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Abstract

The development of spatial transcriptomics technologies makes it possi-
ble to study tissue heterogeneity at the scale of spatial expressed microen-
vironment. However, most of the previous methods collapse the spatial
patterns in the low spatial resolution. Existing reference based deconvo-
lution methods integrate single-cell reference and spatial transcriptomics
data to predict the proportion of cell-types, but the availability of suit-
able single-cell reference is often limited. In this paper, we propose a
novel Transformer based model (TransfromerST) to integrate the spatial
gene expression measurements and their spatial patterns in the histol-
ogy image (if available) without single cell reference. TransfromerST
enables the learning of the locally realistic and globally consistent con-
stituents at nearly single cell resolution. TransfromerST firstly uses a
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2 TransformerST

transformer based variational autoencoder to explore the latent repre-
sentation of gene expression, which is further embedded with the spatial
relationship learned from adaptive graph Transformer model. The super-
resolved cross-scale graph network improves the model-fit to enhanced
structure-functional interactions. The public and in-house experimen-
tal results with multimodal spatial transcriptomics data demonstrate
TransfromerST could highlight the tissue structures at nearly single
cell resolution and detect the spatial variable genes and meta gene for
each spatial domain. In summary, TransfromerST provides an effec-
tive and efficient alternative for spatial transcriptomics tissue clustering,
super-resolution and gene expression prediction from histology image.

1 Introduction

Understanding the tissue structures at spot and subspot resolution helps to
extract fine-grained information for tissue microenvironment detection. How
the tissue heterogeneity shapes the structure-function interactions at enhanced
resolution remains an open question in current spatial transcriptomics analy-
sis. Modern spatial transcriptomics technologies enable to infer the large-scale
structural connectivity and characterize the spatial heterogeneity patterns in
disease pathology [1, 2]. The current spatial transcriptomics technologies are
divided into two categories: The fluorescence in situ hybridization or sequenc-
ing based methods such as seqFISH [3, 4], seqFISH+ [5], MERFISH [6, 7],
STARmap [8] and FISSEQ [9] could achieve single cell resolution. However,
these technologies measure gene expression with low throughout and less sensi-
tivity. The second category is in situ capturing based method, including spatial
transcriptomics (ST) [10], SLIDE-seq [11], SLIDE-seqV2 [12], HDST [13] and
10x Visium, to measure high throughout gene expression while restraining the
spatial patterns. The limitation of in situ capturing method is its low spa-
tial resolution. The popular technologies could provide the spot measurements
with 100 µm diameter in ST platform and 55 µm diameter in Visium platform.
The limited resolution of current spatial transcriptomics technology requires
the development of new data analysis methods to reveal the heterogeneous tis-
sue mechanisms of tumor microenvironment, brain disorders and embryonic
development [1, 14, 15].

Previous methods on spatial transcriptomics analysis could not be directly
applied to link original gene expression, spatial relationship and histology
image for the following reasons. 1) Most of the existing methods use dimension
reduction approaches to lower the computational complexity. However, the
reduced features violates the heterogeneity in gene expression in some tissues.
2) Some workflows such as Seurat [16] is developed for single cell RNA-seq anal-
ysis and corrupts the spatial relationships. 3) As far as we know, little efforts
has been made to study the heterogeneity across tissue structures in both spot
and enhanced resolution. Several approaches such as RCTD [17], stereoscope
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TransformerST 3

[18], SPOTlight [19], SpatialDWLS [20], and cell2location [21] have been pre-
sented to integrate the single cell RNA-seq with spatial transcriptomics to
enhance the spatial gene resolution. However, these kinds of methods require
the availability of suitable single cell reference. In many cases, the single-cell
references are not available due to the limitations of budgetary, technique,
and biological issues [22, 23]. Some deconvolution methods use public single-
cell RNA-seq references such as Human Cell Atlas [24], BRAIN Initiative Cell
Census Network (BICCN) [25], and Human BioMolecular Atlas [26] to solve
the problem, but the batch effects and tissue heterogeneity in samples may
result in incomplete cell types. Moreover, single-cell references and spatial
transcriptomics are affected by different perturbations, which may affect the
deconvolution accuracy [27].

None of the previous spatial transcriptomics analysis methods could
enhance the gene expression to single cell resolution without the usage of sin-
gle cell RNA-seq data. BayesSpace [28] utilizes a Bayesian prior to explore
the neighborhood structure and increase the resolution to subspot level, which
is coarse than single cell resolution. However, the highly computational com-
plexity and lack of flexibility hinders its application in multimodal spatial
transcriptomics data analysis. CCST [29] applies graph convolutional networks
to combine the gene expression with global spatial information. SpaGCN [30]
combines gene expression, spatial information and histology image through
a graph convolution model. Notably, most of the existing methods such as
BayesSpace, CCST and SpaGCN rely on principle component analysis (PCA)
to extract the highly variable features, which is not applicable to explore the
nonlinear relationships. STAGATE [31] adopts an adaptive graph attention
auto-Encoder to identify spatial domains. It achieves better performance for
the identification of tissue types and highly expressed gene patterns. However,
the utility of STAGATE is limited to spot resolution analysis. StLearn [32] uses
deep learning method for the image domain and uses linear PCA to extract the
features of spatial gene expression. The lack of consideration of gene expression
and spatial relationship hinders its performance in different platforms. STde-
convolve applies latent Dirichlet allocation (LDA) to deconvolve proportional
representation of cell type in each multi-cellular pixel. However, STdeconvolve
[33] may fail to deconvolve distinct cell type if there is no highly co-expressed
genes for each cell type. STdeconvolve could not identify the location of each
cell type within each multi-cellular pixel.

To address these issues, we develop a novel Transformer based framework
(TransformerST) for associating the heterogeneity of local gene expression
properties and revealing the dependency of structural relationship at nearly
single cell resolution.TransformerST consists of three components, the condi-
tional transformer based variational autoencoder, the adaptive graph Trans-
former model with multi-head attention, and the cross-scale super-resolved
gene expression reconstruction model. The first component takes together,
transformer and convolutional architectures to model the realistic local gene
expression patterns in an effective and expressive way. The convolutional



139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

4 TransformerST

model learns the context-rich codebook with the gene expression. The long-
range spatial interactions is included using the transformer architecture which
models the indices distribution with a conditional constraints. The adaptive
graph transformer approach identifies the tissue types with the integration of
spatial gene expression, spatial relationship and histology image. It also uti-
lizes an adaptive parameter learning step to better explore the relationship
between spatial gene features and graph neighboring dependence. The super-
resolved resolution is enhanced through the cross-scale internal graph neural
network, which recovers more detailed tissue structures at the nearly single
cell resolution. The proposed method has the following advantages,

• The proposed method provides insights into the spatial transcriptomics
structural-functional dynamical relationship at nearly single cell resolu-
tion. Although the integration of single-cell RNA-seq data is widely used
in deconvolution research [34–36], it may introduce bias when single-cell
measurements is not available for real world applications. The proposed
method does not require the single-cell RNA-seq data to infer tissue
microenvironment at spot and nearly single cell resolution.

• The proposed method makes it possible to incorporate the heterogeneous
spatial gene expression with histology image using multimodal data. While
most of the existing methods utilize the linear PCA for feature extrac-
tion, the proposed method learns and reconstructs the original expressive
gene pattern with a large number of highly variable genes (HVGs). The
proposed method provides a novel pipeline for tissue type identification,
spatial-resolved gene reconstruction and gene expression prediction from his-
tology image (if available). It can be easily transferred to different spatial
transcriptomics platforms, such as ST or 10x Visium.

• The proposed method is evaluated with the meta-analysis to explore the
relevance of different tissue types and characterize the complex cell-cell
interactions into nearly single cell resolution. The proposed method is the
first time to reconstruct the gene expression at nearly single cell resolu-
tion without the usage of single cell RNA seq reference. The experimental
results with different spatial transcriptomics data demonstrate the efficiency
and effectiveness of proposed method to achieve better representation than
state-of-the-art methods.

2 Results

Overview of the proposed method and evaluations. The workflow of
the proposed method is shown in Fig. 1. The key problem in spatial tran-
scriptomics analysis is to detect the spatial patterns of gene expression. In
order to learn and utilize the spatial information in spatial transcriptomics,
we adopt the Graph transformer, which has great potential to link spatial
information to spatial graphs. The proposed method first learns the nonlin-
ear mapping through variational encoder component (Fig. 1a). The variational
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TransformerST 5

encoder helpes to explore the gene expression pattern within each spot. Simul-
taneously, the adaptive graph transformer is utilized to aggregate the gene
expression using the corresponding neighbors relationship and histology image
(Fig. 1b). The gene representation and spatial embedding are concatenated
to reconstruct the original gene expression through the decoder component.
The iterative unsupervised deep clustering model is introduced to detect the
heterogeneous tissue types at the original spot resolution. The adaptive graph
transformer enables to associate the spatial patterns with gene expression at
spot resolution. To further enhance the spatial gene expression resolution, the
cross-scale internal graph networks takes the concatenated embedding and his-
tology image (if available) as the inputs to synthesize the gene expression at
the nearly single cell resolution (Fig. 1c). Finally, the conditional transformer
architecture (Fig. 1a) is employed to enhance the compactness of learned
latent representation with the conditional constraints.The conditional trans-
former further explores the spatial gene expression patterns to reconstruct the
corresponding codebooks.

To showcase the strength of the proposed method, we evaluated its per-
formance with several publicly available datasets. In tissue identification
experiments at original resolution, we showed the spot resolution clustering
results with human dorsolateral prefrontal cortex data (DLPFC). We further
verified TransformerST using our in-house mouse lung data with 10x Visium
platform (Fig. 2 and Fig. 3). TransformerST outperformes several state-of-
the-art approaches such as stLearn [32], Mclust, Kmeans, Louvain, Giotto,
BayesSpace [28], CCST [29], STAGATE [31] and SpaGCN [30]. To evaluate
the super-resolution performance of TransformerST, we used three data from
different spatial transcriptomics platforms. Specifically, we used the melanoma
data from ST platform to evaluate the super-resolution performance at sub-
spot resolution when the histology image is missing (Fig. 4). We used human
epidermal growth factor receptor(HER) 2 amplified (HER+) invasive ductal
carcinoma (IDC) acquired using 10x Visium platform to show the enhanced
resolution performance at nearly single-cell resolution (Fig. 4). The invasive
ductal carcinoma were manually annotated by a pathologist to exclude the
overexposed regions. Moreover, we also used the 36 tissue sections from the
HER2+ breast cancer data to demonstrate the performance of gene expression
prediction and super-resolution of TransformerST (Fig. 5). We conducted two
types of experiments: the leave-one-out evaluation (36 fold) and single section
evaluation. Specifically, for leave-one-out evaluation, we used 32 sections
to train the clustering and super-resolution model and used the remaining
section for evaluation (TransformerST). We also showed the clustering results
of TransformerST using single tissue section (TransformerST∗). We further
evaluated the super-resolution performance at nearly single cell resolution
(Super-resolution). Next we investigated the spatial variable genes (SVGs) and
meta gene detection accuracy using DLPFC and IDC samples. Notably, the
proposed method could lower the computational complexity and reconstruct
the enhanced gene expression at nearly single cell resolution more efficiently.
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6 TransformerST

The spatial variable genes (SVGs) and meta genes detected by the proposed
methods show better biologically interpretability (Fig. 6). It should be noted
that all the baseline methods were applied with the default parameters.

2.1 Tissue Type Identification at Original Resolution

Tissue identification in human dorsolateral prefrontal cortex Visium
data. Recently, the LIBD human dorsolateral prefrontal cortex (DLPFC) data
were acquired with 10x Visium platform. The whole dataset sequenced 12
tissue samples with manual annotations of six cortical layers and white matter
for each sample. The manual annotations are provided by the original study
[37] and allows to evaluate the performance of tissue type identification at
spot resolution. We evaluated the tissue type identification of TransformerST
compared with stLearn, Mclust, Kmeans, Louvain, Giotto, BayesSpace, CCST,
STAGATE and SpaGCN. We used the adjusted Rand index (ARI) to quantify
the similarity between ground truth and clustering results[37].

The clustering accuracy (ARI) of sections 151672 and 151508 are shown
in Fig. 2a and Fig. 2c. Comparing with the baseline methods, TransformerST
could learn the dynamic graph representation between spatial gene expression
and spatial neighbors. Specifically, the proposed method were implemented
using the top 3000 HVGs, other comparison methods such as BayesSpace
and SpaGCN used 15 PCs from top 3000 HVGs. Gitto, CCST, STAGATE
and StLearn used the recommended parameters in the previous papers. The
proposed method could take advantage of the highly expressive gene and
spatial dependence of neighboring embedding to achieve the highest tissue
identification performance of both samples. Fig. 2a shows, for section 151672,
TransformerST, Gitto, STAGATE and SpaGCN revealed spatial gene expres-
sion patterns better accord with manual annotations, the ARI is 0.687 for
TransformerST, 0.573 for Gitto, 0.561 for STAGATE and 0.565 for SpaGCN.
The visual difference among these results are not significant. BayesSpace,
Mclust and CCST also provided decent results (ARI is 0.439 for BayesSpace,
0.479 for Mclust and 0.427 for CCST) and outperformed Louvain, StLearn and
Kmeans. In Fig. 2c, for section 151508, TransformerST had the highest cluster-
ing accuracy and provided distinct layers of clusters (ARI is 0.592). CCST and
STAGATE outperformed other methods but provided a worse performance
than TransformerST.

The remaining clustering results with all 12 DLPFC samples are shown in
Fig. 2b. TransformerST achieved the best performance with mean ARI (0.564).
Compared with the second performer STAGATE with mean ARI (0.502),
TransformerST increased the tissue identification performance by 12.4%. The
difference between BayesSpace, ccST and SpaGCN is not significant. Addi-
tionally, the runtime of TransformerST at spot resolution are comparable to
other clustering methods for spot level annotation, which uses 6.5 mins with
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3000 HVGs and 3 mins for 200PCs. (Table 1). Detailed experimental results
with all 12 DLPFC samples are shown in supplementary material.

These results further demonstrate the superiority of TransformerST to
explore the spatial expression patterns and provide clear cluster difference
between brain layers.

Tissue identification in mouse lung Visium data at spot resolution.
To further assess the performance of TransformerST in tissue identification,
we performed Visium experiments on four slices of mouse lungs. Single-cell
suspension processed side-by-side was subjusted to scRNA-seq experiment
and utilized to deconvolute the Visium data.

Pathologist then identified regions of interest (airways and blood vessels)
according to the histology images. Airways were defined in line with the decon-
voluted proportion of club cells within each slice. Pathologist manually set the
thresholds in each slice to match the selected spots with the histological air-
ways. Spots were marked as airways if the proportion of club cells were above
the threshold (top 20% for slice A1, top 20% for slice A2, top 10% for slice
A3, and top 10% for slice A4). Blood vessels were defined in consist with the
blood vessels regions in the histology image. A random trees pixel classifier
using QuPath (version 0.2.3) with downsample = 16 was trained to estimate
the probability of blood vessels within each spot of all slice samples. All the
training samples of the random trees pixel classifier came from the manual
annotation of slice A1. Then, pathologist used the threshold 0.5 to select the
blood vessels (Fig. 3b and Fig. 3c).

After defining these histological structures, TransformerST was utilized to
reveal the internal heterogeneity within visually homogeneous blood vessel and
airway tissue regions. The cluster numbers of all comparison methods were set
to 4. Fig. 3a shows, for the first slice sample, SpaGCN, STAGATE and StLearn
were able to distinguish the airways, but failed to identify the tissue region of
blood vessels. Surprisingly, BayesSpace failed to identify the significant tissue
types such as blood vessel and airway (Fig. 3a). Other comparison methods
such as Mclust, Kmeans, CCST, Louvain had worse performance, which are
contrary to the manual annotation (Fig. 3b). Gitto could identify the major
tissue types, but its result are very noisy. The most interesting finding is that
TransformerST is able to identify the whole blood vessel regions and provide
a more robust signal with detailed textural features (Fig. 3a).

Moreover, we used the club cell tissues to evaluate the performance of
TransformerST. As shown in Fig. 3a, for the first slice sample, TransfromerST,
SpaGCN, Gitto, STAGATE and StLearn were able to identify the club cell
regions, an indicator of airways. We observed that the spatial expression pat-
terns of club cells between the clusters were largely in line with the clinical
annotations (Fig. 3b). BayesSpace, CCST and non-spatial methods (Mclust,
Kmeans and Louvain) failed to detect the spatial patterns of club cell struc-
tures. Comparing these results, it could be seen that spatial expression patterns
acquired by TransformerST better reflect the the club cell structures with
detailed information in the boundaries.
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8 TransformerST

The relative performance remains the same for the second slice sample
(Fig. 3c), TransformerST, StLearn, Gitto, STAGATE and SpaGCN were able
to identify the heterogeneity within club cells structure (Fig. 3d). However, as
shown in Fig. 3d, these methods aside TransformerST revealed stantial noise
and lack of clear spatial difference between club cells. BayesSpace, Mclust,
Louvain, CCST and Kmeans provided worse performance which violates the
biological interpretation. The existing methods are not applicable for mouse
lung tissue identification. TransformerST could identify the spatial patterns
with histology image and provided finear details of manual annotations (Fig.
3c).

2.2 Spatial Transcriptomics Super-Resolution at
Enhanced Resolution

Tissue identification and super-resolution in melanoma ST data at
subspot resolution. We evaluated the subspot super-resolution performance
with the publicly available melanoma ST data which was annotated and
described in Thrane et al [14]. The manual annotation of melanoma, stroma
and lymphoid regions (Fig. 4a) were included to evaluate the performance of
the TransformerST. Similar to manual annotations, we set the cluster number
to 4. As the histology image is missing, both BayesSpace and Transform-
erST could enhance the resolution of ST expression to subspot resolution. We
show the tissue identification results of the proposed method in both spot
and subspot resolution in Fig. 4a and Fig. 4b. Comparison of the results of
TransformerST with those of other methods (Mclust, Kmeans, Louvain, Gitto,
SpaGCN ,CCST, STAGATE and BayesSpace) confirms that TransformerST
reveals similar patterns to the manual annotation.

Specifically, the melanoma tissue could be divided into two types, central
tumor region and outer of the mixture of tumor and lymphoid tissue. Sur-
prisingly, only TransformerST was able to identify the lymphoid regions at
original resolution (Fig. 4a). The results of comparison methods could not
identify lymphoid regions at the original resolution. The tissue identification
results at enhanced resolution are in line with the finding that TransformerST
identifies lymphoid region in the tumor border with a higher resolution (Fig.
4b). In accord with recent study, BayesSpace and STdeconvolve also identified
the lymphoid regions to the tumor at the enhanced resolution (Fig. 4b). The
results of this study indicate that all the comparison methods could identify
the heterogeneity between border and center of tumor but fail to identify
lymphoid tissue at original resolution. TransformerST, STdeconvolve and
BayesSpace provided enhanced resolution of tissue structures which makes
it possible to identify the lymphoid tissue. The observational results suggest
TransformerST provides higher resolution and robust tissue identification
results at both original and enhanced resolution. Detailed experimental results
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with enhanced resolution of three methods are shown in supplementary mate-
rial.

Tissue identification and super-resolution in IDC Visium data at
nearly single cell resolution. We evaluated the nearly single cell super-
resolution performance with the IDC Visium data with immunofluorescence
staining for 4,6-diamidino-2-phenylindole (DAPI) and T cells staining CD3
in [28]. Pathologist identified regions of predominantly invasive carcinoma
(IC), carcinoma in situ and benigh hyperplasis were included to evaluated the
clustering accuracy at spot resolution (Fig. 4d). Similar to the manual anno-
tations, we clustered the IDC sample into 5 clusters at spot resolution. We
used ARI to evaluate the clustering accuracy at spot resolution. The results of
the clustering experiment at original resolution indicate that TransformerST
achieves the best clustering accuracy with ARI of 0.493 (Fig. 4c). The ARI is
0.423 for BayesSpace against 0.369 for SpaGCN, 0.357 for Mclust and 0.274
for Gitto. However, some comparison methods did not improve the clustering
performace (ARI is only 0.257 for StLearn, 0.234 for STAGATE, 0.208 for
CCST, 0.151 for Louvain and 0.101 for Kmeans).

We further enhanced the spatial transcriptomics resolution to show the
biological relevance with TransfromerST, STdeconvolve and BayesSpace (Fig.
4e and 4f). In accord with the BayesSpace paper [28], we set the cluster
number k = 10. As shown in Fig. 4e and 4f, TransformerST could identify
four clusters (0,3,4,8) related to predominantly IC, one cluster (2) related to
carcinoma regions, one cluster (7) identify the benign hyperplasia regions.
And clusters (1,5,6,9) are related to the unclassified regions. The result of
ByesSpace was in consist with previous report in [28]. However it is hard
to quantitatively evaluate the cluster accuracy at enhanced resolution. The
results of three methods show the spatial heterogeneity among tumor which
is inaccessible to histopathological analysis. However, We saw the visual
difference between carcinoma and benigh hyperplasia regions via Transform-
erST compared to BayesSpace and STdeconvolve. TransformerST exhibited
the spatial organization more similar to manual annotations. BayesSpace
could only increase the IDC data to subspot resolution, TransformerST could
predict the heterogeneity within each tissue at nearly single cell resolution.
STdeconvolve revealed the proportion of each cell type, but failed to identify
the location of cell patterns within each spot. The runtime of TransformerST
at enhanced resolution are comparable to other methods for gene expression
reconstruction, which uses 29 mins. (Table 2). TransformerST provides a more
efficient approach to identify the super-resolved tissue microenvironment than
BayesSpace and STdeconvolve. Detailed experimental results with enhanced
resolution of IDC samples are shown in supplementary material.
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10 TransformerST

2.3 Enhanced Gene Expression Prediction at nearly
Single-Cell Resolution

Enhanced Gene expression prediction at nearly single cell resolution
in breast cancer data HER2+. To predict gene expression at nearly single
cell resolution using histology image, we used two experiments to evaluate the
tissue identification and tissue super-resolution performance, the leave-one-out
evaluation (36 fold) and single section evaluation.. We used the HER2+ breast
cancer data which includes 36 tissue sections from 8 patients to demonstrate
the performance of gene expression prediction and super-resolution. Specifi-
cally, for leave-one-out evaluation, 32 sections were included to train the tissue
identification and super-resolution model and the remaining section were used
for evaluation. The results of leave-one-out are represented as TransformerST.
We also showed the clustering results of the TransformerST using single tissue
section, which is marked as TransformerST∗. We further evaluated the super-
resolution performance at nearly single cell resolution, which is represented as
Super-resolution.

Manually annotation of 3 tissue sections were included for evaluation of
clustering accuracy. We compared the proposed method with ST-NET [38]
for gene expression prediction using three tissue sections in Fig. 5. The ST-
NET ignores the spatial relationship between spots and showed worse gene
prediction performance. Both the leave-one-out evaluation and single section
evaluation yielded higher correlation with biological interpretation. From Fig.
5 we can see that TransformerST increased the clustering accuracy (ARI)
for three sections (A1, B1, E1), which is much higher than those predicted
by ST-NET. For example, as shown in Fig. 5a, for sample A1, Transform-
erST outperformed ST-NET with higher clustering accuracy (ARI is 0.268
for TransformerST, but 0.05 for ST-NET). TransformerST∗ could predict
much higher ARI (ARI=0.496) than TransformerST and ST-NET. This result
might be explained by the fact that there are strong gene expression difference
among patients, the single section evaluation (TransformerST∗) achieves
better tissue identification performance (Fig. 5). The relative performance
remains the same for sample B1 (Fig. 5b). TransformerST∗ outperformed
ST-NET and TransformerST with the highest clustering accuracy (ARI is
0.308 for TransformerST, 0.253 for TransformerST and 0.02 for ST-NET). Fig.
5c shows superiority of TransformerST∗ (ARI=0.323) over TransformerST
(ARI=0.178) and ST-NET (ARI=0.11).

The enhanced single cell resolution results further demonstrate Trans-
formerST could predict the biological meaningful patterns as in the manual
annotations. While it is bard to estimate the ARI for the super-resolution
result, the study is visually consist with the manual annotations by patholo-
gists in the spatial domain (Fig. 5).
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2.4 Meta Gene and SVGs Analysis with DLPFC and
IDC Samples

To further demonstrate that TransformerST could explore the biological rele-
vance, we detected the spatial variable genes and meta genes for LIBD human
dorsolateral prefrontal cortex (DLPFC) data and IDC sample. As shown in Fig.
6a and Fig. 6b, SVGs and their corresponding meta gene show similar spatial
patterns for human DLPFC samples at spot resolution. For example, TMSB10
is enriched in cluster 0 of tissue sample 151508. The combination of meta
gene (TMSB10+MBP-MT-CO2) shows the strengthened spatial patterns in
the neighboring regions. GFAP is enriched in cluster 2 of tissue sample 151508,
its corresponding meta gene is GFAP+SNORC-TMSB10+CDT3-MBP, which
is also spatilly correlated with the SVGs of cluster 2 in the histology image.

TransformerST also detected a single SVG to mark the corresponding
spatial domain in tissue sample 151509. NEFL is enriched in cluster 0 with
the visually corresponding meta gene defined as NEFL+SCGB2A2-HPCAL1.
GFAP is enriched in cluster 1 which is visually consist with its meta gene
(GFAP+MT1G-FTH1+AQP4-CALM2+CST3-MBP). Both SVGs and meta
gene show similar spatial patterns in the histology image (Fig. 6b). The exper-
imental results with different tissue samples and different cluster domains
demonstrate TransformerST could mark specific gene expressed regions for
different cluster domains.

To illustrate how TransformerST works for different tissue samples, We
detected the spatial variable genes and meta gene for IDC sample at nearly
single cell resolution. As shown in Fig. 6c, TransformerST detected single
SVGs (ACADSB) for cluster 2. Its corresponding meta gene was defined as
ACADSB+NME2-MUC1+ATP5MPL-CD74+LAPTM4B-CRIP1. Transform-
erST detected DEGS1 SVG for cluster 3, which accords with its meta gene
DEGS1+RPS18-CXCL14+AGR2-MGP+CSTA-NEAT1 visually. TTLL12 is
enriched in cluster 4 with its corresponding meta gene as TTLL12+HMGN2-
MALAT1+KRT8-SLC9A3R1.

The detection results of meta gene and SVGs reflect that TransformerST
is able to identify the heterogeneity among spatial domains and predict the
boundaries not annotated by pathologists. These results demonstrate Trans-
formerST could better explore the spatial patterns with graph transformer
network.

3 Discussions

In the study, we propose a novel Transformer based method for integrating the
gene expression, the spatial location and histology image (if available). The
proposed method called TransformerST is the first time to enhance the spa-
tial transcriptomics to nearly single cell resolution without single cell RNA-seq
reference. Different from most of the existing spatial transcriptomics analysis
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methods, TransformerST does not require the linear PCA preprocessing and
guarantees the nonlinear learning of spatially distributed tissue structure of
multimodal data (i.e. ST and 10x Visium). The adaptive graph transformer
model with multi-head attention makes it possible to associate multimodal
graph representation and reveal how the heterogeneity map shapes the tis-
sue function dynamics. With the help of a cross-scale internal graph network,
TransformerST enables the effective and efficient analysis of super-resolved
tissue microenvironment at nearly single cell resolution. We evaluate the per-
formance of TransformerST with several datasets generated using diverse
spatial transcriptomics technologies. Compared with the state-of-the-art meth-
ods, TransformerST is able to identify the tissue clusters at both spot and
nearly single cell resolution. TransformerST overcomes the limitation of low
resolution of current spatial transcriptomics technology and provides an effi-
cient way to explore the spatial neighboring relationship. The experimental
results demonstrate the importance of regional heterogeneity and the cor-
responding intrinsic structural-function relationship within tissue dynamical
microenvironment. TransformerST could lower the computation complexity
and memory usage than existing methods.

Although the tissue type identification research is an important topic in
current spatial transcriptomics analysis, from the experimental results, we
could see that most of the state-of-the-art methods fail to estimate the cell
heterogeneity within each cell type. We expect TransformerST could help to
provide better resolution of spatial transcriptomics data analysis. Transform-
erST could achieve super-resolved resolution of single cell per subspot without
the requirement of additional single cell RNA-seq reference. However, Trans-
formerST could also be easily adapted to incorporate additional single cell
reference for deconvolution task. With the downstream analysis such as SVGs
and meta gene analysis, TransformerST shows the similar biological tissue
patterns to manual annotations.

While TransformerST focuses on the ST and Visium platform, it could be
easily applied to other platforms with slight modification. In summary, Trans-
formerST provides an effective and efficient pipeline for various unsupervised
spatial transcriptomics analysis such as tissue identification, super-resolved
gene expression reconstruction and gene prediction from histology image. For
future work, we anticipate to increase the tissue type identification accuracy
by estimating the contribution of cell-specific gene expression. We also intend
to improve the graph transformer model to explore the heterogeneity of tissue
type in different micro-environments.

4 Methods

Data description. TransformerST is evaluated using several public available
datasets and one in-house dataset, most of which were obtained via Visium
platform. Specifically, the DLPFC dataset includes 12 sections. The number
of spots within each section ranges from 3498 to 4789. The area of DLPFC
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layers and white matter (WM) were manually annotated by pathologists.
To reconstruct gene expression at enhanced resolution, we use the publicly
available melanoma ST data which was annotated and described in Thrane
et al [14]. We show the performance of super-resolution at nearly single
cell resolution using IDC Visium data with immunofluorescence staining for
4,6-diamidino-2-phenylindole (DAPI) and T cells staining CD3 in [28]. To
predict gene expression at nearly single cell resolution using histology image,
we used the HER2+ breast cancer data which includes 36 tissue sections
from 8 patients. We also use our in-house mouse lung data to evaluate the
performance of TransformerST in tissue identification experiment.

In-house data preprocessing. For our in-house mouse lung data, 10X
Genomics Visium platform were used to perform the ST experiment. After
harvesting the mouse lungs, the left lobes were inflated with 1mL of mixture
of 50% sterile PBS/ 50% Tissue-Tek OCT compound (SAKURA FINETEK)
before being frozen in alcohol bath on dry ice. Until they were processed
further, OCT blocks were kept at −80◦C Following the 10x Genomics Visium
fresh frozen tissue processing protocol, OCT blocks were sectioned at 10µm
in thickness and 6.5mm X 6.5mm in size, affixed to the Visium slides, and
then stained with hematoxylin and eosin. A fluorescence and tile scanning
microscope (Olympus Fluoview 1000) was used to take H&E images, after
which the slides underwent tissue removal and library generation per 10x
Genomics demonstrated protocol.
Using Space Ranger software (version 1.2.2) from 10x Genomics, each
sequenced spatial transcriptomics library was processed and aligned to the
mm10 mouse reference genome, with UMI counts summarized for each spot.
Tissue overlying spots were identified based on the images in order to distin-
guish them from the background. When the filtered UMI count matrices were
generated, only the barcodes associated with these tissue overlaying spots
were kept. Additionally, we manually excluded spots that were not covered
by tissue but were yet detected by Space Ranger and further filter the UMI
count matrices (slice A1: 32,285 genes x 3,689 spots; slice A2: 32,285 genes
x 2,840 spots; slice A3: 32,285 genes x 3,950 spots; slice A2: 32,285 genes x
3,765 spots).

Public data preprocessing. All Visium samples were generated from 10x
Genomics procured from BioIVT:ASTERAND. The remaining melanoma
and breast cancer samples were obtained using the ST platform. We use the
second replicate from biopsy 1 to detect the lymphoid sub-environment. For
all datasets, raw genes expression counts expressed in fewer three spots were
filtered and eliminated. Seurat were then introduced to find the top 3000 most
HVGs for each spot. The gene expression values are transformed into a natu-
ral log scale. We use both histology image (when available) and spatial gene
expression to exploit tissue sub-environment at the super-resolved resolution.
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14 TransformerST

Graph reconstruction for spatial gene expression. TransformerST
reconstructs the cell-cell relationship using an undirected graph G(V,E).
Each vertex V represents the spot and the edge E measures the weighted
relationships between two vertices. We map each spot back to the histology
image and define the corresponding pixel using similar smooth and rescale
steps in SpaGCN [30]. The Euclidean distance between vertices is calculated
based on the image coordinates. We select top 20 neighbors of each spot to
represent the adjacency matrix A.

Transformer based variational auto-encoder representation learn-
ing. The transformer based variational auto-encoder is introduced to explore
the feature learning capability at both spot and nearly single cell resolution.
The neighboring relationship of spatial transcriptomics requires the proposed
method to understand the global composition of histology image and corre-
sponding gene expression, which enables it to reconstruct the locally realistic
and globally consistent patterns of gene expression. Thus, we use a codebook
to represent the perceptually rich gene expression patterns. Together with
graph transformer model, the Variational-Transformer architecture could
reconstruct the realistic and consistent enhanced resolution spatial gene
expression in a conditional setting. The proposed VAE-Transformer model
consists of three parts, codebook representation learning, transformer-based
reconstruction and conditional synthesis.

Learning an effective codebook of gene expression constituents. The aim
of the codebook learning is to exploit the the constituents of the spatial
gene expression in the form of a sequence. The spatial gene input for the
Transformer-based variational autoencoder is stored in N ×M matrix which
consists of N spots and M genes. In addition, we represent the histology
image as H × W with 2 dimensional coordinates. Together with the spatial
coordinates, the spatial gene expression could be represented using a spatial
collection of codebook entries zq ∈ Rh×w×nz , where nz is the dimensionality
of codes. Similar to neural discrete representation learning, we propose a con-
volutional model which consists of an encoder F and a decoder D to exploit
the discrete codebook Z = zk, (k = 1, ...,K). Each item of the coderbook zq
is obtained via the encoder z = F (x) and an element-wise quantization Q(.)
of each spatial code zi,j .

zq = Q(z) := (arg min
zk∈Z

||zi,j − zk||) (1)

The reconstructed spatial gene expression is defined as

x̂ = D(zq) = D(Q(F (x))) (2)
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We simply copy the gradient from the decoder to the encoder and train
the codebook learning model via an end-to-end loss function

LV Q(F,D,Z) = ||x− x̂||2 + ||sg[F (x)]− zq||22 + ||sg[zq]− F (x)||22 (3)

where ||x − x̂||2 represents the reconstruction loss. sg[.] denotes the stop-
gradient operation.

Learning the spatial gene expression with a conditional Transformer. Instead
of straightly representing the quantized encoding zq = Q(F (x)), we use the
conditional transformer model to represent the codebook indices s.

si,j = k if (zq)i,j = zk (4)

With the learned sequence of learned codebook indices s, we could map s
back to zq = (zsi,j )and reconstruct the original spatial gene expression x̂ =
D(zq).

Then the transformer is used to predict the distribution of next indices in
a conditional setting,

LTransformer = Ex∼p(x)[−log(p(s | c))]

p(s | c) =
∏
i

p(si | s<i, c)
(5)

where the condition c is defined as the clustering result of graph-transformer
model. Finally, the spatial gene expression is reconstructed in a sliding-window
manner. In order to accelerate the training process, we crop the spatial gene
expression into patches and restrict the length of s.

Adaptive graph-transformer for spatial embedding. The proposed
method utilizes the adaptive graph transformer model to embed the spatial
relationship of neighboring spots. The proposed method concatenates the
gene expression embedding F (x) and edge weights to cluster each spot. For
the downstream analysis, the Graph Transformer layer together with the
multi-head attention model is utilized to stack the entire node features. The
inputs for the multi-head attention consists of query, key and value. We define
the multi-head attention for each edge with each layer l as follows,

qlc,i = W l
c,qh

l
i + blc,q

klc,j = W l
c,kh

l
j + blc,k

ec,ij = Wc,eeij + bc,e

αl
c,ij =

⟨qlc,i, klc,j + ec,ij⟩∑
µ∈N(i)⟨qlc,i,kl

c,u+ec,iu⟩

(6)
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where ⟨q, k⟩ = exp( q
T k√
d
) represents the exponential scale dot-product func-

tion. d is the hidden size of each head. We use the learnable parameters
W l

c,q,W
l
c,k, b

l
c,q, b

l
c,k to transform each source feature hl

i and distant feature hl
j

into query vector qlc,iand key vector klc,j . The additional edge feature eij is also

added into the key vector klc,j .
The message aggregation from j to i is defined as follows,

vlc,j = W l
c,vh

l
j + blc,v

ĥl+1
i =

∑
j

∈ N(i)αl
c,ij(v

l
c,j + ec,ij)

(7)

A gated residual connection between layers is adopted to prevent over-
smoothing.

rli = W l
rh

l
i + blr

βl
i = sigmoid(W l

g[ĥ
l+1
i ; rli; ĥ

l+1
i − rli])

hl+1
i = ReLU(LayerNorm(1− βl

i)ĥ
l+1
i + βl

ir
l
i)

(8)

The output of last layer is the averaging of multi-head output

ĥl+1
i =

1

C

C∑
c=1

[∑
j

∈ N(i)αl
c,ij(v

l
c,j + ec,ij

]
hl+1
i = (1− βl

i)ĥ
l+1
i + βl

i + rli

(9)

Adaptive Graph transformer representation learning The previous spatial
transcriptomics clustering method only considers the spatial information to
construct the graph representation. We introduce an adaptive Graph Trans-
former model to learn the spatial and feature representation of the entire
graph, which is defined as follows:

A = λAL + (1− λ)A0 (10)

where A0 is the initial adjacency matrix and AL is the learned adjacency
matrix within each iteration. The initial adjacency matrix is constructed
using the k nearest neighborhood using the histology image. The adaptive
updating mechanism helps to learn the global and local representation of
spatial transcriptomics data. The hyperparameter λ is included to balance
the trade-off between spatial and feature graph structure.

Identifying tissue types with iterative clustering. Based on the outputs of
Graph Transformer encoder, the proposed method iteratively identifies the tis-
sue type in an unsupervised manner. The initiation of the proposed method is
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based on Louvain’s method. The clustering method is divided into two steps.
In the first step, we assign a soft cluster type γi,j to each spot embedding zi
as follows:

γi,j =
(1+ ∥ zi − µi ∥2)−1∑
j(1+ ∥ zi − µj ∥2)−1

(11)

Then we refine the clusters with an auxiliary target distribution p based
on γi,j

pi,j =
γ2
i,j/

∑N
i=1 γi,j∑K

ĵ=1(γ
2
i,ĵ
/
∑N

i=1 γi,ĵ)
(12)

Similar to the previous iterative clustering algorithm in scRNA-seq analy-
sis, the loss function is defined using the KL divergence.

KL(P ∥ Γ) =

N∑
i

K∑
j

pi,j log
pi,j
γi,j

(13)

Reconstructing the super-resolved gene expression at the sub-spot
resolution.

In order to explore the tissue sub-environment at the enhanced resolution,
we segment each spot into nearly single cell resolution with the help of histology
image. If the histology is missing in real time applications, we adopt the setting
of BayesSpace [28], each spot ST data is segmented into nine subspots and each
Visium data is segmented into six subspots. As the ST spots are 100 µm in
diameter and Visium are 55 µm in diameter, TransformerST could achieve the
super-resolved gene expression at nearly single cell resolution rather than the
original mixture of dozens of cells. The proposed super-resolved reconstruction
components are divided into twp steps, histology image super-resolution and
spatial gene expression reconstruction.

We model the internal cross-scale relationship between each spot and its
corresponding neighbors as graph, where each spot patch is the vertex and
the edge is the weighted connection of two spots in different resolutions. The
proposed method consists of two parts, graph construction and patch aggre-
gation. TransformerST dynamically reconstructs the cross-resolution graph
by searching the k nearest neighboring spots in the downsampled resolution.
With the mapping function, we could obtain the k nearest neighboring spots
patch at original resolution. Thus, the reconstructed graph provides k spot
mapping pairs of low and high resolution. After that, we employ the patch
aggregation model to aggregate k spot patches conditioned on the similarity
distance. Due to the limitation of current spatial transcriptomics technology,
we could not get the ground truth data at the enhanced resolution. We assume
that the spatial gene expression at the spot resolution is the averaged mixture
of its corresponding single cell segments. Instead of straightly calculating
the reconstruction loss at the enhanced resolution, we average the single cell
components into spot to guide the training process.
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Graph reconstruction. We first downsample the spot gene expression by the
factor η. η is set to nine for ST platform and six for Visium platform. The
downsampled spatial gene expression is denoted as XL↓η. After that, we find
the k neighboring patches in graph at low and high resolution. To obtain the k
neighboring patches, we extract the embedded features by the encoder model
of graph-Transformer and variational encoder. For each spot, we search its k
neighboring spot in XL↓η and l × l patches in XL with Euclidean distance.
We search the similar spot in XL↓η rather than XL, we could lower the search
space by η2.

Patch aggregation. We weight the k neighboring patches on the similarity
distance and aggregate the enhanced gene expression as

XL↑η =
1

δ(XL)

∑
nr

exp(Eθ(D
nr→q))X l×l

L (14)

where δ(XL) =
∑

nr
exp(Eθ(D

nr→q)) denotes the normalization factor.
Eθ(D

nr→q) is used to estimate the aggregation weight for each neighboring
patches.

Spatially variable meta genes detection. We are interested in the detec-
tion of spatially variable meta gene within each tissue type. The spatially
variable meta gene expression could be divided into two steps. The first step
is to detect the spatial variable gene (SVGs) in the target tissue type but not
high expressed in its neighbors. The number of neighbors is set to 10 in the
experiments. We select a nontarget tissue type domain using the threshold
50%. Specifically, if more than 50% spots of a nontarget tissue type domain
are in the neighboring set, we will define that tissue type as neighboring tissue
type domain. Genes with FDR-adjusted P value < 0.05 are defined as spatial
variable genes.

The second step is to detect the spatially variable meta genes. For each
specific tissue type, we are interested to detect the set of multiple genes shows
an enriched expression patterns. The expression of meta gene is defined as
follows,

log(metagene1) = log(gene0) + log(gene0+)− log(gene0−) + C0 (15)

where C0 is a constant to make meta gene expression non-negative. gene0+
is selected with the higher expressed genes and the smallest FDR-P value in
the target tissue type. Similarly, gene0+ is included with the higher expressed
genes and the smallest FDR-P value in the control tissue type. The output of
meta gene detection is obtained iteratively,

log(metagenet+1
) = log(genet) + log(genet+)− log(genet−) + Ct (16)
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Moran’s I and Geary’s C statistics for the evaluation of SVGs.
Moran’s I metric is a correlation coefficient to measure the overall spatial
autocorrelation of a dataset. We define the Moran’s I for the given spatial
variable gene as follows,

I =
N

W

∑
i

∑
j [wi,j(xi − x̄)(xj − x̄)]∑

i(xi − x̄)2
(17)

where xi and xj are gene expressions of spot i and j, x̄ is the mean gene
expression. wi,j is the spatial weight.

In addition, we also use another commonly used statistic model Geary’s C,
which is defined as,

C =
N

2W

∑
i

∑
j [wi,j(xi − xj)

2]∑
i(xi − x̄)2

(18)

The values of Geary’s C should be similar to Moran’s I for each specific
gene expression.

5 Data Availability

We use several publicly available data which could be acquired using the
following websites or accession numbers: (1) LIBD human dorsolateral pre-
frontal cortex data (DLPFC) (http://research.libd.org/spatialLIBD/); (2)
Melanoma ST data (https://www.spatialresearch.org/wp-content/uploads/
2019/03/ST-Melanoma-Datasets 1.zip); (3) Human epidermal growth factor
receptor(HER) 2 amplified (HER+) invasive ductal carcinoma (IDC) sample
[28]; (4)HER2+ breast cancer data [38]

Table 1 Computational time for tissue type identification with LIBD human dorsolateral
prefrontal cortex

Method Runtime/mins GPU/CPU
TransformerST-3000 HVGs 6.5 GPU
TransformerST-200 PCA 3 GPU
BayesSpace 21 CPU
stLearn 0.5 GPU
SpaGCN 2 GPU
CCST 3 GPU
STAGATE 7 GPU
Gitto 17 CPU

http://research.libd.org/spatialLIBD/
https://www.spatialresearch.org/wp-content/uploads/2019/03/ST-Melanoma-Datasets_1.zip
https://www.spatialresearch.org/wp-content/uploads/2019/03/ST-Melanoma-Datasets_1.zip
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Table 2 Computational time for super-resolved gene expression reconstruction with IDC
sample

Method Runtime/mins GPU/CPU
TransformerST-3000 HVGs 29 GPU
BayesSpace 200 CPU
STdeconvolve 54 CPU
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Fig. 1 Schematic illustration of TransformerST. a, Conditional Transformer based varia-
tional autoencoder to integrate the spatial gene expression, spatial location and histology
image. The variational encoder helped to explore the gene expression pattern within each
spot. The conditional transformer further explores the spatial gene expression patterns to
reconstruct the corresponding codebooks. b, Adaptive Graph transformer model to exploit
the spatial neighboring dependence. The adaptive graph transformer model enables to asso-
ciate the spatial gene expression patterns at the original resolution. c, Cross-scale internal
graph network for super-resolved gene expression reconstruction. The cross- scale internal
graph networks takes the concatenated embedding and histology image as the inputs to syn-
thesize the gene expression at the single cell resolution.
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Fig. 2 Tissue identification in human dorsolateral prefrontal cortex Visium data at spot
resolution. The ARI is used to evaluate the similarity between cluster labels acquired by
each method against manual annotations. a, Tissue types assignments by different spatial
clustering methods for sample 151672. b, Summary of all 12 samples clustering accuracy. c,
Tissue types assignments by different spatial clustering methods for sample 151508.
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Fig. 3 Tissue identification in mouse lung Visium data at spot resolution. a, Tissue types
assignments by different spatial clustering methods for the first sample. b, Manual annota-
tions of airways (left) and blood vessels (right) of the first slice. Pathologist identified regions
of significant regions according to the histology image. Airways were defined in line with the
proportion of club cells (middle) within each slice. c, Manual annotations of airways (left)
and blood vessels (right) of the second slice. d, Tissue types assignments by different spatial
clustering methods for the second sample.
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Fig. 4 Tissue identification with super-resolved gene expression. a, Tissue type assign-
ments by different spatial clustering methods for melanoma sample. b, Enhanced subspot
tissue identification of melanoma sample with BayesSpace, STdeconvolve and Transform-
erST. c, Tissue type assignments by different spatial clustering methods for IDC sample.
d, Immunofluorescent imaging of tissue and manual annotations. Different tissue types are
shown in different colors (DAPI intensity in blue, anti-CD3 intensity in green, the Visium
fiducial frame in red). Pathologist annotated different regions in different colors (IC out-
lined in red, carcinoma in yellow, benign hyperplasia in green, unclassified tumor in grey).
e, Enhanced super-resolved tissue identification of IDC sample with BayesSpace at sub-
spot resolution. f, Cell type proportion of IDC sample with STdeconvolve. g, Enhanced
super-resolved tissue identification of IDC sample with TransformerST at nearly single cell
resolution.
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Fig. 5 Super-resolved gene expression prediction with breast cancer data. a, Tissue type
assignments and nearly single cell super-resolution using A1 section. b, Tissue type assign-
ments and nearly single cell super-resolution using B1 section. c, Tissue type assignments
and nearly single cell super-resolution using E1 section.
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Fig. 6 Spatial variable genes (SVGs) and meta gene detection.a, SVGs and cor-
responding meta genes for cluster 0 (TMSB10, TMSB10+MBP-MT-CO2), cluster 2
(GFAP, GFAP+SNORC-TMSB10+CDT3-MBP) in brain tissue slice 151508 at spot res-
olution. b, SVGs and corresponding meta gene for cluster 0 (NEFL, NEFL+SCGB2A2-
HPCAL1), cluster 1 (GFAP, GFAP+MT1G-FTH1+AQP4-CALM2+CST3-MBP) in brain
tissue slice 151509 at spot resolution. c, SVGs and corresponding meta gene for cluster
2 (ACADSB, ACADSB+NME2-MUC1+ATP5MPL-CD74+LAPTM4B-CRIP1), cluster 3
(DEGS1, DEGS1+RPS18-CXCL14+AGR2-MGP+CSTA-NEAT1), and cluster 4 (TTLL12,
TTLL12+HMGN2-MALAT1+KRT8-SLC9A3R1) in IDC sample at nearly single cell resolu-
tion. Pathologist annotated different regions in different colors (IC outlined in red, carcinoma
in yellow, benign hyperplasia in green, unclassified tumor in grey).
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