

001
002
003
004
005

Transformer Enables Reference Free And Unsupervised Analysis of Spatial Transcriptomics

006
007
008
009
010
011
012

Chongyue Zhao^{1†}, Zhongli Xu^{2,3†}, Xinjun Wang⁴, Kong
Chen^{5*}, Heng Huang^{1*} and Wei Chen^{2,4*}

¹Department of Electrical and Computer Engineering, University
of Pittsburgh, Pittsburgh, 15261, Pennsylvania, USA.

²Department of Pediatrics, University of Pittsburgh, Pittsburgh,
15224, Pennsylvania, USA.

³School of Medicine, Tsinghua University, Beijing, 100084,
Beijing, China.

⁴Department of Biostatistics, University of Pittsburgh,
Pittsburgh, 15261, Pennsylvania, USA.

⁵Department of Medicine, University of Pittsburgh, Pittsburgh,
15213, Pennsylvania, USA.

*Corresponding author(s). E-mail(s): koc5@pitt.edu;
heng.huang@pitt.edu; wec47@pitt.edu;

†These authors contributed equally to this work.

Abstract

The development of spatial transcriptomics technologies makes it possible to study tissue heterogeneity at the scale of spatial expressed microenvironment. However, most of the previous methods collapse the spatial patterns in the low spatial resolution. Existing reference based deconvolution methods integrate single-cell reference and spatial transcriptomics data to predict the proportion of cell-types, but the availability of suitable single-cell reference is often limited. In this paper, we propose a novel Transformer based model (TransfromerST) to integrate the spatial gene expression measurements and their spatial patterns in the histology image (if available) without single cell reference. TransfromerST enables the learning of the locally realistic and globally consistent constituents at nearly single cell resolution. TransfromerST firstly uses a

047 transformer based variational autoencoder to explore the latent repre-
048 sentation of gene expression, which is further embedded with the spatial
049 relationship learned from adaptive graph Transformer model. The super-
050 resolved cross-scale graph network improves the model-fit to enhanced
051 structure-functional interactions. The public and in-house experimen-
052 tal results with multimodal spatial transcriptomics data demonstrate
053 TransfomerST could highlight the tissue structures at nearly single
054 cell resolution and detect the spatial variable genes and meta gene for
055 each spatial domain. In summary, TransfomerST provides an effec-
056 tive and efficient alternative for spatial transcriptomics tissue clustering,
057 super-resolution and gene expression prediction from histology image.
058
059

060 1 Introduction

061

062 Understanding the tissue structures at spot and subspot resolution helps to
063 extract fine-grained information for tissue microenvironment detection. How
064 the tissue heterogeneity shapes the structure-function interactions at enhanced
065 resolution remains an open question in current spatial transcriptomics analy-
066 sis. Modern spatial transcriptomics technologies enable to infer the large-scale
067 structural connectivity and characterize the spatial heterogeneity patterns in
068 disease pathology [1, 2]. The current spatial transcriptomics technologies are
069 divided into two categories: The fluorescence *in situ* hybridization or sequenc-
070 ing based methods such as seqFISH [3, 4], seqFISH+ [5], MERFISH [6, 7],
071 STARmap [8] and FISSEQ [9] could achieve single cell resolution. However,
072 these technologies measure gene expression with low throughout and less sensi-
073 tivity. The second category is *in situ* capturing based method, including spatial
074 transcriptomics (ST) [10], SLIDE-seq [11], SLIDE-seqV2 [12], HDST [13] and
075 10x Visium, to measure high throughout gene expression while restraining the
076 spatial patterns. The limitation of *in situ* capturing method is its low spa-
077 tial resolution. The popular technologies could provide the spot measurements
078 with 100 μm diameter in ST platform and 55 μm diameter in Visium platform.
079 The limited resolution of current spatial transcriptomics technology requires
080 the development of new data analysis methods to reveal the heterogeneous tis-
081 sue mechanisms of tumor microenvironment, brain disorders and embryonic
082 development [1, 14, 15].

083 Previous methods on spatial transcriptomics analysis could not be directly
084 applied to link original gene expression, spatial relationship and histology
085 image for the following reasons. 1) Most of the existing methods use dimension
086 reduction approaches to lower the computational complexity. However, the
087 reduced features violates the heterogeneity in gene expression in some tissues.
088 2) Some workflows such as Seurat [16] is developed for single cell RNA-seq anal-
089 ysis and corrupts the spatial relationships. 3) As far as we know, little efforts
090 has been made to study the heterogeneity across tissue structures in both spot
091 and enhanced resolution. Several approaches such as RCTD [17], stereoscope
092

[18], SPOTlight [19], SpatialDWLS [20], and cell2location [21] have been presented to integrate the single cell RNA-seq with spatial transcriptomics to enhance the spatial gene resolution. However, these kinds of methods require the availability of suitable single cell reference. In many cases, the single-cell references are not available due to the limitations of budgetary, technique, and biological issues [22, 23]. Some deconvolution methods use public single-cell RNA-seq references such as Human Cell Atlas [24], BRAIN Initiative Cell Census Network (BICCN) [25], and Human BioMolecular Atlas [26] to solve the problem, but the batch effects and tissue heterogeneity in samples may result in incomplete cell types. Moreover, single-cell references and spatial transcriptomics are affected by different perturbations, which may affect the deconvolution accuracy [27].

None of the previous spatial transcriptomics analysis methods could enhance the gene expression to single cell resolution without the usage of single cell RNA-seq data. BayesSpace [28] utilizes a Bayesian prior to explore the neighborhood structure and increase the resolution to subspot level, which is coarse than single cell resolution. However, the highly computational complexity and lack of flexibility hinders its application in multimodal spatial transcriptomics data analysis. CCST [29] applies graph convolutional networks to combine the gene expression with global spatial information. SpaGCN [30] combines gene expression, spatial information and histology image through a graph convolution model. Notably, most of the existing methods such as BayesSpace, CCST and SpaGCN rely on principle component analysis (PCA) to extract the highly variable features, which is not applicable to explore the nonlinear relationships. STAGATE [31] adopts an adaptive graph attention auto-Encoder to identify spatial domains. It achieves better performance for the identification of tissue types and highly expressed gene patterns. However, the utility of STAGATE is limited to spot resolution analysis. StLearn [32] uses deep learning method for the image domain and uses linear PCA to extract the features of spatial gene expression. The lack of consideration of gene expression and spatial relationship hinders its performance in different platforms. STdeconvolve applies latent Dirichlet allocation (LDA) to deconvolve proportional representation of cell type in each multi-cellular pixel. However, STdeconvolve [33] may fail to deconvolve distinct cell type if there is no highly co-expressed genes for each cell type. STdeconvolve could not identify the location of each cell type within each multi-cellular pixel.

To address these issues, we develop a novel Transformer based framework (TransformerST) for associating the heterogeneity of local gene expression properties and revealing the dependency of structural relationship at nearly single cell resolution. TransformerST consists of three components, the conditional transformer based variational autoencoder, the adaptive graph Transformer model with multi-head attention, and the cross-scale super-resolved gene expression reconstruction model. The first component takes together, transformer and convolutional architectures to model the realistic local gene expression patterns in an effective and expressive way. The convolutional

139 model learns the context-rich codebook with the gene expression. The long-
140 range spatial interactions is included using the transformer architecture which
141 models the indices distribution with a conditional constraints. The adaptive
142 graph transformer approach identifies the tissue types with the integration of
143 spatial gene expression, spatial relationship and histology image. It also uti-
144 lizes an adaptive parameter learning step to better explore the relationship
145 between spatial gene features and graph neighboring dependence. The super-
146 resolved resolution is enhanced through the cross-scale internal graph neural
147 network, which recovers more detailed tissue structures at the nearly single
148 cell resolution. The proposed method has the following advantages,

149

- 150 • The proposed method provides insights into the spatial transcriptomics
151 structural-functional dynamical relationship at nearly single cell resolu-
152 tion. Although the integration of single-cell RNA-seq data is widely used
153 in deconvolution research [34–36], it may introduce bias when single-cell
154 measurements is not available for real world applications. The proposed
155 method does not require the single-cell RNA-seq data to infer tissue
156 microenvironment at spot and nearly single cell resolution.
- 157 • The proposed method makes it possible to incorporate the heterogeneous
158 spatial gene expression with histology image using multimodal data. While
159 most of the existing methods utilize the linear PCA for feature extrac-
160 tion, the proposed method learns and reconstructs the original expressive
161 gene pattern with a large number of highly variable genes (HVGs). The
162 proposed method provides a novel pipeline for tissue type identification,
163 spatial-resolved gene reconstruction and gene expression prediction from his-
164 tology image (if available). It can be easily transferred to different spatial
165 transcriptomics platforms, such as ST or 10x Visium.
- 166 • The proposed method is evaluated with the meta-analysis to explore the
167 relevance of different tissue types and characterize the complex cell-cell
168 interactions into nearly single cell resolution. The proposed method is the
169 first time to reconstruct the gene expression at nearly single cell resolu-
170 tion without the usage of single cell RNA seq reference. The experimental
171 results with different spatial transcriptomics data demonstrate the efficiency
172 and effectiveness of proposed method to achieve better representation than
173 state-of-the-art methods.

174 2 Results

175

176 **Overview of the proposed method and evaluations.** The workflow of
177 the proposed method is shown in Fig. 1. The key problem in spatial trans-
178 criptomics analysis is to detect the spatial patterns of gene expression. In
179 order to learn and utilize the spatial information in spatial transcriptomics,
180 we adopt the Graph transformer, which has great potential to link spatial
181 information to spatial graphs. The proposed method first learns the nonlin-
182 ear mapping through variational encoder component (Fig. 1a). The variational
183

encoder helps to explore the gene expression pattern within each spot. Simultaneously, the adaptive graph transformer is utilized to aggregate the gene expression using the corresponding neighbors relationship and histology image (Fig. 1b). The gene representation and spatial embedding are concatenated to reconstruct the original gene expression through the decoder component. The iterative unsupervised deep clustering model is introduced to detect the heterogeneous tissue types at the original spot resolution. The adaptive graph transformer enables to associate the spatial patterns with gene expression at spot resolution. To further enhance the spatial gene expression resolution, the cross-scale internal graph networks takes the concatenated embedding and histology image (if available) as the inputs to synthesize the gene expression at the nearly single cell resolution (Fig. 1c). Finally, the conditional transformer architecture (Fig. 1a) is employed to enhance the compactness of learned latent representation with the conditional constraints. The conditional transformer further explores the spatial gene expression patterns to reconstruct the corresponding codebooks.

To showcase the strength of the proposed method, we evaluated its performance with several publicly available datasets. In tissue identification experiments at original resolution, we showed the spot resolution clustering results with human dorsolateral prefrontal cortex data (DLPFC). We further verified TransformerST using our in-house mouse lung data with 10x Visium platform (Fig. 2 and Fig. 3). TransformerST outperforms several state-of-the-art approaches such as stLearn [32], Mclust, Kmeans, Louvain, Giotto, BayesSpace [28], CCST [29], STAGATE [31] and SpaGCN [30]. To evaluate the super-resolution performance of TransformerST, we used three data from different spatial transcriptomics platforms. Specifically, we used the melanoma data from ST platform to evaluate the super-resolution performance at sub-spot resolution when the histology image is missing (Fig. 4). We used human epidermal growth factor receptor(HER) 2 amplified (HER+) invasive ductal carcinoma (IDC) acquired using 10x Visium platform to show the enhanced resolution performance at nearly single-cell resolution (Fig. 4). The invasive ductal carcinoma were manually annotated by a pathologist to exclude the overexposed regions. Moreover, we also used the 36 tissue sections from the HER2+ breast cancer data to demonstrate the performance of gene expression prediction and super-resolution of TransformerST (Fig. 5). We conducted two types of experiments: the leave-one-out evaluation (36 fold) and single section evaluation. Specifically, for leave-one-out evaluation, we used 32 sections to train the clustering and super-resolution model and used the remaining section for evaluation (TransformerST). We also showed the clustering results of TransformerST using single tissue section (TransformerST*). We further evaluated the super-resolution performance at nearly single cell resolution (Super-resolution). Next we investigated the spatial variable genes (SVGs) and meta gene detection accuracy using DLPFC and IDC samples. Notably, the proposed method could lower the computational complexity and reconstruct the enhanced gene expression at nearly single cell resolution more efficiently.

231 The spatial variable genes (SVGs) and meta genes detected by the proposed
232 methods show better biologically interpretability (Fig. 6). It should be noted
233 that all the baseline methods were applied with the default parameters.
234
235
236

237 2.1 Tissue Type Identification at Original Resolution

238
239 **Tissue identification in human dorsolateral prefrontal cortex Visium**
240 **data.** Recently, the LIBD human dorsolateral prefrontal cortex (DLPFC) data
241 were acquired with 10x Visium platform. The whole dataset sequenced 12
242 tissue samples with manual annotations of six cortical layers and white matter
243 for each sample. The manual annotations are provided by the original study
244 [37] and allows to evaluate the performance of tissue type identification at
245 spot resolution. We evaluated the tissue type identification of TransformerST
246 compared with stLearn, Mclust, Kmeans, Louvain, Giotto, BayesSpace, CCST,
247 STAGATE and SpaGCN. We used the adjusted Rand index (ARI) to quantify
248 the similarity between ground truth and clustering results[37].

249 The clustering accuracy (ARI) of sections 151672 and 151508 are shown
250 in Fig. 2a and Fig. 2c. Comparing with the baseline methods, TransformerST
251 could learn the dynamic graph representation between spatial gene expression
252 and spatial neighbors. Specifically, the proposed method were implemented
253 using the top 3000 HVGs, other comparison methods such as BayesSpace
254 and SpaGCN used 15 PCs from top 3000 HVGs. Gitto, CCST, STAGATE
255 and StLearn used the recommended parameters in the previous papers. The
256 proposed method could take advantage of the highly expressive gene and
257 spatial dependence of neighboring embedding to achieve the highest tissue
258 identification performance of both samples. Fig. 2a shows, for section 151672,
259 TransformerST, Gitto, STAGATE and SpaGCN revealed spatial gene expres-
260 sion patterns better accord with manual annotations, the ARI is 0.687 for
261 TransformerST, 0.573 for Gitto, 0.561 for STAGATE and 0.565 for SpaGCN.
262 The visual difference among these results are not significant. BayesSpace,
263 Mclust and CCST also provided decent results (ARI is 0.439 for BayesSpace,
264 0.479 for Mclust and 0.427 for CCST) and outperformed Louvain, StLearn and
265 Kmeans. In Fig. 2c, for section 151508, TransformerST had the highest cluster-
266 ing accuracy and provided distinct layers of clusters (ARI is 0.592). CCST and
267 STAGATE outperformed other methods but provided a worse performance
268 than TransformerST.

269 The remaining clustering results with all 12 DLPFC samples are shown in
270 Fig. 2b. TransformerST achieved the best performance with mean ARI (0.564).
271 Compared with the second performer STAGATE with mean ARI (0.502),
272 TransformerST increased the tissue identification performance by 12.4%. The
273 difference between BayesSpace, ccST and SpaGCN is not significant. Addi-
274 tionally, the runtime of TransformerST at spot resolution are comparable to
275 other clustering methods for spot level annotation, which uses 6.5 mins with
276

3000 HVGs and 3 mins for 200PCs. (Table 1). Detailed experimental results with all 12 DLPFC samples are shown in supplementary material. 277
278

These results further demonstrate the superiority of TransformerST to 279
explore the spatial expression patterns and provide clear cluster difference 280
between brain layers. 281
282

Tissue identification in mouse lung Visium data at spot resolution. 283

To further assess the performance of TransformerST in tissue identification, 284
we performed Visium experiments on four slices of mouse lungs. Single-cell 285
suspension processed side-by-side was subjusted to scRNA-seq experiment 286
and utilized to deconvolute the Visium data. 287

Pathologist then identified regions of interest (airways and blood vessels) 288
according to the histology images. Airways were defined in line with the decon- 289
voluted proportion of club cells within each slice. Pathologist manually set the 290
thresholds in each slice to match the selected spots with the histological air- 291
ways. Spots were marked as airways if the proportion of club cells were above 292
the threshold (top 20% for slice A1, top 20% for slice A2, top 10% for slice 293
A3, and top 10% for slice A4). Blood vessels were defined in consist with the 294
blood vessels regions in the histology image. A random trees pixel classifier 295
using QuPath (version 0.2.3) with downsample = 16 was trained to estimate 296
the probability of blood vessels within each spot of all slice samples. All the 297
training samples of the random trees pixel classifier came from the manual 298
annotation of slice A1. Then, pathologist used the threshold 0.5 to select the 299
blood vessels (Fig. 3b and Fig. 3c). 300

After defining these histological structures, TransformerST was utilized to 301
reveal the internal heterogeneity within visually homogeneous blood vessel and 302
airway tissue regions. The cluster numbers of all comparison methods were set 303
to 4. Fig. 3a shows, for the first slice sample, SpaGCN, STAGATE and StLearn 304
were able to distinguish the airways, but failed to identify the tissue region of 305
blood vessels. Surprisingly, BayesSpace failed to identify the significant tissue 306
types such as blood vessel and airway (Fig. 3a). Other comparison methods 307
such as Mclust, Kmeans, CCST, Louvain had worse performance, which are 308
contrary to the manual annotation (Fig. 3b). Gitto could identify the major 309
tissue types, but its result are very noisy. The most interesting finding is that 310
TransformerST is able to identify the whole blood vessel regions and provide 311
a more robust signal with detailed textural features (Fig. 3a). 312

Moreover, we used the club cell tissues to evaluate the performance of 313
TransformerST. As shown in Fig. 3a, for the first slice sample, TransfomerST, 314
SpaGCN, Gitto, STAGATE and StLearn were able to identify the club cell 315
regions, an indicator of airways. We observed that the spatial expression pat- 316
terns of club cells between the clusters were largely in line with the clinical 317
annotations (Fig. 3b). BayesSpace, CCST and non-spatial methods (Mclust, 318
Kmeans and Louvain) failed to detect the spatial patterns of club cell struc- 319
tures. Comparing these results, it could be seen that spatial expression patterns 320
acquired by TransformerST better reflect the the club cell structures with 321
detailed information in the boundaries. 322

323 The relative performance remains the same for the second slice sample
324 (Fig. 3c), TransformerST, StLearn, Gitto, STAGATE and SpaGCN were able
325 to identify the heterogeneity within club cells structure (Fig. 3d). However, as
326 shown in Fig. 3d, these methods aside TransformerST revealed substantial noise
327 and lack of clear spatial difference between club cells. BayesSpace, Mclust,
328 Louvain, CCST and Kmeans provided worse performance which violates the
329 biological interpretation. The existing methods are not applicable for mouse
330 lung tissue identification. TransformerST could identify the spatial patterns
331 with histology image and provided finer details of manual annotations (Fig.
332 3c).

333

334

335

336 2.2 Spatial Transcriptomics Super-Resolution at 337 Enhanced Resolution

338 **Tissue identification and super-resolution in melanoma ST data at
339 subspot resolution.** We evaluated the subspot super-resolution performance
340 with the publicly available melanoma ST data which was annotated and
341 described in Thrane et al [14]. The manual annotation of melanoma, stroma
342 and lymphoid regions (Fig. 4a) were included to evaluate the performance of
343 the TransformerST. Similar to manual annotations, we set the cluster number
344 to 4. As the histology image is missing, both BayesSpace and TransformerST
345 could enhance the resolution of ST expression to subspot resolution. We
346 show the tissue identification results of the proposed method in both spot
347 and subspot resolution in Fig. 4a and Fig. 4b. Comparison of the results of
348 TransformerST with those of other methods (Mclust, Kmeans, Louvain, Gitto,
349 SpaGCN, CCST, STAGATE and BayesSpace) confirms that TransformerST
350 reveals similar patterns to the manual annotation.

351 Specifically, the melanoma tissue could be divided into two types, central
352 tumor region and outer of the mixture of tumor and lymphoid tissue. Sur-
353 prisingly, only TransformerST was able to identify the lymphoid regions at
354 original resolution (Fig. 4a). The results of comparison methods could not
355 identify lymphoid regions at the original resolution. The tissue identification
356 results at enhanced resolution are in line with the finding that TransformerST
357 identifies lymphoid region in the tumor border with a higher resolution (Fig.
358 4b). In accord with recent study, BayesSpace and STdeconvolve also identified
359 the lymphoid regions to the tumor at the enhanced resolution (Fig. 4b). The
360 results of this study indicate that all the comparison methods could identify
361 the heterogeneity between border and center of tumor but fail to identify
362 lymphoid tissue at original resolution. TransformerST, STdeconvolve and
363 BayesSpace provided enhanced resolution of tissue structures which makes
364 it possible to identify the lymphoid tissue. The observational results suggest
365 TransformerST provides higher resolution and robust tissue identification
366 results at both original and enhanced resolution. Detailed experimental results
367

368

with enhanced resolution of three methods are shown in supplementary material. 369
370
371

**Tissue identification and super-resolution in IDC Visium data at 372
nearly single cell resolution.** We evaluated the nearly single cell super- 373
resolution performance with the IDC Visium data with immunofluorescence 374
staining for 4,6-diamidino-2-phenylindole (DAPI) and T cells staining CD3 375
in [28]. Pathologist identified regions of predominantly invasive carcinoma 376
(IC), carcinoma in situ and benign hyperplasia were included to evaluated 377
the clustering accuracy at spot resolution (Fig. 4d). Similar to the manual 378
annotations, we clustered the IDC sample into 5 clusters at spot resolution. We 379
used ARI to evaluate the clustering accuracy at spot resolution. The results of 380
the clustering experiment at original resolution indicate that TransformerST 381
achieves the best clustering accuracy with ARI of 0.493 (Fig. 4c). The ARI is 382
0.423 for BayesSpace against 0.369 for SpaGCN, 0.357 for Mclust and 0.274 383
for Gitto. However, some comparison methods did not improve the clustering 384
performace (ARI is only 0.257 for StLearn, 0.234 for STAGATE, 0.208 for 385
CCST, 0.151 for Louvain and 0.101 for Kmeans). 386

We further enhanced the spatial transcriptomics resolution to show the 387
biological relevance with TransfrmerST, STdeconvolve and BayesSpace (Fig. 388
4e and 4f). In accord with the BayesSpace paper [28], we set the cluster 389
number $k = 10$. As shown in Fig. 4e and 4f, TransformerST could identify 390
four clusters (0,3,4,8) related to predominantly IC, one cluster (2) related to 391
carcinoma regions, one cluster (7) identify the benign hyperplasia regions. 392
And clusters (1,5,6,9) are related to the unclassified regions. The result of 393
ByesSpace was in consist with previous report in [28]. However it is hard 394
to quantitatively evaluate the cluster accuracy at enhanced resolution. The 395
results of three methods show the spatial heterogeneity among tumor which 396
is inaccessible to histopathological analysis. However, We saw the visual 397
difference between carcinoma and benign hyperplasia regions via TransformerST 398
compared to BayesSpace and STdeconvolve. TransformerST exhibited 399
the spatial organization more similar to manual annotations. BayesSpace 400
could only increase the IDC data to subspot resolution, TransformerST could 401
predict the heterogeneity within each tissue at nearly single cell resolution. 402
STdeconvolve revealed the proportion of each cell type, but failed to identify 403
the location of cell patterns within each spot. The runtime of TransformerST 404
at enhanced resolution are comparable to other methods for gene expression 405
reconstruction, which uses 29 mins. (Table 2). TransformerST provides a more 406
efficient approach to identify the super-resolved tissue microenvironment than 407
BayesSpace and STdeconvolve. Detailed experimental results with enhanced 408
resolution of IDC samples are shown in supplementary material. 409

415 2.3 Enhanced Gene Expression Prediction at nearly
416 Single-Cell Resolution
417418 **Enhanced Gene expression prediction at nearly single cell resolution**
419 **in breast cancer data HER2+.** To predict gene expression at nearly single
420 cell resolution using histology image, we used two experiments to evaluate the
421 tissue identification and tissue super-resolution performance, the leave-one-out
422 evaluation (36 fold) and single section evaluation.. We used the HER2+ breast
423 cancer data which includes 36 tissue sections from 8 patients to demonstrate
424 the performance of gene expression prediction and super-resolution. Specifi-
425 cally, for leave-one-out evaluation, 32 sections were included to train the tissue
426 identification and super-resolution model and the remaining section were used
427 for evaluation. The results of leave-one-out are represented as TransformerST.
428 We also showed the clustering results of the TransformerST using single tissue
429 section, which is marked as *TransformerST**. We further evaluated the super-
430 resolution performance at nearly single cell resolution, which is represented as
431 Super-resolution.432 Manually annotation of 3 tissue sections were included for evaluation of
433 clustering accuracy. We compared the proposed method with ST-NET [38]
434 for gene expression prediction using three tissue sections in Fig. 5. The ST-
435 NET ignores the spatial relationship between spots and showed worse gene
436 prediction performance. Both the leave-one-out evaluation and single section
437 evaluation yielded higher correlation with biological interpretation. From Fig.
438 5 we can see that TransformerST increased the clustering accuracy (ARI)
439 for three sections (A1, B1, E1), which is much higher than those predicted
440 by ST-NET. For example, as shown in Fig. 5a, for sample A1, TransformerST
441 outperformed ST-NET with higher clustering accuracy (ARI is 0.268
442 for TransformerST, but 0.05 for ST-NET). *TransformerST** could predict
443 much higher ARI (ARI=0.496) than TransformerST and ST-NET. This result
444 might be explained by the fact that there are strong gene expression difference
445 among patients, the single section evaluation (*TransformerST**) achieves
446 better tissue identification performance (Fig. 5). The relative performance
447 remains the same for sample B1 (Fig. 5b). *TransformerST** outperformed
448 ST-NET and TransformerST with the highest clustering accuracy (ARI is
449 0.308 for TransformerST, 0.253 for TransformerST and 0.02 for ST-NET). Fig.
450 5c shows superiority of *TransformerST** (ARI=0.323) over TransformerST
451 (ARI=0.178) and ST-NET (ARI=0.11).452 The enhanced single cell resolution results further demonstrate Trans-
453 formerST could predict the biological meaningful patterns as in the manual
454 annotations. While it is hard to estimate the ARI for the super-resolution
455 result, the study is visually consistent with the manual annotations by patholo-
456 gists in the spatial domain (Fig. 5).

2.4 Meta Gene and SVGs Analysis with DLPFC and IDC Samples

To further demonstrate that TransformerST could explore the biological relevance, we detected the spatial variable genes and meta genes for LIBD human dorsolateral prefrontal cortex (DLPFC) data and IDC sample. As shown in Fig. 6a and Fig. 6b, SVGs and their corresponding meta gene show similar spatial patterns for human DLPFC samples at spot resolution. For example, TMSB10 is enriched in cluster 0 of tissue sample 151508. The combination of meta gene (TMSB10+MBP-MT-CO2) shows the strengthened spatial patterns in the neighboring regions. GFAP is enriched in cluster 2 of tissue sample 151508, its corresponding meta gene is GFAP+SNORC-TMSB10+CDT3-MBP, which is also spatially correlated with the SVGs of cluster 2 in the histology image.

TransformerST also detected a single SVG to mark the corresponding spatial domain in tissue sample 151509. NEFL is enriched in cluster 0 with the visually corresponding meta gene defined as NEFL+SCGB2A2-HPCAL1. GFAP is enriched in cluster 1 which is visually consist with its meta gene (GFAP+MT1G-FTH1+AQP4-CALM2+CST3-MBP). Both SVGs and meta gene show similar spatial patterns in the histology image (Fig. 6b). The experimental results with different tissue samples and different cluster domains demonstrate TransformerST could mark specific gene expressed regions for different cluster domains.

To illustrate how TransformerST works for different tissue samples, We detected the spatial variable genes and meta gene for IDC sample at nearly single cell resolution. As shown in Fig. 6c, TransformerST detected single SVGs (ACADSB) for cluster 2. Its corresponding meta gene was defined as ACADSB+NME2-MUC1+ATP5MPL-CD74+LAPTM4B-CRIP1. TransformerST detected DEGS1 SVG for cluster 3, which accords with its meta gene DEGS1+RPS18-CXCL14+AGR2-MGP+CSTA-NEAT1 visually. TTLL12 is enriched in cluster 4 with its corresponding meta gene as TTLL12+HMGN2-MALAT1+KRT8-SLC9A3R1.

The detection results of meta gene and SVGs reflect that TransformerST is able to identify the heterogeneity among spatial domains and predict the boundaries not annotated by pathologists. These results demonstrate TransformerST could better explore the spatial patterns with graph transformer network.

3 Discussions

In the study, we propose a novel Transformer based method for integrating the gene expression, the spatial location and histology image (if available). The proposed method called TransformerST is the first time to enhance the spatial transcriptomics to nearly single cell resolution without single cell RNA-seq reference. Different from most of the existing spatial transcriptomics analysis

507 methods, TransformerST does not require the linear PCA preprocessing and
508 guarantees the nonlinear learning of spatially distributed tissue structure of
509 multimodal data (i.e. ST and 10x Visium). The adaptive graph transformer
510 model with multi-head attention makes it possible to associate multimodal
511 graph representation and reveal how the heterogeneity map shapes the tissue
512 function dynamics. With the help of a cross-scale internal graph network,
513 TransformerST enables the effective and efficient analysis of super-resolved
514 tissue microenvironment at nearly single cell resolution. We evaluate the per-
515 formance of TransformerST with several datasets generated using diverse
516 spatial transcriptomics technologies. Compared with the state-of-the-art meth-
517 ods, TransformerST is able to identify the tissue clusters at both spot and
518 nearly single cell resolution. TransformerST overcomes the limitation of low
519 resolution of current spatial transcriptomics technology and provides an effi-
520 cient way to explore the spatial neighboring relationship. The experimental
521 results demonstrate the importance of regional heterogeneity and the cor-
522 responding intrinsic structural-function relationship within tissue dynamical
523 microenvironment. TransformerST could lower the computation complexity
524 and memory usage than existing methods.

525 Although the tissue type identification research is an important topic in
526 current spatial transcriptomics analysis, from the experimental results, we
527 could see that most of the state-of-the-art methods fail to estimate the cell
528 heterogeneity within each cell type. We expect TransformerST could help to
529 provide better resolution of spatial transcriptomics data analysis. Transformer-
530 ST could achieve super-resolved resolution of single cell per subspot without
531 the requirement of additional single cell RNA-seq reference. However, Trans-
532 formerST could also be easily adapted to incorporate additional single cell
533 reference for deconvolution task. With the downstream analysis such as SVGs
534 and meta gene analysis, TransformerST shows the similar biological tissue
535 patterns to manual annotations.

536 While TransformerST focuses on the ST and Visium platform, it could be
537 easily applied to other platforms with slight modification. In summary, Trans-
538 formerST provides an effective and efficient pipeline for various unsupervised
539 spatial transcriptomics analysis such as tissue identification, super-resolved
540 gene expression reconstruction and gene prediction from histology image. For
541 future work, we anticipate to increase the tissue type identification accuracy
542 by estimating the contribution of cell-specific gene expression. We also intend
543 to improve the graph transformer model to explore the heterogeneity of tissue
544 type in different micro-environments.

545

546 4 Methods

547

548 **Data description.** TransformerST is evaluated using several public available
549 datasets and one in-house dataset, most of which were obtained via Visium
550 platform. Specifically, the DLPFC dataset includes 12 sections. The number
551 of spots within each section ranges from 3498 to 4789. The area of DLPFC
552

layers and white matter (WM) were manually annotated by pathologists. 553
 To reconstruct gene expression at enhanced resolution, we use the publicly 554
 available melanoma ST data which was annotated and described in Thrane 555
 et al [14]. We show the performance of super-resolution at nearly single 556
 cell resolution using IDC Visium data with immunofluorescence staining for 557
 4,6-diamidino-2-phenylindole (DAPI) and T cells staining CD3 in [28]. To 558
 predict gene expression at nearly single cell resolution using histology image, 559
 we used the HER2+ breast cancer data which includes 36 tissue sections 560
 from 8 patients. We also use our in-house mouse lung data to evaluate the 561
 performance of TransformerST in tissue identification experiment. 562
 563

In-house data preprocessing. For our in-house mouse lung data, 10X 564
 Genomics Visium platform were used to perform the ST experiment. After 565
 harvesting the mouse lungs, the left lobes were inflated with 1mL of mixture 566
 of 50% sterile PBS/ 50% Tissue-Tek OCT compound (SAKURA FINETEK) 567
 before being frozen in alcohol bath on dry ice. Until they were processed 568
 further, OCT blocks were kept at -80°C Following the 10x Genomics Visium 569
 fresh frozen tissue processing protocol, OCT blocks were sectioned at 10 μ m 570
 in thickness and 6.5mm X 6.5mm in size, affixed to the Visium slides, and 571
 then stained with hematoxylin and eosin. A fluorescence and tile scanning 572
 microscope (Olympus Fluoview 1000) was used to take H&E images, after 573
 which the slides underwent tissue removal and library generation per 10x 574
 Genomics demonstrated protocol. 575

Using Space Ranger software (version 1.2.2) from 10x Genomics, each 576
 sequenced spatial transcriptomics library was processed and aligned to the 577
 mm10 mouse reference genome, with UMI counts summarized for each spot. 578
 Tissue overlying spots were identified based on the images in order to distin- 579
 guish them from the background. When the filtered UMI count matrices were 580
 generated, only the barcodes associated with these tissue overlaying spots 581
 were kept. Additionally, we manually excluded spots that were not covered 582
 by tissue but were yet detected by Space Ranger and further filter the UMI 583
 count matrices (slice A1: 32,285 genes x 3,689 spots; slice A2: 32,285 genes 584
 x 2,840 spots; slice A3: 32,285 genes x 3,950 spots; slice A2: 32,285 genes x 585
 3,765 spots). 586
 587

Public data preprocessing. All Visium samples were generated from 10x 588
 Genomics procured from BioIVT:ASTERAND. The remaining melanoma 589
 and breast cancer samples were obtained using the ST platform. We use the 590
 second replicate from biopsy 1 to detect the lymphoid sub-environment. For 591
 all datasets, raw genes expression counts expressed in fewer three spots were 592
 filtered and eliminated. Seurat were then introduced to find the top 3000 most 593
 HVGs for each spot. The gene expression values are transformed into a natu- 594
 ral log scale. We use both histology image (when available) and spatial gene 595
 expression to exploit tissue sub-environment at the super-resolved resolution. 596
 597

599 **Graph reconstruction for spatial gene expression.** TransformerST
 600 reconstructs the cell-cell relationship using an undirected graph $G(V, E)$.
 601 Each vertex V represents the spot and the edge E measures the weighted
 602 relationships between two vertices. We map each spot back to the histology
 603 image and define the corresponding pixel using similar smooth and rescale
 604 steps in SpaGCN [30]. The Euclidean distance between vertices is calculated
 605 based on the image coordinates. We select top 20 neighbors of each spot to
 606 represent the adjacency matrix A .

607

608 **Transformer based variational auto-encoder representation learning.** The transformer based variational auto-encoder is introduced to explore
 609 the feature learning capability at both spot and nearly single cell resolution.
 610 The neighboring relationship of spatial transcriptomics requires the proposed
 611 method to understand the global composition of histology image and corre-
 612 sponding gene expression, which enables it to reconstruct the locally realistic
 613 and globally consistent patterns of gene expression. Thus, we use a codebook
 614 to represent the perceptually rich gene expression patterns. Together with
 615 graph transformer model, the Variational-Transformer architecture could
 616 reconstruct the realistic and consistent enhanced resolution spatial gene
 617 expression in a conditional setting. The proposed VAE-Transformer model
 618 consists of three parts, codebook representation learning, transformer-based
 619 reconstruction and conditional synthesis.

620

621 *Learning an effective codebook of gene expression constituents.* The aim
 622 of the codebook learning is to exploit the the constituents of the spatial
 623 gene expression in the form of a sequence. The spatial gene input for the
 624 Transformer-based variational autoencoder is stored in $N \times M$ matrix which
 625 consists of N spots and M genes. In addition, we represent the histology
 626 image as $H \times W$ with 2 dimensional coordinates. Together with the spatial
 627 coordinates, the spatial gene expression could be represented using a spatial
 628 collection of codebook entries $z_q \in R^{h \times w \times n_z}$, where n_z is the dimensionality
 629 of codes. Similar to neural discrete representation learning, we propose a con-
 630 volutional model which consists of an encoder F and a decoder D to exploit
 631 the discrete codebook $Z = z_k, (k = 1, \dots, K)$. Each item of the coderbook z_q
 632 is obtained via the encoder $z = F(x)$ and an element-wise quantization $Q(\cdot)$
 633 of each spatial code $z_{i,j}$.

634

$$635 \quad z_q = Q(z) := (\arg \min_{z_k \in Z} \|z_{i,j} - z_k\|) \quad (1)$$

636

637 The reconstructed spatial gene expression is defined as

638

$$639 \quad \hat{x} = D(z_q) = D(Q(F(x))) \quad (2)$$

640

641

642

643

644

We simply copy the gradient from the decoder to the encoder and train the codebook learning model via an end-to-end loss function 645
646
647

$$L_{VQ}(F, D, Z) = \|x - \hat{x}\|^2 + \|sg[F(x)] - z_q\|_2^2 + \|sg[z_q] - F(x)\|_2^2 \quad (3) \quad 648$$

where $\|x - \hat{x}\|^2$ represents the reconstruction loss. $sg[\cdot]$ denotes the stop-gradient operation. 650
651
652

Learning the spatial gene expression with a conditional Transformer. Instead of straightly representing the quantized encoding $z_q = Q(F(x))$, we use the conditional transformer model to represent the codebook indices s . 653
654
655

$$s_{i,j} = k \quad if \quad (z_q)_{i,j} = z_k \quad (4) \quad 656$$

With the learned sequence of learned codebook indices s , we could map s back to $z_q = (z_{s_{i,j}})$ and reconstruct the original spatial gene expression $\hat{x} = D(z_q)$. 659
660
661

Then the transformer is used to predict the distribution of next indices in a conditional setting, 662
663
664

$$\begin{aligned} L_{Transformer} &= \mathbb{E}_{x \sim p(x)}[-\log(p(s \mid c))] \\ p(s \mid c) &= \prod_i p(s_i \mid s_{<i}, c) \end{aligned} \quad (5) \quad 665 \\ 666 \\ 667 \\ 668$$

where the condition c is defined as the clustering result of graph-transformer model. Finally, the spatial gene expression is reconstructed in a sliding-window manner. In order to accelerate the training process, we crop the spatial gene expression into patches and restrict the length of s . 669
670
671
672
673

Adaptive graph-transformer for spatial embedding. The proposed method utilizes the adaptive graph transformer model to embed the spatial relationship of neighboring spots. The proposed method concatenates the gene expression embedding $F(x)$ and edge weights to cluster each spot. For the downstream analysis, the Graph Transformer layer together with the multi-head attention model is utilized to stack the entire node features. The inputs for the multi-head attention consists of query, key and value. We define the multi-head attention for each edge with each layer l as follows, 674
675
676
677
678
679
680
681
682

$$\begin{aligned} q_{c,i}^l &= W_{c,q}^l h_i^l + b_{c,q}^l & 683 \\ k_{c,j}^l &= W_{c,k}^l h_j^l + b_{c,k}^l & 684 \\ e_{c,ij} &= W_{c,e} e_{ij} + b_{c,e} & 685 \\ \alpha_{c,ij}^l &= \frac{\langle q_{c,i}^l, k_{c,j}^l + e_{c,ij} \rangle}{\sum_{\mu \in N(i)} \langle q_{c,i}^l, k_{c,u}^l + e_{c,iu} \rangle} & 686 \\ & & 687 \\ & & 688 \\ & & 689 \\ & & 690 \end{aligned} \quad (6) \quad 686$$

691 where $\langle q, k \rangle = \exp(\frac{q^T k}{\sqrt{d}})$ represents the exponential scale dot-product func-
 692 tion. d is the hidden size of each head. We use the learnable parameters
 693 $W_{c,q}^l, W_{c,k}^l, b_{c,q}^l, b_{c,k}^l$ to transform each source feature h_i^l and distant feature h_j^l
 694 into query vector $q_{c,i}^l$ and key vector $k_{c,j}^l$. The additional edge feature e_{ij} is also
 695 added into the key vector $k_{c,j}^l$.
 696 The message aggregation from j to i is defined as follows,
 697

$$v_{c,j}^l = W_{c,v}^l h_j^l + b_{c,v}^l \\ \hat{h}_i^{l+1} = \sum_j \in N(i) \alpha_{c,ij}^l (v_{c,j}^l + e_{c,ij}) \quad (7)$$

702 A gated residual connection between layers is adopted to prevent over-
 703 smoothing.
 704

$$r_i^l = W_r^l h_i^l + b_r^l \\ \beta_i^l = \text{sigmoid}(W_g^l [\hat{h}_i^{l+1}; r_i^l; \hat{h}_i^{l+1} - r_i^l]) \\ h_i^{l+1} = \text{ReLU}(\text{LayerNorm}(1 - \beta_i^l) \hat{h}_i^{l+1} + \beta_i^l r_i^l) \quad (8)$$

710 The output of last layer is the averaging of multi-head output
 711

$$\hat{h}_i^{l+1} = \frac{1}{C} \sum_{c=1}^C \left[\sum_j \in N(i) \alpha_{c,ij}^l (v_{c,j}^l + e_{c,ij}) \right] \\ h_i^{l+1} = (1 - \beta_i^l) \hat{h}_i^{l+1} + \beta_i^l + r_i^l \quad (9)$$

712
 713 *Adaptive Graph transformer representation learning* The previous spatial
 714 transcriptomics clustering method only considers the spatial information to
 715 construct the graph representation. We introduce an adaptive Graph Trans-
 716 former model to learn the spatial and feature representation of the entire
 717 graph, which is defined as follows:
 718

$$A = \lambda A_L + (1 - \lambda) A_0 \quad (10)$$

724 where A_0 is the initial adjacency matrix and A_L is the learned adjacency
 725 matrix within each iteration. The initial adjacency matrix is constructed
 726 using the k nearest neighborhood using the histology image. The adaptive
 727 updating mechanism helps to learn the global and local representation of
 728 spatial transcriptomics data. The hyperparameter λ is included to balance
 729 the trade-off between spatial and feature graph structure.
 730

731 *Identifying tissue types with iterative clustering.* Based on the outputs of
 732 Graph Transformer encoder, the proposed method iteratively identifies the tis-
 733 sue type in an unsupervised manner. The initiation of the proposed method is
 734

based on Louvain’s method. The clustering method is divided into two steps. 737
 In the first step, we assign a soft cluster type $\gamma_{i,j}$ to each spot embedding z_i 738
 as follows: 739

$$\gamma_{i,j} = \frac{(1 + \|z_i - \mu_i\|^2)^{-1}}{\sum_j (1 + \|z_i - \mu_j\|^2)^{-1}} \quad (11) \quad 740$$

Then we refine the clusters with an auxiliary target distribution p based 742
 on $\gamma_{i,j}$ 743

$$p_{i,j} = \frac{\gamma_{i,j}^2 / \sum_{i=1}^N \gamma_{i,j}}{\sum_{j=1}^K (\gamma_{i,j}^2 / \sum_{i=1}^N \gamma_{i,j})} \quad (12) \quad 744$$

Similar to the previous iterative clustering algorithm in scRNA-seq analysis, 747
 the loss function is defined using the KL divergence. 748

$$KL(P \parallel \Gamma) = \sum_i^N \sum_j^K p_{i,j} \log \frac{p_{i,j}}{\gamma_{i,j}} \quad (13) \quad 749$$

Reconstructing the super-resolved gene expression at the sub-spot resolution. 755

In order to explore the tissue sub-environment at the enhanced resolution, 757
 we segment each spot into nearly single cell resolution with the help of histology 758
 image. If the histology is missing in real time applications, we adopt the setting 759
 of BayesSpace [28], each spot ST data is segmented into nine subspots and each 760
 Visium data is segmented into six subspots. As the ST spots are 100 μm in 761
 diameter and Visium are 55 μm in diameter, TransformerST could achieve the 762
 super-resolved gene expression at nearly single cell resolution rather than the 763
 original mixture of dozens of cells. The proposed super-resolved reconstruction 764
 components are divided into two steps, histology image super-resolution and 765
 spatial gene expression reconstruction. 766

We model the internal cross-scale relationship between each spot and its 767
 corresponding neighbors as graph, where each spot patch is the vertex and 768
 the edge is the weighted connection of two spots in different resolutions. The 769
 proposed method consists of two parts, graph construction and patch aggregation. 770
 TransformerST dynamically reconstructs the cross-resolution graph 771
 by searching the k nearest neighboring spots in the downsampled resolution. 772
 With the mapping function, we could obtain the k nearest neighboring spots 773
 patch at original resolution. Thus, the reconstructed graph provides k spot 774
 mapping pairs of low and high resolution. After that, we employ the patch 775
 aggregation model to aggregate k spot patches conditioned on the similarity 776
 distance. Due to the limitation of current spatial transcriptomics technology, 777
 we could not get the ground truth data at the enhanced resolution. We assume 778
 that the spatial gene expression at the spot resolution is the averaged mixture 779
 of its corresponding single cell segments. Instead of straightly calculating 780
 the reconstruction loss at the enhanced resolution, we average the single cell 781
 components into spot to guide the training process. 782

783

784 *Graph reconstruction.* We first downsample the spot gene expression by the
 785 factor η . η is set to nine for ST platform and six for Visium platform. The
 786 downsampled spatial gene expression is denoted as $X_{L\downarrow\eta}$. After that, we find
 787 the k neighboring patches in graph at low and high resolution. To obtain the k
 788 neighboring patches, we extract the embedded features by the encoder model
 789 of graph-Transformer and variational encoder. For each spot, we search its k
 790 neighboring spot in $X_{L\downarrow\eta}$ and $l \times l$ patches in X_L with Euclidean distance.
 791 We search the similar spot in $X_{L\downarrow\eta}$ rather than X_L , we could lower the search
 792 space by η^2 .

793

794 *Patch aggregation.* We weight the k neighboring patches on the similarity
 795 distance and aggregate the enhanced gene expression as

796

$$797 \quad X_{L\uparrow\eta} = \frac{1}{\delta(X_L)} \sum_{n_r} \exp(E_\theta(D^{n_r \rightarrow q})) X_L^{l \times l} \quad (14)$$

799

800 where $\delta(X_L) = \sum_{n_r} \exp(E_\theta(D^{n_r \rightarrow q}))$ denotes the normalization factor.
 801 $E_\theta(D^{n_r \rightarrow q})$ is used to estimate the aggregation weight for each neighboring
 802 patches.

803

804 **Spatially variable meta genes detection.** We are interested in the detection
 805 of spatially variable meta gene within each tissue type. The spatially
 806 variable meta gene expression could be divided into two steps. The first step
 807 is to detect the spatial variable gene (SVGs) in the target tissue type but not
 808 high expressed in its neighbors. The number of neighbors is set to 10 in the
 809 experiments. We select a nontarget tissue type domain using the threshold
 810 50%. Specifically, if more than 50% spots of a nontarget tissue type domain
 811 are in the neighboring set, we will define that tissue type as neighboring tissue
 812 type domain. Genes with FDR-adjusted P value < 0.05 are defined as spatial
 813 variable genes.

814 The second step is to detect the spatially variable meta genes. For each
 815 specific tissue type, we are interested to detect the set of multiple genes shows
 816 an enriched expression patterns. The expression of meta gene is defined as
 817 follows,

818

$$819 \quad \log(\text{meta}_{\text{gene}_1}) = \log(\text{gene}_0) + \log(\text{gene}_{0+}) - \log(\text{gene}_{0-}) + C_0 \quad (15)$$

820

821 where C_0 is a constant to make meta gene expression non-negative. gene_{0+}
 822 is selected with the higher expressed genes and the smallest FDR- P value in
 823 the target tissue type. Similarly, gene_{0+} is included with the higher expressed
 824 genes and the smallest FDR- P value in the control tissue type. The output of
 825 meta gene detection is obtained iteratively,

826

$$827 \quad \log(\text{meta}_{\text{gene}_{t+1}}) = \log(\text{gene}_t) + \log(\text{gene}_{t+}) - \log(\text{gene}_{t-}) + C_t \quad (16)$$

828

Moran's I and Geary's C statistics for the evaluation of SVGs. Moran's I metric is a correlation coefficient to measure the overall spatial autocorrelation of a dataset. We define the Moran's I for the given spatial variable gene as follows,

$$I = \frac{N}{W} \frac{\sum_i \sum_j [w_{i,j}(x_i - \bar{x})(x_j - \bar{x})]}{\sum_i (x_i - \bar{x})^2} \quad (17)$$

where x_i and x_j are gene expressions of spot i and j , \bar{x} is the mean gene expression. $w_{i,j}$ is the spatial weight.

In addition, we also use another commonly used statistic model Geary's C, which is defined as,

$$C = \frac{N}{2W} \frac{\sum_i \sum_j [w_{i,j}(x_i - x_j)^2]}{\sum_i (x_i - \bar{x})^2} \quad (18)$$

The values of Geary's C should be similar to Moran's I for each specific gene expression.

5 Data Availability

We use several publicly available data which could be acquired using the following websites or accession numbers: (1) LIBD human dorsolateral prefrontal cortex data (DLPFC) (<http://research.libd.org/spatialLIBD/>); (2) Melanoma ST data (https://www.spatialresearch.org/wp-content/uploads/2019/03/ST-Melanoma-Datasets_1.zip); (3) Human epidermal growth factor receptor(HER) 2 amplified (HER+) invasive ductal carcinoma (IDC) sample [28]; (4)HER2+ breast cancer data [38]

Table 1 Computational time for tissue type identification with LIBD human dorsolateral prefrontal cortex

Method	Runtime/mins	GPU/CPU
TransformerST-3000 HVGs	6.5	GPU
TransformerST-200 PCA	3	GPU
BayesSpace	21	CPU
stLearn	0.5	GPU
SpaGCN	2	GPU
CCST	3	GPU
STAGATE	7	GPU
Gitto	17	CPU

875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894

895 **Table 2** Computational time for super-resolved gene expression reconstruction with IDC
896 sample

Method	Runtime/mins	GPU/CPU
TransformerST-3000 HVGs	29	GPU
BayesSpace	200	CPU
STdeconvolve	54	CPU

900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920

References

[1] Moncada, R. *et al.* Integrating microarray-based spatial transcriptomics and single-cell rna-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. *Nature biotechnology* **38** (3), 333–342 (2020) . 921
922
923
924
925

[2] Chen, W.-T. *et al.* Spatial transcriptomics and in situ sequencing to study alzheimer’s disease. *Cell* **182** (4), 976–991 (2020) . 926
927
928

[3] Lubeck, E., Coskun, A. F., Zhiyentayev, T., Ahmad, M. & Cai, L. Single-cell in situ rna profiling by sequential hybridization. *Nature methods* **11** (4), 360–361 (2014) . 929
930
931
932

[4] Shah, S., Lubeck, E., Zhou, W. & Cai, L. In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus. *Neuron* **92** (2), 342–357 (2016) . 933
934
935
936

[5] Eng, C.-H. L. *et al.* Transcriptome-scale super-resolved imaging in tissues by rna seqfish+. *Nature* **568** (7751), 235–239 (2019) . 937
938
939

[6] Moffitt, J. R. *et al.* Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. *Science* **362** (6416) (2018) . 940
941
942

[7] Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. Spatially resolved, highly multiplexed rna profiling in single cells. *Science* **348** (6233) (2015) . 943
944
945

[8] Wang, X. *et al.* Three-dimensional intact-tissue sequencing of single-cell transcriptional states. *Science* **361** (6400) (2018) . 946
947
948

[9] Lee, J. H. *et al.* Highly multiplexed subcellular rna sequencing in situ. *Science* **343** (6177), 1360–1363 (2014) . 949
950
951

[10] Ståhl, P. L. *et al.* Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. *Science* **353** (6294), 78–82 (2016) . 952
953
954

[11] Rodriques, S. G. *et al.* Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. *Science* **363** (6434), 1463–1467 (2019) . 955
956
957

[12] Stickels, R. R. *et al.* Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. *Nature biotechnology* **39** (3), 313–319 (2021) . 958
959
960
961

[13] Vickovic, S. *et al.* High-definition spatial transcriptomics for in situ tissue profiling. *Nature methods* **16** (10), 987–990 (2019) . 962
963
964
965
966

967 [14] Thrane, K., Eriksson, H., Maaskola, J., Hansson, J. & Lundeberg, J. Spatially resolved transcriptomics enables dissection of genetic heterogeneity in stage iii cutaneous malignant melanoma. *Cancer research* **78** (20), 968 5970–5979 (2018) .
969
970

971 [15] Berglund, E. *et al.* Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity. *Nature communications* **9** (1), 972 1–13 (2018) .
973
974

975 [16] Hao, Y. *et al.* Integrated analysis of multimodal single-cell data. *Cell* 976 (2021) .
977
978 [17] Cable, D. M. *et al.* Robust decomposition of cell type mixtures in spatial 979 transcriptomics. *Nat. Biotechnol.* (2021) .
980
981 [18] Andersson, A. *et al.* Single-cell and spatial transcriptomics enables probabilistic 982 inference of cell type topography. *Commun. Biol.* **3** (1), 565 (2020)
983
984

985 [19] Elosua-Bayes, M., Nieto, P., Mereu, E., Gut, I. & Heyn, H. SPOTlight: 986 seeded NMF regression to deconvolute spatial transcriptomics spots with 987 single-cell transcriptomes. *Nucleic Acids Research* **49** (9), e50–e50 (2021)
988
989

990 [20] Dong, R. & Yuan, G.-C. SpatialDWLS: accurate deconvolution of spatial 991 transcriptomic data. *Genome Biol.* **22** (1), 145 (2021) .
992
993 [21] Kleshchevnikov, V. *et al.* Comprehensive mapping of tissue cell architecture via 994 integrated single cell and spatial transcriptomics. *bioRxiv* (2020)
995
996

997 [22] Kiemen, A. *et al.* In situ characterization of the 3d microanatomy of the 998 pancreas and pancreatic cancer at single cell resolution. *bioRxiv* (2020) .
999
1000 [23] Nguyen, Q. H., Pervolarakis, N., Nee, K. & Kessenbrock, K. Experimental 1001 considerations for single-cell rna sequencing approaches. *Frontiers in cell 1002 and developmental biology* **6**, 108 (2018) .
1003
1004 [24] Rozenblatt-Rosen, O., Stubbington, M. J., Regev, A. & Teichmann, S. A. 1005 The human cell atlas: from vision to reality. *Nature* **550** (7677), 451–453 1006 (2017) .
1007
1008 [25] Yao, Z. *et al.* A transcriptomic and epigenomic cell atlas of the mouse 1009 primary motor cortex. *Nature* **598** (7879), 103–110 (2021) .
1010
1011 [26] Consortium, H. *et al.* The human body at cellular resolution: the nih 1012 human biomolecular atlas program. *Nature* **574** (7777), 187 (2019) .
1013

[27] Haque, A., Engel, J., Teichmann, S. A. & Lönnberg, T. A practical guide to single-cell rna-sequencing for biomedical research and clinical applications. *Genome medicine* **9** (1), 1–12 (2017) . 1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026

[28] Zhao, E. *et al.* Spatial transcriptomics at subspot resolution with bayesspace. *Nature Biotechnology* 1–10 (2021) . 1027
1028
1029
1030

[29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. *Nature Computational Science* **2** (6), 399–408 (2022) . 1031
1032
1033
1034

[30] Hu, J. *et al.* Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. *Nature methods* 1–10 (2021) . 1035
1036
1037
1038

[31] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. *Nature communications* **13** (1), 1–12 (2022) . 1039
1040
1041
1042

[32] Pham, D. *et al.* stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. *bioRxiv* (2020) . 1043
1044

[33] Miller, B. F., Huang, F., Atta, L., Sahoo, A. & Fan, J. Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data. *Nature communications* **13** (1), 1–13 (2022) . 1045
1046
1047
1048

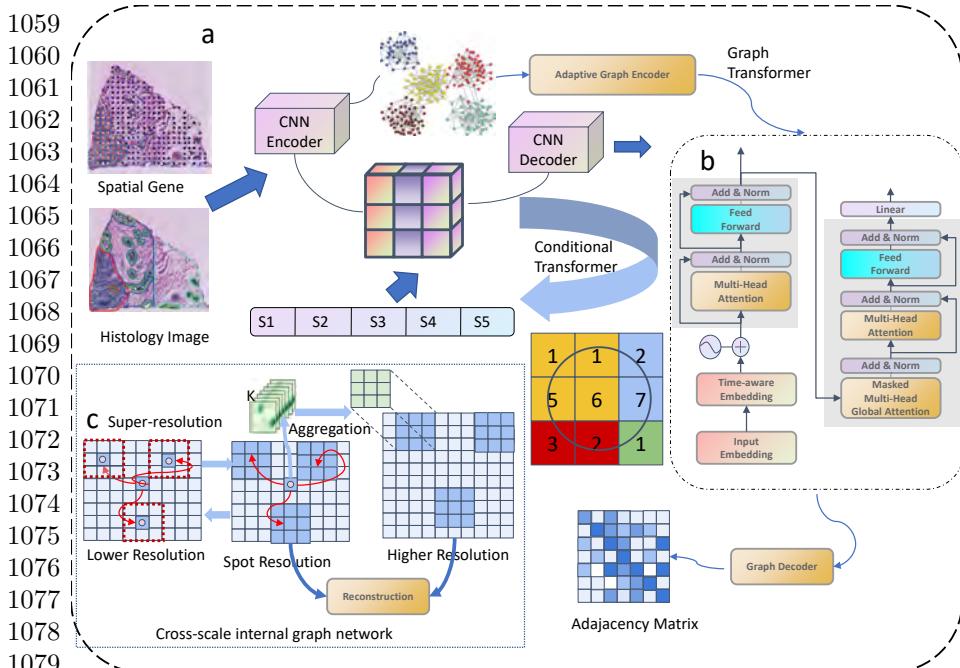
[34] Andersson, A. *et al.* Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography. *Communications biology* **3** (1), 1–8 (2020) . 1049
1050
1051
1052

[35] Cable, D. M. *et al.* Robust decomposition of cell type mixtures in spatial transcriptomics. *Nature Biotechnology* 1–10 (2021) . 1053
1054
1055
1056
1057
1058

[36] Elosua-Bayes, M., Nieto, P., Mereu, E., Gut, I. & Heyn, H. Spotlight: seeded nmf regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. *Nucleic acids research* **49** (9), e50–e50 (2021) .

[37] Maynard, K. R. *et al.* Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. *Nature neuroscience* **24** (3), 425–436 (2021) .

[38] He, B. *et al.* Integrating spatial gene expression and breast tumour morphology via deep learning. *Nature biomedical engineering* **4** (8), 827–834 (2020) .



1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080 **Fig. 1** Schematic illustration of TransformerST. a, Conditional Transformer based variational autoencoder to integrate the spatial gene expression, spatial location and histology image. The variational encoder helped to explore the gene expression pattern within each spot. The conditional transformer further explores the spatial gene expression patterns to reconstruct the corresponding codebooks. b, Adaptive Graph transformer model to exploit the spatial neighboring dependence. The adaptive graph transformer model enables to associate the spatial gene expression patterns at the original resolution. c, Cross- scale internal graph network for super-resolved gene expression reconstruction. The cross- scale internal graph networks takes the concatenated embedding and histology image as the inputs to synthesize the gene expression at the single cell resolution.

1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104

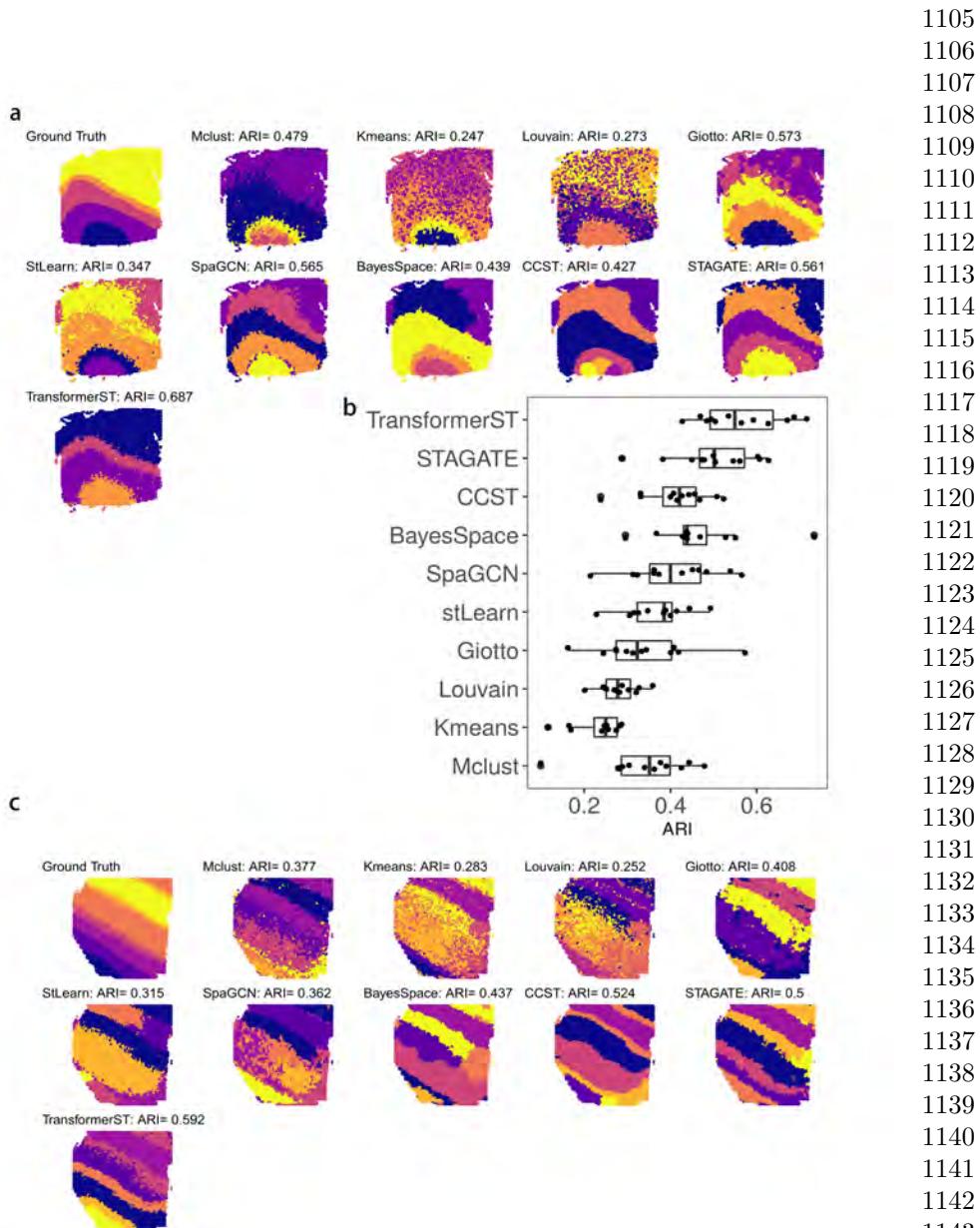


Fig. 2 Tissue identification in human dorsolateral prefrontal cortex Visium data at spot resolution. The ARI is used to evaluate the similarity between cluster labels acquired by each method against manual annotations. a, Tissue types assignments by different spatial clustering methods for sample 151672. b, Summary of all 12 samples clustering accuracy. c, Tissue types assignments by different spatial clustering methods for sample 151508.

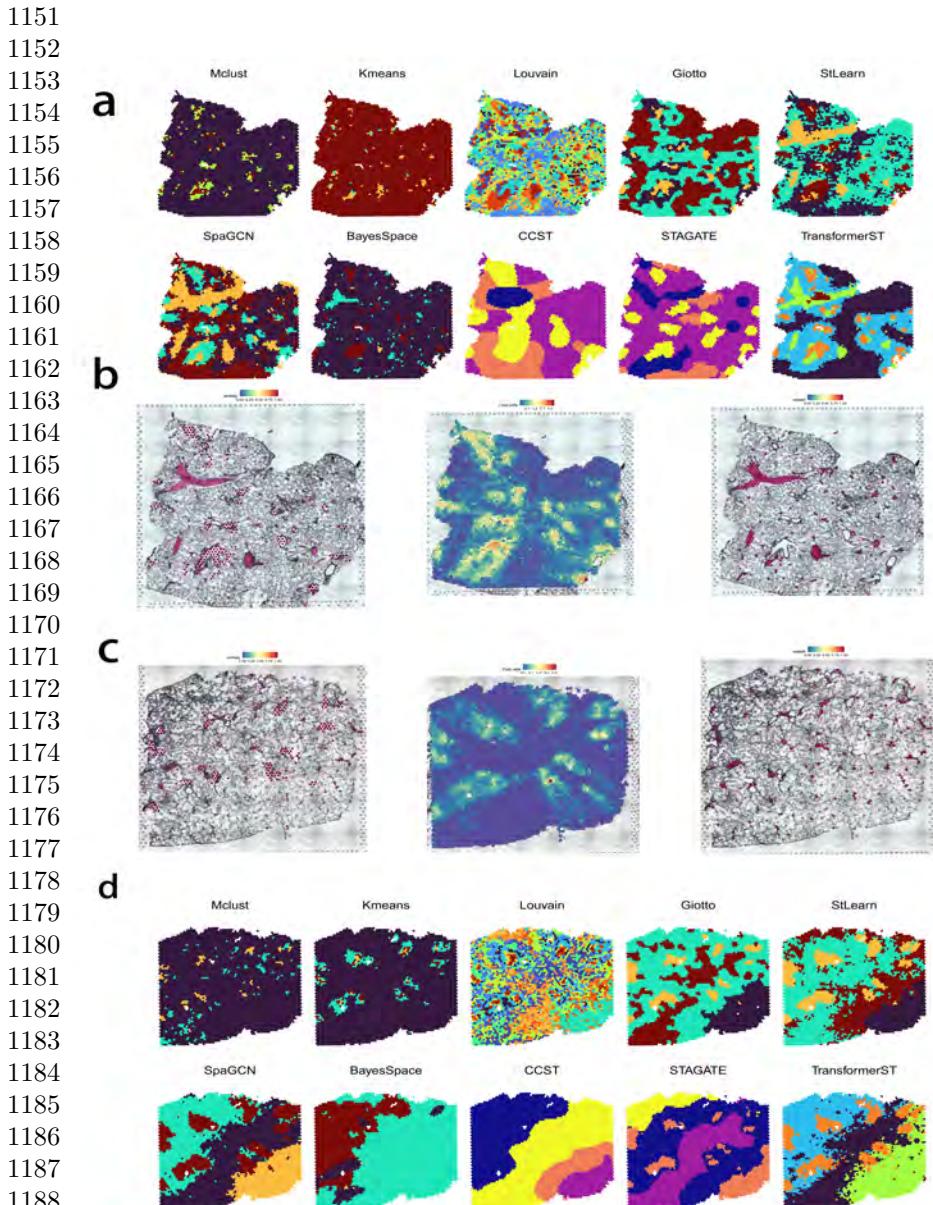


Fig. 3 Tissue identification in mouse lung Visium data at spot resolution. a, Tissue types assignments by different spatial clustering methods for the first sample. b, Manual annotations of airways (left) and blood vessels (right) of the first slice. Pathologist identified regions of significant regions according to the histology image. Airways were defined in line with the proportion of club cells (middle) within each slice. c, Manual annotations of airways (left) and blood vessels (right) of the second slice. d, Tissue types assignments by different spatial clustering methods for the second sample.

1195
1196

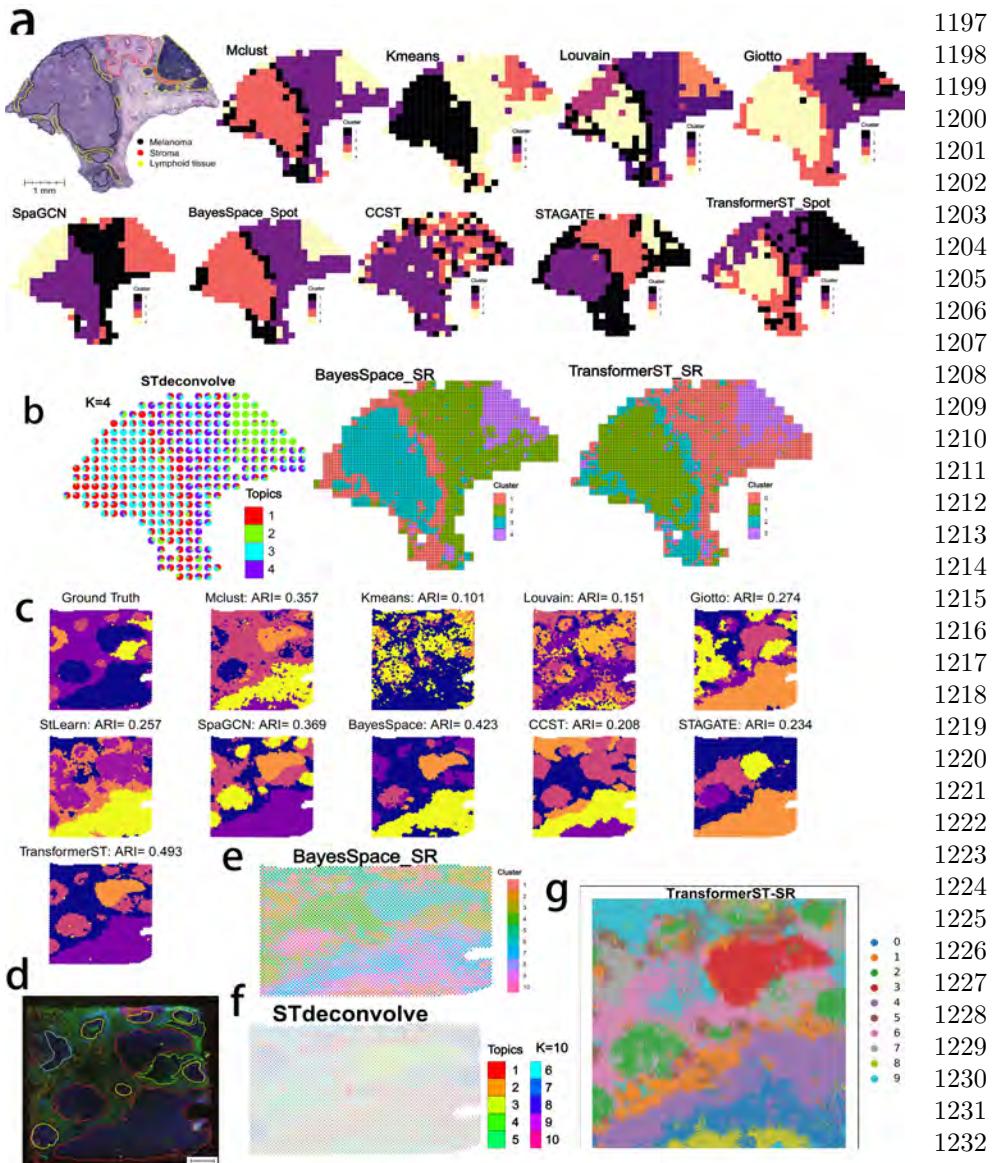


Fig. 4 Tissue identification with super-resolved gene expression. **a**, Tissue type assignments by different spatial clustering methods for melanoma sample. **b**, Enhanced subspot tissue identification of melanoma sample with BayesSpace, STdeconvolve and TransformerST. **c**, Tissue type assignments by different spatial clustering methods for IDC sample. **d**, Immunofluorescent imaging of tissue and manual annotations. Different tissue types are shown in different colors (DAPI intensity in blue, anti-CD3 intensity in green, the Visium fiducial frame in red). Pathologist annotated different regions in different colors (IC outlined in red, carcinoma in yellow, benign hyperplasia in green, unclassified tumor in grey). **e**, Enhanced super-resolved tissue identification of IDC sample with BayesSpace at sub-spot resolution. **f**, Cell type proportion of IDC sample with STdeconvolve. **g**, Enhanced super-resolved tissue identification of IDC sample with TransformerST at nearly single cell resolution.

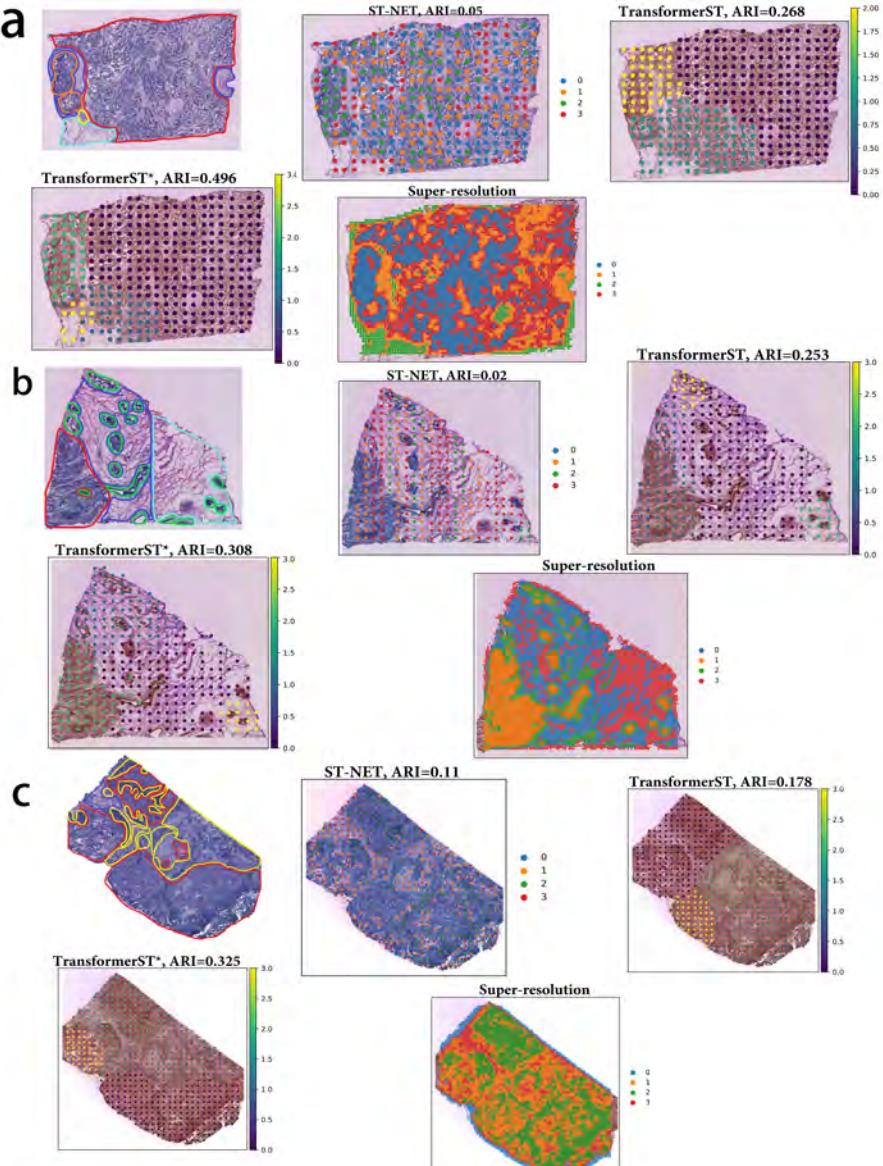
1243
1244
1245
1246
1247
1248
1249
1250

Fig. 5 Super-resolved gene expression prediction with breast cancer data. a, Tissue type assignments and nearly single cell super-resolution using A1 section. b, Tissue type assignments and nearly single cell super-resolution using B1 section. c, Tissue type assignments and nearly single cell super-resolution using E1 section.

1286
1287
1288

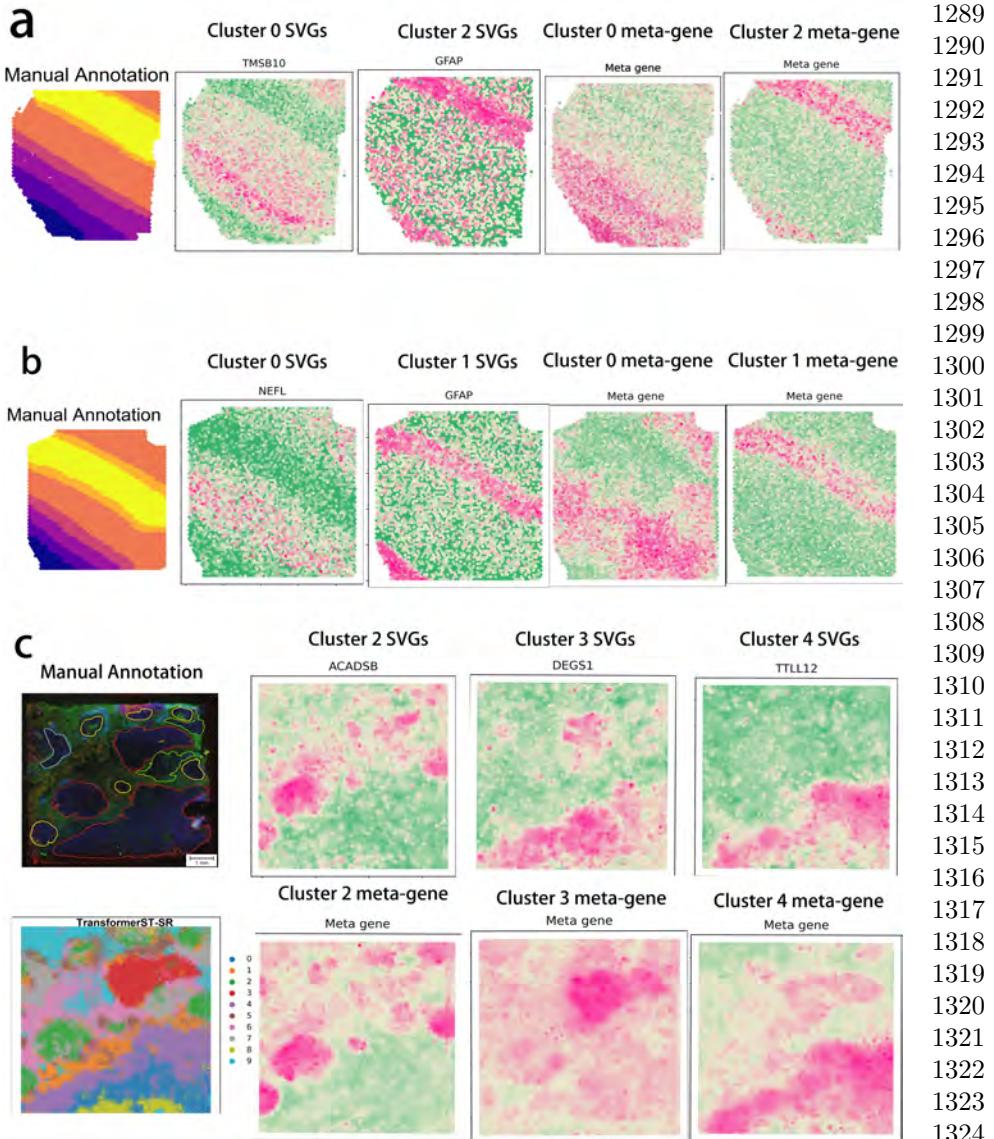


Fig. 6 Spatial variable genes (SVGs) and meta gene detection. a, SVGs and corresponding meta genes for cluster 0 (TMSB10, TMSB10+MBP-MT-CO2), cluster 2 (GFAP, GFAP+SNORC-TMSB10+CDT3-MBP) in brain tissue slice 151508 at spot resolution. b, SVGs and corresponding meta gene for cluster 0 (NEFL, NEFL+SCGB2A2-HPCAL1), cluster 1 (GFAP, GFAP+MT1G-FTH1+AQP4-CALM2+CST3-MBP) in brain tissue slice 151509 at spot resolution. c, SVGs and corresponding meta gene for cluster 2 (ACADSB, ACADSB+NME2-MUC1+ATP5MPL-CD74+LAPTM4B-CRIP1), cluster 3 (DEGS1, DEGS1+RPS18-CXCL14+AGR2-MGP+CSTA-NEAT1), and cluster 4 (TTLL12, TTLL12+HMGN2-MALAT1+KRT8-SLC9A3R1) in IDC sample at nearly single cell resolution. Pathologist annotated different regions in different colors (IC outlined in red, carcinoma in yellow, benign hyperplasia in green, unclassified tumor in grey).