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ABSTRACT

Fungal specialized metabolites include many bioactive compounds with potential applications as
pharmaceuticals, agrochemical agents, and industrial chemicals. Exploring and discovering novel
fungal metabolites is critical to combat antimicrobial resistance in various fields, including medicine
and agriculture. Yet, identifying the conditions or treatments that will trigger the production of
specialized metabolites in fungi can be cumbersome since most of these metabolites are not produced
under standard culture conditions. Here, we introduce a data-driven algorithm comprising various
network analysis routes to characterize the production of known and putative specialized metabolites
and unknown analytes triggered by different exogenous compounds. We use bipartite networks to
quantify the relationship between the metabolites and the treatments stimulating their production
through two routes. The first, called the direct route, determines the production of known and putative
specialized metabolites induced by a treatment. The second, called the auxiliary route, is specific
for unknown analytes. We demonstrated the two routes by applying chitooligosaccharides and lipids
at two different temperatures to the opportunistic human fungal pathogen Aspergillus fumigatus.
We used various network centrality measures to rank the treatments based on their ability to trigger
a broad range of specialized metabolites. The specialized metabolites were ranked based on their
receptivity to various treatments. Altogether, our data-driven techniques can track the influence of
any exogenous treatment or abiotic factor on the metabolomic output for targeted metabolite research.
This approach can be applied to complement existing LC/MS analyses to overcome bottlenecks in
drug discovery and development from fungi.
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Author summary

Triggering silent biosynthetic gene clusters in fungi to produce specialized metabolites is a tedious process that requires
assessing various environmental conditions, applications of epigenetic modulating agents, or co-cultures with other
microbes. We provide a data-driven solution using network analysis, called “direct route”, to characterize the production
of known and putative specialized metabolites triggered by various exogenous compounds. We also provide a “auxiliary
route” to distinguish unique unknown analytes amongst the abundantly produced analytes in response to these treatments.
The developed techniques can assist researchers to identify treatments or applications that could positively influence the
production of a targeted metabolite or recognize unique unknown analytes that can be further fractionated, characterized,
and screened for their biological activities and hence, discover new metabolites.

Introduction

Fungi are among the most prolific producers of specialized metabolites classified by their chemical structure into
four main classes: polyketides, non-ribosomal peptides, terpenes, and indole alkaloids [31, 30]. These specialized
metabolites are multifaceted and impactful in our daily lives due to their positive roles as lifesaving drugs and
agrochemicals. On the contrary, some of these specialized metabolites, commonly called mycotoxins, can have
adverse effects on humans, animals, and crops, resulting in illnesses and economic losses [21, 43, 30]. In fungi, the
genes involved in the biosynthesis of specialized metabolites are commonly arranged in so-called biosynthetic gene
clusters (BGCs). Numerous specialized metabolite BGCs have been predicted and identified from genomes of several
filamentous fungi [31, 30]. However, most predicted metabolites are not produced under standard cultivation and
growth conditions, hindering their discovery [10]. In recent years, the chance to expand our knowledge and repertoire of
specialized metabolites has significantly increased due to the enhanced understanding of fungal diversity and taxonomy,
the widespread availability of published genomes [41], and the development of BGC prediction tools [11] such as
antiSMASH [8, 7] and other computational tools. Biosynthetic genes predicted by these approaches can undergo genetic
manipulations afterward to confirm their implication in the metabolic pathway and characterize novel specialized
metabolites [45, 57]. However, this approach can sometimes be challenging, mainly if the BGC is missing a specific
transcription factor to genetically target or if the gene cluster borders have been inaccurately predicted [54]. With the
ongoing challenges of triggering those silent BGCs for specialized metabolite characterization, other approaches have
been proposed.

The approaches adopted recently to trigger the expression of uncharacterized BGCs relied on identifying environmental
cues, epigenetic chemical factors, axenic cultivation conditions, applications of exogenous compounds, or co-cultivation
of the fungus with other microbes or hosts to induce the production of corresponding metabolites [37, 11, 35, 10,
49, 31, 30]. Network analysis [44] was also lately proposed as a complementary approach to accurately predict the
factors that can elucidate fungal metabolites and narrow down the list of BGCs to target. In our recent paper, we
demonstrated how the mathematical platform of graph theory [9] and network analysis [44] could target research to
discover specialized metabolites within Trichoderma based on species-level taxonomic positioning and their predicted
BCGs [54]. This study was later used to discover the antifungal agent, Ilicicolin H, in Trichoderma reesei [55]. There
are various state-of-the-art techniques to help discover new specialized metabolites through network analysis, artificial
intelligence, and data-driven approaches, like using molecular network analysis for web-based servers such as GNPS
[62, 63], MetWork [4], and MetaboAnalyst [64, 48]. These web servers perform a variety of data-driven analyses on
mass spectrometry data to discover new metabolites and characterize the structure of known and putative metabolites.
Molecular networks are built using spectral matching (spectral network analysis [2]) to discover unknown compounds.
However, to our knowledge, there are no tools developed to assess the direct effect of exogenous treatments on the
production of fungal specialized metabolites. Thus, there is currently a void in the knowledge regarding the sources that
trigger the production of such specialized metabolites.

Herein, our goal is to determine the feasibility of using network analysis to track the influence of applied exogenous
compounds on the production of characterized and putative metabolites as well as unknown analytes. We introduce
two methods based on network analysis to tackle these two objectives, called “direct route” and “auxiliary route”. An
overview of the modeling framework is shown in Fig. 1 with suggestions of post-analysis applications. The direct
route shows the influence of treatments on the production of known or putative specialized metabolites. In contrast,
the auxiliary route distinguishes unique unknown analytes and pinpoint the treatments that foster their production.
Both approaches reveal treatments that dominate by triggering a variety of specialized metabolites. Moreover, unique
specialized metabolites are also identified by these methods. The capability of these methods was evaluated using the
opportunistic human pathogen and soilborne saprotroph, Aspergillus fumigatus, as a model organism exposed to various
chitooligosaccharides and lipid treatments.
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Figure 1: Framework of the direct and auxiliary routes using experimental inputs and implications for post-
analysis applications. An overview of the network analysis approach reveals the effect of exogenous compounds
on triggering the production of microbial specialized metabolites. Experimental data input: Experimental data
from LC/MS analysis is used to reveal significant analytes. [54] provides a detailed roadmap on how to derive the
experimental data. Network analysis: Network analysis processes the LC/MS data points to define graphs which
quantitatively represent the effect of exogenous treatments to trigger specialized metabolites. The direct route is used to
understand the influence of treatment on known or putative metabolites. In addition, after the data is curated to eliminate
peak noise, the auxiliary route is used to identify strong signals of unknown analytes. The treatments and metabolomic
outputs are ranked using network analysis measures. Post-analysis applications: After knowing the relationship
between a treatment and metabolomic outputs, post-analysis applications can be applied to isolate and characterize the
metabolite through genetic manipulations followed by bioactivity screening. These two post-analysis applications are
provided as a guidance on possible applications of the current framework for discovering new metabolites and are not
performed in the current study.

We emphasize that the particular objective of the current study is not to discover new metabolites whereas is to reveal
the effect of exogenous treatments on triggering the production of specialized metabolites. Nonetheless, the inferences
drawn on the dominant treatments and unique specialized metabolites using the current methodology can enable the
discovery of new metabolites through the suggested post-analysis applications in Fig. 1 (top-right box). The developed
methods can complement existing web-based network analysis tools [62, 63, 4, 64, 48] for metabolite discovery that do
not consider the sources triggering metabolomic outputs and have great application potentials in various fields including
drug discovery and development.

Framework to provide data-driven network analysis

Methodology: Building bipartite networks of treatments and metabolomic outputs

Bipartite networks are built to quantify the relationship between metabolites and the sources triggering their production,
such as various exogenous biomolecules or compounds. A network (or graph) is a collection of nodes connected by
lines named edges. The nodes represent the entities or elements of a system, and the edges represent the interaction
or relationship amongst the features [9, 44]. For example, in cell metabolism, a metabolic network represents the
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biochemical reactions amongst substrates that result in products [26, 61, 44]. The nodes of the metabolic network
represent the substrates, and the edges represent the metabolic reactions amongst the substrates. In the current analysis,
we assessed the effect of exogenous compounds on the production of specialized microbial metabolites. This relationship
between treatments and specialized metabolites can be represented by a network, as shown in Fig. 1. The nodes can be
classified into two types: the treatments and the specialized metabolites, resulting in a bipartite network. The edges
represent the magnitude of up- or down-regulation of specialized metabolites caused by the treatments compared to a
controlled case (measured by the magnitude of log2 fold change using processed spectral data from targeted LC-MS
analysis). The details of building the bipartite network are provided in the Materials and methods section.

The bipartite network provides an in-depth quantification and clear visual representation of a treatment’s ability to trigger
the production of various specialized metabolites. We provide two routes to assess specialized metabolite production
using the bipartite network formulation, as shown in Fig. 1. The first is the direct route to determine the biosynthesis of
known and putative metabolites, whereas the second is the auxiliary route to assess the production of unknown analytes.
In the direct route, the network nodes include treatments that elucidate known and putative metabolites by a microbe.
Moreover, we use network centrality measurements to rank the treatments and the specialized metabolites. Those
measurements are usually used to identify the most influential nodes in a network [44]. Herein, we use the centrality
measurements of node strength and PageRank [12] to identify the most effective treatments and metabolites. The
treatments are ranked based on their capability to trigger metabolite production, and the metabolites are classified based
on their popularity in being activated by various treatments. We provide details of computing the network centrality
measures in the Materials and methods section. In the auxiliary route, we built bipartite networks using novel analyte
peaks extracted from post-processed spectral data. Furthermore, we analyze the edges and neighborhoods of nodes
to distinguish unique analytes among the total pool. Methods for novel peak selection are provided in the Materials
and methods section. Note that the only similarity between the two routes is on the definition of the graphs/networks -
both involves bipartite networks defined by the amount of up- or down-regulation of the specialized metabolites by
the exogenous treatments. The data curation and network centrality measures used to identify important specialized
metabolites and treatments in each of the routes are different.

System: Experimental data of Aspergillus fumigatus metabolomic outputs

Our modeling framework was used to reveal the effect of various chitooligosaccharides and lipid treatments on triggering
the production of specialized metabolites in Aspergillus fumigatus. Various chitooligosaccharides and lipids were
applied as exogenous treatments since they are common constituents found in most fungi [42, 53, 15]. Moreover, it has
been previously shown that lipids influence fungal metabolomics [40]; however, the impacts of chitooligosaccharides
have remained unknown. In contrast, chitooligosaccharides are reported to have antifungal activity [34], which might
potentially influence the metabolomic profile in Aspergillus species [37]. We applied the treatments to A. fumigatus
strain Af293 because it has a well-defined repertoire of known and putative specialized metabolites [52] that is
temperature-dependent [32, 37, 5, 35, 24] and its whole genome is sequenced [46]. We also explore the influence
of temperature on the production of specialized metabolites conducting the experiments at 25 and 37◦C. Aspergillus
fumigatus is generally examined at 25◦C to explore the extent of its metabolomic capabilities or its lifestyle as a
soilborne saprotroph that recycles environmental carbon and nitrogen [33]. However, the fungus is also an opportunistic
human pathogen and is commonly examined at 37◦C for its ability to cause aspergillosis, a lung disease found in
immunocompromised patients [14]. The details of the experimental setups and data generation are provided in the
Materials and methods section.

Results

Data-driven validation of direct and auxiliary routes with treated samples at 25◦C

Analyte and metabolomic production induced by treatments

We use UpSet plots (Fig. 2a) and volcano plots (Figs. 2b-f) to curate the analytes and metabolites produced. The data
curation for the UpSet plots (Fig. 2a and Fig. 5a for results of 37◦C) and volcano plots (Figs. 2b-f and 5b-f for results of
37◦C) were obtained using the experimental results involving XCMS [17] to provide a statistical assessment of signals
with significant peaks between a treatment and solvent control through a pairwise comparison. A list of mass to charge
(m/z) and retention times and statistical values were provided from those results. To validate the XCMS results, we
used MAVEN [39, 13] for metabolomic analysis and visualization of the LC/MS data to confirm if the same m/z at the
provided retention time did have a significant peak difference between treatment and solvent control.

At 25◦C, LC/MS data revealed that all individually applied treatments significantly induced the production of analytes
compared to the solvent control, as shown by the UpSet plot in Fig. 2a. No treatments were co-applied to the fungus.
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Figure 2: Metabolomic outputs of Aspergillus fumigatus at 25◦C induced by lipid and chitooligosaccharide
treatments. (a) UpSet plot denoting the number of significant analytes produced by individually applied treatments.
Multiple treatments induced some analytes. (b-f) Volcano plots identifying the known and putative metabolites and
unknown analytes triggered by (b) palmitic acid, (c) oleic acid, (d) CO4, (e) CO5, and (f) CO8 as compared to the
solvent control.
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In total, 4,629 significant analytes were detected. (Fig. 2a). Unique analytes produced by CO4 was 15.5%, by CO5
was 11.4%, by CO8 was 3.7%, by palmitic acid was 3.8%, and by oleic acid was 12.5%. These results indicate the
length of COs matters when looking at how they influence specific metabolomic pathways. The short-chain COs has
higher production of metabolites compared to long-chain COs. In addition, oleic acid has a more significant impact on
analyte production compared to palmitic acid. Interestingly, 38.3% of individual analytes were induced by CO4 and
CO5, suggesting a common co-regulation of metabolomic pathways. However, most analytes were uniquely caused
by one treatment indicating that metabolomic pathways seem specific to treatment, thus requiring network analysis to
determine those relationships.

To determine the regulation of analytes induced by treatment and identify potential known and putative specialized
metabolites, we made volcano plots based on the log2 fold change and − log10 (p-values) between a treatment and the
solvent control shown in Figs. 2 b-f. All treatments had a significant differential expression of analytes compared to
the control. COs induce the production of analytes between 80% to 93% compared to the solvent control, including
several known and putative metabolites (Figs. 2 d-f). On the contrary, the positive regulation of analyte production by
lipids was reduced compared to the control, ranging between 17% to 24%. CO4 (Fig. 2d) and CO5 treatments (Fig. 2e)
induced the production of five to six known or putative metabolites, whereas CO8 (Fig. 2f) influenced the production of
a single known metabolite. These results follow the same trend shown in Fig. 2a, highlighting that short-chain COs have
a more significant impact on triggering metabolite production than long-chain CO. Interestingly, oleic acid (Fig. 2c)
induced five times more known or putative metabolites than palmitic acid (Fig. 2b), matching the data shown in Fig. 2a.
We also compared transcriptomic expression from quantitative PCR analysis to corrected peak area which so relatively
similar regulation of known secondary metabolites (Fig. 3). It is important to consider that specialized metabolomic
production is potentially subject to post-transcriptional regulation when the transcriptomic and metabolomic data do not
match. Discrepancies between metabolomic and transcriptomic profiles have been observed in other ascomycete fungi
[56]. In summary, short-chain COs and oleic acid have the most significant impact on known or putative metabolite
and unknown analyte production, yet they have different regulations at 25◦C. The direct route using theoretical graph
analysis is applied to understand further this regulation and how these metabolites are produced within a system.

Revealing the dominant compounds and highly influenced known and putative metabolites - the direct route

The influence of chitooligosaccharides and lipids on the production of known and putative metabolites by Aspergillus
fumigatus at 25◦C was analyzed using the direct route as shown in Figs. 4 a-c. The bipartite networks provide a
visual representation and enable a clear distinction between the effects of these treatments, as shown in Fig. 4a. While
chitooligosaccharides resulted in an up-regulation of the identified metabolites, the lipids showed a down-regulation. The
network centrality measure of node out-strength of the treatments reveals that CO4 has the highest effect on triggering
metabolite production, followed by CO5, then oleic acid. The treatments CO8 and palmitic acid showed a minor
influence on inducing metabolite production. This was expected as those two treatments influence the production of only
one metabolite with low values of log2 fold change. Moreover, the putative metabolite nidulanin A possesses the highest
node in-strength amongst the metabolites as it is the most regulated metabolite, influenced by the chitooligosaccharides
CO4 and CO5. These results align with the inferences drawn from the UpSet and volcano plots in Figs. 2 a-f.

The network centrality measure of PageRank considers various factors, such as the number of edges from or to a
node and the relative importance of nodes based on their connections to highly and uniquely connected nodes, to
determine the most influential nodes in a network. The PageRank measure has been used extensively in various
metabolic network analysis [3]. Due to the nature of metabolic interactions, variations in the PageRank measure has
also been introduced [19]. We provide details on the differences between the node strength and PageRank measures in
Materials and methods section. For the treatments, the ability to be influential at triggering metabolite production is
measured by the broadcasting version of the PageRank measure. In contrast, the ability of metabolites to be receptive to
treatments is denoted by the receiving version of the PageRank measure, as shown in Figs. 4b and 4c, respectively. The
results, which are minimum-maximum normalized (values between 0 and 1, denoted herein by normalized broadcasting
PageRank PRbroadcasting and normalized receiving PageRank PRreceiving), indicate that CO4 (PRbroadcasting = 1) is the
most effective treatment, followed by oleic acid (PRbroadcasting = 0.927). The bipartite network shows that CO4 triggers
six metabolites compared to five triggered by oleic acid. Both treatments trigger two unique metabolites (helvolic acid
and fumisoquin A by CO4; gliotoxin and fumigaclavine C by oleic acid). Nonetheless, CO4 has a higher influence on
triggering the production of a unique metabolite, fumisoquin A. The broad number of metabolites activated by the CO4
treatment with a more prominent effect shows the wider impact of CO4 on triggering metabolites.

The current modeling framework reveals oleic acid to have a high impact on the production of metabolites even at
25◦C. Oleic acid (PRbroadcasting = 0.927) has a higher broadcasting PageRank value than CO5 (PRbroadcasting = 0.583),
contrary to the node out-strength values (CO5 has higher out-strength than oleic acid as shown in Fig. 4b). The higher
broadcasting PageRank value of oleic acid is attributed to its ability to uniquely trigger two metabolites (gliotoxin and
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Figure 3: Metabolic gene expressions and peak area for confirmed specialized metabolites. Welch’s ANOVA
p-values were (a) < 0.0001 for ∆∆CT data and 0.0054 for peak area, (b) 0.0004 for ∆∆CT and < 0.0001 for peak
area, (c) 0.0002 for ∆∆CT and 0.0385 for peak area, (d) < 0.0001 for ∆∆CT and 0.0081 for peak area, (e) 0.0006
for ∆∆CT and 0.0230 for peak area, (f) < 0.0001 for ∆∆CT and peak area (g) 0.0005 for ∆∆CT and 0.0054 for
peak area, and (h) was not significant. The gene responsible for pyripyropene A production was not expressed under
CO5 treatment. Unpaired Welch’s t-test was used to compare individual treatments to the solvent control resulting in
(*) indicates p-value < 0.005; (**) indicates p-value < 0.01; (***) indicates p-value < 0.001; and (****) indicates
p-value < 0.0001.
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Figure 4: Network analysis-based direct and auxiliary routes for revealing the relationship between treatments
and metabolite production in Aspergillus fumigatus at 25◦C. (a) Bipartite network of treatments and known and
putative metabolites. The nodes representing the metabolites are classified and colored coded for known and putative
metabolites (blue and green, respectively). The transparency and color (red or blue) of the edges represent the log2
fold change and up- or down-regulation of the metabolites, respectively. The sizes of the nodes denote the network
centrality measure of node strength. (b) Network centrality measure of PageRank of the treatments (broadcasting
PageRank values). (c) PageRank measures the known and putative metabolites (receiving PageRank values). (d)
Auxiliary route to assess the production of unknown analytes. A bipartite network of all analytes for their treatments
(analyte IDs correspond to tables in S1 File providing mass to charge ratios (m/z), retention times, linear fold change,
log2 fold change, p values, and f values). Degrees indicate the production of an unknown analyte by a single or multiple
treatment(s) applied separately. Degree 1 are analytes induced by one treatment; Degree 2 are analytes produced by
two different treatments. The weights and colors (red and blue) of the edges illustrate the log2 fold change of up- and
down-regulation triggered by the treatments compared to the solvent control.

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 14, 2022. ; https://doi.org/10.1101/2022.08.11.503656doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.11.503656
http://creativecommons.org/licenses/by-nc-nd/4.0/


Network analysis for revealing relationships between exogenous compounds & their outputs

fumigaclavine C) compared to just one by CO5 (fumigaclavine A). Furthermore, palmitic acid (PRbroadcasting = 0)
has the least broadcasting PageRank measure followed by CO8 (PRbroadcasting = 0.085), contrary to the results of
node out-strength (CO8 has the least out-strength as shown in Fig. 4a). This change results from palmitic acid being
connected to a highly receptive metabolite, fumagillin, triggered by many treatments. Thus, palmitic acid is not a unique
treatment. CO8 is related to a unique metabolite, fumiquinazolines A, which is not triggered by many treatments.

The receiving PageRank measures of the metabolites reveal that the known metabolite fumagillin (normalized receiving
PageRank, PRreceiving = 1) followed by fumiquinazolines A (PRreceiving = 0.769) have much higher receptivity at
being triggered by treatments compared to the putative metabolite nidulanin A (PRreceiving = 0.514). This result is
contrary to that provided by the node in-strength, which showed nidulanin A to be the most influenced metabolite
(Fig. 4a). While nidulanin A is the most regulated metabolite, its production was only activated by CO4 and CO5
treatments, producing many other metabolites. Therefore, the uniqueness of nidulanin A for being triggered is reduced.
Furthermore, even though fumiquinazolines A has a much lower node in-strength value than nidulanin A and is
only activated by CO4 and CO8, the latter treatment uniquely triggers this metabolite. This unique relationship with
fumiquinazolines A is also one of the reasons why CO8 (PRbroadcasting = 0.085) has a higher broadcasting PageRank
value than palmitic acid (PRbroadcasting = 0), as discussed above.

These observations shown with the direct route could not be inferred using traditional methods like UpSet or volcano
plots. Also, since the gene cluster for nidulanin A has been identified in all Aspergillus spp. and yet it has not been
described in A. fumigatus [6, 52], CO4 and CO5 could be used as treatments for the characterization of this metabolite
in A. fumigatus. Lastly, many of these known and putative metabolite peaks might still fall into a peak noise. Although
a peak cutoff was initially used in MAVEN to identify bona fide peaks, the auxiliary route is used to identify known and
unknown analytes or metabolites highly produced in response to a particular treatment using an untargeted metabolomics
approach.

Revealing the dominant compound and highly influenced unknown analytes - the auxiliary route

The auxiliary route follows an untargeted metabolomic profiling of the treatments. The auxiliary route illustrated in
Fig. 4d demonstrates our ability to potentially isolate highly produced known and unknown analytes that exhibit a
log2 fold change greater than 1 for future experimentation and characterization. In the direct route, we had a peak
area cutoff of 5 × 105 to detect signals with significant peaks between a treatment and solvent control. We hence
allowed the identification and confirmation of known metabolites. Although our peak area cutoff of 5× 105 eliminates
most noise, it is a linear cutoff and leaves some residual noise in the analysis due to column creep. Therefore, we first
curated the dataset for the auxiliary route from the experimental study using baseline correction preprocessing tools.
Fig. 17 shows the elimination of column creep, creating a new peak area cutoff suggested by Trevjño et al. [59]. In
order to ensure the smallest amount of noise within our data, peak picking for our untargeted approach was done with
GridMass [59] peak detection using a conservative threshold for peaks such that no peaks under 3 × 107 would be
considered. Peaks were aligned using RANSAC alignment. Peak data were then matched to known profiles in KEGG
and LipidMap [29, 27, 28, 18]. Peak significance was determined upon FCROS scoring [16]. Non-significant analytes
were not included in the network. An interactive map of the network illustrating the details of each analyte (m/z ratio,
retention times, p-values, etc.) is available at https://web.eecs.utk.edu/∼mlane42/. The Materials and methods section
provides further information about the data curation for building the bipartite networks for the auxiliary route.

The untargeted extraction of statistically relevant peaks using the auxiliary route can yield a significant number of
analytes for potential exploration. The edges and neighbors of the nodes in the network can be used to determine which
analytes to be first considered for targeted exploration. Analytes of particular interest express both regulation and
control depending on the treatment considered. Additionally, analytes of extreme up- and down-regulation can be of
interest along with the node degree values of the analytes.

A network of all significant peaks (i.e. all significant metabolites regardless of log2 fold change intensity) can be found
in S1 Appendix (Fig. 18). Fig. 4d only illustrates the significant peaks with log2 fold change greater than 1. The
total number of interactions (edges in the network) found with the auxiliary route is considerably higher compared
to the network in the direct route. Thus, the method reveals more information regarding the interactions amongst the
treatments and metabolites than the direct route. Interesting artifacts are revealed from the network built using data at
25◦C. At 25◦C, analytes ID 26 and ID 105 were matched to fraxetin via the KEGG database query. These were found
to be upregulated with respect to the CO5 treatment. Analyte ID 222 was matched to ICAS#18 from the LipidMap
database. Palmitic acid significantly down regulates ICAS#18 (ID 222) with respect to the control. At the same time,
no single highly produced analyte is triggered by all three chitooligosaccharides. Analyte 16, however, is significantly
produced by both CO4 and CO5 treatments.
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All analytes of log2 fold change intensity greater than 1 except for analyte ID 16 are of degree 1. When not taking log2
fold change intensity into account, there exist 41 analytes of degree 1, 25 analytes of degree 2, 8 analytes of degree 3, 3
analytes of degree 4, and 1 analyte of degree 5 (see S1 Appendix and Fig. 18). These findings suggest that although
treatments can commonly start the production of the analytes considered, the treatments used in the current study have
a higher tendency to uniquely trigger analytes, which agrees with the UpSet and volcano plots and direct route analysis.

Analytes that immediately spark interest are the four unknown analytes with log2 fold change intensity greater than
1 with IDs 16, 34, 115, and 236. Additional analytes of interest are those with opposing log2 fold changes between
treatments, whereas all remaining analytes within the networks have aligned log2 fold changes. Though we do not
see analytes with opposing log2 fold changes in the network with all log2 fold changes greater than 1 (Fig. 4d), when
considering all edges we do see analytes with opposing log2 fold change intensities with IDs 13, 35, 115, and 188
(Fig. 18). A detailed discussion of the findings from the full data can be found in S1 Appendix.

Data-driven validation of direct and auxiliary routes with treated samples at 37◦C

Analyte and metabolomic production induced by treatments

We analyzed the LC/MS data with treated samples grown at 37◦C, which revealed that all individually applied treatments
significantly induce the production of analytes compared to the solvent control, as shown by the UpSet plot in Fig. 5a.
No treatments were co-applied to the fungus. As expected, the total number of analytes is lower at 37◦C than at 25◦C.
In total, 1,807 significant analytes were detected (Fig. 5a). The percentage of unique analytes produced by CO4 was
25.6%, by CO5 was 13.6%, by CO8 was 17.2%, by palmitic acid was 10.6%, and by oleic acid was 5.0%. These
results indicate that at 37◦C, both short-chain and long-chain COs influence specific metabolomic pathways, unlike at
25◦C. At 37◦C, the CO8 treatment induced the production of particular metabolites by the fungus better than at 25◦C.
Contrary to what was observed at 25◦C, oleic acid showed less influence on analyte production at 37◦C compared to
palmitic acid. It is also worth noting that most analytes were uniquely produced by a treatment rather than shared by
multiple treatments at 37◦C.

With the LC/MS data produced at 37◦C, we made volcano plots based on the log2 fold change and − log10 (p-values)
between a treatment and the solvent control, as shown in Figs. 5 b-f. Although all treatments had a significant differential
production of analytes compared to the solvent control at 37◦C, it was less than that observed at 25◦C, as expected
(Figs. 2 b-f). COs had a higher mean of abundance ranging between 62% to 80% (Figs. 5 d-f), whereas lipids had
between 67% to 70% (Figs. 5 b-c). These results mean that COs reduce the abundance of analytes at 37◦C compared
to 25◦C. However, lipids showed a higher mean quantity of analytes at 37◦C compared to 25◦C. These changes in
the results indicate that treatments influence the production of analytes, but environmental cues like temperature also
have a significant effect. Therefore, further investigations to elucidate metabolites should be conducted at 25◦C for the
CO treatments and 37◦C for lipids. Interestingly, nearly all treatments increased the production of the same known
or putative metabolites, fumiquinazolines F, fumigaclavine B, or pyripyropene A, whereas all treatments reduced
the production of fumagillin at 37◦C. The regulation of the latter compound was different at 25◦C, where the lipid
treatments reduced its production and the short-chain COs improved it. This indicates that lipids might be compounds
that downregulate fumagillin production constantly across temperatures and could be further investigated as therapeutic
molecules.

Revealing the dominant compounds and highly influenced known and putative metabolites - the direct route

The results of the direct route to reveal the influence of the treatments on the production of specialized metabolites in
Aspergillus fumigatus at 37◦C are shown in Figs. 6 a-c. As expected, fewer analytes and known or putative specialized
metabolites were produced at 37◦C in both solvent controls and treatments, as shown in Fig. 6a and previously discussed
using the UpSet plots in Fig. 5a. Furthermore, there is no clear distinction on how the two treatments regulate the
production of metabolites. Both chitooligosaccharides and lipids showed a positive and negative impact on metabolite
production at 37◦C, whereas, at 25◦C, chitooligosaccharides upregulated the production of metabolites and lipids
down-regulate it (Fig. 4a). It is worth noting that the metabolites fumagillin and pyripyropene A are the only metabolites
that were uniquely triggered at both temperatures; however, the treatments that started the production of these two
metabolites were different depending on the temperature. The bipartite network representation further clarifies such
pathways and regulations.

With the limited number of data points, both the node strength and PageRank measures give similar results for
identifying the effective treatments and most receptive metabolites, as shown in Figs. 6 b-c. The lipid palmitic acid
(PRbroadcasting = 1) is the most effective treatment on metabolite production as it resulted in both up- and down-
regulation of all metabolites analyzed. At 37◦C, CO4 (PRbroadcasting = 0.259) and oleic acid (PRbroadcasting = 0) are
poor at triggering the production of metabolites, contrary to what was observed at 25◦C, where these treatments showed
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Figure 5: Metabolomic outputs of Aspergillus fumigatus at 37◦C induced by lipid and chitooligosaccharide
treatments. (a) UpSet plot denoting the number of significant analytes produced by individually applied treatments.
Multiple treatments induced some analytes. (b-f) Volcano plots identifying the known and putative metabolites and
unknown analytes triggered by (b) palmitic acid, (c) oleic acid, (d) CO4, (e) CO5, and (f) CO8 as compared to the
solvent control.
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Figure 6: Network analysis-based direct and auxiliary routes for revealing the relationship between treatments
and metabolite production in Aspergillus fumigatus at 37◦C. (a) Bipartite network of treatments and known and
putative metabolites. The nodes representing the metabolites are classified and colored coded for known and putative
metabolites (blue and green, respectively). The transparency and color (red or blue) of the edges represent the log2 fold
change and up- or down-regulation of the metabolites, respectively. The sizes of the nodes denote the network centrality
measure of node strength. (b) Network centrality measure of PageRank of the treatments (broadcasting PageRank
values). (c) PageRank measures the known and putative metabolites (receiving PageRank values). (d) Auxiliary route
to assess the production of unknown analytes. A bipartite network of all analytes for their treatments (analyte IDs
correspond to tables in S2 File providing m/z values, retention times, linear fold change, log2 fold change, p values, and
f values). Degrees indicate the production of an unknown analyte by a single or multiple treatment(s) applied separately.
Degree 1 are analytes induced by one treatment; Degree 2 are analytes produced by two different treatments. The
weights and colors (red and blue) of the edges illustrate significant up- and down-regulation triggered by the treatments
compared to the solvent control.
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the most influence (Fig. 4b). The specialized metabolite fumagillin (PRreceiving = 1) has the highest receptivity at being
triggered by treatments, as shown in Fig. 6c. The same result was observed at 25◦C.

Revealing the dominant compounds and highly influenced analytes - the auxiliary route

Considering the analytes from the network at 37◦C shown in Fig. 6d, twelve significant analyte peaks with log2 fold
change intensities greater than 1 were extracted from the processed data. All three CO treatments at 37◦C triggered
no shared analytes. Nor did the two lipid treatments trigger a shared analyte. Ten of the twelve analytes with log2
fold change intensities greater than 1 are uniquely started by a single treatment (i.e. analytes with node degree 1),
as shown in Fig. 6d. Of the twelve significant extracted analyte peaks, eleven were identified from database queries.
Analytes identified by KEGG were hellebrigenin 3-acetate (ID 10), fraxetin (ID 16), beta-cyclopiazonate (ID 70),
phenylbutazone (ID 71), borrerine (ID 89), clofibrate (ID 110), alangimarine (IDs 163 and 164), and sulindac (IDs
168 and 169). LipidMaps identified 6’-hydroxysiphonaxanthin decenoate (ID 21). The only unidentified analyte was
analyte ID 90, upregulated in both CO5 and Palmitic Acid treatments.

When considering all analytes (not only those with log2 fold changes greater than 1) as shown in Fig. 19 in S1 Appendix,
there exist five analytes with opposing log2 fold changes (analytes with IDs 21, 70, 163, 164, and 168) compared to the
four analytes at 25◦C. Analytes 163 and 168 are both of degree 3. Analyte 163 is upregulated by both palmitic acid and
CO8, yet downregulated by CO4. Analyte 168 is upregulated by palmitic acid, yet downregulated by both CO4 and
oleic acid.

Oleic acid was reported as an inducer of germination in Aspergillus fumigatus at 37◦C [53]. To our knowledge, none of
the known metabolites identified were previously linked to germination in A. fumigatus. Therefore, it is tempting to
speculate if one of the highly up-regulated unknown analytes could be the culprit behind the increased germination of
this fungus at 37◦C, which can be the target for future experiments. A detailed discussion of the findings from the full
data can be found in S1 Appendix.

Discussion and Conclusion

The effects of compounds like chitin and lipids on microbial metabolomic profiles are not fully elucidated and remain
challenging to interpret. This study provides a data-driven modeling framework using network analysis to dissect
the connection between exogenous inputs - biological compounds like lipids and chitooligosaccharides - and the
metabolomic outputs - putative metabolites and unknown analytes - in the opportunistic human pathogen A. fumigatus.
Bipartite networks with two classifications of nodes are built. The network nodes represent the treatments and specialized
metabolites under consideration. The edges connecting the nodes represent the magnitude of up- or down-regulation
of the specialized metabolites triggered by the corresponding treatments. We provide two routes to characterize the
production of the specialized metabolites: (1) the direct route for the production of known and putative metabolites and
(2) the auxiliary route for the production of unknown analytes. Moreover, we use network centrality measures of node
strength and PageRank to rank the treatments and specialized metabolites. The treatments are ranked based on their
ability to trigger the production of various specialized metabolites. The specialized metabolites are ranked based on
their ability to be influenced by multiple treatments.

The results of the direct route reveal that the chitooligosaccharides, CO4, followed by the lipid, oleic acid, are the
most dominant treatments to trigger a broad range of known and putative metabolites at 25◦C. However, at 37◦C,
palmitic acid is the most effective treatment for metabolite production. We have also found that fumagillin is the
most receptive specialized metabolite in A. fumigatus triggered by various chitooligosaccharides and lipids at both
temperatures. Without the use of network-based measures like PageRank, this vital information would not be revealed
by solely analyzing the total magnitude of up- or down-regulation of a metabolite caused by treatments, which in the
current analysis for A. fumigatus would have resulted in the putative metabolite nidulanin A being identified as the most
receptive specialized metabolite to be triggered by chitooligosaccharides and lipids when the fungus is exposed to a
higher temperature.

The results of the auxiliary route illustrate that there is a far greater number of analytes significantly produced than
the current amounts of known and putative metabolites. The significant analytes extracted at temperatures 25◦C and
37◦C comport not only with known and putative specialized metabolites but also with the rates at which the triggering
of specialized metabolites have been witnessed in the previously discussed direct route. Moreover, new relations
among treatments and metabolites are revealed as all found peak signals are considered in the auxiliary route. Of the
significant analytes produced, there is a tremendous overlap in the activation of analyte production between treatments.
We additionally found that by thresholding edges to be greater than or equal to 1 log2 fold change, we were able to
paint a far more digestible illustration of how these treatments begin to interact with the up- and down-regulation of the
untargeted analytes. When considering all significant analytes, we see that within the 25◦C network, the lipid treatments
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tend toward down-regulation whereas the chitooligosacharides tend to up-regulate analyte production. Conversely,
within the 37◦C networks, we see that all treatments tend toward up-regulation of analytes except for CO4, which has a
relatively balanced amount of up- and down-regulated induced analytes.

In Table 1 we summarize and compare the capabilities of the current framework with that of other state-of-the-art
metabolic network analysis tools. Note that while the referenced tools have a vast array of capabilities, we are only
mentioning the ones that are relevant to the current analysis. The insights about the most effective treatments and
most influenced specialized metabolites are valuable for (1) validating known specialized metabolites through applied
exogenous treatments or environmental cues and (2) discovering new specialized metabolites from putative metabolites
and unknown analytes by genetic knockouts to characterize their gene clusters as depicted in post-analysis applications
(Fig. 1). Ultimately our goal was to track how a treatment will elucidate the production of secondary metabolites. It is
widely known that most biosynthetic gene clusters are silent under standard culture conditions resulting in minimal
production of secondary metabolites. Our study can help researchers determine how their treatments will improve the
production and accumulation of natural products. Those results can be validated through mass spectrometry analysis
and comparison to fragmentation patterns from published datasets or commercial standards and through transcriptomic
analysis to assess their biosynthetic gene expressions. Further confirmation can be done through knockout experiments
and functional validation of the targeted biosynthetic gene clusters in post-analysis applications, which is outside the
scope of this manuscript.

Tool capability State of the art tools [62, 4, 64] Current method
Use of mass to charge (m/z) ratio
and retention times for defining

metabolic network

Yes Yes

Metabolic network node definition Analytes/Metabolites Exogenous treatments and
Analytes/Metabolites

Metabolic network edge definition Spectral matching Amount of analyte/metabolite
triggered by a treatment

Direction on network edges No Yes
Influence of treatment No Yes

Dominant triggers of metabolites No Yes
Discovering new compounds Yes No†

Table 1: Comparison of relevant capabilities of state-of-the-art metabolic network analysis tools (GNPS [62], MetWork
[4], and MetaboAnalyst [64]) with the current analysis. †New compounds can be discovered by validating the identified
important analytes through post-analysis applications elaborated in Fig. 1 - not performed in this study.

The cost of drug discovery can be exponential if experiments are designed by a trial-and-error method. We provide
a potentially cost-effective solution through the direct and auxiliary routes (along with relevant codes on Link for
researchers to use on publicly available or newly generated LC/MS datasets). The inferences obtained from our
framework can be used as a guidance for industry partners and researchers to concentrate their efforts on natural product
discovery and post-analysis applications for the most influential microbial metabolites and treatments.

Materials and methods

Network analysis

Bipartite network of treatments and specialized metabolites

A network (or graph), mathematically represented as G(V, E ,W),comprises a collection of vertices (or nodes) V
connected by edges E representing the influence of the nodes onto each other [44]. The edges can be binary connections
(0 or 1) or weightsW . For our problem, we considered the treatments and specialized metabolites (known and putative
metabolites and unknown analytes) as the nodes of a network, and the amount of change in the production of the
specialized metabolites triggered by the treatments represents the weighted edges. Thus, the edge weights represent the
magnitude of up- or down-regulation of the specialized metabolites affected by the treatments compared to a controlled
case. Thus, the unidirectional edges representing the interaction of the treatments j on the specialized metabolites i can
be represented by the elements of the adjacency matrix

Aij = wi←j , (1)
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where wi←j is the magnitude of change in concentration of i when exposed to treatment j measured in terms of the
absolute value of the log2 fold change. Accordingly, the influence of specialized metabolites on treatments is zero,
and the A matrix will have zero entries when j is a specialized metabolite. This results in a directed (unidirectional)
network that can also be viewed as a bipartite network with the sources on one group and the specialized metabolites on
the other, as shown in Figs. 4a and 6a. Moreover, red and blue colors can be assigned to the edges to depict the up- and
down-regulation of the specialized metabolites by the treatments, respectively.

Network centrality measures

The network-theoretic measures of centrality are helpful to identify the most influential nodes in the network. We
have found that the network centrality measures of node strength and PageRank [12] reveal physically informative
information as we were able to validate some of the inferences from these measures with existing knowledge in literature.
Moreover, these network centrality measures reveal additional information regarding important specialized metabolites
and exogenous treatments. The node strength of node i is defined as the total interactions of the node i,

sout
i =

∑
j

Aji and sin
i =

∑
j

Aij , (2)

where sout
i and sin

i are the out- and in-strength of i, respectively. According to the definition of the A matrix for our
problem, out- and in-strengths were used to quantify the total influence of treatments for triggering the production of
specialized metabolites and total receptivity of specialized metabolites to treatments, respectively (can be visualized by
node size or circle radius as shown in Figs. 4a and 6a.

A limitation of the measure node strength is that it does not consider the number of connections from or to a node
(the node degree). The number of metabolites triggered by treatment can show how diverse the effect of the treatment
is. Similarly, the number of treatments affecting a metabolite denotes how easily they start it. Another criterion to
understand the importance of a node is to quantify the relative importance of one node to another node to which the first
one is connected. If a treatment triggers a metabolite that is also triggered by many other treatments, this emphasizes
the ability of the metabolite to be influenced and not the unique ability of the treatment. The node strength measure
does not highlight such factors.

The PageRank measure xi of a node i is given by the normalized sum of centralities of its neighbors, defined by

xi = α
∑
j

Aij
xj
sout
j

+ β. (3)

Here, α and β are positive constants used to balance between the normalized centralities of the neighbors and a
minimum centrality value used for nodes that do not have connections. PageRank is the underlying method used by the
Google search engine to rank a web page based on the number of directed links among the web pages, also considering
the popularity of the web pages being linked to and from the web page. PageRank helps identify the relative importance
of a node for the relevance of its neighbors. Moreover, it helps distribute the importance of high-interaction nodes to
all the nodes’ connections and thus does not bias the centrality of the relationships. Therefore, if node i is connected
to a well-connected node j, node i need not be an essential node just because it is pointed to by j. The node strength
is overcome by the normalization, which distributes the strength of j to all its connections. For our problem, the
directed version of the PageRank measure (not related to the “direct route”) was used to compute the broadcasting and
receiving PageRank measures [23, 22] for the treatments and specialized metabolites, respectively. The importance of
the treatments and specialized metabolites quantified by the strength (in- and out-strengths) and PageRank (broadcasting
and receiving) are different and reveal important information regarding specialized metabolite production.

Experimental design to elucidate metabolite production by treatments in Aspergillus fumigatus

Treatments

Short-chain COs - CO4 (IsoSep, product number 45/12-0050) and CO5 (IsoSep, product number 55/14-0050), and a
long-chain CO - CO8 (IsoSep, product number 57/12-0001), were purchased from IsoSep (Tullinge, Sweden). The
concentrations were 10−8 M in 0.005% EtOH/water, as described in [53]. Lipids - Palmitic acid, C16:0 (Millipore
Sigma, item number P0500), and oleic acid, C18:1 (Millipore Sigma, item number O1008), were used at 10−8 M in
0.005% EtOH/water as described in [53].

Organism and inoculum

Aspergillus fumigatus strain Af293 was used in this study. The growth medium used was glucose minimal medium
(GMM) broth. The Af293 strain was previously described in [50]. The medium was supplemented with various
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treatments short-chain or long-chain COs, and lipids at a final concentration of 10−8 M in the medium. The short-chain
CO treatments were CO4 and CO5. The long-chain CO treatment was CO8. The lipids were palmitic acid (C16:0)
and oleic acid (C18:1). The negative control for the analyses consisted of 0.005% EtOH, the solvent in which all the
treatments were prepared. The spore concentration was adjusted to 106 spores/ml of medium.

Aspergillus fumigatus spores were inoculated with exogenous CO or lipid standards at 25◦C for six days and 37◦C
for four days. The solvent control was 0.005% EtOH. Liquid chromatography-mass spectrometry (LC/MS) of culture
supernatants identified and quantified metabolites produced in response to different treatments. A standard analyte
cutoff method evaluated with MAVEN v.8.1.27.32 [13] and XCMS v.3.7.1 [58] captured significant changes in analyte
production across treatments and identified known specialized metabolites [52]. A stringent analyte cutoff method
evaluated with mzMine2 [51] with column creep baseline corrections identified critical and specific mass to charge
ratios and retention times of metabolites that are visualized using the bipartite networks. We provide additional details
on the confirmation of the identities of the specialized metabolites in Section .

Metabolite profiling using ultra-high pressure liquid chromatography-mass spectrometry (UHPLC-MS) for
the direct route

The effect of short-chain CO, long-chain CO, and lipid treatments on specialized metabolite production by Aspergillus
fumigatus strain Af293 was assessed by UHPLC-MS analysis. About 106 fresh spores were grown in 125 ml flasks
containing 50 ml of GMM broth supplemented with the same treatments mentioned earlier. Two different growth
conditions were assessed; the first consisted of incubation under 25◦C and 250 rpm for six days, whereas the second
consisted of incubation under 37◦C and 250 rpm for four days. Optimal growth conditions for Af293 determine the
difference in the time for growth at these conditions. After the incubation periods, fungal balls were collected and
lyophilized to estimate the dry biomass. Dry biomass was not reported in this manuscript. For specialized metabolite
analysis, 3 ml of supernatant were homogenized with 3 ml of ethyl acetate (Millipore Sigma, item number 270989).
Organic and aqueous layers were separated by centrifugation at 3, 000 rpm for 5 min, and the organic layer was collected
and dried. Samples were later resuspended in acetonitrile:water (50:50 v/v) and filtered through an Acrodisc syringe
filter with nylon membrane (0.45µm, Pall Corporation) into 1 ml HPLC vials. Samples were subjected to high-resolution
UHPLC-MS analysis [50]. Data acquisition and processing for the UHPLC-MS were made using Thermo Scientific
Xcalibur software version 4.2.47. Files were converted to .mzXML using MassMatrix MS Data File Conversion
grouped by condition and run in MAVEN, an open-source software program [13] and XCMS open-source package
(https://xcmsonline.scripps.edu/) using a pairwise comparison between treatments and controls with the parameter
UPLC/Q-Exactive 3110 [58]. Volcano plots were based on analytes similar or uniquely produced by each treatment as
determined by XCMS and illustrated in GraphPad Prism software version 9.0.0 (GraphPad, San Diego, California).

Feature extractions and differential expression analysis for discovery route

Raw mzXML chromatogram data were imported to mzMine2 [51]. Because of column creep, baseline correction was
applied following protocols previously established in GridMass peak detection literature [59]. Baseline corrected data
were cropped and preprocessed following procedures defined by [1]. Extracted peak features were quantile normalized
by application and then log2 transformed; fold change rank ordering statistics were applied to all applications/controls
to each combination of application and control to obtain fold change results [16]. Up- and down-regulated features
were extracted with F values above 0.9 and below 0.1, respectively, with a p-value < 0.05. Parameter values can be
viewed in Table 2.

Confirmation of specialized metabolite identities through fragmentation and comparison to standards

The identification of putative specialized metabolites was further interrogated via liquid chromatography tandem
mass spectrometry analysis (LC-MS/MS) of specific m/z targets identified by MAVEN and XCMS software plat-
forms. specialized metabolite identities were confirmed by MS/MS fragmentation pattern match through either in
silico match to public databases and/or direct comparison to a commercially available standard (Figs. 7-16). Di-
rect comparisons to standards offer the most confident identifications based on both MS/MS pattern match and
confirmation of retention time (RT) by standard addition. Fragmentation patterns were matched to public online
databases MASST (https://ccms-ucsd.github.io/GNPSDocumentation/masst/) and MassBank of North America (MoNA,
https://mona.fiehnlab.ucdavis.edu/). Fumagillin, fumigaclavine A, fumitremorgin C, gliotoxin, helvolic acid, pseurotin
A, pyripyropene A, and trypacidin were confirmed through both fragmentation pattern match and RT by comparison to a
purchased standard. Fumiquinazoline A and fumiquinazoline F were confirmed through in silico fragmentation pattern
match to public databases. Fumisoquin A, fumigaclavine C, and nidulanin A are classified as putative specialized
metabolites because they could not be confirmed through fragmentation match to a database, nor were they available for
purchase.
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Baseline Correction:
MS Level 1
Use m/z bins checked m/z bin width 1
R engine “Rcaller”
Correction Method Asymmetric Baseline Corrector
Smoothing: 10,000
Asymmetry 0.001

Peak Picking:
Method GridMass
Minimum Height 3.00E+07
m/z Tolerance 0.01
Minimum-maximum width time (min) 0.03-0.08
Smoothing time (min) 0.1
Smoothing m/z 0.05
False+: Intensity similarity ratio 0.5
False+: Ignore times 0-0

Isotopic Peak Grouping:
m/z tolerance 0.001 m/z or 5.0 ppm
Retention time tolerance 0.08 absolute (min)
Monotonic shape unchecked
Maximum charge 2
Representative isotopes “Lowest m/z”

Alignment:.
Method RANSAC Aligner
m/z tolerance 0.1 m/z or 5.0 ppm
RT tolerance 0.3 absolute (min)
RT tolerance after correction 0.05 absolute (min)
RANSAC Iterations 100
Minimum number of points 20.0%
Threshold value 1.5
Linear model unchecked
Require same charge state unchecked

Duplicate Value Removal:
Method Duplicate Peak Filter
Filter mode “New Average”
m/z tolerance 0.001 m/z or 5.0 ppm
RT tolerance 0.05 absolute (min)

Gap Filling.
Method Same RT and m/z range gap filler
m/z tolerance 0.001 m/z or 5.0 ppm

Table 2: Preprocessing steps and parameter values for discovery route. The preprocessing steps and parameters used for
postprocessing tools like GridMass, RANSAC, and FCROS to extract novel analyte peaks considering lower signal
concentrations from the XCMS and MAVEN datasets.

LC-MS/MS analysis of Aspergillus fumigatus exudates and standard addition of commercially available
metabolites

Mass-to-charge (m/z) values representing putatively identified specialized metabolites were targeted for fragmentation
(MS/MS) analysis via Parallel Reaction Monitoring (PRM) on a Q Exactive Plus mass spectrometer (Thermo Scientific)
outfitted with a nanospray ionization source plumbed directly to a Vanquish UHPLC (Thermo Scientific). Ten microliters
of sample exudates, commercial standard molecules, or samples spiked with standard (standard addition) were injected
into a split-flow HPLC setup plumbed directly to an in-house pulled nanospray emitter packed with 15 cm of C18 resin
(1.7 µm Kinetex C18 RP; Phenomenex) flowing at 300 nL/min. Solvent A (5% acetonitrile, 95% H2O, 0.1% formic
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acid) and solvent B (90% acetonitrile, 5% 2-propanol, 5% H2O, 0.1% formic acid) were used to separate analytes by
organic gradient over 40 min with the following scheme: 17 to 100% B from 0-20 min, hold at 100% B from 20-22
min, 100 to 17% B from 22-25 min, hold at 17% B from 25-40 min. MS parameters include a full scan (270-600 m/z
range, 70,000 resolution, 3 microscans) followed by specialized metabolite targeted PRM scans (1.0 m/z isolation
window, 17,500 resolution, stepped NCE 30, 35, 40). Real-time MS data were collected with Xcalibur v.4.2.47. Skyline
version 21.1.0.142 was used to extract specialized metabolite specific chromatograms and peak areas to assess RTs and
quantify/confirm specialized metabolite peaks by standard addition (using either 1 µM, 5 µM, 25 µM, and 50 µM of
standard).

Quantitative real-time PCR analysis

RNA extraction

Fungal tissues collected from cultures grown in the presence of different treatments were collected, washed with sterile
water, and stored at ∼ 80◦C. Total RNA was extracted using Spectrum Plant Total RNA Kit (Sigma Life Science)
following the manufacturer’s instructions.

Metabolite Primer name Primer sequence (5’-3’) Gene function Reference
Actin PSM91 ATTGTCGGTCGCCCCCGTCACC Housekeeping gene [38]

PSM92 CGACTGTGCCTCATCACCGACA
Fumagillin YY049 CCCTGCCAATGGTGGTAGTA C6-TF (AFUA_8g00420) [65]

YY050 GCCTGACGGTTGACTCGTAT
Fumigaclavine A pes1 RT-F TACCCATGGACCCAAGTCAT NRPS [47]

pes1 RT-R TTGTGGGAAGATCTGGAAGG
Fumitremorgin C PSM85 ATCCGCATTTTGGGACACTTGC Afu8g00170, ftma (NRPS) [38]

PSM86 GCATAGGTGAATGATCCGTCCC
Gliotoxin GliP-F AAACCCCTGTGAATGCAGAC NRPS (gliP) [20]

GliP-R CCCCTTGAGATGAAAGGTGA
Helvolic acid AFUA_4G14770-F1 CTAGAGGCTGTGGAAAACGGATG Afu4g14770 (Protostadienol synthase) [36], This study

AFUA_4G14770-R1 GATTCCCACGATGTACCTCGCAATG
Pseurotin A AFUA_8G00540-F GAAGACCACAGTCATCGACC PKS/NRPS [60]

AFUA_8G00540-R TTAACACTTGCCCGTAGCGG (AFUA_8G00540)
Pyripyropene A AFUA_6G13930-F1 TCGCCTTTTCGACAATGAACCTGATCG PKS (Pyr2) [25], This study

AFUA_6G13930-R1 CAGTCGGCTCTGGAGTACTTCC Afu6g13930
Trypacidin TpcC-F GAGGCCAGTAGACTTTACCCCCTCGTC Afu4g14560/tpcC (NR-PKS) [24]

TpcC-R GTCGTCGACAGATGCCTTGGATGCC
Table 3: Primers used for qPCR analysis. Primers and their function to analyze the expression of backbone genes or
specific transcription factors for each specialized metabolite identified in this study. Primers AFUA_8G00540 F/R for
helvolic acid and AFUA_6G13930 F1/R1 for pyripyropene A were designed for this study.

Quantitative analysis of specialized metabolite genes using qPCR

RNA quality and concentration were determined using a Synergy H1 Hybrid Multi-Mode Microplate Reader (BioTek,
Winooski, Vermont). For DNase treatment, 1 µg of RNA was used and treated with DNase I solution (Thermo Fischer
Scientific, Waltham, Massachusetts) following the manufacturer’s instructions. Eight microliters of DNase-pretreated
RNAs (100 ng/µl) were subjected to reverse transcription using the SuperScript III first-Strand synthesis system with
the provided oligo (dT) primers following the manufacturer’s instructions. The cDNA samples were stored at ∼ 20◦C
until further processing. The quantitative real-time PCR reactions were performed as a 20 µL reaction mix with a
final concentration of 1×SYBR Green (iTaq Universal SYBR Green Supermix), 500 nmol of each primer the cDNA
that was synthesized in the earlier step. Negative controls (no template control or RNA control) were included in the
assays to detect nonspecific amplification. The reactions were carried out using a 7900HT Fast Real-time PCR machine
(Applied Biosystems) under the following conditions: initial denaturation at 95◦C for 5 min, followed by 45 cycles of
amplification at 95◦C for 15 s, 60◦C for 30 s, and 72◦C for 10 s.

The primers used for qPCR analysis are specific for the backbone genes or C6-transcription factors implicated in
the production of the metabolites identified in our metabolomic analysis. No primers were designed for nidulanin A,
fumiquinazoline A, and fumisoquin A because their biosynthetic gene clusters have not yet been characterized. The
primer sequences are provided in Table 3.

Statistical analysis

Changes in relative expression (∆∆CT) of each treatment were calculated in R (v4.02) with the “ddCT" package.
Samples were first normalized by the housekeeping gene Actin and then compared with the solvent control for each
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gene. Peak area values were obtained from the XCMS analysis. Both the ∆∆CT and peak area results were analyzed
using a Welch ANOVA followed by unpaired t-test with Welch’s correction to compare the mean of a treatment to the
solvent control using GraphPad Prism v.9.3.1(471). Fig. 3 portrays the data as box and whiskers plots with all data
points and median bar shown.

Data and code availability

Correspondence and requests for material should be addressed to M.G.M or T.A.R. Our algorithms are freely available
in Link. Network illustrations for the auxiliary route were generated with Cytoscape and interactive network files were
generated with D3.js, and can be found at https://web.eecs.utk.edu/∼mlane42/. For each analysis (25◦ or 37◦C) please
browse through the different individual networks of the treatments and the full network, union, using the Network tab.
Click the Show/hide Table tool on the right-hand side tool bar and click a node (treatment or analyte) or edge on the
network to show the respective full characteristics.

Acknowledgements

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National Nuclear Security Administration. This research used resources
of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the
Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. This research was
also funded by the Genomic System Sciences Program, U.S. Department of Energy, Office of Science, Biological
and Environmental Research, as part of the Plant-Microbe Interfaces Scientific Focus Area at the Oak Ridge National
Laboratory (http://pmi.ornl.gov). Figure 1 was created and edited with www.BioRender.com.

Author contributions

M.G.M, M.J.L, J.T., and T.A.R. initiated and designed the project. J.M.A and J.L.L provided the chitooligosaccharides
and lipids. N.P.K provided Aspergillus fumigatus strain Af293. T.A.R., J.T., and A.A.C. designed and implemented the
experiments with Aspergillus fumigatus. M.G.M. designed and conducted the direct route. M.J.L., D.K., and D.A.J.
conducted the auxiliary route. P.A., R.J.G., J.T., and T.A.R. conducted and analyzed the mass spectrometry data sets.
M.G.M., M.J.L., J.T., and T.A.R wrote the manuscript with feedback from all the coauthors.

Author declaration

The authors declare no competing interests.

Supporting information

S1 Appendix Full results from auxiliary route

Results of analysis at 25◦C

In total, 78 analytes of significance were found. Of those 78, 33 analytes were matched to database entries from KEGG
and LipidMaps, and of those 33, 21 analytes were uniquely identified. Multiple extracted analytes were identified with
the same compounds: 5,10-dihydrophenazine-1-carboxylate (IDs 44, 49, 131), fraxetin (IDs 26, 105), fumigaclavine
C (IDs 3, 84), hellebrigenin 3-acetate (IDs 11, 23, 157, 275), n-methyl-cyclo(L-Trp-L-Phe) (IDs 42, 98, 124, 235),
paliperidone (ID 29, 122). An illustration of this network is shown in Fig. 18.

Fumigaclavine C (IDs 3, 84) is down-regulated by oleic acid, comporting with the direct route discussed in the Results
section. We additionally see fumigaclavine A up-regulated by both CO4 and oleic acid. Though the method does not
match one to one with the direct route, we do see similarities within the CO treatments such that the direct method
denoted above finds significant up-regulation with CO5 for fumigaclavine A. Analytes IDs 13, 35, 115, and 188 have
opposing log2 fold change intensities. None of these analytes have corresponding database matches and could be
considered for isolation in future experiments.

Within the networks, node degree (i.e. the number of edges connecting to a node) illustrates the number of treatments in
which an analyte is produced. Of the 78 total significant analytes, 41 were of degree 1, 25 were of degree 2, 8 were of
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degree 3, 3 were of degree 4, and 1 was of degree 5. The degree of the treatment nodes reveals that all the treatments
produced a similar amount of peaks: palmitic acid had the most peaks with a degree 34, oleic acid was of degree 26,
CO4 was of degree 23, CO5 was of degree 23, and CO8 was of degree 26. Thus, although each treatment did produce
unique analytes, each treatment did have a similar overall effect on triggering analytes.

By taking the mean and median of the weights of each treatment and its associated node neighbors as denoted in Table 4,
we can begin to get a general snapshot at the general trends of the treatments. Ultimately, we can see that the CO4 and
CO5 treatments in general produced analyte peaks that were up-regulated with respect to the controls, whereas oleic
and palmitic acids on average trend toward down-regulation. CO8, on the other hand, has a mean log2 fold change
near 0, denoting that the CO8 treatment has balanced effects in both up- and down-regulation of analytes. This can be
visually seen as well with the mixture of red and blue edges within the network in Fig. 18.

Treatment Mean log2 Fold Change Weight Median log2 Fold Change Weight
CO4 0.297 0.545
CO5 0.339 0.658
CO8 0.012 -0.169
Oleic acid -0.264 -0.448
Palmitic acid -0.224 0.005

Table 4: Mean and median degrees of treatments at 25◦C.

Results of analysis at 37◦C

In total, 37 analytes of significance were found at 37◦C. Of those 37, 28 analytes were matched to a databse. Of
those 28, 17 analytes were uniquely identified. Multiple extracted analytes were identified with the same compounds:
6-hydroxytryprostatin B (IDs 18, 162), alangimarine (IDs 163, 164), borrerine (IDs 22, 89, 96), estra - 1, 3, 5(10) -
triene - 3, 17beta - diol 3 - phosphate (IDs 12, 34, 121), fraxetin (IDs 16, 42), hellebrigenin 3 - acetate (IDs 10, 30, 54),
narceine (IDs 33, 35), sulindac (IDs 168, 169). An illustration of this network is shown in Fig. 19.

Fumigaclavine C (ID 6) is downregulated with respect to the control by both CO4 and CO8 treatments, which is unseen
within the direct route. Analytes with opposing log2 fold change intensities are analytes IDs 21, 70, 163, 164, and 168.
Unlike the 25◦C experiment, these 5 analytes were matched by LipidMap and KEGG to be 6’-hydroxysiphonaxanthin
decenoate (ID 21), beta-cyclopiazonate (ID 70), alangimarine (ID 163, 164), and sulindac (ID 168).

Of the 37 total significant analytes, 15 were of degree 1, 11 were of degree 2, 7 were of degree 3, and 4 were of degree
4. Similar to the 25◦C networks, the overall general effect of each treatment (with respect to the quantity of significantly
produced peaks) was similar: palmitic was of degree 12, oleic acid was of degree 15, CO4 was of degree 14, CO5 was
of degree 14, and CO8 had the highest degree of 19.

By taking the mean and median of the weights of each treatment and its associated node neighbors as denoted in Table 5,
we can begin to get a general snapshot at the general trends of the treatments. Overall, we can see that CO5, CO8, oleic
acid, and palmitic acid all have positive mean and median log2 fold changes across all edges, whereas CO4 has mean
and median values near 0, denoting a general balance of up- and down-regulation. This illustrates that at 37◦C, we
begin to see the treatments up-regulating the production of analytes. This can be visually seen as well with the mixture
of greater amount of red rather than blue edges within the network in Fig. 19.

Treatment Mean log2 Fold Change Weight Median log2 Fold Change Weight
CO4 -0.006 0.084
CO5 0.341 0.29
CO8 0.376 0.727
Oleic acid 0.43 0.542
Palmitic acid 0.469 0.41

Table 5: Mean and median degrees of treatments at 37◦C.

S1 File. Supplementary Dataset S1 (supplementaryDataset-1.csv). Auxiliary route network data at 25◦C. The
IDs, m/z values, retention times, f values, p values, treatment name, log2 fold change, and linear fold change, the main
row identity, and row identity details for the analytes used in the auxiliary route. Results are for the data curated at 25◦C.
File is tab separated. Networks were generated from file such that each ID was the source node and each treatment was
the target node. Edge weights were derived from the log2 fold change column.

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 14, 2022. ; https://doi.org/10.1101/2022.08.11.503656doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.11.503656
http://creativecommons.org/licenses/by-nc-nd/4.0/


Network analysis for revealing relationships between exogenous compounds & their outputs

S2 File. Supplementary Dataset S2 (supplementaryDataset-2.csv). Auxiliary route network data at 37◦C. The
IDs, m/z values, retention times, f values, p values, treatment name, log2 fold change, and linear fold change, the main
row identity, and row identity details for the analytes used in the auxiliary route. Results are for the data curated at 37◦C.
File is tab separated. Networks were generated from file such that each ID was the source node and each treatment was
the target node. Edge weights were derived from the log2 fold change column.

Supplementary figures All the supplementary figures are in the following pages, followed by the References.
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Figure 7: Fumagillin high resolution mass spectrometry data. Fragmentation patterns of (a) a sample compared to
(b) the standard, and (c) in silico spiking of the standard into the sample.
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Figure 8: Fumigaclavine A high resolution mass spectrometry data. Fragmentation patterns of (a) a sample
compared to (b) the standard, and (c) in silico spiking of the standard into the sample.
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Figure 9: Fumiquinazoline A high resolution mass spectrometry data. (a) ion extract base peak from full mass
spectrometry, (b) fragmentation mass spectrum in positive ionization mode, and c) associated profile with PubChem
(CAS: 140715-85-1) and MASST.
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Figure 10: Fumiquinazoline F high resolution mass spectrometry data. (a) ion extract base peak from full mass
spectrometry and (b) fragmentation mass spectrum in positive ionization mode. The associated profile was compared to
MoNA (ID: AC00908 - https://mona.fiehnlab.ucdavis.edu/spectra/display/AC000908 and PubChem, CAS: 169626-35-1.
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Figure 11: Fumitremorgin C high resolution mass spectrometry data. Fragmentation patterns of (a) the sample
compared to (b) the standard, and (c) in silico spiking of the standard into the sample.
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Figure 12: Gliotoxin high resolution mass spectrometry data. Fragmentation patterns of (a) a sample compared to
(b) the standard, and (c) in silico spiking of the standard into the sample.
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Sample and 50 μM of Hevolic acid-569 

Sample and blank solvent

Sample and 50 μM of Hevolic acid-509 

Sample and blank solvent
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Standard at 10 μM 
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Figure 13: Helvolic acid high resolution mass spectrometry data. During ionization, a 569 ion will break apart and
loses 60 Da to make a 509 ion. Therefore, both fragmentation patterns at 569 Da and 509 Da were analyzed. (a) sample
compared to (b) the standard at 569 Da and (c) in silico spiking of the standard into the sample. (d) a sample compared
to (e) the standard at 509 Da and (f) in silico spiking of the standard into the sample.
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Figure 14: Pseurotin A high resolution mass spectrometry data. Fragmentation patterns of (a) a sample compared
to (b) the standard, and (c) in silico spiking of the standard into the sample.
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F:  FTMS + c NSI Full ms2 584.2490@hcd35.00 [50.0000-615.0000]
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Figure 15: Pyripyropene A high resolution mass spectrometry data. Fragmentation patterns of (a) a sample
compared to (b) the standard, and (c) in silico spiking of the standard into the sample.
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Figure 16: Trypacidin high resolution mass spectrometry data. Fragmentation patterns of (a) the sample compared
to (b) the standard, and (c) in silico spiking of the standard into the sample.
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a

b

Figure 17: An example of baseline correction. (a) A chromatogram with baseline creeping in red. (b) A chromatogram
with the baseline creeping removed to identified peaks with reduced background noise.
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Figure 18: Full results from the auxiliary route analysis at 25◦C. Auxiliary route to assess the production of
unknown analytes. A bipartite network of all analytes for their treatments (analyte IDs correspond to tables in S1 File
providing mass to charge ratios (m/z), retention times, linear fold change, log2 fold change, p values, and f values).
Degrees indicate the production of an unknown analyte by a single or multiple treatment(s) applied separately. Degree
1 are analytes induced by one treatment; Degree 2 are analytes produced by two different treatments; Degreee 3 are
analytes produced by three other treatments; Degree 4 are produced by four different treatments. The weights and
colors (red and blue) of the edges illustrate significant up- and down-regulation triggered by the treatments compared to
the solvent control.
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Figure 19: Full results from the auxiliary route analysis at 37◦C. Auxiliary route to assess the production of
unknown analytes. A bipartite network of all analytes for their treatments (analyte IDs correspond to tables in S2 File
providing mass to charge ratios (m/z), retention times, linear fold change, log2 fold change, p values, and f values).
Degrees indicate the production of an unknown analyte by a single or multiple treatment(s) applied separately. Degree
1 are analytes induced by one treatment; Degree 2 are analytes produced by two different treatments; Degreee 3 are
analytes produced by three other treatments; Degree 4 are produced by four different treatments. The weights and
colors (red and blue) of the edges illustrate significant up- and down-regulation triggered by the treatments compared to
the solvent control.
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