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Abstract 12 

Using latent variables in gene expression data can help correct spurious correlations due to 13 

unobserved confounders and increase statistical power for expression Quantitative Trait 14 

Loci (eQTL) detection. Probabilistic Estimation of Expression Residuals (PEER) is a widely 15 

used statistical method that has been developed to remove unwanted variation and 16 

improve eQTL discovery power in bulk RNA-seq analysis. However, its performance has not 17 

been largely evaluated in single-cell eQTL data analysis, where it is becoming a commonly 18 

used technique. Potential challenges arise due to the structure of single-cell data, including 19 

sparsity, skewness, and mean-variance relationship. Here, we show by a series of analyses 20 

that this method requires additional quality control and data transformation steps on the 21 

pseudo-bulk matrix to obtain valid PEER factors. By using a population-scale single-cell 22 

cohort (OneK1K, N = 982), we found that generating PEER factors without further QC or 23 

transformation on the pseudo-bulk matrix could result in inferred factors that are highly 24 

correlated (Pearson's correlation r = 0.626~0.997). Similar spurious correlations were also 25 

found in PEER factors inferred from an independent dataset (induced pluripotent stem cells, 26 

N = 31). Optimization of the strategy for generating PEER factors and incorporating the 27 

improved PEER factors in the eQTL association model can identify 9.0~23.1% more eQTLs or 28 

1.7%~13.3% more eGenes. Sensitivity analysis showed that the pattern of change between 29 

the number of eGenes detected and PEER factors fitted varied significantly for different cell 30 

types. In addition, using highly variable genes (e.g., top 2000) to generate PEER factors could 31 

achieve similar eGenes discovery power as using all genes but save considerable 32 
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computational resources (~6.2-fold faster). We provide diagnostic guidelines to improve the 1 

robustness and avoid potential pitfalls when generating PEER factors for single-cell eQTL 2 

association analyses. 3 

 4 

Keywords: Single-cell RNA-seq; Pseudo-bulk; Latent variable; PEER factors; Normalisation; 5 

eQTL mapping  6 
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Background 1 

Inferring latent variables that explain the variation in the gene expression data has been an 2 

essential step for expression Quantitative Trait Loci (eQTL) analyses. It can be used to 3 

identify the unobserved confounding effects and potential cellular phenotypes (e.g., 4 

transcription factor or pathway activation). Standard methods of inferring latent variables 5 

include principal component analysis (PCA)
1
, surrogate variable analysis (SVA)

2
, and 6 

Probabilistic Estimation of Expression Residuals (PEER)
3,4

. PEER is a method that implements 7 

a Bayesian framework to estimate the latent variables and jointly learn the contribution to 8 

the gene expression variability from genotype, known factors, and hidden factors. The 9 

inferred factors (i.e., PEER factors) can be applied to increase the power of eQTL discovery. 10 

This method was introduced in 2010 and is widely used in bulk eQTL analyses
5-8

, and 11 

recently the emerging field of single-cell pseudo-bulk eQTL analysis
9-12

.  12 

 13 

As the scale of single-cell RNA-sequencing (scRNA-seq) studies has rapidly grown, eQTL 14 

analyses that use pseudo-bulk analysis approaches in scRNA-seq have started to emerge. 15 

Pseudo-bulk refers to the aggregation of the gene expression profiling of all cells from one 16 

sample into a single pseudo-sample; thus, the data structure will be assimilated into the 17 

bulk RNA-sequence data. However, due to the nature of scRNA-seq data structures, the bulk 18 

expression matrix and single-cell expression matrix can be very different. There are three 19 

main differences between single-cell and bulk RNA data: matrix sparsity, distribution 20 

normality or skewness, and mean-variance dependency. First, since the scRNA-seq matrix is 21 

sparse and most elements are zero, the pseudo-bulk gene expression matrix also contains 22 

many zero values. Second, the underlying distribution of gene expression across cells 23 

follows either negative binomial (NB) or zero-inflated NB (ZINB) distributions
13

. Therefore, 24 

most inter-individual distributions of mean gene expression in pseudo-bulk are non-normal 25 

and heavily right-skewed. Third, mean-variance dependency exists between the intra-26 

individual mean and variance due to the characteristics of the underlying distribution, and 27 

such relationships could be retained in the pseudo-bulk data. These features of pseudo-bulk 28 

data may violate the assumptions of the PEER method.  29 

 30 

Consequently, the inferred PEER factors could suffer from biases or spurious correlations 31 

with each other, which can lead to the problematic interpretation of the factors themselves 32 
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and compromise the discovery power of pseudo-bulk eQTL association. Moreover, it is 1 

unclear how many PEER factors should be fitted in the eQTL association model to maximise 2 

the detection power in pseudo-bulk data. Previous bulk eQTL analysis either chose a fixed 3 

number
7
 or a certain threshold based on the sample size

5,8
. Some studies have run 4 

sensitivity tests
5,6,8

, but such optimisation has not been systematically evaluated for single-5 

cell data at the population-scale level. 6 

 7 

Here, we identify some common scenarios where pitfalls occur and how they can be 8 

avoided with data-driven approaches. To help with the future application of PEER factors to 9 

single-cell RNA-sequence data, we propose guidelines for the quality control and scaling of 10 

the pseudo-bulk expression matrix, diagnosing and troubleshooting the inferred hidden 11 

determinants, and the way to select the optimal number of PEER factors to improve the 12 

eQTL discovery. 13 

 14 

Results and Discussion 15 

Using three independent scRNA-seq datasets, we investigated how PEER factors behave 16 

under different quality control scenarios and transformations: one from peripheral blood 17 

mononuclear cells (PBMCs, N = 982) and the others from fibroblasts and induced 18 

pluripotent stem cells (iPSCs)
10

 (N = 79 and 31). The PBMC data were from the OneK1K 19 

cohort
12

, a population-scale scRNA-seq dataset containing ~1.2 million immune cells 20 

collected from 982 donors (Methods). This dataset was quality controlled (QC), normalised 21 

and variance stabilised at the single-cell level by sctrasnform
14

, and classified into 14 cell 22 

types by scPred
15

 (Methods). To construct a pseudo-bulk expression matrix for each cell 23 

type, the gene expression level per individual was calculated as the intra-individual mean 24 

counts across cells. We first generated PEER factors while including sex, age, and six 25 

genotype PCs as covariates. Using CD4NC cells as an example (Figure 1, other cell types 26 

shown in Supp Figure 1), we observe strong correlations among PEER factors, many of 27 

which were nearly equivalent (Figure 1A). For instance, while most known covariates are 28 

not correlated (Pearson’s r = -0.04 ~ 0.06, except -0.13 between PC3 and PC4; Supp Figure 29 

2), the first and second PEER factors have a modest correlation (Pearson’s r = 0.20). 30 

However, PEER factors 5-7 have pair-wise correlations equal to 1. Although the hidden 31 

factor model of PEER allows for non-orthogonal components, the mean of the pair-wise 32 
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Pearson’s r across the first 10 PEER factors were all larger than 0.5 in all 14 cell types, 1 

suggesting that PEER factors are overfitted. 2 

Additionally, we found that the variance explained by the first PEER factor was 3 

overwhelmingly more significant than the rest of the PEER factors, where the latter’s 4 

contributions seem negligible (upper panel in Figure 1B and Supp Figure 1B). This is 5 

consistent with the observation that there is a mean-variance dependency in the pseudo-6 

bulk expression level of each gene (Figure 1C). Hence, the highly expressed genes inherently 7 

contribute much more variation than other genes. Due to the sparsity in scRNA-seq data, 8 

there is a certain proportion of genes whose intra-individual expression is zero (Figure 1C); 9 

therefore, regardless of the transformation or normalisation methods that are used, the 10 

intra-individual distribution of these genes will be strongly right-skewed and violate the 11 

normality assumption of PEER (see examples in Supp Figure 3).  12 

 13 

To alleviate the impact of these properties, we tested different options in combinations (13 14 

options in total) to generate PEER factors: (1) excluding the genes with zero expression in 15 

more than a certain % of the individuals for all analyses (i.e., �� � 0.9 or 1); (2) log(x+1) 16 

transformation; (3) standardisation, which scales the distribution to mean = 0 and standard 17 

deviation = 1; (4) Rank-Inverse Normal Transformation (RINT); (5) Selecting the top 2,000 18 

highly variable genes (HVGs, ranked by the Fano factor, e.g. variance-to-mean ratio) to 19 

generate the PEER factors (Methods). The results show that the correlation among PEER 20 

factors was still high when genes with high ��  were excluded, and gene expression was 21 

log(x+1) transformed (options #1-5, Figure 2A). Among options #6-11, option #7 22 

(standardization + �� � 0.9  excluded) and option #11 (log(x+1) + standardization + 23 

�� � 0.9  excluded) had the lowest mean pair-wise correlation between independent PFs 24 

(Figure 2A and Supp Figure 4). We identified option #11 as the optimal performing 25 

approach because the skewness of genes was lower than option #7 (median skewness for all 26 

genes is 0.86~3.8 vs 0.90~5.12 across 14 cell types). We also tried to generate PEER factors 27 

using the top 2,000 HVGs (options #12-13 in Figure 2A-B). The PEER factors generated from 28 

all genes are highly correlated with those from the top 2,000 HVGs (Figure 1D and Supp 29 

Figure 1D), highlighting that the HVGs could explain most of the variation that was 30 

explained when using all the genes and reduce the runtime from 46.2 mins to 7.4 mins on 31 

average for different cell types (Figure 2B). 32 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2022. ; https://doi.org/10.1101/2022.08.02.502566doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.02.502566
http://creativecommons.org/licenses/by-nc/4.0/


 6

 1 

Next, we sought to investigate how PEER factors generated from different strategies affect 2 

the power of eQTL discovery. We calculated PEER factors using all genes or the top 2,000 3 

HVGs (both pre-excluded genes with �� � 0.9) and compared the number of eGenes (at 4 

least associated with one significant eQTL) identified when incrementally fitting PEER 5 

factors as covariates from 0 to 50. Notably, the pattern of change in the number of eGenes 6 

varied across different cell types (Figure 2). For CD4NC cells, the number of eGenes 7 

continually increased until reaching an asymptote of around 30, while CD4SOX4 cells reached 8 

a peak between 10-15 and decreased as more factors were included. We also show that the 9 

pattern of change in eGenes discovery power was consistent regardless of using all genes or 10 

the top 2,000 HVGs (Figure 2C), and the gains of made in number of detected eGenes were 11 

also similar (Supp Table 1). These consistencies reaffirmed that using the top 2,000 HVGs 12 

captures most of the latent variation that can be explained by all genes in this dataset. We 13 

also compared the number of eQTLs/eGenes when PEER factors were generated without 14 

QCs or QC option #11 on the pseudo-bulk matrix. The QC option #11 can identify 9.0~23.1% 15 

more eQTLs or 1.7%~13.3% more eGenes at the peak (Supp Figure 5). It was also clear that 16 

the number of detected eGenes started to drop much earlier when incorporating highly 17 

correlated PEER factors (Supp Figure 5). Performing these sensitivity analyses in new studies 18 

is time-consuming and computationally expensive, especially for large cohorts with many 19 

cell types. Our results show that using the top 2000 HVGs to generate PEER factors could 20 

achieve similar power in eGenes discovery compared to using all genes while saving 21 

significant computational resources (Figure 2B). Furthermore, the optimal number of fitted 22 

PEER factors is not solely dependent on sample size but on how much variation can be 23 

explained. For CD4SOX4 cells, the inferred PEER factors did not significantly increase the 24 

eGenes detection power in most scenarios (Figure 2C and Supp Table 1); therefore, 25 

selecting the number of PEER factors in eQTL association just based on sample size could be 26 

erroneous. 27 

 28 

To expand our exploration into other cell types, we tested the data from Neavin et al.
10

, 29 

who noted that the number of detected eGenes dropped with the incremental increase of 30 

PEER factors in the four iPSC clusters but not in the six fibroblast clusters (Figure S20 in the 31 

original paper). Strong correlations among PFs were observed in four iPSC subtypes (after 32 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2022. ; https://doi.org/10.1101/2022.08.02.502566doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.02.502566
http://creativecommons.org/licenses/by-nc/4.0/


 7

the 4
th

 or 5
th

 PEER factor) but not in fibroblast subtypes (Supp Figure 6). In the case of iPSC 1 

subtypes, fitting more PEER factors in the eQTL association analysis added more noise, 2 

which led to the loss of power. We hypothesise that the difference is due to the sample size 3 

since the input expression matrices were already quality controlled using quantile 4 

normalisation and z-transformation. There are rules of thumb for the minimum sample size 5 

required for factor analysis
16,17

, which suggest 3-20 samples per factor. When the sample 6 

size is too small, the first several PFs could explain almost all the variations, and there is not 7 

enough variation that the additional factors can explain. Thus, the following factors become 8 

strongly correlated due to overfitting (observed as very similar or even equivalent weights 9 

for certain PEER factors). The sample sizes were 79 for fibroblast and 31 for iPSC; thus, iPSC 10 

is more likely to suffer from sample size bias. We validated our hypothesis by down-11 

sampling the fibroblast dataset (N = 31 to match with iPSC; Methods). The mean of pair-12 

wise correlations among 10 PEER factors ranged from 0.11 to 0.99 in the six fibroblast 13 

subtypes (Supp Figure 7), indicating that insufficient sample sizes could result in high 14 

correlations among PEER factors even if the expression matrices were well normalised. We 15 

also down-sampled the fibroblast clusters to 40 and 50 separately and found a negligible 16 

correlation among inferred PEER factors when N = 50 but moderate correlations (0.004-0.39) 17 

when N = 40, suggesting that we might need at least five samples per factor in such a 18 

dataset. 19 

 20 

Our results demonstrate that generating PEER factors requires careful consideration in 21 

single-cell data. The impact of how many PEER factors are included to improve the eGenes 22 

discovery power varies across different cell types. We recommend testing the correlation 23 

among inferred latent variables (also with the known covariates) and conducting sensitivity 24 

analysis to select the optimal number of latent variables to be incorporated in eQTL 25 

mapping for each cell type. As we are moving towards the era of identifying single-cell, 26 

context-dependent, and dynamic eQTL
18-20

, learning latent variables directly from single-cell 27 

level data
21,22

 and comparing them with those from pseudo-bulk would provide insights into 28 

the genetic control of gene expression at a more refined resolution. 29 

 30 

Conclusions 31 
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Applying methods designed for bulk RNA-seq data to pseudo-bulk data could be challenging 1 

as the assumptions might not be fully satisfied. This work highlights the pitfalls when 2 

learning PEER factors for pseudo-bulk data and presents diagnostic guidelines of performing 3 

further QC and normalization on the pseudo-bulk matrix to avoid strong and spurious 4 

correlations among the inferred factors. Optimisation for the number of PEER factors 5 

included in the eQTL association model should be carried out by a data-driven approach and 6 

using highly variable genes to generate PEER factors could achieve similar eGenes discovery 7 

power as to using all genes. 8 

 9 

Methods 10 

Three single-cell datasets were used in this study to explore the performance of the PEER 11 

method. The OneK1K consortium
12

 is a population-scale single-cell RNA-seq dataset 12 

collected in Tasmania, Australia. This cohort includes 982 individuals, each with gene 13 

expression profiling for ~1,000 (mean = 1297.0, standard deviation = 23.6) peripheral blood 14 

mononuclear cells (PBMCs). The data was quality controlled, normalised and variance 15 

stabilised by the sctransform method, and classified into 14 cell types (see more details in 16 

ref
12

). We further identified two individuals with problematic metrics during the preliminary 17 

test of PEER factors (one with a deficient number of cells and the other with abnormal cell 18 

composition) and removed them in the primary analysis. The sample sizes for 14 different 19 

cell types range from 795 to 980 (Supp Table 1). Neavin et al.
10

 collected 64,018 fibroblasts 20 

from 79 donors and 19,967 iPSC from 31 donors. The fibroblast data were classified into six 21 

subtypes and iPSCs into four subtypes. For each subpopulation, the pseudo-bulk was 22 

calculated as the mean expression per gene per individual and then quantile-normalised 23 

and z-transformed. 24 

 25 

PEER factors are latent variables that can explain the variability in gene expression. The 26 

original method
3
 was proposed in 2010, and the software

4
 was released in 2012. We used 27 

the R package 'peer' (v1.0) to generate the PEER factors for the pseudo-bulk data applying 28 

max iterations = 2000 and the number of PEER factors = 50. Rank-Inverse Normal 29 

Transformation (RINT) was applied to the data by the function RankNorm() in the R package 30 

'RNOmni'
23

. The transformed matrix was standardised to a mean of zero with a unit 31 

standard deviation per gene. For analysis using the top 2000 HVGs, a refined gene list (pre-32 
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 9

excluded genes with �� > 0.9 or mean < 0.001) was ranked by their Fano factor (variance-to-1 

mean ratio) before transformation and scaling. Note that these HVGs are not the same 2 

HVGs usually defined in the QC step of the raw expression matrix for single-cell data. The 3 

former indicates the genes with high mean variability across individuals, while the latter 4 

shows the genes that are highly variable across cells. 5 

The eQTL association analysis was performed by Matrix eQTL (v2.3)
24

. We fit sex, age, the 6 

first six genotype PCs, and PEER factors as the covariates. The study only included SNPs 7 

located in the cis-region of the gene within the 1Mb from either upstream or downstream 8 

and with minor allele frequency > 5%. A local false discovery rate (LFDR) was calculated to 9 

control the false-positive rate for each chromosome tested by the R package 'qvalue'
25

. An 10 

eGene was reported when at least one significant eQTL was found at LFDR < 0.05. 11 

 12 

To investigate whether the strong correlation of PEER factors in iPSC data from Neavin et 13 

al.
10

 arose due to the small sample size, we randomly down-sampled the six fibroblast 14 

subtypes from 79 to 31 individuals (to match the sample size of the iPSC subtypes) 30 times 15 

and then generated PEER factors with these sub-samples. For each sub-sample, pair-wise 16 

Pearson's correlations among 10 PEER factors were estimated. A similar down-sampling 17 

analysis was also conducted for sample sizes equal to 40 and 50. 18 

 19 

Code availability 20 

The analysis code is available on https://github.com/powellgenomicslab/PEER_factors 21 
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 2 

Figure 1. Correlation among inferred PEER factors and global intra-individual mean-3 

variance dependence. A, Pair-wise correlation plot among the first 10 PEER factors 4 

generated from pseudobulk expression in CD4NC cells without any quality control (option #1). 5 

The upper triangle panel shows the pair-wise estimates of Pearson's correlation, and the 6 

bottom triangle panel shows the pair-wise scatter plot between the PEER factors. The 7 

diagonal panel shows the distribution of each PEER factor. Significance of correlation test is 8 

annotated by * p-value ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001. B, Diagnostic plot of the factor 9 

weights without any further quality control on the pseudo-bulk matrix (option #1, upper 10 

panel) and option #11 QC (lower panel). C, Relationship between intra-individual pseudo-11 

bulk mean and Fano factor per gene. Both axes are Log10 transformed. The colour of the 12 

dots indicates the proportion of zero expression across individuals ( ) for each gene. D, 13 
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 11

scatter plot of first 10 PEER factors generated from all genes against those from top 2000 1 

highly variable genes (option #11 vs option #12).   2 
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 2 

Figure 2. Performance of different QC options on generation of PEER factors and 3 

sensitivity test for eGene detection. A, The mean pair-wise correlation among the first 10 4 

PEER factors. Each colour and shape represent a specific cell type. B, Time to generate 50 5 

PEER factors by different quality control options on the pseudo-bulk matrix.  C, The x-axis 6 

denotes the number of PEER factors fitted as covariates in the association model. The y-axis 7 

represents the number of eGenes with at least one eQTL at local FDR < 0.05. The shape of 8 

each scatter point indicates whether using all genes or the top 2000 highly variable genes to 9 
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generate PEER factors (both excluded genes with �� � 0.9, log(x+1) transformed and 1 

standardised). 2 

 3 
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