

1 **Climate change, biotic yield gaps and disease pressure in cereal crops**

2

3 Muhammad Mohsin Raza¹ & Daniel P. Bebber^{2,3*}

4

5 ¹Department of Mathematics, University of Exeter, UK

6 ²Department of Biosciences, University of Exeter, UK

7 ³Global Systems Institute, University of Exeter, UK

8 *Corresponding author: d.bebber@exeter.ac.uk

9

10 **Abstract**

11 Plant diseases are major causes of crop yield losses and exert a financial burden via expenditure on
12 disease control. The magnitude of these burdens depends on biological, environmental and
13 management factors, but this variation is poorly understood. Here we model the effects of weather on
14 potential yield losses due to fungal plant pathogens (the biotic yield gap, Y_{gb}) using experimental
15 trials of fungicide-treated and untreated cereal crops in the UK, and project future Y_{gb} under climate
16 change. We find that Y_{gb} varies between 10 and 20 % of fungicide-treated yields depending on crop,
17 and increases under warmer winter and wetter spring conditions. Y_{gb} will increase for winter wheat
18 and winter barley under climate change, while declining for spring crops because drier summers
19 offset the effects of warmer winters. Potential disease impacts are comparable in magnitude to the
20 effects of suboptimal weather and crop varieties.

21

22 **Introduction**

23

24 Sustainable intensification of agriculture aims to increase food production without exacerbating
25 environmental impacts, thereby avoiding the need to further expand agriculture into natural
26 ecosystems to satisfy growing market demand ^{1,2}. A key metric for intensification is the crop yield
27 gap, which is the fractional difference between the potential yield in a region under irrigated or
28 rainfed conditions and the average yield actually achieved by farmers ^{1,3}. The yield gap depends on
29 numerous factors including crop genotype, nutrient deficiency, water stress, solar radiation, growing
30 season temperatures, management factors (e.g. reliance on manual labour) and the effects of weeds,
31 pests and diseases ^{1,3,4}. Yield gaps shrink with economic development, as wealthier countries are able
32 to invest more in technology, training, fertilizer and crop protection, but tend toward 20% as further
33 improvements become economically and ecologically undesirable ⁵.

34

35 While recent research has quantified the contribution of suboptimal crop genetics and management to
36 yield gaps, biotic burdens like weeds, pests and diseases tend to be ignored ^{3,5}. Expert opinion
37 suggests that around one fifth to one third of crop production is lost to pests and diseases globally ⁶,
38 but little is known about how these losses vary in time and space. Observed losses are potential losses
39 reduced by expenditure on measures like weeding, disease-resistant seed, and agrochemical
40 herbicides, pesticides and fungicides ^{1,7,8}. Here, we focus on the impacts of fungal diseases. Disease
41 risk varies with pathogen virulence, crop susceptibility and environmental factors like weather ^{8,9}. Pest
42 and disease life cycles are strongly determined by weather conditions, and many weather-driven
43 models have been developed to predict occurrence or infection risk and thereby support decisions on
44 when to apply control measures ⁸. Similarly, climate change, particularly warming, has driven
45 historical increases in pest and disease incidence ¹⁰ and is likely to cause significant shifts in pest and
46 disease risks in future ^{11,12}. In contrast with disease risk, the effects of weather and climate change on
47 yield losses to biotic agents are poorly understood.

48

49 Quantifying potential yield losses to biotic agents and why these vary is key to understanding an
50 important component of crop yield gaps, and how to reduce them. The potential biotic yield gap (Y_{gb})
51 can be defined as the fractional difference in yield between crops that have been protected against
52 losses to biotic agents (Y_t) and those that are unprotected (Y_c) keeping crop variety and environment
53 constant, i.e. $Y_{gb} = 1 - \frac{Y_c}{Y_t}$. Y_{gb} can be considered as a measure of disease pressure or disease burden,
54 as it indicates the importance of disease to a particular cropping system. Potential losses can be
55 estimated by controlled field experiments that compare protected (e.g. fungicide-treated) with control
56 (untreated) yields. Such experiments are generally undertaken by agencies responsible for crop
57 variety selection when determining pest or disease resistance levels, most often to fungal pathogens ¹³.

58 Here, we analyse untreated (Y_c) and fungicide-treated (Y_t) yields from nearly two decades of grain
59 cultivar trials in the UK to quantify Y_{gb} attributable to fungal pathogens (Supplementary Table 1), and
60 to test the hypothesis that the fungal disease burden will increase with climate change. Further, we
61 quantify the contribution of crop variety differences and interannual (climatic) variability to trial
62 yields, and estimated the relative contributions of changing temperature and moisture to Y_{gb} .

63

64 **Results**

65

66 *Yields and the biotic yield gap*

67 Yields varied among crops and between spring and winter varieties of wheat and barley (Fig. 1,
68 Supplementary Fig. 1). Mean Y_t per site (averaged across all varieties) over the study period was 10.6 ± 1.7 (sample SD) $t \text{ ha}^{-1}$ for winter wheat, $7.2 \pm 1.4 t \text{ ha}^{-1}$ for spring wheat, $9.1 \pm 1.4 t \text{ ha}^{-1}$ for winter
69 barley, $7.3 \pm 1.2 t \text{ ha}^{-1}$ for spring barley and $7.2 \pm 1.5 t \text{ ha}^{-1}$ for spring oats. Y_t tended to increase over
70 time for winter and spring barley but not for the other crops. Mean Y_c per site was $8.3 \pm 1.7 t \text{ ha}^{-1}$ for
71 winter wheat, $6.1 \pm 1.2 t \text{ ha}^{-1}$ for spring wheat, $7.4 \pm 1.2 t \text{ ha}^{-1}$ for winter barley, $6.6 \pm 1.3 t \text{ ha}^{-1}$ for
72 spring barley and $6.3 \pm 1.4 t \text{ ha}^{-1}$ for spring oats. Y_c followed similar temporal trends to Y_t , increasing
73 for barley but not changing over the study period for the other crops. The mean difference between Y_t
74 and Y_c for each individual variety trial was $2.3 \pm 1.6 t \text{ ha}^{-1}$ for winter wheat, $1.4 \pm 1.2 t \text{ ha}^{-1}$ for spring
75 wheat, $1.7 \pm 1.2 t \text{ ha}^{-1}$ for winter barley, $0.8 \pm 0.8 t \text{ ha}^{-1}$ for spring barley and $1.0 \pm 1.0 t \text{ ha}^{-1}$ for spring
76 oats. The mean biotic yield gap (Y_{gb}) attributable to fungal pathogens per site was 0.21 ± 0.12 for
77 winter wheat, 0.17 ± 0.13 for spring wheat, 0.18 ± 0.10 for winter barley, 0.11 ± 0.09 for spring
78 barley and 0.13 ± 0.11 for spring oats. No trends were apparent in Y_{gb} over time for any crop.

79

80

81 *Maximum attainable yield and components of the yield gap*

82 While Y_t estimates yield in the absence of fungal pathogens, the effects of genetic variation among
83 varieties, growing season climate, and site-specific edaphic factors may reduce yield below what is
84 potentially possible for a crop. We estimated the maximum attainable yield (Y_{max}) for each crop from
85 the top 5 % of all Y_t values across all trials. We detected no spatial trends in Y_t except for an increase
86 with latitude in spring oats (Supplementary Table 2), and therefore estimated Y_{max} across all sites
87 rather than as a function of location. Mean Y_{max} was $14.5 t \text{ ha} \pm 0.1 t \text{ ha}^{-1}$ (bootstrap SD) for winter
88 wheat, $10.1 \pm 0.1 t \text{ ha}^{-1}$ for spring wheat, $12.1 \pm 0.05 t \text{ ha}^{-1}$ for winter barley, $10.0 \pm 0.03 t \text{ ha}^{-1}$ for
89 spring barley and $10.5 \pm 0.1 t \text{ ha}^{-1}$ for spring oats. We estimated the contribution of variety (genetic)
90 differences to yield by the mean absolute error (MAE) of Y_t among varieties within sites and years
91 (Y_{gg}). Over the study period, Y_{gg} was $0.4 t \text{ ha}^{-1}$ for winter wheat, $0.3 t \text{ ha}^{-1}$ for spring wheat, $0.4 t \text{ ha}^{-1}$
92 for winter barley, $0.3 t \text{ ha}^{-1}$ for spring barley and $0.6 t \text{ ha}^{-1}$ for spring oats. The MAE of Y_t within
93 varieties and sites across years gave an estimate of the contribution of climatic variation to the yield

94 gap (Y_{gc}). Over the study period, Y_{vc} was 1.0 t ha⁻¹ for winter wheat, 0.7 t ha⁻¹ for spring wheat, 0.7 t ha⁻¹ for winter barley, 0.6 t ha⁻¹ for spring barley and 0.7 t ha⁻¹ for spring oats.

96

97 Taking winter wheat as an example, we decomposed the gap between Y_{max} and Y_{min} (the mean of the
98 lowest 5 % Y_c values) into biotic (Y_{gb}), genetic (Y_{gg}) and climatic (Y_{gc}) components (Fig. 2). In this
99 case, Y_{gg} and Y_{gc} were the empirical 95 % confidence intervals of Y_t deviations rather than MAE,
100 indicating the difference between best and worst varieties within trials, and best and worst years
101 within varieties. This indicated that mean losses to disease were of similar magnitude to varietal
102 effects, but smaller than the effects of interannual climatic variation. Modelled potential yields and
103 achieved yields for rainfed wheat¹⁴ lie within the range of Y_{max} and Y_{min} .

104

105 *Weather and the biotic yield gap*

106 We correlated Y_{gb} with site-specific monthly temperature, relative humidity (RH) and precipitation
107 over the growing season to determine the most important weather variables driving fungal disease
108 pressure (Fig. 3). Winter temperatures and summer RH were most strongly positively correlated with
109 Y_{gb} in winter wheat and in barley, while spring and summer precipitation were most important in
110 spring wheat. Early spring temperature and early summer RH were most strongly correlated with Y_{gb}
111 in spring oats. We selected the single months with the strongest temperature and RH (or precipitation)
112 correlations for each crop for predictive modelling. The correlations for the best predictor months
113 varied between 0.22 and 0.57 (Supplementary Table 3). Inclusion of additional months in the models
114 was unnecessary because weather is temporally autocorrelated (a warmer February tends to follow a
115 warmer January etc). Model selection determined that, over the range of monthly temperature and
116 humidity values in the data, the relationships with Y_{gb} were best explained by additive linear terms,
117 except for spring oats for which there was an interaction between March temperature and May
118 humidity (Supplementary Fig. 2, Supplementary Table 4). Fitted values for the models were strongly
119 correlated ($r > 0.41$) with observations (Supplementary Table 4).

120

121 *Climate change and the biotic yield gap*

122 We estimated Y_{gb} across crop production areas in the UK with our models, under recent historical
123 (2002 – 2020) and projected future climates (2021 – 2040 and 2061 – 2080). Wheat production is
124 currently concentrated in central and eastern England, barley in central southern England and eastern
125 England and Scotland, and oat production occurs at low densities across the country (Supplementary
126 Fig. 3). We employed the Met Office UKCP18 RCP8.5 projections at 5 km resolution for both the
127 historical and future climates. We used current crop distributions for all estimates and did not try to
128 project potential future crop distributions. Mean Y_{gb} weighted by crop area was around one fifth for
129 winter wheat, spring wheat and winter barley, and one tenth for spring barley and spring oats over the
130 recent historical period (Fig. 4, Supplementary Table 5). For all crops Y_{gb} increased towards the South

131 and West (Fig. 4). On average, Y_{gb} increased slightly in the two future periods for winter wheat and
132 winter barley, but declined slightly for the spring crops (Supplementary Table 5). Our results were
133 robust to model perturbations in future climate projections, with mean standard deviations below
134 0.015 % across the production areas of each crop (Supplementary Figs. 4 – 8, Supplementary Table
135 6).

136

137 There were marked spatial patterns in the projected future changes in Y_{gb} (Fig. 5). For winter wheat
138 and winter barley, Y_{gb} tended to increase in Wales, East Anglia, northern England and Scotland. For
139 spring wheat the greatest declines in Y_{gb} were projected in the South West while small increases
140 occurred in Scotland. For spring barley, the change in Y_{gb} was projected to be negative over most of
141 England and Wales, and positive in northern Scotland. Spring oats are less commonly planted across
142 the UK, but there was some indication of an increase in Y_{gb} in Wales with declines elsewhere.

143 Overall, our results suggest that on average the changes in Y_{gb} will be relatively minor, but that some
144 regions will experience large increases or decreases in fungal disease pressure depending on the crop.
145 In particular, spring crops will see overall decreases in Y_{gb} , while winter crops will see increases. This
146 difference between winter and spring crops is attributable to projected changes in temperature and
147 moisture in winter and summer (Supplementary Figs. 9 – 10). Winter temperatures (December to
148 February) increase less than summer temperatures (June to August), with the largest increases
149 expected in the south. Winters are expected to get wetter, particularly in the north, while summers are
150 expected to become drier in the south and wetter only in northern Scotland. Most winter wheat and
151 barley production occurs in regions that will warm substantially in December and become drier in
152 May (Fig. 6). These trends have opposing effects on Y_{gb} , meaning that much of the production area is
153 expected to experience relatively small changes in Y_{gb} . In contrast, most of the production area for
154 spring barley occurs in areas expected to experience only moderate March warming, but substantial
155 drying in July. This results in declines in Y_{gb} for the majority of the production area. Most of the
156 production area for spring oats is expected to experience only moderate changes in temperature and
157 moisture, with relatively minor associated changes in Y_{gb} .

158

159 **Discussion**

160

161 Our results show that fungal disease pressure on grain crops in the UK, as measured by Y_{gb} , amounts
162 to between one tenth and one fifth of yield in variety trials. Y_{gb} tends to increase with winter
163 temperatures and summer moisture, and Y_{gb} is greater in wheat and in winter barley than in spring
164 barley and spring oats. Projections of Y_{gb} under future climates using these models suggests that
165 change in disease pressure will be moderate on average, but spatially variable and dependent upon the
166 crop growing season. Winter varieties are more likely to see increases in disease pressure due to
167 warming winters, which are only partially offset by drying summers. Spring varieties of wheat and

168 barley are likely to see declines in disease pressure due to summer drying. These changes could
169 influence the relative importance of spring and winter varieties in the UK in future. While our models
170 cannot be reliably extrapolated outside the UK, the strong predictive power of our relatively simple
171 models suggests that our approach could be applied to other regions where suitable agricultural trial
172 data are available.

173

174 We did not attempt to relate Y_{gb} to incidences of specific fungal diseases. AHDB provides disease
175 incidence scores for a number of pests and pathogens for each crop, but available records are highly
176 incomplete making statistical estimation of impacts difficult. Septoria Tritici Blotch (STB, caused by
177 *Zymoseptoria tritici*) has been the most important disease of winter wheat in the UK for several
178 decades¹⁵. Other significant fungal diseases of winter wheat include brown rust (caused by *Puccinia*
179 *triticina*), yellow rust (*Puccinia striiformis*), the soilborne disease take-all (*Gaeumannomyces tritici*),
180 glume blotch (*Phaeosphaeria nodorum*), powdery mildew (*Blumeria graminis*), tan spot
181 (*Pyrenophora tritici-repentis*), eyespot (*Oculimacula* spp.), sharp eyespot (*Rhizoctonia cerealis*), and
182 Fusarium ear blight (*Fusarium* spp.)¹⁵. Farm surveys between 1999 and 2019 suggest that incidences
183 of most diseases are rather variable over time, with glume blotch, powdery mildew, eyespot and sharp
184 eyespot declining somewhat and Fusarium ear blight emerging¹⁵. Temporal and spatial dynamics of
185 fungal diseases of spring wheat, barley and oats are less well characterized than those of winter wheat.

186

187 Fungal plant pathogens show a range of climatic tolerances¹⁶, therefore the suite of diseases affecting
188 different crops may well change in future with warming and other global change drivers¹². For
189 example, improvements in air quality in recent decades may have allowed STB to overtake glume
190 blotch as the most important winter wheat disease in the UK¹⁷, although changes in fungicide
191 application regimes are also implicated¹⁵. A combination of climate change, landscape management
192 and crop breeding may allow a previously important disease, stem rust (caused by *Puccinia graminis*
193 f.sp. *tritici*), to return¹⁸. Our projections of future Y_{gb} assumed that fungal disease responses to
194 weather would remain constant, though this may not be tenable if the pathogen assemblage changes.
195 However, general trends in fungal pathogen responses to climate change have been reported. For
196 example, soilborne fungal pathogens tend to increase in relative abundance in response to warming¹⁹.
197 Replication of our methods in other regions, thereby extending the climate envelope for model
198 parameterization, could help to determine the generality of the patterns we have detected.

199

200 We assumed that fungicide applications in trials completely prevented yield losses. In the UK,
201 fungicides are applied to nearly all crop areas with between three and four sprays applied to winter
202 wheat during the growing season¹⁵. The most consistently important fungicide classes have been
203 demethylation inhibitors. Use of strobilurins has declined due to resistance evolution, while succinate
204 dehydrogenase inhibitors and chlorothalonil use has increased¹⁵. Details of experimental fungicide

205 applications are not reported by AHDB, but we assumed that the manufacturer-recommended dosage
206 and timings were implemented. Farmers tend to apply less than the recommended dosage, though this
207 fraction increased from around 0.4 to around 0.8 between 1999 and 2019¹⁵. Fungicides are required
208 because genetic resistance to fungal pathogens provides insufficient protection. Resistance to STB
209 and Wheat mildew (*Blumeria graminis* f. sp. *tritici*) is polygenic and partial, but tends to be durable
210 over time, while resistance to rusts and Barley mildew (*Blumeria graminis* f. sp. *hordei*) is monogenic
211 and persists for a few years before being overcome by evolution of virulence in the pathogen²⁰.
212 Variation in resistance will be a major determinant of the variability in Y_{gb} among tested varieties.
213

214 We statistically modelled Y_{gb} in relation to weather while the majority of studies have focussed on
215 processes like infection rate or some measure of disease risk^{8,12,21–23}. Process-based, or mechanistic,
216 models of infection risk tend to be driven by hourly meteorological data²², though some large-scale
217 studies have employed monthly averages¹². Temperature responses are usually humped, with the
218 maximum infection rate occurring at optimum temperature. In contrast, we detected a linear response
219 to temperature. This may indicate that UK crop production occurs at temperatures below the optima
220 for important fungal pathogens. The effect of moisture is commonly modelled as an increasing
221 function of humidity, or a binary process whereby infection can only take place during periods in
222 which leaf surfaces are wet²². While these models of disease risk can be used in disease control
223 decision-making, or to estimate risks under future climates, they do not directly estimate potential
224 yield losses. In the UK, potential yields of rainfed crops (Y_w) estimated from crop models^{5,14} vary
225 between 11.2 and 12.9 (mean 11.5) t ha⁻¹ for wheat and 8.5 and 9.8 (mean 8.9) t ha⁻¹ for barley,
226 depending on climate zone⁵. Achieved yields (Y_a) vary between 7.3 and 8.1 t ha⁻¹ (mean 7.8 t ha⁻¹)
227 for wheat and 5.6 and 6.3 t ha⁻¹ (mean 6.0 t ha⁻¹) for barley. Oats are not modelled, and winter and
228 spring varieties are not differentiated⁵. The modelled yield gap between Y_w and Y_a is therefore 3.7 t
229 ha⁻¹ for wheat and 2.9 t ha⁻¹ for barley. While we cannot estimate the contribution of different causes
230 (weather, variety selection, pests and diseases) precisely, our results demonstrate that potential losses
231 from pathogens are a similar magnitude to other yield gap drivers (Fig. 2), and that climate change
232 will differentially affect varieties and could therefore influence cropping patterns.
233

234 **Methods**

235

236 *Crop and Yield data*

237 We analysed yield data for crop variety trials conducted by the Agriculture and Horticulture
238 Development Board (AHDB) from 2002 to 2020. AHDB hosts archives of recommended lists of
239 cereals and oilseed that provide independent information on yield and quality performance,
240 agronomic features, disease pressure and market options to assist with variety selection²⁴. This list is
241 updated each year and provides information based on the analysis of hundreds of UK trials conducted

242 since 2002. No information is provided for fungicide usage in trials. We also obtained the
243 approximate spatial coordinates for the trial locations for data analysis and mapping by matching
244 names of trial locations to locations using GeoNames²⁵ and Google map search (Supplementary Fig.
245 11). Data were cleaned to remove sites and varieties with missing data for yields. Yield from
246 fungicide-treated (Y_t) and untreated (Y_c) trials was used to calculate the fungal disease-related yield
247 gap (Y_{gb}) as:

$$248 \text{ Potential biotic yield gap} (Y_{gb}) = 1 - \frac{\text{Untreated yield} (Y_c)}{\text{Treated yield} (Y_t)}$$

249 As each site had data for different varieties and cultivars, Y_{gb} and disease pressure information, mean
250 values per site per year were used for subsequent analyses.

251

252 Fungicide-treated (Y_t) and untreated (Y_c) yields were available for winter wheat (289 varieties),
253 spring wheat (47), winter barley (147), spring barley (154) and spring oats (45). Site locations varied
254 geographically between Limavady, Northern Ireland (6.98 °W, 55.07 °N) in the west and Morley,
255 Norfolk (1.03 °E, 52.56 °N) in the east, and West Charleton, Devon (3.76 °W, 50.27° N) in the south
256 and Kinghorn, Fife (3.10° E, 56.18° N) in the north (Supplementary Fig. 1). The number and
257 locations of trial sites varied over time, and the number and composition of varieties in the trials
258 varied among sites and over time. The total number of crop varieties tested per year remained roughly
259 stable, with a mean of 42 winter wheat, 9 spring wheat, 22 winter barley, 22 spring barley, and 10
260 spring oat varieties tested per year.

261

262 *Crop map*

263 Crop distribution data for the UK were obtained from the EUCROPMAP 2018^{26,27}. This map is
264 produced using Sentinel S1A and S1B Synthetic Aperture Radar observations for 2018 and random
265 forest-based classification algorithms. The map provides detailed spatial information on 19 crop types
266 in the EU for 2018 at 10-m resolution, with high accuracy. Pixels for each AHDB crop were extracted
267 and aggregated to a 1 km x 1 km grid generated using the *Fishnet* tool in ArcMap (ESRI ArcGIS
268 Desktop, release 10.8). This grid was generated on the same 1 km grid as the HadUK-Grid Gridded
269 Climate Observations. The count of crop pixels in each grid cell was then used to calculate the total
270 area (hectares) of crop under cultivation and, subsequently, the fractional area under crop cultivation
271 (A_F) in each 1 km grid cell for further analysis (Supplementary Fig. 3).

272

273 *Climate data*

274 Monthly weather data (2001-2020), including mean air temperature (°C), relative humidity (%), total
275 rainfall (mm) and sunshine hours (h), were obtained from the HadUK-Grid Gridded Climate
276 Observations v1.0.3.0 on a 1km and 5km grid over the UK²⁸. Weather data from 1km grid were
277 extracted for AHDB trial sites (point locations, years 2001 - 2020) for each crop from the rasters

278 using the *extract* function of the *raster* package in R v. 4.2.1²⁹. Climate model projections for
279 monthly mean air temperature (°C), relative humidity (%), total rainfall (mm) and sunshine hours (h)
280 were obtained from UKCP Local Projections on a 5km grid over the UK for 2021-2040 and 2061-
281 2080³⁰. These projections are produced by the Met Office Hadley Centre as part of the UK Climate
282 Projection 2018 (UKCP18) project and cover three time-periods (1981-2000, 2021-2040 and 2061-
283 2080) for a high emissions scenario, RCP8.5. Projections for other emission scenarios are not
284 available. For Y_{gb} predictions, monthly weather data (2001-2020) from HadUK-Grid Climate
285 Observations and climate model projections data (2021-2040 and 2061-2080) from UKCP Local
286 Projections on a 5 km grid were extracted for areas under cultivation for each crop, using the *mask*
287 function of *raster* package in R²⁹.

288

289 *Climate-yield gap relationship estimation*

290 The relationship between Y_{gb} and climatic variables for each month was explored using simple
291 correlation and regression analysis. Estimates from correlation and regression analyses were
292 bootstrapped (1000 iterations) using the *bootstraps* function in the *rsample* package of R³¹, where
293 each iteration was fitted on a resampled dataset with replacement. We used temporal block
294 bootstrapping to randomly resample data from a single year with replacement instead of sampling
295 random monthly observations, to maintain within-year temporal correlations³². The bootstrapped
296 estimates of correlation coefficient and beta slope estimate were visually inspected for consistency
297 and strength of association between monthly weather variables and observed Y_{gb} .

298 Our objective was to statistically fit the observed Y_{gb} to monthly weather variables. The resulting
299 relationship would be used for further analyses. We used generalized-least-squares (GLS) using the
300 *gls* function from the *nlme* package in R³³ to fit the model between Y_{gb} and the significant weather
301 variables identified through bootstrapping estimates. The GLS regression allowed for a first-order
302 autoregressive correlation structure in the residuals to account for the correlation over time and among
303 experimental sites in climate data. The parameters of the GLS regression represented the climate-
304 driven trends in yield gaps. We compared the models with and without temporal correlation structure,
305 using *F-test* in the *anova* function, to determine whether inclusion of temporal autocorrelation was
306 required. Finally, current (2002-2020) and future yield gap levels (2021-2040, 2061-2080) were
307 predicted and the estimates of the standard error of prediction were calculated for each masked (crop
308 pixels only) climate dataset pixel (5 km) using the *predictSE.gls* function from the *AICcmodavg*
309 package in R³⁴. The modelled yield gaps were averaged for each time period and climate dataset
310 pixel. In addition, we made predictions on all 12-member perturbed physics ensembles (UKCP local 5
311 km) for projections to get uncertainty in Y_{gb} predictions due to climate model
312 parameters/physics perturbations¹⁰.

313

314 *Future climate change impacts on yield gaps (forecast) and climate risk classification*

315 The impact of future climate change on Y_{gb} was quantified as the change in predicted future
316 yield gaps (2021-2040, 2061-2080) relative to current yield gaps (2002-2020). The mean yield gap
317 differences ΔY_{gb} were calculated for each pixel (5 km), weighted by A_F . We also compared the
318 relationship between ΔY_{gb} and the change in average future temperature (ΔT) and relative humidity
319 (ΔRH) levels in each future time slice to identify the strong drivers of Y_{gb} in each crop.

320

321 **References**

322

- 323 1. Silva, J. V. *et al.* How sustainable is sustainable intensification? Assessing yield gaps at field and
324 farm level across the globe. *Global Food Security* **30**, 100552 (2021).
- 325 2. Cassman, K. G. & Grassini, P. A global perspective on sustainable intensification research. *Nat
326 Sustain* **3**, 262–268 (2020).
- 327 3. Senapati, N. *et al.* Global wheat production could benefit from closing the genetic yield gap. *Nat
328 Food* 1–10 (2022) doi:10.1038/s43016-022-00540-9.
- 329 4. Hatfield, J. L. & Beres, B. L. Yield Gaps in Wheat: Path to Enhancing Productivity. *Frontiers in
330 Plant Science* **10**, (2019).
- 331 5. Schils, R. *et al.* Cereal yield gaps across Europe. *European Journal of Agronomy* **101**, 109–120
332 (2018).
- 333 6. Savary, S. *et al.* The global burden of pathogens and pests on major food crops. *Nature Ecology
334 & Evolution* **3**, 430–439 (2019).
- 335 7. Maggi, F., Tang, F. H. M., la Cecilia, D. & McBratney, A. PEST-CHEMGRIDS, global gridded
336 maps of the top 20 crop-specific pesticide application rates from 2015 to 2025. *Sci Data* **6**, 170
337 (2019).
- 338 8. Lázaro, E., Makowski, D. & Vicent, A. Decision support systems halve fungicide use compared
339 to calendar-based strategies without increasing disease risk. *Commun Earth Environ* **2**, 1–10
340 (2021).
- 341 9. Fones, H. N. *et al.* Threats to global food security from emerging fungal and oomycete crop
342 pathogens. *Nature Food* **1**, 332–342 (2020).

343 10. Wang, C. *et al.* Occurrence of crop pests and diseases has largely increased in China since 1970.

344 *Nat Food* **3**, 57–65 (2022).

345 11. Deutsch, C. A. *et al.* Increase in crop losses to insect pests in a warming climate. *Science* **361**,

346 916–919 (2018).

347 12. Chaloner, T. M., Gurr, S. J. & Bebber, D. P. Plant pathogen infection risk tracks global crop

348 yields under climate change. *Nat. Clim. Chang.* **11**, 710–715 (2021).

349 13. Mackay, I. *et al.* Reanalyses of the historical series of UK variety trials to quantify the

350 contributions of genetic and environmental factors to trends and variability in yield over time.

351 *Theor Appl Genet* **122**, 225–238 (2011).

352 14. GYGA Team. Global Yield Gap and Water Productivity Atlas. <https://www.yieldgap.org/> (2022).

353 15. Turner, J. A., Chantry, T., Taylor, M. C. & Kennedy, M. C. Changes in agronomic practices and

354 incidence and severity of diseases in winter wheat in England and Wales between 1999 and 2019.

355 *Plant Pathology* **70**, 1759–1778 (2021).

356 16. Chaloner, T. M., Gurr, S. J. & Bebber, D. P. Geometry and evolution of the ecological niche in

357 plant-associated microbes. *Nature Communications* **11**, 2955 (2020).

358 17. Bearchell, S. J., Fraaije, B. A., Shaw, M. W. & Fitt, B. D. L. Wheat archive links long-term

359 fungal pathogen population dynamics to air pollution. *Proc Natl Acad Sci U S A* **102**, 5438–5442

360 (2005).

361 18. Lewis, C. M. *et al.* Potential for re-emergence of wheat stem rust in the United Kingdom.

362 *Communications Biology* **1**, 13 (2018).

363 19. Delgado-Baquerizo, M. *et al.* The proportion of soil-borne pathogens increases with warming at

364 the global scale. *Nature Climate Change* **10**, 550–554 (2020).

365 20. Brown, J. K. M. Durable Resistance of Crops to Disease: A Darwinian Perspective. *Annual*

366 *Review of Phytopathology* **53**, 513–539 (2015).

367 21. Bebber, D. P. Climate change effects on Black Sigatoka disease of banana. *Philosophical*

368 *Transactions of the Royal Society B: Biological Sciences* **374**, 20180269 (2019).

369 22. Launay, M. *et al.* Robustness of crop disease response to climate change signal under modeling

370 uncertainties. *Agricultural Systems* **178**, 102733 (2020).

371 23. Newlands, N. K. Model-Based Forecasting of Agricultural Crop Disease Risk at the Regional
372 Scale, Integrating Airborne Inoculum, Environmental, and Satellite-Based Monitoring Data.
373 *Front. Environ. Sci.* **6**, (2018).

374 24. AHDB. Recommended Lists for cereals and oilseeds (RL). [https://ahdb.org.uk/knowledge-
375 library/recommended-lists-for-cereals-and-oilseeds-rl](https://ahdb.org.uk/knowledge-library/recommended-lists-for-cereals-and-oilseeds-rl) (2022).

376 25. GeoNames. GeoNames. <http://www.geonames.org/> (2022).

377 26. d'Andrimont, R. *et al.* *EUROCROPMAP 2018*.
378 <https://publications.jrc.ec.europa.eu/repository/handle/JRC125312> (2021).

379 27. d'Andrimont, R. *et al.* From parcel to continental scale – A first European crop type map based
380 on Sentinel-1 and LUCAS Copernicus in-situ observations. *Remote Sensing of Environment* **266**,
381 112708 (2021).

382 28. Met Office *et al.* HadUK-Grid Gridded Climate Observations on a 1km grid over the UK,
383 v1.0.3.0 (1862-2020). (2021) doi:10.5285/786B3CE6BE54468496A3E11CE2F2669C.

384 29. Hijmans, R. J. *raster*: Geographic Data Analysis and Modeling. *R package version 3.5-17* **734**,
385 (2022).

386 30. Met Office Hadley Centre. UKCP Local Projections on a 5km grid over the UK for 1980-2080.
387 Centre for Environmental Data Analysis. (2019).

388 31. Silge, J., Chow, F., Kuhn, M. & Wickham, H. *rsample*: General Resampling Infrastructure. *R
389 package version 1.0.0* (2022).

390 32. Kreiss, J.-P. & Lahiri, S. N. *Handbook of statistics*. vol. 30 (Elsevier, 2012).

391 33. Pinheiro, J. & Bates, D. *nlme*: Linear and Nonlinear Mixed Effects Models. *R package version
392 3.1-158*. (2022).

393 34. Mazerolle, M. J. *AICmodavg*: Model selection and multimodel inference based on (Q)AIC(c). *R
394 package version 2.3-1*. (2020).

395

396 **Data availability**

397 Crop yield trial data were obtained from the Agriculture and Horticulture Development Board
398 (AHDB); part of this dataset is from the AHDB Recommended Lists. The AHDB Recommended
399 Lists are managed by a project consortium of AHDB, BSPB, MAGB and UKFM. Data are available

400 from <https://ahdb.org.uk/rl>. All datasets used in the study are freely and openly available from sources
401 described in the Methods.

402

403 **Acknowledgements**

404

405 This work was supported by Wave 1 of The UKRI Strategic Priorities Fund under the EPSRC Grant
406 EP/W006022/1, particularly the “Environment and Sustainability” theme within that grant & The
407 Alan Turing Institute.

408

409 **Authors contributions**

410 DB designed the study. MR analysed the data and prepared the figures. Both authors wrote the
411 manuscript.

412

413 **Competing interests**

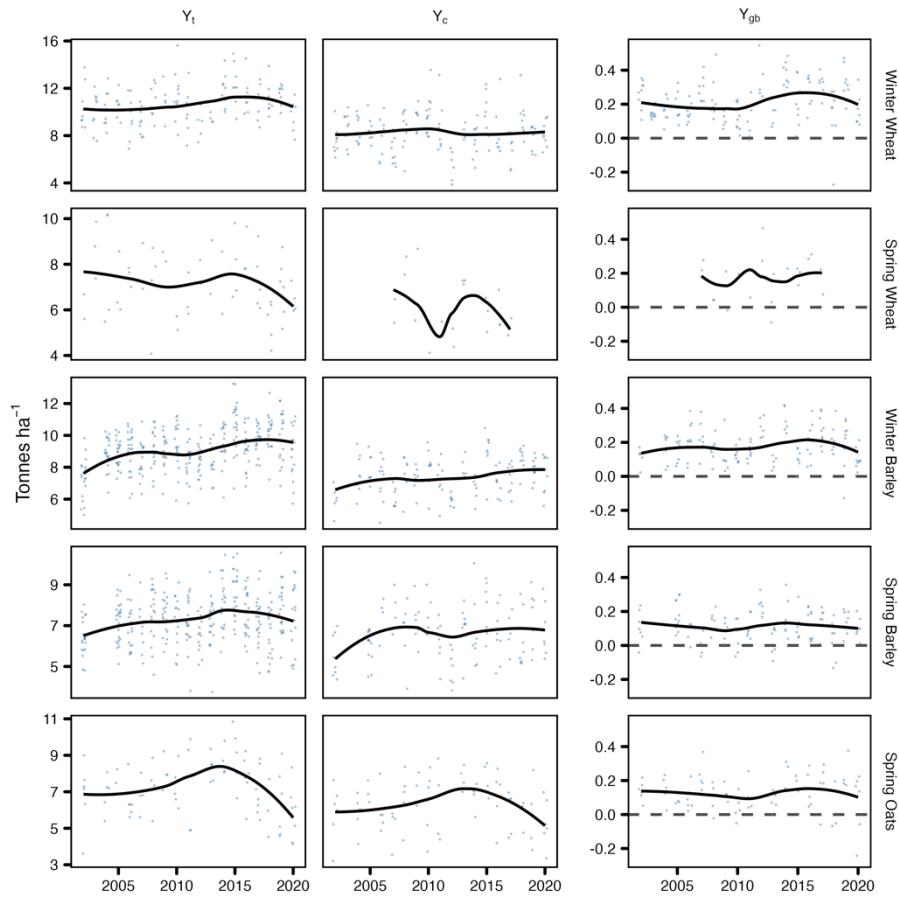
414 The authors declare no competing interests.

415

416

417 **Figures**

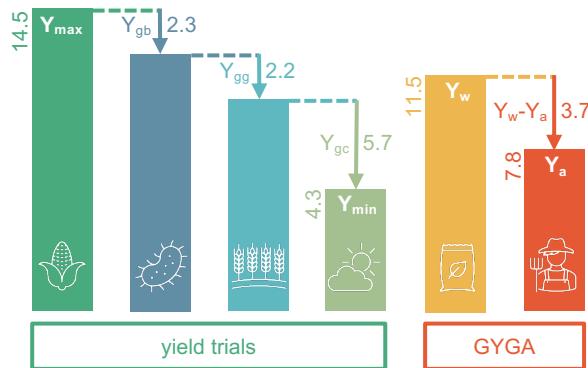
418



419

420 **Figure 1. Distribution of total grain yield (Tonnes ha^{-1}) and yield gap (Y_{gb}).** Distribution of grain
421 yield from fungicide treated (Y_t) and non-treated (Y_c) experimental sites and resultant yield gaps (Y_{gb})
422 in the studied crops from 2002 - 2020. The dashed horizontal line in the right panel indicates no yield
423 gap. Data points above this line indicate yield gap ($Y_t > Y_c$). However, points below this line indicate
424 yield gain ($Y_t < Y_c$).

425

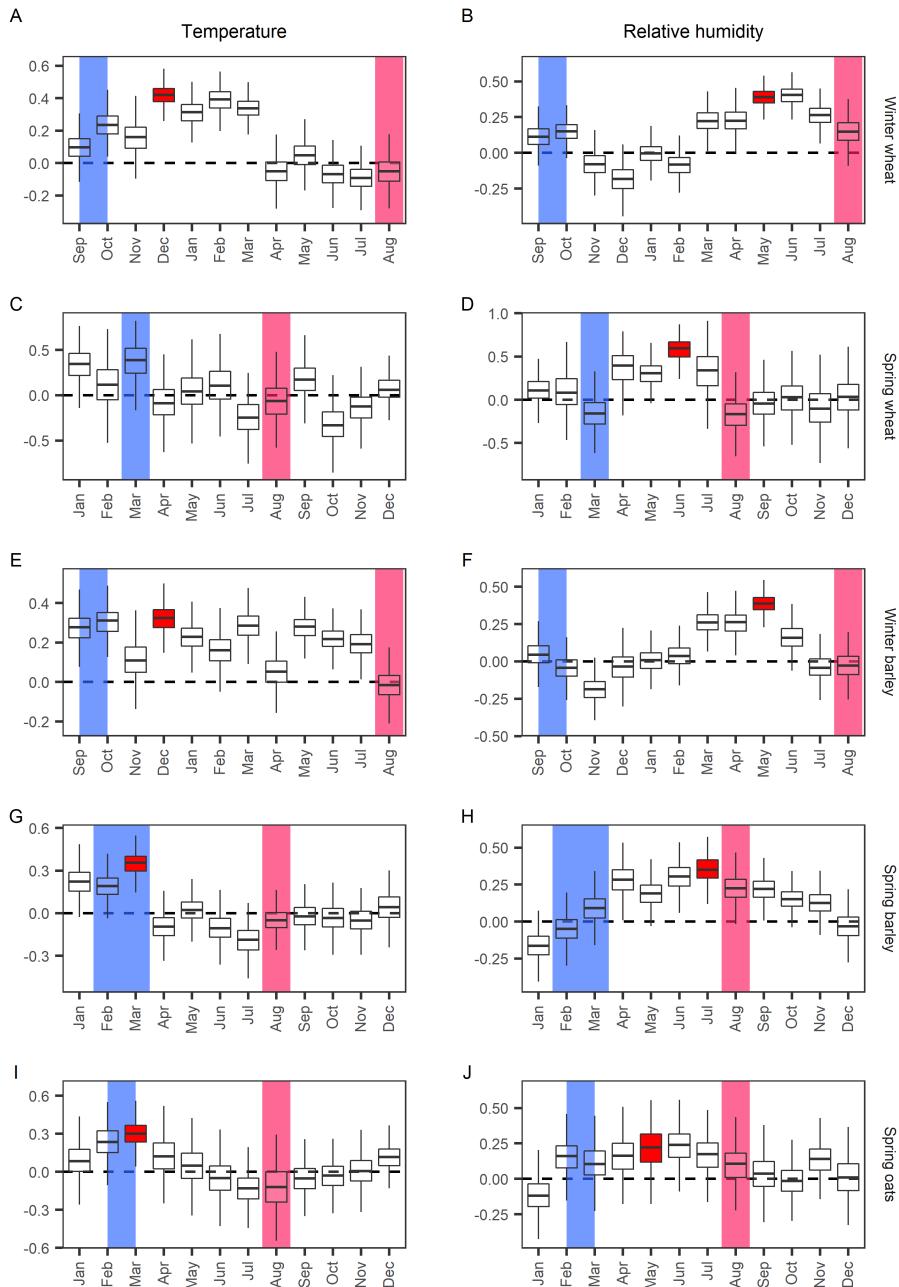


426

427 **Figure 2. Yield gap components in winter wheat.** Y_{\max} and Y_{\min} are top and bottom 5 % of Y_t and
 428 Y_c , respectively, across all trials. Y_{\max} (14.5 t ha^{-1}) indicates the highest yield achievable under
 429 optimal weather conditions in the best sites with the best varieties and no loss to disease. Y_{\min} (4.3 t
 430 ha^{-1}) indicates the yield in the worst sites with the lowest yielding varieties in the worst years with
 431 large losses to disease. Y_{gb} (2.3 t ha^{-1}) is the mean loss to disease. Y_{gg} (2.2 t ha^{-1}) indicates the
 432 difference between the highest and lowest Y_t of varieties within trials. Y_{gc} (5.7 t ha^{-1}) indicates the
 433 difference between the best and worst Y_t of a variety within a site. Yield trial results are compared to
 434 modelled potential rainfed wheat yield for the UK (Y_w) and achieved yield (Y_a) from the Global Yield
 435 Gap Analysis¹⁴. Bar are not to scale.

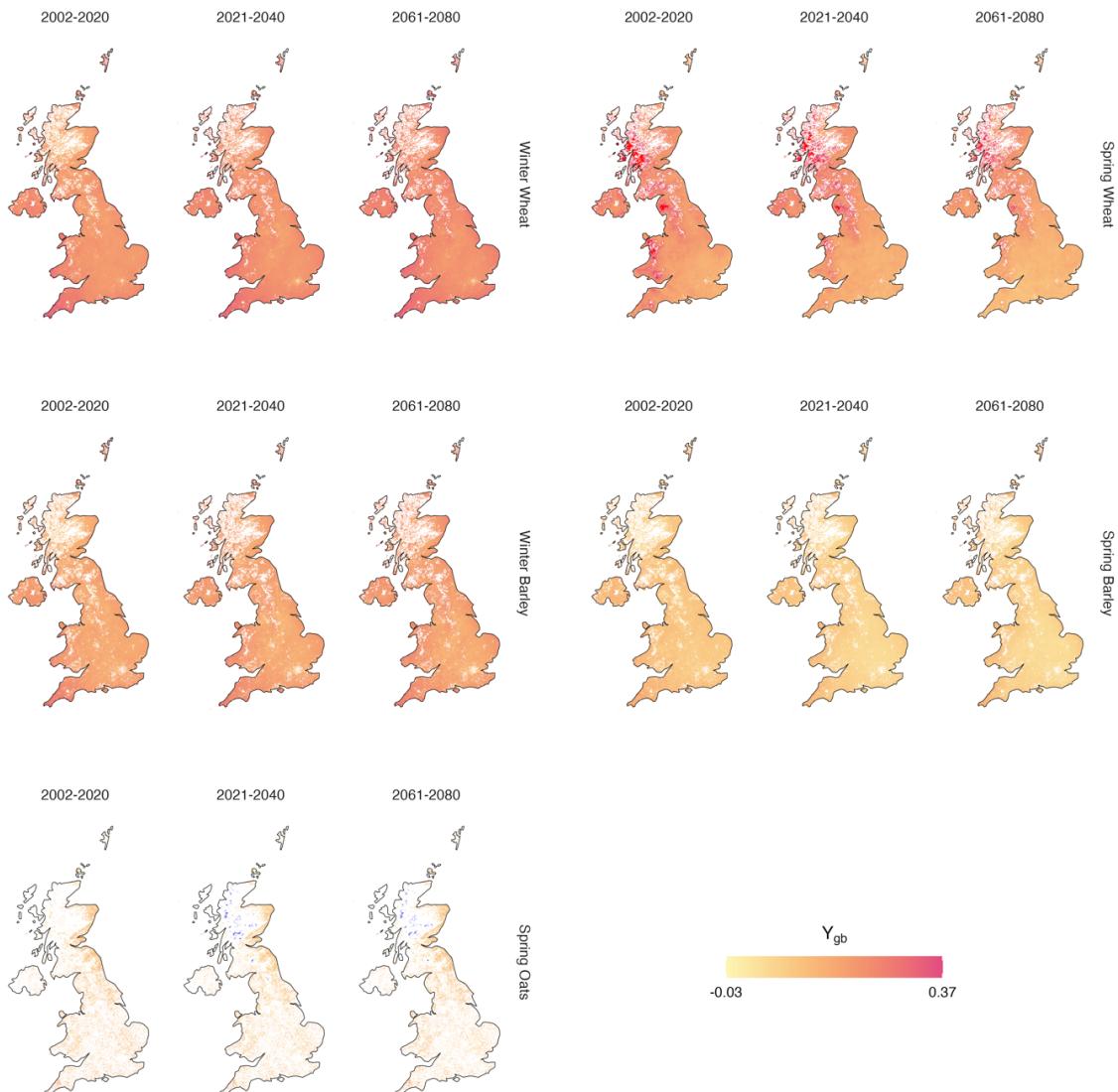
436

437



438

439 **Figure 2. Bootstrapped estimates of the correlation between yield gap (Y_{gb}) and monthly**
 440 **weather variables.** Boxplots show the distribution (minimum, maximum, median and interquartile
 441 range) of correlation coefficient (r) estimates of the association between Y_{gb} and monthly temperature
 442 and relative humidity except for D, representing the correlation estimates between Y_{gb} and rainfall.
 443 Dashed horizontal line indicates no correlation. Blue and pink shaded areas indicate planting and
 444 harvesting times of the studied AHDB crops, respectively. The varying pattern of boxplots indicates
 445 how the correlation estimates vary for weather variables in each month of the growing season.
 446 Boxplots filled with red are the months we used climate data for model fitting. We did not find any
 447 significant association of Y_{gb} with temperature in spring wheat (C).
 448

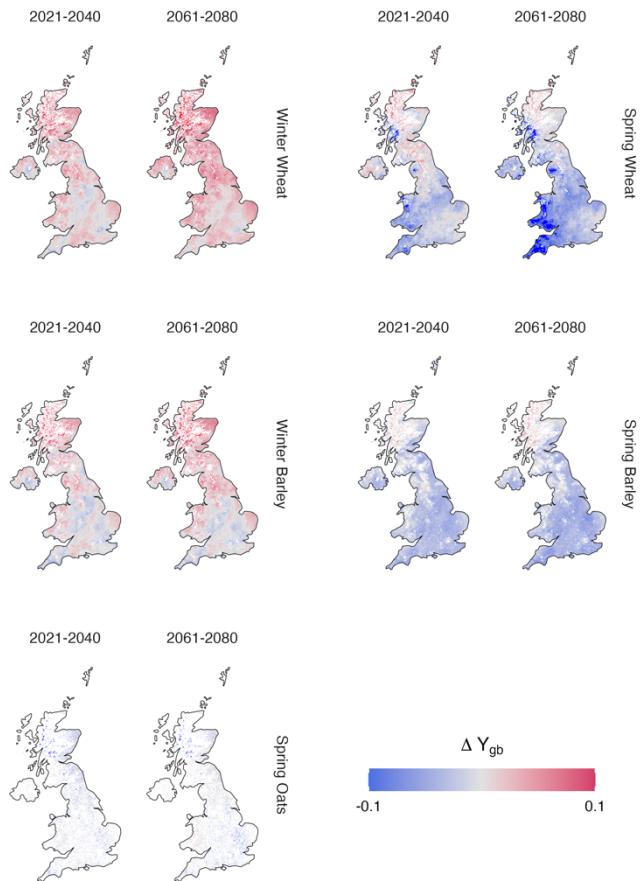


449

450 **Figure 4. Current and future predicted average yield gap (Y_{gb}).** Predictions were made on current
 451 (2002 - 2020) and future (2021 – 2040 and 2061 - 2080) climate pixels of 1km x 1km grid resolution.
 452 Predicted Y_{gb} were then summarized for each time slice. Grey indicates either no or low Y_{gb} , while
 453 dark blue represents a higher Y_{gb} . White grid cells contained no hosts and were excluded from the
 454 analysis. Values outside 1.5 times the interquartile range (IQR) above upper quartile and below lower
 455 quartile are shown in red and deep blue respectively.

456

457

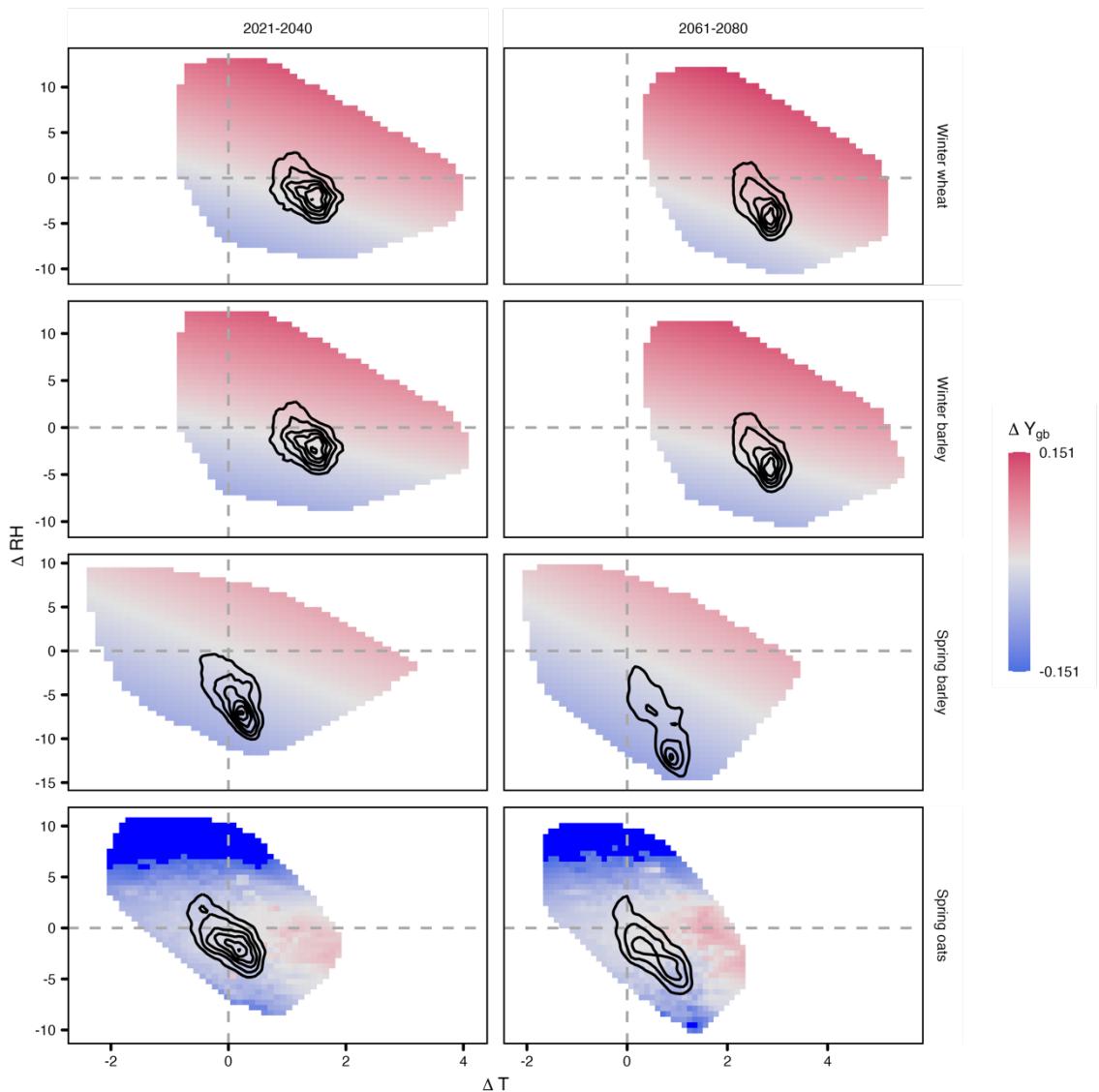


458

459 **Figure 5. Average change in future yield gap (ΔY_{gb}).** Current (2002 - 2020) average predicted Y_{gb}
 460 levels were subtracted from future (2021 – 2040 and 2061 - 2080) predicted Y_{gb} levels for each pixel
 461 at 1km x 1km grid resolution. Red indicates a high Y_{gb} , while blue indicates high yield gain compared
 462 to current Y_{gb} levels. Grey indicates no change. White grid cells contained no hosts and were
 463 excluded from the analysis. Values outside 1.5 times the interquartile range (IQR) above upper
 464 quartile and below lower quartile are shown in red and deep blue respectively.

465

466



467

468 **Figure 6. Association between change in average future temperature (ΔT) and relative humidity**

469 **(ΔRH) and the interpolated surface of mean yield gap differences (ΔY_{gb}) in future time slices.**

470 Contour lines represent the aggregated count of data points of association between ΔT and ΔRH .

471 Values outside 1.5 times the interquartile range (IQR) below lower quartile are shown in deep blue.

472