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Abstract 

Human behavior is known to be idiosyncratic, yet research in neuroscience typically assumes a 

universal brain-behavior relationship. Here we test this assumption by estimating the level of 

idiosyncrasy in individual brain-behavior maps obtained using human neuroimaging. We first 

show that task-based activation maps are both stable within an individual and similar across 

people. Critically, although behavior-based activation maps are also stable within an individual, 

they strongly diverge across people. A computational model that jointly generates brain activity 

and behavior explains these results and reveals that within-person factors have much larger effect 

than group factors in determining behavior-based activations. These findings demonstrate that 

unlike task-based activity that is mostly similar among people, the relation between brain activity 

and behavioral outcomes is largely idiosyncratic. Thus, contrary to popular assumptions, group-

level behavior-based maps reveal relatively little about each individual.  
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Introduction 

Human behavior is idiosyncratic: what elicits a certain behavior in one person is often very 

different from what elicits that same behavior in another (Eysenck, 1953; Forkosh et al., 2019). 

For example, one person may shout at strangers but never at home, while another may shout at 

home but never in public. Yet, research in neuroscience often tacitly assumes that behavior is 

homogeneous in the population and that the same neural correlates of a given behavior should 

emerge across individuals (Friston et al., 1999). This assumption is implicit in the common 

practice – enshrined in popular tools for functional MRI (fMRI) analyses such as SPM, AFNI 

and FSL – of performing and reporting second-level results as the true neural correlate of a given 

behavioral outcome. 

 

Here we directly test this assumption by comparing the idiosyncrasy of brain activity maps 

obtained using two different categories of analyses: (1) task-based analyses such as comparisons 

of different stimuli, tasks, or internal states (Buckner et al., 1996; Kanwisher et al., 1997; 

Morrone et al., 2000; Rosenberg et al., 2020; Singer et al., 2004), and (2) behavior-based 

analyses such as comparisons between left/right choices, fast/slow responses, or high/low 

confidence (Fleming et al., 2012; Morrone et al., 2000; Yarkoni et al., 2009). Both task- and 

behavior-based analyses are routinely performed in neuroscience research and the distinction 

between them is rarely even noticed. In fact, no study to date has hinted that these staple analyses 

may fundamentally differ in their consistency across individuals.  

 

We collected a unique fMRI dataset (N = 50) that allowed us to jointly estimate average 

behavior and brain activity for short blocks of trials. Subjects judged whether a briefly presented 
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display featured more red or blue dots and provided a confidence rating (Figure 1A). The 

experiment was organized in 96 blocks of 8 trials each (Figure 1B; see Materials and Methods 

for full details). For each block, we computed average reaction time (RT), average confidence, 

and per voxel beta values corresponding to the total activation in that voxel over the course of 

each block (Figure 1B).  

 

Figure 1. Task and results of standard group analyses. (A) Task. Subjects performed a simple 
perceptual decision-making task that required them to judge the dominant color in a display of 
colored dots and rate their confidence. (B) Task structure and analysis. The experiment was 
organized in 96 blocks of 8 trials each (total of 768 trials). For each block, we computed the 
average RT, average confidence, and per voxel activation (beta value). (C) Standard task-based 
group analyses. We compared the voxel activations obtained across subjects against zero, and 
found that our task induced consistent increases and decreases in activation across several brain 
regions. (D-E) Standard behavior-based group analyses. We also performed classic RT- and 
confidence-based analyses that compared activations between blocks of high vs. low average RT 
or high vs. low average confidence. Unlike the task-based analysis in panel C, these analyses 
revealed no activations after whole-brain correction. A common interpretation of these results is 
that brain activations for high vs. low RT or confidence do not differ from each other. All maps 
thresholded at p < 0.001 uncorrected for display purposes. 
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Results 

We first performed standard group fMRI analyses by conducting t-tests across all subjects for 

each voxel. A task-based analysis compared the obtained beta values with zero and revealed 

several regions of activation and de-activation (Figure 1C). On the other hand, two behavior-

based analysis compared the beta values for blocks with higher- vs. lower-than-median average 

RT, as well as higher- vs. lower-than-median average confidence. Both comparisons revealed no 

activations anywhere in the brain after whole-brain correction (Figure 1D-E, S1). 

 

The customary interpretation of these standard group analyses would be that brain activity does 

not differ for blocks of high vs. low average RT (or high vs. low confidence) in our study. 

However, examination of individual subject maps demonstrates that such conclusion would be 

misguided. For example, we inspected the activations for the task-based and the two behavior-

based analyses in Subjects 1-3 (Figure 2). We found that the task-based maps for all three 

subjects were similar to each other, with clear activations in visual and somato-motor regions, as 

well as de-activations in areas of the default mode network (Figure 2A). However, very different 

results emerged for the two behavior-based analyses. Those analyses still revealed areas that 

consistently tracked RT (Figure 2B) and confidence (Figure 2C) but the individual maps were 

highly dissimilar. For example, high-RT blocks were associated with stronger visual cortex 

activations in Subject 1 but weaker visual cortex activations in Subject 2, whereas the opposite 

pattern of results was observed in the somato-motor cortex of these two subjects. One may want 

to dismiss such subject-by-subject variability as being purely due to noise. However, examining 

the equivalent analyses for odd and even blocks only (see smaller brain maps in Figure 2A-C) 
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reveals that each individual map is highly reliable and therefore the stark differences in subjects’ 

behavior-based maps do not appear to be simply due to noise.   

 

 

Figure 2. Task- and behavior-based maps for three example subjects. The maps obtained for 
the first three subjects are displayed for (A) task-based, (B) RT-based, and (C) confidence-based 
analyses. Task-based activations are computed by averaging the 96 beta values across all blocks, 
whereas behavior-based activations are the result of t-tests comparing the beta values for blocks 
with lower- vs. higher-than-median RT or lower- vs. higher-than-median confidence. Small 
brains underneath represent the same analyses conducted only on odd or even blocks. Similar 
activations for all three subjects appear for the task-based but not for the two behavior-based 
analyses, despite the high within-subject consistency of all maps. 
 

To formally test these impressions, we first examined the within-subject reliability of the whole-

brain maps produced by the task-, RT-, and confidence-based analyses. We computed this 

reliability by performing, for the top-10% most activated voxels of each subject, a Pearson 

correlation between the activations obtained when examining only the odd or only the even 
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blocks. We found that the within-subject reliability for the task-based maps was near perfect 

(average correlation between odd and even block maps, r = 0.99) and was significantly higher 

than the reliability for the two behavior-based maps (RT: r = 0.68, t(49) = 9.82, p = 3.62 x 10-13; 

Confidence: r = 0.49; t(49) = 10.99, p = 7.79 x 10-15; equivalent results were obtained when the 

top 5, 25, 50, 75, or 100% of voxels were considered; Figure 3A). Therefore, to equate the 

reliability of task- and behavior-based analyses, we computed the task-based maps based on the 

activation produced by two blocks only (instead of using all 96 blocks). We found that the 

reliability in these 2-block task-based analyses (average r = 0.39) was well matched to the 

confidence-based maps (p = 0.12) and was actually significantly lower than the RT-based maps 

(p = 3.81 x 10-6). Thus, the 2-block task-based analyses provide a fair way to compare across-

subject task- and behavior-based maps without the worry that the task-based maps are inherently 

less noisy. 
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Figure 3. Idiosyncratic brain maps for behavior-based but not task-based analyses. A) 
Within-subject reliability values as a function of the percent of most activated voxels selected. 
For all voxel selection levels, the within-subject reliability was highest for the 96-block task-
based analysis and lowest for the 2-block task-based analyses. B) Subject-to-group similarity 
computed as the average similarity between the maps of each person and the group map of the 
remaining subject. Both the 96- and 2-block task maps exhibited high subject-to-group 
similarity, whereas both the behavior-based maps exhibited very low (and significantly smaller 
than the task-based) subject-to-group similarity. C) Fingerprinting results based on the maps 
produced by the odd and even blocks for each subject. Fingerprinting success clearly depends on 
both high within-subject reliability and low across-subject similarity. D) Maps of the distribution 
of the top-10% most activated voxels showing strong areas of consistency for task-based but not 
for behavior-based analyses. E) Maps of voxel consistency computed as the proportion of 
subjects showing a positive or negative relationship between voxel activity and behavior. Task-
based maps again reveal areas of much higher consistency than behavior-based maps. Error bars 
show SEM; ***, p < 0.001. All p-values are Bonferroni corrected. 
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Critically, we examined the subject-to-group similarity in the maps produced by task- and 

behavior-based analyses (Figure 3B). For each subject, we correlated their brain map with the 

group map obtained by averaging the maps of the remaining 49 subjects. Echoing the qualitative 

impressions from Figure 2A, for task-based analyses we found a high degree of subject-to-group 

similarity that was surprisingly almost identical when examining all 96 blocks (average r = 0.59) 

or just 2 blocks (average r = 0.57). However, reflecting the results in Figure 2B-C, for behavior-

based analyses we found very low similarity between the activation maps of each individual and 

the corresponding group map (RT: mean r = 0.11; Confidence: mean r = 0.08). Both behavior-

based similarities were significantly lower than both task-based ones (all pairwise tests: p < 10-

14). Again, equivalent results were obtained when the top 5, 25, 50, 75, or 100% of voxels were 

considered. 

 

To gain further intuition for the underlying effects, we conducted three additional analyses. First, 

we conducted fingerprinting analyses on the odd- and even-blocks maps of each subject (100 

maps total) (Finn et al., 2015). We expected that fingerprinting success will be positively related 

to both high within-subject reliability (making the maps less noisy) and low across-subject 

similarity (making each individual more distinct from the rest). For each map, we checked which 

of the remaining 99 maps was closest to it; successful fingerprinting for that map occurred if the 

closest match came from the other map from the same subject (chance level = 1.01%). We found 

very high fingerprinting success rate for task-based maps computed from all 96 blocks (100%), 

presumably driven by their extremely high within-subject reliability (Figure 3C). We also found 

very high fingerprinting success rate for RT- (80%) and confidence-based (66%) maps, 

presumably driven by their very low subject-to-group similarity. However, the combination of 
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high subject-to-group similarity and the absence of very high within-subject reliability led to 

substantially lower fingerprinting success for the 2-block task-based maps (22%, significantly 

lower than all three other maps, all p’s < 10-7). These results confirm the critical role of both 

within-subject reliability and across-subject similarity for fingerprinting success, and further 

support the finding of strong idiosyncrasy for behavior- but not task-based analyses.  

 

Second, we further tested the difference between task- and behavior-based analyses by 

examining the distribution of the locations of the top-10% most strongly activated voxels for 

each subject (both positive and negative activations were considered). Predictably, we found 

areas of very high overlap for the 96-block task-based analysis in the visual and parietal cortex 

with up to 76% of subject showing activation for the same voxel (Figure 3D). Critically, despite 

its low within-subject reliability, the 2-block task-based analysis also showed similar areas of 

high overlap (maximal overlap: 72%). On the other hand, we found only minimal overlap for 

RT- or confidence-based analyses (maximal overlap: 32% and 30%, respectively), with maximal 

overall values that were only slightly higher than the maximum expected value in random data 

(28%).  

 

Third, we examined the consistency of the sign of voxel activations (whether they were positive 

or negative) across subjects and again found a stark difference between task- and behavior-based 

analyses. Specifically, both the 96-block and the 2-block task-based analyses showed areas of 

very high across-subject consistency (96-block: maximal overlap of 96% and 94% for positive 

and negative activations; 2-block: maximal overlap of 98% and 92% for positive and negative 

activations; Figure 3E). On the other hand, behavior-based analyses showed substantially lower 
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overlap with most voxels of the brain showing roughly equal proportions of positive and 

negative activations (RT: maximal overlap of 82% and 80% for positive and negative 

activations; Confidence: maximal overlap of 76% and 82% for positive and negative activations; 

expected values in random data: 80% and 80% for positive and negative activations). Overall, 

both the 96- and 2-block task-based consistency values showed much a much wider range than 

both of the behavior-based ones (all p’s < 10-200). Altogether, each of these three additional 

analyses further underscores the very high level of idiosyncrasy in behavior-based analyses.  

 

The maps of Subjects 1-3 (Figure 2) suggest that the low subject-to-group similarity in 

behavior-based analyses are likely due to large-scale, rather than fine-grained, differences in the 

activation maps. To confirm this impression, we repeated the same analyses above with a wide 

range of smoothing levels (from 5 to 20 mm) and obtained very similar results (Figure S2-5). 

Further, rather than performing the correlations on a voxel-per-voxel level, we did so on the level 

of 200 large regions of interest obtained from the Schaefer atlas(Schaefer et al., 2018) and still 

obtained the same results (Figure S6). These findings clearly indicate that the low subject-to-

group similarity in behavior-based analyses is due to genuine, large-scale differences in the maps 

rather than issues of misalignment of individual brain maps (Haxby et al., 2011, 2020; Nieto-

Castañón and Fedorenko, 2012). 

 

Having established the existence of a stark difference between the level of idiosyncrasy of task- 

and behavior-based analyses, we sought to precisely quantify these differences by building a 

simple computational model that jointly generates behavior and brain activity maps. The model 

produces activation maps for each individual block based on three group-level factors (group 
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task map, group RT map, and group confidence map), three subject-level factors (subject-

specific task map, subject-specific RT map, and subject-specific confidence map), and one noise 

factor (Figure 4A). To keep the model simple, both behavior and individual voxel activation for 

each group- and task-level factor were generated randomly by ignoring known temporal and 

inter-regional dependencies. The weight of the noise factor was fixed to 1, leaving the model 

with a total of six free parameters (one for the weight of each group- and subject-level factor). 

We then fit the model to the observed within-subject reliability and subject-to-group consistency 

values computed using 100% of the voxels. Despite its simplicity, the model was able to provide 

excellent fit to the data from Figure 3A-B by capturing closely the observed patterns of within-

subject reliability (Figure 4B) and subject-to-group similarity (Figure 4C). By further 

considering the number of independent voxels simulated as a free parameter, the model could 

even fit the observed fingerprinting success rates for the different conditions (Figure 4D). The 

only notable deviation between the data and model fits concerned the size of the difference in 

subject-to-group similarity between the 2-block and 96-block task-based analyses. Nevertheless, 

the model was able to capture all other patterns of the data remarkably well despite its simplicity.  
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Figure 4. Model structure and predictions. (A) Model structure. The activation map on a 
single block of trials is modeled as the confluence of three group-level, three subject-level, and 
one noise factor. The thickness of the arrows and associated numbers correspond to the weights 
obtained from fitting the model to the data. The inset shows the relative weights of the subject-
level and corresponding group-level factors. The brain maps displayed in the figure were 
produced as follows: the group brain maps show the actual maps obtained in our data, the 
subject-level brain maps show the maps for subject 1, and the activation map at the bottom 
shows the activation map for block 1 of subject 1 (B-D) Model predictions for within-subject 
reliability, subject-to-group reliability, and fingerprinting values. The peach ovals highlight the 
data points the model was fit to. Despite its simplicity, the model is able to reproduce the 
empirical data from Fig. 3A-C very well.  
 

Critically, the model allowed us to examine the weights of the group- and subject-level factors, 

thus providing insight into the relative contribution of each. We found that the weights for 

subject-level task factor was only a little higher than the group-level task factor (subject-level = 

0.564, group-level: 0.343, ratio = 1.64). On the other hand, the weights for RT and confidence 
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subject-level factors were about six times higher than the weights for the corresponding group-

level factors (RT: subject-level weight = 0.178, group-level weight = 0.027, ratio = 6.6; 

Confidence: subject-level weight = 0.133, group-level weight = 0.024, ratio = 5.5). In other 

words, our model suggests that group- and subject-level factors have relatively similar influence 

on brain activity, which corresponds well to recent findings about group- and subject-level 

influences on brain connectivity(Gratton et al., 2018). However, the model reveals that the 

influence of subject-level behavior-based factors is about six times larger than the influence of 

group-level behavior-based factors (Figure 4A inset). We further repeated the model fitting on 

data with 5 to 20 mm smoothing, as well as on the data from the 200 Schaefer atlas ROIs and 

obtained similar results again: the weights ratio between the subject- and group-level task factors 

was between 1 and 2.5 in all cases, whereas the same ratio for the RT- and confidence-based 

factors was between 5 and 9.5 (Figure S7). 

 

Finally, to establish the replicability of our results, we repeated all analyses on a completely 

different dataset. We used data from a recently published study (Mazor et al., 2020) where 

subjects (N = 46) performed a different perceptual decision-making task (Gabor orientation 

discrimination) and completed a total of up to 200 trials (Figure S8). We estimated beta values 

for mini-blocks of either 2 trials (100 blocks total) or 5 trials (40 blocks total), and then 

performed the same analyses as above. Even though the smaller quantity of data in that study 

resulted in slightly lower within-subject reliability and subject-to-group similarity values, the 

same stark difference between task- and behavior-based analyses emerged again (Figure S9,10). 

Our model was again able to fit the observed data very well and again showed a large difference 

between task-based factors ratios and behavior-based factor ratios (Figure S7). Thus, all of our 
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results were replicated in this independent dataset, demonstrating the generality and replicability 

of our findings. 
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Discussion  

A major goal of neuroscience research has been to understand the neural correlates of behavior. 

Behavior is a complex phenomenon that is often idiosyncratic to a person (Eysenck, 1953; 

Forkosh et al., 2019). Idiosyncratic behavior is ubiquitous in social situations(Durlauf, 2001), 

economic decisions (Kable and Glimcher, 2007), judgments of beauty (Martinez et al., 2020), 

confidence ratings (Navajas et al., 2017), response bias (Rahnev, 2021), and even low-level 

perception (Afraz et al., 2010). However, an implicit assumption in much of neuroscience 

research is that the neural correlates of behavior are the same across individuals (Friston et al., 

1999). Here, we test and reject this assumption. Across two different studies, we find that 

subject-level behavior-based brain maps are very consistent within an individual, and yet 

remarkably different across subjects. On the other hand, task-based maps are both consistent 

within an individual and similar across subjects. A computational model explains these results 

and suggests that for task-based analyses, the influence of subject-level factors is only slightly 

stronger than the influence of group-level factors, whereas for behavior-based analyses, the 

influence of subject-level factors is about six times larger than the influence of group-level 

factors. 

 

Although these results were unexpected at first, we believe that they are commonsensical in 

retrospect. Take, for example, the task of running a long-distance race. A “task-based” analysis 

would certainly reveal many similarities between different runners: when running (as opposed to 

walking), all people increase their heart rate and exhibit changes in gait and speed (Cappellini et 

al., 2006). On the other hand, a “behavior-based” within-subject analysis that compares better vs. 

worse performances within each runner is likely to be fundamentally different. Better 
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performance for one runner may be explained by a faster-than-average heart rate, smaller-than-

average step sizes, and higher-than-average levels of hydration. However, for another runner, 

due to differences in either anatomy or running style, better performance may be predicted by the 

exact opposite factors. This is not to say that there won’t be any consistency in such within-

subject behavior-based analyses – there will be – but that the importance of the group-level 

factors that are the same for everyone is likely to pale in comparison to the importance of the 

subject-level factors that are idiosyncratic to an individual.  

 

Similarly, it makes sense that task-based brain analyses would reveal strong similarities between 

subjects: given that large-scale brain anatomy is very similar across people (Hagoort, 2019; 

Sanes et al., 1995), the same brain areas will likely be involved for everyone in a given task. 

However, variations in performance from one trial or block to the next would logically depend 

on different mechanisms for different people (Saleri Lunazzi et al., 2021). For example, someone 

whose attention is captured too strongly by the visual stimuli may show lower RT with lower 

visual cortex activity and higher motor cortex activity. On the other hand, another person who 

fails to attend the visual stimuli consistently may show lower RT when they successfully devote 

more attention to the screen display resulting in higher visual but lower motor cortex activity.  

 

Our results have strong implications about the common way of reporting the result of fMRI 

studies. The majority of papers in the field only report second-level, group maps (Bandettini and 

Ungerleider, 2001; Belliveau et al., 1991; le Bihan et al., 1993; Poldrack, 2011). The implicit 

assumption is that the group map represents the true “neural correlates” of a given behavior. 

However, our results demonstrate that such group-level results only have a small relationship to 
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the neural correlates for any actual person (i.e., they explain just 1% of the variance in single-

subject maps). This is not to say that second-level maps for behavioral-based analyses are 

somehow wrong – instead, they represent our best approach for uncovering what is common 

across all subjects. The issue is that focusing exclusively on the relatively weak commonality 

across people can distract from the much stronger but idiosyncratic effects within each 

individual. Our results thus highlight the need for a renewed focus on investigating the brain-

behavior relationship at the level of single subjects (Gilmore et al., 2021; Gordon and Nelson, 

2021; Naselaris et al., 2021; Song and Rosenberg, 2021). Perhaps ironically, while thousands of 

subjects are needed for brain-wide association studies (Marek et al., 2022), revealing the brain 

correlates of behavior requires us to focus on single individuals.  

 

Our findings also suggest novel ways for finding robust biomarkers for various mental disorders 

(Elliott et al., 2018; Kaufmann et al., 2017; Li et al., 2020; Parkes et al., 2020). Most research in 

the field has focused on biomarkers unrelated to behavior such as functional connectivity 

patterns at rest (Drysdale et al., 2017; Woodward and Cascio, 2015). An exciting possibility is 

that subject-level activations maps for disease-relevant behaviors could serve as much more 

powerful biomarkers because of their high reliability and clear differences among people. 

Focusing directly on the relationship between one’s behavior and one’s brain activations may 

help to delineate the intricate relationship between the brain and psychopathology (Gratton et al., 

2020). For example, our results imply that mental illness might have neural correlates that are 

unique to an individual. For example, in one individual, fluctuation in positive mood or thoughts 

might depend on activity in the frontal cortex, but in another individual, they could depend on 

the parietal cortex. Similar effects have already been suggested in the context of pain perception 
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(Kohoutová et al., 2022). Therefore, subject-level effects would be crucial to diagnosing and 

treating these different individuals. Additionally, an analysis that is focused on subject-level 

variability might be more informative since between-subject analyses ignore the large degree of 

within-subject variability (Fisher et al., 2018; Lebreton et al., 2019).  

 

One open problem concerns the quantification of the level of idiosyncrasy for different types of 

analyses. Here we have provisionally classified all analyses as either “task-based” or “behavior-

based.” However, it could be that rather than a binary distinction, there is more of a continuum 

of analysis types. For example, examining the differential activations of two different tasks 

(Yeon et al., 2020) may show slightly higher idiosyncrasy levels than examining the activations 

of a single task in isolation (as in the current analyses). Similarly, analyses that compare internal 

states (e.g., aroused vs. unaroused, excited vs. bored) (Rosenberg et al., 2020) or the effects of 

brain stimulation (Chen et al., 2013; Rafiei et al., 2021) may show yet greater levels of 

idiosyncrasy despite our provisional classification of such analyses as “task-based.”  

 

Our model represents one of very few attempts to build process models that jointly generate 

behavior and brain activations. There are rich literatures of building process model in cognitive 

science that focuses exclusively on behavior (Ratcliff, 1978; Rescorla and Wagner, 1972; Zhang 

and Luck, 2008) and in cognitive neuroscience that focuses exclusively on brain activity 

(Breakspear, 2017; Coombes et al., 2007; Wilson and Cowan, 1972). Yet, understanding the 

brain-behavior relationship clearly requires the development of process models that jointly 

generate both types of data, thus explicitly clarifying the links between the two. Future work in 
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the field should increasingly emphasize process models that specify the mechanisms that 

generate behavior and brain activity.  

 

In conclusion, we find a stark level of idiosyncrasy in behavior-based analyses such that single-

subject maps are remarkably reliable, yet very different across subjects. These results have 

strong implications about the common practice of only reporting second-level analyses and 

suggest the need to examine individual-subject results in all behavior-based analyses. 
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Materials and Methods 

Subjects 

Fifty-two healthy subjects were recruited for this study. Two subjects were excluded 

because one had metal braces in their teeth and one decided to stop the experiment after 

the second run. All analyses were thus based on the remaining 50 subjects (25 females; 

Mean age = 26; Age range = 19-40; Compensated 20,000 KRW or approximately 18 

USD). All subjects were screened for any history of neurological disorders or MRI 

contraindications. The study was approved by Ulsan National Institute of Science and 

Technology Review Board (UNISTIRB-20-30-C) and all subjects gave written consent. 

 

Task 

Subjects had to determine which set of colored dots (red vs. blue) is more frequent in a 

cloud of dots (Fig. 1A). Each trial began with a white fixation dot presented for a variable 

amount of time between 500-1500 ms at the center of the screen on a black background. 

Then, the stimulus was shown for 500 ms, followed by untimed decision and confidence 

screens. The stimulus consisted of between 140 and 190 red- and blue-colored dots (dot 

size = 5 pixels) dispersed randomly inside an imaginary circle with a radius of 3° from the 

center of the screen. Four different dot ratios were used – 80/60, 80/70, 100/80, and 

100/90, where the two numbers indicate the number of dots from each color. The 

experiment was organized in blocks of 8 trials each (Fig. 1B), with each dot ratio 

presented twice in a random order within a block. The more frequent color was pseudo 

randomized so that there were equal number of trials where red and blue were the correct 

answer within a run (consisting of 16 blocks). Subjects used an MRI-compatible button 
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box with their right hand to indicate their decision and confidence responses. For the 

decision response, the index finger was used to indicate a “red” response and the middle 

finger for a “blue” response. Confidence was given on a 4-point scale, where 1 is the 

lowest and 4 is the highest, with the rating of 1 mapped to the index finger and the rating 

of 4 mapped to the little finger. 

 

Subjects performed 6 runs each consisting of 16 blocks of 8 trials (for a total of 768 trials 

per subject). Three subjects completed only half of the 6th run and another three subjects 

completed only the first 5 runs due to time constraints. The remaining 44 subjects 

completed the full 6 runs. Subjects were given 5 seconds of rest between blocks, and self-

paced breaks between runs. 

 

MRI recording 

The MRI data was collected on a 64-channel head coil 3T MRI system (Magnetom 

Prisma; Siemens). Whole-brain functional data were acquired using a T2*-weighted 

multi-band accelerated imaging (FoV = 200 mm; TR = 2000 ms; TE = 35 ms; multiband 

acceleration factor = 3; in-plane acceleration factor = 2; 72 interleaved slices; flip angle = 

90°; voxel size = 2.0 x 2.0 x 2.0 mm3). High-resolution anatomical MP-RAGE data were 

acquired using T1-weighted imaging (FoV = 256 mm; TR = 2300 ms; TE = 2.28 ms; 192 

slices; flip angle = 8°; voxel size = 1.0 x 1.0 x 1.0 mm3). 

 

MRI preprocessing and general linear model fitting 
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MRI data were preprocessed with SPM12 (Wellcome Department of Imaging 

Neuroscience, London, UK). We first converted the images from DICOM to NIFTI and 

removed the first three volumes to allow for scanner equilibration. We then preprocessed 

with the following steps: de-spiking, slice-timing correction, realignment, segmentation, 

coregistration, normalization, and spatial smoothing with 10 mm full width half maximum 

(FWHM) Gaussian kernel. In control analyses, we used 5 and 20 mm FWHM smoothing 

to investigate whether the results are due to fine-grained differences in the activations 

maps between subjects, given that local differences would be substantially reduced by 

larger smoothing kernels. Despiking was done using the 3dDespike function in AFNI. The 

preprocessing of the T1-weighted structural images involved skull-removal, normalization 

into MNI anatomical standard space, and segmentation into gray matter, white matter, and 

cerebral spinal fluid, soft tissues, and air and background. 

 

We fit a general linear model (GLM) that allowed us to estimate the beta values for each 

voxel in the brain for each block of the experiment. The model consisted of regressors for 

each individual block, inter-block rest periods, as well as linear and squared regressors for 

six head movement (three translation and three rotation), five tissue-related (gray matter, 

white matter, cerebrospinal fluid, soft tissues, and air and background), and a constant 

term per run.  

 

Standard group-level analyses 

We first performed a standard group analysis by conducting t-tests across all subjects for 

each voxel. A task-based analysis compared the obtained beta values with zero to identify 
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regions of activation and de-activation. Two behavior-based analyses compared the beta 

values for blocks with higher- vs. lower-than-median average reaction times (RT) and 

higher- vs. lower-than-median average confidence. Significance was assessed using p < 

0.05 after Bonferroni correction for multiple comparisons. For display purposes, Fig. 1 

and Fig. S1 used the more liberal threshold of p < 0.001 uncorrected.  

 

Within-subject reliability analyses 

We examined the within-subject reliability of the whole-brain maps produced by the task- 

and behavior-based analyses. To do so, we first re-did the task- and behavior-based 

analyses by only using the odd blocks, as well as by only using the even blocks. We then 

compared the similarity between the maps obtained for odd and even blocks using Pearson 

correlation. We performed the analysis six times based on the top 5, 10, 25, 50, 75, or 

100% of most strongly activated voxels in the following way. We first identified the X% 

most strongly activated voxels (i.e., the voxels with highest absolute activation values) 

when only examining the data from the odd blocks. The activation values used were the 

average beta value for task-based analyses, and the t-value (obtained by using a t-test to 

compare the beta values for blocks with above- vs. below-median RT or confidence) for 

the behavior-based analyses. This selection procedure ensured that both positively and 

negatively activated voxels were selected and that an equal number of voxels were 

selected each time. The activations in the selected top X% of voxels from the odd blocks 

were then correlated with the activations in the same voxels in the even blocks, thus 

obtaining an “odd-to-even” correlation value. Then, using an equivalent procedure, we 

identified the top X% of most activated voxels in the even blocks, and correlated their 
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activations with the activations in the corresponding voxels in the odd blocks, thus 

obtaining an “even-to-odd” correlation value. Finally, we computed the overall within-

subject reliability as the average of the odd-to-even and even-to-odd correlation values.  

 

In addition to the three analyses above that were performed on all collected data, we 

performed a task-based analysis based on data from just two blocks. We selected blocks 1 

and 49 for these analyses because they were the first blocks of the first and second half of 

the experiment, respectively. The within-subject reliability for this 2-block task-based 

analysis was computed in the same way as the 96-block task-based analysis above by 

treating block 1 as the “odd blocks” and block 49 as the “even blocks.” Examining data 

from just two blocks produced lower within-subject reliability values and thus allowed for 

a fair comparison between task-based and behavior-based analyses.   

 

Subject-to-group similarity analyses 

Critically, we examined the subject-to-group similarity in the maps produced by task- and 

behavior-based analyses. For each subject, we correlated their individual task-, RT-, and 

confidence-based activation maps with the corresponding group map obtained by 

averaging the maps of the remaining 49 subjects. We conducted the task-based analyses 

both on the average of all 96 blocks (96-block analysis) and the average of blocks 1 and 

49 (2-block analysis). Similar to the within-subject reliability analyses, we conducted 

these analyses separately for the top 5, 10, 25, 50, 75, or 100% of most activated voxels. 

These voxels were selected in the same way as for the within-subject reliability analyses 

using all of the data in a given subject (except for the 2-block task-based analysis where 
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both blocks 1 and 49 were used); the activations in the voxels identified for a given 

subject were then correlated with the average activations in the same voxels for the 

remaining 49 subjects. 

 

Fingerprinting analyses 

As another test of the strength of within-subject reliability and across-subject similarity 

(Finn et al., 2015), we conducted fingerprinting on the brain maps produced by the task- 

and behavior-based analyses. Specifically, we considered the odd- and even-block maps 

of each of our 50 subjects (100 maps total). We compared the magnitude of the similarity 

of each map to each of the remaining 99 maps. For a given map, if the most similar other 

map was the second map from the same subject (chance level 1/99 = 1.01%), then we 

counted that as successful fingerprinting for that specific map. We performed this 

fingerprinting analysis on the 96-block task-based activation maps, 2-block task-based 

activation maps, RT-based activation maps, and confidence-based activation maps. 

Finally, we tested for statistical differences in fingerprinting success rate between task- 

and behavior-based activation maps using a Z-test for proportions.  

 

Distribution of top-10% most strongly activated voxels 

As another test of the across-subject similarity of the task- and behavior-based results, we 

sought to identify the consistency of the location of the most strongly activated brain 

regions across subjects. For each subject, we selected the top-10% most strongly activated 

voxels by considering the absolute value of either the average beta value (for task-based 

analyses) or t-value (for behavior-based analyses). Note that this procedure selected 
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positive and negative activations. We then estimated, for each voxel, the percent of 

subjects for which the voxel was selected as one of the top-10% most strongly activated 

voxels. The analysis was performed separately for the 96-block task-based activation 

maps, 2-block task-based activations maps, RT-based activation maps, and confidence-

based activation maps.  

 

Low across-subject similarity in these analyses would result in most voxels being selected 

about 10% of the time. However, due to chance, some voxels are bound to be selected 

more than 10% of the time. Therefore, to enable the appropriate interpretation of the 

obtained results, we computed the expected level of maximal overlap in the maps of 50 

subjects whose maps have no relationship to each other. Specifically, for each of the 50 

subjects, we generated a random set voxel activation values. We then selected the top-

10% of the highest absolute values from each subject and calculated the overlap across 

subjects. The expected value from random data was computed as the average maximal 

overlap after 1000 iterations. This analysis revealed that completely random data would 

produce a maximal overlap of 28% given the number of voxels and number of subjects 

that we had, which was only a little less than the empirically observed values for behavior-

based analyses (32% for RT-based analyses and 30% for confidence-based analyses).  

 

Consistency in activation analysis 

As a final test of the across-subject similarity of the task- and behavior-based results, we 

computed the consistency in the sign of activation. Our main analyses relied on taking 

correlations, but it is possible that just considering the sign of activation (rather than the 
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strength of activation) would produce different results. To investigate this possibility, we 

examined the consistency of the sign of voxel activations (positive or negative) across 

subjects. To do so, we first set all voxels values that were equal to zero to not-a-number 

value (NaN). This applied to regions that are outside the brain. We then binarized the 

voxel activation values �����������  such that:  

 

 	���
�� � 
1, ����������� � 0
0, ����������� � 0� 

 

The consistency of the sign of a voxel’s activation across subjects (��) was then calculated 

as percentage of subjects for which a voxel � was positively or negatively activated using 

the formula: 

 

�� � 100 � 1
50 � 	���
��

��

���

 

 

As defined, ��  goes from 0 (all subjects having negative activation for that voxel) to 100 

(all subjects having positive activations for that voxel), with a value of 50 indicating that 

half of the subjects had positive and half had negative activation. However, when 

reporting the values of �� , we flipped values under 50 using the formula ��,�	�

�� �
100 � �� , so that these values represent the percent of subjects with negative activations. 

As before, the analysis was performed separately for the 96-block task-based activation 

maps, 2-block task-based activations maps, RT-based activation maps, and confidence-
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based activation maps. The activation values were the average beta value (for task-based 

analyses) or t-value (for behavior-based analyses). 

 

Low across-subject similarity in these analyses would result in most voxels having 

consistency, �� , values close to 50 (corresponding to the voxel activation having positive 

sign in half the subjects and negative sign in the other half). However, due to chance, the 

consistency values are bound to sometimes be higher. Therefore, to enable the appropriate 

interpretation of the obtained results, we computed the expected consistency values in the 

maps of 50 subjects whose maps have no relationship to each other. Specifically, we 

generated a random set of voxel activation values for each of 50 sample subjects. Maximal 

consistency from the random data was calculated in the same manner as the empirical 

values and the procedure was repeated 1000 times. This analysis revealed that completely 

random data would produce a maximal consistency of 80% (for both positive and negative 

activations) given the number of voxels and number of subjects that we had, which was 

close to the empirically observed values for behavior-based analyses. 

 

ROI-based within-subject reliability and subject-to-group similarity analyses 

All of the above analyses were performed at the level of individual voxels. However, to 

ensure that the results obtained were not due to the fine-grained misalignment of 

individual maps, we performed the within-subject reliability and subject-to-group 

similarity analyses on the level of 200 large regions of interest (ROIs) obtained from the 

Schaefer atlas (Schaefer et al., 2018). For these analyses, we averaged all the beta values 

within an ROI and repeated both the within-subject reliability and subject-to-group 
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similarity analyses in the same way as for the voxel-based analyses above. These ROI-

based analyses produced very similar results to the main voxel-based analyses (see Fig. 

S6), indicating that the low subject-to-group similarity in behavior-based analyses is due 

to genuine, large-scale differences in the maps rather than issues of misalignment of 

individual brain maps. 

 

Model specification 

Our analyses revealed that task-based activation maps are largely consistent across 

subjects, whereas behavior-based maps are largely idiosyncratic. We sought to precisely 

quantify the contributions of group- and subject-level factors in both the task- and 

behavior-based activations maps by building and fitting a simple computational model.  

 

The model jointly generates behavior and brain activity maps using minimal assumptions. 

Specifically, RT and confidence for a block of trials were generated randomly from a 

standard normal distribution (with a mean of 0 and standard deviation of 1�. Critically, the 

model assumes that the activation map for each block is a function of seven different 

factors. The first three are group-level factors (i.e., factors common to all subjects) for the 

task itself, the influence of the block-specific RT, and the influence of the block-specific 

confidence. The next three factors are subject-level factors (i.e., factors specific to each 

subject) for the task itself, the influence of the block-specific RT, and the influence of the 

block-specific confidence. Finally, the 7th factor is simply Gaussian noise. Critically, each 

factor is weighed by a corresponding factor weight that determines the strength of 
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influence of that factor to the final voxel activation values, such that the activation 

strength (�) for a given voxel on a given block is: 

 

� � �
��������
� �
�������� � ��
�����

� ��
����� � � � ����������
� ���������� � ���� 

�  �
�������
� �
������� � ��
����

� ��
���� � � � ���������
� ���������

� ���� � ������ � ������ 

 

where �  and ���� are the reaction time and confidence on that block, the �’s are the 

weights associated with each factor, and the �’s are the factors that influence the voxel 

activity for a given block. Without loss of generality, the weight of the noise factor 

(������) was fixed to 1. The value of each factor � was randomly sampled from a standard 

normal distribution such that group-level factors were randomly sampled for each voxel, 

subject-level factors were randomly sampled for each voxel and subject, and the noise 

factor was randomly sampled for each voxel, subject, and block. 

 

We note that, in the model, both the behavioral measures (�  and ����) and the factors 

(�) that control the individual voxel activations were sampled from a standard normal 

distribution, which makes the simulated values of RT, confidence, and voxel activations 

(�’s) not match their observed values. Additional parameters could be easily used to 

match the actual distributions of the empirical RT, confidence, and � values, but this 

added level of complexity would not affect the model’s ability to explain the quantities of 

interest here, which are the within-subject reliability values, subject-to-group similarity 

values, and fingerprinting results. This is because all three of these analyses are based on 
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correlations, and correlations are insensitive to additive and multiplicative changes of the 

underlying variables. Therefore, we chose not to fit the actual observed values of RT, 

confidence, and voxel � values so as to keep the model as simple as possible.  

 

Model fitting 

We first fit the model to the empirically observed within-subject reliability and subject-to-

group similarity values. The model had six free parameters corresponding to the weights, 

�, of the group- and subject-level factors that determined the simulated � value for each 

voxel in each block. For a given set of weights, we simulated a complete experimental 

dataset by generating simulated data for 50 subjects with 96 blocks per subjects (each 

block had corresponding RT, confidence, and per voxel beta value). Based on these data, 

we then computed the within-subject reliability and subject-to-group similarity values in 

the same way as for the empirical data. When simulating the model, we observed that the 

exact number of voxels used made no systematic difference to the observed values of the 

obtained within-subject reliability and subject-to-group similarity values. Therefore, we 

used 10,000 voxels, which allowed for stable values to be obtained on different iterations. 

The fitting minimized the mean squared error (MSE) between the simulated and 

empirically observed within-subject reliability and subject-to-group similarity values 

calculated using the top-100% most activated voxels (that is, using all voxels). Once the 

fitting was completed, we also generated the predictions of the best-fitting model for the 

within-subject reliability and subject-to-group similarity values calculated using the top 5, 

10, 25, 50, and 75% most activated voxels. The fitting itself was carried out using the 
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Bayesian Adaptive Direct Search (BADS) toolbox(Acerbi and Ma, 2017). We fit the 

model 10 times are reported the best fitting model among the 10 iterations. 

 

In addition to fitting the model to the within-subject reliability and subject-to-group 

similarity values, we further fit it to the observed fingerprinting success rate. Predictably, 

we found that the number of simulated voxels had a large effect on the fingerprinting 

success rate of the simulated data (simulating more voxels leads to more robust 

fingerprinting due to the availability of more overall data). Therefore, in fitting the model 

to the fingerprinting success rate, we used the weights (�) obtained from the initial fit 

above (when fitting the model to the within-subject reliability and subject-to-group 

similarity values) and then systematically varied the number of simulated voxels in the 

model from 10 to 100. For each simulation, we computed the fingerprinting success rates 

as in the analyses of the empirical data, and then chose the number of voxels that 

minimized the MSE between the simulated and the empirical results. We conducted the 

simulations 10 times for each number of simulated voxels and we averaged the obtained 

MSE values across repetitions. We found that simulating 62 voxels led to the best model 

fit and therefore report these fits in the main paper. It is notable that this number is 

substantially smaller than the number of voxels in the brain, but it is important to 

appreciate that voxels in the brain exhibit a very large degree of covariance such that the 

actual dimensionality of the voxel activations could well be of a similar order of 

magnitude as the number that our model fitting arrived at. 

 

Data and Code Availability  
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All preprocessed data and code are available at https://osf.io/xe8r5/ and 

https://osf.io/8dbq2/. 
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Figure S1. Behavior-based standard group analyses. Glass brains showing activation 
differences between A) blocks with higher- vs. lower-than-median average RT, and B) blocks 
with higher- vs. lower-than-median average confidence. Both maps are thresholded at p < 0.001 
uncorrected. These maps show the same results as in Fig. 1D,E but highlight the presence of a 
smattering of activated voxels (289 in the RT-based analysis and 233 in the confidence-based 
analysis; no voxels survive after familywise error correction is applied). 
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Figure S2. Effect of smoothing on within-subject reliability of the whole-brain maps 
produced by the task-, RT-, and confidence-based analyses. The fMRI data were spatially 
smoothed with A) 5 mm, B) 10 mm, or C) 20 mm full width half maximum (FWHM) Gaussian 
kernel. Panel B is the same as in the manuscript and is shown for comparative purposes. As can 
be observed, very similar results are obtained for different levels of smoothing, indicating that 
the results obtained are likely due to large-scale rather than small-grained differences in the 
maps. Error bars show SEM; ***, p < 0.001. All p-values are Bonferroni corrected. 
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Figure S3. Effect of smoothing on the subject-to-group similarity values. The fMRI data 
were spatially smoothed with A) 5 mm, B) 10 mm, or C) 20 mm full width half maximum 
(FWHM) Gaussian kernel. Panel B is the same as in the manuscript and is shown for 
comparative purposes. As can be observed, very similar results are obtained for different levels 
of smoothing, indicating that the results obtained are likely due to large-scale rather than small-
grained differences in the maps. Error bars show SEM; ***, p < 0.001. All p-values are 
Bonferroni corrected. 
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Figure S4. Maps of the distribution of the top-10% most activated voxels. A) Task-based 
activation calculated from all 96 blocks. B) Task-based activation calculated from 2 blocks only. 
C) RT-based activation. D) Confidence-based activation. Task-based activations computed for 
both 96 and 2 blocks exhibited strong areas of consistency compared to the behavior-based 
activations. Analysis was conducted on fMRI data smoothed with 5, 10, and 20 mm FWHM 
kernels. The 10 mm results are the same as in the main manuscript and are shown here for 
comparative purposes. Again, similar results are obtained for different levels of smoothing. 
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Figure S5. Maps of voxel activation consistency across subjects. A) Task-based activation 
calculated from all 96 blocks. B) Task-based activation calculated from 2 blocks only. C) RT-
based activation. D) Confidence-based activation. Task-based activations computed for both 96 
and 2 blocks exhibited strong areas of consistency compared to the behavior-based activations. 
Analysis was conducted on fMRI data smoothed with 5, 10, and 20 mm FWHM kernels. The 10 
mm results are the same as in the main manuscript and are shown here for comparative purposes. 
Again, similar results are obtained for different levels of smoothing. 
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Figure S6. Idiosyncratic relation at the ROI level for behavior-based but not task-based 
analyses. A) Within-subject reliability values obtained by analyzing activations within the 200 
regions-of-interest (ROIs) from the Schaefer atlas. B) Subject-to-group similarity computed 
based on the activations of the 200 Schaefer atlas ROIs. Analysis is based on fMRI data 
smoothed with 10 mm FWHM Gaussian kernel. The results obtained at the level of large ROIs in 
this analysis mimics closely the results obtained using analyses conducted on individual brain 
voxels (Fig. 2A,B). Error bars show SEM; ***, p < 0.001. All p-values are Bonferroni corrected. 
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Figure S7. Model weights and ratios. A) Model weights. Subject- and group-level weights 
obtained from fitting the model separately to each analysis and task. In line with the results in 
Figure 4, the subject-level weights were consistently higher than the group-level weights across 
all analyses and tasks. Task1 and Task2 refer to the tasks from the main experiment and the data 
from Mazor et al. (2020) (see Fig. S8), respectively. B) Weight ratios. Relative weights of the 
subject-level and corresponding group-level factors from each analysis and task. Across most 
analyses, the weights ratio between the subject- and group-level task factors was between 1 and 
3.5, whereas the same ratio for the RT- and confidence-based factors was between 5 and 9.5. The 
exception was Task2 with blocks composed of 2 trials (“Taks2-2-trials”), with an RT-factor 
weight ratio of 15.4, which could be a result of higher noise level associated with using only two 
trials to estimate the beta values.   
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Figure S8. Gabor orientation discrimination task in Mazor et al. (2020). Subject (N=46) 
performed an in-scanner discrimination task where they had to indicate the orientation of a visual 
grating (clockwise or counterclockwise). After a temporally jittered rest period that lasted 
between 500 and 4000 ms, each trial began with a fixation cross (500 ms) followed by the 
stimulus (33 ms). The subjects had up to 1500 ms to make decision on the orientation of the 
grating. Immediately after making their decision, subjects rated their confidence on a 6-point 
scale by increasing or decreasing the size of the color segment of the circle. In total, subjects 
performed 5 runs with 40 trials per run for a total of 200 trials. They also performed a second 
task, which was not analyzed here. Scanning was conducted on a 3 Tesla Siemens Prisma MRI 
scanner at the Wellcome Centre for Human Neuroimaging, London. Structural images were 
acquired using an MPRAGE sequence (1x1x1 mm voxels, in plane FoV = 256 x256 mm2). 
Functional scans were acquired using a 2D EPI sequence (3x3x3 mm voxels, TR = 3.36 s, TE = 
30 ms 48 slices) (see Mazor et. al, 2020 for further details). Raw data were obtained from the 
first author upon request and preprocessed in the same manner as the main task in manuscript 
(see Materials and Methods for details). Preprocessed data and relevant scripts can be obtained 
from https://osf.io/8dbq2/.  
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Figure S9. Analysis of the data from Mazor et al. (2020) with 2 trials per blocks. A) Within-
subject reliability values as a function of the percent of most activated voxels selected. The 
analysis here was conducted on blocks composed of 2 trials resulting in 100 total blocks, thus 
roughly matching the number of blocks used in the analysis in the main text. For all voxel 
selection levels, the within-subject reliability was highest for the 100-block task-based analysis 
and lowest for the 2-block task-based analysis. B) Subject-to-group similarity computed in the 
same way as in Fig. 3. Both the 100- and 2-block task maps exhibited higher subject-to-group 
similarity compared to both the behavior-based maps. C) Fingerprinting results based on the 
maps produced by the odd and even blocks for each subject. D) Maps of the distribution of the 
top-10% most activated voxels showing strong areas of consistency for task-based but not for 
behavior-based analyses. E) Maps of voxel consistency computed as the proportion of subjects 
showing a positive or negative relationship between voxel activity and behavior. Task-based 
maps reveal areas of much higher consistency than behavior-based maps. Error bars show SEM; 
***, p < 0.001; *, p < 0.05. All p-values are Bonferroni corrected.  

  

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2022. ; https://doi.org/10.1101/2022.08.01.502338doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.01.502338
http://creativecommons.org/licenses/by-nd/4.0/


50 
 

 
 

Figure S10. Analysis of the data from Mazor et al. (2020) with 5 trials per block. A) Within-
subject reliability values as a function of the percent of most activated voxels selected. To 
increase the robustness of the estimation of the beta values, the analyses here were conducted on 
blocks composed of 5 trials resulting in 40 total blocks. For all voxel selection levels, the within-
subject reliability was highest for the 40-block task-based analysis and lowest for the 2-block 
task-based analyses. B) Subject-to-group similarity computed the same as in Fig. 3. Both the 40- 
and 2-block task maps exhibited higher subject-to-group similarity compared to both the 
behavior-based maps. C) Fingerprinting results based on the maps produced by the odd and even 
blocks for each subject. D) Maps of the distribution of the top-10% most activated voxels 
showing strong areas of consistency for task-based but not for behavior-based analyses. E) Maps 
of voxel consistency computed as the proportion of subjects showing a positive or negative 
relationship between voxel activity and behavior. Task-based maps reveal areas of much higher 
consistency than behavior-based maps. Error bars show SEM; ***, p < 0.001. All p-values are 
Bonferroni corrected. 
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