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ABSTRACT

Summary

SpliceAl is a widely used splicing prediction tool and its most common application relies on
the maximum delta score to assign variant impact on splicing. We developed the SpliceAl-
10k calculator (SAI-10k-calc) to extend use of this tool to predict: the splicing aberration type
including pseudoexonization, intron retention, partial exon deletion, and (multi)exon skipping
using a 10 kb analysis window; the size of inserted or deleted sequence; the effect on
reading frame; and the altered amino acid sequence.

SAI-10k-calc has 95% sensitivity and 96% specificity for predicting variants that impact
splicing, computed from a control dataset of 1,212 single nucleotide variants (SNVs) with
curated splicing assay results. Notably, it has high performance (>84% accuracy) for
predicting pseudoexon and partial intron retention. The automated amino acid sequence
prediction allows for efficient identification of variants that are expected to result in mRNA
nonsense-mediated decay or translation of truncated proteins.

Availability and implementation

SAI-10k-calc is implemented in R (https://github.com/adavi4/SAI-10k-calc) and also available
as a Microsoft Excel spreadsheet. Users can adjust the default thresholds to suit their target
performance values.

Supplementary information
Supplementary data are available online.
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Introduction

SpliceAl is a neural network that predicts splicing from a pre-mRNA sequence (Jaganathan
et al., 2019). Previous evaluations (Ha, Kim, & Jang, 2021; Moles-Fernandez et al., 2021;
Riepe, Khan, Roosing, Cremers, & 't Hoen, 2021; Rowlands et al., 2021; Wai et al., 2020)
have identified SpliceAl as the best predictor of variants that impact splicing, here termed
spliceogenic variants. These studies assessed SNVs and small indels across multiple
locations (i.e. splice site motifs, deep intronic regions >20 bp from the acceptor and >6 bp
from the donor site, and exonic). They used the maximum delta score (of the four possible
output scores) that passed the respective study-designated thresholds to predict variant
spliceogenicity, but did not assess the splicing aberration type.

SpliceAl sensitivity for detecting spliceogenic intronic variants >50 bp from exons was
originally reported to be 41% using a 0.5 maximum delta score threshold (Jaganathan et al.,
2019), but an improved sensitivity of 94% was observed for variants >20 bp from exons by
lowering the threshold to 0.05 (Moles-Fernandez et al., 2021). Paired donor-acceptor splice
site scores were observed for validated pseudoexonization events (Moles-Fernandez et al.,
2021). Moreover, manual checking of donor-acceptor splice site pairing was incorporated
into a scheme to prioritize likely spliceogenic deep intronic variants (Qian et al., 2021).

We developed the SAI-10k-calc to systematically predict different SNV-associated splicing
aberrations, altered transcript sizes, and consequent amino acid sequences, with a focus on
accurate prediction of aberration sizes due to deep intronic variation.

Methods

SAI-10k-calc was designed to predict specific types of splicing aberrations, namely:
pseudoexonization, partial intron retention, partial exon deletion, (multi)exon skipping, and
whole intron retention. Its features were derived from the application of all four raw delta
scores and their corresponding delta positions generated by the SpliceAl tool (Jaganathan et
al., 2019) using the maximum distance of +/- 4999 bp flanking the variant of interest. SAI-
10k-calc can process SpliceAl scores resulting from SNVs at any exonic or intronic position,
but not scores resulting from indels due to the complexity of distance interpretations for such
variants. The decision flowchart is shown in Supplementary File 1.

We established default thresholds for SpliceAl delta scores (0.02—-0.2 for exon skipping or
whole intron retention and 0.02-0.05 for pseudoexon gain) and the gained exon size range
of 25-500 bp based on two training sets derived from published splicing data: (1) SNVs in
BRCA1, BRCA2, MLH1, MSH2, MSH6, and PMS2 from Shamsani et al. (2019); and (2)
deep intronic SNVs in various Mendelian disease genes from Moles-Fernandez et al. (2021)
(Supplementary Table S1). The 0.2 upper threshold for exon skipping is based on the lower
limit set by SpliceAl developers (Jaganathan et al., 2019). For deep intronic variants, the
0.05 upper threshold for pseudoexon gain is also supported by previous findings (Moles-
Fernandez et al., 2021). The 25-500 bp exon size range encompasses the optimal size for
efficient splicing that is between 50-250 bp (Movassat, Forouzmand, Reese, & Hertel, 2019)
and is expected to capture most gained pseudoexons.

Usage and features
SAIl-10k-calc (R code version) requires two input files: a SpliceAl output VCF file and a tab-
separated file with gene names and RefSeq transcript IDs (to match transcripts used in
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SpliceAl calculations). SAI-10k-calc was developed using human genome reference

GRCh37, but is compatible with GRCh38.

The SAI-10k-calc output is a tab-separated file with summary of splicing predictions
indicating the type of aberration, possible combinations of aberrations (e.g. one SNV
resulting in both exon skipping and partial intron retention), the exact size of inserted and/or
deleted sequences, and the effect on reading frame and translation (Figure 1). The latter is
critical to predict the pathogenicity of the splicing alteration, and to design and interpret
laboratory validation experiments. Amino acid sequence predictions could also be useful for
additional applications, for example cancer neoantigen predictions (Yarchoan, Johnson,

Lutz, Laheru, & Jaffee, 2017).
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Figure 1. Types of splicing aberrations predicted by the SpliceAl-10k calculator. Six
SNVs that were experimentally confirmed to alter splicing are correctly predicted by SAI-10k-
calc (A to F). Of these, two represent correct prediction of combinations of splicing
aberration types (E, F). Amino acid sequence predictions include three amino acids
preceding the first variant amino acid, followed by the modified sequence inside square
brackets. In-frame amino acid deletions (example in panel E) are indicated by blank square
brackets flanked by three wild type amino acids preceding and following the deleted

sequence.
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We also provide a lightweight Microsoft Excel spreadsheet (Supplementary File 2,
processing up to 1000 SNVSs) that predicts the types and sizes of aberrations. In this version,
users need to provide the raw scores generated by either SpliceAl Lookup
(https://spliceailookup.broadinstitute.org/) or SpliceAl run from the command line. However,
the predicted aberration sizes for partial intron retentions or partial exon deletions for this
lightweight version are less accurate than the R code implemented version. Specifically, the
R code uses native splice site positions derived from the given RefSeq transcript, whereas
the lightweight version uses the SpliceAl-predicted acceptor and donor site positions. For
example, the Excel version incorrectly predicted NM_007294.4(BRCA1):c.4868C>G to result
in a 125-bp partial exon deletion, while the R code gave the correct size of 119 bp.

We note that, due to SpliceAl limitations, the calculator cannot be designed to predict three
specific combinations of aberrant transcripts: (1) exon skipping and multi-exon skipping; (2)
exon skipping and whole intron retention; and (3) partial exon deletion and partial intron
retention. Multi-exon skipping and whole intron retention can only be predicted if the
positions of donor and acceptor losses are within the analysis window, i.e., less than 4,999
bp from the variant.

Performance

Using our training set data, SAI-10k-calc (R code version) has an overall sensitivity of 95%
(441/464 confirmed spliceogenic SNVs) and specificity of 96% (715/748 non-spliceogenic
SNVs) using our thresholds. Furthermore, SAI-10k-calc demonstrates high accuracy for
prediction of pseudoexonization (85%), partial intron retention (84%), and exon skipping
(81%), highlighting its applicability for prioritization of variants through clinical or research
sequencing. R code output data from the training set variants are shown in Supplementary
Table S2. General splicing prediction results and performance values are summarized in
Supplementary Tables S3 and S4. Splicing aberration predictions (type and size) are
detailed in Supplementary Tables S5-8.
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