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 Abstract 

A large body of work has identified characteristic neural signatures of value-based decision-

making. A core circuit has been shown to track the values of options under consideration, and the 

dynamics of neural activity associated with this circuit have been found to closely resemble the 

ramping evidence accumulation process believed to underpin goal-directed choice, most notably 

in the centroparietal positivity (CPP). However, recent neuroimaging studies suggest that value-

based choices trigger multiple value-related neural signatures, some of which are unrelated to 

decision-making per se but instead reflect reflexive affective reactions to one9s options. Here, we 

use the temporal resolution of EEG to test whether choice-independent value signals could be 

dissociated from well-known temporal signatures of the choice process. We show that EEG 

activity during value-based choice can be decomposed into distinct spatiotemporal clusters, one 

stimulus-locked (associated with the affective salience of a choice set) and one response-locked 

(associated with the difficulty of selecting the best option). We show that neither of these 

clusters meet the criteria for an evidence accumulation signal. Instead, and to our surprise, we 

found that stimulus-locked activity can mimic an evidence accumulation process when aligned to 

the response (as with the CPP). In this dataset and a second one that uses a more traditional 

perceptual decision-making task, we show that the CPP9s apparent pattern of evidence 

accumulation disappears when stimulus-locked and response-locked signals are accounted for 

jointly. Collectively, our findings show that neural signatures of value can reflect choice-

independent processes that when analyzed using standard approaches, can look deceptively like 

evidence accumulation. 
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Significance Statement 

 To choose, people must evaluate their options and select between them. Selection is well 

described by a process of accumulating evidence up to some threshold, with an 

electrophysiological signature in the centroparietal positivity (CPP). However, decision-making 

also gives rise to value signals reflecting affective reactions and other selection-unrelated 

processes. Measuring EEG while participants made value-based choices, we identified two 

spatiotemporally distinct value signals, neither reflecting evidence accumulation. Instead, we 

show that evidence accumulation signals found in the CPP can arise artifactually from 

overlapping stimulus- and response-related activity. These findings call for a significant 

reexamination of established links between neural and computational mechanisms of choice, 

while inviting deeper consideration of the array of cognitive and affective processes that occur in 

parallel. 
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Over the past few decades, research has made significant advances toward understanding how 

people make value-based choices between competing options (e.g., items on a restaurant menu or 

in a store catalog). This research has identified consistent neural correlates of the values of the 

options under consideration (Bartra, McGuire, & Kable, 2013; Lebreton, Jorge, Michel, Thirion, 

& Pessiglione, 2009), and characterized the process that gives rise to decisions among them, both 

neurally and computationally (Hare, Schultz, Camerer, O'Doherty, & Rangel, 2011; Hunt et al., 

2012; Pisauro, Fouragnan, Retzler, & Philiastides, 2017; Polania, Krajbich, Grueschow, & Ruff, 

2014; Rangel & Hare, 2010). However, drawing clear links between neural and computational 

investigations of value-based choice has been complicated by the fact that neural correlates of 

value can reflect processes outside of the ongoing decision (for a review see Frömer & Shenhav, 

2022). For instance, engaging with a choice set can trigger evaluations of one9s options that are 

relatively automatic (e.g., Pavlovian) and potentially independent of the decision process itself 

(Daw, Niv, & Dayan, 2005; Frömer, Dean Wolf, & Shenhav, 2019; Grueschow, Polania, Hare, & 

Ruff, 2015; Guitart-Masip et al., 2012; Lebreton et al., 2009; Shenhav & Buckner, 2014; 

Shenhav, Dean Wolf, & Karmarkar, 2018; Shenhav & Karmarkar, 2019; van der Meer, Kurth-

Nelson, & Redish, 2012). Distinguishing such choice-independent neural value signals from 

those that play a mechanistic role in the choice process requires disentangling the two types of 

signals within a measure of neural activity that provides the temporal resolution to uncover their 

unfolding dynamics. Here, we use EEG to explicitly tease apart value-based neural dynamics 

attributable to decision-making from those that are not, and reveal, surprisingly, that only the 

latter, choice-independent value signals were to be found. 

Prevailing computational models show that decision-making can be described as a 

process of noisy evidence accumulating to a decision threshold, providing an account of choice 
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behavior (choices and response times) across a variety of different choice settings (Ratcliff, 

Smith, Brown, & McKoon, 2016; Usher & McClelland, 2001). In the context of value-based 

decision-making, putative correlates of this evidence accumulation process have been identified 

throughout the brain (Hare et al., 2011; Hunt et al., 2012; Padoa-Schioppa & Conen, 2017; 

Pisauro et al., 2017) 3 often reflecting variability in the strength of evidence in favor of a 

particular option or attribute 3 and a subset of studies has used temporally-resolved estimates of 

neural activity to capture the dynamics of this evidence accumulation process. From this work, a 

putative EEG signature of evidence accumulation has emerged in the centroparietal positivity 

(CPP), both for perceptual (Kelly & O'Connell, 2013; O'Connell, Dockree, & Kelly, 2012; 

Twomey, Murphy, Kelly, & O'Connell, 2015) and value-based (Pisauro et al., 2017) choice. 

Researchers have shown that the CPP demonstrates three characteristic elements of evidence 

accumulation (cf. Fig 1A): (1) following stimulus presentation, activity is greater and peaks 

earlier when decision-related evidence is stronger (consistent with a more rapid rise of evidence 

accumulation when choices are easier), (2) activity peaks around the time of the response 

(consistent with a common response threshold), and (3) in the period leading up to the response, 

activity is greater when evidence is weaker and/or responses are slower (consistent with the more 

gradual accumulation of evidence over that trial). The CPP is thus a potential index of value-

based processing that is integral to decision-making per se.  

 However, recent studies have shown that neural correlates of choice value can reflect 

appraisals of the choice set as a whole, that take place irrespective of whether the participant is 

comparing their options (Frömer et al., 2019; Shenhav & Karmarkar, 2019). For instance, using 

fMRI, dissociable components of the brain9s valuation network (Bartra et al., 2013) were found 

to track how much participants liked a set of choice options overall versus elements of the choice 
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process itself (e.g., whether they were engaged in choice versus appraisal, and how demanding 

the choice was; Shenhav & Buckner, 2014; Shenhav et al., 2018; Shenhav & Karmarkar, 2019). 

These studies suggest that value-related activity may emerge soon after the stimuli are presented 

that is tied to choice-independent, appraisal-like processes. They further predict that signatures of 

this appraisal process should be distinguishable from the evidence accumulation signatures 

described above, both in terms of the specific correlates of value that each of these tracks and, 

critically, in terms of their temporal dynamics (Fig 1A): whereas appraisal-related processes 

should index the overall value of a choice set, and occur transiently and locked to the 

presentation of the choice options; choice-related processes should index comparisons between 

one9s options (e.g., the relative value of the chosen vs. unchosen option). The latter may reflect 

evidence accumulation, in which case such activity should ramp up between stimulus 

presentation and response selection (cf. Pisauro et al., 2017; Polania et al., 2014), or other 

choice-related processes (e.g. monitoring one9s confidence). Past work has been unable to test 

these predictions because it lacked the temporal resolution needed to demonstrate these distinct 

temporal profiles and to formally tease apart signals that meet the criteria of evidence 

accumulation from those that do not. As a result, it is unknown whether these value-related 

signals are indeed distinct or merely two components of a unitary choice process (Fig. 1A; cf. 

Hunt & Hayden, 2017; Hunt et al., 2012). 
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To fill this critical gap, we had participants make value-based decisions while undergoing 

EEG, and explicitly disentangled putative correlates of choice-independent appraisal processes 

(e.g., overall value and set liking) from correlates of the process of choice comparison (e.g., 

relative value and choice confidence). This allowed us to test two alternative hypotheses (Fig 1 

Figure 1. Dissociating appraisal- 

and choice-related processes. A. 
A set of options can elicit distinct 

evaluations, such as appraisal of 

the options and choice among 
them. Different frameworks make 

different predictions for whether 

and how those should affect neural 

activity locked to the response 
versus the stimulus. Top: One 

account predicts that appraisal and 

choice reflect different temporal 
stages of a unitary evidence 

accumulation process, such that 

relevant variables (e.g., value 

similarity, blue) would be 
reflected first in stimulus-locked 

activity, and culminate at the time 

of the response. Middle/Bottom: 
Alternative accounts predict that 

appraisal reflects an independent 

process that emerges during 
stimulus presentation. Under these 

accounts, neural activity correlated 

with choice-related variables may 

emerge as a parallel process of 
evidence accumulation (i.e., both 

stimulus-locked and response-

locked, middle) or in some other 
form as a non-accumulation-

related signal (shown response-

locked only as a stylized example- 
the shape and directionality of the 

signals may differ, bottom). B. To 

dissect the temporal dynamics of 

appraisal- and choice- related 
neural activity, we regress single 

trial EEG activity onto Appraisal-

related and Choice -related 
variables (see Fig. 2C), separately 

for stimulus- and response-locked 
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A). One hypothesis is that value-related EEG activity would only emerge in the form of an 

evidence accumulation process, in which case we would expect any value-related variables 

(including overall value) to demonstrate characteristic patterns of stimulus-locked and response-

locked activity previously observed, for instance, in the CPP (Fig 1 A top). The alternate 

hypothesis, motivated by our recent fMRI findings, is that we would observe appraisal-related 

patterns of activity that are selectively locked to stimulus presentation (reflecting their potentially 

more reflexive nature), independently of choice-related value signals. These choice-related value 

signals may take the form of CPP-like evidence accumulation signals (Fig 1 A middle), or some 

other form (Fig 1 A bottom). 

We were able to rule out the first hypothesis, instead finding appraisal-related EEG 

activity that was both stimulus-locked and independent of choice comparison-related activity. 

Putatively choice-related EEG activity, by contrast, occurred in a distinct temporal window 

(response-locked) and with a different spatial profile (fronto-posterior) than the spatiotemporal 

cluster we identified for appraisal (stimulus-locked and parietal). Remarkably, these putative 

choice value signals also did not meet key criteria for an evidence accumulation signal. Instead, 

and even more striking, we found that such apparent evidence accumulation signals can emerge 

from choice-independent stimulus-locked activity, as an artifact of standard approaches to 

investigating evidence accumulation processes, due to bleed-over between stimulus-locked and 

response-locked activity (particularly for rapid choices). Across this dataset and a previous study 

of perceptual decision-making, we use a novel analysis approach to deconvolve stimulus and 

response-related activity, and show that doing so eliminates signatures of evidence accumulation 

previously seen in the CPP. As a result, our findings collectively, and unexpectedly, support a 

third hypothesis (Fig. 1A bottom): that value signals separately correlated with appraisal-related 
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and choice-related processes emerge during value-based decision-making, but neither of these 

reflect evidence accumulation.  

 

Results  

We recorded EEG while participants made incentive-compatible choices between pairs of 

options (consumer goods). Choice sets varied in the overall and relative value of the two options, 

as determined by ratings of individual items given earlier in the session (Fig. 2A, B). 

Participants9 choice behavior was consistent with that observed in previous studies and predicted 

by prevailing models of evidence accumulation (Pisauro et al., 2017; Polania et al., 2014; 

Ratcliff et al., 2016): participants chose faster (LMM fixed effect: b = -348.7 p <.001) and in a 

manner more accurate/consistent with their initial item ratings (GLMM fixed effect: b = 4.54, p 

<.001) as value difference increased, and also chose faster as overall value increased (LMM 

fixed effect: b = 357.14, p < .001; Fig. 2 B, Table S 1). After making all of their choices, 

participants provided subjective ratings of the choice sets (how much they liked the sets as a 

whole) and of the choices themselves (how much choice anxiety they had experienced while 

making the choice, and how confident they were in their final decision). 

Distinct spatiotemporal clusters track indices of appraisal vs. choice comparison 

We predicted that we would find a temporal dissociation between neural activity 

associated with appraisal versus choice, whereby appraisal-related activity would be temporally 

coupled with the onset of the stimuli whereas choice-related activity would be temporally 

coupled with the response. To test this prediction, we analyzed the effects of appraisal and choice 

related variables on the same EEG data locked to the onset of the stimuli versus locked to the 

response. Given that a number of different variables captured our two constructs of interest - for 
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instance, appraisal was captured by the overall (average) value of the choice set and subjective 

ratings of set liking, and choice was captured by the difference between the option values and 

subjective ratings of confidence (cf. Fig. 2B) - we used principal component analysis (PCA) to 

reduce the dimensionality of these single-trial measures and improve the robustness of our 

estimates of each construct.  

 

Figure 2. Integrating multiple measures of appraisal and choice. A. Participants performed the 

experiment in three phases, rating consumer goods individually (Phase 1) before choosing between pairs 

of those items (Phase 2) and finally rating their subjective experiences of those choices (Phase 3: set 

liking [appraisal], confidence, and anxiety). B. Responses across these phases provided different measures 
of appraisal and choice. Top: Option sets for Phase 2 were generated based on participants9 initial item 

ratings to vary in their overall (average) value and the absolute difference between the values of the two 

options. Middle: Choices varied with the relative value of the chosen vs. unchosen option, and RTs varied 
with both overall value and value difference. Bottom: Overall value (OV; solid) and value difference 

(VD; dotted) differentially influenced experiences of choice anxiety, confidence, and set liking. C. We 

used principal component analysis to reduce the dimensionality of our measures, identifying two principal 
components in our variable set, clustering naturally into variables associated with appraisal (PC1) versus 

choice (PC2). Component loadings for each measure are represented by their distance from the origin. 
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This PCA identified two reliable principal components (Fig. 2C, Table S2), one of which 

associated with how positively the option set had been assessed overall (e.g. positively loading 

on overall value and on ratings of choice set liking) and the other associated with how difficult 

the choice comparison was (e.g. negatively loading on value difference and on ratings of choice 

confidence). We termed these the Appraisal PC and Choice PC, respectively. 

We regressed stimulus and response-locked single-trial EEG activity onto these appraisal- 

and choice-related PCs (cf. Fig. 1 B), and found that they mapped onto distinct spatiotemporal 

patterns (Fig. 3). In line with our predictions, we found that our Appraisal PC explained EEG 

activity locked to (and following) stimulus onset (Fig. 2A, p = .040, two-sided cluster 

permutation test), but not locked to the response (neither preceding nor following). The largest 

stimulus-locked cluster had a parietal distribution, peaking around 710 ms at CP2. Further in line 

with our hypothesis, we observed significant Choice PC-related activity locked to (and 

preceding) the response (Fig. 2B; p = .002 for a positive and p <.001 for the negative based on 

two-sided cluster-permutation tests), but not locked to and following the stimulus. The response-

locked Choice PC activity included a frontocentral positive cluster, peaking around -566 ms at 

FC4, and a posterior negative cluster, peaking around -818 ms at P5. Similar clusters emerged 

when performing separate analyses on variables that constituted each of the PCs (Table S3).  
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Figure 3. Appraisal and Choice exhibit dissociable spatio-temporal profiles. A 3 B. Curves 

show predicted ERPs for each level of a given PC from the regression model (visualized in 

discrete terciles), averaged within the electrodes in the respective cluster, within 1 second 
following stimulus onset (A) and preceding the response (B). Note that the median RT was 

approximately 1.7 s, so there is little overlap between stimulus- and response-locked data. Grey 

bars indicate cluster time points that significantly exceed permutation cluster masses (two-tailed 

test) for either the positive or negative clusters. Topographies display t-values within these 
clusters aggregated across cluster time points. To visualize the variability in the data underlying 

these clusters, individual participants9 t-values are displayed on the right of each panel, 

aggregated within cluster times and electrodes. A. Stimulus-locked centroparietal positive activity 
increases with higher Appraisal PC scores (more positive appraisal). B. Response-locked 

posterior positivities and fronto-central negativities are reduced for higher Choice PC scores 

(more difficult trials). C. Coefficient topographies for the Appraisal PC (top) and Choice PC 

(bottom), averaged across sliding 200 ms windows aligned to stimulus (left) and response (right). 
Darker regions indicate time-windows encompassing significant clusters (cluster permutation 

corrected p <.05). 
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Neither value-related EEG signature is consistent with evidence accumulation 

Our analyses suggest that two value-related EEG patterns emerge during value-based choice. The 

first of these was stimulus-locked, tracked appraisal-related measures (i.e., assessments of how 

much the participant liked the set overall), and had a timing and spatial distribution similar to 

that of the late positive potential (LPP), an ERP commonly found to index the affective salience 

of stimuli (Abdel Rahman, 2011; Schacht, Adler, Chen, Guo, & Sommer, 2012; Suess & Abdel 

Rahman, 2015), suggesting that this stimulus-locked cluster may index processes unrelated to the 

choice itself. By contrast, the response-locked value clusters we observed tracked measures of 

choice comparison (e.g., how much more valuable one option was than the other, and how 

certain the participant was in their choice), and had a spatiotemporal profile consistent with 

fronto-parietal EEG patterns that have been previously implicated in value-based decision-

making (Polania et al., 2014; Polania, Moisa, Opitz, Grueschow, & Ruff, 2015). The posterior 

cluster overlapped topographically with the CPP (Kelly & O'Connell, 2013; O'Connell et al., 

2012; Pisauro et al., 2017; Twomey et al., 2015). We therefore reasoned that this response-locked 

cluster was a good candidate for providing an index of the evidence accumulation process 

leading up to the choice, and performed follow-up analyses to test whether activity in this or the 

more anterior cluster met the criteria for such a process.  

Typically, evidence accumulation signals are also evident in stimulus-locked activity, 

because responses fully overlap with the stimulus time-window, leading to the characteristic 

greater and earlier peaks for faster evidence accumulation. Since in our study response times are 

longer, the absence of this pattern is expected. Surprisingly, however, neither of our response-

locked clusters met the two response-locked criteria for signatures of evidence accumulation. 

First, rather than ramping towards a common peak (marking the response threshold) immediately 
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prior to a response, we found that activity peaked more than 500 ms prior to the response. 

Second, rather than seeing greater activity leading up to a response on harder choice trials, 

reflecting the slower rate of evidence accumulation expected for those trials (compare light and 

dark lines in Fig. 3B), we instead found the opposite. Both frontal and posterior clusters showed 

greater amplitudes for easier as opposed to more difficult trials.  

The fact that our data failed to meet either of these criteria was particularly notable for 

our posterior cluster, given its apparent overlap with the centroparietal positivity, the event-

related potential most strongly associated with evidence accumulation. To better understand this 

discrepancy with previous work, we performed follow-up analyses focused directly on the CPP 

proper. Specifically, we tested for a key marker of evidence accumulation traditionally observed 

in the CPP: that slower trials (which require more evidence accumulation) should show larger 

amplitudes leading up to the response than faster trials (Pisauro et al., 2017; Polania et al., 2014). 

In our study, CPP amplitudes in the pre-response time window (- 700 to -200 ms as in Pisauro et 

al., 2017) instead showed the opposite pattern: significantly larger for shorter relative to longer 

RTs (LMM fixed effect: b = - 0.47, t = -3.10, p = .002). Similar findings emerge when using 

value difference as a proxy for choice difficulty (as in the analyses above): CPP amplitude was 

larger for easier than harder choice trials (LMM fixed effect: b = 0.62, t = 1.77, p = .077) rather 

than the reverse.  

One possible explanation for this apparent contradiction has to do with differences in the 

timing of choices in our study relative to previous studies. Our participants were given up to four 

seconds to make their choice, in contrast to shorter response windows in earlier work (e.g., 1.25s 

in Pisauro et al., 2017). The evidence accumulation signal may therefore have been more spread 

out in time within our data, leading the expected greater activity for slower/more difficult trials 
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to occur earlier. To investigate this possibility, we examined the average ERP curves on trials 

above and below the median RT (Fig 4 A). Moving far enough back in time, to around 1s prior to 

response onset, we do see that the relative magnitudes of slow and fast trials reverses such that 

slow trials elicit greater activity than fast trials, as predicted by an evidence accumulation 

account. However, at odds with this account, we also see that slower trials elicit much earlier 

peaks than faster trials. To understand why these peaks were systematically shifting in time, we 

plotted the single trial amplitudes underlying the median RT averages and sorted them by RT 

(Fig 4A top). This revealed a marked positive amplitude response in all trials (red line) 

approximately 350 ms following stimulus onset (black line), and the rise and peak of the ERP 

curves approximately followed the respective temporal distributions of this response (compare 

Fig 4 A top and bottom).  
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Figure 4. Stimulus-locked EEG activity can produce spurious patterns of response-locked activity 

due to variability in response times. A. Top: Response-locked single trial ERPs at Pz sorted by RT for 
trials faster (black box) and slower (grey box) than the median RT. Black lines mark stimulus onsets, and 

red lines mark the average onset of the stimulus-locked P3. Bottom: Averaging across these trials 

produces differential patterns of response-locked ERPs for faster trials (black) relative to slower trials 
(grey). B. The unexpected patterns observed in Panel A can result from component overlap. Top: 

Evidence accumulation signals expected for fast- and slow RTs respectively. Middle: When activity is 

locked to the response, this introduces jitter in stimulus-locked activity, with stimulus-related activity 
appearing earlier and earlier as RTs increase (i.e., the greater the delay between stimulus and response). 

Bottom: The convolution of the two patterns above can produce a pattern that is dominated by component 

overlap and obscures signatures of evidence accumulation. Such a pattern is similar to that shown in panel 

A. 

We therefore considered that the discrepancy between our findings and those previously 

observed (cf. Fig 4 B, top) may have been caused by overlap with this choice-unrelated response 

(Stimulus ERP jitter, Fig 4 B, middle) which may have masked the expected evidence 

accumulation signal. We therefore performed a separate analysis, analogous to standard event-

related analyses for fMRI, which explicitly modeled stimulus-locked and response-locked 

activity, allowing them to be formally deconvolved from one another (Ehinger & Dimigen, 2019; 

Smith & Kutas, 2015a, 2015b). Like our previous analyses, this approach again identified a 
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positive stimulus-locked appraisal cluster with a centro-parietal distribution (peak around 810 ms 

at electrode Pz, p = .004) and response-locked choice clusters over frontal (positive, peak around 

-722 ms at electrode AFz, p = .010) and parietal (negative, peak around -616 ms at electrode P8, 

p = .010) sites, respectively. This approach also showed no stimulus-locked choice effects, or 

response-locked appraisal effects. Thus, despite successfully disentangling the stimulus- and 

response-locked activity, it did not change our overall pattern of results; even after controlling 

for component overlap, our response-locked pattern remained inconsistent with evidence 

accumulation.  

 

Evidence accumulation signals can emerge as an artifact of component overlap 

These findings led us to question whether rather than masking evidence accumulation 

signals in our findings, stimulus-locked activity may have spuriously caused signatures of 

evidence accumulation in previous work. As we indicated earlier, most studies investigating 

evidence accumulation signals in EEG involved much faster decisions (cf. Fig 5A). One 

possibility is therefore that the characteristic response-locked evidence accumulation pattern in 

prior studies was driven by overlap between stimulus-related activity (e.g., related to the salience 

of the stimuli) and response-locked activity (Smith & Kutas, 2015b). This component overlap 

account can explain basic features of CPP data, (Fig. 5A bottom) and makes a distinct prediction: 

rather than activity remaining locked to the response (as predicted by an evidence accumulation 

account), a component overlap account predicts that the peak of the CPP should move back in 

time as RTs increase (Fig. 5B bottom). As a consequence, for short-RTs, variability in the extent 

of overlap between stimulus-related and response-related activity with RT would produce an 

artifactual ramping signal in average ERPs that appears steeper for faster and shallower for 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2022. ; https://doi.org/10.1101/2022.08.02.502393doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.02.502393
http://creativecommons.org/licenses/by/4.0/


 18 

slower responses. To test this possibility, we produced the same ERP plots as above for the 

subset of trials that had RTs shorter than 1.25 seconds, as in previous studies (Fig. 5B top). 

Compared to the entire dataset, the peaks for this subset of short RTs moved closer to the 

response and, crucially, a pattern reminiscent of the CPP emerged, with slower RT trials in this 

range displaying a larger parietal positivity up to 500 milliseconds prior to the response. Our 

collective pattern of results, across both short and long RTs, therefore exactly matches the 

predictions of the component overlap account (Fig. 5A/B bottom). 

 

Figure 5. Evidence accumulation signals emerge as an artifact of component overlap. A. A 

representative CPP finding (data from Pisauro et al. 2017) shows faster ramping for ERPs curves from 
fast compared to slow trials. Histograms show distributions of stimulus onsets relative to the response for 

each average ERP curve. Simulation: Component overlap can generate an evidence accumulation-like 

pattern under plausible assumptions about RT distributions. Note that these simulations assume the same 
response-related component for all trials (black line), omitting any evidence accumulation. For fast 

response times (<900 ms on average), overlapping stimulus- and response-related component are 

predicted to resemble a single ramp-like component. The peak time and shape of the underlying 
component will depend on the mean and width of the RT distribution of trials in each ERP average. B. 

Data from our decision-making study are consistent with component overlap predictions. Shown are 

average ERPs for median split fast and slow RTs below 1.25 s (left) RT across all trials (right), 

respectively. Histograms show distributions of stimulus onsets relative to the response. Stimulus-evoked 
peaks move further away from the response as response times increase (top). Peak times and widths of the 

observed ERP curves vary with the mean and width of the RT distribution of the underlying trials. This 

pattern of results is consistent with a component overlap account (bottom). 
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However, it is still difficult to generalize from these results because our average RTs were 

longer than those in previous studies, even when only focusing on our subset of short-RT trials 

(those below 1.25s). As a result, rather than peaking exactly at the time of response (as is 

characteristic of past CPP results), EEG activity during that subset of trials peaks slightly before 

the response. To provide a more direct test of our hypothesis that the evidence accumulation 

effects in the CPP could originate from a component overlap artifact, we re-analyzed EEG 

findings from a perceptual decision-making task for which response times were more tightly 

constrained (Frömer, Maier, & Abdel Rahman, 2018). In this study, EEG was recorded while 

participants (N = 40) decided whether a deviant object in a circular array of objects was on the 

left or right side of the display (Fig 6). Objects in the array were chosen to be visually similar 

and presented either intact or blurred, which serves as an index of evidence strength and 

modulated performance accordingly (lower accuracy and slower RTs for blurred compared to 

intact stimuli). Stimuli were presented for 200 ms, and participants had up to 2 s from stimulus 

onset to respond.  

 When we separately analyze stimulus-locked and response-locked activity using mass-

univariate analyses analogous to standard ERP analyses, we find the characteristic CPP indices 

of evidence accumulation over centroparietal sites. Stimulus-locked analyses reveal greater 

activity (larger P3b amplitude) for intact (high evidence strength) compared to blurred (low 

evidence strength) stimuli (Fig 6A). Critically, response-locked analyses revealed that activity 

peaked at the time of the response and rose with a steeper slope for intact relative to blurred 

stimuli, resulting in more positive CPP amplitudes for trials that putatively required more 

evidence accumulation (Fig. 6B, cf. Fig. 1A; Supplemental Results, Table S4). The centro-

parietal positivity therefore meets stimulus and response-locked criteria for signatures of 
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evidence accumulation. However, because these analyses do not explicitly account for the 

overlap between stimulus-related and response-related components, they cannot distinguish 

whether the response-locked patterns reflect evidence accumulation or stimulus-related activity. 

To formally disentangle these, we again applied the deconvolution approach introduced earlier 

(Ehinger & Dimigen, 2019), including stimulus and response events in a single model of neural 

responses. After deconvolution, we continue to see an amplitude modulation of the stimulus-

locked P3b (Fig. 6C, left) but no longer find a response-locked signature of evidence 

accumulation (Fig. 6, right; Supplemental Results, Table S 5), suggesting that this characteristic 

pattern of evidence accumulation only appeared in our previous analysis as an artifact of 

component overlap. 
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Figure 6. Response-locked evidence accumulation patterns vanish when correcting for component 

overlap. A. Regression ERPs (rERPs) from a mass-univariate analysis of an independent perceptual 

decision-making dataset (Frömer, Maier, & Abdel Rahman, 2018) exhibit a CPP with characteristic 
signatures of evidence accumulation. Decisions based on weaker evidence (blurred stimuli) are associated 

with lower stimulus-locked CPP amplitude (left) and a slower response-locked ramping of CPP amplitude 

(right), resulting in larger CPP amplitudes prior to the response. B. Histograms of response times (left), 
stimulus onsets and average stimulus-locked P3 peak (right) mirror stimulus (left) and response-locked 

(right) rERPs. C. When re-analyzing these data with a deconvolution approach that models both stimulus-

related and response-related activity, we instead find that stimulus-locked rERPs (left) show markedly 
reduced differences between intact and blurred conditions and response-locked rERPs (right) no longer 

show the characteristic evidence accumulation pattern. Data are shown with average reference. 
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Discussion 

Previous work has identified reliable neural correlates of choice value, and interpreted 

them as elements of a uniform choice process in which option values are compared through an 

accumulation-to-bound process. These interpretations have been reinforced by evidence of such 

neural correlates ramping up towards the response, as would be expected of activity associated 

with evidence accumulation (Pisauro et al., 2017). However, recent work suggests that certain 

neural correlates of choice value are unrelated to goal-directed processes such as evidence 

accumulation and instead reflect the appraisal of one9s options (Frömer et al., 2019; Shenhav & 

Buckner, 2014; Shenhav & Karmarkar, 2019). Here, we tested whether we could use EEG to 

temporally dissociate such choice-independent value signals from choice-related value signals. 

We anticipated that choice-independent value signals would follow shortly after stimulus onset, 

whereas choice-related activity should be coupled to and lead up to the response. We found this 

expected temporal dissociation. Remarkably, though, we found that choice-related activity was 

inconsistent with evidence accumulation, and that instead, putative signatures of evidence 

accumulation can emerge artificially in standard response-locked analyses from overlapping 

stimulus-related activity. Across these value-based choice data and an independent perceptual 

decision-making dataset, we show that signatures of evidence accumulation are absent when 

stimulus-locked and response-locked activity are sufficiently separated in time, and disappear 

when overlapping activity is formally deconvolved.  

It is important to note that our observation that correlates of appraisal (e.g., overall value) 

occur earlier in time than correlates of choice (e.g., value difference) does not in and of itself 

suggest that these signals arose from independent processes. Indeed, this same temporal pattern 

(overall value signals preceding value difference signals) is predicted to emerge from certain 
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forms of unitary evidence accumulation processes, such as that of Wang and colleagues (Wang, 

2002; Wong & Wang, 2006; see Hunt & Hayden, 2017; Hunt et al., 2012). However, models like 

this also predict that all these value signals should emerge locked to the response 

(Supplementary Figure 1). At odds with such an account, we only found stimulus-locked 

correlates of appraisal (unlike response-locked choice correlates). Our findings are thus better 

explained by separate mechanisms related to appraisal and choice. 

The distinctiveness of these two sets of value signals is further supported by the fact that 

they were linked to distinct topographies. As predicted, we found appraisal-related activity 

temporally locked to stimulus onset - reflected in a parietal positivity consistent with an LPP 

ERP component ( Abdel Rahman, 2011; Schacht et al., 2012; Suess & Abdel Rahman, 2015). 

The distribution and timing of this component parallels previous ERP findings on single item 

valuation (Harris, Adolphs, Camerer, & Rangel, 2011; Harris, Clithero, & Hutcherson, 2018), 

and therefore may be interpreted as reflecting an initial valuation stage prior to the onset of an 

independent choice comparison process (Lim, O'Doherty, & Rangel, 2011; Litt, Plassmann, Shiv, 

& Rangel, 2011; Plassmann, O'Doherty, & Rangel, 2010). Notably, the LPP is sensitive to 

affective information even when that information is not task relevant (Abdel Rahman, 2011; 

Bruchmann, Schindler, Heinemann, Moeck, & Straube, 2021) and its putative sources (Sun et al., 

2017) overlap with the pregenual ACC and PCC regions in which we previously found choice-

independent set appraisals (Shenhav & Karmarkar, 2019). Collectively, these findings suggest 

that rather than an initial choice-related valuation step, these appraisal-related signals reflect an 

automatic valuation signal (Lebreton, Abitbol, Daunizeau, & Pessiglione, 2015), or enhanced 

attention to such motivationally relevant events (Busch & VanRullen, 2010; Weichart, Turner, & 

Sederberg, 2020). Accordingly, we found that the variable that best predicted activity in our 
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Appraisal Cluster was a participant9s affective appraisal of the set (i.e., set liking, Table S2). 

Thus, appraisal-related activity may reflect initial (and perhaps reflexive) affective reactions to 

the stimuli (cf. Shenhav & Buckner, 2014; Shenhav & Karmarkar, 2019), and possibly serve to 

inform control decisions (Sun et al., 2017; Tajima, Drugowitsch, & Pouget, 2016) and/or future 

choices (Hall-McMaster, Dayan, & Schuck, 2021). 

In contrast, choice-related activity was temporally locked to the response, and was 

characterized by a prominent frontocentral negativity and concomitant posterior positivity, 

consistent with previous findings demonstrating increased time-frequency coupling between 

frontoparietal regions, and stronger fronto-central beta power during value-based compared to 

perceptual decision-making (Polania et al., 2014; Polania et al., 2015). However, follow-up 

analyses showed that this pattern of activity was inconsistent with it reflecting the evidence 

accumulation process leading up to the choice (Kelly & O'Connell, 2013; O'Connell et al., 2012; 

Pisauro et al., 2017; Polania et al., 2014), in that amplitudes were larger for easier (or faster) 

rather than more difficult (or slower) trials. Our findings also rule out alternate versions of this 

evidence accumulation account whereby the decision threshold (or urgency signal) varies 

between decision-types with known differences in difficulty (Boldt, Schiffer, Waszak, & Yeung, 

2019) or over the course of the decision (Kelly, Corbett, & O'Connell, 2021). These varying-

threshold accounts would still predict that activity would be locked to one9s response, and are 

thus ruled out by the backward-shifting peaks we observed.  

If these choice value correlates do not in fact reflect elements of the evidence 

accumulation process, what might they reflect? A prominent alternative account of such 

correlates would propose that signals associated with choice difficulty (e.g., value difference) 

that we observe in our choice clusters might instead reflect monitoring (e.g. conflict or 
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confidence), which could inform higher-order decisions about further information sampling and 

potential information gain (Callaway, Rangel, & Griffiths, 2021; De Martino, Fleming, Garrett, 

& Dolan, 2013; Desender, Boldt, & Yeung, 2018; Desender, Murphy, Boldt, Verguts, & Yeung, 

2019; Hunt, 2021; Jang, Sharma, & Drugowitsch, 2021; Kaanders, Nili, O9Reilly, & Hunt, 2020; 

Kane et al., 2021; Lee & Daunizeau, 2019; Li, Nassar, Kable, & Gold, 2019; Monosov, 2020; 

Schulz, Fleming, & Dayan, 2021; Yeung & Summerfield, 2012). Recent work in value-based 

decision-making is converging on the idea that value based choice as studied here requires higher 

order decisions on gaze/attention allocation in the service of information sampling that 

fundamentally rely on representations of both value and uncertainty (Callaway et al., 2021; 

Gluth, Spektor, & Rieskamp, 2018; Hunt, 2021; Jang et al., 2021; Monosov, 2017, 2020; 

Sepulveda et al., 2020; White et al., 2019). This functional interpretation is consistent with 

proposed loci of CPP activity in dACC (Pisauro et al., 2017), and decrements in choice 

consistency when fronto-central coupling is disrupted during value-based choice (Polania et al., 

2015). While intriguing, this interpretation requires additional work to test specific predictions of 

a monitoring or active information search account. 

Whatever the nature of these signals, our results call for caution when interpreting 

response-locked neural patterns as evidence accumulation. Across two datasets, we found that 

evidence accumulation signatures in the response-locked CPP may artificially arise from 

response time-dependent overlap with stimulus-related processing. A crucial signature of 

evidence accumulation is that the corresponding signal peaks close to the time of the response, 

with that peak occurring earlier for faster compared to slower decisions. This is frequently 

observed for the CPP in perceptual decision making when the onset of the relevant stimulus is 

purposefully obscured, thus when the subjective onset of the stimulus can vary relative to the 
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objective onset (Kelly et al., 2021; Kelly, Corbett, & O9Connell, 2019; Kelly & O'Connell, 2013; 

Pereira et al., 2021). However, decision-making studies that have identified the CPP as a 

signature of evidence accumulation often only show response-locked activity; in cases where 

stimulus-locked activity was examined, including our present results, the expected latency effect 

was not found (Sun et al., 2017). In addition to testing multiple predictions of evidence 

accumulation accounts, future research can avoid misinterpretations of neural activity by 

inspecting ERP image plots for temporal patterns in single-trial data and deconvolving stimulus 

and response-locked signals (Ehinger & Dimigen, 2019). Novel approaches are further needed to 

test the evidence accumulation hypothesis of value-based choice against alternative non-

integration models (Latimer, Yates, Meister, Huk, & Pillow, 2015; Stine, Zylberberg, Ditterich, & 

Shadlen, 2020). 

 Our findings build on recent work in non-human animals, which has demonstrated that 

signatures of evidence accumulation can be necessary but not sufficient to conclude that a given 

neural population underpins the evidence accumulation process that drives choice. Using 

deactivation approaches, such studies have called into question the role of candidate regions of 

decision-making in parietal and prefrontal cortex that showed patterns expected for evidence 

accumulation using standard approaches (Erlich, Brunton, Duan, Hanks, & Brody, 2015; Hanks 

et al., 2015; Kane et al., 2021; Katz, Yates, Pillow, & Huk, 2016; but see also: Jeurissen, 

Shushruth, El-Shamayleh, Horwitz, & Shadlen, 2022). Similar to these findings, our work shows 

that evidence of accumulation is not sufficient to argue for an evidence accumulation account, 

and that to better understand the array of signals that appear over the course of a decision, we 

need to incorporate insights from affective science, metacognition and cognitive control (Frömer 

& Shenhav, 2022).  
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Method 

Participants 

48 participants were recruited from Brown University and the general community. Of 

these 9 had to be excluded due to technical problems during data acquisition. The final sample 

consisted of 39 participants, (27 female) with a mean age of  20.84 years (SD = 3.90). 

Participants gave informed consent and received $10 per hour for their participation ($30 for the 

entire experiment). In addition to the compensation, participants could win one of their choices at 

the end of the experiment. The study was approved by Brown University9s IRB.  

Task and Procedure 

The main experiment consisted of 3 parts: value rating, choice and subjective experience 

rating (Fig. 1A). The experimental procedure is an adapted version of that used in previous 

studies (Shenhav & Buckner, 2014; Shenhav & Karmarkar, 2019) to meet the requirements of 

EEG, specifically in the choice part.  

In the first part, participants were presented with consumer goods, one at a time, and 

asked to rate how much they would like to have each of them on a continuous scale from 0 to 10 

with zero being <not at all= and 10 being <a great deal=. Labels presented below each item 

supported their identification. Participants were encouraged to use the entire scale. Based on 

individual ratings, choice sets were created automatically, varying value difference and set value 

such that in half of the choices variance in value difference was maximized, while in the other 

half value difference was minimal and variance in set value was maximized (Shenhav et al., 

2018).  
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In the second part, participants had to choose between two items presented left and right 

from a fixation cross by pressing the <A= or <L= key on a keyboard with their left or right index 

finger, respectively. At the beginning of the choice part, participants were placed at 90 cm 

distance to the screen with the keyboard in their lap and their fingers placed on the response 

keys. Images were presented with a size of 2° visual angle (115 pixel) each, at 1.3° visual angle 

(77 pixel) from a centrally presented fixation cross. Thus, the entire choice set extended to 

maximally 2.3° visual angle in each hemifield. This small stimulus size was chosen as to reduce 

eye movements by presenting the major portion of the stimuli foveally (radius of ~2 deg. visual 

angle; Strasburger, Rentschler, & Juttner, 2011). At the time of the response or after a maximum 

duration of 4s, the stimuli vanished from the screen and a fixation cross was presented for a 

constant 1.5 s inter trial interval. Before the beginning of the choice part, participants were 

informed that one of the choices would be randomly selected for a final gamble in the end of the 

experiment that would give them the opportunity to win the item they chose on that trial (N = 20 

who won and received an item).  

In the third part, participants were presented with all choices again to sequentially rate 1) 

their anxiety while making each particular choice, 2) their confidence in each choice, and 3) how 

much they liked each choice set, respectively. For all subjective evaluations the scales ranged 

from one to five mapped onto the corresponding number keys on the keyboard. 

In the beginning and at the end of the experimental session, demographic and debrief data 

were collected, respectively, using Qualtrics. All subsequent parts were programmed in 

Psychophysics Toolbox (Brainard, 1997; Pelli, 1997) for Matlab (The MathWorks Inc.) and 

presented at 60 Hz on a 23 inch screen with a 1920 x 1080 resolution. Prior to the main 

experiment, participants filled in computerized personality questionnaires (Behavioral 
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Inhibition/Activation Scales (BIS/BAS), Neuroticism subscale of the NEO Five Factor 

Inventory, Intolerance for Uncertainty Scale, and Need for Cognition). These data are not 

analyzed for the present study. 

Psychophysiological recording and processing 

EEG data were recorded from 64 active electrodes (ActiCap, Brain Products, Munich, 

Germany) referenced against Cz with a sampling rate of 500 Hz using Brain Vision Recorder 

(Brain Products, Munich, Germany). Eye movements were recorded from electrodes placed at 

the outer canti (LO1, LO2) and below both eyes (IO1, IO2). Impedances were kept below 5 k«. 

EEG analyses were performed using customized Matlab (Versions 2017a and 2019b; The 

MathWorks Inc.) scripts and EEGLab (Version 13_6_5b; Delorme & Makeig, 2004) functions 

(cf. Frömer et al., 2018, for an earlier version of the pipeline). Offline data were re-referenced to 

average reference and corrected for ocular artifacts using brain electric source analyses (BESA; 

Ille, Berg, & Scherg, 2002) based on individual eye movements recorded after the experiment. 

The continuous EEG was low pass filtered at 40 Hz. For mass-univariate analyses (see below), 

choice data was segmented into epochs of 4.2 s locked to stimulus onset, and 2.8 s relative to the 

response with 2 s pre- and 800 ms post response. Epochs were baseline-corrected to the 200 ms 

pre-stimulus interval for both segmentations. Trials containing artifacts (exceeding amplitude 

thresholds of +/- 150µV or a gradient of 50µV) were excluded from further analyses. Unfold 

analyses were performed on unsegmented, preprocessed data as described below.  

Analyses 

 Behavioral data were analyzed using linear mixed effects models as implemented in the 

lme4 package (Bates, Maechler, Bolker, & Walker, 2015) for R (Version 3.4.3; R Core Team, 

2014). P-Values were computed using the sjplot package (Lüdecke, 2021). We modeled main 
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effects for value variables (both fixed and random effects) in line with previous work (Frömer et 

al., 2019; Hunt et al., 2012). Random effects components were removed if they explained no 

variance (Matuschek, Kliegl, Vasishth, Baayen, & Bates, 2017). Predictors in all analyses were 

mean centered, values were scaled to max equals 1 for ease of reporting. Choices were analyzed 

using generalized linear mixed effects models using a binomial link function with the dependent 

variable being probability of choosing the right item. In these cases, reported fixed effects are 

conditional on the random effects, because marginal fixed effects are difficult to estimate using 

Generalized Linear Mixed Models. 

 EEG data were analyzed using a mass-univariate approach employing custom made Matlab 

scripts adapted from Collins and Frank (2016, 2018): For each subject, voltages at each electrode 

and time point (downsampled to 250 Hz) were regressed against trial parameters and an intercept 

term to obtain regression weights for each predictor (similar to difference wave ERPs for each 

condition in traditional approaches, cf.: Smith & Kutas, 2015a). These regression weights were 

weighted by transforming them into t-values (dividing them by their standard error), effectively 

biasing unreliable estimates towards zero, and then submitted to cluster-based permutation tests, 

employing a cluster forming threshold of p = 0.005. Clusters with cluster masses (summed 

absolute t-values) larger than 0.25 % of cluster masses obtained from 1000 random permutation 

samples were considered significant. P-values were computed as the percentile of permutation 

clusters larger than the observed clusters. We separately analyzed stimulus locked and response 

locked EEG data in the 1000 ms time interval following the stimulus and preceding the response, 

respectively. These time intervals were chosen in order to include sufficient trials at all time 

points. Data points outside the current trial range (following the response in stimulus-locked data 

and preceding the stimulus onset in response locked data) were set to nan to avoid spill-over 
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from other trials or inter trial intervals. In the main analyses, the PC loadings for Appraisal and 

Choice PCs were included with the intercept term. In three control analyses with the sets of 

variables underlying the PCs we entered either overall value and value difference, Chosen and 

Unchosen Value, or Liking, Confidence and Anxiety alongside the intercept term. 

 For the deconvolution analyses, we conducted first level analyses on preprocessed data using the 

unfold toolbox (Ehinger & Dimigen, 2019). Stimulus onsets and responses were modeled 

simultaneously with the same regressors as in the main analyses. Deconvolution was 

implemented using FIR/stick basis functions, time expanded +/- 2 seconds around the respective 

events. Artifacts (amplitudes exceeding +/- 250µV) were detected and removed using the built-in 

threshold functions. No baseline corrections were applied. The obtained betas were submitted to 

the same cluster-based permutation analyses for second level analyses as described above.  

 The perceptual decision-making data were analyzed using the same procedures as just 

described, except that we used +/-1 second time-windows due to the faster pace of the task, and 

additionally computed mass-univariate betas without overlap correction for comparison. 
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