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Abstract

Human behavior is known to be idiosyncratic, yet research in neuroscience typically assumes a
universal brain-behavior relationship. Here we test this assumption by estimating the level of
idiosyncrasy in individual brain-behavior maps obtained using human neuroimaging. We first
show that task-based activation maps are both stable within an individual and similar across
people. Critically, although behavior-based activation maps are also stable within an individual,
they strongly diverge across people. A computational model that jointly generates brain activity
and behavior explains these results and reveals that within-person factors have much larger effect
than group factors in determining behavior-based activations. These findings demonstrate that
unlike task-based activity that is mostly similar among people, the relation between brain activity
and behavioral outcomes s largely idiosyncratic. Thus, contrary to popular assumptions, group-

level behavior-based maps reveal relatively little about each individual.
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Introduction

Human behavior isidiosyncratic: what elicits a certain behavior in one person is often very
different from what dlicitsthat same behavior in another (Eysenck, 1953; Forkosh et al., 2019).
For example, one person may shout at strangers but never at home, while another may shout at
home but never in public. Y et, research in neuroscience often tacitly assumes that behavior is
homogeneous in the population and that the same neural correlates of a given behavior should
emerge across individuals (Friston et al., 1999). This assumption isimplicit in the common
practice — enshrined in popular tools for functional MRI (fMRI) analyses such as SPM, AFNI
and FSL — of performing and reporting second-level results as the true neural correlate of a given

behavioral outcome.

Here we directly test this assumption by comparing the idiosyncrasy of brain activity maps
obtained using two different categories of analyses: (1) task-based analyses such as comparisons
of different stimuli, tasks, or internal states (Buckner et al., 1996; Kanwisher et al., 1997,
Morrone et al., 2000; Rosenberg et al., 2020; Singer et al., 2004), and (2) behavior-based
analyses such as comparisons between left/right choices, fast/slow responses, or high/low
confidence (Fleming et al., 2012; Morrone et al., 2000; Y arkoni et al., 2009). Both task- and
behavior-based analyses are routinely performed in neuroscience research and the distinction
between them is rarely even noticed. In fact, no study to date has hinted that these staple analyses

may fundamentally differ in their consistency across individuals.

We collected aunique fMRI dataset (N = 50) that allowed us to jointly estimate average

behavior and brain activity for short blocks of trials. Subjects judged whether a briefly presented


https://doi.org/10.1101/2022.08.01.502338
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.01.502338; this version posted August 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

display featured more red or blue dots and provided a confidence rating (Figure 1A). The
experiment was organized in 96 blocks of 8 trials each (Figure 1B; see Materials and Methods
for full details). For each block, we computed average reaction time (RT), average confidence,
and per voxel beta values corresponding to the total activation in that voxel over the course of

each block (Figure 1B).
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Figure 1. Task and results of standard group analyses. (A) Task. Subjects performed a simple
perceptual decision-making task that required them to judge the dominant color in adisplay of
colored dots and rate their confidence. (B) Task structure and analysis. The experiment was
organized in 96 blocks of 8 trials each (total of 768 trials). For each block, we computed the
average RT, average confidence, and per voxel activation (beta value). (C) Standard task-based
group analyses. We compared the voxel activations obtained across subjects against zero, and
found that our task induced consistent increases and decreases in activation across several brain
regions. (D-E) Standard behavior-based group analyses. We also performed classic RT- and
confidence-based analyses that compared activations between blocks of high vs. low average RT
or high vs. low average confidence. Unlike the task-based analysisin panel C, these analyses
revealed no activations after whole-brain correction. A common interpretation of these resultsis
that brain activations for high vs. low RT or confidence do not differ from each other. All maps
thresholded at p < 0.001 uncorrected for display purposes.
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Results

We first performed standard group fMRI analyses by conducting t-tests across all subjects for
each voxel. A task-based analysis compared the obtained beta values with zero and revealed
several regions of activation and de-activation (Figure 1C). On the other hand, two behavior-
based analysis compared the beta values for blocks with higher- vs. lower-than-median average
RT, aswell as higher- vs. lower-than-median average confidence. Both comparisons revealed no

activations anywhere in the brain after whole-brain correction (Figure 1D-E, S1).

The customary interpretation of these standard group analyses would be that brain activity does
not differ for blocks of high vs. low average RT (or high vs. low confidence) in our study.
However, examination of individual subject maps demonstrates that such conclusion would be
misguided. For example, we inspected the activations for the task-based and the two behavior-
based analyses in Subjects 1-3 (Figure 2). We found that the task-based maps for all three
subjects were similar to each other, with clear activationsin visual and somato-motor regions, as
well as de-activations in areas of the default mode network (Figure 2A). However, very different
results emerged for the two behavior-based analyses. Those analyses still revealed areas that
consistently tracked RT (Figure 2B) and confidence (Figur e 2C) but the individual maps were
highly dissmilar. For example, high-RT blocks were associated with stronger visual cortex
activationsin Subject 1 but weaker visual cortex activations in Subject 2, whereas the opposite
pattern of results was observed in the somato-motor cortex of these two subjects. One may want
to dismiss such subject-by-subject variability as being purely due to noise. However, examining

the equivalent analyses for odd and even blocks only (see smaller brain mapsin Figur e 2A-C)
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reveals that each individual map is highly reliable and therefore the stark differences in subjects’

behavior-based maps do not appear to be simply due to noise.

A Task-based B RT-based C Conf-based
Activation Activation Activation
H L R
3
2 7 : i
Y 4 \ B 85 AR B AR & ([ W s

odd even odd even odd even odd even Edd e\ilen .odd even

Subject 2
anjen-1

'@
é;-'- . ;
/ -\.\. '
T /""
N
anfen-1

anjea-1

Subject 3

d ‘\'\ /"---\. f,f‘.‘---\\. ;""'1 \ f_.f:'l"# ,-/_--:\.\ ;/_--.\-
f_. ) I:l ,;*_:\:___] !'.*:\"—-'] K ; ll/} I'H-:\,_--:II-‘-:\—-':I
odd even odd even odd even odd even

Figure 2. Task- and behavior-based mapsfor three example subjects. The maps obtained for
the first three subjects are displayed for (A) task-based, (B) RT-based, and (C) confidence-based
analyses. Task-based activations are computed by averaging the 96 beta values across all blocks,
whereas behavior-based activations are the result of t-tests comparing the beta values for blocks
with lower- vs. higher-than-median RT or lower- vs. higher-than-median confidence. Small
brains underneath represent the same analyses conducted only on odd or even blocks. Similar
activations for all three subjects appear for the task-based but not for the two behavior-based
analyses, despite the high within-subject consistency of all maps.

To formally test these impressions, we first examined the within-subject reliability of the whole-
brain maps produced by the task-, RT-, and confidence-based analyses. We computed this

reliability by performing, for the top-10% most activated voxels of each subject, a Pearson

correlation between the activations obtained when examining only the odd or only the even
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blocks. We found that the within-subject reliability for the task-based maps was near perfect
(average correlation between odd and even block maps, r = 0.99) and was significantly higher
than the reliability for the two behavior-based maps (RT: r = 0.68, t(49) = 9.82, p = 3.62 x 10™**;
Confidence: r = 0.49; t(49) = 10.99, p = 7.79 x 10™; equivalent results were obtained when the
top 5, 25, 50, 75, or 100% of voxels were considered; Figure 3A). Therefore, to equate the
reliability of task- and behavior-based analyses, we computed the task-based maps based on the
activation produced by two blocks only (instead of using all 96 blocks). We found that the
reliability in these 2-block task-based analyses (average r = 0.39) was well matched to the
confidence-based maps (p = 0.12) and was actually significantly lower than the RT-based maps
(p = 3.81 x 10°®). Thus, the 2-block task-based analyses provide a fair way to compare across-
subject task- and behavior-based maps without the worry that the task-based maps are inherently

less noisy.
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Figure 3. Idiosyncratic brain maps for behavior-based but not task-based analyses. A)
Within-subject reliability values as a function of the percent of most activated voxels selected.
For all voxel selection levels, the within-subject reliability was highest for the 96-block task-
based analysis and lowest for the 2-block task-based analyses. B) Subject-to-group similarity
computed as the average similarity between the maps of each person and the group map of the
remaining subject. Both the 96- and 2-block task maps exhibited high subject-to-group
similarity, whereas both the behavior-based maps exhibited very low (and significantly smaller
than the task-based) subject-to-group similarity. C) Fingerprinting results based on the maps
produced by the odd and even blocks for each subject. Fingerprinting success clearly depends on
both high within-subject reliability and low across-subject similarity. D) Maps of the distribution
of the top-10% most activated voxels showing strong areas of consistency for task-based but not
for behavior-based analyses. E) Maps of voxel consistency computed as the proportion of
subjects showing a positive or negative relationship between voxel activity and behavior. Task-
based maps again reveal areas of much higher consistency than behavior-based maps. Error bars
show SEM; *** p < 0.001. All p-values are Bonferroni corrected.
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Critically, we examined the subject-to-group similarity in the maps produced by task- and
behavior-based analyses (Figur e 3B). For each subject, we correlated their brain map with the
group map obtained by averaging the maps of the remaining 49 subjects. Echoing the qualitative
impressions from Figure 2A, for task-based analyses we found a high degree of subject-to-group
similarity that was surprisingly almost identical when examining all 96 blocks (average r = 0.59)
or just 2 blocks (averager = 0.57). However, reflecting the resultsin Figure 2B-C, for behavior-
based analyses we found very low similarity between the activation maps of each individual and
the corresponding group map (RT: mean r = 0.11; Confidence: mean r = 0.08). Both behavior-
based similarities were significantly lower than both task-based ones (all pairwisetests: p < 10°
%), Again, equivalent results were obtained when the top 5, 25, 50, 75, or 100% of voxels were

considered.

To gain further intuition for the underlying effects, we conducted three additional analyses. First,
we conducted fingerprinting analyses on the odd- and even-blocks maps of each subject (100
maps total) (Finn et al., 2015). We expected that fingerprinting success will be positively related
to both high within-subject reliability (making the maps less noisy) and low across-subject
similarity (making each individual more distinct from the rest). For each map, we checked which
of the remaining 99 maps was closest to it; successful fingerprinting for that map occurred if the
closest match came from the other map from the same subject (chance level = 1.01%). We found
very high fingerprinting success rate for task-based maps computed from all 96 blocks (100%),
presumably driven by their extremely high within-subject reliability (Figure 3C). We also found
very high fingerprinting success rate for RT- (80%) and confidence-based (66%) maps,

presumably driven by their very low subject-to-group similarity. However, the combination of
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high subject-to-group similarity and the absence of very high within-subject reliability led to
substantially lower fingerprinting success for the 2-block task-based maps (22%, significantly
lower than all three other maps, all p's < 10°7). These results confirm the critical role of both
within-subject reliability and across-subject similarity for fingerprinting success, and further

support the finding of strong idiosyncrasy for behavior- but not task-based analyses.

Second, we further tested the difference between task- and behavior-based analyses by
examining the distribution of the locations of the top-10% most strongly activated voxels for
each subject (both positive and negative activations were considered). Predictably, we found
areas of very high overlap for the 96-block task-based analysis in the visual and parietal cortex
with up to 76% of subject showing activation for the same voxel (Figure 3D). Critically, despite
its low within-subject reliability, the 2-block task-based analysis also showed similar areas of
high overlap (maximal overlap: 72%). On the other hand, we found only minimal overlap for
RT- or confidence-based analyses (maximal overlap: 32% and 30%, respectively), with maximal
overall values that were only dlightly higher than the maximum expected value in random data

(28%).

Third, we examined the consistency of the sign of voxel activations (whether they were positive
or negative) across subjects and again found a stark difference between task- and behavior-based
analyses. Specifically, both the 96-block and the 2-block task-based analyses showed areas of
very high across-subject consi stency (96-block: maximal overlap of 96% and 94% for positive
and negative activations; 2-block: maximal overlap of 98% and 92% for positive and negative

activations; Figure 3E). On the other hand, behavior-based analyses showed substantially lower

10
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overlap with most voxels of the brain showing roughly equal proportions of positive and
negative activations (RT: maximal overlap of 82% and 80% for positive and negative
activations; Confidence: maximal overlap of 76% and 82% for positive and negative activations;
expected values in random data: 80% and 80% for positive and negative activations). Overall,
both the 96- and 2-block task-based consistency values showed much a much wider range than
both of the behavior-based ones (all p's < 10%). Altogether, each of these three additional

analyses further underscores the very high level of idiosyncrasy in behavior-based analyses.

The maps of Subjects 1-3 (Figur e 2) suggest that the low subject-to-group similarity in
behavior-based analyses are likely due to large-scale, rather than fine-grained, differencesin the
activation maps. To confirm thisimpression, we repeated the same analyses above with awide
range of smoothing levels (from 5 to 20 mm) and obtained very similar results (Figur e S2-5).
Further, rather than performing the correlations on a voxel-per-voxel level, we did so on the level
of 200 large regions of interest obtained from the Schaefer atlas(Schaefer et al., 2018) and still
obtained the same results (Figur e S6). These findings clearly indicate that the low subject-to-
group similarity in behavior-based analyses is due to genuine, large-scale differences in the maps
rather than issues of misalignment of individual brain maps (Haxby et al., 2011, 2020; Nieto-

Castafion and Fedorenko, 2012).

Having established the existence of astark difference between the level of idiosyncrasy of task-
and behavior-based analyses, we sought to precisely quantify these differences by building a
simple computational model that jointly generates behavior and brain activity maps. The model

produces activation maps for each individual block based on three group-level factors (group

11
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task map, group RT map, and group confidence map), three subject-level factors (subject-
specific task map, subject-specific RT map, and subject-specific confidence map), and one noise
factor (Figure 4A). To keep the model ssmple, both behavior and individual voxel activation for
each group- and task-level factor were generated randomly by ignoring known temporal and
inter-regional dependencies. The weight of the noise factor was fixed to 1, leaving the model
with atotal of six free parameters (one for the weight of each group- and subject-level factor).
We then fit the model to the observed within-subject reliability and subject-to-group consi stency
values computed using 100% of the voxels. Despite its smplicity, the model was able to provide
excellent fit to the data from Figure 3A-B by capturing closely the observed patterns of within-
subject reliability (Figure 4B) and subject-to-group similarity (Figure 4C). By further
considering the number of independent voxels ssmulated as a free parameter, the model could
even fit the observed fingerprinting success rates for the different conditions (Figure 4D). The
only notable deviation between the data and modd fits concerned the size of the differencein
subject-to-group similarity between the 2-block and 96-block task-based analyses. Neverthel ess,

the model was able to capture all other patterns of the data remarkably well despite its ssimplicity.

12
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Figure 4. Model structure and predictions. (A) Mode structure. The activation map on a
single block of trials is modeled as the confluence of three group-level, three subject-level, and
one noise factor. The thickness of the arrows and associated numbers correspond to the weights
obtained from fitting the model to the data. The inset shows the relative weights of the subject-
level and corresponding group-level factors. The brain maps displayed in the figure were
produced as follows: the group brain maps show the actual maps obtained in our data, the
subject-level brain maps show the maps for subject 1, and the activation map at the bottom
shows the activation map for block 1 of subject 1 (B-D) Model predictions for within-subject
reliability, subject-to-group reliability, and fingerprinting values. The peach ovals highlight the
data points the model was fit to. Despite its ssmplicity, the model is able to reproduce the
empirical datafrom Fig. 3A-C very well.

Critically, the modd allowed us to examine the weights of the group- and subject-level factors,
thus providing insight into the relative contribution of each. We found that the weights for
subject-level task factor was only alittle higher than the group-level task factor (subject-level =

0.564, group-level: 0.343, ratio = 1.64). On the other hand, the weights for RT and confidence
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subject-level factors were about six times higher than the weights for the corresponding group-
level factors (RT: subject-level weight = 0.178, group-level weight = 0.027, ratio = 6.6;
Confidence: subject-level weight = 0.133, group-level weight = 0.024, ratio = 5.5). In other
words, our model suggests that group- and subject-level factors have relatively similar influence
on brain activity, which correspondswell to recent findings about group- and subject-level
influences on brain connectivity(Gratton et al., 2018). However, the model reveals that the
influence of subject-level behavior-based factorsis about six times larger than the influence of
group-level behavior-based factors (Figure 4A inset). We further repeated the model fitting on
data with 5 to 20 mm smoothing, as well as on the data from the 200 Schaefer atlas ROIs and
obtained similar results again: the weights ratio between the subject- and group-level task factors
was between 1 and 2.5 in all cases, whereas the samerratio for the RT- and confidence-based

factors was between 5 and 9.5 (Figure S7).

Finally, to establish the replicability of our results, we repeated all analyses on acompletely
different dataset. We used data from arecently published study (Mazor et a., 2020) where
subjects (N = 46) performed a different perceptual decision-making task (Gabor orientation
discrimination) and completed atotal of up to 200 trials (Figure S8). We estimated beta values
for mini-blocks of either 2 trials (100 blockstotal) or 5 trials (40 blocks total), and then
performed the same analyses as above. Even though the smaller quantity of datain that study
resulted in dlightly lower within-subject reliability and subject-to-group similarity values, the
same stark difference between task- and behavior-based analyses emerged again (Figur e $9,10).
Our model was again ableto fit the observed data very well and again showed a large difference

between task-based factors ratios and behavior-based factor ratios (Figure S7). Thus, all of our
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results were replicated in this independent dataset, demonstrating the generality and replicability

of our findings.
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Discussion

A magjor goal of neuroscience research has been to understand the neural correlates of behavior.
Behavior is acomplex phenomenon that is often idiosyncratic to a person (Eysenck, 1953;
Forkosh et al., 2019). Idiosyncratic behavior is ubiquitousin social situations(Durlauf, 2001),
economic decisions (Kable and Glimcher, 2007), judgments of beauty (Martinez et al., 2020),
confidence ratings (Navgas et al., 2017), response bias (Rahnev, 2021), and even low-level
perception (Afraz et a., 2010). However, an implicit assumption in much of neuroscience
research isthat the neural correlates of behavior are the same acrossindividuals (Friston et al.,
1999). Here, we test and reject this assumption. Across two different studies, we find that
subject-level behavior-based brain maps are very consistent within an individual, and yet
remarkably different across subjects. On the other hand, task-based maps are both consi stent
within an individual and similar across subjects. A computational model explains these results
and suggests that for task-based analyses, the influence of subject-level factorsis only dightly
stronger than the influence of group-level factors, whereas for behavior-based analyses, the
influence of subject-level factorsis about six times larger than the influence of group-level

factors.

Although these results were unexpected at first, we believe that they are commonsensical in
retrospect. Take, for example, the task of running along-distance race. A “task-based” analysis
would certainly reveal many similarities between different runners. when running (as opposed to
walking), all people increase their heart rate and exhibit changesin gait and speed (Cappdlini et
al., 2006). On the other hand, a“behavior-based” within-subject analysis that compares better vs.

worse performances within each runner is likely to be fundamentally different. Better
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performance for one runner may be explained by a faster-than-average heart rate, smaller-than-
average step sizes, and higher-than-average levels of hydration. However, for another runner,
dueto differencesin either anatomy or running style, better performance may be predicted by the
exact opposite factors. Thisisnot to say that there won’t be any consistency in such within-
subject behavior-based analyses — there will be — but that the importance of the group-level
factors that are the same for everyone is likely to pale in comparison to the importance of the

subject-level factors that are idiosyncratic to an individual.

Similarly, it makes sense that task-based brain analyses would reveal strong similarities between
subjects: given that large-scale brain anatomy is very similar across people (Hagoort, 2019;
Sanes et al., 1995), the same brain areas will likely be involved for everyonein a given task.
However, variations in performance from onetrial or block to the next would logically depend
on different mechanisms for different people (Saleri Lunazzi et a., 2021). For example, someone
whose attention is captured too strongly by the visual stimuli may show lower RT with lower
visual cortex activity and higher motor cortex activity. On the other hand, another person who
failsto attend the visual stimuli consistently may show lower RT when they successfully devote

more attention to the screen display resulting in higher visual but lower motor cortex activity.

Our results have strong implications about the common way of reporting the result of fMRI
studies. The majority of papersin the field only report second-level, group maps (Bandettini and
Ungerleider, 2001; Belliveau et al., 1991, le Bihan et al., 1993; Poldrack, 2011). The implicit
assumption isthat the group map represents the true “neural correlates’ of a given behavior.

However, our results demonstrate that such group-level results only have a small relationship to
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the neural correlates for any actual person (i.e., they explain just 1% of the variance in single-
subject maps). Thisisnot to say that second-level maps for behavioral-based analyses are
somehow wrong — instead, they represent our best approach for uncovering what is common
across al subjects. Theissueis that focusing exclusively on the relatively weak commonality
across people can distract from the much stronger but idiosyncratic effects within each
individual. Our results thus highlight the need for a renewed focus on investigating the brain-
behavior relationship at the level of single subjects (Gilmore et al., 2021; Gordon and Nelson,
2021; Nasdaris et a., 2021; Song and Rosenberg, 2021). Perhaps ironically, while thousands of
subjects are needed for brain-wide association studies (Marek et al., 2022), revealing the brain

correlates of behavior requires us to focus on single individuals.

Our findings also suggest novel ways for finding robust biomarkers for various mental disorders
(Elliott et a., 2018; Kaufmann et al., 2017; Li et al., 2020; Parkes et al., 2020). Most research in
the field has focused on biomarkers unrelated to behavior such as functional connectivity
patterns at rest (Drysdale et al., 2017; Woodward and Cascio, 2015). An exciting possibility is
that subject-level activations maps for disease-relevant behaviors could serve as much more
powerful biomarkers because of their high reliability and clear differences among people.
Focusing directly on the relationship between one’ s behavior and on€’ s brain activations may
help to delineate the intricate relationship between the brain and psychopathology (Gratton et al.,
2020). For example, our results imply that mental illness might have neural correlates that are
unique to an individual. For example, in one individual, fluctuation in positive mood or thoughts
might depend on activity in the frontal cortex, but in another individual, they could depend on

the parietal cortex. Similar effects have already been suggested in the context of pain perception
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(Kohoutova et al., 2022). Therefore, subject-level effects would be crucial to diagnosing and
treating these different individuals. Additionally, an analysis that is focused on subject-level
variability might be more informative since between-subject analyses ignore the large degree of

within-subject variability (Fisher et al., 2018; Lebreton et a., 2019).

One open problem concerns the quantification of the level of idiosyncrasy for different types of
analyses. Here we have provisionally classified all analyses as either “task-based” or “behavior-
based.” However, it could be that rather than a binary distinction, there is more of a continuum
of analysis types. For example, examining the differential activations of two different tasks
(Yeon et al., 2020) may show dlightly higher idiosyncrasy levels than examining the activations
of asingletask inisolation (asin the current analyses). Similarly, analyses that compare internal
states (e.g., aroused vs. unaroused, excited vs. bored) (Rosenberg et al., 2020) or the effects of
brain stimulation (Chen et al., 2013; Rafid et al., 2021) may show yet greater levels of

idiosyncrasy despite our provisional classification of such analyses as “task-based.”

Our model represents one of very few attempts to build process models that jointly generate
behavior and brain activations. There are rich literatures of building process model in cognitive
science that focuses exclusively on behavior (Ratcliff, 1978; Rescorla and Wagner, 1972; Zhang
and Luck, 2008) and in cognitive neuroscience that focuses exclusively on brain activity
(Breakspear, 2017; Coombes et al., 2007; Wilson and Cowan, 1972). Y et, understanding the
brain-behavior relationship clearly requires the development of process models that jointly

generate both types of data, thus explicitly clarifying the links between the two. Future work in
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the field should increasingly emphasize process models that specify the mechanisms that

generate behavior and brain activity.

In conclusion, we find a stark level of idiosyncrasy in behavior-based analyses such that single-
subject maps are remarkably reliable, yet very different across subjects. These results have
strong implications about the common practice of only reporting second-level analyses and

suggest the need to examine individual-subject resultsin all behavior-based analyses.
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Materialsand Methods

Subjects

Fifty-two healthy subjects were recruited for this study. Two subjects were excluded
because one had metal braces in their teeth and one decided to stop the experiment after
the second run. All analyses were thus based on the remaining 50 subjects (25 females;
Mean age = 26; Age range = 19-40; Compensated 20,000 KRW or approximately 18
USD). All subjects were screened for any history of neurological disorders or MRI
contraindications. The study was approved by Ulsan National Institute of Science and

Technology Review Board (UNISTIRB-20-30-C) and all subjects gave written consent.

Task

Subjects had to determine which set of colored dots (red vs. blue) is more frequent in a
cloud of dots (Fig. 1A). Each trial began with a white fixation dot presented for avariable
amount of time between 500-1500 ms at the center of the screen on ablack background.
Then, the stimulus was shown for 500 ms, followed by untimed decision and confidence
screens. The stimulus consisted of between 140 and 190 red- and blue-colored dots (dot
size =5 pixels) dispersed randomly inside an imaginary circle with aradius of 3° from the
center of the screen. Four different dot ratios were used — 80/60, 80/70, 100/80, and
100/90, where the two numbers indicate the number of dots from each color. The
experiment was organized in blocks of 8 trials each (Fig. 1B), with each dot ratio
presented twice in arandom order within a block. The more frequent color was pseudo

randomized so that there were equal number of trials where red and blue were the correct

answer within arun (consisting of 16 blocks). Subjects used an MRI-compatible button
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box with their right hand to indicate their decision and confidence responses. For the
decision response, the index finger was used to indicate a “red” response and the middle
finger for a“blue’ response. Confidence was given on a4-point scale, where 1 isthe
lowest and 4 is the highest, with the rating of 1 mapped to the index finger and the rating

of 4 mapped to thelittle finger.

Subjects performed 6 runs each consisting of 16 blocks of 8 trials (for atotal of 768 trials
per subject). Three subjects completed only half of the 6" run and another three subjects
completed only the first 5 runs due to time constraints. The remaining 44 subjects
completed the full 6 runs. Subjects were given 5 seconds of rest between blocks, and self-

paced breaks between runs.

MRI recording

The MRI data was collected on a 64-channel head coil 3T MRI system (Magnetom
Prisma; Siemens). Whole-brain functional data were acquired using a T2*-weighted
multi-band accelerated imaging (FoV = 200 mm; TR = 2000 ms; TE = 35 ms; multiband
acceleration factor = 3; in-plane acceleration factor = 2; 72 interleaved dlices; flip angle =
90°; voxel size = 2.0 x 2.0 x 2.0 mm°). High-resolution anatomical MP-RAGE data were
acquired using T1-weighted imaging (FoV = 256 mm; TR = 2300 ms; TE = 2.28 ms, 192

dices; flip angle = 8°; voxel size=1.0 x 1.0 x 1.0 mm°).

MRI preprocessing and general linear model fitting
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MRI data were preprocessed with SPM 12 (Wellcome Department of Imaging
Neuroscience, London, UK). Wefirst converted the images from DICOM to NIFTI and
removed the first three volumes to allow for scanner equilibration. We then preprocessed
with the following steps: de-spiking, dice-timing correction, realignment, segmentation,
coregistration, normalization, and spatial smoothing with 10 mm full width half maximum
(FWHM) Gaussian kernel. In control analyses, we used 5 and 20 mm FWHM smoothing
to investigate whether the results are due to fine-grained differences in the activations
maps between subjects, given that local differences would be substantially reduced by
larger smoothing kernels. Despiking was done using the 3dDespike function in AFNI. The
preprocessing of the T1-weighted structural images involved skull-removal, normalization
into MNI anatomical standard space, and segmentation into gray matter, white matter, and

cerebral spinal fluid, soft tissues, and air and background.

Wefit ageneral linear model (GLM) that allowed us to estimate the beta values for each
voxel in the brain for each block of the experiment. The model consisted of regressors for
each individual block, inter-block rest periods, aswell as linear and squared regressors for
six head movement (three trandlation and three rotation), five tissue-related (gray matter,
white matter, cerebrospinal fluid, soft tissues, and air and background), and a constant

term per run.

Standard group-level analyses

Wefirst performed a standard group analysis by conducting t-tests across all subjects for

each voxel. A task-based analysis compared the obtained beta values with zero to identify
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regions of activation and de-activation. Two behavior-based analyses compared the beta
values for blocks with higher- vs. lower-than-median average reaction times (RT) and
higher- vs. lower-than-median average confidence. Significance was assessed using p <
0.05 after Bonferroni correction for multiple comparisons. For display purposes, Fig. 1

and Fig. S1 used the more liberal threshold of p < 0.001 uncorrected.

Within-subject reliability analyses

We examined the within-subject reliability of the whole-brain maps produced by the task-
and behavior-based analyses. To do so, we first re-did the task- and behavior-based
analyses by only using the odd blocks, as well as by only using the even blocks. We then
compared the similarity between the maps obtained for odd and even blocks using Pearson
correlation. We performed the analysis six times based on thetop 5, 10, 25, 50, 75, or
100% of most strongly activated voxelsin the following way. We first identified the X%
most strongly activated voxels (i.e., the voxels with highest absolute activation values)
when only examining the data from the odd blocks. The activation values used were the
average beta value for task-based analyses, and the t-value (obtained by using at-test to
compare the beta values for blocks with above- vs. below-median RT or confidence) for
the behavior-based analyses. This selection procedure ensured that both positively and
negatively activated voxels were selected and that an equal number of voxels were
selected each time. The activations in the selected top X% of voxels from the odd blocks
were then correlated with the activationsin the same voxels in the even blocks, thus
obtaining an “odd-to-even” correlation value. Then, using an equivalent procedure, we

identified the top X% of most activated voxels in the even blocks, and correlated their
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activations with the activations in the corresponding voxels in the odd blocks, thus
obtaining an “even-to-odd” correlation value. Finally, we computed the overall within-

subject reliability as the average of the odd-to-even and even-to-odd correlation values.

In addition to the three analyses above that were performed on all collected data, we
performed a task-based analysis based on data from just two blocks. We selected blocks 1
and 49 for these analyses because they were the first blocks of the first and second half of
the experiment, respectively. The within-subject reliability for this 2-block task-based
analysis was computed in the same way as the 96-block task-based analysis above by
treating block 1 asthe “odd blocks” and block 49 as the “even blocks.” Examining data
from just two blocks produced lower within-subject reliability values and thus allowed for

afair comparison between task-based and behavior-based analyses.

Subj ect-to-group similarity analyses

Critically, we examined the subject-to-group similarity in the maps produced by task- and
behavior-based analyses. For each subject, we correlated their individual task-, RT-, and
confidence-based activation maps with the corresponding group map obtained by
averaging the maps of the remaining 49 subjects. We conducted the task-based analyses
both on the average of all 96 blocks (96-block analysis) and the average of blocks 1 and
49 (2-block analysis). Similar to the within-subject reliability analyses, we conducted
these analyses separately for thetop 5, 10, 25, 50, 75, or 100% of most activated voxels.
These voxels were selected in the same way as for the within-subject reliability analyses

using all of the datain a given subject (except for the 2-block task-based analysis where

30


https://doi.org/10.1101/2022.08.01.502338
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.01.502338; this version posted August 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

both blocks 1 and 49 were used); the activationsin the voxels identified for a given
subject were then correlated with the average activations in the same voxels for the

remaining 49 subjects.

Fingerprinting analyses

As another test of the strength of within-subject reliability and across-subject smilarity
(Finn et al., 2015), we conducted fingerprinting on the brain maps produced by the task-
and behavior-based analyses. Specifically, we considered the odd- and even-block maps
of each of our 50 subjects (100 maps total). We compared the magnitude of the similarity
of each map to each of the remaining 99 maps. For a given map, if the most similar other
map was the second map from the same subject (chance level 1/99 = 1.01%), then we
counted that as successful fingerprinting for that specific map. We performed this
fingerprinting analysis on the 96-block task-based activation maps, 2-block task-based
activation maps, RT-based activation maps, and confidence-based activation maps.
Finally, we tested for statistical differencesin fingerprinting success rate between task-

and behavior-based activation maps using a Z-test for proportions.

Distribution of top-10% most strongly activated voxels

As another test of the across-subject smilarity of the task- and behavior-based results, we
sought to identify the consistency of the location of the most strongly activated brain
regions across subjects. For each subject, we selected the top-10% most strongly activated
voxels by considering the absolute value of either the average beta value (for task-based

analyses) or t-value (for behavior-based analyses). Note that this procedure selected
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positive and negative activations. We then estimated, for each voxel, the percent of
subjects for which the voxel was selected as one of the top-10% most strongly activated
voxels. The analysis was performed separately for the 96-block task-based activation
maps, 2-block task-based activations maps, RT-based activation maps, and confidence-

based activation maps.

Low across-subject similarity in these analyses would result in most voxels being selected
about 10% of the time. However, due to chance, some voxels are bound to be selected
more than 10% of the time. Therefore, to enable the appropriate interpretation of the
obtained results, we computed the expected level of maximal overlap in the maps of 50
subj ects whose maps have no relationship to each other. Specifically, for each of the 50
subjects, we generated a random set voxel activation values. We then selected the top-
10% of the highest absolute values from each subject and calculated the overlap across
subjects. The expected value from random data was computed as the average maximal
overlap after 1000 iterations. Thisanalysis revealed that completely random data would
produce a maximal overlap of 28% given the number of voxels and number of subjects
that we had, which was only alittle less than the empirically observed values for behavior-

based analyses (32% for RT-based analyses and 30% for confidence-based analyses).

Consistency in activation analysis

Asafinal test of the across-subject similarity of the task- and behavior-based results, we
computed the congistency in the sign of activation. Our main analyses relied on taking

correlations, but it is possible that just considering the sign of activation (rather than the
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strength of activation) would produce different results. To investigate this possibility, we
examined the consistency of the sign of voxel activations (positive or negative) across
subjects. To do so, we first set all voxels values that were equal to zero to not-a-number
value (NaN). This applied to regions that are outside the brain. We then binarized the

voxel activation values activation; such that:

1, activation; = 0
0, activation; < 0

binary; = {
The consistency of the sign of avoxel’s activation across subjects (C;) was then calculated
as percentage of subjectsfor which avoxel i was positively or negatively activated using

the formula:

50

C; =100 x =0 j=1binaryi

As defined, C; goesfrom O (all subjects having negative activation for that voxel) to 100
(all subjects having positive activations for that voxel), with avalue of 50 indicating that
half of the subjects had positive and half had negative activation. However, when

reporting the values of C;, we flipped values under 50 using the formula C; f;ippeq =
100 — C;, so that these values represent the percent of subjects with negative activations.

As before, the analysis was performed separately for the 96-block task-based activation

maps, 2-block task-based activations maps, RT-based activation maps, and confidence-
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based activation maps. The activation values were the average beta value (for task-based

analyses) or t-value (for behavior-based analyses).

Low across-subject similarity in these analyses would result in most voxels having
consistency, C;, values close to 50 (corresponding to the voxel activation having positive
sign in half the subjects and negative sign in the other half). However, due to chance, the
consistency values are bound to sometimes be higher. Therefore, to enable the appropriate
interpretation of the obtained results, we computed the expected consistency valuesin the
maps of 50 subjects whose maps have no relationship to each other. Specifically, we
generated a random set of voxel activation values for each of 50 sample subjects. Maximal
consistency from the random data was calculated in the same manner as the empirical
values and the procedure was repeated 1000 times. Thisanalysis revealed that completely
random data would produce a maximal consistency of 80% (for both positive and negative
activations) given the number of voxels and number of subjects that we had, which was

close to the empirically observed values for behavior-based analyses.

ROI-based within-subject reliability and subject-to-group similarity analyses

All of the above analyses were performed at the level of individual voxels. However, to
ensure that the results obtained were not due to the fine-grained misalignment of
individual maps, we performed the within-subject reliability and subject-to-group
similarity analyses on the level of 200 large regions of interest (ROIs) obtained from the
Schaefer atlas (Schaefer et a., 2018). For these analyses, we averaged al the beta values

within an ROI and repeated both the within-subject reliability and subject-to-group
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similarity analyses in the same way as for the voxel-based analyses above. These ROI-
based analyses produced very similar results to the main voxel -based analyses (see Fig.
$6), indicating that the low subject-to-group similarity in behavior-based analysesis due
to genuine, large-scale differences in the maps rather than issues of misalignment of

individual brain maps.

Model specification

Our analyses revealed that task-based activation maps are largely consistent across
subjects, whereas behavior-based maps are largely idiosyncratic. We sought to precisely
guantify the contributions of group- and subject-level factors in both the task- and

behavior-based activations maps by building and fitting a simple computational model.

The modé jointly generates behavior and brain activity maps using minimal assumptions.
Specifically, RT and confidence for ablock of trials were generated randomly from a
standard normal distribution (with amean of 0 and standard deviation of 1). Critically, the
model assumes that the activation map for each block is afunction of seven different
factors. Thefirst three are group-level factors (i.e., factors common to all subjects) for the
task itsdlf, the influence of the block-specific RT, and the influence of the block-specific
confidence. The next three factors are subject-level factors (i.e., factors specific to each
subject) for the task itself, the influence of the block-specific RT, and the influence of the
block-specific confidence. Finally, the 7" factor is smply Gaussian noise. Critically, each

factor isweighed by a corresponding factor weight that determines the strength of
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influence of that factor to the final voxel activation values, such that the activation

strength () for agiven voxel on agiven block is:

ﬁ = Wtaskgmup * ftaskgmup + Wrtgmup * frtgmup * RT + Wconfgmup * fconfgmup * COTlf
+ Wtasksubj * ftasksubj + Wrtsubj * frtsub]- * RT + Wconfsubj * fconfsubj

* COTlf + Whoise * fnoise

where RT and conf are the reaction time and confidence on that block, the w’s are the
weights associated with each factor, and the f’ s are the factors that influence the voxel
activity for a given block. Without loss of generality, the weight of the noise factor
(Whoise) Was fixed to 1. The value of each factor f was randomly sampled from a standard
normal distribution such that group-level factors were randomly sampled for each voxel,
subject-level factors were randomly sampled for each voxel and subject, and the noise

factor was randomly sampled for each voxel, subject, and block.

We note that, in the model, both the behavioral measures (RT and conf) and the factors
(f) that control the individual voxel activations were sampled from a standard normal
distribution, which makes the simulated values of RT, confidence, and voxel activations
(B’ s) not match their observed values. Additional parameters could be easily used to
match the actual distributions of the empirical RT, confidence, and 8 values, but this
added level of complexity would not affect the model’ s ability to explain the quantities of
interest here, which are the within-subject reliability values, subject-to-group similarity

values, and fingerprinting results. Thisis because all three of these analyses are based on
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correlations, and correlations are insensitive to additive and multiplicative changes of the
underlying variables. Therefore, we chose not to fit the actual observed values of RT,

confidence, and voxel S values so as to keep the model as smple as possible.

Mode fitting

Wefirst fit the model to the empirically observed within-subject reliability and subject-to-
group similarity values. The model had six free parameters corresponding to the weights,
w, of the group- and subject-level factors that determined the smulated 8 value for each
voxel in each block. For a given set of weights, we simulated a complete experimental
dataset by generating smulated data for 50 subjects with 96 blocks per subjects (each
block had corresponding RT, confidence, and per voxel beta value). Based on these data,
we then computed the within-subject reliability and subject-to-group smilarity valuesin
the same way as for the empirical data. When simulating the model, we observed that the
exact number of voxels used made no systematic difference to the observed values of the
obtained within-subject reliability and subject-to-group smilarity values. Therefore, we
used 10,000 voxels, which allowed for stable values to be obtained on different iterations.
The fitting minimized the mean squared error (M SE) between the simulated and
empirically observed within-subject reliability and subject-to-group similarity values
calculated using the top-100% most activated voxels (that is, using all voxels). Once the
fitting was completed, we also generated the predictions of the best-fitting model for the
within-subject reliability and subject-to-group similarity values calculated using the top 5,

10, 25, 50, and 75% most activated voxels. Thefitting itself was carried out using the
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Bayesian Adaptive Direct Search (BADYS) toolbox(Acerbi and Ma, 2017). Wefit the

model 10 times are reported the best fitting model among the 10 iterations.

In addition to fitting the model to the within-subject reliability and subject-to-group
similarity values, we further fit it to the observed fingerprinting success rate. Predictably,
we found that the number of simulated voxels had a large effect on the fingerprinting
success rate of the simulated data (simulating more voxels leads to more robust
fingerprinting due to the availability of more overall data). Therefore, in fitting the model
to the fingerprinting success rate, we used the weights (w) obtained from theinitial fit
above (when fitting the model to the within-subject reliability and subject-to-group
similarity values) and then systematically varied the number of simulated voxelsin the
model from 10 to 100. For each simulation, we computed the fingerprinting success rates
asin the analyses of the empirical data, and then chose the number of voxels that
minimized the M SE between the ssimulated and the empirical results. We conducted the
simulations 10 times for each number of simulated voxels and we averaged the obtained
M SE values across repetitions. We found that simulating 62 voxels led to the best model
fit and therefore report these fitsin the main paper. It is notable that this number is
substantially smaller than the number of voxelsin the brain, but it isimportant to
appreciate that voxelsin the brain exhibit a very large degree of covariance such that the
actual dimensionality of the voxel activations could well be of asimilar order of

magnitude as the number that our modd fitting arrived at.

Data and Code Availability
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All preprocessed data and code are available at https://osf.io/xe8r5/ and

https://osf.io/8dbg2/.
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Figure S2. Effect of smoothing on within-subject reliability of the whole-brain maps
produced by the task-, RT-, and confidence-based analyses. The fMRI data were spatially
smoothed with A) 5 mm, B) 10 mm, or C) 20 mm full width half maximum (FWHM) Gaussian
kernel. Panel B isthe same as in the manuscript and is shown for comparative purposes. As can
be observed, very similar results are obtained for different levels of smoothing, indicating that
the results obtained are likely due to large-scale rather than small-grained differencesin the
maps. Error bars show SEM; *** p < 0.001. All p-values are Bonferroni corrected.
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Figure S3. Effect of smoothing on the subject-to-group similarity values. The fMRI data
were spatially smoothed with A) 5 mm, B) 10 mm, or C) 20 mm full width half maximum
(FWHM) Gaussian kernel. Pandl B isthe same asin the manuscript and is shown for
comparative purposes. As can be observed, very similar results are obtained for different levels
of smoothing, indicating that the results obtained are likely due to large-scale rather than small-

grained differences in the maps. Error bars show SEM; ***, p < 0.001. All p-values are
Bonferroni corrected.
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Figure $4. Maps of the distribution of the top-10% most activated voxels. A) Task-based
activation calculated from all 96 blocks. B) Task-based activation calculated from 2 blocks only.
C) RT-based activation. D) Confidence-based activation. Task-based activations computed for
both 96 and 2 blocks exhibited strong areas of consistency compared to the behavior-based
activations. Analysis was conducted on fMRI data smoothed with 5, 10, and 20 mm FWHM
kernels. The 10 mm results are the same as in the main manuscript and are shown here for
comparative purposes. Again, smilar results are obtained for different levels of smoothing.
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Figure S5. Maps of voxd activation consistency acr oss subjects. A) Task-based activation
calculated from all 96 blocks. B) Task-based activation calculated from 2 blocks only. C) RT-
based activation. D) Confidence-based activation. Task-based activations computed for both 96
and 2 blocks exhibited strong areas of consistency compared to the behavior-based activations.
Analysis was conducted on fMRI data smoothed with 5, 10, and 20 mm FWHM kernels. The 10
mm results are the same as in the main manuscript and are shown here for comparative purposes.

Again, similar results are obtained for different levels of smoothing.
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Figure S6. Idiosyncratic relation at the ROI level for behavior-based but not task-based
analyses. A) Within-subject reliability values obtained by analyzing activations within the 200
regions-of-interest (ROIs) from the Schaefer atlas. B) Subject-to-group similarity computed
based on the activations of the 200 Schaefer atlas ROIs. Analysisis based on fMRI data
smoothed with 10 mm FWHM Gaussian kernel. The results obtained at the level of large ROIsin
this analysis mimics closely the results obtained using analyses conducted on individual brain
voxels (Fig. 2A,B). Error bars show SEM; *** p < 0.001. All p-values are Bonferroni corrected.
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Figure S7. Model weightsand ratios. A) Model weights. Subject- and group-level weights
obtained from fitting the model separately to each analysis and task. In line with the resultsin
Figure 4, the subject-level weights were consistently higher than the group-level weights across
all analyses and tasks. Taskl1 and Task2 refer to the tasks from the main experiment and the data
from Mazor et al. (2020) (see Fig. S8), respectively. B) Weight ratios. Relative weights of the
subject-level and corresponding group-level factors from each analysis and task. Across most
analyses, the weights ratio between the subject- and group-level task factors was between 1 and
3.5, whereas the same ratio for the RT- and confidence-based factors was between 5 and 9.5. The
exception was Task2 with blocks composed of 2 trials (“Taks2-2-trials’), with an RT-factor
weight ratio of 15.4, which could be aresult of higher noise level associated with using only two
trialsto estimate the beta values.
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Figure S8. Gabor orientation discrimination task in Mazor et al. (2020). Subject (N=46)
performed an in-scanner discrimination task where they had to indicate the orientation of avisual
grating (clockwise or counterclockwise). After atemporally jittered rest period that lasted
between 500 and 4000 ms, each trial began with afixation cross (500 ms) followed by the
stimulus (33 ms). The subjects had up to 1500 msto make decision on the orientation of the
grating. Immediately after making their decision, subjects rated their confidence on a 6-point
scale by increasing or decreasing the size of the color segment of the circle. In total, subjects
performed 5 runs with 40 trials per run for atotal of 200 trials. They also performed a second
task, which was not analyzed here. Scanning was conducted on a 3 Tesla Siemens Prisma MRI
scanner at the Wellcome Centre for Human Neuroimaging, London. Structural images were
acquired using an MPRAGE sequence (1x1x1 mm voxels, in plane FoV = 256 x256 mm?).
Functional scans were acquired using a 2D EPI sequence (3x3x3 mm voxels, TR=3.36s, TE =
30 ms 48 dlices) (see Mazor et. al, 2020 for further details). Raw data were obtained from the
first author upon request and preprocessed in the same manner as the main task in manuscript
(see Materials and Methods for details). Preprocessed data and relevant scripts can be obtained
from https://osf.io/8dbg2/.
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Figure S9. Analysis of the data from Mazor et al. (2020) with 2 trials per blocks. A) Within-
subject reliability values as a function of the percent of most activated voxels selected. The
analysis here was conducted on blocks composed of 2 trials resulting in 100 total blocks, thus
roughly matching the number of blocks used in the analysisin the main text. For all voxel
selection levels, the within-subject reliability was highest for the 100-block task-based analysis
and lowest for the 2-block task-based analysis. B) Subject-to-group similarity computed in the
sameway asin Fig. 3. Both the 100- and 2-block task maps exhibited higher subject-to-group
similarity compared to both the behavior-based maps. C) Fingerprinting results based on the
maps produced by the odd and even blocks for each subject. D) Maps of the distribution of the
top-10% most activated voxels showing strong areas of consistency for task-based but not for
behavior-based analyses. E) Maps of voxel consistency computed as the proportion of subjects
showing a positive or negative relationship between voxel activity and behavior. Task-based
maps reveal areas of much higher consistency than behavior-based maps. Error bars show SEM;
*** p<0.001; *, p<0.05. All p-values are Bonferroni corrected.
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Figure S10. Analysis of the data from Mazor et al. (2020) with 5 trials per block. A) Within-
subject reliability values as a function of the percent of most activated voxels selected. To
increase the robustness of the estimation of the beta values, the analyses here were conducted on
blocks composed of 5 trials resulting in 40 total blocks. For all voxel selection levels, the within-
subject reliability was highest for the 40-block task-based analysis and lowest for the 2-block
task-based analyses. B) Subject-to-group similarity computed the same asin Fig. 3. Both the 40-
and 2-block task maps exhibited higher subject-to-group similarity compared to both the
behavior-based maps. C) Fingerprinting results based on the maps produced by the odd and even
blocks for each subject. D) Maps of the distribution of the top-10% most activated voxels
showing strong areas of consistency for task-based but not for behavior-based analyses. E) Maps
of voxel consistency computed as the proportion of subjects showing a positive or negative
relationship between voxel activity and behavior. Task-based maps reveal areas of much higher

consistency than behavior-based maps. Error bars show SEM; ***  p < 0.001. All p-values are
Bonferroni corrected.
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