

1 Genomic characterization of *Francisella tularensis* and other diverse *Francisella* 2 species from complex samples

3

4 David M. Wagner^{1*}, Dawn N. Birdsell¹, Ryelan F. McDonough¹, Roxanne Nottingham¹, Karisma
5 Kocos¹, Kimberly Celona¹, Yasemin Özsürekci², Caroline Öhrman⁴, Linda Karlsson⁴, Kerstin
6 Myrtennäs⁴, Andreas Sjödin⁴, Anders Johansson⁵, Paul S. Keim¹, Mats Forsman⁴, Jason W. Sahl¹

7

8 ¹Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA

9 ² Department of Pediatric Infectious Diseases, Hacettepe University Faculty of Medicine,
10 Ankara, Turkey

11 ³ Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden

12 ⁴ CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden

13 ⁵ Department of Clinical Microbiology, Umeå University, Umeå, Sweden

14

15 * Corresponding author

16

17 E-mail: Dave.Wagner@nau.edu (DMW)

18 **Abstract**

19 *Francisella tularensis*, the bacterium that causes the zoonosis tularemia, and its genetic near
20 neighbor species, can be difficult or impossible to cultivate from complex samples. Thus, there
21 is a lack of genomic information for these species that has, among other things, limited the
22 development of robust detection assays for *F. tularensis* that are both specific and sensitive.
23 The objective of this study was to develop and validate approaches to capture, enrich,
24 sequence, and analyze *Francisella* DNA present in DNA extracts generated from complex
25 samples. RNA capture probes were designed based upon the known pan genome of *F.*
26 *tularensis* and other diverse species in the family *Francisellaceae*. Probes that targeted genomic
27 regions also present in non-*Francisellaceae* species were excluded, and probes specific to
28 particular *Francisella* species or phylogenetic clades were identified. The capture-enrichment
29 system was then applied to diverse, complex DNA extracts containing low-level *Francisella* DNA,
30 including human clinical tularemia samples, environmental samples (*i.e.*, animal tissue and air
31 filters), and whole ticks/tick cell lines, which was followed by sequencing of the enriched
32 samples. Analysis of the resulting data facilitated rigorous and unambiguous confirmation of
33 the detection of *F. tularensis* or other *Francisella* species in complex samples, identification of
34 mixtures of different *Francisella* species in the same sample, analysis of gene content (*e.g.*,
35 known virulence and antimicrobial resistance loci), and high-resolution whole genome-based
36 genotyping. The benefits of this capture-enrichment system include: even very low target DNA
37 can be amplified; it is culture-independent, reducing exposure for research and/or clinical
38 personnel and allowing genomic information to be obtained from samples that do not yield
39 isolates; and the resulting comprehensive data not only provide robust means to confirm the

40 presence of a target species in a sample, but also can provide data useful for source attribution,
41 which is important from a genomic epidemiology perspective.

42

43 **Introduction**

44 The genus *Francisella*, and the family it is assigned to – *Francisellaceae*, include an
45 expanding and diverse group of organisms. The most well-known species is *F. tularensis*,
46 causative agent of the zoonosis tularemia; it was first described in 1912 [1]. Since then, new
47 *Francisella* species have continued to be described (<https://lpsn.dsmz.de/genus/francisella>),
48 suggesting even more species will be described in the future [2]. The known species exhibit
49 diverse lifestyles, including endosymbionts (*Francisella*-like endosymbionts, FLEs), pathogens of
50 humans and other animals, and free-living environmental species. Despite these diverse
51 lifestyles, there is significant genomic overlap among *Francisella* species [3].

52 Genomically characterizing new *Francisella* species, including their genomic overlap with *F.*
53 *tularensis*, is important for efforts to accurately detect and identify *F. tularensis*. *F. tularensis* is
54 a highly monomorphic species [4] and, as such, it is not difficult to identify genomic targets
55 conserved across all representatives of this species (*i.e.*, its core genome) and, thus, avoid false
56 negative results by using detection assays targeting the core genome. However, almost all of
57 the *F. tularensis* core genome is also found in other *Francisella* species [2]. As such, the main
58 challenge with designing DNA-based detection assays for *F. tularensis* that are both highly
59 specific and highly sensitive is avoiding false positive results. Indeed, our recent extensive
60 analysis of all available genome sequences from *F. tularensis* and all other *Francisellaceae*

61 species (*i.e.*, *F. tularensis* genetic near neighbor species) revealed just six unique coding region
62 sequences (CDSs) within the *F. tularensis* core genome that are not found in any isolated near
63 neighbor species [2]. This pattern of reduced genomic space available for species-specific
64 detection/diagnostics due to overlap with near neighbor species, which we previously
65 demonstrated with *Burkholderia pseudomallei* and described as signature erosion [5], becomes
66 more extreme as additional near neighbor species are discovered and incorporated into
67 signature erosion analyses.

68 A significant challenge to accurate signature erosion analysis for *F. tularensis* is that many
69 *Francisellaceae* species can be difficult or impossible to culture. Indeed, environmental surveys
70 followed by gene-based DNA analyses (*e.g.*, 16S rRNA genes, succinate dehydrogenase [*sdhA*])
71 have revealed the presence of multiple diverse, previously unknown *Francisella* species [6]. In
72 some cases, use of novel culturing methods has led to the successful isolation of *Francisella*
73 species from environmental samples [7, 8], allowing for the subsequent generation of whole
74 genome sequence (WGS) data and description of these previously unknown species [9, 10].
75 However, this is not the case for all unknown *Francisella* species and these undescribed near
76 neighbor species are thought to be the source of many false positive results generated by some
77 diagnostic platforms focused on detection of *F. tularensis* DNA from air filter samples [11]. In
78 addition, even if a species (*e.g.*, *F. tularensis*) can be isolated from some sample types, this is
79 not the case for all sample types; for example, human samples containing *F. tularensis* DNA that
80 are collected after the administration of antibiotics or air filters containing *Francisella* DNA but
81 no live organisms.

82 To address this challenge, we developed a DNA capture and enrichment system based upon
83 the collective pan genome of all known *Francisellaceae* species. We demonstrate that this
84 system, when coupled with subsequent sequencing of the enriched DNA, generates robust
85 genomic data for diverse *Francisella* species from a variety of complex sample types, including
86 human clinical samples, environmental samples, and air filter samples. Analysis of the resulting
87 data facilitates rigorous and unambiguous confirmation of the detection of *F. tularensis* and
88 other *Francisella* species in complex samples, identification of mixtures of different *Francisella*
89 species in the same sample, analysis of gene content, and high-resolution whole genome-based
90 genotyping.

91

92 **Materials and Methods**

93 **Bait system design**

94 The pan-genome of a set of 424 *Francisellaceae* genomes (S1 Table) was determined with LS-
95 BSR v1.2.3 [12], resulting in 60,889 unique CDSs. CDSs shorter than 120nts were filtered from
96 the analysis, leaving 50,676 CDSs. CDSs were sliced into 120nt fragments, overlapping by 60nts,
97 resulting in 572,897 potential probes. These probes were clustered with USEARCH v11 [13] at
98 80% ID, resulting in 368,660 remaining probes. Probes were then screened against *F. tularensis*
99 rRNA genes (5S, 16S, 23S) with LS-BSR, and probes with a blast score ratio (BSR) value >0.8 [14]
100 to any rRNA gene were removed. Remaining probes were aligned back against the set of 424
101 *Francisellaceae* genomes with LS-BSR and BSR values were calculated. Probes conserved only in
102 a single *Francisellaceae* genome (BSR value >0.8) were removed as they could represent

103 contamination, resulting in a set of 200,053 potential probes. Remaining probes were screened
104 with LS-BSR against a set of >125,000 non-*Francisellaceae* bacterial genomes in GenBank and
105 those with a BSR of >0.8 were removed, resulting in a final set of 188,431 probes (S2 Table).
106 Regions with extremely high GC content (>50% GC) or extremely low GC content (<22%) are
107 considered difficult to hybridize using baits. To increase the likelihood of capturing these
108 regions, our library design included a boosting strategy wherein probes corresponding to these
109 types of regions were multiplied by 2X-10X copies, assigning higher redundancy to the most
110 extreme regions (>70% and <15% GC). The final set of probes was ordered from Agilent. To
111 validate the coverage across a reference *F. tularensis* genome, the live vaccine strain (LVS;
112 GCA_000009245.1), probes were aligned against it with minimap2 v2.22 [15] and the depth of
113 coverage was calculated with Samtools v1.11 [16]. The breadth of coverage was then calculated
114 by identifying the number of bases in the reference genome covered by at least one nucleotide
115 in the probe.

116 **Samples utilized for DNA capture and enrichment**

117 **Negative and positive control samples**

118 To evaluate the capture enrichment system, we utilized a complex environmental sample
119 consisting of dust collected in Flagstaff, Arizona as our *Francisella*-negative control (Dust1; S3
120 Table). DNA was extracted from the dust sample using a Qiagen PowerSoil kit (Qiagen, Hilden,
121 Germany), and 400 ng of the extract (100 uL volume) was spiked with 0.1 ng of genomic DNA
122 obtained from a *F. tularensis* subsp. *tularensis* A.II strain to create a *Francisella*-positive control
123 sample, which was evaluated after both one (Dust2) and two (Dust3) rounds of enrichment.

124 ***F. tularensis*-positive clinical tularemia samples from Turkey**

125 These eight clinical samples (F0737, F0738, F0739, F0741, F0742, F0744, F0745, and F0749; S3
126 Table) were fine-needle lymph node aspirations obtained in 2011 from patients with
127 oropharyngeal tularemia originating from multiple regions of Turkey. As previously described
128 [17], DNA was extracted using a QIAamp DNA Mini Kit (Qiagen, Hilden, Germany) and all
129 resulting DNA extracts were determined to contain *F. tularensis* DNA; no *F. tularensis* isolates
130 were obtained from these clinical samples as they were collected after antibiotic therapy had
131 been initiated. The original clinical samples were collected as part of the medical workup for
132 tularemia diagnosis, and residual samples were de-identified and donated for this study. As
133 such, this study does not meet the federal definition of human subjects research according to
134 45 CFR 46.102 (f) and, therefore, are not subject to Institutional Review Board review.

135 ***F. tularensis*-positive animal sample from Arizona**

136 This tissue sample (F1069; S3 Table) was obtained from the spleen of a dead, partially
137 decomposed squirrel [18]; *F. tularensis* was not isolated from this sample. DNA was extracted
138 from the tissue sample using a Qiagen QIAmp kit following the manufacturer's protocol, which
139 was subsequently confirmed to contain *F. tularensis* DNA [18].

140 ***Francisella*-positive air filter samples**

141 These are a subset of a larger set of hydrophobic polytetrafluoroethylene (PTFE, EMD Millipore,
142 Danvers, MA, USA) fluorophore membrane filters (3 µm pore size, 47 mm diameter, 150 µm
143 thickness, and 85% porosity) generated from environmental surveillance efforts conducted in
144 Houston, Texas, USA from 15 June to 22 September 2018, and in Miami, Florida, USA from 30
145 August to 17 November 2018. Air was sampled above ground using sampling units (PSU-3-H, HI-
146 Q Environmental Products, San Diego, CA, USA) located at multiple permanent locations in

147 Houston and Miami. The specific sampling locations are confidential, but filters collected in the
148 same city on the same day are from different locations. Air was collected onto each filter for 24
149 hours (\pm 30 minutes) at an airflow rate of 100 liters per minute (\pm 5%). DNA was extracted from
150 a portion of each collected filter and the resulting DNA extracts were tested for the presence of
151 *Francisella* DNA using one or more PCR assays; details of these initial extraction and PCR
152 methods are confidential. These initial testing procedures identified 43 filter extracts putatively
153 containing *Francisella* DNA (Air1-Air43; S3 Table).

154 Remaining portions of these 43 filters were provided to NAU and DNA was extracted using
155 Qiagen DNeasy PowerWater Kits following the manufacturer's protocol with several
156 modifications. Prior to use, precipitation in all solutions was dissolve by either pre-warming to
157 55°C for 5–10 minutes (reagents PW1 and PW3) or shaking (PW4); PW1 was used while warm
158 to facilitate DNA elution from filters. To facilitate release of DNA from filters, they were
159 subjected to two rounds of vigorous bead beating using customized beads not included in the
160 extraction kit. Each filter portion was rolled with the top side of the membrane facing inward
161 into a sterile 2 mL tube containing customized beads composed of 1.0 g of 0.1 mm
162 zirconia/silica beads together with 0.5 g of 1.0 mm zirconia/beads. These tubes were then
163 incubated at 65°C overnight (12-18 hours) in 1 ml of PW1 solution and then homogenized using
164 a FastPrep 24TM 5G Bead Beater (MP BioMedicals, Irvine, CA) using the following settings:
165 manual program, 6.0 m/s, 60s cycles, Matrix C, Volume 1, unit ml, 7 cycles total, 300s rest
166 between each cycle. The tubes were then centrifuged at \leq 4000 x g for 1 min at room
167 temperature and the supernatant transferred into 1.5 mL Lo-Bind tube. The tube containing the
168 filter was then refilled with 650 μ L warmed PW1 solution and heated at 65°C for 10 minutes

169 prior to repeating the bead beating protocol. To remove all residual debris, the supernatant of
170 DNA eluted from the two cycles of bead beatings was centrifuge at 13,000 x g for 1 min at room
171 temperature and transferred to a clean 1.5 mL Lo-Bind tube (Thermo Fisher Scientific,
172 Waltham, MA). The DNAs were captured using a silica filter column, cleaned, and eluted
173 following the manufacturer's protocol. All work was conducted in a clean biosafety cabinet and
174 the tools/equipment were decontaminated prior to each use.

175 **Tick samples containing FLEs**

176 These five samples were DNA extractions of whole ticks or tick cell lines containing FLEs (S3
177 Table). Sample D.v.0160 was extracted from an adult female *Dermacentor variabilis* tick
178 collected in Morden, Manitoba, Canada on 17 April 2010; and sample D.v.0228 was extracted
179 from an adult female *D. variabilis* collected in Windsor, Ontario, Canada on 29 May 2011. As
180 previously described [19], DNA was extracted from these whole ticks using a 96-well DNeasy
181 Tissue Kit (Qiagen, Valencia, CA, USA) modified for use with the QIAvac vacuum filtration
182 system, and presence of FLE DNA in the resulting extracts was determined via PCR and targeted
183 gene sequencing. Samples D14IT15.2 and D14IT20 were extracted from two separate
184 *Hyalomma rufipes* ticks both collected on the island of Capri, Italy on 1 May 2014 [20]. As
185 previously described, DNA was extracted from these surface-sterilized whole ticks and
186 detection of *Francisella* DNA in the extracts was determined by PCR [20]. Sample DALBE3 is a
187 tick cell line of *Dermacentor albipictus* that was previously documented to contain an FLE [21];
188 it was created by Policastro *et al* [22] from ticks collected in Minnesota in 1989 (U. Munderloh,
189 personal communication). This cell line was purchased in 2016 from The Tick Cell Biobank [23]
190 as 2 ml growing cultures in L-15B300 medium [24]. Upon receipt, total DNA was extracted

191 directly from vials using an EZ1 extraction kit (Qiagen, Hilden, Germany). The resulting data
192 from these samples were compared to whole genome sequences previously generated for FLEs
193 present in individual representatives of the tick species *Argus arboreus*, which has been
194 described as *Francisella persica* [25], and *Amblyomma maculatum* [3; ID: FLE_Am]; two
195 representatives of *Ornithodoros moubata*, one generated by Gerhart *et al* [26; ID: FLE_Om] and
196 the other generated by Duron *et al* [27; ID: FLE-Om], two representatives of *Hyalomma*
197 *asiaticum* [28; IDs: NMGha432, XJHA498, 29], and three representatives of *Hyalomma*
198 *marginatum* [30; IDs: FLE-Hmar-ES, FLE-Hmar-IL, FLE-Hmar-IT].

199 **Library preparation**

200 DNA extracts at starting concentrations ranging from 5ng-200ng total were subsequently
201 sheared using QSonica Q800 Sonicator (QSonica, Newtown, CT) at a protocol of 60% amplitude,
202 15 sec on/off. The final size of ~250 bp was assessed using a Fragment Analyzer genomic DNA
203 analysis Kit (Agilent Technologies, Santa Clara, CA). For library preparation, a SureSelect XT-low
204 input sample kit reagent (Agilent Technologies, Santa Clara, CA) was used. Briefly, end repair
205 and A-tailing were performed on sheared DNA and an adaptor was ligated to the A-tailed ends
206 of the DNA fragments, followed by purification. Each ligated fragment was uniquely indexed via
207 PCR-amplification for 9 cycles (2 min at 98°C, 9 cycles for 30 s at 98°C, 30 s at 60°C, 1 min at
208 72°C, and a final extension of 5 min at 72°C), followed by purification. All DNA purification steps
209 were carried out using Agencourt AMPure XP beads (1X bead ratio; Beckman Coulter Genomics,
210 Brea, CA). Library quantity was assessed by Qubit Br dsDNA (Thermo Fisher Scientific, Waltham,
211 MA). The size and quality were assessed an Agilent DNF-374 fragment analyzer. To achieve a

212 final yield of 2000-2500ng per sample, libraries were re-amplified in four replicates for 10-12
213 cycles and all replicates were pooled.

214 **Probe-hybridization**

215 To prevent dissociation of probes with AT-rich sequences, we utilized a slow-hybridization
216 protocol involving hybridization reagents from a SureSelect XT0 kit (Agilent Technologies, Santa
217 Clara, CA). Following the manufacturer's protocol, ~2000 ng from each library was hybridized
218 with the probes at 65°C for 16-24 hours. Hybridized libraries were recovered using 50 µL of
219 Dynabeads from the MyOne Streptavidin T1 Kit (Thermo Fisher Scientific, Waltham, MA), which
220 were then washed three times using SureSelect wash buffers. We then PCR-amplified directly
221 from the beads using the SureSelectXT-LI Primer Mix (Agilent Technologies, Santa Clara, CA),
222 using the same PCR conditions described above for library preparation except with a 14-cycle
223 parameter to increase the concentration of the capture library. The amplicons were then
224 separated from the beads via a magnetic plate and transferred to a new tube. To amplify the
225 residual capture library remaining on the beads, the beads were used directly for PCR using a
226 KAPA HiFi PCR ready mix (Roche KAPA Biosystems, Wilmington). The captured libraries from
227 both PCR events were then combined and purified. To further enrich for *Francisella* DNA
228 present in the original samples, we performed a second round of enrichment on the captured
229 libraries following the same procedures used for the first enrichment. Final enriched library
230 quantity was assessed by Qubit Br dsDNA (Thermo Fisher Scientific, Waltham, MA), and size
231 and quality were assessed by Fragment Analyzer.

232 **Sequencing**

233 Sequence libraries were created from enriched DNA using a 500 bp insert and standard PCR
234 library amplification (KAPA Biosystems). Paired end sequences were obtained on either the
235 Illumina Miseq or Nextseq platforms.

236 **Bioinformatic analyses**

237 **Read classifications**

238 Reads were mapped against the standard Kraken database with Kraken v2.1.2 [31] and the
239 number of reads classified as *Francisellaceae* was determined. The percentage of
240 *Francisellaceae* reads was determined by dividing the number of Kraken2 *Francisellaceae*
241 classifications by the total number of reads per sample.

242 **Read mapping and breadth of coverage calculation**

243 Reads were aligned against the reference genome LVS with minimap2 and the depth of
244 coverage was called with Samtools after filtering read duplicates. The breadth of coverage at a
245 minimum depth of 3x was then calculated with a Samtools wrapper script
246 (<https://gist.github.com/jasonsahl/b5d56c16b04f7cc3bd3c32e22922125f>). The presence of
247 probes was calculated using the same workflow, but using the probe set as the reference
248 genome.

249 **Enrichment metagenome assembly and binning**

250 Enriched reads were assembled with meta-SPAdes v3.13.0 [32] using default settings (--meta)
251 and contigs shorter than 1000 nucleotides were removed. Genomes were binned with concoct
252 v1.1.0 [33] using BAM files created by mapping Illumina reads back against the metagenome
253 assembly with minimap2. Ribosomal RNA genes were extracted from metagenomes with

254 barrnap v0.9 (<https://github.com/tseemann/barrnap>). Metagenome assembled genomes
255 (MAGs) associated with *Francisellaceae* were combined with reference genomes and a cluster
256 dendrogram was created with MASH distances [34] and Scikit-Bio (<http://scikit-bio.org>) using a
257 custom script (<https://gist.github.com/jasonsahl/24c7cb0fb78b4769521752193a43b219>).

258 **SNP discovery and construction of phylogenies**

259 SNPs were identified among publicly available genomes, as well as enriched samples assigned
260 to the same species/taxonomic group, by aligning reads against reference genomes using
261 minimap2 v2.22 and calling SNPs from the BAM file with GATK v4.2.2 [35]. Maximum likelihood
262 phylogenies were inferred on the concatenated SNP alignments for each species/taxonomic
263 group using RAxML-NG v0.9.0 [36]. All of these methods were wrapped by NASP [37].

264 ***Francisella* Pathogenicity Island (FPI) and antimicrobial resistance (AMR)**

265 **screening**

266 The genes associated with the FPI were screened in all complex enriched samples containing *F.*
267 *tularensis* and FLEs by calculating a breadth of coverage at 3x depth. The SNPs associated with
268 rifampicin and streptomycin resistance in *F. tularensis* [38] were screened in all complex
269 enriched samples containing *F. tularensis* with NASP and manually investigated from the
270 resulting SNP matrix.

271 ***sdhA* gene analysis**

272 *In silico* PCR (isPCR) was performed with USEARCH (-search_PCR -strand both maxdiffs 2) on
273 metagenomes using primers (5'-AAGATATATCAACGAGCKTT-3', 5'-AAAGCAAGACCCATACCATC-
274 3') previously published for the *sdhA* gene of *Francisella* [6]. The predicted amplicons from

275 metagenomes were added to those extracted from 152 reference *Francisella* genomes (S1
276 Table) using the isPCR approach. Sequences were oriented to the same strand based on blastn
277 v2.11.0+ [39] alignments and aligned with MUSCLE v5.0 [40]. A phylogenetic tree was inferred
278 on the alignment with IQ-TREE v2.0.3 [41] and the integrated ModelFinder method [42]. isPCR
279 was also performed for two assays, Ft-sp.FTT0376 and Ft-sp.FTS_0772, that were previously
280 identified as highly specific to *F. tularensis* [2].

281 **Identification of unique probes**

282 To identify probes in the *F. tularensis* core genome, probes were aligned with BLAT [43] in
283 conjunction with LS-BSR against a set of 327 *F. tularensis* genomes (S1 Table). A probe was
284 considered core if it had a BSR value >0.8 across all target genomes. *F. tularensis* core probes
285 were then aligned against 127 *Francisellaceae* near neighbor genomes (S1 Table) with LS-
286 BSR/BLAT and probes with a BSR value >0.4 in all non-target genomes were discarded. Clade-
287 specific probes were identified for other species and phylogenetic clades using this same
288 approach. Probes conserved in all *Francisellaceae* genomes were identified by a BSR value >0.8
289 across 498 *Francisellaceae* genomes (S1 Table).

290 **FLE annotation**

291 Reads were aligned against *F. persica* ATCC VR-331 (NZ_CP013022) and mutations were called
292 with Snippy v4.6.0 (<https://github.com/tseemann/snippy>). Mutations were recorded if they
293 resulted in a premature stop or if they resulted in a frameshift mutation.

294 **Signature erosion**

295 Genomes were randomly sampled 100 times at different depths from a set of 172 non-*F.*
296 *tularensis* *Francisellaceae* genomes (S1 Table) with a custom script

297 (<https://gist.github.com/jasonsahl/990d2c56c23bb5c2909d>). All *F. tularensis* core genome
298 probes were aligned against the 172 *Francisellaceae* near neighbor genomes with LS-BSR/BLAT
299 and the number of probes with a BSR value <0.4 were identified and plotted.

300 **Limit of detection analysis with *WG-FAST***

301 NASP was run on a set of 327 *F. tularensis* genomes (S1 Table), resulting in a set of 15,805 SNPs.
302 A maximum likelihood phylogeny was inferred on the concatenated SNP alignment with
303 RAxML-NG v0.9.0 [36], which also provided the required files for the whole genome focused
304 array SNP typing (*WG-FAST*) v1.2 tool [44]. Reads from the eight clinical tularemia samples from
305 Turkey were randomly sampled at various depths (1000-10000) using seqtk v1.3
306 (<https://github.com/lh3/seqtk>) and processed with *WG-FAST* at a minimum depth of 3x.
307

308 **Results and Discussion**

309 **Composition of the bait enrichment system**

310 Probes were designed against the pan-genome of a diverse set of *Francisellaceae* species and
311 specific probes were identified for most species/clades included in the design (S4 Table); these
312 specific probes represent markers that can distinguish between mixtures of different
313 species/clades in complex samples. For *F. tularensis*, 68 specific probes were identified based
314 on conservative homology thresholds. Our previous study identified six CDSs that were specific
315 to and conserved across *F. tularensis* [2]. Of the 68 *F. tularensis*-specific probes in this study, 19
316 were associated with these previously described CDSs and at least one of these 19 probes
317 mapped to each of the six CDSs; the other 49 probes mapped to other regions in the *F.*

318 *tularensis* core genome. The probes utilized in this study are only 120 nucleotides in length,
319 whereas CDSs can be much longer, which likely explains the higher number of *F. tularensis*-
320 specific probes compared to specific CDSs. An alignment of all probes in the system (n=188,431)
321 against the *F. tularensis* reference LVS genome demonstrated that ~72% of the genome was
322 covered using default mapping parameters in minimap2. Because our design clustered probes
323 at 80% identity, the relatively low coverage across LVS compared to the enrichment results
324 described below is likely due to selection of some representative probes from non-*F. tularensis*
325 *Francisellaceae* species that fail to align across species using default and conservative mapping
326 parameters.

327 **Signature erosion**

328 We observed significant signature erosion with the *F. tularensis* probes by including near
329 neighbor genomes (Fig 1). When only 100 non-*F. tularensis* *Francisellaceae* genomes were
330 randomly sub-sampled 100 times from a set of 172 total genomes and analyzed together with
331 327 *F. tularensis* genomes, a range of 69-253 *F. tularensis*-specific probes were identified, more
332 than the 68 *F. tularensis*-specific probes discovered when using the full set of 172 non-*F.*
333 *tularensis* *Francisellaceae* genomes. This result demonstrates the importance of thoroughly
334 sampling genomic near neighbors before designing and testing diagnostics and may partially
335 explain false positive results with some assays used to detect *F. tularensis* [11]. Although we
336 identified 68 probes as specific to *F. tularensis* using the *Francisellaceae* genomes analyzed in
337 this study, not all these 68 probes may be actually specific to *F. tularensis*, as the genomic
338 regions they target could be conserved in other, currently unknown *Francisellaceae* species in
339 the environment. Thus, the number of *F. tularensis*-specific probes may be reduced from 68 as

340 new *Francisellaceae* genomic information becomes available but should still allow for multiple
341 redundant probes specific to *F. tularensis*.

342 **Fig 1. Signature erosion analysis of *F. tularensis*-specific probes.** *F. tularensis* near neighbor
343 genomes were randomly sampled 100 times at different depths (0-170, sampled every 10) and
344 then screened with *F. tularensis* core probes (n=5,606) using LS-BSR/BLAT. The number of
345 probes with a BSR value <0.4 were plotted, indicating that they were specific to *F. tularensis*
346 and not present in sampled near neighbor genomes. The red line indicates the number of *F.*
347 *tularensis*- specific probes (n=68) identified using the entire near neighbor dataset (n=172).

348 **Negative and positive control samples**

349 Targeted DNA capture and enrichment greatly increased the proportion of *F. tularensis* DNA
350 present in the dust sample spiked with *F. tularensis* DNA (S1 Fig), which, upon sequencing,
351 generated high breadth of coverage across the *F. tularensis* genome, including across the 68 *F.*
352 *tularensis*-specific probes (S4 Table), as well as the genomic regions targeted by the two *F.*
353 *tularensis*-specific PCR assays (S3 Table). Prior to enrichment, the estimated proportion of
354 *Francisellaceae* signal in the spiked dust sample was ~0.03%. However, after two rounds of
355 enrichment, the signal increased to 69% based on whole genome sequencing data (S1 Fig, S3
356 Table), resulting in a >10³-fold increase in the proportion of *F. tularensis* DNA in the final sample
357 while simultaneously decreasing the non-target background DNA. When reads from the twice
358 enriched Dust3 sample were mapped to the LVS reference genome, 89% of the chromosome
359 was covered at a minimum depth of 3x (S3 Table). This is greater than the 72% coverage just
360 using probes, as described above, likely because no reads were rejected due to mapping across
361 species and/or this region was unintentionally enriched as “by-catch” [45] because it is located

362 adjacent to other *Francisellaceae* genomic regions that were included in the probe design. All *F.*
363 *tularensis*-specific probes were covered at >80% breadth of coverage in the Dust3 sample based
364 on a 3x depth of coverage; no reads mapped to the 68 *F. tularensis*-specific probes from the
365 sequence data generated from the original spiked dust sample (Dust1; S4 Table). These findings
366 demonstrate that *F. tularensis* genomic DNA present at very low levels in complex samples can
367 be captured, enriched, sequenced, and analyzed using our bait-capture system.

368 ***F. tularensis*-positive clinical tularemia samples from Turkey**

369 Sequence reads from all eight of these samples were assembled and binned into one *Francisella*
370 MAG per sample, and also mapped to the genomic regions targeted by the two *F. tularensis*-
371 specific PCR assays and all 68 *F. tularensis*-specific probes, which were covered at >80% by ≥3
372 reads (S4 Table). There was extensive coverage of all FPI genes in these eight enriched samples
373 (S5 Table), and the SNPs previously associated with rifampicin and streptomycin resistance in *F.*
374 *tularensis* [38] were not present in these eight samples. These findings demonstrate that the
375 content of specific genes and SNPs of interest can be determined in enriched complex samples
376 containing *F. tularensis*.

377 Of the total sequencing reads from these enriched samples, 84.2-98.1% mapped to
378 *Francisellaceae*, resulting in ≥3x coverage across >99% of the *F. tularensis* LVS reference
379 genome (S4 Table). Full length 16S rRNA gene sequences (1523 nt) were obtained from five of
380 these samples, despite the removal of probes aligning to the *rrn* operon in the bait design
381 phase. This was likely due to this region being present in these samples in sufficient quantity
382 that it was detectable in these samples via sequencing even without enrichment, and/or by-
383 catch. Within both the global *Francisellaceae* dendrogram (S2 Fig) and the *F. tularensis*-specific

384 ML phylogeny used for analysis of these samples (Fig 2), all eight samples from Turkey were
385 assigned to the major clade corresponding to *F. tularensis* subsp. *holarctica* (Type B), the only
386 subspecies known to occur in Turkey [17, 46] and, within the Type B clade, all of these clinical
387 samples were most closely related to previous isolates obtained from similar geographic
388 regions of Turkey.

389 **Fig 2. *F. tularensis* phylogeny.** Maximum-likelihood phylogeny based upon 15,526 core genome
390 SNPs shared in 327 publicly available *F. tularensis* genomes (S1 Table) and DNA enriched from
391 nine complex samples (bold text). The phylogeny is rooted on the branch indicated with * and
392 some branch lengths have been shortened (double hash marks). Scale bar units are average
393 nucleotide substitutions per site. Black circles indicated collapsed nodes.

394 Enriched clinical samples F0738 and F0739 were originally obtained in 2011 from individuals
395 residing in Cankiri and Yozgat, Turkey, respectively (S3 Table); these two cities are located ~130
396 km apart in north-central Turkey. Within the *F. tularensis* ML phylogeny (Fig 2), F0738 is
397 separated from *F. tularensis* isolate F0884 (alternative ID: F015) by two SNPs; F0884 was
398 obtained from a human throat swab in Cankiri in 2010 [46]. F0739 is closely related to F0738
399 and F0884, differing from them by just two SNPs; one of these SNPs is autapomorphic in F0739.
400 F0738, F0739, and F0884 group together in a larger clade with F0673, which was isolated from
401 an unknown source in eastern Georgia at an unknown date [47], as well as F0889 (alternative
402 ID: F039), which was isolated from a human in Tokat, Turkey in 2010 [46]; Tokat also is located
403 in north-central Turkey ~155 km northeast of Yozgat.

404 Enriched clinical samples F0741, F0742, and F0744 were all obtained in 2011 (S3 Table):
405 F0741 and F0742 from individuals residing in Corum, and F0744 from an individual residing in

406 Bala, which is in Ankara province in central Turkey. These three enriched samples group
407 together in the *F. tularensis* ML phylogeny (Fig 2) with isolates FDC204, FDC205, and F0923.
408 FDC204 and FDC205 were obtained from Kocaeli in northwestern Turkey in 2012 from the
409 throat swab of a human and a contaminated water source that was likely the source of the
410 human infection, respectively [8]. F0923 was obtained in 2013 from water in Denizli in
411 southwestern Turkey [46]. There are two, one, and two autapomorphic SNPs in F0741, F0742,
412 F0744, respectively, that are unique to each of these enriched samples, as well as two
413 synapomorphic SNPs shared by only F0741 and F0742 (Fig 2).

414 Enriched clinical sample F0737 was originally obtained in 2011 from an individual residing in
415 Corum, Turkey (S3 Table). This sample groups together most closely in the *F. tularensis* ML
416 phylogeny (Fig 2) with isolate F0886 (alternative ID: F027) but separately from enriched clinical
417 samples F0741 and F0742, which also originated from individuals residing in Corum (S3 Table);
418 finding distinct genotypes in the same geographic area is consistent with oropharyngeal human
419 tularemia in Turkey being caused by multiple distinct phylogenetic groups of *F. tularensis* subsp.
420 *holarctica* [8, 17, 46]. F0866 was obtained in 2010 from Amasya in north-central Turkey from
421 the throat swab of a human [46]; Amasya is located ~80 km northeast of Corum. There are two
422 autapomorphic SNPs in F0737 that are unique to this sample, as well as one synapomorphic
423 SNP shared by F0737 and F0886 (Fig 2). In the *F. tularensis* ML phylogeny (Fig 2), F0737 and
424 F0866 group together in a larger clade with seven other isolates from Turkey.

425 Enriched clinical samples F0745 and F0749 were obtained in 2011 from two different
426 individuals residing in Ankara, Turkey (S3 Table). These two enriched samples group together in
427 the *F. tularensis* ML phylogeny (Fig 2) and are closely related to *F. tularensis* isolate F0910

428 (alternative ID: F244), which also was obtained from Ankara in 2011 from the spleen of a rodent
429 [46]. There is one autapomorphic SNP in F0745 that is unique to this sample, as well as one
430 synapomorphic SNP shared by F0745 and F0749 (Fig 2).

431 Previous attempts to generate sequence data for these eight clinical tularemia samples via
432 metagenomics sequencing of the same DNA extracts used in this study yielded a total of
433 787,568,687 sequencing reads. However, only 8,848 of those reads (0.001%) assigned to *F.*
434 *tularensis*, which did not facilitate robust genomic comparisons [48]. In contrast, two rounds of
435 targeted DNA capture and enrichment followed by sequencing –even a minimum of 1000
436 paired-end reads (see below) – provided robust data to conduct detailed phylogenetic analyses
437 of these same samples, identify novel SNPs within and among them, and examine loci
438 associated with virulence and AMR.

439 Notably, the previously published *F. tularensis* isolates most closely related to the eight
440 enriched samples also were from Turkey and from the same specific regions from which the
441 patients that yielded the eight enriched samples resided. This suggest the possibility of
442 assigning *F. tularensis* isolates or samples of unknown origin to likely geographic sources via
443 whole genome-based phylogenetic analyses. Of course, the phylogenetic and geographic
444 resolution of such analyses is dependent upon the size and representation of the genomic
445 database to which genomic data from unknown samples/isolates are compared [49]. We
446 utilized the genomic database compiled by Ohrman *et al* [2], which only contains *F. tularensis*
447 isolates that have been whole genome sequenced and includes numerous representatives from
448 Turkey. The enrichment approaches described here will allow the expansion of genomic
449 databases for *F. tularensis* because these databases can now also be populated with genomic

450 data from samples that contain *F. tularensis* DNA but do not yield *F. tularensis* isolates, which
451 will lead to larger databases and facilitate more accurate assignment of unknown isolates to
452 likely geographic sources in the future.

453 ***F. tularensis*-positive animal sample from Arizona**

454 Despite being collected from a partially decomposed carcass, the enriched complex sample
455 extracted from the spleen of a dead squirrel (F1069) yielded high-quality *F. tularensis* sequence
456 data. After two rounds of enrichment, 92.73% of the total sequencing reads were classified as
457 *Francisellaceae* (S3 Table), resulting in $\geq 3x$ coverage across >99% of the *F. tularensis* LVS
458 reference genome, including the 68 *F. tularensis*-specific probes (S4 Table) and the genomic
459 regions targeted by the two *F. tularensis*-specific PCR assays (S3 Table). This broad and
460 comprehensive coverage of the *F. tularensis* genome allowed the sequencing reads to be
461 assembled into a MAG (1.8Mb) and facilitated detailed phylogenetic analysis of the resulting
462 sample. There was complete coverage of all FPI genes in this enriched sample (S5 Table), and
463 the SNPs previously associated with rifampicin and streptomycin resistance in *F. tularensis* [38]
464 were not present.

465 Enriched sample F1069 was assigned to the *F. tularensis* subsp. *tularensis* group A.II clade in
466 both the global *Francisellaceae* dendrogram (S2 Fig) and the *F. tularensis*-specific ML phylogeny
467 (Fig 2) and, within that clade, grouped together with F1066; F1069 and F1066 group together in
468 a larger clade in the ML phylogeny (Fig 2) with three other isolates from Arizona. F1069 and
469 F1066 share one synapomorphic SNP and there is one autapomorphic SNP unique to enriched
470 sample F1069. Isolate F1066 (alternate ID: AZ00045112) was obtained from a fatal human
471 pneumonic tularemia case that occurred in Coconino County in northern Arizona; this individual

472 was first evaluated on 6 June 2016 and died 11 June 2016 [18, 50]. The dead squirrel that
473 yielded enriched sample F1069 was collected outside the residence of this victim during an
474 environmental survey conducted on 23 June 2016; multiple rabbit carcasses were also observed
475 during this survey, but none were tested for *F. tularensis* due to decomposition. The patient
476 had regular close contact with her pet dog, which was ill in late May 2016 several days after
477 being found with a rabbit carcass in its mouth; the dog subsequently was determined to be
478 seropositive for exposure to *F. tularensis*, but no isolate was obtained from it. Based upon these
479 findings, the dog was suspected as the source of *F. tularensis* inhaled by the victim. Although
480 genotyping assays assigned both the *F. tularensis* DNA present in the squirrel spleen sample
481 (F1069) and the human isolate to *F. tularensis* subsp. *tularensis* group A.II [18], higher
482 resolution genetic analysis of sample F1069 was not previously possible due to the highly
483 degraded nature of the original sample. The whole genome comparisons presented here,
484 facilitated by capture and enrichment of *F. tularensis* DNA present in complex sample F1069,
485 provides additional strong evidence for the previous suggestion [18] that the victim's dog
486 obtained *F. tularensis* from wildlife near her residence and then transmitted *F. tularensis* to her.

487 *F. tularensis* grows slowly on most common laboratory media [51] and represents a risk to
488 unvaccinated laboratory staff growing it [52]; for these and other reasons, diagnosis of
489 tularemia is commonly based upon molecular testing of complex samples (e.g., PCR),
490 serological testing, and/or clinical manifestations rather than culture [53, 54]. And even if an *F.*
491 *tularensis* isolate is obtained in a clinical laboratory, in the US, once definitively identified as *F.*
492 *tularensis* that isolate is then subject to Select Agent regulations, which stipulate that the
493 isolate must be destroyed or transferred to a facility authorized to possess Select Agents within

494 seven calendar days [55]; most clinical labs are not registered to possess Select Agents and
495 shipping them is very expensive and complex. We were able to generate whole genome
496 sequencing data for *F. tularensis* human isolate F1066 because, once identified as *F. tularensis*,
497 the isolate was transferred from the clinical laboratory to our Select Agent registered facility at
498 Northern Arizona University where we grew the pathogen and extracted genomic DNA.
499 However, because of these regulations, even if obtained, many clinical *F. tularensis* isolates, at
500 least in the US, are destroyed before they can be whole genome sequenced, which has resulted
501 in a dearth of publicly available whole genome sequences for *F. tularensis* strains infecting
502 humans in the US. The enrichment approaches described here offer an opportunity to generate
503 genomic data for *F. tularensis* using DNA extracted from complex clinical samples without
504 culturing, which would not be subject to many Select Agent regulations.

505 ***Francisella*-positive air filter samples**

506 After two rounds of capture and enrichment, sequencing of the 43 air filter extracts from the
507 US yielded an average of 9,119,398 (range: 4,882,288-15,966,314) sequence reads per sample,
508 with an average of 66.5% of the reads classified as *Francisellaceae* (range: 11.2-95.5%; S3
509 Table). The two *F. tularensis*-specific PCR assays yielded negative results for these samples
510 when analyzed *in silico* and although all 43 samples yielded *Francisellaceae* reads (S3 Table),
511 there was no or only minimal mapping of reads (*i.e.*, <40x breadth at a depth of 3x for two
512 probes) to the *F. tularensis*-specific probes (S4 Table), confirming that *F. tularensis* was not
513 present in any of the original samples. Although not unexpected as previous analyses putatively
514 identified *Francisella* DNA in other extracts from these same filters (see above), reads from all
515 43 samples mapped to probes specific to one or more other *Francisellaceae* spp. and/or clades

516 (S4 Table); this was most pronounced in the 37 samples collected in Houston (Air1-37; S3
517 Table). Among these 37 samples, reads mapping to *F. opportunistica*-specific probes were
518 present in all 37 samples, reads mapping to *F. novicida*-specific probes were present in 30
519 samples, and reads mapping to *F. philomiragia*-specific probes were present in 18 samples.
520 Among these same samples, *sdhA* gene sequences consistent with *F. opportunistica* and *F.*
521 *novicida* were present in 16 and 13 samples, respectively; a *sdhA* sequence in sample Air1 was
522 unique to a clade containing known isolates of *F. orientalis/noatunensis/philomiragia*; and a
523 *sdhA* sequence from Air36 was 100% identical to the *sdhA* sequence present in the only known
524 isolate of *F. sp. LA11-2445* (Fig 3, S3 Table), which was obtained from a cutaneous infection in
525 southern Louisiana in 2011 [56]. Reads from 17 of the 37 enriched samples collected in Houston
526 were grouped into one (16 samples) or two (one sample, Air1) *Francisella* MAGs each, with an
527 average size of 1,820,822 bp (range: 1,501,353-2,348,11) and containing an average of 780
528 contigs (range: 211-1,531) per MAG (S3 Table). None of the 18 *Francisella* MAGs grouped in the
529 dendrogram (S2 Fig) with *F. tularensis*, which further confirmed that the 17 filter extracts that
530 yielded these MAGs did not contain *F. tularensis*; however, 14 did group with *F. opportunistica*
531 in the dendrogram, three with *F. philomiragia*, and one with *F. novicida*. SNPs discovered from
532 reads generated from these same 17 samples were used to place the *F. opportunistica*, *F.*
533 *philomiragia*, and *F. novicida* reads sequenced from these samples into separate ML
534 phylogenies, which also include other published genomes from these species (Figs 4-6).
535 **Fig 3. *sdhA* phylogeny.** Maximum-likelihood phylogeny inferred from a 348 bp region of the
536 *sdhA* gene extracted from 152 publicly available *Francisella* spp. genomes (S1 Table) and DNA
537 enriched from 20 air filters (bold text), as well as seven publicly available partial gene

538 sequences; accession numbers for the latter are provided in parentheses. Two distinct *sdhA*
539 sequences from the same air filter are indicated as AirX.1/AirX.2. Some strains from the same
540 species with identical *sdhA* genotypes have been collapsed and the number of strains in the
541 collapsed node indicated. The phylogeny is rooted on the branch indicated with * and some
542 branch lengths have been shortened (double hash marks). Scale bar units are average
543 nucleotide substitutions per site.

544 **Fig 4. *F. opportunistica* phylogeny.** Maximum-likelihood phylogeny based upon 712 core
545 genome SNPs shared in three publicly available *F. opportunistica* genomes (S1 Table) and DNA
546 enriched from 14 air filters (bold text). The phylogeny is rooted on the branch indicated with *
547 and some branch lengths have been shortened (double hash marks). Scale bar units are average
548 nucleotide substitutions per site.

549 **Fig 5. *F. novicida* phylogeny.** Maximum-likelihood phylogeny based upon 28,557 core genome
550 SNPs shared in 39 publicly available *F. novicida* genomes (S1 Table) and DNA enriched from one
551 air filter (bold text). The phylogeny is rooted on the branch indicated with * and some branch
552 lengths have been shortened (double hash marks). Scale bar units are average nucleotide
553 substitutions per site.

554 **Fig 6. *F. philomiragia* phylogeny.** Maximum-likelihood phylogeny based upon 59,753 core
555 genome SNPs shared in 47 publicly available *F. philomiragia* genomes (S1 Table) and DNA
556 enriched from three air filters (bold text). The phylogeny is rooted on the branch indicated with
557 * and some branch lengths have been shortened (double hash marks). Scale bar units are
558 average nucleotide substitutions per site.

559 *F. opportunistica* *sdhA* gene sequences that were 100% identical to each other and to the
560 *sdhA* sequences from the only three known genomes of this species were collected on 16
561 different air filters in Houston from 21-22 September 2018; a subset of nine of these same air
562 filters also yielded *F. novicida* *sdhA* sequences (Fig 3). Sequence reads generated from enriched
563 DNA from each of these 16 filters covered >90% of the 2,745 *F. opportunistica*-specific probes
564 (S4 Table), and *Francisella* MAGs identified from sequence data from 14 of these samples (S3
565 Table) grouped with *F. opportunistica* in the dendrogram (S2 Fig). Interestingly, despite these
566 14 filters all being collected over just a two-day period, the *F. opportunistica* present on several
567 individual filters differed, as evidenced by unique SNPs for some of these 14 samples in the *F.*
568 *opportunistica* phylogeny (Fig 4). This pattern, and the collection of these filters at multiple
569 geographic locations, suggest the presence of *F. opportunistica* on these 14 filters was not due
570 to the aerosolization of a single common point source but, rather, the simultaneous
571 aerosolization of multiple unknown sources in the environment, which has also been
572 documented for aerosolized *F. tularensis* [57]. Of note, a storm passed through the Houston
573 area during this time bringing strong winds and 5.9 cm of rain from 20-23 September 2018
574 (<https://www.weather.gov/wrh/Climate?wfo=hgx>).

575 *F. opportunistica* was only recently described as a species [9, 58] and prior to this study was
576 known only from three isolates obtained from immunocompromised humans from different US
577 states in different years. Isolate PA05-1188 was obtained in Pennsylvania in 2005 from an
578 individual with juvenile rheumatoid arthritis and hemophagocytic syndrome, isolate MA06-
579 7296 was obtained in Massachusetts in 2006 from an individual with end stage renal disease
580 [59], and isolate 14-2155 was obtained in Arizona in 2014 from a diabetic individual with renal

581 and cardiopulmonary failure [58]. Based on the locations of these three cases it was previously
582 suggested that *F. opportunistica* may be widespread in the environment [58] but the
583 mechanism by which these individuals became infected with *F. opportunistica* was not clear
584 [59]. Our findings from air-filters in Texas confirm *F. opportunistica* is indeed widespread in the
585 US and suggest that aerosol inhalation should be considered as a route of exposure.

586 *F. novicida* *sdhA* gene sequences were present on 13 air filters collected in Houston (Fig 3);
587 these same samples all also yielded sequence reads that mapped to some of the seven *F.*
588 *novicida*-specific probes (S4 Table). Interestingly, with just two exceptions, the air filters that
589 yielded *F. novicida* *sdhA* sequences also yielded *sdhA* sequences from other *Francisella* spp.
590 Within the *sdhA* phylogeny (Fig 3), the *F. novicida* *sdhA* sequences from these 13 air filters were
591 identical or highly similar to each other and to those from three *F. novicida* isolates obtained in
592 or near Houston from humans (Fx1, Fx2, TCH2015) [7, 60, 61], but were more distantly related
593 to four *F. novicida* *sdhA* sequences (015.A01, 027.B01, 039.D01, 045.E01) generated from soil
594 samples collected in Houston in 2003 [6]. A *F. novicida* MAG was only assembled from
595 sequence reads from one air filter, Air1; a *F. philomiragia* MAG also was assembled from this
596 sample (S3 Table). Within both the MAG dendrogram (S2 Fig) and the *F. novicida* ML phylogeny
597 (Fig 5) the *F. novicida* collected on Air1 is closely related to isolate Fx2.

598 It is often difficult to determine routes of exposure leading to human infections caused by *F.*
599 *novicida* and mechanisms of transmission to humans are poorly understood [62]. However,
600 several human infections with *F. novicida*, including the one that yielded isolate Fx2, have
601 presented with pneumonia [60, 63]. This observation, together with our finding that *F. novicida*
602 was aerosolized at multiple locations on multiple dates in Houston in 2018, suggest some

603 human *F. novicida* infections may result from aerosolization and inhalation of this bacterium,
604 like *F. tularensis* [57]. That said, it is important to note that detection of *F. novicida* DNA or DNA
605 from any other *Francisella* spp. on air filters is not evidence that viable bacteria were
606 aerosolized.

607 *F. philomiragia* MAGs were assembled from sequence reads generated from three air filters
608 – Air1, Air2, and Air12 – collected in Houston on 15, 16, and 21 June 2018, respectively (S3
609 Table). Sequence reads generated from all three filters mapped to >70% of the 92 *F.*
610 *philomiragia*-specific probes, and reads from Air1 and Air2 also mapped to >50% of the seven *F.*
611 *novicida*-specific probes and yielded *F. novicida* *sdhA* sequences (Fig 3); as described above,
612 Air1 also yielded a separate *F. novicida* MAG. The *F. philomiragia* representatives collected on
613 these filters are basal to all known isolates of this species in both the MAG dendrogram (S2 Fig)
614 and the *F. philomiragia* ML phylogeny (Fig 6) and are quite distinct from each other. Similarly,
615 the *sdhA* gene sequence obtained from Air1 was highly distinct, falling basal to both *F.*
616 *noatunensis* and *F. philomiragia* (Fig 3), which are sister clades in the global phylogeny of
617 *Francisella* [2], further documenting the distinctiveness of the *F. philomiragia* captured on these
618 filters. The previous *F. philomiragia* isolates included in these analyses were mostly obtained
619 from water or sediment; several were collected in Europe and Asia, but most – and the only
620 known representatives from the US – were obtained in the state of Utah (S1 Table), which is
621 located >1,500 km from Houston.

622 *F. philomiragia* is recognized as a rare but serious human pathogen primarily associated
623 with immunocompromised individuals following exposure to aquatic environments or healthy
624 individuals that survive near drowning events [64-66]. Although human cases have been

625 reported from multiple countries and US states [64-67], we know of no human cases reported
626 from Texas. The association of human infections with water, particularly salt water or brackish
627 water, as well as most environmental isolates being obtained from water [2, 64, 68-70], have
628 led to the suggestion that *F. philomiragia* may be adapted for aquatic environments [64]. *F.*
629 *philomiragia* was previously thought to have been isolated from sea water near Houston [7],
630 but those isolates (TX07-7308, TX07-7310) have now been assigned to other *Francisella* spp.
631 [2]. However, at least two human cases (one from the US state of Indiana and the other from
632 Malaysia), notably both involving pneumonia, which is also common with other human *F.*
633 *philomiragia* infections [65, 66], had no suspected water exposures [67, 71]. And a previous
634 study [6] initiated following the detection of *Francisella* spp. DNA in aerosol samples collected
635 in Houston in 2003 generated an *sdhA* sequence (0.36.C01) from a soil sample collected in
636 Houston consistent with *F. philomiragia*. Although the taxonomy of *Francisella* has changed
637 since that previous study was published [2], our analysis of that previous *sdhA* sequence,
638 together with *sdhA* sequences from known isolates of *F. philomiragia* (Fig 3), confirms that the
639 sequence from the previous Houston soil sample is consistent with *F. philomiragia*, strongly
640 suggesting this species occurs in soil in the Houston area. This, together with our identification
641 of *F. philomiragia* DNA on three separate air filters, suggests *F. philomiragia* occurs in and is
642 aerosolized from soil in Houston. Of note, this species is able to infect mice and is virulent to
643 them via intranasal delivery [72].

644 It was not possible to identify known *Francisellaceae* species from many of the 43 air filters
645 that we examined (S3 Table) even though previous DNA extractions and PCR testing that was
646 not part of this study identified the presence of *Francisella* spp. DNA on these filters and,

647 following two rounds of enrichment, we generated sequencing reads from all 43 samples
648 mapping to at least some of the 188,431 *Francisellaceae* probes (S4 Table). The presence of
649 *sdhA* gene sequences was useful for identifying the likely presence of specific *Francisella* spp.
650 present in some of these samples but we did not identify *sdhA* sequences from all 43 samples
651 (S3 Table), likely because we did not include this genomic region in our probes as it also is found
652 in other non-*Francisellaceae* bacterial species and we limited our probes to genomic regions
653 exclusive to *Francisellaceae* species. Despite this, we identified *Francisella* *sdhA* sequences in 19
654 of the 43 air filter samples, likely due to by-catch. In addition, given the complex nature of
655 environmental DNA captured on air filters [73], we elected to be conservative in our
656 approaches for identifying MAGs for known *Francisellaceae* species and only included samples
657 in species-specific phylogenies if they yielded MAGs. That said, another reason why we may not
658 have identified known *Francisellaceae* species from some of the air filters is because they
659 contain novel *Francisellaceae* species that were not included in the bait design. Although some
660 genomic regions in novel species could share homology with a subset of our probes, the
661 fragmented nature of these regions would likely prevent assembly of MAGs and subsequent
662 analyses.

663 Sequence reads generated from four enriched samples collected in Houston (Air07, Air10,
664 Air13, Air14) and all six enriched samples collected in Miami (Air38-43) mapped to <3% of the
665 188,431 *Francisellaceae* probes (range: 0.50-2.92%; S3 Table) and mapped to <4% of the probes
666 specific to any one *Francisellaceae* species (range: 0.00-3.26%; S4 Table). However, sequence
667 reads from all ten of these samples mapped to some of the probes specific to Clade 1 and/or
668 Clade 2 (S4 Table) in the *Francisellaceae* global phylogeny. Indeed, two of the samples collected

669 in Miami, Air40 and Air43, yielded reads that mapped to >37% of the 324 probes specific to
670 clade 1 but did not yield *Francisella* MAGs. This may be because these two air filters – and
671 perhaps others that did not yield *Francisella* MAGs – contained DNA from novel *Francisella*
672 species that could not have been included in our bait capture system and, therefore, were not
673 effectively captured and enriched by our approach. If these are novel species, the presence of
674 reads mapping to Clade 1-specific probes in these samples suggest these unknown species may
675 be closely related to *F. tularensis* as it also belongs to Clade 1 within *Francisella*.

676 Overall, our analyses of these air filters document that multiple known, and possibly some
677 unknown, *Francisella* species can be, and possibly are regularly, aerosolized; whether these
678 bacteria remained viable during and/or following aerosolization is currently unknown but *F.*
679 *tularensis* has this capability [57]. In addition, these findings demonstrate the utility of utilizing
680 an enrichment approach to increase the genomic signal of target species captured by air filters.
681 This then facilitates detailed analyses of the target species, including assembly of MAGs in some
682 cases, which can be difficult to accomplish with data generated via metagenomics sequencing
683 of the original complex DNA extracts obtained from air filters.

684 **Tick samples containing FLEs**

685 Sequencing of the five complex DNA extracts from whole ticks/tick cell lines, following two
686 rounds of capture and enrichment, produced an average of 6,925,142 (range: 413,912-
687 12,086,278) sequence reads per sample, with an average of 80% of the reads classified as
688 *Francisellaceae* (range: 67.6-93.9%; S3 Table). Reads from all five samples mapped to >72% of
689 the 759 FLE-specific probes (S4 Table) and grouped into one *Francisella* MAG per sample, which
690 ranged in size from 1.21-1.45Mb (S3 Table); these five MAGs clustered with other FLE genomes

691 in the dendrogram (S2 Fig). Note that some initial enrichment results for tick samples D14IT15.2
692 and D14IT20 have been previously described [20] but they are included here for completeness
693 and because additional analyses were conducted on these samples in this study.

694 The *Francisella* reads generated from the five enriched complex tick samples facilitated
695 high-resolution phylogenetic analyses of FLEs from different as well as the same tick species.
696 Although we generated and included genomic data for FLEs from three additional tick species
697 (*D. albipictus*, *D. variabilis*, *H. rufipes*), some of the general phylogenetic patterns (Fig 7) remain
698 similar to those previously described [26, 27, 74]: all 14 FLE genomes group together in a
699 monophyletic clade within the *Francisellaceae* phylogeny and belong to the genus *Francisella*
700 (S2 Fig), the FLE in *A. arboreus* (*F. persica*) is basal to all other FLEs, FLEs from hard ticks (Family
701 Ixodidae: *A. maculatum*, *D. albipictus*, *D. variabilis*, *H. asiaticum*, *H. marginatum*, *H. rufipes*) are
702 interspersed with FLEs from soft ticks (Family Argasidae: *A. arboreus*, *O. moubata*), FLEs from
703 eastern hemisphere ticks (*A. arboreus*, *H. asiaticum*, *H. marginatum*, *H. rufipes*, *O. moubata*)
704 and FLEs from western hemisphere ticks (*A. maculatum*, *D. albipictus*, *D. variabilis*) primarily
705 group separately, and multiple FLE representatives from the same tick species group together
706 (Fig 7). And, in general, our overall results in terms of phylogenetic relationships among FLEs
707 present in different tick species match those from an existing gene-based genotyping system
708 for FLEs [74, 75], with the caveat that *D. albipictus* and *D. variabilis* have not been previously
709 analyzed with that system. However, our targeted genome enrichment approach provides
710 significantly increased resolution among FLE samples because we can use much more of the
711 shared core genome of these samples; the FLE phylogeny in Fig 7 is based upon 53,377 shared
712 positions among the five FLE samples enriched in this study and the nine previously published

713 FLE genomes. This provided resolution among even very closely related FLEs. For example,
714 based upon sequencing of a >1,000 bp amplicon of the bacterial 16S rRNA gene, previous
715 analyses [19] assigned an identical sequence type (T1) to the FLEs in the two *D. variabilis*
716 samples also examined in this study (D.v.0160, D.v.0228), but 310 SNPs were identified
717 between them when comparing the *Francisella* reads generated from the enrichment of these
718 samples. Similarly, a previous analysis of >3,800 bp of sequence data generated from amplicons
719 from multiple genes found no differences between seven representatives of the FLE in *H.*
720 *rufipes* [74] but a total of 1,922 SNPs were identified between the *Francisella* MAGs generated
721 from the two *H. rufipes* samples enriched and sequenced in this study (D14IT15.2, D14IT20),
722 which were collected on the same day at the same location from two different birds [20]. This
723 increased genetic resolution, and the ability to generate targeted FLE genomic data directly
724 from whole, wild-caught ticks, offers the opportunity for future detailed studies of the natural
725 population structure of these FLEs within single tick species. Of note, all of the previously
726 published FLE genomes included in our analyses involved metagenomic sequencing of complex
727 DNA extracted from whole ticks or specific tick organs [3, 26-30], with the exception of *F.*
728 *persica*, to date the only FLE to be isolated; its genome was generated from genomic DNA [25].

729 **Fig 7. *Francisella*-like endosymbiont (FLE) phylogeny.** Maximum-likelihood phylogeny based
730 upon 53,377 core genome SNPs shared in nine publicly available FLE genomes (S1 Table) and
731 DNA enriched from five whole ticks/tick cell lines (bold text). The phylogeny is rooted on the
732 branch indicated with * and scale bar units are average nucleotide substitutions per site.

733 The *Francisella* MAGs assembled from the five enriched complex tick samples also allowed
734 comparative analyses of gene content in FLEs. As previously noted for the published FLE

735 genomes [3, 26, 27, 30], multiple CDSs in the FPI also are missing and/or disrupted in the
736 genomes of the FLEs from *D. albipictus* (DALBE3), *D. variabilis* (D.v.0160, D.v.0228), and *H.*
737 *rufipes* (D14IT15.2, D14IT20) generated in this study (S6 Table). However, the specific FPI genes
738 that are missing or disrupted differs across all FLE genomes, even though intact versions of each
739 of the 17 examined FPI CDSs are present in at least one of the 14 FLE genomes. This is
740 consistent with the suggestions first put forward by Gerhart *et al* [3] that FLEs: 1) evolved from
741 a pathogenic ancestor, 2) are relatively young, and, thus, 3) are in the initial stages of genome
742 reduction. Loss and disruption of FPI CDSs in the FLE genomes is not surprising given that, in *F.*
743 *tularensis* and *F. novicida*, these CDSs are associated with intracellular growth within vertebrate
744 macrophages and virulence in mammalian hosts [62, 76, 77], conditions not encountered by
745 FLEs. In contrast, all the examined biotin genes remain intact in the FLEs of *D. variabilis*
746 (D.v.0160, D.v.0228) and *D. albipictus* (DALBE3), as well as in most of the other published FLE
747 genomes (S7 Table), likely because this pathway allows FLEs to provide their ticks hosts with
748 this essential B vitamin, as previously experimentally confirmed and/or suggested [26-28, 78].
749 Indeed, the only documented exceptions to this pattern to date are in the FLEs of *H.*
750 *marginatum* (FLE-Hmar-ES, FLE-Hmar-IL, FLE-Hmar-IT) and *H. rufipes* (D14IT15.2, D14IT20),
751 which are both involved in dual symbioses with *Midichloria* within their tick hosts; these
752 *Midichloria* contain intact biotin pathways that are assumed to compensate for the disruption
753 of this pathway in their associated FLE counterparts [20, 30]. Of note, previous attempts [20] to
754 examine biotin gene content in metagenomic sequences of DNA extracts from samples
755 D14IT15.2 and D14IT20 were unsuccessful due to low FLE sequence signal.

756 It was recently demonstrated that the *Coxiella*-like endosymbiont (CLE) of the of the Asian
757 longhorned tick (*Haemaphysalis longicornis*), but not the tick itself, contains an intact shikimate
758 pathway that synthesizes chorismate. *H. longicornis* then utilizes the chorismate produced by
759 the CLE to produce serotonin, which influences its feeding behavior [79]. All the genes required
760 for encoding the production of the enzymes in the shikimate pathway (*aroG*, *aroB*, *aroD*, *aroE*,
761 *aroK*, *aroA*, *aroC*) are present and this pathway appears to be functional in *F. tularensis* [80, 81],
762 and we found that homologs of these same genes are highly conserved in several FLE genomes
763 (S8 Table). This suggests that some FLEs also may provide chorismate to their tick hosts for
764 subsequent conversion to serotonin, but this would need to be experimentally confirmed. A
765 notable exception to this pattern is the FLE in the *D. albipictus* DALBE3 cell line: multiple genes
766 encoding the shikimate pathway are missing or disrupted in its genome. In addition, the MAG
767 for the FLE of DALBE3 is significantly smaller than that of the other FLE genomes [30; S3 Table];
768 both patterns may reflect adaptation of this FLE to the more restricted niche of a tick cell line
769 compared to a whole tick.

770 Symbiotic relationships between animal hosts and microorganisms are widespread and
771 ancient [82]. These relationships are essential for obligate blood-feeding hosts, such as ticks,
772 which require cofactors and vitamins not available in blood but that can be provided by their
773 nutritional endosymbionts [78]. Key to understanding these relationships has been the
774 generation of genomic data for both hosts and endosymbionts [82] but this can be obstructed
775 by a lack of culturability of endosymbionts [83], which is the case for all FLEs except *F. persica*.
776 Metagenomics analysis of whole or partial ticks containing FLEs has yielded important insights
777 [3, 26-30], and metagenomics also has the added benefit of generating sequence data for other

778 microorganisms within the tick and/or the tick itself. However, metagenomics analysis requires
779 significant sequencing resources and, therefore, may be cost-prohibitive for some applications,
780 especially if the emphasis of the study is only the FLE or some other endosymbiont. Our results
781 demonstrate that the DNA capture and enrichment approach described here also can be used
782 to generate robust genomics data for FLEs, even for FLEs not included in our probe design. Only
783 FLEs from the tick species *A. arboreus*, *A. maculatum*, and *O. moubata* were utilized for the
784 design of our enrichment system, yet this system still captured and enriched high-quality
785 genomic DNA from FLEs present in other tick species, including *D. albipictus*, *D. variabilis*, and
786 *H. rufipes*. As was previously noted for an enrichment system targeting *Wolbachia*
787 endosymbionts [84], this finding demonstrates that the enrichment approach described here
788 works across large evolutionary distances among FLEs.

789 **Recommendations for enrichment, sequencing, and analysis**

790 The results of this study demonstrate the efficiency of DNA capture and enrichment from low
791 signal samples containing *Francisellaceae* DNA. To maximize the signal for subsequent whole
792 genome analyses, we recommend two rounds of enrichment when working with complex
793 samples. In lower complexity samples and/or samples with a high starting proportion of *F.*
794 *tularensis* or other target *Francisellaceae* DNA, a single enrichment may provide enough
795 actionable information, depending on the nature of the investigation. We performed deep
796 sequencing on enriched samples (average=9.1M reads, S3 Table) but this may be unnecessary
797 for all applications. To determine the minimum number of reads required for accurate
798 genotyping, we subsampled sequencing datasets generated from the eight enriched clinical
799 samples from Turkey containing *F. tularensis* and placed the *F. tularensis* DNA present in those

800 samples into a *F. tularensis* phylogeny using *WG-FAST*. The results (S3 Fig) demonstrate that an
801 average of just 3000 paired-end Illumina reads (150nts long) could accurately place the *F.*
802 *tularensis* present in those samples into the same phylogenetic positions as obtained with the
803 full dataset (Fig 2). For some samples, just 1000 paired-end, 150nts reads could accurately
804 genotype an enriched sample, providing strain level resolution needed for source attribution
805 and contact tracing. This demonstrates that if a complex sample is efficiently enriched, then
806 even shallow sequencing can be sufficient for strain level genotyping resolution.

807 Other applications could change the sequencing and enrichment strategy. For example, two
808 enrichments and deep sequencing may be needed for more complete genome assemblies. For
809 the complex air samples, we determined that if >50% of the signal is *Francisella* following
810 enrichment, then a metagenome can be assembled, but individual MAGs cannot always be
811 reliably assembled. If <50% of the signal is *Francisella* following enrichment, the fragmented
812 assemblies can be taxonomically assigned, but typically cannot be assembled into contigs. Thus,
813 for lower signal samples, >2 enrichments per sample may improve sequence yield, but that
814 possibility was not investigated in this study.

815 **Considerations for design of enrichment systems**

816 Because we designed our enrichment system using genome sequences from all known
817 *Francisellaceae* species [2], the system described here works well for capturing, enriching, and
818 sequencing genomic DNA of diverse *Francisellaceae* species present in different types of
819 complex backgrounds. However, we did not include the entire *Francisellaceae* pan genome in
820 our capture-enrichment system; we excluded CDSs that also are present in non-*Francisellaceae*
821 spp., including genes that could cross amplify non-target bacteria (e.g., rRNA genes). We

822 excluded these regions to focus capture, enrichment, and sequencing reagents on genomic
823 regions known to be specific to *Francisellaceae* spp., as we wanted to create a system that
824 could be used with very complex samples, such as air filters. These complex samples contain
825 DNA from many diverse organisms [73, 85] that may contain conserved regions of the non-
826 exclusive CDSs also found in *Francisellaceae* spp., which could lead to non-target enrichment
827 [86]. However, it is important to point out that this design consideration is context dependent.
828 If, for example, the primary interest is to enrich *Francisellaceae* DNA present in less complex
829 samples, such as those obtained from human tularemia samples, then the entire
830 *Francisellaceae* pan genome could be included in the enrichment system. And if the focus of the
831 investigation is on a single *Francisellaceae* spp. such as *F. tularensis*, then the enrichment
832 system could be reduced to target just the pan genome of that individual species. Similarly, if
833 novel *Francisellaceae* species are discovered and contain novel genomic components not found
834 in any currently known *Francisellaceae* species, those novel components can be added to
835 subsequent versions of the enrichment system.

836

837 **Conclusions**

838 Using the pan-genome of all known *Francisellaceae* species, we designed a system to enrich
839 low-level *Francisellaceae* DNA present in complex backgrounds. To validate the system, we
840 enriched, sequenced, and analyzed DNA from spiked complex control samples, clinical
841 tularemia samples, environmental samples (*i.e.*, tissue from a squirrel spleen and whole ticks),
842 and air filter samples. The *F. tularensis*-positive clinical samples enriched very effectively,

843 providing almost complete genomic coverage, which facilitated strain level genotyping.
844 Obtaining most of the genome also allowed for the identification of novel SNPs, as well as a
845 profile of gene content. The benefits of this enrichments system include: even very low target
846 DNA can be amplified; the system is culture-independent, reducing exposure for research
847 and/or clinical personnel and allowing genomic information to be obtained from samples that
848 do not yield isolates; and the resulting comprehensive data not only provides robust means to
849 confirm the presence of a target species in a sample, but also can provide data useful for source
850 attribution, which is important from a genomic epidemiology perspective. In some situations,
851 this system can outperform metagenomic sequencing, as demonstrated with the clinical
852 tularemia samples, which requires very deep sequencing to provide signal, and even then, the
853 complete genome may be difficult to obtain.

854 From a diagnostic/detection perspective, our identification of multiple, redundant, specific
855 probes allows for robust and unambiguous confirmation of the presence or absence of *F.*
856 *tularensis* in a sample (the same principles apply to the other species/clades for which specific
857 probes were identified in this study). Upon enrichment and sequencing, all the samples utilized
858 in this study that were confirmed by other approaches to contain *F. tularensis* DNA also yielded
859 robust coverage of all 68 *F. tularensis*-specific probes (S4 Table). However, if the pathogen
860 signal is low in enriched samples and/or shallow sequencing depth is obtained for an enriched
861 sample, it is possible that not all the *F. tularensis*-specific probes may be identified in the
862 resulting analyses even if *F. tularensis* is present in the sample. In addition, as the enrichment
863 system was designed using the known diversity of *Francisellaceae* species but new species in
864 this family continue to be discovered, future enrichment and sequencing of complex samples

865 containing currently unknown *Francisellaceae* species could reveal that these new species
866 contain some of the 68 probes that are currently thought to be specific to *F. tularensis*. Indeed,
867 we identified partial coverage of several of the 68 *F. tularensis*-specific probes in multiple air
868 filter samples (S4 Table). However, there was no coverage of the other *F. tularensis*-specific
869 probes, which allowed us to confidently confirm that *F. tularensis* was not present in these
870 samples. Thus, the redundancy provided by multiple specific probes means this system will
871 remain a robust approach for confirmation of the presence or absence of *F. tularensis* in a
872 sample even if a sample is low-quality and/or contains novel *Francisellaceae* species that
873 contain a subset of these probes.

874

875 **Acknowledgements**

876 We thank Timothy Kurtti and Ulrike Munderloh, University of Minnesota, for permission to use
877 the DALBE3 tick cell line and Kailee Savage for assistance with laboratory work.

878

879 **References**

- 880 1. McCoy G, Chapin CW. Further observations on a plague like disease of rodents with a
881 preliminary note on the causative agent, bacterium tularensis. *Journal of Infectious Diseases*.
882 1912;10(1):61-72. doi: DOI 10.1093/infdis/10.1.61. PubMed PMID: WOS:000202232000009.
- 883 2. Ohrman C, Sahl JW, Sjodin A, Uneklint I, Ballard R, Karlsson L, et al. Reorganized
884 Genomic Taxonomy of *Francisellaceae* Enables Design of Robust Environmental PCR Assays for

885 Detection of *Francisella tularensis*. *Microorganisms*. 2021;9(1). Epub 2021/01/15. doi:
886 10.3390/microorganisms9010146. PubMed PMID: 33440900; PubMed Central PMCID:
887 PMCPMC7826819.

888 3. Gerhart JG, Moses AS, Raghavan R. A *Francisella*-like endosymbiont in the Gulf Coast tick
889 evolved from a mammalian pathogen. *Sci Rep*. 2016;6:33670. Epub 20160920. doi:
890 10.1038/srep33670. PubMed PMID: 27645766; PubMed Central PMCID: PMCPMC5028885.

891 4. Keim P, Johansson A, Wagner DM. Molecular epidemiology, evolution, and ecology of
892 *Francisella*. *Ann N Y Acad Sci*. 2007;1105:30-66. Epub 20070413. doi: 10.1196/annals.1409.011.
893 PubMed PMID: 17435120.

894 5. Sahl JW, Vazquez AJ, Hall CM, Busch JD, Tuanyok A, Mayo M, et al. The Effects of Signal
895 Erosion and Core Genome Reduction on the Identification of Diagnostic Markers. *mBio*.
896 2016;7(5). Epub 20160920. doi: 10.1128/mBio.00846-16. PubMed PMID: 27651357; PubMed
897 Central PMCID: PMCPMC5030356.

898 6. Barns SM, Grow CC, Okinaka RT, Keim P, Kuske CR. Detection of diverse new *Francisella*-
899 like bacteria in environmental samples. *Appl Environ Microbiol*. 2005;71(9):5494-500. doi:
900 10.1128/AEM.71.9.5494-5500.2005. PubMed PMID: 16151142; PubMed Central PMCID:
901 PMCPMC1214603.

902 7. Petersen JM, Carlson J, Yockey B, Pillai S, Kuske C, Garbalena G, et al. Direct isolation of
903 *Francisella* spp. from environmental samples. *Lett Appl Microbiol*. 2009;48(6):663-7. Epub
904 20090316. doi: 10.1111/j.1472-765X.2009.02589.x. PubMed PMID: 19413814.

905 8. Karadenizli A, Forsman M, Simsek H, Taner M, Ohrman C, Myrtendas K, et al. Genomic
906 analyses of *Francisella tularensis* strains confirm disease transmission from drinking water

907 sources, Turkey, 2008, 2009 and 2012. *Euro Surveill.* 2015;20(21). Epub 2015/06/13. doi:
908 10.2807/1560-7917.es2015.20.21.21136. PubMed PMID: 26062561.

909 9. Challacombe JF, Petersen JM, Gallegos-Graves L, Hodge D, Pillai S, Kuske CR. Whole-
910 Genome Relationships among *Francisella* Bacteria of Diverse Origins Define New Species and
911 Provide Specific Regions for Detection (vol 83, 00174, 2017). *Appl Environ Microb.* 2017;83(6).
912 PubMed PMID: WOS:000395806900002.

913 10. Sjodin A, Ohrman C, Backman S, Larkeryd A, Granberg M, Lundmark E, et al. Complete
914 Genome Sequence of *Francisella* endociliophora Strain FSC1006, Isolated from a Laboratory
915 Culture of the Marine Ciliate *Euplotes raikovi*. *Genome Announc.* 2014;2(6). Epub 20141126.
916 doi: 10.1128/genomeA.01227-14. PubMed PMID: 25428973; PubMed Central PMCID:
917 PMCPMC4246165.

918 11. Person T, Currie C. Washington, DC: United States Government Accountability Office,
919 2015 Contract No.: GAO-16-99.

920 12. Sahl JW, Caporaso JG, Rasko DA, Keim P. The large-scale blast score ratio (LS-BSR)
921 pipeline: a method to rapidly compare genetic content between bacterial genomes. *PeerJ.*
922 2014;2:e332.

923 13. Edgar RC. Search and clustering orders of magnitude faster than BLAST. *Bioinformatics.*
924 2010;26(19):2460-1. Epub 2010/08/17. doi: btq461 [pii] 10.1093/bioinformatics/btq461.
925 PubMed PMID: 20709691.

926 14. Rasko DA, Myers GS, Ravel J. Visualization of comparative genomic analyses by BLAST
927 score ratio. *BMC Bioinformatics.* 2005;6:2. Epub 2005/01/07. doi: 1471-2105-6-2 [pii]
928 10.1186/1471-2105-6-2. PubMed PMID: 15634352; PubMed Central PMCID: PMC545078.

929 15. Li H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics*.
930 2018;34(18):3094-100. doi: 10.1093/bioinformatics/bty191. PubMed PMID: 29750242; PubMed
931 Central PMCID: PMCPMC6137996.

932 16. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
933 Alignment/Map format and SAMtools. *Bioinformatics*. 2009;25(16):2078-9. Epub 20090608.
934 doi: 10.1093/bioinformatics/btp352. PubMed PMID: 19505943; PubMed Central PMCID:
935 PMCPMC2723002.

936 17. Ozsurekci Y, Birdsell DN, Celik M, Karadag-Oncel E, Johansson A, Forsman M, et al.
937 Diverse *Francisella tularensis* strains and oropharyngeal tularemia, Turkey. *Emerg Infect Dis*.
938 2015;21(1):173-5. Epub 2014/12/23. doi: 10.3201/eid2101.141087. PubMed PMID: 25531237;
939 PubMed Central PMCID: PMCPMC4285279.

940 18. Yaglom H, Rodriguez E, Gaither M, Schumacher M, Kwit N, Nelson C, et al. Notes from
941 the Field: Fatal Pneumonic Tularemia Associated with Dog Exposure - Arizona, June 2016.
942 *MMWR Morb Mortal Wkly Rep*. 2017;66(33):891. Epub 2017/08/25. doi:
943 10.15585/mmwr.mm6633a5. PubMed PMID: 28837551; PubMed Central PMCID:
944 PMCPMC5687813.

945 19. Kaufman EL, Stone NE, Scoles GA, Hepp CM, Busch JD, Wagner DM. Range-wide genetic
946 analysis of *Dermacentor variabilis* and its *Francisella*-like endosymbionts demonstrates
947 phylogeographic concordance between both taxa. *Parasit Vectors*. 2018;11(1):306. Epub
948 2018/05/20. doi: 10.1186/s13071-018-2886-5. PubMed PMID: 29776375; PubMed Central
949 PMCID: PMCPMC5960137.

950 20. Hoffman T, Sjödin A, Öhrman C, Karlsson L, McDonough RF, Sahl JW, et al. Co-
951 Occurrence of Francisella, Spotted Fever Group Rickettsia, and Midichloria in Avian-Associated
952 Hyalomma rufipes. *Microorganisms*. 2022;10(7):1393. PubMed PMID:
953 doi:10.3390/microorganisms10071393.

954 21. Alberdi MP, Dalby MJ, Rodriguez-Andres J, Fazakerley JK, Kohl A, Bell-Sakyi L. Detection
955 and identification of putative bacterial endosymbionts and endogenous viruses in tick cell lines.
956 *Ticks Tick Borne Dis.* 2012;3(3):137-46. Epub 20120627. doi: 10.1016/j.ttbdis.2012.05.002.
957 PubMed PMID: 22743047; PubMed Central PMCID: PMCPMC3431536.

958 22. Policastro PF, Munderloh UG, Fischer ER, Hackstadt T. *Rickettsia rickettsii* growth and
959 temperature-inducible protein expression in embryonic tick cell lines. *J Med Microbiol.*
960 1997;46(10):839-45. doi: 10.1099/00222615-46-10-839. PubMed PMID: 9364140.

961 23. Bell-Sakyi L, Darby A, Baylis M, Makepeace BL. The Tick Cell Biobank: A global resource
962 for in vitro research on ticks, other arthropods and the pathogens they transmit. *Ticks Tick
963 Borne Dis.* 2018;9(5):1364-71. Epub 20180531. doi: 10.1016/j.ttbdis.2018.05.015. PubMed
964 PMID: 29886187; PubMed Central PMCID: PMCPMC6052676.

965 24. Munderloh UG, Jauron SD, Fingerle V, Leitritz L, Hayes SF, Hautman JM, et al. Invasion
966 and intracellular development of the human granulocytic ehrlichiosis agent in tick cell culture. *J
967 Clin Microbiol.* 1999;37(8):2518-24. doi: 10.1128/JCM.37.8.2518-2524.1999. PubMed PMID:
968 10405394; PubMed Central PMCID: PMCPMC85271.

969 25. Larson MA, Nalbantoglu U, Sayood K, Zentz EB, Cer RZ, Iwen PC, et al. Reclassification of
970 *Wolbachia persica* as *Francisella persica* comb. nov. and emended description of the family

971 Francisellaceae. *Int J Syst Evol Microbiol.* 2016;66(3):1200-5. Epub 20160107. doi:
972 10.1099/ijsem.0.000855. PubMed PMID: 26747442.

973 26. Gerhart JG, Auguste Dutcher H, Brenner AE, Moses AS, Grubhoffer L, Raghavan R.
974 Multiple Acquisitions of Pathogen-Derived *Francisella* Endosymbionts in Soft Ticks. *Genome Biol*
975 *Evol.* 2018;10(2):607-15. doi: 10.1093/gbe/evy021. PubMed PMID: 29385445; PubMed Central
976 PMCID: PMCPMC5804916.

977 27. Duron O, Morel O, Noel V, Buysse M, Binetruy F, Lancelot R, et al. Tick-Bacteria
978 Mutualism Depends on B Vitamin Synthesis Pathways. *Curr Biol.* 2018;28(12):1896-902 e5.
979 Epub 20180531. doi: 10.1016/j.cub.2018.04.038. PubMed PMID: 29861133.

980 28. Buysse M, Duron O. Evidence that microbes identified as tick-borne pathogens are
981 nutritional endosymbionts. *Cell.* 2021;184(9):2259-60. doi: 10.1016/j.cell.2021.03.053. PubMed
982 PMID: 33930290.

983 29. Jia N, Wang J, Shi W, Du L, Sun Y, Zhan W, et al. Large-Scale Comparative Analyses of
984 Tick Genomes Elucidate Their Genetic Diversity and Vector Capacities. *Cell.* 2020;182(5):1328-
985 40 e13. Epub 20200818. doi: 10.1016/j.cell.2020.07.023. PubMed PMID: 32814014.

986 30. Buysse M, Floriano AM, Gottlieb Y, Nardi T, Comandatore F, Olivieri E, et al. A dual
987 endosymbiosis supports nutritional adaptation to hematophagy in the invasive tick *Hyalomma*
988 *marginatum*. *Elife.* 2021;10. Epub 20211224. doi: 10.7554/eLife.72747. PubMed PMID:
989 34951405; PubMed Central PMCID: PMCPMC8709577.

990 31. Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. *Genome*
991 *Biol.* 2019;20(1):257. Epub 2019/11/30. doi: 10.1186/s13059-019-1891-0. PubMed PMID:
992 31779668; PubMed Central PMCID: PMCPMC6883579.

993 32. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile
994 metagenomic assembler. *Genome Res.* 2017;27(5):824-34. Epub 2017/03/17. doi:
995 10.1101/gr.213959.116. PubMed PMID: 28298430; PubMed Central PMCID: PMCPMC5411777.

996 33. Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning
997 metagenomic contigs by coverage and composition. *Nat Methods.* 2014;11(11):1144-6. Epub
998 2014/09/15. doi: 10.1038/nmeth.3103. PubMed PMID: 25218180.

999 34. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al. Mash: fast
1000 genome and metagenome distance estimation using MinHash. *Genome Biol.* 2016;17(1):132.
1001 Epub 2016/06/20. doi: 10.1186/s13059-016-0997-x. PubMed PMID: 27323842; PubMed Central
1002 PMCID: PMCPMC4915045.

1003 35. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The
1004 Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA
1005 sequencing data. *Genome Res.* 2010;20(9):1297-303. Epub 2010/07/19. doi:
1006 10.1101/gr.107524.110. PubMed PMID: 20644199; PubMed Central PMCID: PMCPMC2928508.

1007 36. Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and
1008 user-friendly tool for maximum likelihood phylogenetic inference. *Bioinformatics.*
1009 2019;35(21):4453-5. doi: 10.1093/bioinformatics/btz305. PubMed PMID: 31070718; PubMed
1010 Central PMCID: PMCPMC6821337.

1011 37. Sahl JW, Lemmer D, Travis J, Schupp JM, Gillece JD, Aziz M, et al. NASP: an accurate,
1012 rapid method for the identification of SNPs in WGS datasets that supports flexible input and
1013 output formats. *Microbial Genomics.* 2016;2(8). doi: ARTN 74
1014 10.1099/mgen.0.000074. PubMed PMID: WOS:000431154000007.

1015 38. Deatherage Kaiser BL, Birdsell DN, Hutchison JR, Thelaus J, Jenson SC,

1016 Andrianaivoarimanana V, et al. Proteomic Signatures of Antimicrobial Resistance in *Yersinia*

1017 *pestis* and *Francisella tularensis*. *Front Med (Lausanne)*. 2022;9:821071. Epub 20220210. doi:

1018 10.3389/fmed.2022.821071. PubMed PMID: 35223919; PubMed Central PMCID:

1019 PMCPMC8866660.

1020 39. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+:

1021 architecture and applications. *BMC Bioinformatics*. 2009;10:421. Epub 20091215. doi:

1022 10.1186/1471-2105-10-421. PubMed PMID: 20003500; PubMed Central PMCID:

1023 PMCPMC2803857.

1024 40. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high

1025 throughput. *Nucleic Acids Res*. 2004;32(5):1792-7. Epub 20040319. doi: 10.1093/nar/gkh340.

1026 PubMed PMID: 15034147; PubMed Central PMCID: PMCPMC390337.

1027 41. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective

1028 stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol Biol Evol*.

1029 2015;32(1):268-74. Epub 20141103. doi: 10.1093/molbev/msu300. PubMed PMID: 25371430;

1030 PubMed Central PMCID: PMCPMC4271533.

1031 42. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast

1032 model selection for accurate phylogenetic estimates. *Nat Methods*. 2017;14(6):587-9. Epub

1033 20170508. doi: 10.1038/nmeth.4285. PubMed PMID: 28481363; PubMed Central PMCID:

1034 PMCPMC5453245.

1035 43. Kent WJ. BLAT--the BLAST-like alignment tool. *Genome Res.* 2002;12(4):656-64. Epub
1036 2002/04/05. doi: 10.1101/gr.229202. Article published online before March 2002. PubMed
1037 PMID: 11932250; PubMed Central PMCID: PMC187518.

1038 44. Sahl JW, Schupp JM, Rasko DA, Colman RE, Foster JT, Keim P. Phylogenetically typing
1039 bacterial strains from partial SNP genotypes observed from direct sequencing of clinical
1040 specimen metagenomic data. *Genome Med.* 2015;7(1):52. Epub 20150609. doi:
1041 10.1186/s13073-015-0176-9. PubMed PMID: 26136847; PubMed Central PMCID:
1042 PMCPMC4487561.

1043 45. Walter KS, Carpi G, Caccone A, Diuk-Wasser MA. Genomic insights into the ancient
1044 spread of Lyme disease across North America. *Nat Ecol Evol.* 2017;1(10):1569-76. doi:
1045 10.1038/s41559-017-0282-8. PubMed PMID: WOS:000417192000026.

1046 46. Kilic S, Birdsell DN, Karagoz A, Celebi B, Bakkaloglu Z, Arikan M, et al. Water as Source of
1047 *Francisella tularensis* Infection in Humans, Turkey. *Emerg Infect Dis.* 2015;21(12):2213-6. Epub
1048 2015/11/20. doi: 10.3201/eid2112.150634. PubMed PMID: 26583383; PubMed Central PMCID:
1049 PMCPMC4672436.

1050 47. Chanturia G, Birdsell DN, Kekelidze M, Zhgenti E, Babuadze G, Tsertsvadze N, et al.
1051 Phylogeography of *Francisella tularensis* subspecies *holarctica* from the country of Georgia.
1052 *BMC Microbiol.* 2011;11:139. Epub 2011/06/21. doi: 10.1186/1471-2180-11-139. PubMed
1053 PMID: 21682874; PubMed Central PMCID: PMCPMC3224097.

1054 48. Birdsell DN, Ozserekci Y, Rawat A, Aycan AE, Mitchell CL, Sahl JW, et al. Coinfections
1055 identified from metagenomic analysis of cervical lymph nodes from tularemia patients. *BMC*

1056 Infect Dis. 2018;18(1):319. Epub 2018/07/13. doi: 10.1186/s12879-018-3218-2. PubMed PMID: 29996780; PubMed Central PMCID: PMCPMC6042416.

1058 49. Keim P, Pearson T, Budowle B, Wilson M, Wagner DM. Microbial forensic investigations
1059 in the context of bacterial population genetics. *Microbial Forensics*, 3rd Edition. 2020:381-92.

1060 doi: 10.1016/B978-0-12-815379-6.00025-8. PubMed PMID: WOS:000664723900027.

1061 50. Birdsell DN, Yaglom H, Rodriguez E, Engelthaler DM, Maurer M, Gaither M, et al.

1062 Phylogenetic Analysis of *Francisella tularensis* Group A.II Isolates from 5 Patients with

1063 Tularemia, Arizona, USA, 2015-2017. *Emerg Infect Dis*. 2019;25(5):944-6. Epub 2019/04/20. doi:
1064 10.3201/eid2505.180363. PubMed PMID: 31002053; PubMed Central PMCID:
1065 PMCPMC6478195.

1066 51. Tarnvik A, Chu MC. New approaches to diagnosis and therapy of tularemia. *Ann N Y
1067 Acad Sci*. 2007;1105:378-404. Epub 20070427. doi: 10.1196/annals.1409.017. PubMed PMID:
1068 17468229.

1069 52. Overholt EL, Tigertt WD, Kadull PJ, Ward MK, Charkes ND, Rene RM, et al. An analysis of
1070 forty-two cases of laboratory-acquired tularemia. Treatment with broad spectrum antibiotics.
1071 *Am J Med*. 1961;30:785-806. doi: 10.1016/0002-9343(61)90214-5. PubMed PMID: 13731776.

1072 53. Maurin M. *Francisella tularensis*, Tularemia and Serological Diagnosis. *Front Cell Infect
1073 Microbiol*. 2020;10:512090. Epub 20201026. doi: 10.3389/fcimb.2020.512090. PubMed PMID:
1074 33194778; PubMed Central PMCID: PMCPMC7649319.

1075 54. Snowden J, Stovall S. Tularemia: retrospective review of 10 years' experience in
1076 Arkansas. *Clin Pediatr (Phila)*. 2011;50(1):64-8. Epub 20100913. doi:
1077 10.1177/0009922810381425. PubMed PMID: 20837613.

1078 55. (HHS) DoHaHS. Possession, Use, and Transfer of Select Agents and Toxins; Biennial

1079 Review of the List of Select Agents and Toxins and Enhanced Biosafety Requirements. Final rule.

1080 Federal Register. 2017;82(12):6278-94.

1081 56. Respicio-Kingry LB, Byrd L, Allison A, Brett M, Scott-Waldron C, Galliher K, et al.

1082 Cutaneous infection caused by a novel *Francisella* sp. J Clin Microbiol. 2013;51(10):3456-60.

1083 Epub 20130731. doi: 10.1128/JCM.01105-13. PubMed PMID: 23903547; PubMed Central

1084 PMCID: PMCPMC3811661.

1085 57. Johansson A, Larkeryd A, Widerstrom M, Mortberg S, Myrtannas K, Ohrman C, et al. An

1086 outbreak of respiratory tularemia caused by diverse clones of *Francisella tularensis*. Clin Infect

1087 Dis. 2014;59(11):1546-53. Epub 2014/08/07. doi: 10.1093/cid/ciu621. PubMed PMID:

1088 25097081; PubMed Central PMCID: PMCPMC4650766.

1089 58. Dietrich EA, Kingry LC, Kugeler KJ, Levy C, Yaglom H, Young JW, et al. *Francisella*

1090 *opportunistica* sp. nov., isolated from human blood and cerebrospinal fluid. Int J Syst Evol Micr.

1091 2020;70(2):1145-51. doi: 10.1099/ijsem.0.003891. PubMed PMID: WOS:000522888400064.

1092 59. Kugeler KJ, Mead PS, McGowan KL, Burnham JM, Hogarty MD, Ruchelli E, et al. Isolation

1093 and characterization of a novel *Francisella* sp. from human cerebrospinal fluid and blood. J Clin

1094 Microbiol. 2008;46(7):2428-31. Epub 2008/05/23. doi: 10.1128/JCM.00698-08. PubMed PMID:

1095 18495864; PubMed Central PMCID: PMCPMC2446908.

1096 60. Clarridge JE, 3rd, Raich TJ, Sjosted A, Sandstrom G, Darouiche RO, Shawar RM, et al.

1097 Characterization of two unusual clinically significant *Francisella* strains. J Clin Microbiol.

1098 1996;34(8):1995-2000. Epub 1996/08/01. doi: 10.1128/jcm.34.8.1995-2000.1996. PubMed

1099 PMID: 8818897; PubMed Central PMCID: PMCPMC229169.

1100 61. Matz LM, Kamdar KY, Holder ME, Metcalf GA, Weissenberger GM, Meng Q, et al.

1101 Challenges of *Francisella* classification exemplified by an atypical clinical isolate. *Diagn*

1102 *Microbiol Infect Dis.* 2018;90(4):241-7. Epub 20171206. doi:

1103 10.1016/j.diagmicrobio.2017.11.023. PubMed PMID: 29329757; PubMed Central PMCID:

1104 PMCPMC5857240.

1105 62. Kingry LC, Petersen JM. Comparative review of *Francisella tularensis* and *Francisella*

1106 *novicida*. *Front Cell Infect Microbiol.* 2014;4:35. Epub 20140313. doi:

1107 10.3389/fcimb.2014.00035. PubMed PMID: 24660164; PubMed Central PMCID:

1108 PMCPMC3952080.

1109 63. Birdsell DN, Stewart T, Vogler AJ, Lawaczeck E, Diggs A, Sylvester TL, et al. *Francisella*

1110 *tularensis* subsp. *novicida* isolated from a human in Arizona. *BMC Res Notes.* 2009;2:223. Epub

1111 20091106. doi: 10.1186/1756-0500-2-223. PubMed PMID: 19895698; PubMed Central PMCID:

1112 PMCPMC2780447.

1113 64. Hennebique A, Boisset S, Maurin M. Tularemia as a waterborne disease: a review.

1114 *Emerg Microbes Infect.* 2019;8(1):1027-42. doi: 10.1080/22221751.2019.1638734. PubMed

1115 PMID: 31287787; PubMed Central PMCID: PMCPMC6691783.

1116 65. Hollis DG, Weaver RE, Steigerwalt AG, Wenger JD, Moss CW, Brenner DJ. *Francisella*

1117 *philomiragia* comb. nov. (formerly *Yersinia philomiragia*) and *Francisella tularensis* biogroup

1118 *novicida* (formerly *Francisella novicida*) associated with human disease. *J Clin Microbiol.*

1119 1989;27(7):1601-8. Epub 1989/07/01. doi: 10.1128/jcm.27.7.1601-1608.1989. PubMed PMID:

1120 2671019; PubMed Central PMCID: PMCPMC267622.

1121 66. Wenger JD, Hollis DG, Weaver RE, Baker CN, Brown GR, Brenner DJ, et al. Infection
1122 caused by *Francisella philomiragia* (formerly *Yersinia philomiragia*). A newly recognized human
1123 pathogen. *Ann Intern Med.* 1989;110(11):888-92. doi: 10.7326/0003-4819-110-11-888.
1124 PubMed PMID: 2541646.

1125 67. Chua HS, Soh YH, Loong SK, AbuBakar S. *Francisella philomiragia* bacteremia in an
1126 immunocompromised patient: a rare case report. *Ann Clin Microbiol Antimicrob.*
1127 2021;20(1):72. Epub 20211003. doi: 10.1186/s12941-021-00475-2. PubMed PMID: 34602092;
1128 PubMed Central PMCID: PMCPMC8489096.

1129 68. Berrada ZL, Telford SR, 3rd. Diversity of *Francisella* species in environmental samples
1130 from Martha's Vineyard, Massachusetts. *Microb Ecol.* 2010;59(2):277-83. Epub 20090812. doi:
1131 10.1007/s00248-009-9568-y. PubMed PMID: 19669828; PubMed Central PMCID:
1132 PMCPMC2836248.

1133 69. Duodu S, Larsson P, Sjodin A, Forsman M, Colquhoun DJ. The distribution of *Francisella*-
1134 like bacteria associated with coastal waters in Norway. *Microb Ecol.* 2012;64(2):370-7. Epub
1135 20120228. doi: 10.1007/s00248-012-0023-0. PubMed PMID: 22370877.

1136 70. Gu Q, Li X, Qu P, Hou S, Li J, Atwill ER, et al. Characterization of *Francisella* species
1137 isolated from the cooling water of an air conditioning system. *Braz J Microbiol.* 2015;46(3):921-
1138 7. Epub 20150701. doi: 10.1590/S1517-838246320140465. PubMed PMID: 26413079; PubMed
1139 Central PMCID: PMCPMC4568874.

1140 71. Relich RF, Humphries RM, Mattison HR, Miles JE, Simpson ER, Corbett IJ, et al.
1141 *Francisella philomiragia* Bacteremia in a Patient with Acute Respiratory Insufficiency and Acute-

1142 on-Chronic Kidney Disease. *J Clin Microbiol.* 2015;53(12):3947-50. doi: 10.1128/JCM.01762-15.

1143 PubMed PMID: 26400786; PubMed Central PMCID: PMCPMC4652090.

1144 72. Propst CN, Pylypko SL, Blower RJ, Ahmad S, Mansoor M, van Hoek ML. *Francisella*

1145 *philomiragia* Infection and Lethality in Mammalian Tissue Culture Cell Models, *Galleria*

1146 *mellonella*, and BALB/c Mice. *Front Microbiol.* 2016;7:696. Epub 20160524. doi:

1147 10.3389/fmicb.2016.00696. PubMed PMID: 27252681; PubMed Central PMCID:

1148 PMCPMC4877389.

1149 73. Be NA, Thissen JB, Fofanov VY, Allen JE, Rojas M, Golovko G, et al. Metagenomic analysis

1150 of the airborne environment in urban spaces. *Microb Ecol.* 2015;69(2):346-55. Epub

1151 2014/10/30. doi: 10.1007/s00248-014-0517-z. PubMed PMID: 25351142; PubMed Central

1152 PMCID: PMCPMC4312561.

1153 74. Buysse M, Binetruy F, Leibson R, Gottlieb Y, Duron O. Ecological Contacts and Host

1154 Specificity Promote Replacement of Nutritional Endosymbionts in Ticks. *Microb Ecol.* 2021.

1155 Epub 20210708. doi: 10.1007/s00248-021-01773-0. PubMed PMID: 34235554.

1156 75. Binetruy F, Buysse M, Lejarre Q, Barosi R, Villa M, Rahola N, et al. Microbial community

1157 structure reveals instability of nutritional symbiosis during the evolutionary radiation of

1158 *Amblyomma* ticks. *Mol Ecol.* 2020;29(5):1016-29. Epub 20200223. doi: 10.1111/mec.15373.

1159 PubMed PMID: 32034827.

1160 76. de Bruin OM, Duplantis BN, Ludu JS, Hare RF, Nix EB, Schmerk CL, et al. The biochemical

1161 properties of the *Francisella* pathogenicity island (FPI)-encoded proteins IgIA, IgIB, IgIC, PdpB

1162 and DotU suggest roles in type VI secretion. *Microbiology (Reading).* 2011;157(Pt 12):3483-91.

1163 Epub 20111006. doi: 10.1099/mic.0.052308-0. PubMed PMID: 21980115; PubMed Central
1164 PMCID: PMCPMC3352279.

1165 77. Nano FE, Schmerk C. The *Francisella* pathogenicity island. *Ann N Y Acad Sci.*
1166 2007;1105:122-37. Epub 20070329. doi: 10.1196/annals.1409.000. PubMed PMID: 17395722.

1167 78. Duron O, Gottlieb Y. Convergence of Nutritional Symbioses in Obligate Blood Feeders.
1168 *Trends Parasitol.* 2020;36(10):816-25. Epub 20200815. doi: 10.1016/j.pt.2020.07.007. PubMed
1169 PMID: 32811753.

1170 79. Zhong Z, Zhong T, Peng Y, Zhou X, Wang Z, Tang H, et al. Symbiont-regulated serotonin
1171 biosynthesis modulates tick feeding activity. *Cell Host Microbe.* 2021;29(10):1545-57 e4. Epub
1172 20210914. doi: 10.1016/j.chom.2021.08.011. PubMed PMID: 34525331.

1173 80. Karlsson J, Prior RG, Williams K, Lindler L, Brown KA, Chatwell N, et al. Sequencing of the
1174 *Francisella tularensis* strain Schu 4 genome reveals the shikimate and purine metabolic
1175 pathways, targets for the construction of a rationally attenuated auxotrophic vaccine. *Microb
1176 Comp Genomics.* 2000;5(1):25-39. doi: 10.1089/10906590050145249. PubMed PMID:
1177 11011763.

1178 81. Titball RW, Oyston PC. A vaccine for tularaemia. *Expert Opin Biol Ther.* 2003;3(4):645-
1179 53. doi: 10.1517/14712598.3.4.645. PubMed PMID: 12831369.

1180 82. Perreau J, Moran NA. Genetic innovations in animal-microbe symbioses. *Nat Rev Genet.*
1181 2022;23(1):23-39. Epub 20210813. doi: 10.1038/s41576-021-00395-z. PubMed PMID:
1182 34389828; PubMed Central PMCID: PMCPMC8832400.

1183 83. Masson F, Lemaitre B. Growing Ungrowable Bacteria: Overview and Perspectives on
1184 Insect Symbiont Culturability. *Microbiol Mol Biol Rev.* 2020;84(4). Epub 20201111. doi:

1185 10.1128/MMBR.00089-20. PubMed PMID: 33177190; PubMed Central PMCID:
1186 PMCPMC7667007.

1187 84. Geniez S, Foster JM, Kumar S, Moumen B, Leproust E, Hardy O, et al. Targeted genome
1188 enrichment for efficient purification of endosymbiont DNA from host DNA. *Symbiosis*.
1189 2012;58(1-3):201-7. Epub 20130106. doi: 10.1007/s13199-012-0215-x. PubMed PMID:
1190 23482460; PubMed Central PMCID: PMCPMC3589621.

1191 85. Karlsson E, Johansson AM, Ahlinder J, Lundkvist MJ, Singh NJ, Brodin T, et al. Airborne
1192 microbial biodiversity and seasonality in Northern and Southern Sweden. *Peerj*. 2020;8. doi:
1193 ARTN e8424

1194 10.7717/peerj.8424. PubMed PMID: WOS:000509466300009.

1195 86. Jain K, Tagliafierro T, Marques A, Sanchez-Vicente S, Gokden A, Fallon B, et al.
1196 Development of a capture sequencing assay for enhanced detection and genotyping of tick-
1197 borne pathogens. *Sci Rep*. 2021;11(1):12384. Epub 2021/06/13. doi: 10.1038/s41598-021-
1198 91956-z. PubMed PMID: 34117323; PubMed Central PMCID: PMCPMC8196166.

1199

1200 **Supporting information**

1201 **S1 Fig. Enriched dust sample.** Percentage of reads classified as *Francisellaceae* based on
1202 Kraken2 for the spiked and unenriched dust sample, and the same sample after one and two
1203 enrichments.

1204 **S2 Fig. MAG dendrogram.** A cluster dendrogram of pairwise MASH distances. The cluster was
1205 generated from distances with Skbio.

1206 **S3 Fig. WG-FAST phylogeny.** The reference phylogeny was inferred from all SNPs identified
1207 from a reference set of *F. tularensis* genomes (Table S1). The query samples were inserted into
1208 the phylogeny with WG-FAST using all called SNPs. The query samples are shown in red and the
1209 number at the end of each sample name indicates the number of randomly sampled paired end
1210 reads.

1211 **S1 Table. List of genomes utilized in this study.** Accession and other information for all
1212 genomes utilized in this study.

1213 **S2 Table. Master list of probes utilized in this study.** The name and sequence of all probes in
1214 the enrichment design. Annotation was provided for specific probes based on their specificity
1215 to individual species or clades.

1216 **S3 Table. Complex samples enriched in this study.** Metadata for samples enriched and
1217 analyzed in this study.

1218 **S4 Table. Probe coverage across enriched samples.** The breadth of coverage at 3x depth for
1219 samples across selected probes.

1220 **S5 Table. FPI gene screening results for *F. tularensis*.** Breadth of coverage at 3x depth for all
1221 enriched samples containing *F. tularensis* against locus tags in *F. tularensis*. Annotation was
1222 provided if a premature stop codon was gained, if there was a frameshift mutation, if a
1223 truncation in the gene was observed, or if the gene appeared to be intact, all based on Snippy
1224 annotations.

1225 **S6 Table. FPI gene screening results for *Francisella*-like endosymbionts.** Breadth of coverage at
1226 3x depth for all FLE samples against locus tags in *F. persica*. Annotation was provided if a

1227 premature stop codon was gained, if there was a frameshift mutation, if a truncation in the
1228 gene was observed, or if the gene appeared to be intact, all based on Snippy annotations.

1229 **S7 Table. Biotin gene screening results.** Breadth of coverage at 3x depth across genes
1230 associated with the biotin synthesis cluster in *F. persica*. Annotation was provided if a
1231 premature stop codon was gained, if there was a frameshift mutation, or if the gene appeared
1232 to be intact, all based on Snippy annotations.

1233 **S8 Table. Shikimate gene screening results.** Breadth of coverage at 3x depth across genes
1234 associated with the shikimate synthesis cluster in *F. persica*. Annotation was provided if a
1235 frameshift mutation was observed or if the gene appeared to be intact, all based on Snippy
1236 annotations.

F. tularensis core probes

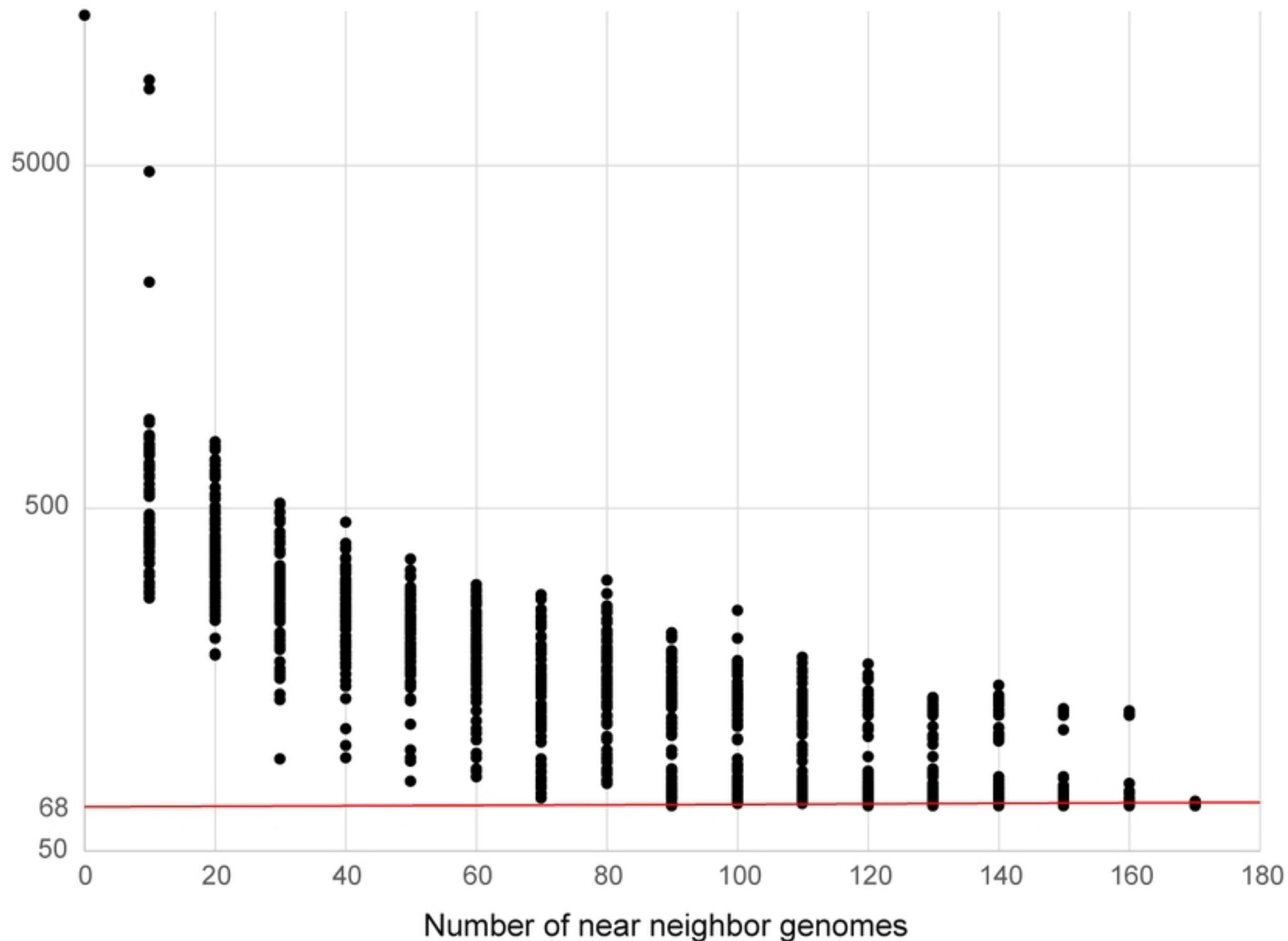


Figure 1

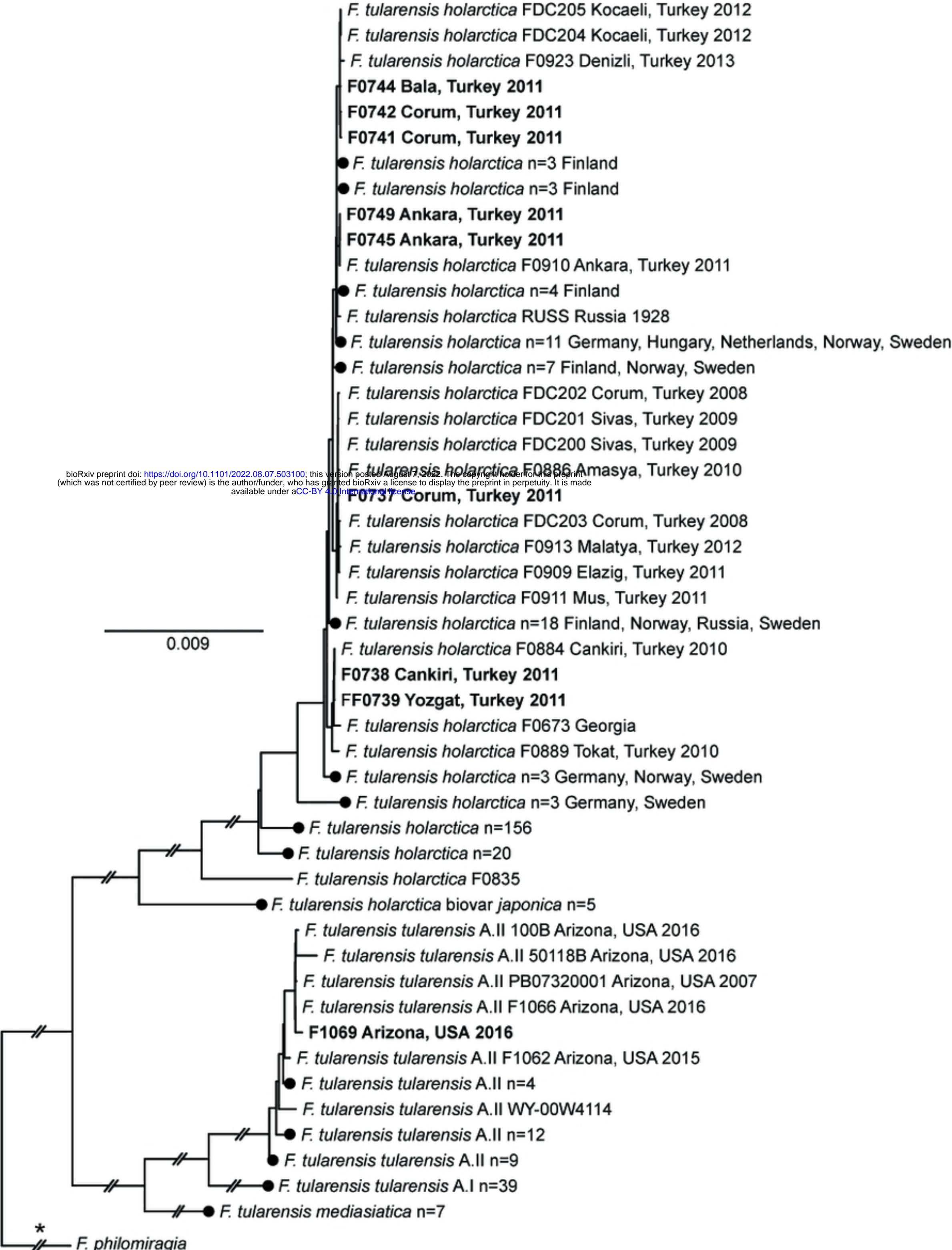


Figure 2

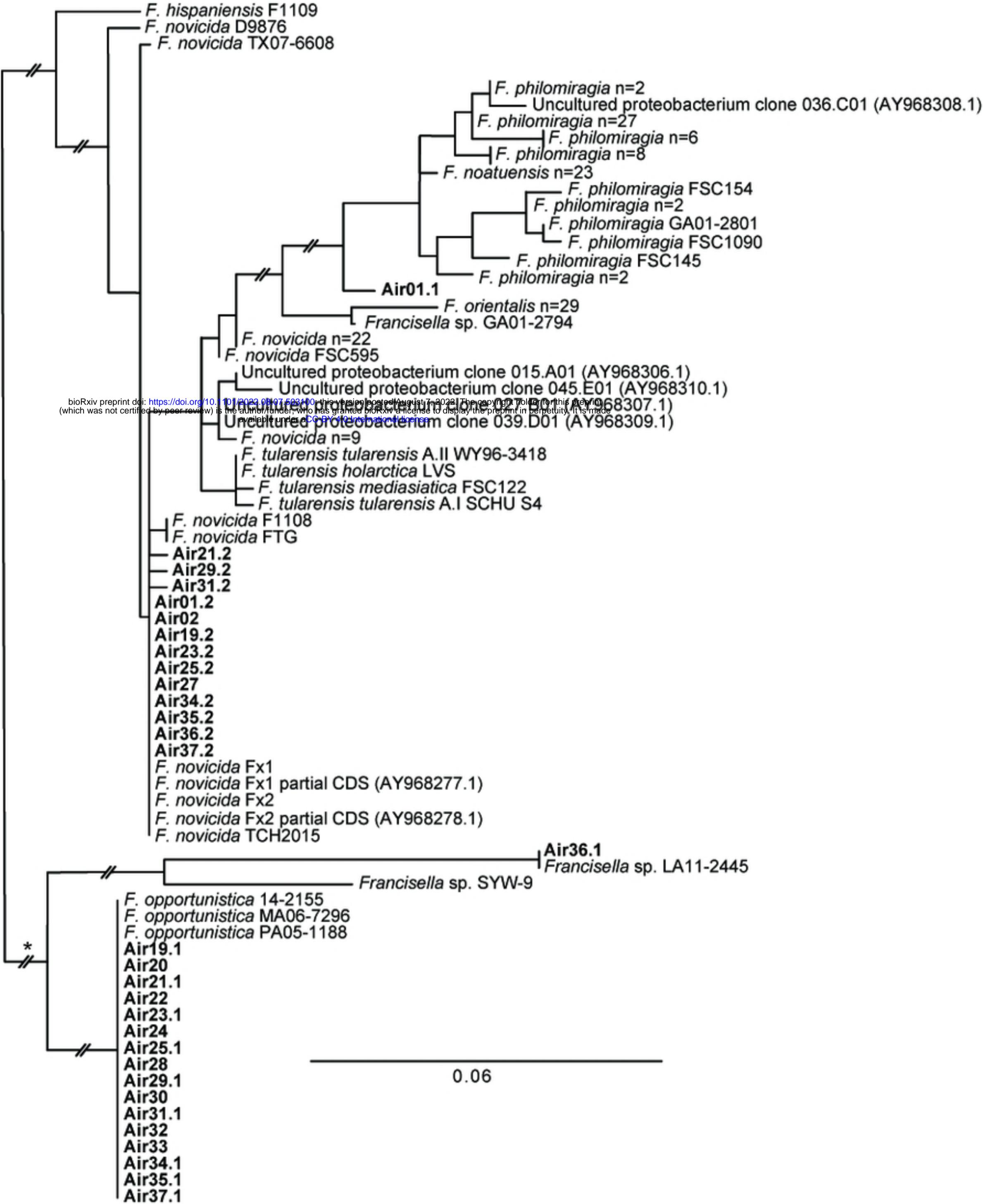


Figure 3

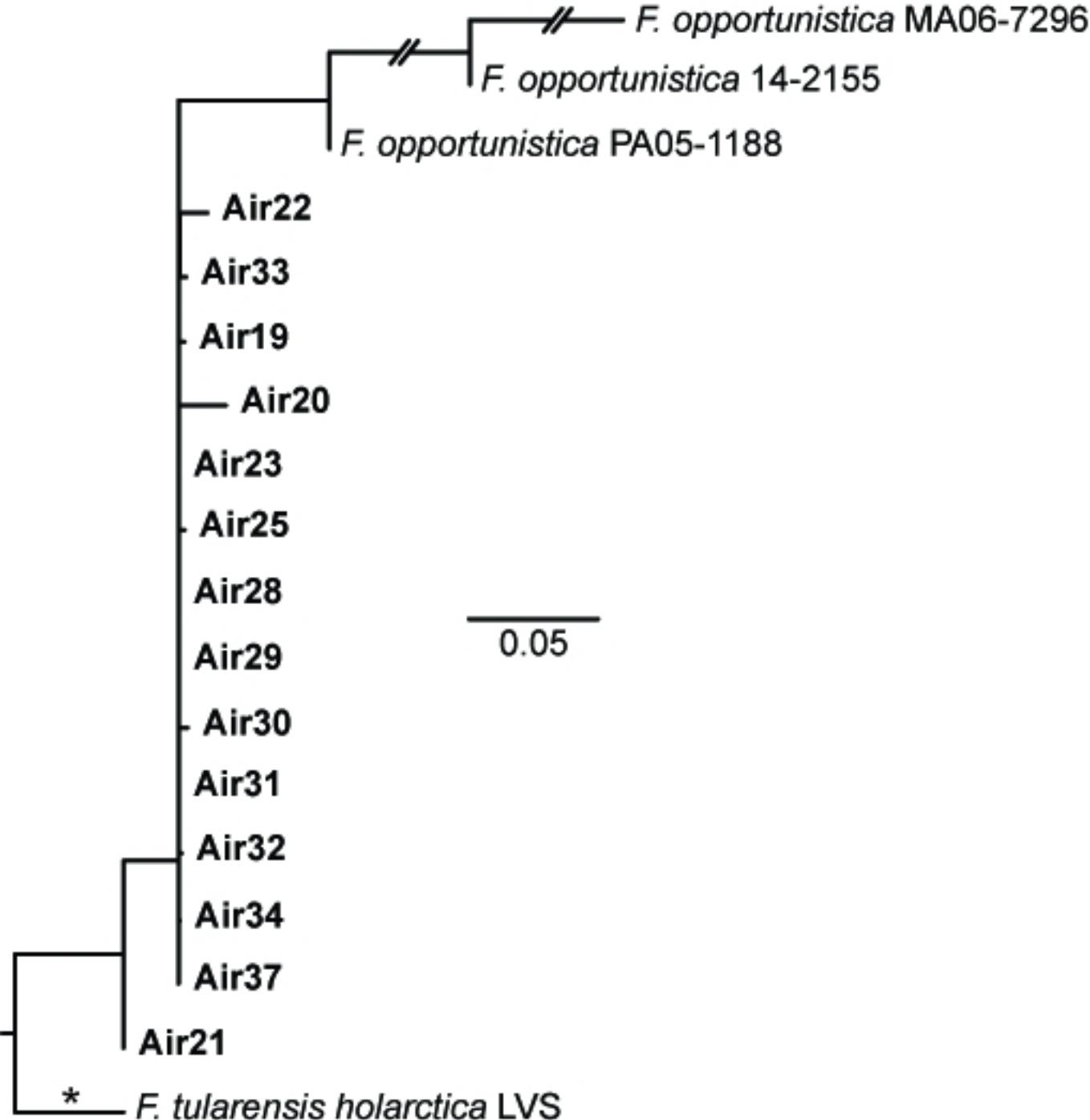


Figure 4

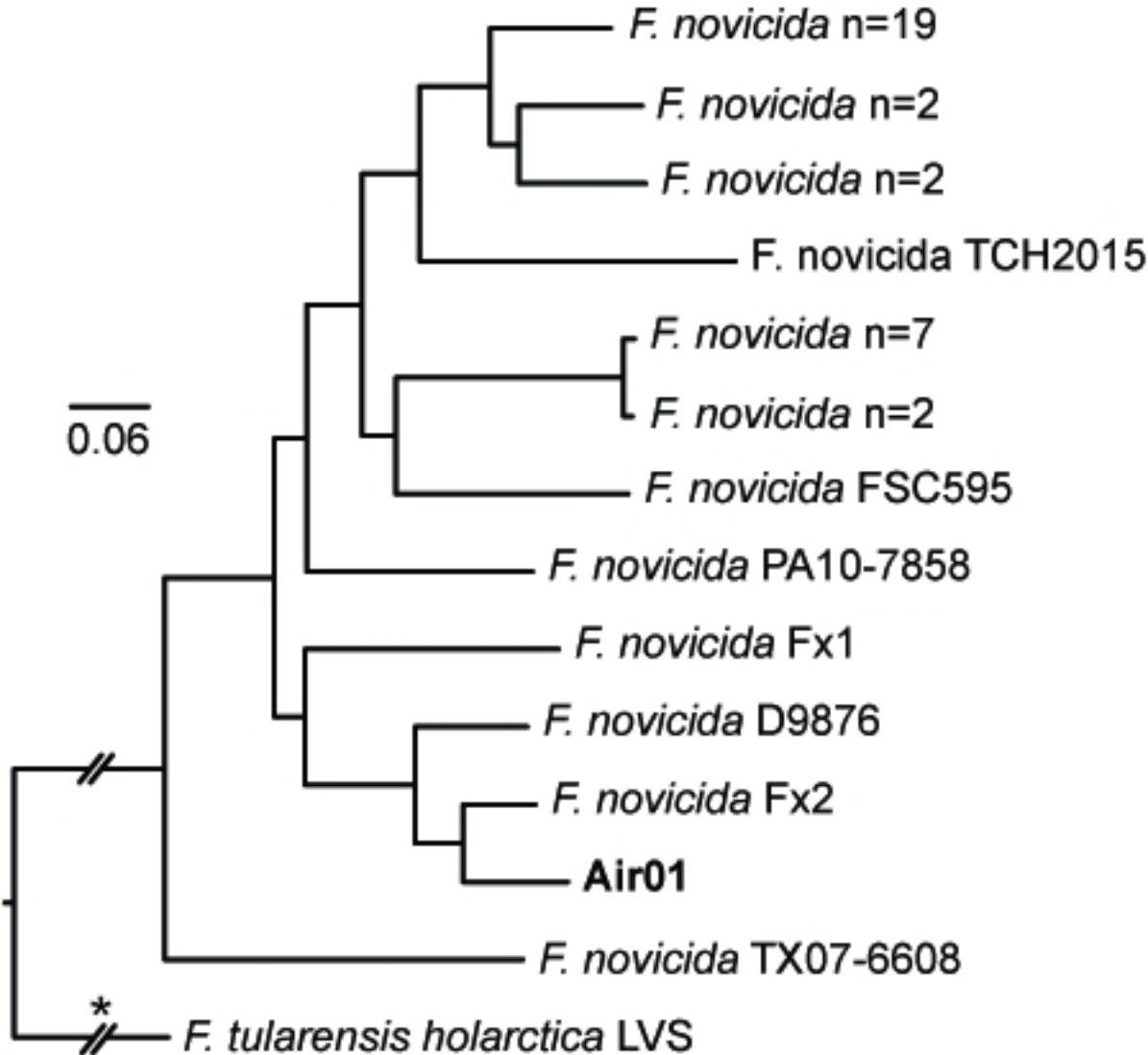


Figure 5

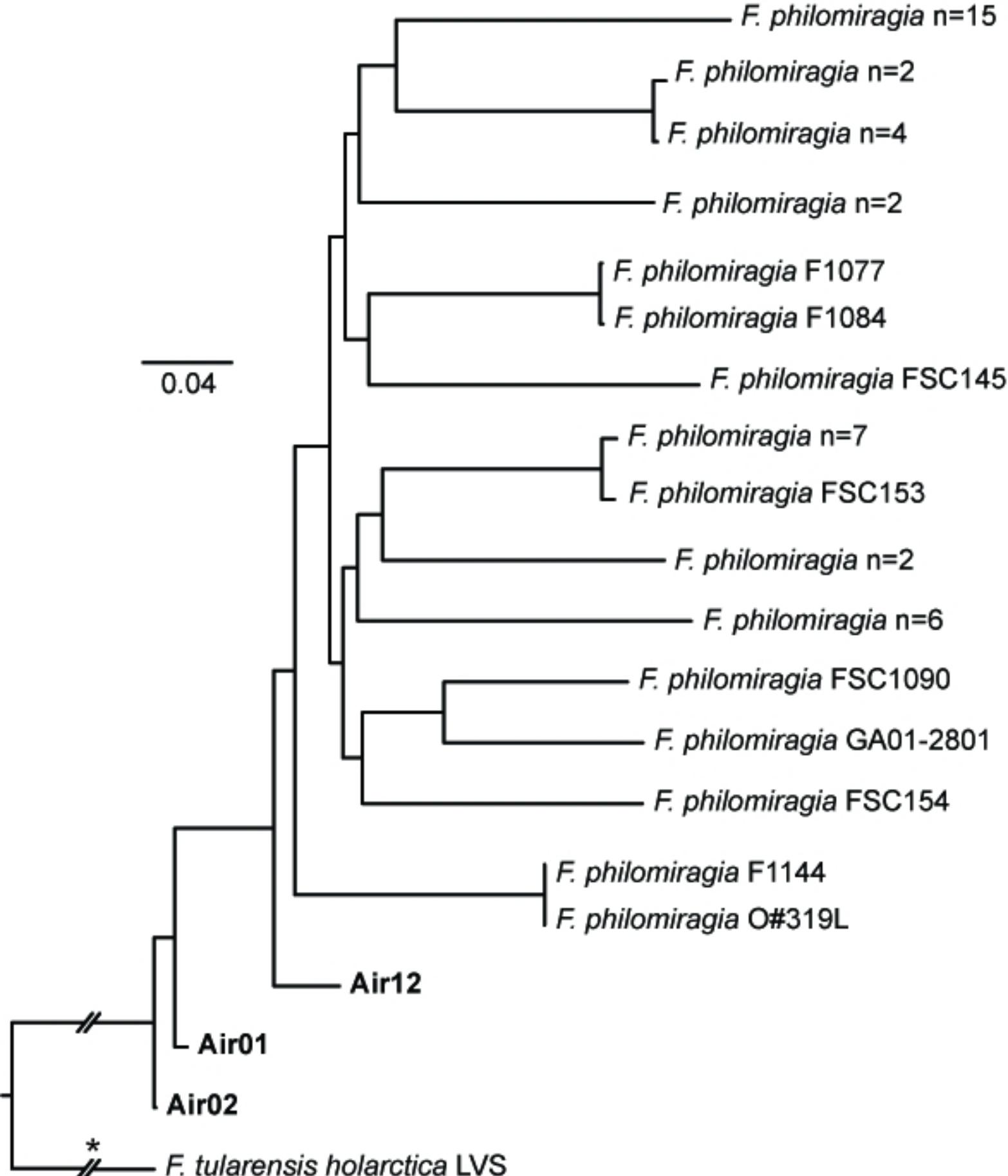


Figure 6

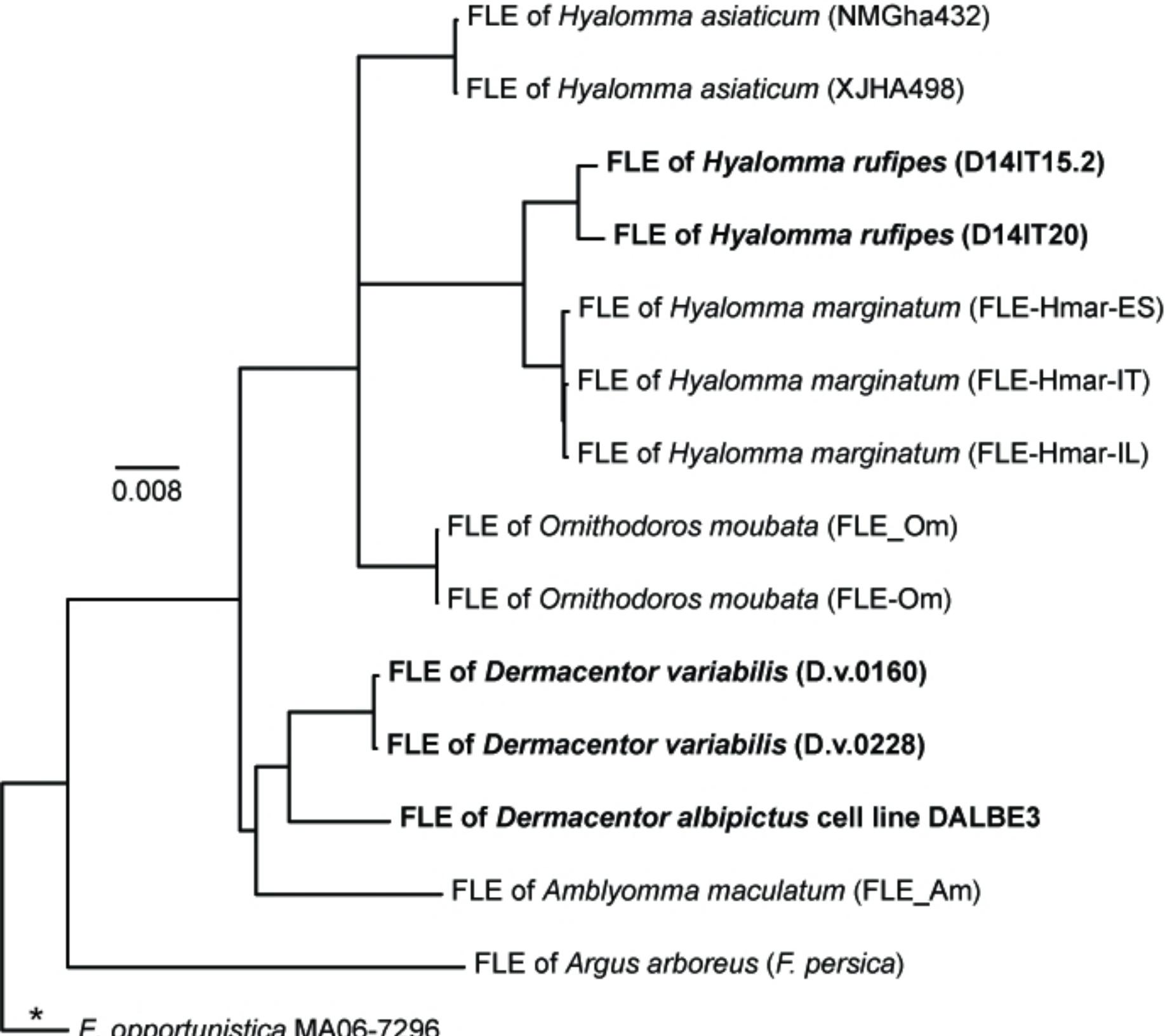


Figure 7