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ABSTRACT

Whole brain tractography is commonly used to study the brain’s white matter fiber pathways, but the large
number of streamlines generated - up to one million per brain - can be challenging for large-scale population
studies. We propose a robust dimensionality reduction framework for tractography, using a Convolutional Varia-
tional Autoencoder (ConvVAE) to learn low-dimensional embeddings from white matter bundles. The resulting
embeddings can be used to facilitate downstream tasks such as outlier and abnormality detection, and mapping
of disease effects on white matter tracts in individuals or groups. We design experiments to evaluate how well
embeddings of different dimensions preserve distances from the original high-dimensional dataset, using distance
correlation methods. We find that streamline distances and inter-bundle distances are well preserved in the latent
space, with a 6-dimensional optimal embedding space. The generative ConvVAE model allows fast inference on
new data, and the smooth latent space enables meaningful decodings that can be used for downstream tasks.
We demonstrate the use of a ConvVAE model trained on control subjects’ data to detect structural anomalies in
white matter tracts in patients with Alzheimer’s disease (AD). Using ConvVAEs to facilitate population analy-
ses, we identified 6 tracts with statistically significant differences between AD and controls after controlling for
age and sex effect, visualizing specific locations along the tracts with high anomalies despite large inter-subject
variations in fiber bundle geometry.
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1. INTRODUCTION

Whole-brain tractography based on diffusion MRI is commonly used to study white matter pathways in a
variety of neurological and psychiatric conditions, including Alzheimer’s disease and Parkinson’s disease.!™
Each whole-brain tractogram can generate between 500,000 and more than one million streamlines, making it
computationally expensive to perform downstream analyses, such as tractogram filtering,* bundle labeling,® ¢
and population analyses.? Data reduction, segmentation and labeling of whole brain tractograms are valuable
to accelerate large-scale studies of brain disease. Deep learning methods in particular may offer new ways to
efficiently represent the streamlines and their normal range of variations, as well as detect anomalies in individuals
and patient groups.

Representation learning uses machine learning, and deep neural networks in particular, to distill information
from large datasets with rich features into a lower dimensional latent space. These lower-dimensional models are
often constructed to satisfy specific objectives, such as principal components analysis (PCA), which creates an
orthogonal linear matrix, or sequence of linear projections that accounts for the maximum amount of variance
in the data,” or autoencoders (AE), which compress and encode the original data using nonlinear mappings
for more convenient visualization, sparse reconstruction, and even denoising. After training deep networks to
create these mappings, the low dimensional representations, or embeddings, can be directly used or fine-tuned
for downstream prediction tasks, such as disease classification or prognosis® or domain-specific tasks such as
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outlier detection in tractography.® Zhong et al., for example, encoded streamlines with a recurrent autoencoder
and used the embeddings for bundle parcellation.'® A similar approach, using a convolutional autoencoder, was
developed for tractogram filtering.* While these studies show that the learned embeddings can retain bundle
information such as their shapes and positions, the latent space for standard autoencoders is not continuous
and the model is often prone to overfitting,'' making it difficult to evaluate embeddings on unseen data, and
use them for population analyses which involve large amounts of data. Variational autoencoders (VAEs), on
the other hand, are generative models that learn a mapping to a space of continuous latent variables, enabling
sampling and interpolation, and they are more stable in practice. The latent space carries relevant information
about the input data,® thus model design, hyperparameter tuning, validation task design and interpretation of
the latent space should be informed by domain knowledge.

In this study, we learn optimal low-dimensional embeddings of white matter tracts with a Convolutional VAE
(ConvVAE),'? and apply this more compact representation to detect detect disease effects in tract geometry.
Meaningful embeddings should ideally preserve distance metrics from the original streamline space, as well as
inter-bundle distances; there is a vast literature on embeddings that are approximately distance preserving, in-
cluding multidimensional scaling and distance-preserving autoencoders, and embeddings that also satisfy related
conditions involving the distributions of distances between point pairs (e.g., --SNE, UMAP, and more complex
methods based on persistent homology and computational topology). We investigate how the dimension of the
latent space affects the quality of the embeddings using distance correlation analysis. We further demonstrate
the use of our ConvVAE for anomaly detection in group analysis of Alzheimer’s disease (AD) at the tract level.
The benefit of creating geometrically consistent latent and input data spaces is that anomaly detection and
discriminative tasks can then be tackled in the much lower-dimensional latent space.

2. METHODS
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Figure 1. ConvVAE model architecture. The output shapes for one input streamline are indicated for each convolution
and deconvolution block, consisting of 1D convolution, ReLLU activation, batch normalization and average pooling layers.
The embedding dimension z is a hyperparameter tuned to optimize the distance correlations between pairs of elements
in the original and embedding space, as specified in Section 2.3.

2.1 Data

We computed whole-brain tractography from 3D multi-shell diffusion MRI scans of 141 participants in the
Alzheimer’s Disease Neuroimaging Initiative (ADNI)!? (age: 55-91 years, 80F, 61M) scanned on 3T Siemens
scanners. The dMRI data consisted of 127 volumes per subject; 13 non-diffusion-weighted by volumes, 6 b=500,
48 b=1,000 and 60 b=2,000 s/mm? volumes with a voxel size of 2.0x2.0x2.0 mm. Participants included 10
with dementia (AD), 44 with mild cognitive impairment (MCT), and 87 cognitively normal controls (CN). dMRI
volumes were pre-processed using the ADNI3 dMRI protocol, correcting for artifacts including noise,” 416
Gibbs ringing,'” eddy currents, bias field inhomogeneity, and echo-planar imaging distortions.'® 2% We applied
multi-shell multi-tissue constrained spherical deconvolution (MSMT-CSD)?! and a probabilistic particle filtering
tracking algorithm?? to generate whole-brain tractograms. Thirty white matter tracts were extracted from all
subjects in the MNI space using DiPy’s'* auto-calibrated RecoBundles.? ¢
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2.2 Model

Variational Autoencoders (VAEs)?® retain the basic structure of autoencoders: an encoder, decoder and latent
space serving as an information bottleneck. The ConvVAE model encoder has 3 convolutional blocks, each
comprised of 1D convolutional, ReLU activation, batch normalization and average pooling layers.* The decoder
mirrors the encoder architecture with deconvolution instead of convolution, and upsampling instead of pooling
layers (see Figure 1). Since the convolutional layers are designed to accept only fixed-dimension inputs, stream-
lines modeled as a sequence of 3D points are either downsampled or upsampled to generate 255 equal length
segments, connecting the point sequence, s = {p1,p2,...pa56}. The ConvVAE was trained on bundles from 10
control subjects with a batch size of 512 streamlines using the Evidence Lower Bound (ELBO) loss, consisting
of a reconstruction and regularization term to enforce constraints on the latent space. We used the Adam opti-
mizer?* with a learning rate of 0.0002 and weight decay of 0.001, and trained the model for 100 epochs. Gradient
clipping?® by L? norm was applied to prevent vanishing gradients, with a max norm value of 2.

2.3 Distance Preservation
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Figure 2. Distance correlation with latent space dimensions of size 2, 6, 8 and 16 calculated over 300 subsampled streamlines
from the training set, using methods described in Detlefsen et al.® The z-axis indicates Euclidean distances between pairs
of embedded streamlines and the y-axis indicates MDF distances between the same pairs of streamlines in streamline
space. Line fit with zero intercept is plotted as the red dashed line. As shown later (Figure 3), the embedding dimension
6 (2nd panel) preserves distances optimally. The Spearman 7, Pearson r and R? are marked in the legend.

To evaluate the quality of embeddings learned from ConvVAE, we conducted distance correlation analysis to
see how well distances in the low dimensional latent space translate to distances in the observed streamline space.
Multiple ConvVAE models were trained for 9 embedding dimensions N, ranging from 2 to 32. We randomly
sampled 300 streamlines from the training set, and computed their pairwise Euclidean distances between embed-
dings, as well as pairwise minimum direct flip (MDF) distance?® between the input streamlines. The correlation
between these two distance metrics was evaluated using the Spearman’s rank correlation coefficient, Pearson
correlation coefficient, and the coefficient of determination, R?, from linear regression. Since we expect that a
zero distance in the latent space should correspond to zero distance in the streamline space, linear regression was
fitted without an intercept. Repeating this correlation analysis for nine IV, values, we plotted all three metrics
to pick the maximum or elbow points N, as the best latent dimension and used its corresponding model in
subsequent tasks.

Streamline Space Latent Space Mantel Test
Data Distance Metric Data Distance Metric Correlation r,, p-value
Centroid(X (b)) MDF Distance  Centroid(Z(b))  Euclidean Distance 0.98 0.01
X (b) BMD Distance Z(b) Wasserstein Distance 0.84 0.01

Table 1. Results for bundle distance correlation analysis between bundles in the streamline space and embeddings in the
latent space.

To further understand how well ConvVAE preserves global structure - which is a significant challenge for other
dimension reduction methods such as t-SNE and UMAP - we conducted similar distance correlation analysis at
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the bundle level, using the ConvVAE model with embedding dimension of N/ for a randomly selected training
subject. Streamlines in bundle b are denoted by X (b) for b = 1,2,...30, and embeddings corresponding to each
bundle are denoted Z(b) for b = 1,2,...30. We used the same metrics to calculate pairwise inter-bundle centroid
distances - MDF distance for streamlines bundle centroids Centroid(X (b)) calculated using QuickBundles,?¢
and Euclidean distance for embedding centroids Centroid(Z(b)) corresponding to bundle labels. We extend
single centroid streamline analysis to bundles, using Bundle-based Minimum Distance (BMD)?7 for inter-bundle
distances between X (b), and Wasserstein distance®® for inter-bundle embedding distances between Z(b). The
Mantel test?” was used to compute correlation between pairwise distance matrices, see Table 1.
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Figure 3. Plot of Pearson r, Spearman r and R? of line fit to evaluate metric preservation, in different models trained
with 9 values of N,. The embedding of dimension 6 preserves distances optimally; Zhang et al.’° provides a theoretical
analysis of optimal dimensions for discriminative classification with linear embeddings, in terms of the spectrum of the
projection matrix, but in the ConvVAE case, this will depend on the number of bundles and empirical aspects of how
they cluster.

2.4 Anomaly Detection

Autoencoder-based approaches have been used in unsupervised anomaly detection for medical images.?"'3? The
generative nature of the ConvVAE makes it possible to perform inference on new data, and any point in the
smooth latent space can generate meaningful decodings instead of only minimizing reconstruction loss. In
the context of anomaly detection when incoming data can have high variability and project to points on the
latent space far from those of the training data, this quality of ConvVAE allows us to use the decoded output for
outlier rejection and denoising. For this reason, ConvVAE may be less sensitive to outliers when the tractography
generated is less than ideal.

To demonstrate the use of our ConvVAE model in group analysis for AD, we conducted an anomaly detection
analysis between control, MCI and AD subjects at the bundle level. Since the ConvVAE was trained on bundle
data from healthy control subjects, we expect its latent space to encode their relevant structural features, and the
discrepancy between the reconstruction and the input (i.e., the reconstruction error) when the model is applied
to new subjects can be used as a metric to flag anomalies. Chamberland et al.3® used autoencoders trained on
dMRI microstructural features, and derived anomaly scores for individuals using the mean absolute error (MAE)
between the input and reconstructed features.

Here we calculate MAE scores per bundle for all subjects excluding those used for training (CN:77, MCI:44,
AD:10) and control for age and sex effect using linear regression.>®> We stress that in this application, we do not
aim to detect microstructural differences related to disease, but deviations in fiber tract geometry, and geometric
distortions that may arise due to brain atrophy. Group MAE scores are calculated using a weighted average
from individual MAE scores. Two-tailed independent sample t-tests assuming equal variance were performed at
a = 0.05 between control and MCI (CN-MCI), and control and AD (CN-AD) groups. The Benjamini-Hochberg
false discovery rate (FDR) correction was applied to adjust for multiple comparisons for all tracts. To further
understand the group structural differences along each bundle, we calculated MAE of 100 segments along the
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length of the bundles per subject. The segments or assignment maps along the length of the bundles are computed
using BUAN.? We then regress the mean MAE across all segments on age and sex using linear regression. For
the tracts that were significant in either of the previous CN-MCI and AD-MCI comparisons, two-tailed t-tests
with FDR correction were also performed at each segment si, so,...s100 along the tract.

3. RESULTS
3.1 Embeddings Evaluation

To evaluate the effect of embedding dimensions on the latent space, we plot distance correlation from 300
subsamples with Euclidean embedding distances on the z-axis and streamline MDF distances on the y-axis, for
embeddings of dimension N, = 2,6, 8,16, see Figure 2. A linear fit with zero intercept is plotted in red dashed
line, and the Spearman 7, Pearson r and R? are indicated in the legend. We can see from plot N, = 2 that
the distance relationship doesn’t follow a linear relationship as reflected by the poor R? score, where streamline
distances correspond to a smaller range of embedding distances than those at higher N,. As N, increases,
embedding distances are more strongly correlated with streamline distances and more closely follow a linear
relationship. Unlike N, = 6 and 8 however, the N, = 16 plot shows that zero streamline distances correspond to
non-zero embedding distances, resulting in low R? score. In Figure 3, we plot all three metrics against NV, for all
9 models, and found that the ConvVAE model with N, = 6 has the best distance correlation and R?, indicating
that streamline distances are best preserved at this dimension.

3.2 Bundle Distance Preservation

Pairwise Euclidean Distance of
Bundle Embedding Centroids

Pairwise MDF Distance of
Bundle Centroids

Pairwise Wasserstein Distance of
Bundle Embeddings

Pairwise BMD Distance of Bundles

1000 1500

75 100 0 500

0 2500 5000 7500 10000 25 50

Figure 4. Pairwise inter-bundle distance matrix of bun-
dles. BMD distances are calculated between (X (b)) and
Wasserstein distances are calculated between (Z(b)) for
b=1,2,..30.

Figure 5. Pairwise inter-bundle distance matrix of bun-
dle centroids. MDF distances are calculated between
Centroid(X (b)) and Euclidean distances are calculated be-
tween Centroid(Z(b)) for b= 1,2, ...30.

Using ConvVAE with N, = 6, we further conduct distance correlation analyses for both bundles and their
centroids to understand how bundle structural information is preserved in the latent space, as described in Section
2.3. The pairwise inter-bundle distance matrices are shown in Figure 4 and 5 respectively. The Mantel test (which
evaluates the correlation between two pairwise distance matrices) was applied to distance matrices between
bundles in the streamline and embedding spaces. For both bundles and centroids, this test was statistically
significant (p = 0.01), with strong correlation r,, = 0.84 and 0.98, as shown in Table 1. These results indicate
that, in addition to the strong correlation from sampled streamlines, inter-bundle distances are well preserved
in the ConvVAE latent space at the optimal embedding dimension of N, = 6.

3.3 Anomaly Detection

To detect anomalies in white matter bundles of participants with MCI and AD, we first conducted a group-wise
comparison using weighted average MAE scores calculated from bundle reconstruction after controlling for age
and sex. A bar plot of the difference between MAE scores per bundle per group for MCI and AD subjects and
those from CN subjects are shown in Figure 6, where the bundles with significant results from the two-tailed
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Figure 6. Bar plot of the difference of age and sex independent bundle MAE scores between MCI and AD subjects and
those from CN subjects. Significant result from the two-tailed independent sample t-tests after FDR correction are marked
with an asterisk (x). Full names of the bundles are indicated on the right y-axis.

independent sample ¢-tests are marked with an asterisk (). In AD subjects, we found significant results at
a = 0.5 after FDR correction in 6 bundles - the right middle longitudinal fasciculus (MdLF_R, p = 4.20 x 107°),
corpus callosum major (CC_ForcepsMajor, p = 4.85 x 107%), left extreme capsule (EMC_L, p = 8.74 x 107%),
left arcuate fasciculus (AF_L, p = 4.20 x 10~2), right optic radiation (OR_R, p = 9.2 x 1073), corpus callosum
minor (CC_ForcepsMinor, p = 0.01) and corpus callosum middle sector (CCMid, p = 0.04). None of the bundles
in MCI subjects showed detectable differences relative to those of CN subjects.

To more closely evaluate the anomaly profile along each bundle in AD subjects versus CN subjects, we
performed two-tailed independent sample ¢-tests with FDR correction on age and sex independent MAE scores
for each of the 100 segments along the 7 bundles that were significant in the above group-wise comparison.
The MdLF_R, CC_ForcepsMajor, AF_L, OR_R, CC_ForcepsMinor and CCMid tracts have at least one segment
with statistically significant difference. Their MAE scores with 95% confidence interval and FDR-corrected
—log,o(p) values are plotted along with the tract colored by significance in Figures 7 and 8. The OR-R,
MdLF_R and CC_ForcepsMajor tracts show high variation in the AD group compared to the CN and MCI
groups. Notably, all three corpus callosum tracts show significant differences between AD and CN groups along
the tracts, perhaps reflecting curvature differences due to ventricular dilation in dementia.?* The EMC_L tract,
while having significant group differences overall, shows no significant difference along-tract due to age and sex
effect. In the MdLF _R tract, segments 50-61 have the most pronounced group differences with FDR-corrected
p = 0.02. The positions with significant group differences are aligned with those of high MAE scores in the
MALF_R tract, whereas in other tracts, not all points with significant difference have high MAE scores. While
endpoints of tracts tend to have higher MAE scores due to greater inter-subject variation, MAE scores calculated
from the ConvVAE still allow us to conduct group-wise comparisons and detect tract positions with significant
differences.
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Figure 7. Segment-wise along-tract MAE scores after controlling for age and sex with 95% confidence intervals per
diagnostic group for the AL_L, OR_R and MdLF_R tracts and FDR-corrected — log,,(p) values plot from the 2-tailed
independent sample t-test between control and AD are shown. The bundles are plotted on the atlas dataset colored by
significance.

4. DISCUSSION

Unsupervised representation learning methods have shown promise in learning embeddings from large datasets
that enable downstream analysis, and lend themselves naturally to whole-brain tractography datasets with up
to a million streamlines per subject. Applications include anomaly detection in individuals or groups, denoising,
and quality control, as well as producing a more compact representation of the data for clustering and labeling.
In this work using ConvVAE to encode bundle streamlines, we found that higher latent space dimensions lead
to poorer distance preservation, potentially due to overfitting, while latent spaces of lower than 6 dimensions
discard too much of the information needed to reconstruct tracts and their relative distances. Since our input
data consists of bundle streamlines, we also designed inter-bundle distance evaluations to test whether global
distances are preserved, using modality specific distance metrics.

We utilized our ConvVAE model to detect structural anomalies in white matter tracts of MCI and AD
subjects. In the current formulation, structural anomalies are measured by the discrepancy between brains of
people diagnosed with AD and MCI and normal brains using MAE scores computed over segments along the
length of the tract. ConvVAE performs well for bundle reconstruction, preserving their shapes, orientations
and locations in the brain, so we expect structural anomalies to be detected by MAE which uses reconstructed
streamlines in its calculation. In addition to group analysis of bundles, the ConvVAE reconstructs streamlines,
allowing us to compute along-tract measures. This approach help tease out significant group differences in points
with high inter-subject variations inherent to many tractography methods.?”

One limitation of our method is that ConvVAE with 1D convolutional layers can only take in equal-length
inputs. Since not all streamlines have equal length, shorter streamlines are represented with more points, leading
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Figure 8. Segment-wise along-tract MAE scores after controlling for age and sex with 95% confidence intervals per
diagnostic group for the CC_ForcepsMajor, CCMid and CC_ForcepsMinor tracts and FDR-corrected —log;,(p) values
plot from the 2-tailed independent sample t-test between control and AD are shown. The bundles are plotted on the atlas

dataset colored by significance.

to bias against long streamlines which can affect downstream anomaly detection tasks. We plan in future work
to adjust for streamline length and sampling to further improve reconstruction while preserving the quality of
the embeddings. A second limitation is that our current work only flags geometric distortions along tracts and
could be extended to map group differences in microstructural parameters, such as fractional anisotropy (FA)
and mean diffusivity (MD) measures, which may be more sensitive to groups differences in MCI and AD.!3
Our framework could be extended in several ways. First, we plan to train the model on a larger cohort with
additional quality control on bundles, such as via the FiberNeat method.? Evidently, the spikes in along-tract
MAE in the OR.R tract (see Figure 7) are potentially due to outlier streamlines. Second, the current VAE
embedding model uses a standard multidimensional Gaussian to determine the log-likelihood of the training
data. Contrastive learning approaches, such as SimCLR>® and nearest-neighbor-based out-of-distribution based
method,?” could instead be used to encourage mappings that cluster specific fiber types together in the latent
space. In supervised embedding, labels (or numeric values) are leveraged so that similar points are closer together
than they otherwise would be, and contrastive learning or semantic embedding could be used to pull streamlines
from the same bundle together in the embedding space. This could allow direct multisubject registration and
labeling of the embeddings for population analyses of microstructural and geometric parameters. Finally, a
single VAE model for all tracts, used here, could be extended to a Gaussian mixture VAE?® to better capture
the hierarchical structure of the bundles.
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5. CONCLUSION

We propose a robust framework using Convolutional Variational Autoencoder (ConvVAE) to learn low-dimensional
embeddings from data-intensive tractography data. We investigate the effect of latent space dimension on the
quality of embeddings, and found that streamline distances as well as inter-bundle distances are strongly cor-
related with embedding distances at N, = 6. The generative model allows for inference on new data, and the
smooth ConvVAE latent space enables meaningful decodings that can be used for downstream tasks. We trained
our ConvVAE on data from healthy control subjects to detect structural anomalies in white matter tracts in
patients with Alzheimer’s disease. The flexibility of ConvVAE facilitates group analysis of bundle difference. We
identified 6 tracts with statistically significant group differences and specific locations along the length of the
tracts with anomalies after controlling for age and sex effect despite large inter-subject variations. Given the
increasing scale of neuroimaging studies and numerous tractography methods, our framework offers a robust,
unsupervised method to study structural features of white matter tracts and conduct population analyses.
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