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Abstract 
 
Single cell Hi-C (scHi-C) has been used to map genome organization in complex tissues. However, 
computational tools to detect dynamic chromatin contacts from scHi-C datasets in development and through 
disease pathogenesis are still lacking. Here, we present SnapHiC-D, a computational pipeline to identify 
differential chromatin contacts (DCCs) between two scHi-C datasets. Compared to methods designed for bulk 
Hi-C data, SnapHiC-D detects DCCs with high sensitivity and accuracy. We used SnapHiC-D to identify cell-
type-specific chromatin contacts at 10 kilobase resolution in mouse hippocampal and human prefrontal cortical 
tissues, and demonstrated that DCCs detected in the cortical and hippocampal cell types are generally 
correlated with cell-type-specific gene expression patterns and epigenomic features.  
 

1. Introduction 
2.  

 
The Three-dimensional (3D) architecture of chromosomes in the nucleus plays a key role in the regulation of 
gene expression1-4. Consequently, the disruption of 3D genome structure is often associated with gene 
dysregulation contributing to a variety of human diseases including cancer5. High-throughput chromatin 
conformation capture technologies (i.e., Hi-C)6,7 have been widely used to characterize the spatial organization 
of chromatin fibers in a broad spectrum of species. However, traditional bulk Hi-C assays require a large 
volume of input materials, preventing them from capturing cell-type-specific 3D genome organization in 
complex tissues. In recent years, single cell Hi-C (scHi-C) and related methods8-13 have enabled the 
measurement of chromatin organization in individual cells, facilitating the identification of cell-type-specific 3D 
genome features directly from complex tissues.    
 
While scHi-C technologies have evolved rapidly, statistical models and computational tools tailored to extract 
rich information in scHi-C data are still in the early stages of development. Most recent efforts have targeted 
the characterization of 3D genomic features at single cell resolution, such as A/B compartments and 
topologically associating domain (TAD)-like structures14-17 (more details can be found in the recent review 
papers18-20). However, tools for comparative analysis of scHi-C datasets, for example, identifying differential 
chromatin contacts (DCCs) between cell types, have yet to be developed.  
 
Several methods have been reported to identify DCCs in bulk Hi-C data from distinct cell types or 
developmental stages21-26. However, no method has been developed for identifying DCC from scHi-C data. In 
order to detect DCCs between different cell types from scHi-C data, one approach is to first aggregate single 
cells belonging to the same cell type into pseudo bulk Hi-C data, and then apply existing DCC callers designed 
for bulk Hi-C. However, such an approach is sub-optimal for scHi-C data for at least two reasons. First, scHi-C 
data is extremely sparse. It usually requires thousands of cells to achieve sufficient sequencing depth, limiting 
its use to the most abundant cell types in a tissue sample16,20. To address the data sparsity issue associated 
with scHi-C data, imputing missing contact frequency in each cell becomes a standard preprocessing step for 
most scHi-C data analysis18-20. After imputation, chromatin contact probabilities become a continuous variable 
taking a value between 0 and 1. Therefore, the negative binomial distribution used in most bulk Hi-C DCC 
callers23-25 cannot fit such continuous data. Second, the sample sizes available for differential analysis are 
much larger for scHi-C compared to bulk Hi-C data. In bulk Hi-C, most cell types or experimental conditions 
only consist of a small number of replicates (two or three). The limited number of replicates poses a great 
challenge in accurately estimating both between and within cell type biological variability. In contrast, scHi-C 
data typically consist of hundreds of cells of a specific cell type. Treating each cell as an independent unit has 
the potential to boost the statistical power of detecting DCCs. In sum, existing DCC callers designed for bulk 
Hi-C data are not optimal for scHi-C data. DCC callers tailored for scHi-C data are of urgent need.  
 
2. Results 
 
2.1 SnapHiC-D algorithm 
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We recently developed SnapHiC16, the first method to identify chromatin loops at kilobase resolution from scHi-
C data. Here, we extend SnapHiC to SnapHiC-D, for comparative analysis between different cell types and to 
identify DCCs from scHi-C data (see details in Methods). Briefly, we first create the 10Kb bin resolution 
contact matrix for each chromosome in each single cell and then model it as a graph, where each node is a 
10Kb bin, and the edge connecting a pair of 10Kb bins is the observed scHi-C contact spanning between these 
two 10Kb bins. We also add edges for any two consecutive 10Kb bins to make each chromosome a connected 
undirected graph. Since such graph is extremely sparse due to the limited sequenced depth in scHi-C data, we 
apply the random walk with restart (RWR) algorithm to impute all the missing edges (i.e., chromatin contact 
probabilities), as described in the previous studies14,16 (Figure 1A). Next, we convert the imputed chromatin 
contact probabilities into Z-scores, for all 10Kb bin pairs with the same 1D genomic distance, in order to 
normalize the 1D genomic distance effect (Figure 1B). SnapHiC-D takes the imputed and normalized 
chromatin contact frequency (i.e., Z-score) in each cell as the input. For each bin of interest, SnapHiC-D first 
applies the two-sided two-sample t-test to evaluate the difference in chromatin interaction frequency between 
two cell types and then reports the test statistics (T) and the corresponding P-values (Figure 1B). Next, 
SnapHiC-D converts the P-values into false discovery rate (FDR) for all 10Kb bin pairs with the same 1D 
genomic distance. Finally, SnapHiC-D defines bin pairs with |T|>2 and FDR<10% as the DCCs (Figure 1C). 
 
2.2 SnapHiC-D controls false positives under the null hypothesis  
We first benchmarked the performance of SnapHiC-D under the null hypothesis, which consists of two groups 
of cells from the same cell type. In this scenario, any identified DCCs should be treated as false positives. We 
expect that a sensible DCC caller should control false positives. Specifically, we re-analyzed the published 
scHi-C data from mouse embryonic stem cells (mESCs)8, consisting of 742 mESCs with more than 150,000 
contacts per cell. We split them equally into two groups A and B and also took the cell cycle stage into 
consideration (Table S1), which could minimize the potential DCCs caused by different cell cycles. These two 
groups also have a similar number of contacts (the average number of contacts is 442,297 and 442,010 for 
group A and group B, respectively). We benchmarked the performance of SnapHiC-D against two widely-used 
DCC callers designed for bulk Hi-C data, diffHiC23 and multiHiCcompare22. In addition, we used BandNorm to 
perform scHi-C-specific normalization before applying diffHiC, as suggested by a recent preprint27. We did not 
use the deep learning-based method 3DVI proposed in the same preprint27, since BandNorm coupled with 
diffHiC achieved comparable or superior performance than 3DVI coupled with diffHiC in terms of DCC 
detection accuracy (see details in Figure S19F in Zheng et al study27). 
 
When applying SnapHiC-D to these two groups A and B under the null hypothesis, we observed no change in 
chromatin interaction frequency at different 1D genomic distances, for all three competing methods (Figure 
S1A, Mean-distance plot [MD plot for short]). SnapHiC-D identified 221 DCCs (|T|>2 and FDR<10%) between 
group A and group B from the same cell type, among all 528,702 tested bin pairs (thus empirical FDR = 
221/528,702 = 0.04%). This empirical FDR suggests that SnapHiC-D rather conservatively controls false 
positives under the null hypothesis. We further checked the P-value distributions of three alternative methods 
(Figure S1B), and noticed only a slight enrichment of small P-values for SnapHiC-D. In contrast, P-values of 
BandNorm+diffHiC showed enrichment at the region 0 ~ 0.5 and P-values of multiHiCcompare showed strong 
enrichment near 1. The abnormal P-value distributions in BandNorm+diffHiC and multiHiCcompare suggested 
that their statistical models do not fit the sparse scHi-C data, and the FDR calculation is invalid. Therefore, for 
the remaining part of this paper, we used the nominal P-value <0.05 threshold, rather than FDR to define 
DCCs for both BandNorm+diffHiC and multiHiCcompare. 
 
2.3 SnapHiC-D identifies DCCs with high sensitivity and accuracy 
After ensuring SnapHiC-D’s validity in controlling false positives, we next benchmarked the performance of 
SnapHiC-D against other bulk Hi-C analysis tools in identifying DCC between two different cell types. We 
generated high coverage scHi-C data from 94 mESCs and 188 mouse neuron progenitor cells (NPCs) (median 
1.17 million contacts per cell for mESCs, 1.68 million contacts per cell for NPCs, see details in Methods). 
Noticeably, the number of evaluated bin pairs varies among three methods, where SnapHiC-D evaluated the 
largest number of bin pairs after imputing missing contacts in each single cell. Specifically, among the 779,772 
SnapHiC-D-evaluated bin pairs, SnapHiC-D identified 139,161 DCCs (|T|>2 and FDR<10%, 17.8%), with 
55,162 mESC-specific contacts and the rest 83,999 NPC-specific contacts. In contrast, BandNorm+diffHiC 
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identified 80,356 DCCs (P<0.05, 16.7%) among 480,099 BandNorm+diffHiC-evaluated bin pairs, with 40,616 
mESC-specific contacts and the rest 39,740 NPC-specific contacts; multiHiCcompare identified 2,881 DCCs 
(P<0.05, 12.7%) among 22,623 multiHiCcompare-evaluated bin pairs, with 1,192 mESC-specific contacts and 
the rest 1,689 NPC-specific contacts. Notably, when using the nominal P-value <0.05 threshold, 
BandNorm+diffHiC and multiHiCompare identified a similar proportion of DCCs compared to SnapHiC-D. 
 
In addition, we checked both the MD plot and P-value distribution of these three methods (Figure S2) and 
found that they are largely consistent with results obtained under the null hypothesis (Figure S1). The only 
noticeable difference is that for multiHiCcompare, NPCs have a higher chromatin contact frequency than 
mESCs, in particular when the 1D genomic distance is greater than 400Kb. We suspect that such a difference 
is largely due to NPC (N=188) consisting of more cells than mESC (N=94) and is more pronounced at a large 
1D genomic distance (>400Kb). 
 
We further evaluated the sensitivity and accuracy of the 139,161, 80,356 and 2,881 DCCs, identified by 
SnapHiC-D, BandNorm+diffHiC and multiHiCcompare, respectively. Since no gold standard DCCs between 
mouse ESCs and NPCs are available, we re-analyzed the deeply sequenced bulk Hi-C data from mESCs and 
NPCs released in the Bonev et al study28, and generated reference DCC lists using the following two 
approaches (HiCCUPS7 and multiHiCcompare22). Noticeably, HiCCUPS relies on the local background model 
to identify chromatin loops, while multiHiCcompare evaluates all bin pairs of interest without the consideration 
of loop status. Therefore, these two approaches generated different DCC lists. In this work, we treated these 
reference lists from two complementary methods as the working truth.   
 
First of all, we combined the four replicates of the same cell type together, and applied the HiCCUPS 
algorithm7 to identify 10Kb bin resolution chromatin loops from the combined data. HiCCUPS identified 8,191 
and 8,458 loops from mESCs and NPCs, respectively. We then defined cell-type-specific loops, if they are at 
least 20Kb away from any loops in the other cell type. Since SnapHiC-D only evaluated TSS-anchored bin 
pairs, to make a fair comparison, we further collected TSS-anchored cell-type-specific loops, leading to a final 
list of 926 mESC-specific TSS-anchored loops and 1,065 NPC-specific TSS-anchored loops, named as “bulk-
Hi-C-specific-loops” for short.    
 
Since bulk-Hi-C-specific-loops are generated from highly stringent HiCCUPS loops, we defined a DCC as 
“testable” if it is within 20Kb of a bulk-Hi-C-specific-loop. A DCC is considered a true positive if its cell-type-
specificity matches with the cell-type-specificity of the bulk Hi-C loop, while it is a false positive if its cell-type-
specificity is different from the cell-type-specificity of the bulk Hi-C loop. Among all 139,161 SnapHiC-D-
identified DCCs, 2,603 DCCs are testable. For 935 mESC-specific testable DCCs, precision and recall are 
68.1% and 20.4%, respectively. For the 1,668 NPC-specific testable DCCs, precision and recall are 79.1% and 
25.8%, respectively (Figure 2A, 2B). In contrast, among all 80,356 BandNorm+diffHiC-identified DCCs, 1,296 
DCCs are testable. For the 707 mESC-specific testable DCCs, precision and recall are 39.6% and 21.4%, 
respectively. For the 589 NPC-specific testable DCCs, precision and recall are 58.3% and 23.7%, respectively 
(Figure 2A, 2B). Finally, among all 2,881 multiHiCcompare-identified DCCs, only 35 DCCs are testable. For 
the 13 mESC-specific testable DCCs, the precision and recall are 61.5% and 0.8%, respectively. For the 22 
NPC-specific testable DCCs, precision and recall are 50.0% and 0.1%, respectively (Figure 2A, 2B). These 
results suggest that SnapHiC-D outperformed BandNorm+diffHiC and multiHiCcompare in both precision and 
recall. 
 
We also benchmarked SnapHiC-D against BandNorm+diffHiC and multiHiCcompare, using DCCs identified by 
applying multiHiCcompare to bulk Hi-C data as the working truth. Consistent patterns were observed (Figure 
2C, 2D), similarly supporting that SnapHiC-D outperformed BandNorm+diffHiC and multiHiCcompare in both 
precision and recall (Supplementary Material Section 1). 
 
In addition to the genome-wide comparison, we further checked DCCs at the Sox2 locus. Using bulk Hi-C 
data28, HiCCUPS identified a ~120Kb mESC-specific loop linking Sox2 TSS to an mESC-specific super-
enhancer29, and a ~440Kb mESC/NPC-shared loop (Figure 2E top panel). We further plotted the T-test 
statistics, for all testable 10Kb bin pairs anchored at the Sox2 TSS (Figure 2E bottom panel). For the mESC-
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specific loop, the average normalized contact frequency is 0.94 and 0.17 for mESC and NPC, respectively. 
The T-test statistic is 2.84 and FDR is 0.06, suggesting that this is an mESC-specific DCC. In contrast, for the 
mESC/NPC-shared loop, the average normalized contact frequency is 1.93 and 1.81 for mESC and NPC, 
respectively. The T-test statistic is 0.20 and FDR is 0.91, suggesting that this is not a DCC. As a comparison, 
neither BandNorm+diffHiC nor multiHiCcompare can detect the mESC-specific loop between the Sox2 TSS 
and the mESC-specific super-enhancer. In sum, our data showed that SnapHiC-D can accurately identify 
mESC-specific DCC at the Sox2 locus while alternative methods developed for bulk Hi-C data failed to do so. 
 
2.4 SnapHiC-D performance is robust to different input cell numbers 
We further evaluated the performance of SnapHiC-D with different numbers of input cells. From the sn-m3c-
seq data generated from human brain frontal cortex9, we analyzed 1,038 oligodendrocytes (ODC) and 323 
microglia (MG), all of which contain more than 150,000 contacts per cell. We fixed the number of cells (N=323) 
for MG, and performed differential analysis against randomly selected 100, 200, 300, … 900 ODCs using 
SnapHiC-D. We also included the full list of 1,038 ODCs in the differential analysis. 
 
To benchmark the SnapHiC-D-identified DCCs, we used the H3K4me3 PLAC-seq data generated from ODC 
and MG30. We applied the MAPS pipeline31 and identified 21,422 and 41,941 10Kb resolution significant 
interactions for ODC and MG, respectively. We further defined 12,277 ODC-specific interactions and 32,796 
MG-specific interactions, and combined these two sets of cell-type-specific interactions as the reference list. 
Similar to the previous analysis, we defined a SnapHiC-D-identified DCC as “testable” if it overlaps with a cell-
type-specific interaction identified from PLAC-seq data. Figure S3A and Figure S3B showed the number of 
DCCs and testable DCCs identified using a different number of ODCs, respectively. We observed that a higher 
number of ODCs led to more ODC-specific DCCs while the number of MG-specific DCCs showed a less 
pronounced increase. The precision and recall of MG-specific DCCs were robust against different numbers of 
ODCs (Figure S3C, S3D), not surprisingly since the number of MG is fixed (N=323). In contrast, the increased 
number of ODC-specific DCCs resulted in slightly decreasing precision and slightly increasing recall, and both 
two curves reached a plateau with more than 300 ODCs (Figure S3C, S3D). Taken together, our data suggest 
that the performance of SnapHiC-D is robust to different input cell numbers.   
 
2.5 DCCs are correlated with the dynamics of gene expression and epigenetics features 
Next, we evaluated whether SnapHiC-D-identified DCCs are associated with the dynamic gene expression and 
epigenetics features. We re-analyzed sn-m3c-seq data generated from mouse hippocampus tissue32, where 
gene expression, chromatin accessibility and five types of histone modification (H3K4me3, H3K4me1, 
H3K27ac, H3K9me3 and H3K27me3) data of matched cell types in mouse hippocampus are released by our 
recent Paired-Tag study33. We matched the major cell types identified from sn-m3c-seq data and Paired-Tag 
data and selected three cell types (hippocampal CA1 pyramidal neurons [CA1]: N=408, dentate gyrus [DG]: 
N=1,040 and oligodendrocytes [ODC]: N=236) with sufficient cell number and sequencing depth (>150,000 
contacts per cell) for the downstream differential analysis (Table S2).  
 
We first compared the 408 CA1 with the 236 ODC. Among all 744,890 SnapHiC-D-evaluated bin pairs, 
SnapHiC-D identified 406,552 DCCs (54.6%), where 202,596 and 203,956 DCCs showed higher interaction 
frequency in CA1 and ODC, respectively. The large proportion of DCCs indicates distinct 3D genome 
organization between neurons and non-neurons. We further focused on 76,464 DCCs where only one end 
contains the TSS of one expressed gene (i.e., RPKM>1 in CA1 or ODC), and termed the 10Kb bin containing 
TSS(s) as the “anchor” bin, and the 10Kb bin not containing TSS as the “target” bin. We found that the 
significance of DCCs, measured by T-test statistics, is positively correlated with the change of expression of 
genes within the anchor bins (Figure 3A), and the change of the H3K4me3 active promoter mark at the anchor 
bins (Figure 3B). In addition, the significance of DCCs is positively correlated with the change of two active 
enhancer marks H3K4me1 and H3K27ac, as well as chromatin accessibility at the target bins (Figure 3C, 3D 
and 3E), and negatively correlated with the change of heterochromatin mark H3K27me3 at the target bins 
(Figure 3F). Interestingly, we observed a weak positive correlation between the dynamic chromatin contacts 
and the dynamics of H3K9me3 at the target bins (Figure 3G). As one illustrative example, we found that CA1-
specifically expressed gene Slc17a7 has 10 DCCs, with interacting target bins containing CA1-specific 
H3K27ac ChIP-seq peaks (Figure 4).      
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Next, we compared two types of excitatory neurons, CA1 and DG, with 408 and 1,040 cells measured, 
respectively in the sn-m3c-seq dataset. Among all 606,191 SnapHiC-D-evaluated bin pairs, SnapHiC-D 
identified 111,404 DCCs (18.4%), where 47,243 and 64,161 DCCs showed higher interaction frequency in CA1 
and DG, respectively. Compared to the differential analysis between CA1 and ODC, we observed a smaller 
proportion of DCCs between CA1 and DG, suggesting that these two types of excitatory neurons share a 
similar 3D genome. We further focused on 19,391 DCCs where only one end contains the TSS of one 
expressed gene (i.e., RPKM>1 in CA1 or DG) for downstream correlation analysis. We found that the 
significance of DCCs is not correlated with the change of expression of genes within the anchor bins (Figure 
S4A), probably due to the similarity of gene expression between CA1 and DG (Figure S5). Correlation 
analysis between 3D genome and epigenome demonstrated consistent results with differential analysis 
between CA1 and ODC. Specifically, we found that the significance of DCCs is positively correlated with the 
change of active promoter mark H3K4me3 at the anchor bins (Figure S4B), and the change of two active 
enhancer marks H3K4me1 and H3K27ac, as well as chromatin accessibility at the target bins (Figure S4C, 
S4D and S4E), and negatively correlated with change of two heterochromatin marks H3K27me3 and 
H3K9me3 at the target bins (Figure S4F, S4G). As one illustrative example, we found that CA1-specificially 
expressed gene Kcnq5 has 11 DCCs, with interacting target bins containing CA1-specific H3K27ac ChIP-seq 
peaks (Figure S6).      
 
Additionally, we performed a similar analysis using sn-m3c-seq data generated from human prefrontal cortex 
tissue9, and obtained consistent results (Supplementary Material Section 2 and Figure S7, S8). Taken 
together, our results show that DCCs are correlated with the dynamics of gene expression and epigenetic 
features in the mammalian genome. 
 
3. Conclusion and discussion 
 
In this work, we report SnapHiC-D, a DCC caller tailored to comparative analysis of scHi-C data. We 
benchmarked SnapHiC-D against two existing DCC callers designed for bulk Hi-C data, BandNorm+diffHiC 
and multiHiCcompare, using both in-house generated data and public data, and demonstrated the superior 
performance of SnapHiC-D in terms of sensitivity and accuracy. We applied SnapHiC-D to sn-m3C-seq data 
generated from mouse hippocampal and human prefrontal cortical tissues, and further revealed that DCCs are 
correlated with dynamic gene expression and epigenetic marks between distinct cell types.  
 
At least three critical preprocessing steps can affect the quality of DCCs identified from scHi-C data. First of all, 
we analyzed sn-m3c-seq data released in Liu et al study32, where the cell types are pre-defined by DNA 
methylation data. When DNA methylation data is not available, using scHi-C data alone to define cell type is 
challenging, in particular, distinguishing cell sub-types, if not impossible34,35. Inaccurate cell type clustering 
results can lead to reduced power in DCC detection.  
 
Second, imputation is indispensable in scHi-C data analysis at kilobase resolution. Several algorithms have 
been proposed to impute scHi-C data14,17,35. Following our published SnapHiC16, SnapHiC-D uses the random 
walk with restart algorithm (RWR) to impute 10Kb resolution scHi-C data. Future studies are warranted to fully 
benchmark the performance of different imputation algorithms, such as Higashi17 and Fast-Higashi35, in terms 
of their impact on DCC detection. 
 
Moreover, data normalization, including both within-cell-type normalization and between-cell-type normalization, 
plays an important role in DCC detection, similar to the differential analysis in transcriptomic data and other 
types of genomic data36-38. On the one hand, our recent work SnapHiC16 demonstrated that RWR-imputed 
10Kb resolution chromatin contact probabilities contain negligible systemic biases from restriction enzyme 
cutting, GC content and sequence uniqueness39, therefore the within-cell-type normalization is of less concern. 
On the other hand, between-cell-type normalization has been extensively studied in DCC analysis of bulk Hi-C 
data21,22, largely due to the cell-type-specific dependency between 1D genomic distance and averaged 
chromatin contact frequency. SnapHiC-D uses normalized (i.e., Z-score transformed) chromatin contact 
probabilities as the input for DCC analysis, which implies the same (i.e., 0) average normalized chromatin 
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contact frequency at each 1D genomic distance across different cell types. One caveat is that such between-
cell-type normalization may remove cell-type-specific 3D genome features at the global scale28. Users need to 
be cautious with such Z-score transformation when the global scale dynamics of 3D genome are biologically 
meaningful.  
 
How to evaluate and interpret the identified DCCs is another direction for future research. In this work, our 
benchmark analysis only used a small proportion of “testable” DCCs among all identified DCCs, due to the lack 
of a genome-wide gold standard reference DCC list. Data generated from orthogonal technologies, such as 
SPRITE40,41, GAM42,43 and super-resolution imaging44-47, may serve as a better DCC reference list to 
benchmark the performance of different DCC callers. In addition, SnapHiC-D focuses on TSS-anchored DCCs 
to achieve a balance between biological importance and computational efficiency, since the genome-wide 
search of DCC from scHi-C data requires large computing resources and lacks direct biological interpretation. 
It is straightforward to modify the search space in SnapHiC-D to bin pairs anchored at cis-regulatory elements 
or loci identified from genome-wide association studies (GWAS). Last but not least, we found a moderate 
correlation between DCCs and dynamics of histone marks, and a weak correlation between DCCs and 
dynamics of gene expression. It is well known that gene expression is regulated by multiple levels of epigenetic 
factors, and the 3D genome is just one type of such factors48. Functional perturbation experiments, including 
MPRA49, STARR-seq50, CRISPR/Cas9, CRISPRi and CRISPRa are necessary to thoroughly interrogate the 
molecular functions of dynamic 3D genome on cell-type-specific gene regulation.  
 
This work has focused squarely on DCC detection between different cell types. The methodology can be 
readily applied to data under different experimental conditions, or data from different groups of individuals (e.g., 
individuals affected with a certain disease of interest versus individuals not affected). Such data and 
methods51-55 have been burgeoning for other omics data, particularly single cell or single nucleus RNA-seq 
data. We anticipate similar scHi-C data to be generated where SnapHiC-D will also be valuable.  
 
In sum, we developed SnapHiC-D, a computational pipeline to identify DCCs from scHi-C data. SnapHiC-D 
has the potential to facilitate a better understanding of chromatin spatial organization in complex tissues and 
revealing gene regulation mechanisms in a cell-type-specific manner. 
 
Data availability 
Single cell Hi-C data from 94 mESCs and 188 NPCs have been deposited to GEO with accession number 
GSE210585. 
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Figure legends.  
 
Figure 1. Flowchart of the SnapHiC-D algorithm. A. A cartoon illustration of the random walk with restart 
(RWR) imputation algorithm. Top pattern: the observed scHi-C contact frequency matrix for m and n cells in 
cell type A and cell type B, respectively. Bottom pattern: the imputed scHi-C contact probability matrix for m 
and n cells in cell type A and cell type B, respectively. The dashed purple box highlights a bin pair of interest. B. 
A cartoon illustration of the two sample T-test, using the imputed scHi-C contact probability at the bin pair of 
interest (highlighted by the dashed purple box). C. Post-processing step. SnapHiC-D defined a bin pair as DCC 
if |T|>2 and FDR<10%. 
 
Figure 2. SnapHiC-D identifies DCCs with high sensitivity and accuracy. The precision (A) and recall (B) 
of three competing methods using cell-type-specific HiCCUPS loops identified from bulk Hi-C data as the 
working truth. The precision (C) and recall (D) of three competing methods using multiHiCcompare DCCs 
identified from bulk Hi-C data as the working truth. E. Top panel: IGV visualization of HiCCUPS loops identified 
from mESC and NPC bulk Hi-C data, at the Sox2 TSS. Bottom panel: T-test statistics obtained by SnapHiC-D 
for tested 10Kb bin pairs anchored at the Sox2 TSS. The dashed red line and dashed blue line highlighted the 
location of the mESC-specific loop and shared loop, respectively. 
 
Figure 3. DCCs are correlated with differential gene expression and differential histone marks in mouse 
hippocampus tissue (408 CA1 vs. 236 ODC). Scatterplot of the significance of DCCs, measured by T-test 
statistics obtained in SnapHiC-D (x-axis), and the change of gene expression (A) and H3K4me3 (B) in the 
anchor bin, and the change of H3K4me1 (C), H3K27ac (D), ATAC (E), H3K27me3 (F) and H3K9me3 (G) in the 
target bin. The dashed yellow line is the fitted line between T-test statistics (x-axis) and the change of gene 
expression or histone marks (y-axis). 
 
Figure 4. CA1-specifically expressed gene Slc17a7 has CA1-specific interactions and CA1-specific 
H3K27ac ChIP-seq peaks. Gene Slc17a7 is highly expressed in CA1 than ODC, highlighted by the dashed 
blue box. SnapHiC-D identified 10 DCCs with chromatin interaction frequency higher in CA1 than ODC. The 
interacting target bins, highlighted by the dashed red boxes, have higher H3K27ac ChIP-seq peaks in CA1 
than ODC.  
 
Figure S1. SnapHiC-D controls false positives under the null hypothesis. A. MD-plot for SnapHiC-D (left), 
BandNorm+diffHiC (middle) and multiHiCcompare (right). The dashed red line is the fitting loess curve 
between 1D genomic distance (x-axis) and the difference in chromatin contact frequency between groups A 
and B (y-axis). B. P-value distribution for SnapHiC-D (left), BandNorm+diffHiC (middle) and multiHiCcompare 
(right). 
 
Figure S2. Benchmark the performance of SnapHiC against existing methods using 94 mESCs and 188 
NPCs. A. MD-plot for SnapHiC-D (left), BandNorm+diffHiC (middle) and multiHiCcompare (right). The dashed 
red line is the fitting loess curve between 1D genomic distance (x-axis) and the difference in chromatin contact 
frequency between groups A and B (y-axis). B. P-value distribution for SnapHiC-D (left), BandNorm+diffHiC 
(middle) and multiHiCcompare (right). 
 
Figure S3. SnapHiC-D performance is robust to different numbers of cells. The number of DCCs (y-axis 
in A) and testable DCCs (y-axis in B), when comparing different numbers of ODCs (x-axis) with 323 MG. The 
precision (y-axis in C) and recall (y-axis in D), when comparing different numbers of ODCs (x-axis) with 323 
MG, using cell-type-specific chromatin interactions identified from H3K4me3 PLAC-seq data as the working 
truth. 
 
Figure S4. DCCs are correlated with differential histone marks in mouse hippocampus tissue (1,040 DG 
vs. 408 CA1). Scatterplot of the significance of DCCs, measured by T-test statistics obtained in SnapHiC-D (x-
axis), and the change of gene expression (A) and H3K4me3 (B) in the anchor bin, and the change of 
H3K4me1 (C), H3K27ac (D), ATAC (E), H3K27me3 (F) and H3K9me3 (G) in the target bin. The dashed yellow 
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line is the fitted line between T-test statistics (x-axis) and the change of gene expression or histone marks (y-
axis). 
 
Figure S5. Scatter plot of gene expression data (measured by Log2 RPKM) among CA1, DG and ODC. 
(A) CA1 vs. DG, (B) CA1 vs. ODC and (C) DG vs. ODC. 
 
Figure S6. CA1-specifically expressed gene Kcnq5 has CA1-specific interactions and CA1-specific 
H3K27ac ChIP-seq peaks. Gene Kcnq5 is highly expressed in CA1 than DG, highlighted by the dashed blue 
box. SnapHiC-D identified 11 DCCs with chromatin interaction frequency higher in CA1 than DG. The 
interacting target bins, highlighted by the dashed red boxes, have higher H3K27ac ChIP-seq peaks in CA1 
than DG.  
 
Figure S7. DCCs are correlated with differential gene expression and differential histone marks in 
human prefrontal cortex tissue (338 Astro vs. 323 MG). Scatterplot of the significance of DCCs, measured 
by T-test statistics obtained in SnapHiC-D (x-axis), and the change of gene expression (A) and H3K4me3 (B) 
in the anchor bin, and the change of H3K27ac (C) and ATAC (D) in the target bin. The dashed yellow line is 
the fitted line between T-test statistics (x-axis) and the change of gene expression or histone marks (y-axis). 
 
Figure S8. Astro-specifically expressed gene F3 has Astro-specific interactions and Astro-specific 
H3K27ac ChIP-seq peaks. Gene F3 is highly expressed in Astro than MG, highlighted by the dashed blue box. 
SnapHiC-D identified 11 DCCs with chromatin interaction frequency higher in Astro than MG. The interacting 
target bins, highlighted by the dashed red boxes, have higher H3K27ac ChIP-seq peaks in Astro than MG.  
 
Figure S9. Time cost (A) and memory requirement (B) for SnapHiC-D, comparing different numbers of 
ODCs with 323 MG.  
 
Table titles 
 
Table S1. Stratified splitting strategy to generate the null hypothesis using 742 mESCs. For all 742 
mESCs with >150,000 contacts per cell, the cell cycle information was obtained from the original Nagano et al 
study8. We randomly split cells within the same cell cycle into group A and group B, to account for the potential 
cell cycle effect on DCCs. 
 
Table S2. Matched major cell types between sn-m3c-seq data and Paired-Tag data. We matched major 
cell types defined by sn-m3c-seq data32 and Paired-Tag data33, both from mouse hippocampus tissue. We then 
selected three cell types with >150,000 contacts per cell in sn-m3c-seq data for downstream analysis. 
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Methods 
 
Cell cuture 
The F1 Mus musculus castaneus × S129/SvJae mouse ESC (F123) line was a gift from Dr. Rudolf Jaenisch 
and was cultured in KSR medium as previously described56. The detailed protocol can be found at 4DN data 
portal at: https://data.4dnucleome.org/protocols/1d39b581-9200-4494-8b24-3dc77d595bbb/.  
To differentiate F123 mESCs from to mNPCs, we followed the previously published protocol57. In brief, the 
F123 mESCs were first passaged once on 0.1% gelatin-coated feeder-free plates before the formation of 
cellular aggregates (CAs). Then mESCs cells were rthen trypsinized and 4 million cells were plated onto 
Greiner Petri dishes in CA medium. After four days retinoic acid (RA) was added to CA medium at a final 
concentration 5μM and the CAs were cultured in CA medium with RA for another four days. After that, the CAs 
were dissociated and the cells were plated on PORN/laminin-coated plates to allow differentiation of neuronal 
precursors in N2 medium for another two days before the collection of NPCs. 
 

Generating scHi-C data  
F123 mESCs and NPCs were harvested by accutase treatment and fixed with 1% (v/v) methanol-free 
formaldehyde at room temperature for 10 minutes. scHi-C libraries were prepared using methods as previously 
described with slight modifications58. In brief, 1-3 million crosslinked mESCs or NPCs were incubated overnight 
at 37 °C with 200 U MboI followed by proximity ligation at room temperature with slow rotation for 4 hours. 
Then the nuclei were stained with Hoechst and the single 2N nuclei were sorted by FACS into wells of 96-well 
plate. After overnight reverse crosslinking at 65 °C, the 3C-ligated DNA in each cell was amplified using 
GenomiPhi v2 DNA amplification kit (GE Healthcare) for 4-4.5 hours. After purification with AMPure XP 
magnetic beads and quantification, 10ng WGA product was used to construct library with Tn5. 
 
scHi-C data preprocessing, imputation and filtering 
The fastq files from scHi-C experiments have been mapped and preprocessed following the methods 
described in the previous studies8-11, to generate mapped read pairs (contacts) for each single cell. In brief, the 

scHi-C read pairs were aligned to mm10 genome with BWA-MEM with the ‘-5’ option, to report the most 5′ end 

alignment as the primary alignment, and the ‘-P’ option to perform the Smith–Waterman algorithm to rescue 

chimeric reads. Only the primary alignments were used in the next steps. Then read pairs were de-duplicated 
with the Picard tool to keep only one read pair at the exact same position. We further filtered the duplicated 
reads specific to scHi-C datasets: (1) each chromosome was split into consecutive non-overlapping 1-kb bins 
and only one contact was kept for each 1-kb bin pair, and (2) 1-kb bins that contact with more than ten other 1-
kb bins were removed, since they are likely mapping artifacts. Due to the limited ligation capture efficiency, 
scHi-C data is extremely sparse at kilobase resolution, making the downstream analysis a daunting 
challenge18-20. Different computational approaches, including the random walk with restart algorithm14, and the 
hypergraph-based method Higashi17 and Fast-Higashi35, have been recently proposed to impute chromatin 
contact frequency in each cell. Following our recent SnapHiC paper16, we also used the RWR imputation in this 
study. Briefly, we used the RWR algorithm to impute the 10Kb bin resolution contact frequency, for all intra-
chromosomal 10Kb bin pairs with the 1D genomic distance between 20Kb and 1Mb, in each cell. Next, we 
grouped 10Kb bin pairs with the same 1D genomic distance into strata, and normalized the imputed contact 
frequency into Z-score within each stratum. These Z-scores served as the input file for SnapHiC-D.     

 
We then performed the following three filtering steps to ensure straightforward biological interpretation. First of 
all, we removed 10Kb bin pairs with either anchor bin overlapping with the ENCODE blacklist regions 
(http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/mm10-mouse/mm10.blacklist.bed.gz for mm10 
and https://www.encodeproject.org/files/ENCFF001TDO/ for hg19) or having low mappability score (<=0.8). 
The mappability score for each 10Kb bin is defined by our previous study39, and can be downloaded from 
http://enhancer.sdsc.edu/yunjiang/resources/genomic_features/.  
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2022. ; https://doi.org/10.1101/2022.08.05.502991doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.05.502991
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

Next, we only analyzed 10Kb bin pairs where at least one anchor bin contains transcription start site(s) of 
protein-coding genes, which are defined by the UCSC refGene annotation 
(https://hgdownload.soe.ucsc.edu/goldenPath/mm10/bigZips/genes/mm10.refGene.gtf.gz for mm10, and 
https://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/genes/hg19.refGene.gtf.gz for hg19).   
 
Last but not least, we only kept 10Kb bin pairs that contain more than 10% of outliers (i.e., Z-score >1.96) in at 
least one cell type. The rationale is to only evaluate bin pairs with sufficiently high contact frequency, and skip 
bin pairs which are random collisions in both cell types. Similar filtering step has been widely used in 
differential gene expression analysis, where one only evaluates genes with sufficient gene expression (e.g., 
RPKM>1) in at least one cell type.  
 
In sum, the final list of filtered bin pairs for SnapHiC-D contains TSS-anchored intra-chromosomal 10Kb bin 
pairs with 1D genomic distance 20Kb ~ 1Mb, no overlapping with ENCODE blacklist regions or low mappability 
regions, and with sufficiently high contact frequency in at least one cell type. To make a fair comparison with 
SnapHiC-D, we also applied the first two filtering steps to create the list of filtered bin pairs for the other 
methods (BandNorm+diffHiC and multiHiCcompare). Since filtering based on Z-score is specific to the 
SnapHiC-D algorithm, we replaced it with filtering steps described in other methods, such as filtering bin pairs 
based on some minimal threshold of raw Hi-C contact frequency in the aggregated pseudo bulk Hi-C data.   
 
Preprocessing of Paired-Tag data 
Paired-Tag data were processed as previously described33. Briefly, cellular barcodes were extracted from 
Read2 and mapped to a reference of all possible cellular barcodes with no more than 1 mismatch; unmapped 
reads were discarded and low-coverage cells (<1,000 transcripts and <500 DNA fragments) were excluded 
from further analysis. Reads were then mapped to mm10 reference genome with bowtie2 (for DNA) and STAR 
(for RNA, with the UCSC refGene annotation), and PCR duplicates were then removed according to the 
mapped location, UMI, and cellular barcodes. RNA alignment files were then converted to a cell-to-genes 
count matrix and single-cell clustering was carried out with the Seurat package59. DNA alignment files were 
then converted to cell-to-bins (5Kb) count matrix; the cell type-to-bins count matrix was generated by 
aggregating counts from cells of the same cell types grouped by RNA-based clustering. 
 
Gene expression levels (for Paired-Tag) and hypo-CH-methylation at gene bodies (for sn-m3c-seq) of marker 
genes were used to match the major cell types for these two datasets: including CA1 (Fibcd1), CA2/3 (Cacng5, 
Rerg), DG (Prox1), InNeu-CGE (Vip), InNeu-Pvalb (Pvalb), InNeu-Sst (Sst), OPC (Pdgfra), ODC (Mbp), VLMC 
(Slc6a13), MGC (Csf1r) and ASC (Slc1a2). 
 
multiHiCcompare 
To generate the input files for multiHiCcompare 
(https://bioconductor.org/packages/release/bioc/html/multiHiCcompare.html), we split each aggregated pseudo 
bulk Hi-C data into two groups. The input file contains chromosome ID, region 1, region 2 and the raw contact 
frequency. We used run mulitHiCcompare with the default parameters at the 10Kb bin resolution.   
 
BandNorm + diffHiC 
We first created 10Kb bin resolution contact matrix for each single cell, and applied BandNorm with 
the default parameters to perform across-cell normalization. We then randomly split cells of the same cell type  
into two groups, and aggregated them into pseudo bulk Hi-C data, as suggested by the Zheng et al study27.  
Next, we used R package diffHiC to perform differential analysis between two cell types, each consisting of two 
replicates of aggregated pseudo bulk Hi-C data. We did not use the deep learning-based method 3DVI 
proposed in the same preprint27, since BandNorm coupled with diffHiC achieved comparable or superior 
performance than 3DVI coupled with diffHiC in terms of DCC detection accuracy (see details in Figure S19F in 
Zheng et al study27). 
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Figure 1. Flowchart of the SnapHiC-D algorithm       
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Figure 2. SnapHiC-D identifies DCCs with high sensitivity and accuracy 
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Figure 3. DCCs are correlated with differential gene expression and differential histone marks in mouse hippocampus tissue 
(408 CA1 vs. 236 ODC).
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Figure 4. CA1-specifically expressed gene Slc17a7 has CA1-specific interactions and CA1-specific H3K27ac ChIP-seq peaks.



Figure S1. SnapHiC-D controls false positives under the null hypothesis. 
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Figure S2. Benchmark the performance of SnapHiC-D against existing methods using 94 mESCs and 188 NPCs. 
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Figure S3. SnapHiC-D performance is robust to different input cell numbers.
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Figure S4. DCCs are correlated with differential histone marks in mouse hippocampus tissue (1,040 DG vs. 408 CA1).

A. B. C. D.

E. F. G.



Figure S5. Scatter plots of gene expression data (measured by Log2 RPKM) among CA1, DG and ODC.
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Figure S6. CA1-specifically expressed gene Kcnq5 has CA1-specific interactions and CA1-specific H3K27ac ChIP-seq peaks.



Figure S7. Differential chromatin contacts (DCCs) are correlated with differential gene expression and differential histone 
marks in human prefrontal cortex tissue (338 Astro vs. 323 MG).
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Figure S8. Astro-specifically expressed gene F3 has Astro-specific interactions and Astro-specific H3K27ac ChIP-seq peaks



Figure S9. Time cost and memory requirement for SnapHiC-D, comparing different numbers of ODCs with 323 MG.
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Table S1. Stratified splitting strategy to generate the null hypothesis using 742 mESCs.



Table S2. Matched major cell types between sn-m3c-seq data and Paired-Tag data. 


