in the south 255 

and Kinghorn, Fife (3.10° E, 56.18° N) in the north (Supplementary Fig. 1). The number and 256 

locations of trial sites varied over time, and the number and composition of varieties in the trials 257 

varied among sites and over time. The total number of crop varieties tested per year remained roughly 258 

stable, with a mean of 42 winter wheat, 9 spring wheat, 22 winter barley, 22 spring barley, and 10 259 

spring oat varieties tested per year.  260 

 261 

Crop map 262 

Crop distribution data for the UK were obtained from the EUCROPMAP 2018 26,27. This map is 263 

produced using Sentinel S1A and S1B Synthetic Aperture Radar observations for 2018 and random 264 

forest-based classification algorithms. The map provides detailed spatial information on 19 crop types 265 

in the EU for 2018 at 10-m resolution, with high accuracy. Pixels for each AHDB crop were extracted 266 

and aggregated to a 1 km x 1 km grid generated using the Fishnet tool in ArcMap (ESRI ArcGIS 267 

Desktop, release 10.8). This grid was generated on the same 1 km grid as the HadUK-Grid Gridded 268 

Climate Observations. The count of crop pixels in each grid cell was then used to calculate the total 269 

area (hectares) of crop under cultivation and, subsequently, the fractional area under crop cultivation 270 

(AF) in each 1 km grid cell for further analysis (Supplementary Fig. 3).  271 

 272 

Climate data 273 

Monthly weather data (2001-2020), including mean air temperature (°C), relative humidity (%), total 274 

rainfall (mm) and sunshine hours (h), were obtained from the HadUK-Grid Gridded Climate 275 

Observations v1.0.3.0 on a 1km and 5km grid over the UK 28. Weather data from 1km grid were 276 

extracted for AHDB trial sites (point locations, years 2001 - 2020) for each crop from the rasters 277 
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 9 

using the extract function of the raster package in R v. 4.2.1 29. Climate model projections for 278 

monthly mean air temperature (°C), relative humidity (%), total rainfall (mm) and sunshine hours (h) 279 

were obtained from UKCP Local Projections on a 5km grid over the UK for 2021-2040 and 2061-280 

2080 30. These projections are produced by the Met Office Hadley Centre as part of the UK Climate 281 

Projection 2018 (UKCP18) project and cover three time-periods (1981-2000, 2021-2040 and 2061-282 

2080) for a high emissions scenario, RCP8.5. Projections for other emission scenarios are not 283 

available. For Ygb predictions, monthly weather data (2001-2020) from HadUK-Grid Climate 284 

Observations and climate model projections data (2021-2040 and 2061-2080) from UKCP Local 285 

Projections on a 5 km grid were extracted for areas under cultivation for each crop, using the mask 286 

function of raster package in R 29.  287 

 288 

Climate-yield gap relationship estimation 289 

The relationship between Ygb and climatic variables for each month was explored using simple 290 

correlation and regression analysis. Estimates from correlation and regression analyses were 291 

bootstrapped (1000 iterations) using the bootstraps function in the rsample package of R 31, where 292 

each iteration was fitted on a resampled dataset with replacement. We used temporal block 293 

bootstrapping to randomly resample data from a single year with replacement instead of sampling 294 

random monthly observations, to maintain within-year temporal correlations 32.  The bootstrapped 295 

estimates of correlation coefficient and beta slope estimate were visually inspected for consistency 296 

and strength of association between monthly weather variables and observed Ygb.  297 

Our objective was to statistically fit the observed Ygb to monthly weather variables. The resulting 298 

relationship would be used for further analyses. We used generalized-least-squares (GLS) using the 299 

gls function from the nlme package in R 33 to fit the model between Ygb and the significant weather 300 

variables identified through bootstrapping estimates. The GLS regression allowed for a first-order 301 

autoregressive correlation structure in the residuals to account for the correlation over time and among 302 

experimental sites in climate data. The parameters of the GLS regression represented the climate-303 

driven trends in yield gaps. We compared the models with and without temporal correlation structure, 304 

using F-test in the anova function, to determine whether inclusion of temporal autocorrelation was 305 

required. Finally, current (2002-2020) and future yield gap levels (2021-2040, 2061-2080) were 306 

predicted and the estimates of the standard error of prediction were calculated for each masked (crop 307 

pixels only) climate dataset pixel (5 km) using the predictSE.gls function from the AICcmodavg 308 

package in R 34. The modelled yield gaps were averaged for each time period and climate dataset 309 

pixel. In addition, we made predictions on all 12-member perturbed physics ensembles (UKCP local 5 310 

km) for projections to get uncertainty in Ygb predictions due to climate model 311 

parameters/physics perturbations 10. 312 

 313 

Future climate change impacts on yield gaps (forecast) and climate risk classification 314 
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The impact of future climate change on Ygb was quantified as the change in predicted future 315 

yield gaps (2021-2040, 2061-2080) relative to current yield gaps (2002-2020). The mean yield gap 316 

differences DYgb were calculated for each pixel (5 km), weighted by AF. We also compared the 317 

relationship between DYgb and the change in average future temperature (ΔT) and relative humidity 318 

(ΔRH) levels in each future time slice to identify the strong drivers of Ygb in each crop. 319 

 320 
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Data availability 396 

Crop yield trial data were obtained from the Agriculture and Horticulture Development Board 397 

(AHDB); part of this dataset is from the AHDB Recommended Lists. The AHDB Recommended 398 

Lists are managed by a project consortium of AHDB, BSPB, MAGB and UKFM. Data are available 399 
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from https://ahdb.org.uk/rl. All datasets used in the study are freely and openly available from sources 400 

described in the Methods. 401 
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Figures 417 

 418 

 419 
Figure 1. Distribution of total grain yield (Tonnes ha-1) and yield gap (Ygb). Distribution of grain 420 

yield from fungicide treated (Yt) and non-treated (Yc) experimental sites and resultant yield gaps (Ygb) 421 

in the studied crops from 2002 - 2020. The dashed horizontal line in the right panel indicates no yield 422 

gap. Data points above this line indicate yield gap (Yt > Yc). However, points below this line indicate 423 

yield gain (Yt < Yc). 424 

  425 
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 426 
Figure 2. Yield gap components in winter wheat. Ymax and Ymin are top and bottom 5 % of Yt and 427 

Yc, respectively, across all trials. Ymax (14.5 t ha-1) indicates the highest yield achievable under 428 

optimal weather conditions in the best sites with the best varieties and no loss to disease. Ymin (4.3 t 429 

ha-1) indicates the yield in the worst sites with the lowest yielding varieties in the worst years with 430 

large losses to disease. Ygb (2.3 t ha-1) is the mean loss to disease. Ygg (2.2 t ha-1) indicates the 431 

difference between the highest and lowest Yt of varieties within trials. Ygc (5.7 t ha-1) indicates the 432 

difference between the best and worst Yt of a variety within a site. Yield trial results are compared to 433 

modelled potential rainfed wheat yield for the UK (Yw) and achieved yield (Ya) from the Global Yield 434 

Gap Analysis14. Bar are not to scale. 435 

 436 
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 438 
Figure 2. Bootstrapped estimates of the correlation between yield gap (Ygb) and monthly 439 

weather variables. Boxplots show the distribution (minimum, maximum, median and interquartile 440 

range) of correlation coefficient (r) estimates of the association between Ygb and monthly temperature 441 

and relative humidity except for D, representing the correlation estimates between Ygb and rainfall. 442 

Dashed horizontal line indicates no correlation. Blue and pink shaded areas indicate planting and 443 

harvesting times of the studied AHDB crops, respectively. The varying pattern of boxplots indicates 444 

how the correlation estimates vary for weather variables in each month of the growing season. 445 

Boxplots filled with red are the months we used climate data for model fitting. We did not find any 446 

significant association of Ygb with temperature in spring wheat (C). 447 

  448 
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 449 
Figure 4. Current and future predicted average yield gap (Ygb). Predictions were made on current 450 

(2002 - 2020) and future (2021 – 2040 and 2061 - 2080) climate pixels of 1km x 1km grid resolution. 451 

Predicted Ygb were then summarized for each time slice. Grey indicates either no or low Ygb, while 452 

dark blue represents a higher Ygb. White grid cells contained no hosts and were excluded from the 453 

analysis. Values outside 1.5 times the interquartile range (IQR) above upper quartile and below lower 454 

quartile are shown in red and deep blue respectively. 455 

 456 
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 458 
Figure 5. Average change in future yield gap (ΔYgb). Current (2002 - 2020) average predicted Ygb 459 

levels were subtracted from future (2021 – 2040 and 2061 - 2080) predicted Ygb levels for each pixel 460 

at 1km x 1km grid resolution. Red indicates a high Ygb, while blue indicates high yield gain compared 461 

to current Ygb levels. Grey indicates no change. White grid cells contained no hosts and were 462 

excluded from the analysis. Values outside 1.5 times the interquartile range (IQR) above upper 463 

quartile and below lower quartile are shown in red and deep blue respectively. 464 

 465 
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 467 
Figure 6. Association between change in average future temperature (ΔT) and relative humidity 468 

(ΔRH) and the interpolated surface of mean yield gap differences (ΔYgb) in future time slices. 469 

Contour lines represent the aggregated count of data points of association between ΔT and ΔRH. 470 

Values outside 1.5 times the interquartile range (IQR) below lower quartile are shown in deep blue. 471 
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