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Abstract

Recent advancements in single-cell technologies allow characterization of exper-
imental perturbations at single-cell resolution. While methods have been devel-
oped to analyze data from such experiments, the application of a strict causal
framework has not yet been explored for the inference of treatment effects at the
single-cell level. In this work, we present a causal inference based approach to
single-cell perturbation analysis, termed CINEMA-OT (Causal INdependent Ef-
fect Module Attribution + Optimal Transport). CINEMA-OT separates confound-
ing sources of variation from perturbation effects to obtain an optimal transport
matching that reflects counterfactual cell pairs. These cell pairs represent causal
perturbation responses permitting a number of novel analyses, such as individual
treatment effect analysis, response clustering, attribution analysis, and synergy
analysis. We benchmark CINEMA-OT on an array of treatment effect estimation
tasks for several simulated and real datasets and show that it outperforms other
single-cell perturbation analysis methods. Finally, we perform CINEMA-OT anal-
ysis of two newly-generated datasets: (1) rhinovirus-infected airway organoids,
and (2) combinatorial cytokine stimulation of immune cells. Using CINEMA-
OT, we discover diverging treatment responses and their associated cellular sub-
populations. By applying CINEMA-OT to combinatorial experimental designs,
we infer the specific cell-gene programs driving syngergistic responses.

1 Introduction

Cellular responses to environmental signals are a fundamental component of biological functioning,
playing an integral role in both homeostasis and disease [1]. For decades, controlled perturbation
experiments have been used to reveal the underlying mechanisms of biological processes. Recent
advances in single-cell technologies allow complex experiments measuring high dimensional pheno-
types at high throughput under diverse stimulation conditions [2–8]. However, deriving biological
insights from these experiments remains a challenge.

For the analysis of single-cell perturbation data, several approaches have been developed, which can
be categorized as follows:
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1. Differential expression methods test for statistically significant differences in gene expres-
sion between cell populations. [9–13]

2. Differential abundance methods formulate the quantification problem as differential abun-
dance testing in a continuous cellular state manifold. [14–17]

3. Perturbation analysis methods aim to reveal underlying biological processes by modeling
perturbation in a latent space with either linear models or neural networks. [3–7, 18–21]

While techniques to characterize the effects of perturbations by averaging over populations have
been extensively used in the analysis of single-cell data, methods allowing for causal single-cell
perturbation analysis are lacking. Causal inference is a field of active research aiming to solve the
general problem of response quantification [22]. In causal inference, perturbations are considered
treatments and the general problem of modeling response to perturbation is known as the treatment
effect estimation problem. In subsequent portions of this manuscript, we will borrow from the ter-
minology of causal inference, referring to perturbations and treatments, as well as response and
treatment effect, interchangeably. Ideal causal methods allow for the direct characterization of un-
derlying confounding variation, which is not accounted for in any of the existing single-cell analysis
methods.

We consider confounding variation to be causal of differential response, as well as differential un-
derlying phenotype [23]. In the case of scRNA-seq experiments, sources of variation such cell cycle
stage, microenvironment, and pre-treatment chromatin accessibility may all act as confounding fac-
tors when performing treatment effect estimation [18]. Collectively, confounding factors can be
thought of as a cell’s context that may both influence a cell’s underlying gene expression profile, and
condition treatment-induced gene signatures. If confounders are incorrectly identified, counterfac-
tual cell pairs will be inappropriately matched, and treatment effects cannot be correctly estimated.

One well-established confounding factor that may affect treatment response is cell type. For exam-
ple, widely used nucleoside analog chemotherapeutics such as 5-fluorouracil (5-FU) act selectively
on cells in the DNA synthesis phase of the cell cycle, killing cancer cells while minimizing effects
on healthy tissue [24]. Some mutations may also drive differential response to a stimulation, as is
seen with some tumors in response to TGF-β [25]. Confounders may be latent, such as different
exposures of cells to a drug, which may have different effects at different concentrations within each
individual cell. Thus, our framework must be able to account for all of these types of confounders.

Our solution is to introduce a causal framework permitting explorations of perturbation effects and
how they may richly interact with confounder states. By explicitly modeling the diversity of cellular
responses to perturbations across confounding factors without a requirement to pre-identify cell pop-
ulations of interest, we may identify cell state-conditioned transcriptional changes driving pathology
or pharmacologic response to perturbation.

In this paper, we present CINEMA-OT (Causal INdependent Effect Module Attribution + Optimal
Transport), which applies independent component analysis (ICA) and filtering based on a functional
dependence statistic to identify confounding factors and treatment-associated factors. CINEMA-OT
then applies weighted optimal transport (OT) to achieve causal individual matching. The algorithm
is based on a causal inference framework for modeling confounding signals and conditional pertur-
bation effects at the single-cell level, relying on two key assumptions. We show that the model is
uniquely indentifiable via the theory of ICA. The computed causal cell matching enables a multitude
of novel downstream analyses, including but not limited to: individual treatment effect estimation,
treatment synergy analysis, sub-cluster level biological process enrichment analysis, and attribution
of perturbation effects.

We demonstrate the power of CINEMA-OT by benchmarking it on several simulated and real
datasets and comparing it to widely used single-cell level perturbation analysis methods. We then
perform CINEMA-OT analyses of two newly-generated datasets. In the first, we examined the ef-
fects of virus infection and cigarette smoke on innate immune responses in airway organoids. In the
second, we performed combinatorial cytokine stimulation of ex vivo peripheral blood mononuclear
cells in order to characterize how cytokines act in concert to shape immune responses.
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Figure 1: A causal framework for single-cell level perturbation effect analysis. A. In single-cell experiments,
cells are separated by both treatment batches and latent cell states. Latent states of cells have confounding ef-
fects on the effects of perturbation. Upon successfully separating confounding variation and response variation
in data, we can identify confounding signals for each cells and draw counterfactual pairs across cells to compute
causal perturbation effects. B. After characterizing the differential response matrices at a single-cell level, we
can subcluster cells by treatment responses. These responses may be further characterized by other tools, such
as gene set enrichment analysis. C. We are able to quantify the synergy effect in combinatorial perturbations
by evaluating the dissimilarity of extrapolated phenotypes and true combinatorially perturbed phenotypes. D.
CINEMA-OT can attribute divergent treatment effects to either explicit confounders, or latent confounders by
cluster-wise coarse-graining of the matching matrix.

2 Results

2.1 Confounder signal matching via CINEMA-OT

To perform causal single-cell perturbation effect inference, we have adopted the potential outcome
causal framework [22, 26]. Ideally, to generate causal assertions about the effect of a perturbation
on the transcriptional state of a given cell, we would like to measure the same cell both before and
after the perturbation is applied. However, the process of obtaining transcript measurements from
single cells is destructive, and an individual cell may only be measured once. In fact, to the best of
our knowledge, all high throughput genomic measurement technologies are destructive. A solution
would be to infer counterfactual cell pairs, which are inferred, causally-linked pairs—predictions of
what a cell in one condition would look like in another condition. The potential outcome framework
formalizes this concept by establishing a statistical model that describes outcome variables as a
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function of confounding factors and treatment-associated factors. In our setting, to infer single-
cell treatment effects, this would translate to distinguishing the effects of biological variation and
treatment on treatment-associated genes.

In the potential outcome framework, the key difficulty for general unsupervised causal inference is
the mixing of confounders with outcomes. In the field of causal inference, such a case is described
as learning with both interventions and latent confounding, which remains an active area of research
[27]. In our case, a gene can contribute to confounding variation as well as treatment-associated
variation. To apply the tools of classical causal inference, confounding factors must first be distin-
guished from treatment-associated factors. Notably, confounding factors and treatment-associated
factors may be treated as a low dimensional function of the gene space.

To unmix confounding effects and treatment-associated effects, we propose two sufficient assump-
tions, which can be potentially relaxed:

Assumption 1: (Independent sources and noise). Confounding factors and treatment
events are pairwise independent random variables.

This assumption relies on treated and untreated cells being drawn from the same un-
derlying set of cells. In practice, this is a central part of most single-cell experimental
designs.

Assumption 2: (Linearity of source signal combinations). Confounding gene signatures
can be modeled as a linear combination of confounding sources plus an independent noise
term. The outcome gene signatures can be modeled as arbitrary functions of confounding
factors and treatment events plus an independent noise term.

While modeling total expression as a linear combination of relevant factors may be un-
able to capture complex nonlinear relationships between confounding variables, this
assumption is necessary in our case, as the nonlinear source separation problem is
generally not identifiable. Moreover, we use the confounders as a intermediate metric
to construct a matching across similar cells, therefore full characterization of nonlin-
ear dependency is not necessary in our method. Meanwhile, our assumption allows
nonlinear interactions between confounders and treatments, thereby permitting mod-
eling of general non-linear treatment effects, including confounder-specific treatment
effects.

Given these assumptions, we can strictly prove that the identification of confounding factors is equiv-
alent to solving the blind source separation problem (BSS), which can be done by the ICA algorithm
(see Methods for the proof).

After ICA transformation, The gene count matrix is decomposed into a linear combination of con-
founding signals, treatment-associated signals, and independent noise signals. In practice, we filter
the noise signal by PCA dimensionality reduction prior to ICA. To identify treatment signals, we use
a non-parametric distribution-free test based on Chatterjee’s coefficient for functional dependence
between each identified signal and the ground truth treatment signal [28] (Figure 2A).

Finally, with the identified confounding factors, we are able to apply a causal matching procedure,
which aims to match cells according to their coordinates in the embedded confounder space. In
order to match cells, k-nearest neighbor (knn) matching may be first considered because of its wide
use in scRNA-seq analysis. However, in practice, mutual knn matching and other local matching
techniques such as ϵ-NN may collapse matches at the boundaries of separated cell clusters, reducing
their robustness to outliers (Figure 2B). By contrast, optimal transport is a mass-preserving matching
procedure that does not suffer from this drawback.

While solving the optimal transport problem is often prohibitively resource-intensive for large-scale
biological data, CINEMA-OT considers the tractable case of entropic regularization [29, 30]. Op-
timal transport with entropic regularization can be formulated as a convex optimization problem
which can be solved efficiently using the alternating direction method (Sinkhorn-Knopp algorithm).
Moreover, recent works have shown asymptotic properties of the entropy regularized optimal trans-
port map for causal matching [31]. Entropy regularized optimal transport yields a probabilistic
one-to-many matching for each point between two discrete distributions. The mapping generated in
this way is smooth, and robust to outliers [30]. In CINEMA-OT, to achieve a mapping between cells
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across treatment conditions that is not distorted by treatment effects, we perform optimal transport
in the confounder space.

2.2 Differential abundance correction via causal reweighting

A treatment may change the distribution of cell densities, e.g. cells may die or proliferate in response
to some perturbation. Thus, we may have an additional factor of differential confounder abundance
across experimentally perturbed datasets. This factor can come from either real biological effects
or batch effects. The differential abundance confounder can affect the performance of CINEMA-
OT since in this case the underlying confounders are no longer independent of the treatment event
and assumption (1) is violated. Indeed, our experiments have shown that while CINEMA-OT can
tolerate moderate levels of differential abundance (Extended Figure 2), it can fail when high levels
of differential abundance are present (Extended Figure 3).

In order to correct for the effects caused by differential abundance, we have implemented an iter-
ative variant of CINEMA-OT. In each iteration step, we estimate overlap weights using likelihood
estimation of the treatment events (for details, see Methods) (Figure 2C). By balancing the local
distribution of cells in the confounder space using these weights, we can correctly match cells.

We note that this weighted version of CINEMA-OT should be used only when required. As the
weighted version of CINEMA-OT relaxes assumption 1 in our framework, the identifiability of our
model can no longer be guaranteed, which may reduce its ability to identify certain classes of cellular
responses. For example, aligning cell types with differential abundance across treatment conditions
eliminates the possibility that one cell type can convert to another cell type upon treatment. In such
a case, cell type can be a treatment-induced factor instead of a confounder. Accounting for this,
in order to integrate prior biological knowledge, CINEMA-OT also provides an option to assign
weights according to user-provided labels (e.g. cell-types). In this case, CINEMA-OT can assign
weights using confounder labels instead of automatically balancing over all possible covariates.

2.3 Analysis following CINEMA-OT

With the matched counterfactual cell pairs computed by CINEMA-OT, we are able to obtain two key
outputs: (1) the matching correspondence matrix across treatment conditions, and (2) the individual
treatment effect (ITE) for each cell with its counterfactual pair across treatments (Figure 1A).

Individual treatment effect matrices are gene by cell matrices which can be clustered and visualized
by existing scRNA-seq computational pipelines. By clustering over an ITE matrix, we can identify
sub-clusters within cell types with heterogeneous response to treatments. We may perform statistical
analysis to identify the significantly affected genes and identify their coordinated biological function
by gene set enrichment analysis (Figure 1B).

In addition, in a combinatorial perturbation experiment, we are able to define a synergy effect metric
by comparing the predicted effect of combining multiple treatments with the observed effect of com-
bined treatment (Figure 1C). We define a synergy metric by estimating the difference between the
true sample under combinatorial treatment (A+B) and the predicted sample, by adding the effects of
treatment A and treatment B, thus assuming purely linear, non-interactive effects. If no difference is
measured, we may conclude that there are no nonlinear or interaction effects between the treatments.
If non-zero synergy is present, this points to some interaction between treatments A and B. Synergy
is computed for every cell-gene pair, resulting in a matrix of equivalent form to expression or ITE
matrices - a unique feature of CINEMA-OT.

Another important task in perturbation effect analysis is attribution of treatment effects. Differential
response can be driven by either differences in explicit confounding factors or latent factors, such
as treatment heterogeneity. Because CINEMA-OT provides a single-cell level matching as one
output, the task can be solved by coarse-graining the matching matrix. Responses that cluster both in
response as well as confounder space may be attributed to explicit confounding factors. Conversely,
responses that cluster well in the response space but do not demonstrate clustering in the confounder
space may be attributed to latent factors (Figure 1D). Such an analysis can be performed either at
the cell type level or at the sub-cluster level to reveal underlying heterogeneity. (see Methods for
additional details)
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Figure 2: Overview of the CINEMA-OT framework. A. scRNA-seq count data is first decomposed into
confounder variation and treatment-associated variation using ICA. Cells are then matched across treatment
conditions by entropy-regularized optimal transport in the confounder space to generate a causal matching plan.
The smooth matching map can then be used to estimate individual treatment effects. B. Illustration of the prop-
erties of casual OT matching compared to other common matching schemes. Global matching may have poor
performance when there are confounder-specific heterogenous responses to treatment. Local matching may be
susceptible to boundary effects. By contrast, CINEMA-OT balances these concerns by enforcing preservation
of distributional mass. C. Differential abundance effects may cause spurious matching by CINEMA-OT. When
such effects are present, iterative reweighting may be used to balance cell populations and learn true underlying
confounding signals.

2.4 Validation of CINEMA-OT using simulated ground truth datasets

There are a number of existing methods that perform single-cell level perturbation effect analysis
[3–7, 18–20, 32]. Extended figure 1 comprises a summary table of currently available methods and
their capabilities. To investigate how CINEMA-OT differs from these methods we perform extensive
benchmarking on a number of tasks.
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We systematically compare methods including Mixscape, Harmony-Mixscape, classical optimal
transport, to CINEMA-OT (with and without abundance reweighting). Our comparison is based
on three categories of metrics:

1. Direct validation of individual treatment effects. For data sets with a ground truth, we
can directly compare the estimated individual treatment effect against the true individual
treatment effect for each cell. We note that these metrics can only be performed on data
sets with a ground truth, such as our simulated data. These metrics include: ITE Spearman
and ITE Pearson correlation.

2. Cell distribution equalization after treatment effect removal. In data sets without ground
truth, we can measure the validity of treatment effects by examining cell population distri-
butions after treatment effect removal. After removal, these distributions should be equiva-
lent, subject to random noise. These metrics include average silhouette width (ASW), PC
regression score (PCR), and graph connectivity.

3. Biological effect preservation after treatment effect removal. While removal of treatment
effects should render cell distributions equivalent with and without treatment, biologically
meaningful information (such as cell type and cell trajectories) should be preserved. These
metrics include diffusion map-based nonparametric state coefficients and trajectory coeffi-
cients.

To obtain data with ground truth, we simulate data using the R package Splatter and Python pack-
age Scsim. Splatter is a popular package [33] for single-cell in silico data generation, and Scsim
is a python implementation of the Splatter framework with additional support for simulating gene
regulation programs as trajectories. [34] The genes in our simulated data are separated into three
subsets, corresponding to the underlying trajectory, cell types, and treatment-associated genes re-
spectively. Both the trajectories and cell type for each cell have a random signal applied to the
treatment-associated genes to account for the possible confounder effects on treatment-associated
genes (Figure 3B).

We have tested four scenarios: I, II: The confounders have an additive effect on treatment-associated
genes, with or without confounder imbalance; III: the treatment interacts with confounders, creating
confounder-specific treatment effects; IV: heterogeneity of treatment effects are caused by latent
factors and are not associated with explicit confounders. For each scenario, we simulate 15 datasets.

A comparison/evaluation of different methods applied to these data shows that CINEMA-OT best
estimates the individual level treatment effect in all settings considered. Moreover, CINEMA-OT
performs best in removing treatment-associated effects in matching and preserves trajectories better
than other methods while achieving comparable performance in cell-type preservation in the first
three scenarios (Figure 3C). In the fourth scenario, we examine latent factor-specific treatment ef-
fects. Here, explicit confounder signals are uncorrelated with the treatment effects. We expect that
in this scenario, the state and trajectory coefficients will be higher when treatment effects are incor-
rectly attributed to confounders. We see this with Mixscape, Harmony/Mixscape and classical OT
(Figure 3C). Taken together, these data show that CINEMA-OT performs equivalent to or better than
other methods in all tested scenarios.
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Figure 3: Benchmarking of CINEMA-OT against other methods for single-cell perturbation analysis. A. We
simulate binary perturbation data with confounding effects using Splatter and scSim for four scenarios. We
evaluate CINEMA-OT against other methods using three classes of metrics: (I) direct correlation of ITE with
ground truth, (II) mixing of samples in confounder space (III) preservation of confounder signals including clus-
ters and trajectories. B. Quantification of different validation metrics on synthetic data for CINEMA-OT and
comparable methods. C. CINEMA-OT validation on HDAC-inhibitor perturbed data. Exogenous metabolites
serve as confounding factors affecting HDAC inhibitor perturbation. Methods are evaluated by distributional
matching across treatments and confounding factor preservation respectively. D. Results of the evaluation of
CINEMA-OT in the A549 and MCF7 cell lines perturbed by an HDAC inhibitor. CINEMA-OT demonstrates
superior performance when compared to other methods shown by aggregated rank comparisons. ITE: individ-
ual treatment effect; ASW: average silhouette width; PCR: principal components regression score; State_coef:
diffusion map-based state coefficient; Trajectory_coef: diffusion map-based trajectory coefficient. Stars indi-
cate statistical significance as follows: * (p < 0.1); ** (p < 0.01); *** (p < 0.001).

2.5 Validation of CINEMA-OT on real data

In order to evaluate the performance of CINEMA-OT on real scRNA-seq data, we use the sci-Plex4
single-cell drug perturbation dataset [8], which measures the response of the A549 and MCF7 cell
lines to perturbation with 17 drugs. In real scRNA-seq data, we do not know the ground truth per-
turbation effects or ground truth confounders at the single-cell level as in simulated data. Therefore,
only the unsupervised metrics for perturbation effect elimination can be still adopted precisely in
this case.
Here we investigate the response to perturbation with Pracinostat, a histone deacytelase (HDAC)
inhibitor, with the combinatorial induction of exogenous acetate, citrate, and pyruvate. HDAC in-
hibitors act as antitumoral agents through antagonizing the pro-transcriptional effects of histone
acetylation and silencing the expression of oncogenic factors through chromatin remodeling [35].
As HDAC inhibitors act partly through the deprivation of Ac-CoA, we expect that the relative abun-
dance of Ac-CoA precursors within a cell would modulate the effect of HDAC inhibitor exposure,
and Ac-CoA precursors can be considered confounders [8] (Figure 3D). Particularly, this experiment
coincides with the third scenario in the previous benchmark with synthetic data. Upon examination,
we find that CINEMA-OT can both match the distributions across treatment conditions and preserve
the confounding labels well, giving the best overall performance among the tested methods (Figure
3E, see Methods for additional details).
Cell cycle stage is a well studied confounding covariate for experimental perturbation effects. How-
ever, in Sci-plex data, we cannot evaluate the accuracy of cell cycle stage preservation since HDAC
inhibition induces a G2/M cell cycle arrest [8]. As a result, to evaluate cell cycle preservation for
the different methods, we quantify cell cycle information preservation after matching cells across
cell lines. In order to get the cell cycle signal, we use the Tricycle package [36], which returns a
vector with each entry value between 0 and 2π, representing a cell’s phase in the cell cycle. We
visualize cell cycle information preservation after matching cells across cell lines. CINEMA-OT is
the only method that successfully matched the cells between conditions while largely preserving the
cell cycle information (Extended Figure 4).

2.6 CINEMA-OT identifies heterogeneous response patterns and synergistic effects of
cigarette smoke exposure in Rhinovirus infection

In order to demonstrate CINEMA-OT’s ability to perform single-cell level experimental perturbation
analysis, we have applied CINEMA-OT to newly-collected scRNA-seq data of rhinovirus infection
in primary human airway organoids [37] (Figure 4A). The experiment comprises 4 conditions, corre-
sponding to all combinations of cigarette smoke extract (CSE) and rhinovirus (RV) infection (mock,
CSE, RV, RVCSE). The goal of this study is to probe cellular defense responses to viral infection
from each airway epithelial cell type in the presence or absence of an environmental insult, for exam-
ple cigarette smoke. Viral infection occurred only in a small percentage of cells but caused global
expression of interferon stimulated genes (ISGs), both with or without cigarette smoke exposure.
Previous studies only considered gene expression at the cluster level [38] and are unable to detect
possibly heterogenous response patterns within clusters, which may be of biological and clinical
relevance to the treatment of respiratory virus infections.
We first performed CINEMA-OT analysis for the RV and mock conditions (Figure 4B). We per-
formed individual treatment effect estimation to obtain a per-cell response matrix, which we visual-
ized and clustered (Figure 4C). By analyzing these response-based clusters, we found distinguish-
able sub-clusters in ciliated cells with different induction levels of ISGs (Figure 4D). The result is
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further supported by visualization of typical ISGs at the sub-cluster level, including BST2, MX1,
IFITM3 and others, which are known to have direct anti-viral functions [39, 40] (Figure 4E). This
finding highlights the heterogeneous response patterns within a cell type and the need for sub-cluster
level analysis of data in order to reveal such variations.
To further attribute different response patterns to either explicit or latent confounding variation, we
performed coarse-grained analysis of the optimal transport matching matrix (Figure 4F). This ap-
proach reveals that two branches of ciliated cells in the mock condition drive the difference levels
of interferon responses in the infected condition across sub-populations (Figure 4G). The identi-
fied patterns may correspond to unknown subpopulations with defense specializations or different
susceptibilities to virus that may be important for further investigation.
After analysis of the effect of smoking and viral infection in isolation, synergy between these two
insults was assessed by comparing the difference between infection with and without cigarette smoke
exposure. Our analysis highlights the synergistic response of ISGs in the perturbation. ISGs are
induced to a higher expression level in the virus infected organoid without exposure to cigarette
smoke, compared to the level in the infected organoid exposed to cigarette smoke (Figure 4H). The
result is consistent with previous works that use traditional approaches to identify relationships
between cigarette smoke exposure and immune response to virus infection, which have shown that
airway epithelial cells have diminished innate immunity response in smokers [41–44].
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Figure 4: CINEMA-OT identifies heterogeneous defense response of human airway epithelial cells to rhi-
novirus and cigarette smoke extract. A. Overview of experimental design. Differentiated airway epithelial
organoids are challenged with mock (control) or rhinovirus 1A infection (RV), with or without cigarette smoke
extract (CSE) exposure. B. UMAP projection of expression data labeled by perturbations and cell types. C.
UMAP projection of the individual treatment effect matrix obtained by CINEMA-OT from the RV response
without CSE exposure, colored by response cluster and cell type. D. Gene set enrichment analysis of response
clusters identified by CINEMA-OT. E. Violin plots of several representative interferon stimulated genes (ISGs)
in differential response clusters. F. Coarse-grained matching matrix visualization. The horizontal axis repre-
sents clusters in the control condition. The vertical axis represents differential response clusters. G. UMAP
projection of control condition expression data, colored by cell types and cell subclusters. Two branches of
ciliated cells with correspondence to different levels of immune responses are highlighted. H. Violin plots of
representative ISGs where CINEMA-OT identifies synergy between CSE exposure and rhinovirus infection.
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2.7 CINEMA-OT reveals principles of innate immune response modulation from
combinatorial interferon stimulation

Type I, type II, and type III interferons (IFNs) act as central regulators of immune responses during
intracellular pathogen infection, cancer and in auto-immunity. However, despite the identification
and adoption within the literature of a core set of interferon-stimulated genes (ISGs), IFN responses
can vary widely by cell type, by individual, by IFN stimulus type, by chronicity of exposure, and
by combination with signals delivered by other cytokines. In other words, the interferon response is
highly context dependent. This complexity, heterogeneity and context-specificity of IFN signaling
can lead to counter-intuitive results. For example, IFNg is proposed to play both stimulatory and
suppressive roles in cancer, and type I IFNs are used both as an immunosuppressant to treat multiple
sclerosis and as immunostimulatory adjuvant treatments for cancer (e.g. melanoma) and chronic
viral infection (e.g. HCV). To model the complexity of IFN signaling, we conducted acute (2 days)
and chronic (7 days) stimulations of peripheral blood immune cells from multiple healthy donors
with type I, type II and type III IFNs, separately as well as in combination with other cytokines such
as TNFa and IL-6. Using CINEMA-OT, we sought to map the determinants of IFN response by
IFN type, timing, cell type, and combination with other cytokines that can be used to decode IFN
effects on immune cells in diverse biological contexts. Specifically, we sought to distinguish the
effects of type I, type II, and type III IFN from one another and to identify synergistic effects of
IFN combinations with other cytokines. In the following analyses we focus on a single donor as an
illustration.
In order to understand the underlying structure of PBMC cellular response to interferon stimulation,
we use CINEMA-OT to match treatment conditions to the untreated (control) condition. This anal-
ysis highlights the underlying hierarchical structure of cellular responses. Visual inspection of the
UMAP projections of the response space show that in acute stimulation type I, type II, and type III
IFN responses cluster separately. IFNb in combination with IFNg also occupies its own cluster after
2 days of stimulation. At day 7, responses to type I, type II, and type III interferon alone remain
distinct from each other, but notably, type I IFN in combination with type II IFN (IFNb + IFNg) ap-
pears to co-cluster with type I IFN responses, suggesting a modulatory effect of chronic stimulation
on this combination of signals (Figure 5C).
Next, we focus on analyzing the treatment effects of IFNb. CINEMA-OT analysis highlights the
induction of coordinated immune responses across cell types as well as cell-type specific responses.
For example, at day 2, despite a global change in ISGs in most cell types, a sub-cluster of monocytes
demonstrates a unique program characterized by decreased APOBEC3A and MARCKS expression
compared to other monocytes. Further CINEMA-OT attribution analysis suggests this sub-cluster
corresponds to a specific sub-cluster of monocytes marked by increased IDO1 expression prior to
treatment (Figure 5 D-F).
To estimate the synergistic effects of combinatorial cytokine stimulations at day 2, we used
CINEMA-OT to calculate the synergy score per gene by cell pair. We next performed gene syn-
ergy score analysis by computing the gene-wise synergy score (See Methods). The gene synergy
score analysis identified genes that were synergistically induced by each combinatorial perturbation
(Figure 5G), including ACP5, APOC1, APOE, CCL3L1, CD9, GPNMB, TREM2, APOBEC3A,
CCL8, IL1RN, CHI3L1, CXCL9, and CCL7.
Based on selected significant synergy genes, we are able to summarize the cell wise synergy effect
by taking the norm over selected synergy genes. We have found that monocytes exhibit the most sig-
nificant synergistic regulation compared with other cell types (Figure 5H). In monocytes, a subset of
significant synergistic genes were expressed in the control condition and were not expressed in con-
ditions with IFNb or IFNg present, including APOC1, APOE, CCL3L1, CD9, GPNMB, TREM2,
and ACP5 (Figure 5I). APOBEC3A, CCL8 and IL1RN were expressed at a higher level in combi-
natorial treatment conditions, while CHI3L1, CXCL9, and CCL7 have specific expression that was
induced by only a minority of combinations (Figure 5I). Finally, we visualize the UMAP projection
of the synergy matrix while highlighting cell-wise overall synergy effect and several specific syner-
gistic genes (Figure 5I). Our analysis of the data with CINEMA-OT sheds light on the underlying
biological regulation and mechanisms of the heterogeneous cellular response to interferon stimu-
lation. Particularly, the synergy analysis by CINEMA-OT provides important insights for future
investigation.
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Figure 5: CINEMA-OT reveals combinatorial mechanics of acute and chronic cytokine stimulation. A. Illus-
tration of experimental design. B. UMAP projection of expression data colored by samples, perturbations, and
cell types. In sample labels, H refers to the donor number, and D refers to the number of days of stimulation. C.
UMAP projection of the individual treatment effect matrices from CINEMA-OT across acute stimulation (day
2) and chronic stimulation (day 7) for donor 3. Projections are colored by cytokine stimulation and cell type.
D. UMAP projection of expression data after acute (2 day) stimulation with interferon beta in donor 3, colored
by perturbation and cell types. E. UMAP projection of individual treatment effects identified by CINEMA-OT
after acute stimulation with interferon beta, colored by response cluster and cell type. F. UMAP projection of
the expression data highlighting selected genes showing markers of cellular activation and inhibition. G. Gene
synergy score distribution combining IFNb + TNFa, IFNb + IFNg, and IFNb+IL-6 combinatorial treatment for
donor 3 after 2 days of stimulation. H. Violin plot of the cell synergy scores per cell type computed over only
statistically significantly synergistic genes. I. Stacked violin plot showing the expression of significantly syn-
ergistic genes per stimulation condition in monocytes for donor 3. J. UMAP projection of the synergy matrix
from CINEMA-OT across three conditions. Dot size indicates cell synergy scores which have been normalized
to the minimum and maximum values for all conditions visualized. APOE and CCL8 are selected as represen-
tatives to show two modes of synergistic responses in monocytes.
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3 Discussion

With fast developing high-throughput screening technologies and rising numbers of datasets, single-
cell level experimental effect analysis is becoming a critically important task. Current analytical
approaches aiming to tackle this task suffer from multiple fundamental challenges. For example,
differential abundance methods estimate the local likelihood of treatment variables in order to reveal
perturbation effects but cannot integrate confounder signals and cannot offer direction on how the
perturbation can shift the gene expression distribution. Meanwhile, approaches using local matching
such as k-nearest neighbors are vulnerable to outliers or subclusters caused by latent confounders,
such as perturbation escape. More complex methods that use a large parameter space may suffer
from overfitting and uninterpretability.
With CINEMA-OT, we are able to overcome the aforementioned challenges with a causal framework
and our corresponding scalable and accurate algorithm. In this study, we applied CINEMA-OT to
deconvolve confounder effects due to exogenous addition of metabolites (Figure 3), cigarette smoke
exposure and viral infection (Figure 4) and combinatorial cytokine treatments of differing durations
(Figure 5). In each case we were able to separate confounder and treatment effects as well as identify
synergies among combinatorial treatment effects.
Although examples in the text mainly emphasize experiments with binary treatment conditions (e.g.
treated or untreated), CINEMA-OT may also function with continuous perturbations (e.g. contin-
uous treatment time or graded treatment dose). In fact, by using a functional dependence metric
instead of a binary statistical test, causal matching in CINEMA-OT may be naturally extended to a
multi-value perturbation design.
Two potential challenges for CINEMA-OT can arise due to bias-variance tradeoffs in optimal trans-
port and the choice of dimensionality for CINEMA-OT’s internal representation. For the first chal-
lenge, a large smoothness threshold in the entropy regularized method can overly smooth the ob-
tained matching map and cause false positives by incorrectly identifying confounder variation as
treatment-associated variation. However, too small a threshold would both harm the method’s sta-
bility and cause high variance. In practice, an adequate threshold can be chosen based on coarse-
graining of the matching matrix. For the second challenge, we have applied a rank estimation
procedure to quantify the instrinsic dimensionality of the count matrix [45]. For larger datasets, this
procedure can be computationally expensive and we have found that a fixed rank of 20 generally
yields good performance.
CINEMA-OT is a tool designed for the estimation of gene signatures causally associated with treat-
ment responses. While we have implemented an iterative reweighting procedure to account for
differential confounder abundance that may arise in response to treatment, CINEMA-OT is not de-
signed for cases where large-scale changes to confounder distributions are the primary effects of
interest, such as proliferation or cell death. In those cases, tools such as MELD, MILO, or DA-seq
may be more suitable [17, 14, 15].
Although several works have explored single-cell level perturbation analysis, none of the methods to
date are based on a strict causal framework. CINEMA-OT provides the first causally-aware approach
to systematically characterize treatment-associated effects in single-cell data. We anticipate that
CINEMA-OT will be widely adopted in single-cell perturbation analysis.

Methods

CINEMA-OT

CINEMA-OT is an unsupervised method for separating confounding signals from perturbation sig-
nals for matching cells via imputing counterfactuals and computing perturbation effect at a single-
cell level (https://github.com/vandijklab/CINEMA-OT). The detailed workflow of CINEMA-
OT is as follows.

1. Causal framework and formal proof

Here we give an rigorous treatment of the causal framework and underlying assumptions
in CINEMA-OT.

Assumption 1: Independent sources and noise. Confounding factors and treatment
events are pairwise independent random variables.

Assumption 2: Linearity of source signal combinations. Confounding gene signa-
tures can be modeled as a linear combination of confounding sources plus an indepen-
dent noise term. The measured gene signatures can be modeled as arbitrary functions
of confounding factors and treatment events plus an independent noise term.
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If we further assume the effects of confounders and treatments on perturbation-associated
gene signatures are additive, then we may consider the problem of separating confounder
gene signatures from treatment-associated gene signatures as equivalent to solving the blind
source separation problem. However, we can no longer reveal the potential interactions
between confounders and treatments in this case. Here we take a different strategy by
proving the identifiability of confounding factors in our framework.
Assume the gene count matrix is a gene by cell matrix X , the corresponding principal
component matrix is X̂ ∈ R

m×n, the sources are S = {si}i=1,...,l, each source is a vector
with size the number of cells and F = {fi}i=1,...,m is a set of arbitrary functions. Then the
data generation mechanism is given by

X̂ = F (S, z) =







f1(s1, ..., sl, z)
...

fm(s1, ..., sl, z)







where z is the treatment indicator.
With Assumption 2, X̂ can be defined as a combination of confounding factors and
perturbation-associated factors up to arbitrary invertible linear transformations A and B,
and where g1, ..., gm−l are arbitrary functions:

X̂ = B









AS
g1(s1, ..., sl, z)

...
gm−l(s1, ..., sl, z)









Then upon any matrix factorization, applying a functional dependence metric, we are able
to distinguish if signals are dependent on the treatment variable z. Therefore we have

X̂ = CŜ,

where f̂1, ...f̂k and ĝ1, ..., ĝk are defined by:

Ŝ =





















f̂1(s1, ..., sl)
...

f̂k(s1, ..., sl)
ĝ1(s1, ..., sl, z)

...
ĝm−k(s1, ..., sl, z)





















= C−1B









AS
g1(s1, ..., sl, z)

...
gm−l(s1, ..., sl, z)









.

We define Â = B−1C, in which case we have

S = A−1(ÂŜ)1:l = A−1(
∑

j

ÂijŜj)i=1:l.

Because ĝs are pairwise independent functions of z, Âij has to be zero for j > k, otherwise
A−1(

∑

j ÂijŜj)i=1:n would be a function of z, leading to a contradiction.

Therefore we have

S = A−1(
k

∑

j=1

ÂijŜj)i=1:l = A−1(
k

∑

j=1

Âij f̂j)i=1:l = A−1Â∗f̂ .

Here Â∗ is a l× k matrix. Therefore because S is of rank l, we must have k ≥ l, and f̂ is a
linear transformation of S.
If k > l, then because f̂ defines a linear transformation on S, k > l indicates f̂ is not
of full rank. Therefore matrix Ŝ is not of full rank, contradicting with its a invertible
transformation of a full-rank signal matrix. The contradiction leads to the only possibility
of k = l.
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With k = n, because A and Â∗ (the sub-matrix of the full-rank matrix Â) are both invertible,
according to ICA identifiability theorem, we have

S = Ŝ1:l = (C−1X̂)1:l

up to a permutation.

In summary, we have proved that upon correctly identifying f̂s in our framework, we
can identify all underlying confounders up to a permutation, even if there are addi-
tional nonlinear treatment-associated signals. The key difficulty we have overcomed is
gi(s1, s2, ..., sl, z) are generally dependent across different is, therefore the ICA identifia-
bility theorem cannot be applied. Note that we cannot guarantee the recovery of treatment-
associated signals here, which is why after identifying the confounders, we applied a non-
parametric causal matching approach to fully reveal underlying causal processes in the
data.
We cannot guarantee theoretically that our threshold procedure selects correct confounders
and treatment-associated signals. Accounting for the possible uncertainty, it can still be
seen that the matching matrix constructed by CINEMA-OT smoothly interpolates between
the matching matrix of Mixscape and null matching matrix used in single-cell differential
expression analysis.

2. Rank initialization

In order to perform CINEMA-OT, we first need to initialize the expected matrix rank, rep-
resenting the total signal number. We here offer two possible approaches for rank initializa-
tion in CINEMA-OT.
Biwhitening [45] is a recently-developed method to remove independent heteroskedastic
noise in data with inspirations from random matrix theory. It does diagonal matrix trans-
formation of the data on both sides and thresholding based on the Marchenko-Pastur law
[46]. After thresholding, we can get the true matrix rank and the matrix’s low dimensional
approximation. Mathematical details of biwhitening can be seen in [45]. In CINEMA-OT,
we have implemented a version of biwhitening with fixed hyperparameters.
In large datasets, we suggest using prespecified rank values. Empirically, we have found
that CINEMA-OT is robust to rank selection at certain ranges and can give a good perfor-
mance when DimSize = 20.

3. Signal selection with independent component analysis

Independent component analysis is already a well-addressed method in data analysis and
has various implementations. Here we use the FastICA implementation from the package
sklearn.decomposition [47]. Prior to FastICA, input data is PCA-transformed using
scanpy [48].
In order to identify confounder signals and treatment-associated signals, we have adopted
a recently proposed cross rank coefficient [28], which is able to quantify the functional
dependence between ICA signals and query signals (in this case, the treatment signals).
We use the implementation of this method from the XICOR package in R. The threshold
of the cross rank coefficient is set to be 0.5 to 0.75 in this study. We note that tuning the
threshold parameter has a practical meaning in the algorithm. High thresholds correspond
to less tolerance for false positive treatment signals, which leads to local matching more
similar to Mixscape analyses. Meanwhile, setting a low threshold means less tolerance for
false positive confounder signals and can lead to lower resolution of matching, which, in
the extreme case, coincides with single-cell differential expression testing methods.

4. Optimal transport matching

After selecting confounding signals, we perform matching across treatments via optimal
transport, which provides a smooth transport map and does not require neighbor number
selection. Here we consider the entropy regularized optimal transport formulation, which
can be efficiently solved by the Sinkhorn-Knopp algorithm [30]. In this formulation of
the problem, the penalty coefficient act as a hyper parameter influencing the resolution
and smoothness of the transport map. We have empirically determined that the optimal
value for the penalty coefficient often lies within the range (10−6, 10−3) multiplied by the
number of confounding signals.
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Algorithm 1 CINEMA-OT

Require: Count matrix X0 ∈ Rm×n, treatment vector z ∈ {0, 1}n, dimension size r, signal filter-
ing threshold d, smoothness s.

1: DimSize← r,Thres← d,X ← X0.
2: unmixing matrix B, source matrix S ← ICA(X,DimSize);
3: c← zeros(DimSize)
4: for i = 1 : DimSize do
5: ci ← xicor(S[i, :], z); ▷ Compute Chatterjee cross rank coefficient
6: end for
7: Sc ← S[c < Thres, :] ▷ Thresholding to separate confounder signals Sc

8: M ← OT(Sc[:, z = 0], Sc[:, z = 1], smoothness = s ∗ Sc.shape[0]) ▷ M: Matching matrix
9: D ← X0[:, z = 1]M −X0[:, z = 0] ▷ ITE matrix computation

10: Downstream analysis.

Algorithm 2 OT

Require: Confounder signals S1, S2, weights w1 = None, w2 = None, smoothness s.
1: if w1 is None then
2: r ← 1/S1.shape[0], c← 1/S2.shape[0]
3: else
4: r ← w1/w1.shape, c← w2/w2.shape
5: end if
6: D ← PairwiseDistance(S1, S2).
7: A← exp (−D ∗D/s) ▷ Elementwise multiplication for D here
8: M = SinkhornKnopp(A, setr = r, setc = c) ▷ Sinkhorn-Knopp algorithm
9: return M

Iterative reweighting CINEMA-OT

If confounder signals are not independent of treatment indicators, as in the case of differential abun-
dance, confounder signals and treatment-associated signals may not be completely unmixed by ICA.
Even if we select the confounder signals by thresholding as previously described, there may still re-
main treatment signal within the confounder signals. We have implemented a heuristic approach to
enable better separation of these signals through iterative application of ICA and reweighting. If the
confounders are independent of treatment labels, then the local abundance of cells in the confounder
space should be balanced. If the cells are not balanced in the confounder space, then we attempt to
impose balance on the space by reweighting the cells.
In our implementation, we use MELD [17] to estimate each cell’s treatment label likelihood. The
likelihood is then used for estimation of cell-wise weights. In our case, we use the overlap weights
for numerical stability, as the method can assign low weights to cells with similar treatment label
neighborhoods.
We note, however, that imbalance in the confounder space may also occur when the threshold pa-
rameter d is set too high, causing misidentification of treatment-associated factors as confounding
factors. CINEMA-OT has no way of distinguishing between these two scenarios, but our benchmark-
ing suggests that the iterative reweighting procedure assigns correct weights in practice, achieving
good separation of confounding and treatment-associated variation. In addition, CINEMA-OT of-
fers users the ability to specify known confounder labels (e.g. cell type, cell cycle), which may be
directly used for balancing as an alternative to MELD, without the need for an iterative procedure.
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Algorithm 3 Iterative reweighting CINEMA-OT

Require: Count matrix X0 ∈ Rm×n, treatment vector z ∈ {0, 1}n, dimension size r, signal filter-
ing threshold d, smoothness s.

1: DimSize← r,Thres← d,X ← X0.
2: while not converge do
3: unmixing matrix B, source matrix S ← ICA(X,DimSize);
4: c← zeros(DimSize)
5: for i = 1 : DimSize do
6: ci ← xicor(S[i, :], z); ▷ Compute Chatterjee cross rank coefficient
7: end for
8: Sc ← S[c < Thres, :] ▷ Thresholding to separate confounder signals Sc

9: p← MELD(data = Sc, SampleLabel = z).
10: w[z = 0]← p[z = 0, 1], w[z = 1]← p[z = 1, 0]. ▷ Compute propensity score
11: X ← sample(size = 2n, data = X,Weight = w)
12: end while
13: Ŝ ← (BX0)

T

14: Ŝc ← Ŝ[c < Thres, :]

15: M ← OT(Ŝc[:, z = 0], Ŝc[:, z = 1], w0 = w[z = 0], w1 = w[z = 1], smoothness = s) ▷ M:
Matching matrix

16: D ← X0[:, z = 1]M −X0[:, z = 0] ▷ ITE matrix computation
17: Downstream analysis.

Downstream analysis

1. Visualization and clustering of the ITE matrix

With the ITE matrix computed by matching counterfactuals, we are able to numerous stan-
dard analyses. We may employ dimensionality reduction techniques such as t-SNE, UMAP,
or PHATE [49–51] to visualize clusters in the response space. We may also employ clus-
tering techniques, such as Leiden clustering [23] to group cells by similarity of treatment
responses.

2. Synergy analysis

For synergy effect, we compare ITE matrices for two treatment conditions against the ITE
matrix for the combined treatment. Formal derivation of the synergy score is given as
follows.
Consider DA=1,B=0 as the ITE matrix for treatment A alone, DA=0,B=1 as the ITE matrix
for treatment B alone, and DA=1,B=1 as the ITE matrix for the combined treatment. We
may define a synergy matrix Ψ as:

Ψ = DA=1,B=1 − (DA=1,B=0 +DA=0,B=1)

Where each entry Ψg,c represents the synergy score for gene g and cell c. In order to test
if a particular gene g has significant synergistic effect, we formulate the problem as if we
should reject

H0 : E(Ψg,c) = 0, ∀c.

Note here if we apply no normalization, we are aiming for additive synergy; if we instead
apply log normalized data, H0 would test for multiplicative synergy.
We assume that different cells are unlikely to have opposite synergy effects, allowing us to
relax H0 as:

H0 : E(Ψg,:) = 0.

Assume the new H0 holds, then for each gene g, we compute the empirical synergy:

Ψg,: = E(Ψg,:) + ϵ1 + ϵ2 − ϵ3 − ϵ4.

Because here H0 holds, the expectation of the noise term is zero.
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Assume the noise is Poisson, then with the property of Poisson distribution, in the case
of log normalization, ϵis are averages of i.i.d. scaled log1p Poisson distribution with zero
expectation. With the delta method, the variance of the noise term is approximated as:

Var(ϵ1 + ϵ2− ϵ3− ϵ4) =
1

n2

n∑

c=1

(
λ1c

(1 + λ1c)2
+

λ2c

(1 + λ2c)2
+

λ3c

(1 + λ3c)2
+

λ4c

(1 + λ4c)2
).

Where λic, i ∈ {1, 2, 3, 4}s are counterfactual cell gene expression expectation for each
cell in 4 conditions.
We note the formula λ

(1+λ)2 is self-standardized as it is a smooth function and is near zero
for either large or small λs. Therefore, to simplify the statistical test, we assume

Var(ϵ1 + ϵ2 − ϵ3 − ϵ4) = const.

In this case, if we define
Synergy score = |Ψg,:|,

identifying most synergistic genes among all genes can be turned into comparing the syn-
ergy score over all genes.

3. GSEA analysis

For differential gene expression significance, we have applied the non-parametric Wilcoxon
signed-rank test. We apply a p-value threshold (10−5) and expression fold change threshold
selected by the user to identify significantly regulated genes. These genes are input into
GSEApy for analysis by functional signatures [52, 53].

4. Attribution analysis

By clustering cells both by treatment responses (i.e. using the ITE matrix) and con-
trol condition clusters (i.e. cell subtypes), the matching matrix from CINEMA-OT
can be coarse grained. The resulting course-grained matching matrix is of shape
ResponseClusterNumber × ControlClusterNumber. Each column of the matrix gives
the likelihood of a control condition cluster to have different modes of response. By read-
ing each row of the matrix, we are able to attribute each response to the underlying control
condition cluster.

Data simulation and analysis

For Splatter data simulation, we simulate 500 gene by 1000 cell count matrices with 2-4 underlying
cell states. Then we simulate two orthogonal trajectories, each with 250 genes. After creating
confounder genes, we next simulate 500 outcome genes from two groups, enabled by the group
function in Splatter. Each cell has an equal probability of being assigned into outcome gene cluster
1 (group 1) and cluster 2 (group 2). In the first two scenarios, The confounders are simulated to have
random linear effects on the outcome genes, represent potential mixing of confounders and outcomes
in the same gene, with or without differential abundance. In the third scenario, the confounders are
simulated to have both linear mixing effects and state-specific effects on treatment-associated genes.
We simulate 15 times with different random seeds to generate 15 gene count matrices with size
1000 × 1500 (cells by genes). Then the data is normalized, log transformed, and analyzed by our
implemented methods respectively.
For Scsim data simulation, we simulate 500 gene by 1000 cell count matrices with 2-5 underlying
cell states with 2 gene regulation programs. We use Scsim to simulate the fourth scenario mentioned
in the main text, where the heterogeneity of treatment effects is generated by random sampling
independent of the confounders. We simulate 15 times with different random seeds to generate
15 gene count matrices with size 1000 × 1500 (cells by genes). Then the data is normalized, log
transformed, and analyzed by our implemented methods respectively.
For the Mixscape analysis, we have implemented a simple version in Python that matches cells
across conditions according to the descriptions in [18]. For Harmony-Mixscape analysis, we have
used the Python package harmonypy (https: //github.com/slowkow/harmonypy) with default set-
tings [54]. For OT analysis, we implemented a function that calls entropy-regularized optimal trans-
port with a tunable smoothness parameter. For CINEMA-OT, we run the analysis with default
settings and smoothness is set to be 5× 10−4.

Benchmarking metrics

In benchmarking studies, we have implemented three categories of metrics. The first method cate-
gory evaluates ITE estimation accuracy.
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ITE Pearson, ITE Spearman

We evaluate the Pearson / Spearman correlation between output ITE matrices and the ground truth
treatment effects (derived using the ground truth matching).
The second and third method categories include intermediate metrics for evaluating batch effect
removal and supervised biological effect preservation respectively.

ASW, PCR, Graph connectivity

These metrics are batch mixing metrics used to evaluate batch correction methods performance in
the systematic benchmarking paper [55]. CINEMA-OT uses these metrics to evaluate mixing in
confounder space, as a surrogate for correct matching that can still be measured when ground truth
labels are not present. We use the implementations of these metrics from package scib [55].

Diffusion-map dependence coefficient

In order to evaluate preservation of underlying confounders, we use diffusion-map dependence coef-
ficients. We calculate these coefficients for both cell state and cell trajectory. As our simulated data
do not form a well-defined trajectory, and multiple orthogonal trajectories may be simultaneously
present in the data, we approach trajectory preservation differently from [55].
We evaluate the maximum possible functional dependence coefficient, a rank-based measure, be-
tween true order and diffusion map eigenvectors. Low values of the index would indicate there are
no components that are of high functional dependence with respect to the trajectory, therefore the
information of the trajectory is not well preserved.
The Laplacian eigenvectors rely on kernel function selection. In the case of a covariance kernel, the
method reduces to computation of the functional dependence between ground truth and confounding
covariates identified by each method. In our case, we select the default setting provided by the
scanpy.tl.diffmap implementation.
For discrete labels, we use one-hot encoding to create n vectors where n equals the number of labels.
Then for each vector, we seek the maximum functional dependence score as described above, and
then take average over all n coefficients to get an average score as the final output.

Sci-Plex4 data

The Sci-Plex4 data was accessed from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSM4150379 with GEO accession number GSM4150379. The data is preprocessed
via protocol https://github.com/manuyavuz/single-cell-analysis/blob/main/single_cell_analysis/
datasets/sciplex.py. After preprocessing, we normalized and log transformed the raw count matrix
and perform subsequent analysis described in main text.
After estimating all metrics, each metric is rescaled so that the sum across all methods tested equals
1. Then we sum the rescaled score over metrics and cell types to calculate the combined score.
The statistical test is performed by Wilcoxon signed-rank test scipy.stats.wilcoxon over the
rescaled metrics.

Rhinovirus infection data

Primary human bronchial epithelial cells from healthy adult donors were obtained from commercial
vendor (Lonza) and cultured at air-liquid interface according to the manufacturers instructions (Stem
Cell Technologies) using reduced hydrocortisone. Cells were kept at air-liquid interface for 4 weeks
before experiment; maturation of beating cilia and mucus production was confirmed using light
microscope. Cells were then infected with mock or 105 PFU human rhinovirus 1A per organoid,
with or without exposure to 2% cigarette smoke extract (CSE). Single cell suspension is collected
by trypsin digestion at 5 days post infection and submitted to single cell RNA sequencing using The
10X Genomics single-cell 3′ protocol. The final dataset contains 24767 cells and 23529 genes in
4 samples (mock, RV, CSE, RVCSE). We used a standard cell marker database to annotate clusters
identified by Louvain clustering of a BB-kNN graph based on Euclidean distances between cells in
50-dim PCA space. Lasso regression was used to determine which cell markers were most predictive
in a one-vs.rest scheme for automated annotations. These markers are checked based on known cell
type markers of airway epithelial cells [56], based on which each cell is assigned to be of one of eight
cell types: proliferating basal, basal, hillock, club, goblet, pre-ciliated, ionocyte and neuroendocrine
cells.
CINEMA-OT analysis on MOCK and RV was run with default parameters with smoothness=5e-6.
Synergy analysis was performed with default parameters.
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Interferon treatment data

PBMC processing and in vitro culture

The study was approved by Institutional Review Boards at Yale University (following Yale
melanoma skin SPORE IRB protocol). Healthy donors consented to donation of peripheral blood
for research use.
Human PBMC were isolated using Lymphoprep density gradient medium (STEMCELL). PBMC
were plated at 1 million cells per ml and stimulated with 1000U/ml human IFNa2 (R&D systems),
1000U/ml human IFNb (pbl assay science 11415), 1000U/ml human IFNg (pbl assay science),
1ug/ml human IFN-III /IL-29 (R&D systems), 100ng/ml human IL-6 (NCI Biological Resources
Branch Preclinical Biologics Repository), 20ng/ml human TNFa (R&D systems), and combinato-
rial cytokines IFNb+ IL-6, IFNb+ TNFa, IFNb+ IFNg at indicated concentrations above for up to
48 hours.

Cell enrichment and 10x sample preparation

Cultured cells were collected stained with TotalSeq anti-human hashtags C0251-C0260 (Biolegend),
viability dye (zombie red, Biolegend) and anti-human CD45-FITC (clone HI30, Biolegend) and
enriched for live CD45+ cells using BD FACS Aria II. Sorted cells were then resuspended to 1200
cells per ul and barcoded for multiplexed single cell sequencing using 10x Genomics 5v2 chemistry
(10x Genomics, PN-1000263).

Sequencing and 10x sample alignment

Single cell RNA sequencing libraries were sequenced on Illumina NovaSeq at read length of 150bp
pair-end and depth of 300 million reads per sample.

scRNA-seq data analysis

Data from three donors across Day 2 and Day 7 are concatenated together into labeled anndata
objects for analysis. For each of the 6 samples, we filtered cells with less than 200 genes and
we filtered genes expressed in fewer than 3 cells. For further quality control, cells with a high
proportion of mitochondiral reads (> 7%) were excluded. The distribution of genes per cell was
visually inspected and upper thresholds selected on a per-sample basis to exclude doublets. For
each of the samples, the upper threshold was selected as [6000,3500,4000,3500,4500,3500] respec-
tively. Following filtering, the count data was normalized and log transformed. Highly variable
gene selection was performed by sc.pp.highly_variable_genes(adata, min_mean=0.0125,
max_mean=3, min_disp=0.5). Highly variable genes were used for subsequent PCA and UMAP
projection.
For individual treatment effect analysis, we additionally filter T cell receptor genes, histocompat-
ibility genes, and immunoglobulin genes from the highly variable gene set. Genes to be filtered
were obtained from the HUGO database [57]. After filtering, highly variable genes were selected
for downstream visualization analysis.
CINEMA-OT analysis was run on each of the samples separately, with thres=0.5,
smoothness=1e-4, eps=1e-2, and preweights given by cell types.
For the synergy analysis of donor 3 on day 2 (H3D2), we selected significant synergy genes by a
absolute value threshold of 0.15.
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